WO2007018174A1 - ポリビニルアセタール樹脂の製造方法 - Google Patents

ポリビニルアセタール樹脂の製造方法 Download PDF

Info

Publication number
WO2007018174A1
WO2007018174A1 PCT/JP2006/315591 JP2006315591W WO2007018174A1 WO 2007018174 A1 WO2007018174 A1 WO 2007018174A1 JP 2006315591 W JP2006315591 W JP 2006315591W WO 2007018174 A1 WO2007018174 A1 WO 2007018174A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
reaction
resin
producing
alcohol
Prior art date
Application number
PCT/JP2006/315591
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Tsuji
Masayoshi Yamanaka
Takeshi Kusudou
Hideharu Iwasaki
Takashi Sugioka
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to EP06782433.4A priority Critical patent/EP1921095B1/en
Priority to JP2007529572A priority patent/JP5054526B2/ja
Priority to US12/063,169 priority patent/US20090036636A1/en
Priority to CN2006800294155A priority patent/CN101243111B/zh
Publication of WO2007018174A1 publication Critical patent/WO2007018174A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/38Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation

Definitions

  • the present invention relates to a method for producing a polybutylacetal resin, and in particular, to a method for producing a polyvinylacetal resin, characterized by reacting polybutyl alcohol and aldehyde in the presence of an acid catalyst comprising carbon dioxide. .
  • Polybulacetal resin is a tough and excellent chemical-resistant polymer, and exhibits strong adhesion to the surface of various materials. Due to these characteristics, polyvinylacetal resin is effective as a coating material and is also used as an interlayer film for safety glass. Polybulassetal resin is used in various applications such as paints, adhesives, binders and molded products.
  • a method for synthesizing polybulucetal by reacting polybulualcohol with an aldehyde is known.
  • a typical method for producing polybulucetal resin currently employed industrially is as follows. In other words, in a water solution, polybulualcohol and aldehyde are reacted in the presence of an acid catalyst to obtain a slurry containing the resulting polybuluacetal resin, which is neutralized with alkali, dehydrated and washed. This is a method of drying to obtain a granular material of polyvinyl acetal resin.
  • the acid used as the catalyst is a strong acid such as hydrochloric acid or sulfuric acid, and needs to be neutralized after the acetal reaction is completed.
  • an alkaline compound such as sodium hydroxide is used, which reacts with an acid catalyst to form a metal salt.
  • the metal salt thus generated, the unreacted acid catalyst, and the unreacted alkali compound are taken into the polyvinyl acetal resin particles and adhere to the surface of the resin particles. These components can be removed to some extent by repeated washing with water, but it is difficult to remove the components incorporated into the resin particles.
  • the following problems are caused by the impurities remaining in the polybulassal resin.
  • the problem has occurred.
  • the alkali metal impairs the electrical insulation, transparency, thermal stability, etc. of the polybulassetal resin. Residual acid components can cause dehydration reactions and reduce thermal stability.
  • metal elements and halogen elements are strongly avoided.
  • Patent Document 1 discloses a method of depositing polyvinyl acetal resin particles by applying a predetermined agitation power and performing an acetalization reaction while stirring and advancing the acetalization reaction under high agitation mixing. Is described. According to this method, it is said that resin particles having good detergency can be obtained in the purification step.
  • Patent Document 2 describes a method in which a slurry of an acetalization reaction product containing an acid catalyst is neutralized with an alkali while being vibrated by ultrasonic waves.
  • Patent Document 3 describes that after the acetal reaction using an acid catalyst, particles having an average particle size of 5 ⁇ or less are precipitated and precipitated, and the resulting slurry is neutralized with an alkali, washed with water, and electrodialyzed. The method of purification by is described. According to this method, it is said that a polybulacetal resin having a very small metal component content can be obtained. However, these methods have complicated cleaning operations and are difficult to implement on an industrial scale.
  • Patent Document 4 discloses a polybule that pressurizes a solution or suspension containing a polybulualcohol resin and a carbonyl compound to advance the acetalization reaction without using an acid catalyst. A method for producing an acetal resin is described. According to this method, it is said that a complicated process of neutralizing the acid catalyst or washing the obtained resin can be omitted.
  • a non-catalytic reaction under nitrogen pressure when an aldehyde controlled to have a low acid value is used. It is difficult to obtain an industrially realistic reaction rate that is extremely slow.
  • Patent Document 4 the gas used for pressurization is exemplified by nitrogen, oxygen, nitrogen oxide, carbon dioxide, helium, argon, neon, water, and air.
  • nitrogen gas is used in the examples.
  • Patent Document 5 describes a method for producing a modified polymer compound in which a polymer compound is chemically modified in a supercritical fluid or a high-temperature and high-pressure fluid.
  • An example of producing polyvinyl acetal by reacting with aldehyde is described.
  • the supercritical fluid or high-temperature / high-pressure fluid at this time is said to be at least one fluid selected from the group consisting of water, an organic solvent, and carbon dioxide.
  • the supercritical fluid or high-temperature / high-pressure fluid at this time is said to be a fluid that is heated and pressurized to a temperature of 100 ° C or higher and a pressure of 0.5 MPa or higher.
  • Patent Document 5 when high-temperature and high-pressure water is used, the ionic product of water rises to several hundred to 1,000 times that at room temperature, so protons are easily supplied from water, and acid-base reaction It is said that it is possible to proceed easily.
  • the above lower limit of temperature and pressure 100 ° C, 0.5 MPa
  • the acetalization reaction proceeds under the conditions of a temperature of 300 to 400 ° C. and a pressure of 9 to 25 MPa.
  • the pH can be reduced by using a mixed fluid of water and carbon dioxide.
  • the acetalization reaction is performed in such a fluid.
  • the acetalization reaction at a high temperature as employed in these examples is disadvantageous in terms of energy and requires a special reactor, which is an industrially practical method. It's hard to say.
  • the side reaction tends to proceed, and the purity of the resulting polybulacetal may be lowered.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 349629
  • Patent Document 2 JP-A-5-97919
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-38456
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-2285
  • Patent Document 5 WO2003 / 033548
  • Non-patent document 1 "Polyvinyl alcohol (Polyvinyl Ale ohol)" edited by C. A. Finch, John Wiley & Sons Ltd., UK, 1973, p. 391-411
  • the present invention has been made to solve the above-described problems, and provides a method for producing a high-quality polybulucetal resin with less residual impurities such as metal salts and acids under mild conditions. It is intended to do.
  • the object is to provide a method for producing a polyvinyl acetal resin, wherein polyvinyl alcohol and a carbonyl compound are reacted at 40 to 200 ° C in the presence of an acid catalyst comprising carbon dioxide. Solved by.
  • the average degree of polymerization of the polybutyl alcohol is 200 to 4000, and the degree of saponification is 3 ⁇ 40 mol% or more.
  • the carbonyl compound is preferably an aldehyde, and the acid value of the aldehyde is more preferably 20K o Hmg / g or less.
  • the polybulal alcohol and the carbonyl compound are reacted in a liquid in which carbon dioxide is dissolved using water and / or alcohol as a solvent.
  • the content power of polybulal alcohol at the time of preparation is 0.01 to 80% by weight with respect to the weight of the whole reaction solution.
  • carbon dioxide is introduced into the reaction apparatus, the pressure in the reaction apparatus is set to 0.1 to:! OMPa, and the polybutyl alcohol and the carbonyl compound are reacted.
  • carbon dioxide is introduced into the reaction apparatus, and the partial pressure of carbon dioxide in the reaction apparatus is set to 0.1 to:! OMPa to react the polybutyl alcohol with the carbonyl compound.
  • suitable fruit This is an embodiment. In these embodiments, it is more preferable to react the polybutyl alcohol with the carbonyl compound while pressurizing with carbon dioxide.
  • polyvinyl acetal resin having a degree of acetalization of 1 mol% or more by the method as described above. It is also preferable to obtain the polyvinyl acetal resin having a halogen element content of lOOppm or less and an alkali metal element content of lOOOppm or less.
  • the method for producing a polyvinyl acetal resin of the present invention is characterized in that polyvinyl alcohol and a carbonyl compound are reacted in the presence of an acid catalyst composed of carbon dioxide.
  • an acid catalyst for acetalization an inorganic strong acid such as hydrochloric acid or sulfuric acid has been used, and the acid catalyst has often been neutralized with a strong alkali after the reaction.
  • the polybulassetal resin having a low acetal purity is water-soluble, it becomes difficult to remove the acid, alkali and generated salt in the polybulucaltal resin by washing. Therefore, in order to obtain a polybulacetal resin having a low content of acid, alkali, and generated salt, a very complicated operation such as dialysis was required. In contrast, by using carbon dioxide as the acid catalyst, The acid catalyst can be removed by vaporization after the reaction, and neutralization is not necessary. As a result, it has become possible to produce a polybulacetal resin having a low content of any of acid, alkali and salt without complicated washing operations and dialysis operations. In other words, the present invention has found a method for producing a high-quality polybulassal resin with high productivity by using carbon dioxide as an acid catalyst for the acetalization reaction.
  • the raw polybulal alcohol used in the present invention is not particularly limited and is appropriately selected according to the intended use.
  • the average degree of polymerization of the raw material polyvinyl alcohol is preferably 200-4000. If the average degree of polymerization is less than 200, the strength of the obtained polyvinyl acetal resin may decrease, more preferably 1000 or more, and further preferably 1500 or more. On the other hand, when the average degree of polymerization exceeds 4000, the viscosity of the aqueous solution may become too high, making it difficult to handle or increasing the production cost.
  • the saponification degree of the starting polybulal alcohol is preferably 80 mol% or more in consideration of the solubility in water. The saponification degree is more preferably is 90 mol% or more, and even more preferably 99 mol 0/0 above. It is also possible to use modified polyvinyl alcohol.
  • the carbonyl compound used in the present invention is not particularly limited as long as it can react with polyvinyl alcohol to form an acetal. Usually, an aldehyde or a ketone is used, but an aldehyde is preferably used from the viewpoint of reactivity.
  • the anoaldehyde used in the present invention is not particularly limited.
  • aliphatic aldehydes such as formaldehyde, acetoaldehyde, propionaldehyde, n-butynoleanolide, tert-butylanolide, aminoleanolide, hexylaldehyde, 2_ethylhexylaldehyde, etc .; cyclohexanecarbaldehyde And cycloaliphatic aldehydes such as cyclooctane carboaldehyde and norbornane carbaldehyde; aromatic aldehydes such as benzaldehyde, alkyl-substituted benzaldehyde, halogen-substituted benzaldehyde, phenyl-substituted alkyl aldehyde, and furfural.
  • aromatic aldehydes such as benzaldehyde, alkyl-substituted benzaldehyde
  • acetoaldehyde, butynoleanolide, and cyclohexanecarbaldehyde are preferably used.
  • butyraldehyde, especially n-butyraldehyde power is industrially important .
  • examples of the ketone used in the present invention include acetone, 2-butanone, 2_pentanone, and acetophenone. These carbonyl compounds may be used alone or in combination of two or more.
  • the acid value of the aldehyde is 20 KHmg / g or less, more preferably 5 K0 Hmg / g or less. More preferably, it is 1K o Hmg / g or less.
  • the acid value is the number of milligrams of potassium hydroxide (KO H) necessary to neutralize the acid component contained in 1 gram of aldehyde, and is a value measured according to JIS K0070. .
  • the amount of the carbonyl compound used in the present invention is appropriately adjusted according to the target acetal purity. If the theoretical amount is the amount by which all hydroxyl groups of polyvinyl alcohol are acetalized (ie, half the number of moles of the hydroxyl group), use a carbonyl compound having a mole number of 0.01 to 10 times the theoretical amount. Is preferred.
  • the lower limit of the amount of the carbonyl compound used is more preferably 0.1 times or more of the theoretical amount, and still more preferably 0.4 times or more.
  • the upper limit value is more preferably 5 times or less of the theoretical amount, and even more preferably 2 times or less.
  • the acetal brightness (mol%) is expressed by the following formula.
  • the polybulu alcohol and the carbonyl compound are reacted in a liquid in which carbon dioxide is dissolved using water and / or alcohol as a solvent.
  • a solution of polybutyl alcohol in water or alcohol is prepared and stirred with a carbonyl compound in the presence of carbon dioxide.
  • the carbonyl compound is dissolved in the polybutyl alcohol solution, the reaction proceeds in a homogeneous phase, and the carbonyl compound is polyvinyl alcohol. If not dissolved in the solution, the reaction proceeds in a suspended state. As the reaction proceeds, polybutylpropylar resin often precipitates.
  • Alcohols used as solvents here include methanol, ethanol, propanol, isopropanol, butanol, 2-butanol, amino alcohol, isoamyl alcohol, hexanol, cyclohexanol, octanol and ethylene glycolol.
  • Tylene glycol, propylene glycol, 1,3_propanediol, 1,4_butanediol and the like are exemplified. These alcohols may be used in combination of two or more.
  • the concentration of the polyvinyl alcohol in the reaction solution is not particularly limited, and is adjusted in consideration of the solubility of the polyvinyl alcohol and the reaction volume efficiency.
  • the content of polyvinyl alcohol at the time of charging is preferably 0.01 to 80% by weight based on the weight of the whole reaction solution. If the content of polybulal alcohol is too small, the productivity may decrease, more preferably 0.1% by weight or more, more preferably 1% by weight or more, and particularly preferably 5% by weight. % Or more.
  • a higher reaction temperature is often set as compared with a conventional method using a strong acid such as hydrochloric acid or sulfuric acid.
  • the viscosity of the reaction solution is lowered, so that stirring and kneading are easy even at higher concentrations.
  • a method of kneading using a kneading apparatus is also suitably employed. In such a case, kneading is possible even if the content of polybulal alcohol is 20% by weight or more. Therefore, production efficiency is improved.
  • the content of polybulal alcohol is more preferably 50% by weight or less, and even more preferably 30% by weight or less.
  • the content of the polybulal alcohol is preferably 0.01 to 20% by weight. Also, in the kneader If the reaction is carried out while pressure kneading, it is a preferred embodiment that the content of polybutyl alcohol is 20 to 80% by weight.
  • the production method of the present invention is characterized by reacting polybutyl alcohol with a carbonyl compound in the presence of an acid catalyst composed of carbon dioxide.
  • the method for allowing carbon dioxide to be present is not particularly limited, but it is preferable to dissolve carbon dioxide in a solvent in a sealable reactor.
  • carbon dioxide is introduced into the reaction apparatus, the pressure in the reaction apparatus is set to 0.1 to:! OMPa, and the polybutyl alcohol and the carbonyl compound are reacted. It is preferable.
  • 0. IMPa is substantially the same pressure as atmospheric pressure, and carbon dioxide may be introduced into the reactor under atmospheric pressure to allow the reaction to proceed. is there.
  • the pressure in the reactor during pressurization is preferably 0.12 MPa or more, more preferably 0.15 MPa or more, and even more preferably 0.2 MPa or more. The reactivity is improved by increasing the pressure.
  • the pressure in the reactor exceeds lOMPa, the equipment cost may increase.
  • the pressure is more preferably 5 MPa or less, and further preferably 3 MPa or less. By reducing the pressure, the cost of the reactor can be reduced, and it is advantageous from the viewpoint of energy.
  • the pressure in the reaction apparatus here refers to the maximum pressure during the acetal reaction, and is the sum of the partial pressure of carbon dioxide and the vapor pressure of the solvent.
