WO2007010877A1 - 造粒方法、造粒機及び焼却灰によるブロックの製造方法 - Google Patents

造粒方法、造粒機及び焼却灰によるブロックの製造方法 Download PDF

Info

Publication number
WO2007010877A1
WO2007010877A1 PCT/JP2006/314105 JP2006314105W WO2007010877A1 WO 2007010877 A1 WO2007010877 A1 WO 2007010877A1 JP 2006314105 W JP2006314105 W JP 2006314105W WO 2007010877 A1 WO2007010877 A1 WO 2007010877A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
drum
rotary drum
rotating drum
rotating
Prior art date
Application number
PCT/JP2006/314105
Other languages
English (en)
French (fr)
Inventor
Toshikazu Shimojima
Original Assignee
Inasekisankogyo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inasekisankogyo Corporation filed Critical Inasekisankogyo Corporation
Publication of WO2007010877A1 publication Critical patent/WO2007010877A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/12Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating drums
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation

Definitions

  • the present invention relates to a granulation method, a granulator and a method for producing a block using incineration ash, and more particularly to a granulation technique suitable for forming aggregate of concrete.
  • incinerators such as incinerators are discharged by force and solidified after being solidified with cement or the like.
  • incinerators such as incinerators are discharged by force and solidified after being solidified with cement or the like.
  • industrial waste such as incineration ash can be used as aggregate of concrete, etc., and is expected as a recycling method of industrial waste.
  • the lower portion of the container fixed to the machine body is a rubber cylinder with a bottom, and the lower end of the rubber cylinder is attached to an inclined rotary disc provided with an inclined crank that is rotationally driven by a drive device.
  • an inclined rotary disc provided with an inclined crank that is rotationally driven by a drive device.
  • Patent Document 1 Patent No. 3118766
  • Patent Document 2 Patent No. 3127833
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-271506
  • the present invention solves the above-mentioned problems, and an object thereof is a granulation method or a granulator for producing a granular material from a kneaded material, and the granulation efficiency is enhanced more than in the prior art. It is an object of the present invention to provide a technology capable of producing particulate matter in a short time. Another issue is to provide a technology that can produce particulate matter efficiently and continuously. Means to solve the problem
  • a cylindrical rotating drum is rotated and disposed eccentrically inside the rotating drum, and provided with a plurality of blades along the axial direction. It is a granulation method in which the raw material of the material to be kneaded is put into the inside of the rotating drum and granulation is carried out in a state where the obtained rotor is rotated, and the blade is placed in the range near the one end of the rotating drum. While feeding the raw material toward the other end of the rotary drum, and returning the raw material toward the one end of the rotary drum by the blade in the range near the other end of the rotary drum. It is characterized by carrying out the grain
  • the raw material is stirred by the rotation of the rotary drum and the rotation of the blades of the rotor inside the rotary drum, and the raw material is one end side by the blades in the range near the other end of the rotary drum.
  • the reshaping action of the particulate matter occurs near the axial center of the rotary drum, so that the variation in the particle size of the particulate matter can be reduced and the granulation efficiency can be enhanced.
  • a rotor provided with a plurality of blades along an axial direction is disposed eccentrically inside the rotary drum while rotating a cylindrical rotary drum.
  • the raw material is stirred by the rotation of the rotary drum and the rotation of the blades of the rotor inside the rotary drum, and the rotary drum and the rotor are rotated in the same rotation direction.
  • the raw material disposed between the rotating drum and the rotor separation of the raw material by the blades is efficiently generated and the influence on the particles once generated can be reduced, so that the variation of the particle size of the particles can be reduced.
  • the granulation efficiency can be enhanced.
  • the granulation is performed in a state where the rotating drum and the rotor are inclined downward from the one end of the rotating drum to the other end.
  • the raw material is sent downward by gravity in the rotary drum, the raw material is charged from one end of the rotary drum and the granular material is discharged from the other end, whereby the granulation process is performed. Continuously It can be carried out.