  • carbon dioxide is introduced into the reaction apparatus, and the carbon dioxide partial pressure in the reaction apparatus is set to 0.:! To lOMPa, and the polybutyl alcohol, the carbonyl compound, and Is preferably reacted.
  • the carbon dioxide partial pressure is preferably 0.12 MPa or more, more preferably 0.15 MPa or more, and even more preferably 0.2 MPa or more.
  • the reactivity is improved by increasing the carbon dioxide partial pressure.
  • the equipment cost may increase.
  • the pressure is more preferably 5 MPa or less, and even more preferably 3 MPa or less. Lowering the pressure can reduce the cost of the reactor and is also advantageous from an energy perspective. It is.
  • the carbon dioxide partial pressure here refers to the highest carbon dioxide partial pressure during the acetalization reaction, and is obtained by subtracting the vapor pressure of the solvent from the pressure in the reaction apparatus.
  • the partial pressure of gas components other than carbon dioxide and the vapor pressure derived from minor components such as aldehydes are negligible.
  • the reaction temperature for reacting the polybulal alcohol with the carbonyl compound is 40 to 200 ° C. If the reaction temperature is less than 40 ° C, the solubility of polybulualcohol and the mobility of the molecule will decrease, and the progress of the acetal reaction will be slow.
  • the reaction temperature is preferably 60 ° C or higher, more preferably 80 ° C or higher, and even more preferably 100 ° C or higher. Since the viscosity of the reaction solution is lowered by increasing the temperature, there is an advantage that it becomes easy to use a reaction solution having a high polyvinyl alcohol concentration. On the other hand, when the reaction temperature exceeds 200 ° C, the acetal production efficiency decreases.
  • reaction temperature exceeds 200 ° C
  • side reactions may proceed.
  • the main chain cleavage reaction of polyvinyl alcohol or polyvinylacetal or the condensation reaction of carbonyl compounds can be considered.
  • reactions at high temperatures exceeding 200 ° C are preferable from the standpoints of reactor cost and energy requirements.
  • the reaction temperature is preferably 180 ° C or lower, more preferably 170 ° C or lower, and even more preferably 160 ° C or lower.
  • a suitable reaction temperature varies depending on the degree of acetal purity of the polybulucetal to be obtained. For example,:! If for manufacturing poly Bulle ⁇ cell tar of Asetaru degree to 30 mol 0/0, the reaction temperature is lower is better. The reaction temperature at this time is 40 ° C or higher, preferably 60 ° C or higher. The reaction temperature at this time is preferably 160 ° C or lower, 140. It is more preferable to be C or less. Also, if the production of 30 to 90 mole 0/0 Asetaru degree of poly Bulle ⁇ Se tar, the reaction temperature is higher the better.
  • the reaction temperature at this time is preferably 80 ° C or higher, more preferably 100 ° C or higher, and further preferably 120 ° C or higher. Further, the reaction temperature at this time is 200 ° C. or less, preferably 180 ° C. or less, more preferably 170 ° C. or less, and further preferably 160 ° C. or less.
  • the solubility of carbon dioxide in water is defined as the molarity of carbon dioxide in the solution.
  • the pressure of the mole fraction in the reaction temperature ⁇ beauty reactor such that 1 X 10_ 4 ⁇ 300 X 10_ 4 , and wherein the poly Bulle alcohol and the carbonylation analogy compound It is preferable to react.
  • the molar fraction is within this range, an appropriate amount of carbon dioxide is dissolved in the reaction solution. If the molar fraction is too small, the amount of carbon dioxide dissolved will be small and the effect as an acid catalyst will be insufficient.
  • the acetalization reaction proceeds slowly.
  • the mole fraction is more preferably 5 X 10- 4 or more.
  • the mole fraction more preferably at 30 X 10- 4 or less.
  • Solubility of carbon dioxide in water [molar fraction: (number of moles of carbon dioxide dissolved in solution) / (total number of moles of water and carbon dioxide in solution)] It is a value that varies depending on the partial pressure of carbon, and is data described in known literature such as a chemical handbook.
  • the approximate value of the molar fraction of carbon dioxide dissolved in the reaction solution can be calculated based on the above literature data. That is, the carbon dioxide partial pressure P in the reactor is equal to the pressure P in the reactor.
  • the C02 T force is also calculated by subtracting the saturated water vapor pressure P at the reaction temperature t.
  • the fraction can be determined. Here, the partial pressure of gas components other than carbon dioxide and the vapor pressure derived from minor components such as aldehyde are ignored. Eventually, the molar fraction can be calculated from the reaction temperature t and the pressure P in the reactor. This monore
  • the acetalization reaction of the present invention may be produced using either a batch type or continuous type apparatus. In any case, it is preferable to react with a sealable device so that carbon dioxide does not leak. In order to make the reaction proceed uniformly, it is preferable to provide means for stirring or kneading.
  • the reaction apparatus is selected mainly on the basis of the concentration of polybulal alcohol in the reaction solution.
  • the stirring means at this time is usually a stirring blade.
  • the progress of the reaction may be either a batch type or a continuous type, but in order to obtain a polybulacetal having a high degree of acetalization, the batch type is often preferred.
  • the content of polybulal alcohol at the time of charging is 20% by weight or more based on the total weight of the reaction solution, the viscosity becomes high and stirring with a stirring blade becomes difficult. Les, I prefer to be.
  • the kneading apparatus used in this case is not particularly limited as long as the inside can be pressurized.
  • a kneading apparatus it is preferable to use a kneader or an extruder.
  • the kneader or the extruder preferably has a seal structure so that the inside can be pressurized and has a port for pressurizing with carbon dioxide.
  • the raw materials are continuously charged into the kneading apparatus and reacted while being pressure-kneaded therein.
  • the method for obtaining the produced polybulucetal resin after completion of the acetalization reaction is not particularly limited. It can be taken out after the reactor is cooled to precipitate the polybroacetal resin, or it can be taken out in the form of a slurry or paste. It is also possible to adopt a method in which the polyvinyl acetal is dissolved in a solvent for dissolving it and taken out and the solvent is distilled off. When a kneading apparatus is used as the reaction apparatus, the discharged strand can be cooled and cut as it is, and then pelletized.
  • the degree of acetalization of the polybulucetal produced by the method of the present invention is preferably 1 mol% or more.
  • the acetal brightness is more preferably 10 mol% or more.
  • the degree of acetalization is usually 90 mol% or less.
  • the degree of acetalization is expressed by the following formula.
  • Asetaru degree (mol 0/0) [(moles of Asetaru of hydroxy group) / (raw material polyvinyl Total number of moles of hydroxyl and acetyl groups in nyl alcohol)] X 100
  • the degree of acetalization is high. Specifically, the degree of acetalization is preferably 30 mol% or more, more preferably 40 mol% or more.
  • the degree of acetalization is low, the polybutacetal resin may become water-soluble, and it becomes difficult to wash away impurities in the resin. Therefore, the advantage of employing the production method of the present invention is great. . Therefore, when the acetal brightness is 30 mol% or less, particularly when the acetal brightness is 20 mol% or less, the advantage of employing the production method of the present invention is great.
  • the halogen content in the obtained polyvinyl acetal resin is lOOppm or less.
  • the halogen element contained in the resin causes a dehydration reaction and the like, and impairs the thermal stability of the resin.
  • the content of halogen elements be particularly low in applications such as electronic parts.
  • the halogen element content is more preferably 10 ppm or less.
  • the content of the alkali metal element of the obtained polyvinyl acetal resin is not more than ⁇ pm.
  • the alkali metal element contained in the resin impairs the electrical insulation, transparency, thermal stability, etc. of the polyvinyl acetal resin.
  • the alkali metal element content is more preferably 500 ppm or less.
  • the polybroacetal resin thus obtained is used in various applications such as safety glass interlayers, paints, adhesives, binders and molded articles. In particular, it is suitably used for electronic component applications in which the remaining impurities are avoided.
  • the amount of aldehyde used at this time is 1.2 times the theoretical amount for acetalizing all the hydroxyl groups of polybulal alcohol.
  • the mixture was heated to 160 ° C, carbon dioxide was introduced, and the pressure in the reaction vessel was increased to IMPa. Represent the carbon dioxide solubility at this time is the mole fraction of carbon dioxide in the solution becomes 7. 6 X 10- 4.
  • the mixture was cooled to 90 ° C, carbon dioxide was released, and 160 mL of isopropanol was pumped with nitrogen. The obtained liquid was cooled, and the precipitated polyvinyl rucetal was analyzed by 1 H-NMR.
  • a polyvinyl butyral resin was produced in the same manner as in Example 1 except that the reaction temperature was 120 ° C. Represent the carbon dioxide solubility at this time is the mole fraction of carbon dioxide in the solution becomes 16. 3 X 10- 4. The total chlorine content in the polyvinyl acetal was below the detection limit, and the alkali metal content was 330 ppm. The results are summarized in Table 1.
  • Polypropylene resin was produced in the same manner as in Example 1 except that the pressure in the reaction vessel was 2 MPa and the reaction temperature was 140 ° C. Represent the carbon dioxide solubility at this time is the mole fraction of carbon dioxide in the solution becomes 29. 8 X 10- 4. In addition, the total chlorine content in the polybulucetal was below the detection limit, and the alkali metal content was 340 ppm. The results are summarized in Table 1.
  • a polybutyral resin was produced in the same manner as in Example 1 except that the pressure in the reaction vessel was 7.8 MPa and the reaction temperature was 110 ° C. Expressed carbon dioxide solubility at this time is the mole fraction of carbon dioxide in the solution becomes 111 chi 10- 4. Also in polyvinylacetal The total chlorine content of was below the detection limit, and the alkali metal content was 333 ppm. The results are summarized in Table 1.
  • IPA isopropanol
  • the total chlorine content in the polybulacetal was below the detection limit, and the alkali metal content was 360 ppm.
  • Table 1 The results are summarized in Table 1.
  • a polybutylpropylene resin was produced in the same manner as in Example 1 except that it was changed to carbon dioxide and pressurized with nitrogen.
  • the total chlorine content in the polyvinyl acetal was below the detection limit, and the alkali metal content was 350 ppm.
  • the results are summarized in Table 1.
  • Example 2 The same polyvinyl alcohol 10 g and 100 g of water used in Example 1 were put into a 500 mL stainless steel auto talive, and dissolved by heating to 90 ° C. under nitrogen. There, he ran away with 1.26 g (0.0285 monole) of acetoanoldehydrate with an acid value of SO. The amount of aldehyde used at this time is 0.25 times the theoretical amount for acetalizing all hydroxyl groups of polybulal alcohol. Subsequently, the mixture was heated to 110 ° C and pressurized to IMPa with carbon dioxide. Represent the carbon dioxide solubility at this time is the mole fraction of carbon dioxide in the solution becomes 17. 2 X 10- 4.
  • Example 2 The same polyvinyl alcohol used in Example 1 for a 500 mL stainless steel auto talave LOg and water lOOg were added and dissolved by heating to 90 ° C under nitrogen. There was a butinole with an acid value of 0.08K o fimg / g: ⁇ Noredede 5.7g (0. 079 monole) was calo-free. The amount of aldehyde used is 0.70 times the theoretical amount of acetalization of all hydroxyl groups of poly (bull alcohol). At 25 ° C, 8.5 g of 20 wt% hydrochloric acid was added dropwise.
  • the degree of acetalization is 55.7 mol 0 /. Met.
  • the total chlorine content in the polyvinyl acetal was 165 ppm (treated by oxygen flask combustion method and analyzed by anion chromatography), and the alkali metal content was 1050 ppm (measured by ICP emission analysis).
  • a 500 mL stainless steel auto talive is charged with 100 g of a 10% by weight aqueous solution of polybulal alcohol (Kuraray Co., Ltd .: 1,700, degree of saponification: 99 monole, alkali metal element (sodium) content: 1340 ppm). The bottom was heated to 140 ° C. In 10 g of the polyvinyl alcoholol, 0.225 mol of hydroxyl group is contained. At this time, the pressure in the reactor rose to about 0.4 MPa. There, 12.98 g (0.180 mol) of n-butyl aldehyde with an acid value of 0.6 K 0 Hmg / g was pumped into the reactor with pressurized carbon dioxide, and the total pressure in the reactor was reduced.
  • the pressure increase of 0.5 MPa at this time corresponds to the carbon dioxide partial pressure.
  • the amount of aldehyde used at this time is 1.6 times the theoretical amount for acetalizing all hydroxyl groups of polyvinyl alcohol.
  • the mixture was heated and stirred at 140 ° C for 4 hours, then cooled to an internal temperature of 40 ° C or lower, and carbon dioxide was released.
  • the precipitated polyvinyl acetal was analyzed by 1 H-NMR. As a result, 88.1 mol% of the hydroxyl group subjected to the acetalization reaction, 11.2 mol% of the remaining hydroxyl group, and 0 saponified unsaponified acetyl group were detected. .
  • a polybutyral resin was produced and evaluated in the same manner as in Example 7 except that the partial pressure of carbon dioxide was 0.3 MPa. Table 2 shows the results obtained.
  • Example 10 Except that the reaction temperature was set to 80 ° C, a polybutyral resin was produced and evaluated in the same manner as in Example 7. Table 2 shows the results obtained.
  • a polyvinyl butyral resin was produced and evaluated in the same manner as in Example 7 except that the amount of aldehyde used was 0.8 times the theoretical amount for acetalizing all hydroxyl groups of poly (bull alcohol). Table 2 shows the results obtained.
  • a polybutyral resin was produced and evaluated in the same manner as in Example 7 except that the reaction time was 0.5 hour. Table 2 shows the results obtained.
  • a polybutyral resin was produced and evaluated in the same manner as in Example 7 except that the reaction temperature was 250 ° C. Table 2 shows the results obtained.
  • a polyvinyl butyral resin was produced and evaluated in the same manner as in Example 7 except that the reaction temperature was changed to 250 ° C. by changing to carbon dioxide and pressurizing with nitrogen. Table 2 shows the results obtained.
  • Stainless steel biaxial pressure type ader with an internal volume of 1500ml, Kuraray Co., Ltd. polyvinyl alcohol (polymerization degree: 1700, saponification degree: 99 mol%, alkali metal element (sodium) content: 1340ppm) 300g and water 450g After replacing the interior with nitrogen gas, the mixture was heated and mixed at an internal temperature of 100 ° C for 30 minutes while rotating the shaft at a rate of 3 Orpm, and the temperature was raised to 140 ° C. At this time, the pressure in the kneader was increased to about 0.4 MPa.
  • n_butyraldehyde with an acid value of 0.6 K0 Hmg / g was pumped into the reactor with pressurized carbon dioxide, and the total pressure in the kneader was reduced. 0. 9MPa.
  • the pressure increase of 0.5 MPa at this time corresponds to the carbon dioxide partial pressure.
  • the amount of aldehyde used at this time is 1.6 times the theoretical amount for acetalizing all hydroxyl groups of poly (bull alcohol).
  • the mixture was heated and kneaded at 140 ° C for 4 hours, then cooled to an internal temperature of 40 ° C or lower, and the carbon dioxide was released.
  • a polybutyral resin was produced and evaluated in the same manner as in Example 13 except that 300 g of polybulu alcohol and 700 g of water were added. Table 2 shows the results obtained.
  • Example 7 The same 10% by weight polyvinyl alcohol aqueous solution lOOg as used in Example 7 was put in a 500 mL stainless steel auto talive under a nitrogen atmosphere, pressurized with IMPa carbon dioxide, and stirred at 250 ° C for 30 minutes. . After cooling the internal temperature to below 40 ° C, the carbon dioxide was released. After the interior was dried under reduced pressure to remove water, the molecular weight of poly (bull alcohol) was determined by gel permeation chromatography [GPC (developing solvent: hexafluoroisopropanol, standard polymethyl methacrylate)). It was measured. The results are as follows.
  • Weight average molecular weight 137000 Number average molecular weight 67000

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 ポリビニルアルコールとカルボニル化合物とを、水および/又はアルコールを溶媒とする液体中で、二酸化炭素からなる酸触媒の存在下、40~200°Cで反応させることを特徴とするポリビニルアセタール樹脂の製造方法を提供する。この方法によって、特に洗浄操作を施すことなく、ハロゲン元素含有量が100ppm以下であり、かつアルカリ金属元素含有量が1000ppm以下であるポリビニルアセタール樹脂を得ることができる。したがって、金属塩や酸などの不純物の残存が少ないポリビニルアセタール樹脂の製造方法が提供される。

Description

明 細 書
ポリビュルァセタール樹脂の製造方法
技術分野
[0001] 本発明は、ポリビュルァセタール樹脂の製造方法、特にポリビュルアルコールとァ ルデヒドとを二酸化炭素からなる酸触媒の存在下で反応させることを特徴とするポリビ 二ルァセタール樹脂の製造方法に関する。
背景技術
[0002] ポリビュルァセタール樹脂は、強靭で耐薬品性に優れたポリマーであり、種々の材 料の表面に対して強い接着性を示す。このような特性のために、ポリビニルァセター ル樹脂はコーティング用材料として有効であり、安全ガラス用中間膜としても使用され る。ポリビュルァセタール樹脂の用途は広ぐ塗料、接着剤、バインダー、成形体など 、さまざまな用途に使用されている。
[0003] ポリビュルアルコールとアルデヒドの反応によるポリビュルァセタールの合成方法は 、公知である。 (例えば、非特許文献 1参照)。現在工業的に採用されている、代表的 なポリビュルァセタール樹脂の製造方法は以下のとおりである。すなわち、水溶液中 において、ポリビュルアルコールとアルデヒドとを酸触媒の存在下で反応させ、生成 するポリビュルァセタール樹脂を含有するスラリーを得て、これをアルカリで中和し、 脱水、洗浄した後に乾燥して、ポリビニルァセタール樹脂の粒状物を得るという方法 である。
[0004] このとき、触媒として使用される酸は、塩酸や硫酸などの強酸であり、ァセタール反 応の終了後には中和処理が必要である。当該中和処理には水酸化ナトリウムなどの アルカリィ匕合物が用いられるが、これは酸触媒と反応して金属塩を生成する。このよう にして生成する金属塩や、未反応の酸触媒や、未反応のアルカリ化合物は、ポリビニ ルァセタール樹脂の粒子中に取り込まれ、また当該樹脂粒子の表面に付着する。こ うした成分は水洗を繰り返すことによりある程度除去できるが、樹脂粒子の内部に取り 込まれた成分を除去するのは困難である。
[0005] このようにポリビュルァセタール樹脂中に残存する不純物によって以下のような問 題が発生している。例えば、アルカリ金属は、ポリビュルァセタール樹脂の電気絶縁 性、透明性、熱安定性などを損なわせる。また、酸成分の残留は脱水反応などを引き 起こし、熱安定性を損なわせる。また、電子部品用途などに使用する場合には、金属 元素やハロゲン元素などの混入が強く忌避される。
[0006] 酸触媒やアルカリ化合物の残存に起因する上記問題を解決するために、さまざま な製造方法の提案がなされてきた。例えば、特許文献 1には、所定の撹拌動力を投 入して撹拌しながらァセタール化反応を行レ、、高撹拌混合下でァセタール化反応を 進行させ、ポリビエルァセタール樹脂粒子を析出させる方法が記載されている。この 方法によれば、精製工程において、洗浄性の良好な樹脂粒子を得ることができるとさ れている。また、特許文献 2には、酸触媒を含むァセタール化反応物のスラリーを超 音波によって振動させながらアルカリで中和する方法が記載されている。この方法に よれば、樹脂粒子の内部に残存する酸触媒が拡散しやすくなり、中和反応が速やか に進行するとされている。また、特許文献 3には、酸触媒を用いたァセタールイ匕反応 後に平均粒径が 5 μ Γη以下の粒子を析出、沈殿させ、得られたスラリーをアルカリで 中和し、水洗した後、電気透析によって精製する方法が記載されている。この方法に よれば、金属成分の含有量が極めて少ないポリビュルァセタール樹脂が得られるとさ れている。し力しながらこれらの方法は、洗浄操作が煩雑であったり、工業的規模で の実施が困難であったりした。
[0007] これに対し、特許文献 4には、ポリビュルアルコール樹脂とカルボニル化合物とを含 有する溶液又は懸濁液を加圧して、酸触媒を使用せずにァセタール化反応を進行さ せるポリビュルァセタール樹脂の製造方法が記載されている。この方法によれば、酸 触媒を中和したり、得られた樹脂を洗浄したりするという煩雑な工程を省くことが可能 であるとされている。特許文献 4には、原料の酸価に関する詳細な記載がないが、本 発明者らの実験によれば、酸価が低くコントロールされたアルデヒドを用いた場合の、 窒素加圧下での無触媒反応はきわめて遅ぐ工業的に現実的な反応速度を得ること は難しい。必要な反応速度を得るためには、使用する原料であるアルデヒド又はポリ ビュルアルコール中に不純物としてのカルボン酸の存在が必要であると考えられる。 しかし、不純物であるカルボン酸の存在は未反応のアルデヒドの回収性を低下させる 。また、ブタン酸のように水溶性の低いカルボン酸が存在する場合には、ポリビニノレ アルコールがエステル化されるという問題も生じる。また、へキサン酸のように沸点の 高いカルボン酸が存在する場合には、ポリビュルァセタールからの除去が困難なた め、残留したカルボン酸により、例えば、電子部品に用いられた場合、電極などの腐 食を引き起こすことが懸念される。ところで、特許文献 4において、加圧に用いられる 気体としては、窒素、酸素、窒素酸化物、二酸化炭素、ヘリウム、アルゴン、ネオン、 水及び空気が例示されている力 ここでは、単に加圧のための媒体として汎用ガスが 例示されているだけであり、実施例では窒素ガスが使用されている。
[0008] また、特許文献 5には、高分子化合物を超臨界流体又は高温高圧流体中で化学 的に変性する変性高分子化合物の製造方法が記載されており、その具体例として、 ポリビュルアルコールにアルデヒドを反応させて、ポリビニルァセタールを製造する例 が記載されている。このときの超臨界流体又は高温高圧流体は、水、有機溶媒及び 二酸化炭素からなる群より選択される少なくとも 1つの流体であるとされている。また、 このときの超臨界流体又は高温高圧流体は、温度 100°C以上、圧力 0. 5MPa以上 に加熱加圧されている流体であるとされている。特許文献 5によれば、高温'高圧の 水を用いる場合には、水のイオン積が常温に比べて数百〜千倍程度まで上昇する ため、水から容易にプロトンが供給され、酸塩基反応を容易に進行させることができ るとされている。し力 ながら、水のイオン積が常温の数百倍になるためには、上記温 度及び圧力の下限値(100°C、 0. 5MPa)程度では全く不十分である。そのため、特 許文献 5の実施例では温度 300〜400°C、圧力 9〜25MPaの条件でァセタール化 反応を進行させている。また、水と二酸化炭素との混合流体を用いることによって pH を小さくすることができると記載されていて、実施例 12ではそのような流体中でァセタ ール化反応を行っている。し力 ながら、これらの実施例で採用されているような高温 においてァセタール化反応させるのは、エネルギー的に不利である上に、反応装置 も特殊なものが要求され、工業的に実用的な方法とは言いがたい。し力も、高温下で 反応させるために副反応が進行しやすくなり、得られるポリビュルァセタールの純度 が低下するおそれもある。
[0009] 特許文献 1 :特開平 11 349629号公報 特許文献 2 :特開平 5— 97919号公報
特許文献 3:特開 2000— 38456号公報
特許文献 4 :特開 2005— 2285号公報
特許文献 5 :WO2003/033548号公報
非特許文献 1 : C. A.フインチ(C. A. Finch)編「ポリビュルアルコール(Polyvinyl Ale ohol)」英国、ジョン'ウィリー 'アンド'サンズ (John Wiley & Sons Ltd.)刊、 1973年、 p . 391 -411
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記課題を解決するためになされたものであり、温和な条件下で金属 塩や酸などの不純物の残存が少ない高品質のポリビュルァセタール樹脂の製造方 法を提供することを目的とするものである。
課題を解決するための手段
[0011] 上記課題は、ポリビニルアルコールとカルボニル化合物とを、二酸化炭素からなる 酸触媒の存在下、 40〜200°Cで反応させることを特徴とするポリビニルァセタール樹 脂の製造方法を提供することによって解決される。
[0012] このとき、前記ポリビュルアルコールの平均重合度が 200〜4000であり、ケン化度 力 ¾0モル%以上であることが好ましレ、。また、前記カルボニル化合物がアルデヒドで あることが好ましぐ当該アルデヒドの酸価が 20K〇Hmg/g以下であることがより好 ましい。
[0013] 前記ポリビュルアルコールと前記カルボニル化合物とを、水および/又はアルコー ルを溶媒とし、二酸化炭素が溶解した液体中で反応させることが、本発明の好適な 実施態様である。このとき、仕込み時のポリビュルアルコールの含有量力 反応液全 体の重量に対して 0. 01〜80重量%であることが好ましい。反応装置内に二酸化炭 素を導入して該反応装置内の圧力を 0. 1〜: !OMPaとし、前記ポリビュルアルコール と前記カルボニル化合物とを反応させることが好適な実施態様である。また、反応装 置内に二酸化炭素を導入して該反応装置内の二酸化炭素分圧を 0. 1〜: !OMPaと し、前記ポリビュルアルコールと前記カルボ二ルイ匕合物とを反応させることも好適な実 施態様である。これらの実施態様において、二酸化炭素により加圧しながら、前記ポ リビュルアルコールと前記カルボニル化合物とを反応させることがより好適である。
[0014] 本発明においては、水に対する二酸化炭素の溶解度を溶液中の二酸化炭素のモ ル分率で表した場合に、該モル分率が 1 X 10_4〜300 X 10_4となるような反応温度 及び反応装置内の圧力において、前記ポリビュルアルコールと前記カルボ二ルイ匕合 物とを反応させることが好適である。反応槽の中で液体を撹拌しながら反応させること も好適である。また、混練装置の中で加圧混練しながら反応させることも好適である。
[0015] 以上のような方法によって、ァセタール化度が 1モル%以上の前記ポリビニルァセ タール樹脂を得ることが好適である。また、ハロゲン元素含有量が lOOppm以下であ り、かつアルカリ金属元素含有量が lOOOppm以下である前記ポリビエルァセタール 樹脂を得ることも好適である。
発明の効果
[0016] 本発明のポリビュルァセタール樹脂の製造方法によれば、温和な条件下で金属塩 や酸などの不純物の残存が少ない高品質のポリビュルァセタール樹脂を得ることが できる。したがって、煩雑な洗浄操作を省ぐあるいは簡略化することも可能となり、製 造工程の合理化が可能となるとともに、排水の量を削減することもできる。
発明を実施するための最良の形態