  • the rotating drum and the rotor are installed horizontally, if the propelling force by the plurality of blades provided on the rotor generates a flow of material toward the other end of the rotating drum as a whole, The granulation process can be performed continuously as described above.
  • a granulator includes a cylindrical rotary drum, a rotor eccentrically disposed inside the rotary drum, and provided with a plurality of blades along an axial direction, and the rotary drum.
  • the rotor includes a raw material or particles in a range near one end of the rotation drum.
  • a reverse return structure for returning the raw material or particulate matter to the one end side of the rotary drum in the range near the other end of the rotary drum. It is characterized by having a blade.
  • Another granulator according to the present invention is a cylindrical rotary drum, a rotor eccentrically disposed inside the rotary drum, and provided with a plurality of blades along an axial direction, and the above-mentioned rotation.
  • a granulator comprising a drum rotation drive means for rotationally driving a drum and a rotor rotation drive means for rotationally driving the rotor, wherein the drum rotation drive means and the rotor rotation drive means comprise the rotary drum It is characterized in that it is configured to rotationally drive the rotor in the same rotational direction.
  • the rotary drum and the rotor are preferably inclined downward from the one end to the other end of the rotary drum.
  • the plurality of blades be provided at an eccentric position around the axis of the rotor. According to this, since the plurality of blades provided at eccentric positions around the axis of the rotor reach different depths with respect to the material and stir each other, the stirring operation can be efficiently performed with respect to the material It can be applied. Therefore, the stirring action on the raw material can be further enhanced together with the rotating operation of the rotating drum, so that uniform and rapid granulation can be realized.
  • the binder is mixed with the incineration ash, and the mixture is kneaded to form a slurry-like kneaded product.
  • a granulation process is carried out by the granulation method according to any one of the above to form granules, and then the granules are used as an aggregate. To manufacture a block.
  • FIG. 1 is a longitudinal sectional view of a granulator according to an embodiment of the present invention.
  • FIG. 2 A longitudinal sectional arrow view showing a cross section taken along line II of FIG.
  • FIG. 3 Process explanatory drawing which shows the manufacturing process of the block by incineration ash.
  • FIG. 1 is a schematic longitudinal sectional view showing the structure of a granulator 10 according to the present invention in a cross section along the axial direction
  • FIG. 2 is a schematic view showing the structure of a granulator 10 in a cross section orthogonal to the axial direction. It is a longitudinal cross-sectional view ( ⁇ - ⁇ cross-sectional arrow view of Fig. 1).
  • the granulator 10 has a cylindrical rotating drum 11 and a rotor 12 eccentrically disposed inside the rotating drum 11.
  • the rotating drum 11 is cylindrical in the illustrated example.
  • the rotary drum 11 is rotatably supported around its axis by an annular guide rail 13A fixed on the outer peripheral surface thereof and a plurality of guide rollers 13B having a force supporting the inner rail 13A. It is done. Further, the rotary drum is installed in an inclined posture such that the axis thereof is directed obliquely downward from one end 11a to the other end l ib.
  • An annular sprocket-like engaging portion 14A is fixed to the outer peripheral surface of the rotary drum 11, and a driving band 14B formed of a chain or the like is engaged with the engaging portion 14A.
  • This drive band 14B is connected to a drive motor 14D via a transmission unit 14C shown in FIG.
  • the drive motor 14D When the drive motor 14D is operated, the rotary drum 11 is rotationally driven clockwise as viewed from the right side of FIG. 1 via the transmission portion 14C and the drive band 14B.
  • the engaging portion 14A, the drive band 14B, the transmission portion 14C, and the drive motor 14D constitute a drum rotation drive means 14.
  • the rotor 12 is provided with a plurality of vanes 12A protruding in the outer circumferential direction along the axial direction.
  • the blade 12A is fixed to the tip of a support shaft 12B from which the outer circumferential surface force of the rotation shaft 12S also protrudes.
  • the blade 12A may be configured integrally with the support shaft 12B of the illustrated example.