[0017] 本発明のポリビニルァセタール樹脂の製造方法は、ポリビニルアルコールとカルボ ニル化合物とを二酸化炭素からなる酸触媒の存在下で反応させることを特徴とするも のである。従来、ァセタール化のための酸触媒としては、塩酸や硫酸などの無機の強 酸が使用され、反応後に当該酸触媒を強アルカリを用レ、て中和することが多かった。 このような製造方法においては、用いられた酸、アルカリ及び生成した塩がポリビニ ルァセタール樹脂中に大量に残存することが避けられず、煩雑な洗浄操作を必要と していた。また、ァセタールイ匕度の低いポリビュルァセタール樹脂は水溶性を有する ので、当該ポリビュルァセタール樹脂中の酸、アルカリ及び生成した塩を洗浄により 除去することが困難となる。したがって、酸、アルカリ及び生成した塩の含有率の低い ポリビュルァセタール樹脂を得るためには、透析など、非常に煩雑な操作が必要で あった。これに対し、酸触媒として二酸化炭素を使用することによって、ァセタールイ匕 反応の後に気化させるだけで酸触媒を除去することができるし、中和操作も不要にな る。結果として、酸、アルカリ及び塩のいずれの含有量も少ないポリビュルァセタール 樹脂を、煩雑な洗浄操作や透析操作を行うことなく製造することが可能となった。す なわち、本発明は、ァセタール化反応の酸触媒として二酸化炭素を用いることによつ て、高品質のポリビュルァセタール樹脂を生産性よく製造する方法を見出したもので ある。
[0018] 本発明で使用される原料のポリビュルアルコールは、特に制限されるものではなぐ 用途に応じて適宜選択される。原料のポリビニルアルコールの平均重合度は、 200 〜4000であることが好ましレ、。平均重合度が 200未満の場合には得られるポリビニ ルァセタール樹脂の強度が低下するおそれがあり、より好適には 1000以上であり、 さらに好適には 1500以上である。一方、平均重合度が 4000を超える場合には、水 溶液の粘度が高くなりすぎて取り扱いが困難になったり、製造コストが上昇したりする おそれがある。原料のポリビュルアルコールのケン化度は、水への溶解度を考慮す れば、 80モル%以上であることが好ましい。ケン化度は、より好適には 90モル%以上 であり、さらに好適には 99モル0 /0以上である。また、変性されたポリビニルアルコール を使用することも可能である。
[0019] 本発明で使用されるカルボニル化合物は、ポリビニルアルコールと反応してァセタ ールを形成することが可能なものであれば特に限定されない。通常、アルデヒド又は ケトンが用いられるが、反応性の点からはアルデヒドが好適に用いられる。本発明で 使用されるァノレデヒドとしては、特に制限されるものではなレ、。例えば、ホルムアルデ ヒド、ァセトアルデヒド、プロピオンアルデヒド、 n—ブチノレアノレデヒド、 tert—ブチルァ ノレデヒド、アミノレアノレデヒド、へキシルアルデヒド、 2 _ェチルへキシルアルデヒドなど の脂肪族アルデヒド;シクロへキサンカルボアルデヒド、シクロオクタンカルボアルデヒ ド、ノルボルナンカルボアルデヒドなどの脂環族アルデヒド;ベンズアルデヒド、アルキ ル置換べンズアルデヒド、ハロゲン置換べンズアルデヒド、フヱニル置換アルキルァ ノレデヒド、フルフラールなどの芳香族アルデヒドなどが例示される。これらの中で、ァ セトアルデヒド、ブチノレアノレデヒド、シクロへキサンカルボアルデヒドが好ましく用いら れる。なかでもブチルアルデヒド、特に n—ブチルアルデヒド力 工業的に重要である 。一方、本発明で使用されるケトンとしては、例えば、アセトン、 2—ブタノン、 2_ペン タノン、ァセトフヱノンなどが例示される。これらのカルボニル化合物は単独で用いて もよぐ二種以上併用してもよい。
[0020] 工業的に入手できるアルデヒドには、カルボン酸が混入している場合がほとんどで ある。これは、製造工程中に副生したものであったり、ハンドリング中に空気中で酸化 されたりしたものである。このようなカルボン酸は、不純物としてポリビュルァセタール 樹脂に混入したり、未反応アルデヒドを回収する際に当該アルデヒドに混入したり、ァ セタール化反応中にエステルイ匕反応などの副反応を起こしたりするおそれがある。し たがって、品質の良好なポリビニルァセタール樹脂を得るためには、前記アルデヒド の酸価が 20K〇Hmg/g以下であることが好ましぐ 5K〇Hmg/g以下であることが より好ましぐ lK〇Hmg/g以下であることがさらに好ましい。ここで、上記酸価は、 1 グラムのアルデヒド中に含まれる酸成分を中和するために必要な水酸化カリウム (KO H)のミリグラム数のことであり、 JIS K0070に従って測定される値である。
[0021] 本発明において使用されるカルボ二ルイ匕合物の量は、 目的とするァセタールイ匕度 などによって適宜調整される。ポリビニルアルコールの全水酸基がァセタール化され る量 (すなわち、当該水酸基の半分のモル数)を理論量とするのであれば、当該理論 量の 0. 01〜10倍のモル数のカルボニル化合物を用いるのが好適である。カルボ二 ル化合物の使用量の下限値はより好適には前記理論量の 0. 1倍以上であり、さらに 好適には 0. 4倍以上である。一方、上限値はより好適には前記理論量の 5倍以下で あり、さらに好適には 2倍以下である。ここで、ァセタールイ匕度(モル%)は、以下の式 によって表されるものである。
ァセタール化度(モル%) = [ (ァセタール化された水酸基のモル数) / (原料ポリビ ニルアルコール中の水酸基及びァセチル基の合計モル数)] X 100
[0022] 前記ポリビュルアルコールと前記カルボニル化合物とは、水および/又はアルコー ルを溶媒とし、二酸化炭素が溶解した液体中で反応させることが好ましい。通常、ポリ ビュルアルコールの水又はアルコールの溶液を調製し、二酸化炭素の存在下でカル ボニル化合物と撹拌する。カルボニル化合物がポリビュルアルコール溶液中に溶解 する場合には均一相で反応が進行するし、カルボニル化合物がポリビニルアルコー ル溶液に溶解しない場合には、懸濁された状態で反応が進行することになる。反応 が進行するに従ってポリビュルプチラール樹脂が析出する場合が多い。
[0023] ここで溶媒として使用されるアルコールとしては、メタノーノレ、エタノール、プロパノー ノレ、イソプロパノール、ブタノール、 2—ブタノール、アミノレアルコール、イソアミルァノレ コーノレ、へキサノーノレ、シクロへキサノーノレ、ォクタノーノレ、エチレングリコーノレ、ジェ チレングリコール、プロピレングリコール、 1, 3 _プロパンジオール、 1, 4_ブタンジ オールなどが例示される。これらのアルコールは、二種以上併用してもよレ、。二酸化 炭素の溶解性及びポリビニルアルコールとカルボニル化合物の反応性を考慮すれ ば、少なくとも水を使用することが好ましい。水とアルコールの混合溶媒を使用するの であれば、水の含有量が 50重量%以上であることが好ましい。また、溶媒の回収の 必要性などを考慮すれば、実質的に水のみを使用することが好ましい。
[0024] 反応液中のポリビニルアルコールの濃度は特に限定されず、ポリビニルアルコール の溶解度や反応容積効率などを考慮して調整される。仕込み時のポリビニルアルコ ールの含有量が、反応液全体の重量に対して 0. 01〜80重量%であることが好まし レ、。ポリビュルアルコールの含有量が少なすぎる場合には、生産性が低下するおそ れがあり、より好ましくは 0. 1重量%以上、さらに好適には 1重量%以上であり、特に 好適には 5重量%以上である。酸触媒として二酸化炭素を使用する本発明の製造方 法においては、塩酸や硫酸などの強酸を使用する従来法に比べて、より高い反応温 度が設定されることが多レ、。反応温度を高くすることによって反応液の粘度が低くな るので、より高濃度のものであっても撹拌や混練が容易である。例えば、後に説明す るように混練装置を用いて混練するような方法も好適に採用され、そのような場合で あれば、ポリビュルアルコールの含有量が 20重量%以上であっても混練が可能であ り、生産効率が改善される。一方、ポリビュルアルコールの含有量が多すぎる場合に は、撹拌や混練が困難になるおそれがあり、特に撹拌翼を用いた撹拌が困難になり やすい。したがって、ポリビュルアルコールの含有量は、より好ましくは 50重量%以 下、さらに好適には 30重量%以下である。本発明において、例えば、反応槽の中で 液体を撹拌しながら反応させるような場合であれば、ポリビュルアルコールの含有量 が 0. 01〜20重量%であることが好適な実施態様である。また、混練装置の中でカロ 圧混練しながら反応させるような場合であれば、ポリビュルアルコールの含有量が 20 〜80重量%であることが好適な実施態様である。
[0025] 本発明の製造方法では、二酸化炭素からなる酸触媒の存在下でポリビュルアルコ ールとカルボニル化合物とを反応させることが最大の特徴である。二酸化炭素を存在 させる方法は特に限定されないが、密封可能な反応装置において二酸化炭素を溶 媒に溶解させることが好ましレ、。
[0026] 本発明の製造方法では、反応装置内に二酸化炭素を導入して該反応装置内の圧 力を 0. 1〜: !OMPaとし、前記ポリビュルアルコールと前記カルボニル化合物とを反 応させることが好ましい。ここで、 0. IMPaとは、実質的に大気圧と同じ圧力ということ であり、大気圧下で、反応装置内に二酸化炭素を導入して反応を進行させてもよいと レ、うことである。し力 ながら、ァセタール化反応を十分に進行させるためには、二酸 化炭素により加圧しながら、ポリビニルアルコールとカルボニル化合物とを反応させる ことが好ましい。加圧するときの反応装置内の圧力は 0. 12MPa以上であることが好 ましぐ 0. 15MPa以上であることがより好ましぐ 0. 2MPa以上であることがさらに好 ましい。圧力を高くすることによって反応性が向上する。一方、反応装置内の圧力が lOMPaを超える場合には、設備コストが増加することがある。当該圧力は、より好適 には 5MPa以下であり、さらに好適には 3MPa以下である。圧力を低くすることによつ て、反応装置のコストを低減することができるし、エネルギー面からも有利である。ここ でいう反応装置内の圧力とは、ァセタールイ匕反応中の最高圧力のことをレ、い、二酸 化炭素の分圧に溶媒の蒸気圧などが加えられたものである。
[0027] 本発明の製造方法では、反応装置内に二酸化炭素を導入して該反応装置内の二 酸化炭素分圧を 0. :!〜 lOMPaとし、前記ポリビュルアルコールと前記カルボニル化 合物とを反応させることが好ましい。二酸化炭素分圧は 0. 12MPa以上であることが 好ましぐ 0. 15MPa以上であることがより好ましぐ 0. 2MPa以上であることがさらに 好ましい。二酸化炭素分圧を高くすることによって反応性が向上する。一方、二酸化 炭素分圧が lOMPaを超える場合には、設備コストが増加することがある。当該圧力 は、より好適には 5MPa以下であり、さらに好適には 3MPa以下である。圧力を低くす ることによって、反応装置のコストを低減することができるし、エネルギー面からも有利 である。ここでいう二酸化炭素分圧とは、ァセタール化反応中の最高の二酸化炭素 分圧のことをレ、い、反応装置内の圧力から溶媒の蒸気圧が引かれたものである。ここ では、二酸化炭素以外のガス成分の分圧や、アルデヒドなどの少量成分に由来する 蒸気圧は無視できるものとする。