  • the rotor 12 is provided with a plurality of blades 12A at different angular positions around the axis of the rotation shaft 12S, and the plurality of blades 12A are arrayed along the axial direction.
  • the arrangement mode of the plurality of blades 12A is optional, but preferably arranged in a spiral around the rotation axis 12S! //.
  • the rotor 12 is rotatably supported by the shaft support portions 15 at both ends.
  • the rotating shaft of the rotor 12 is disposed obliquely downward from the rotating shaft of the rotating drum 11, and in particular, the rotating shaft of the rotating drum 11 advances in the rotating direction of the rotating drum 11 than the position directly below the rotating shaft. It is disposed in a direction to obliquely move toward the lower position.
  • the rotor 12 is installed in a posture inclined downward toward the other end l ib side of the one end 11 a side of the rotating drum 11 in the same manner as the rotating drum 11 described above.
  • the axis of the rotary drum 11 and the axis of the rotor 12 are substantially parallel.
  • the rotor 12 is connected to a drive motor 16B via a transmission unit 16A.
  • the drive motor 16B By operating the drive motor 16B, the rotor 12 is rotationally driven clockwise as viewed from the right side of FIG.
  • the transmission unit 16A and the drive motor 16B constitute a rotor rotation drive means 16.
  • the plurality of blades 12A is configured to change its posture along the axial direction of the rotor 12. At one end 11a side of the rotary drum 11, the plurality of blades 12A are in an inclined posture with respect to the rotational direction of the rotor 12, and as a result, when the rotor 12 is rotated clockwise also in FIG. It acts to feed M to the other end l ib side of the rotary drum 11.
  • a blade 12A1 having a forward feed structure that performs such an action is provided in a forward feed range X near one end 11a of the rotary drum 11.
  • a plurality of blades 12A2 inclined in a direction opposite to the blades 12A1 in the forward feed range X are provided.
  • 2 When 2 is rotated clockwise as seen in the right side of FIG. 1, it acts to return the raw material ⁇ to the end 11a side of the rotary drum 11.
  • the above-mentioned range Y in which the blade 12A 2 having a reverse return structure that performs such an action is formed is hereinafter simply referred to as "reverse reverse range Y" t.
  • the plurality of blades 12A1 provided in the above-described forward feeding range X feeds the raw material M or the particulate matter toward the left side of FIG. 1 (forward direction), and is provided in the above-mentioned reverse return range Y.
  • the plurality of blades 12A2 return the raw material M or the granules to the right side of FIG. 1 (in the reverse direction). Therefore, the rotor 12 acts to collect the raw material M introduced into the rotary drum 11 between the forward feeding range X and the reverse reversing range Y.
  • the vanes 12A2 in the reverse return range Y return the formed particulate matter back to the upstream side to produce a reshaping action on the particulate matter.
  • the rotary drum 11 and the rotor 12 are both installed in an inclined posture, and the blades 12A as a whole are collectively the raw material M and the granular material generated therefrom. Since it is configured to feed from one end 1 la side to the other end 1 lb side of 11, when the raw material M is put into one end 1 la of the rotary drum 11, the particulate matter N from the other end 1 lb of the rotary drum 11 Can be discharged and can be continuously granulated.
  • the plurality of blades 12A is basically configured not to generate axial thrust for the raw material M and the particulate matter N.
  • the plurality of blades 12 A have a posture along the rotation direction of the rotor 12. Even if the central range Z is not provided, the above-described effect can be obtained in the present embodiment. However, by providing the central range Z, it is possible to further suppress the variation in the particle size of the particulate matter N and the variation in the granulation speed.
  • a discharge range W is basically provided on the other end l ib side of the rotary drum 11 further than the reverse return range Y without moving the raw material M or the particulate matter N in the axial direction of the rotor 12. Is preferred. Also in this discharge range W, the plurality of blades 12 A have a posture along the rotational direction of the rotor 12. In the present embodiment, even if the discharge range W is not provided, the force that can obtain the above effect can be obtained. It is possible to further suppress the fluctuation of the degree.