[0028] ポリビュルアルコールとカルボニル化合物とを反応させるときの反応温度は 40〜20 0°Cである。反応温度が 40°C未満である場合には、ポリビュルアルコールの溶解度 及び分子の運動性が低下し、ァセタールイ匕反応の進行が遅くなる。反応温度は、好 適には 60°C以上、より好適には 80°C以上、さらに好適には 100°C以上である。高温 にすることによって反応液の粘度が低下するので、ポリビニルアルコール濃度の高い 反応液を用いることが容易になるという利点もある。一方、反応温度が 200°Cを超え るとァセタール生成効率が低下する。これは、反応温度の上昇に伴って反応液への 二酸化炭素の溶解性が低下するために、もはや二酸化炭素が触媒としての機能を ほとんど発揮しなくなるためと考えられる。また、反応温度が 200°Cを超えると副反応 が進行するおそれもある。ここでの副反応としては、ポリビニルアルコールやポリビニ ルァセタールの主鎖の断裂反応やカルボニル化合物同士の縮合反応などが考えら れる。また、 200°Cを超える高温での反応は、反応装置のコストや必要エネルギーの 面からも好ましくなレ、。反応温度は、好適には 180°C以下であり、より好適には 170 °C以下であり、さらに好適には 160°C以下である。
[0029] 好適な反応温度は、得ようとするポリビュルァセタールのァセタールイ匕度によっても 異なってくる。例えば、:!〜 30モル0 /0のァセタール化度のポリビュルァセタールを製 造するのであれば、反応温度は低い方がよい。このときの反応温度は 40°C以上、好 適には 60°C以上である。またこのときの反応温度は、 160°C以下であることが好まし く、 140。C以下であることがより好ましレ、。また、 30〜90モル0 /0のァセタール化度の ポリビュルァセタールを製造するのであれば、反応温度は高い方がよい。このときの 反応温度は 80°C以上であることが好ましぐより好適には 100°C以上、さらに好適に は 120°C以上である。また、このときの反応温度は、 200°C以下であり、好適には 18 0°C以下であり、より好適には 170°C以下であり、さらに好適には 160°C以下である。
[0030] 本発明において、水に対する二酸化炭素の溶解度を溶液中の二酸化炭素のモル 分率で表した場合に、該モル分率が 1 X 10_4〜300 X 10_4となるような反応温度及 び反応装置内の圧力において、前記ポリビュルアルコールと前記カルボ二ルイヒ合物 とを反応させることが好適である。上記モル分率がこの範囲内にあることによって、反 応液中に適切な量の二酸化炭素が溶解していることになる。上記モル分率が小さす ぎる場合には二酸化炭素の溶解量が少なくなり、酸触媒としての効果が不十分となり
、ァセタール化反応の進行が遅くなる。上記モル分率は、より好適には 5 X 10—4以上 である。一方、上記モル分率が大きすぎる場合には、圧力が高すぎる場合が多ぐ装 置コストが上昇しやすい。上記モル分率は、より好適には 30 X 10—4以下である。
[0031] 水への二酸化炭素の溶解度 [モル分率:(溶液中に溶解している二酸化炭素のモ ル数) / (溶液中の水と二酸化炭素の合計モル数) ]は、温度と二酸化炭素の分圧と によって変化する値であり、化学便覧等の公知文献に記載されているデータである。 本発明において、水を主たる溶媒として反応させる場合であれば、反応液中に溶解 している二酸化炭素のモル分率の概略値は上記文献データに基づいて算出するこ とができる。すなわち、反応装置内の二酸化炭素分圧 P は、反応装置内の圧力 P
C02 T 力も反応温度 tにおける飽和水蒸気圧 P を引くことによって算出される。そして、反
H20
応温度 tと二酸化炭素分圧 P から、文献データに基づいて前記二酸化炭素のモル
C02
分率を求めることができる。ここでは、二酸化炭素以外のガス成分の分圧や、アルデ ヒドなどの少量成分に由来する蒸気圧は無視して計算するものとする。結局、反応温 度 tと、反応装置内の圧力 Pとから前記モル分率が算出できることになる。このモノレ
T
分率が前記特定の範囲に含まれるような条件でァセタール化反応を進行させるのが 好適である。
[0032] 本発明のァセタール化反応は、バッチ式、連続式いずれの装置を用いて製造して も構わない。いずれの場合にも、二酸化炭素が漏れないように密封可能な装置で反 応させることが好ましい。また、均一に反応を進行させるためには、撹拌又は混練の ための手段を備えていることが好ましい。
[0033] 反応装置は、主に、反応液中のポリビュルアルコールの濃度に基づいて選択され る。仕込み時のポリビュルアルコールの含有量力 反応液全体の重量に対して 20重 量%以下である場合には、反応槽の中で液体を撹拌しながら反応させることが好まし レ、。このときの撹拌手段は、通常撹拌翼である。反応の進行はバッチ式であっても、 連続式であっても構わないが、ァセタール化度の高いポリビュルァセタールを得るた めには、バッチ式である方が好ましい場合が多レ、。一方、仕込み時のポリビュルアル コールの含有量が、反応液全体の重量に対して 20重量%以上である場合には、粘 度が高くなつて撹拌翼による撹拌が困難になるので、混練装置を用レ、ることが好まし レ、。この場合に用いられる混練装置は、内部を加圧することのできるものであれば特 に限定されない。混練装置としては、ニーダーあるいは押出機を使用することが好ま しい。ニーダーあるいは押出機は、内部を加圧できるようにシール構造を有していて 、二酸化炭素で加圧するためのポートを有していることが好ましい。このような混練装 置を用いる場合には、原料を混練装置に連続的に投入し、その中で加圧混練しなが ら反応させることも好ましい。
[0034] ァセタール化反応の終了後、生成したポリビュルァセタール樹脂を得る方法は特 に限定されない。反応器を冷却してポリビュルァセタール樹脂を析出させてから取り 出すことも可能であるし、スラリー状あるいはペースト状のままで取り出すことも可能で ある。また、ポリビニルァセタールを溶解する溶媒に溶解させてから取り出し、溶媒を 留去する方法を採用することもできる。反応装置として混練装置を用いる場合には、 吐出されたストランドをそのまま冷却、切断してペレツトイ匕することも可能である。
[0035] 得られたポリビュルァセタールから、未反応のアルデヒドや溶媒が除去され、それら は必要に応じて回収再使用される。その後、ポリビニルァセタールは必要に応じて洗 浄され、乾燥される。本発明の製造方法によれば、ァセタール化反応に際して触媒 を使用せず、中和剤も使用しないので、洗浄操作を施さなくても、不純物の含有量の 少ないポリビュルァセタール樹脂を得ることができる。し力しながら、不純物の含有量 をさらに低減させるためには、洗浄操作を施すことが好ましい場合がある。
[0036] 本発明の方法によって製造されたポリビュルァセタールのァセタール化度は 1モル %以上であることが好ましい。ァセタールイ匕度はより好適には 10モル%以上である。 一方、ァセタール化度は通常 90モル%以下である。ここで、ァセタール化度とは以 下の式によって示されるものである。
ァセタール化度(モル0 /0) = [ (ァセタール化された水酸基のモル数) / (原料ポリビ ニルアルコール中の水酸基及びァセチル基の合計モル数)] X 100
[0037] 合わせガラス中間膜やセラミック成形用バインダー、感光性材料、インキ用分散剤 などの用途に用いる場合には、耐水性、低極性の溶媒への溶解性、低極性のポリマ 一との相容性などの性能を満足するために、ァセタール化度が高いことが好ましい。 具体的には、ァセタール化度が 30モル%以上であることが好ましぐ 40モル%以上 であることがより好ましい。一方、ァセタール化度が低い場合には、ポリビュルァセタ ール樹脂が水溶性になる場合があり、樹脂中の不純物を洗浄除去することが困難に なるので、本発明の製造方法を採用する利益が大きい。したがって、ァセタールイ匕度 が 30モル%以下である場合、特にァセタールイ匕度が 20モル%以下である場合にも 、本発明の製造方法を採用する利益が大きい。
[0038] 得られたポリビエルァセタール樹脂のハロゲン元素含有量が lOOppm以下であるこ とが好ましい。樹脂中に含有されるハロゲン元素は、脱水反応などを引き起こし、樹 脂の熱安定性を損なわせる。また、電子部品用途などでは、ハロゲン元素の含有量 を特に低くすることが望まれる。ハロゲン元素含有量は、より好適には lOppm以下で ある。また、得られたポリビニルァセタール樹脂のアルカリ金属元素含有量が ΙΟΟΟρ pm以下であることが好ましい。樹脂中に含有されるアルカリ金属元素は、ポリビニル ァセタール樹脂の電気絶縁性、透明性、熱安定性などを損なわせる。また、電子部 品用途などでは、アルカリ金属元素の含有量を特に低くすることが望まれる。アルカリ 金属元素含有量は、より好適には 500ppm以下である。
[0039] こうして得られたポリビュルァセタール樹脂は、安全ガラス用中間膜、塗料、接着剤 、バインダー及び成形体など、さまざまな用途に使用される。特に、不純物の残存が 忌避される電子部品用途などに好適に使用される。
実施例
[0040] 以下、実施例によって本発明をさらに詳細に説明する。
[0041] 実施例 1
500mLステンレス製オートタレイブに、株式会社クラレ製ポリビエルアルコール(重 合度: 1700、ケン化度: 99モノレ0 /0、アルカリ金属元素(ナトリウム)含有量: 1340ppm ) 10g及び水 100gを投入し、窒素下で 90°Cに加熱して溶解させた。当該ポリビニル ァノレコーノレ 10g中に fま、 0. 225モノレの水酸基カ含まれてレヽる。そこに、酸価力 0. 08 K〇Hmg/gの n—ブチルアルデヒド 9. 81g (0. 136モノレ)をカ卩えた。このときのアル デヒドの使用量は、ポリビュルアルコールの全水酸基をァセタール化する理論量の 1 . 2倍である。引き続き、 160°Cに加熱し、二酸化炭素を導入して反応容器内の圧力 を IMPaに昇圧した。このときの二酸化炭素の溶解度を溶液中の二酸化炭素のモル 分率で表すと 7. 6 X 10—4となる。 4時間後、 90°Cまで冷却し、二酸化炭素を放圧し、 イソプロパノール 160mLを窒素にて圧送した。得られた液を冷却し、析出したポリビ 二ルァセタールを1 H— NMRにて分析したところ、ァセタール化反応した水酸基が 5 9. 5モル%、残存する水酸基が 39. 7モル%、未ケン化のァセチル基が 0. 8モル0 /0 含まれていた。したがって、ァセタール化度は 59. 5モル0 /。であった。また、ポリビニ ルァセタール中の全塩素含有量は検出限界(lOppm)以下(酸素フラスコ燃焼法に て処理後、陰イオンクロマトにより分析)、アルカリ金属含有量は 350ppm (ICP発光 分析により測定)であった。以上の結果を表 1にまとめて示す。
[0042] 実施例 2
反応温度を 120°Cとした以外は、実施例 1と同様にポリビニルプチラール樹脂を製 造した。このときの二酸化炭素の溶解度を溶液中の二酸化炭素のモル分率で表すと 16. 3 X 10— 4となる。また、ポリビニルァセタール中の全塩素含有量は検出限界以下 、アルカリ金属含有量は 330ppmであった。結果を表 1にまとめて示す。
[0043] 実施例 3
反応容器内の圧力を 2MPa、反応温度を 140°Cとした以外は、実施例 1と同様にポ リビュルプチラール樹脂を製造した。このときの二酸化炭素の溶解度を溶液中の二 酸化炭素のモル分率で表すと 29. 8 X 10— 4となる。また、ポリビュルァセタール中の 全塩素含有量は検出限界以下、アルカリ金属含有量は 340ppmであった。結果を表 1にまとめて示す。
[0044] 実施例 4
反応容器内の圧力を 7. 8MPa、反応温度を 110°Cとした以外は、実施例 1と同様 にポリビュルプチラール樹脂を製造した。このときの二酸化炭素の溶解度を溶液中 の二酸化炭素のモル分率で表すと 111 Χ 10—4となる。また、ポリビニルァセタール中 の全塩素含有量は検出限界以下、アルカリ金属含有量は 333ppmであった。結果を 表 1にまとめて示す。
[0045] 実施例 5
反応溶媒を水 Zイソプロパノール (IPA) = 8 : 2 (体積比)とした以外は、実施例 1と 同様にポリビュルブチラール樹脂を製造した。また、ポリビュルァセタール中の全塩 素含有量は検出限界以下、アルカリ金属含有量は 360ppmであった。結果を表 1に まとめて示す。
[0046] 比較例 1
二酸化炭素に変え、窒素で加圧した以外は、実施例 1と同様にポリビュルプチラー ル樹脂を製造した。また、ポリビニルァセタール中の全塩素含有量は検出限界以下 、アルカリ金属含有量は 350ppmであった。結果を表 1にまとめて示す。
[0047] 実施例 6
500mLステンレス製オートタレイブに、実施例 1で使用したのと同じポリビニルアル コール 10g及び水 100gを投入し、窒素下に 90°Cに加熱して溶解させた。そこに、酸 価力 SO. 12K〇Hmg/gのァセトァノレデヒド 1. 26g (0. 0285モノレ)をカロ免た。このとさ のアルデヒドの使用量は、ポリビュルアルコールの全水酸基をァセタール化する理論 量の 0. 25倍である。引き続き、 110°Cに加熱し、二酸化炭素で IMPaに昇圧した。 このときの二酸化炭素の溶解度を溶液中の二酸化炭素のモル分率で表すと 17. 2 X 10— 4となる。 4時間後、 90°Cまで冷却し、二酸化炭素を放圧した。得られた液を冷却 し、水を熱風乾燥機(80°C)で除去した後、 80°Cで真空乾燥した。得られたポリビニ ルァセタールを1 H— NMRにて分析したところ、ァセタール化反応した水酸基が 13. 1モル%、残存する水酸基が 86. 1モル%、未ケン化のァセチル基が 0. 8モル%含 まれていた。したがって、ァセタール化度は 13. 1モル0 /0であった。また、ポリビュル ァセタール中の全塩素含有量は検出限界(lOppm)以下(酸素フラスコ燃焼法にて 処理後、陰イオンクロマトにより分析)、アルカリ金属含有量は 344ppm (ICP発光分 析により測定)であった。以上の結果を表 1にまとめて示す。
[0048] 比較例 2
500mLステンレス製オートタレイブに実施例 1で使用したのと同じポリビニルアルコ ール lOg及び水 lOOgを投入し、窒素下に 90°Cに加熱して溶解させた。そこに、酸価 力 0. 08K〇fimg/gのブチノレ: Γノレデヒド 5. 7g (0. 079モノレ)をカロ免た。このとさの了 ルデヒドの使用量は、ポリビュルアルコールの全水酸基をァセタール化する理論量 の 0. 70倍である。 25°Cにて 20重量%塩酸を 8. 5g滴下し、滴下終了後 65°Cで 4時 間攪拌し、その後室温まで冷却し、析出したポリビュルァセタールをろ過により取り出 した。得られたポリビュルァセタールに 0. 5%水酸化ナトリウム水溶液を lOOmL加え て 70°Cで 1時間攪拌し、ろ過した後、水 lOOmLで 5回洗浄した。洗浄したポリビュル ァセタールを乾燥後、 — NMRにて分析したところ、ァセタールイ匕反応した水酸基 が 55. 7モル%、残存する水酸基が 43. 5モル%、未ケン化のァセチル基が 0. 8モ ル%含まれていた。したがって、ァセタール化度は 55. 7モル0 /。であった。また、ポリ ビニルァセタール中の全塩素含有量は 165ppm (酸素フラスコ燃焼法にて処理後、 陰イオンクロマトにより分析)、アルカリ金属含有量は 1050ppm (ICP発光分析により 測定)であった。
[表 1]
Figure imgf000018_0001
実施例 1〜5と比較例 1とを比べればわかるように、窒素で加圧してもァセタール化 反応はほとんど進行しない(比較例 1)力 二酸化炭素で加圧することによって十分に 進行し (実施例:!〜 5)、強酸を触媒に使用した例(比較例 2)と同程度のァセタール 化度の樹脂を得ることも可能であった。すなわち、二酸化炭素が、単に加圧するため の媒体ではなぐ酸触媒として働いていることがわかる。水とアルコールの混合溶媒 でもァセタールイ匕反応は進行する力 S、水のみを溶媒とした場合に比べてァセタール 化度が少し低下する(実施例 5)。また、炭酸ガスを触媒とした場合 (実施例 1)には、 洗浄操作を行わなかったにもかかわらず、塩酸を触媒とした場合 (比較例 2)に比べ て、ハロゲン元素含有量、アルカリ金属元素含有量共に少なくなつた。
[0051] 実施例 7
500mLステンレス製オートタレイブに、株式会社クラレ製ポリビュルアルコール(重 合度: 1700、ケン化度: 99モノレ%、アルカリ金属元素(ナトリウム)含有量: 1340ppm )の 10重量%の水溶液 100gを投入し、窒素下で 140°Cに加熱した。当該ポリビニル ァノレコール 10g中には、 0. 225モルの水酸基が含まれている。この時、反応器内の 圧力は約 0. 4MPaに上昇していた。そこに、酸価が 0. 6K〇Hmg/gの n—ブチル アルデヒド 12. 98g (0. 180モル)を、加圧した二酸化炭素により反応器内に圧送し て、反応器内の全圧を 0. 9MPaにした。このときの圧力の上昇分 0. 5MPaが、二酸 化炭素分圧に相当する。このときのアルデヒドの使用量は、ポリビエルアルコールの 全水酸基をァセタール化する理論量の 1. 6倍である。引き続き、 140°Cにて 4時間加 熱攪拌した後、内温が 40°C以下になるまで冷却し、二酸化炭素を放圧した。析出し たポリビエルァセタールを1 H—NMRにて分析したところ、ァセタール化反応した水 酸基が 88. 1モル%、残存する水酸基が 11. 2モル%、未ケン化のァセチル基が 0. 7モル0 /0含まれていた。したがって、ァセタール化度は 88. 1モル0 /0であった。また、 ポリビュルァセタール中の全塩素含有量は検出限界(lOppm)以下(酸素フラスコ燃 焼法にて処理後、陰イオンクロマトにより分析)、アルカリ金属含有量は 295ppm (IC P発光分析により測定)であった。以上の結果を表 1にまとめて示す。
[0052] 実施例 8
二酸化炭素分圧が 0. 3MPaになるようにした以外は、実施例 7と同様にポリビュル プチラール樹脂を製造し、評価した。得られた結果を表 2に示す。
[0053] 実施例 9
反応温度を 100°Cにした以外は、実施例 7と同様にポリビュルプチラール樹脂を製 造し、評価した。得られた結果を表 2に示す。
[0054] 実施例 10 反応温度を 80°Cにした以外は、実施例 7と同様にポリビュルプチラール樹脂を製 造し、評価した。得られた結果を表 2に示す。
[0055] 実施例 11
アルデヒドの使用量を、ポリビュルアルコールの全水酸基をァセタール化する理論 量の 0. 8倍になるようにした以外は、実施例 7と同様にポリビニルプチラール樹脂を 製造し、評価した。得られた結果を表 2に示す。
[0056] 実施例 12
反応時間を 0. 5時間にした以外は、実施例 7と同様にポリビュルプチラール樹脂を 製造し、評価した。得られた結果を表 2に示す。
[0057] 比較例 3
反応温度を 250°Cにした以外は、実施例 7と同様にポリビュルプチラール樹脂を製 造し、評価した。得られた結果を表 2に示す。
[0058] 比較例 4
二酸化炭素に変えて窒素で加圧し反応温度を 250°Cにした以外は、実施例 7と同 様にポリビニルプチラール樹脂を製造し、評価した。得られた結果を表 2に示す。
[0059] 実施例 13
内容積 1500mlのステンレス製二軸式加圧型エーダーに、株式会社クラレ製ポリビ ニルアルコール(重合度:1700、ケン化度: 99モル%、アルカリ金属元素(ナトリウム) 含有量: 1340ppm) 300gと水 450gを投入し、系内を窒素ガスで置換した後、軸を 3 Orpmの速度で回転させながら内温 100°Cにて 30分加熱混鍊し、 140°Cまで昇温さ せた。この時、ニーダー内の圧力は約 0. 4MPaに上昇していた。これに酸価が 0. 6 K〇Hmg/gの n_ブチルアルデヒド 392. 56g (5. 44モル)を、加圧した二酸化炭 素により反応器内に圧送して、ニーダー内の全圧を 0. 9MPaにした。このときの圧力 の上昇分 0. 5MPaが、二酸化炭素分圧に相当する。このときのアルデヒドの使用量 は、ポリビュルアルコールの全水酸基をァセタール化する理論量の 1. 6倍である。引 き続き、 140°Cにて 4時間加熱混練した後、内温が 40°C以下になるまで冷却し、二 酸化炭素を放圧した。析出したポリビュルァセタールを1 H— NMRにて分析したとこ ろ、ァセタール化反応した水酸基が 63. 7モル%、残存する水酸基が 35. 6モル%、 未ケン化のァセチル基が 0. 7モル%含まれていた。したがって、ァセタール化度は 6 3. 7モル%であった。また、ポリビュルァセタール中の全塩素含有量は検出限界(1 Oppm)以下(酸素フラスコ燃焼法にて処理後、陰イオンクロマトにより分析)、アルカリ 金属含有量は 300ppm (ICP発光分析により測定)であった。
[0060] 実施例 14
ポリビュルアルコールを 300gと水 700gを投入した以外は、実施例 13と同様にポリ ビュルプチラール樹脂を製造し、評価した。得られた結果を表 2に示す。
[0061] 比較例 5
500mLステンレス製オートタレイブに、実施例 7で用いたのと同じ 10重量%のポリ ビニルアルコール水溶液 lOOgを窒素雰囲気下で投入し、 IMPaの二酸化炭素で加 圧した後 250°Cで 30分間加熱攪拌した。内温を 40°C以下まで冷却した後、二酸化 炭素を放圧した。内部を減圧乾燥して水を除去した後、ポリビュルアルコールの分子 量をゲルパーミエーシヨンクロマトグラフィー〔GPC (展開溶媒:へキサフルォロイソプ ロパノール、標準ポリメチルメタタリレート換算)〕にて測定した。結果は以下のとおりで ある。
•原料ポリビュルアルコールの分子量
重量平均分子量 137000、数平均分子量 67000
•加熱処理後のポリビュルアルコールの分子量
重量平均分子量 108000、数平均分子量 48000
[0062] [表 2]
Figure imgf000022_0001
実施例 7及び 8に示されるように、二酸化炭素分圧の上昇にしたがって得られるポリ ビュルブチラールのァセタール化度が上昇する。また、実施例 7、 9及び 10に示され るように、反応温度の上昇にしたがってァセタールイ匕度が上昇する。し力 ながら、比 較例 3に示されるように 250°Cもの高温で反応させた場合には、ァセタールイ匕反応は ほとんど進行せず、窒素で加圧した比較例 4よりもァセタール化度が低くなつた。この ことは、このような高温条件下では、もはや二酸化炭素が触媒として働いていないこと を示しているものである。また、比較例 5に示されるように、 250°Cもの高温で反応さ せた場合には、原料のポリビュルアルコールのポリマー鎖が断裂してしまう。また、実 施例 13及び 14に示されるように、ポリビュルアルコールの濃度が高い場合であって も、混練装置を使用することでァセタール化反応を進行させられることがわかった。