  • the blade 12A is formed of a plate-like material to be in the above-mentioned posture, but the blade 12A of the present embodiment is not limited to such a shape, and as a result, the above-described Similarly, it may be configured to apply or not to apply axial propulsive force to the raw material M and the particulate matter N.
  • the blades 12A of the rotor 12 are arranged at positions eccentric to the axis of the rotor 12 (the axis of the rotation shaft 12S).
  • the plurality of blades 12A provided at different angular positions are arranged at different distances from each other in axial force of the rotor 12 .
  • a liquid pouring pipe 17 is introduced for mixing a liquid such as water with the raw material M appropriately.
  • the liquid pouring pipe 17 is for injecting a liquid into the inside of the rotary drum 11 to adjust the raw material M (for example, to adjust the water content).
  • the supply port of the raw material supply passage 18 faces upward at one end 11 a of the rotary drum 11 so that the raw material M is introduced into the rotary drum 11 through the raw material supply passage 18! .
  • an unloading conveyor 19 is disposed below the other end l ib of the rotating drum 11, and when the particulate matter N is discharged from the other end l ib of the rotating drum 11, the discharging conveyor 19 is configured to be discharged. It is done.
  • the raw material M is separated while being forward fed in the forward direction by the blades 12A1. Then, the particles are returned in the opposite direction by the blade 12A2. That is, in the above-mentioned reverse return range Y, a somewhat small particle is sent in the forward direction from between the blades 12A2 and is discharged at the other end l ib of the rotary drum 11, but a particle larger than that is As it is returned in the reverse direction by the blades 12A2, it is further agitated and reshaped, for example in the central zone Z.
  • the raw material M force sent in the forward direction from the forward feed range X is also separated to the separated granular material, and advances to the reverse return range Y and the force is returned in the reverse direction
  • the particulate matter is mixed and further subjected to stirring.
  • the variation in the outer diameter of the particulate matter N discharged to the downstream side of the reverse return range Y is reduced, and the variation in the granulation speed is also suppressed.
  • the particle size and granulation efficiency of particulate matter N Can be adjusted by changing the rotational speed of the rotary drum 11 and the rotor 12 and the rotational speed ratio between them. In particular, it is desirable to adjust the rotational speed and the rotational speed ratio of the rotary drum 11 and the rotor 12 so that the granulation speed is maximized within the range in which the predetermined quality of the particulate matter N is ensured.
  • the raw material M can not be excessively stirred by the raw material M force vane 12A.
  • the particulate matter can be separated little by little, and it can be configured so as not to affect the particulate matter N once generated. For this reason, compared with the case where the rotating drum 11 and the rotor 12 rotate in opposite directions, the generation efficiency of the particulate matter can be enhanced.
  • the plurality of blades 12 A are disposed at eccentric positions around the axis of the rotor 12, by acting on the raw material M disposed at the lower part of the rotary drum 11 in a different manner from each other. The granulation efficiency can be further improved.
  • FIG. 3 is a schematic process diagram schematically showing a manufacturing process of a block using the granulator 10 described above.
  • water B and a binder C such as cement, calcium oxide, calcium hydroxide and the like are mixed with incineration ash A from which the power is also discharged from the incineration plant, and the mixture is kneaded in mixer 1 , Form a slurry (paste) -like kneaded material D.
  • fine powder such as silicic acid type calcium compound (blast furnace slag) or sulfuric acid type calcium compound (gypsum)
  • specific harmful substances lead and chromium which can not be dissolved with alkali alone can not be used.
  • the kneaded material D is conveyed by the conveying means 2 or the like, conveyed to the granulator 10 described above, and introduced into the rotating drum 11.
  • the kneaded material D which has been introduced gradually becomes granular while being stirred in the rotary drum 11 in which the rotor 12 is disposed, and finally becomes granular material E.