Claims

請求の範囲
ポリビュルアルコールとカルボ二ルイ匕合物とを、二酸化炭素からなる酸触媒の存在下 、40〜200°Cで反応させることを特徴とするポリビュルァセタール樹脂の製造方法。 前記ポリビュルアルコールの平均重合度が 200〜4000であり、ケン化度が 80モル %以上である請求項 1記載のポリビュルァセタール樹脂の製造方法。
前記カルボニル化合物がアルデヒドである請求項 1又は 2記載のポリビュルァセター ル樹脂の製造方法。
前記アルデヒドの酸価が 20KOHmg/g以下である請求項 3記載のポリビュルァセタ ール樹脂の製造方法。
前記ポリビュルアルコールと前記カルボニル化合物とを、水および/又はアルコール を溶媒とし、二酸化炭素が溶解した液体中で反応させる請求項 1〜4のいずれか記 載のポリビュルァセタール樹脂の製造方法。
仕込み時のポリビュルアルコールの含有量力 反応液全体の重量に対して 0. 01〜 80重量%である請求項 1〜5のいずれか記載のポリビュルァセタール樹脂の製造方 法。
反応装置内に二酸化炭素を導入して該反応装置内の圧力を 0. 1〜: !OMPaとし、前 記ポリビュルアルコールと前記カルボニル化合物とを反応させる請求項 1〜6のいず れか記載のポリビュルァセタール樹脂の製造方法。
反応装置内に二酸化炭素を導入して該反応装置内の二酸化炭素分圧を 0.:!〜 10
MPaとし、前記ポリビュルアルコールと前記カルボニル化合物とを反応させる請求項
:!〜 6のいずれか記載のポリビュルァセタール樹脂の製造方法。
二酸化炭素により加圧しながら、前記ポリビニルアルコールと前記カルボニル化合物 とを反応させる請求項 7又は 8記載のポリビュルァセタール樹脂の製造方法。
水に対する二酸化炭素の溶解度を溶液中の二酸化炭素のモル分率で表した場合に
、該モル分率が 1 X 10_4〜300 X 10_4となるような反応温度及び反応装置内の圧 力において、前記ポリビニルアルコールと前記カルボニル化合物とを反応させる請求 項 1〜9のいずれか記載のポリビュルァセタール樹脂の製造方法。
反応槽の中で液体を撹拌しながら反応させる請求項 1〜: 10のいずれか記載のポリビ 二ルァセタール樹脂の製造方法。
[12] 混練装置の中で加圧混練しながら反応させる請求項 1〜: 10のいずれか記載のポリビ 二ルァセタール樹脂の製造方法。
[13] ァセタールイ匕度が 1モル%以上の前記ポリビュルァセタール樹脂を得る請求項 1〜1
2のいずれか記載のポリビュルァセタール樹脂の製造方法。
[14] ハロゲン元素含有量が lOOppm以下であり、かつアルカリ金属元素含有量が ΙΟΟΟρ pm以下である前記ポリビュルァセタール樹脂を得る、請求項:!〜 13のいずれか記載 のポリビニルァセタール樹脂の製造方法。
PCT/JP2006/315591 2005-08-09 2006-08-07 ポリビニルアセタール樹脂の製造方法 WO2007018174A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06782433.4A EP1921095B1 (en) 2005-08-09 2006-08-07 Method for producing a polyvinyl acetal resin
JP2007529572A JP5054526B2 (ja) 2005-08-09 2006-08-07 ポリビニルアセタール樹脂の製造方法
US12/063,169 US20090036636A1 (en) 2005-08-09 2006-08-07 Method for producing polyvinyl acetal resin
CN2006800294155A CN101243111B (zh) 2005-08-09 2006-08-07 聚乙烯醇缩醛树脂的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-230550 2005-08-09
JP2005230550 2005-08-09

Publications (1)

Publication Number Publication Date
WO2007018174A1 true WO2007018174A1 (ja) 2007-02-15

Family

ID=37727357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315591 WO2007018174A1 (ja) 2005-08-09 2006-08-07 ポリビニルアセタール樹脂の製造方法

Country Status (6)

Country Link
US (1) US20090036636A1 (ja)
EP (1) EP1921095B1 (ja)
JP (1) JP5054526B2 (ja)
KR (1) KR100966034B1 (ja)
CN (1) CN101243111B (ja)
WO (1) WO2007018174A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222938A (ja) * 2007-03-15 2008-09-25 Denki Kagaku Kogyo Kk ポリビニルアセタール樹脂及びその製造方法、製造装置、並びにこのポリビニルアセタール樹脂を用いた接着剤、回路基板
JP2010070718A (ja) * 2008-09-22 2010-04-02 Sekisui Chem Co Ltd ビニルアセタール系重合体の製造方法
JP2010070686A (ja) * 2008-09-19 2010-04-02 Fine Clay Co Ltd 酸型カルボキシメチルセルロースの製造方法
JP2010106234A (ja) * 2008-09-30 2010-05-13 Sekisui Chem Co Ltd ポリビニルアセタール系樹脂の製造方法
JP2010254865A (ja) * 2009-04-27 2010-11-11 Sekisui Chem Co Ltd ポリビニルアセタールの製造方法
JP2011219671A (ja) * 2010-04-13 2011-11-04 Sekisui Chem Co Ltd ビニルアセタール樹脂の製造方法
JP2012077183A (ja) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd ビニルアセタール樹脂の製造方法
JP2012077184A (ja) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd ビニルアセタール樹脂の製造方法
JP5060496B2 (ja) * 2007-02-02 2012-10-31 株式会社クラレ ポリビニルアセタール樹脂の製造方法
JP2013047301A (ja) * 2011-08-29 2013-03-07 Sekisui Chem Co Ltd ポリビニルアセタール樹脂及びポリビニルアセタール樹脂の製造方法
JP2013224384A (ja) * 2012-04-23 2013-10-31 Sekisui Chem Co Ltd ポリビニルアセタール系樹脂の製造方法
JP2013224385A (ja) * 2012-04-23 2013-10-31 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法及びポリビニルアセタール樹脂
JP2013234211A (ja) * 2012-05-02 2013-11-21 Sekisui Chem Co Ltd ポリビニルアセタール系樹脂の製造方法
JP2013237727A (ja) * 2012-05-11 2013-11-28 Sekisui Chem Co Ltd 水溶性ポリビニルアセタールの製造方法及び水溶性ポリビニルアセタール

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360207B1 (en) * 2008-11-13 2013-10-09 Sekisui Chemical Co., Ltd. Polyvinyl acetal resin composition
CN101954315B (zh) * 2010-10-13 2012-10-03 中蓝连海设计研究院 一种氯化钠浮选剂及其制备方法与用途
US20140150866A1 (en) * 2011-06-28 2014-06-05 Kuraray Co., Ltd. Encapsulant for solar cell and interlayer film for laminated glass
EP2881769A4 (en) * 2012-08-06 2016-03-09 Konica Minolta Inc LIGHT REFLECTIVE FILM AND LIGHT REFLECTOR MADE THEREFROM
TW201710301A (zh) * 2015-05-29 2017-03-16 索魯提亞有限公司 用於製造具有增強的粒子傳輸及回收之聚(乙烯縮醛)樹脂之系統及方法
KR102097205B1 (ko) * 2018-05-08 2020-04-03 에스케이씨 주식회사 폴리비닐아세탈 수지 조성물 및 이를 포함하는 접합용 중간막
KR102192524B1 (ko) 2019-06-28 2020-12-17 에스케이씨 주식회사 폴리비닐아세탈 수지 조성물의 제조방법, 폴리비닐아세탈 수지 조성물 및 이를 포함하는 접합용 필름

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597919A (ja) 1991-10-04 1993-04-20 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法
JPH11349629A (ja) 1998-06-05 1999-12-21 Denki Kagaku Kogyo Kk ポリビニルブチラール樹脂の製造方法
JP2000038456A (ja) 1997-10-29 2000-02-08 Sekisui Chem Co Ltd ポリビニルアセタール樹脂及びその製造方法、合わせガラス用中間膜、並びに、合わせガラス
WO2003033548A1 (en) 2001-10-16 2003-04-24 Sekisui Chemical Co., Ltd. Process for producing modified polymer, apparatus for producing modified polymer, and modified polymer
JP2005002285A (ja) 2003-06-13 2005-01-06 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法及びポリビニルブチラール樹脂
JP2006022160A (ja) * 2004-07-06 2006-01-26 Sekisui Chem Co Ltd 変性ポリビニルアルコール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2862908A (en) * 1954-12-15 1958-12-02 Celanese Corp Polyvinyl acetals
US3052652A (en) * 1958-02-26 1962-09-04 Borden Co Alkoxylated polyvinyl alcohol
US3547837A (en) * 1965-08-25 1970-12-15 Kuraray Co Polyvinyl formal porous products obtained from aqueous solutions of zinc chloride or acetic acid
EP1775311B1 (en) * 2004-08-04 2018-09-05 Sekisui Chemical Co., Ltd. Process for producing polyvinyl acetal resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597919A (ja) 1991-10-04 1993-04-20 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法
JP2000038456A (ja) 1997-10-29 2000-02-08 Sekisui Chem Co Ltd ポリビニルアセタール樹脂及びその製造方法、合わせガラス用中間膜、並びに、合わせガラス
JPH11349629A (ja) 1998-06-05 1999-12-21 Denki Kagaku Kogyo Kk ポリビニルブチラール樹脂の製造方法
WO2003033548A1 (en) 2001-10-16 2003-04-24 Sekisui Chemical Co., Ltd. Process for producing modified polymer, apparatus for producing modified polymer, and modified polymer
JP2005002285A (ja) 2003-06-13 2005-01-06 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法及びポリビニルブチラール樹脂
JP2006022160A (ja) * 2004-07-06 2006-01-26 Sekisui Chem Co Ltd 変性ポリビニルアルコール

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Polyvinyl Alcohol", 1973, JOHN WILEY AND SONS LTD., pages: 391 - 411
See also references of EP1921095A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060496B2 (ja) * 2007-02-02 2012-10-31 株式会社クラレ ポリビニルアセタール樹脂の製造方法
JP2008222938A (ja) * 2007-03-15 2008-09-25 Denki Kagaku Kogyo Kk ポリビニルアセタール樹脂及びその製造方法、製造装置、並びにこのポリビニルアセタール樹脂を用いた接着剤、回路基板
JP2010070686A (ja) * 2008-09-19 2010-04-02 Fine Clay Co Ltd 酸型カルボキシメチルセルロースの製造方法
JP2010070718A (ja) * 2008-09-22 2010-04-02 Sekisui Chem Co Ltd ビニルアセタール系重合体の製造方法
JP2010106234A (ja) * 2008-09-30 2010-05-13 Sekisui Chem Co Ltd ポリビニルアセタール系樹脂の製造方法
JP2010254865A (ja) * 2009-04-27 2010-11-11 Sekisui Chem Co Ltd ポリビニルアセタールの製造方法
JP2011219671A (ja) * 2010-04-13 2011-11-04 Sekisui Chem Co Ltd ビニルアセタール樹脂の製造方法
JP2012077183A (ja) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd ビニルアセタール樹脂の製造方法
JP2012077184A (ja) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd ビニルアセタール樹脂の製造方法
JP2013047301A (ja) * 2011-08-29 2013-03-07 Sekisui Chem Co Ltd ポリビニルアセタール樹脂及びポリビニルアセタール樹脂の製造方法
JP2013224384A (ja) * 2012-04-23 2013-10-31 Sekisui Chem Co Ltd ポリビニルアセタール系樹脂の製造方法
JP2013224385A (ja) * 2012-04-23 2013-10-31 Sekisui Chem Co Ltd ポリビニルアセタール樹脂の製造方法及びポリビニルアセタール樹脂
JP2013234211A (ja) * 2012-05-02 2013-11-21 Sekisui Chem Co Ltd ポリビニルアセタール系樹脂の製造方法
JP2013237727A (ja) * 2012-05-11 2013-11-28 Sekisui Chem Co Ltd 水溶性ポリビニルアセタールの製造方法及び水溶性ポリビニルアセタール

Also Published As

Publication number Publication date
CN101243111B (zh) 2011-08-31
EP1921095A4 (en) 2009-01-07
KR100966034B1 (ko) 2010-06-25
US20090036636A1 (en) 2009-02-05
EP1921095B1 (en) 2017-06-14
JPWO2007018174A1 (ja) 2009-02-19
JP5054526B2 (ja) 2012-10-24
CN101243111A (zh) 2008-08-13
KR20080034150A (ko) 2008-04-18
EP1921095A1 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
WO2007018174A1 (ja) ポリビニルアセタール樹脂の製造方法
JP5060496B2 (ja) ポリビニルアセタール樹脂の製造方法
EP1775311B1 (en) Process for producing polyvinyl acetal resin
KR20130044223A (ko) 폴리알킬렌 카르보네이트의 제조 방법
JP5466566B2 (ja) ビニルアセタール樹脂の製造方法
US20110218321A1 (en) Processes for producing polyalkylene carbonates
JP4206379B2 (ja) ポリビニルアセタールを製造するための方法
JP4231339B2 (ja) ポリビニルアセタール樹脂の製造方法、ポリビニルブチラール、及び、エステル化されたポリビニルアルコール樹脂の製造方法
JP2005002285A (ja) ポリビニルアセタール樹脂の製造方法及びポリビニルブチラール樹脂
JP2011102341A (ja) ポリビニルアセタールの製造方法
JP4439670B2 (ja) ポリビニルアセタール樹脂の製造方法
WO1991009879A1 (fr) Polymerisation de chlorure de vinyle
WO2019004352A1 (ja) 変性ポリビニルアルコール樹脂の製造方法
JPS61250001A (ja) エチレン/ビニルアルコ−ルコポリマ−の製法
JP2011219670A (ja) ビニルアセタール樹脂の製造方法
JP4786963B2 (ja) アルミニウム電解コンデンサ用電解液
JP2010254865A (ja) ポリビニルアセタールの製造方法
KR20200011016A (ko) 2-시아노에틸기 함유 중합체의 제조 방법
CN116371464B (zh) 一种聚离子液体-水滑石复合材料及制备方法和催化应用
JP5956816B2 (ja) ポリビニルアセタール系樹脂の製造方法
CN112439437B (zh) 作为合成醋酸的催化剂的含铱溶液及其制备方法、应用
JPH04227926A (ja) ポリエーテルの不飽和を低減させるための方法およびその方法で得られた低不飽和ポリエーテル
EP1074565B1 (en) Production process for polymers with hydroxyl groups and polymers obtained by the production process
JP5677794B2 (ja) ポリビニルアセタールの製造方法及びポリビニルアセタール
JP2002069125A (ja) ポリビニルアセタール系樹脂の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029415.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529572

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087003192

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12063169

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006782433

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006782433

Country of ref document: EP