  • the granular material E is introduced into the mixer 3 and kneaded with water F and cement G as aggregate to form concrete H. Then, the concrete H is molded with a mold 4 to form a block I.
  • the granulation method, the granulator and the method for producing a block by incineration ash according to the present invention are not limited to only the illustrated examples described above, without departing from the scope of the present invention. Of course, various modifications can be made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Glanulating (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 従来よりも造粒効率を高めることによって短時間に粒状物を製造することのできる技術を提供する。  本発明の造粒方法は、筒状の回転ドラムを回転させながら、該回転ドラムの内部に偏心して配置され、軸線方向に沿って複数の羽根を備えたロータを回転させた状態で、前記回転ドラムの内部に混練物からなる原料を投入して造粒を行う造粒方法であって、前記回転ドラムの前記一端寄りの範囲において前記羽根により前記回転ドラムの前記他端側へ向けて前記原料を送るとともに、前記回転ドラムの前記他端寄りの範囲において前記羽根により前記回転ドラムの前記一端側へ向けて前記原料を戻す態様で造粒を行うことを特徴とする。

Description

明 細 書
造粒方法、造粒機及び焼却灰によるブロックの製造方法
技術分野
[0001] 本発明は造粒方法、造粒機及び焼却灰によるブロックの製造方法に係り、特に、コ ンクリートの骨材を形成する場合に好適な造粒技術に関する。
背景技術
[0002] 一般に、焼却場など力 排出される焼却灰は、セメントなどによって固化させた上で 埋め立てられている。し力しながら、近年、環境への意識の高まりから地元住民の反 対が多くなつてきているため、埋立処分場の立地が困難になってきており、埋立処分 場の不足が深刻な状態になっている。一方、焼却灰などの産業廃棄物は、コンクリー トの骨材などとして利用できることが知られており、産業廃棄物のリサイクル方法として 期待されている。
[0003] 現在、焼却灰を処分する場合には、内部に含まれている重金属やダイォキシン類 などが流出しな 、ように焼却灰を固化させて力 埋め立てることが要求されて 、る。 焼却灰を固化させる方法としては、セメントなどで固めてしまう方法や、酸化カルシゥ ムを混合して固化させる方法などが知られている。このように焼却灰を固化する際に は、コンクリートの混練に用いられている公知の揺動ミキサーを用いて混練を行うこと が考えられる。この揺動ミキサーとしては、たとえば、機体に固定された容器の下部を 有底のゴム筒とし、駆動装置により回転駆動される傾斜クランクを設けた傾斜回転盤 にゴム筒の下端を取り付け、傾斜回転盤の首振揺動によりゴム筒を屈曲変形させるこ とにより、容器内の材料を混合するものが知られている (たとえば、特許文献 1参照)。 この揺動ミキサーは、混練効率が良好で、特にコンクリートの混練に用いられている。
[0004] 一方、回転ドラムの内面に螺旋状のプレートを形成し、回転ドラムの一端力 原料 を投入して造粒し、他端カゝら連続的に排出するように構成した造粒機が知られている (例えば、以下の特許文献 2参照)。
[0005] さらに、汚染土壌や焼却灰のような団塊化された粒状体を種々の大きさの粒子に細 粒ィ匕するための細粒化機が知られている(例えば、以下の特許文献 3参照)。この細 粒化機は、回転ドラムの内部にロータを配置し、回転ドラムとロータを逆回転させるこ とにより、回転ドラムの内面力 突出した外羽根と、ロータ力 外側へ突出した内羽根 とによって処理材料に圧縮応力とせん断応力をカ卩えて細粒ィ匕するものである。
特許文献 1:特許第 3118766号公報
特許文献 2 :特許第 3127833号公報
特許文献 3 :特開 2000— 271506号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記の焼却灰を処分する方法にぉ 、ては、焼却灰をそのまま固化さ せると、搬送や保管などの取り扱いに支障をきたすため、固化させる前のスラリー (ぺ 一スト)状の混練物を小さな粒状物にすることが考えられる。粒状物を製造するには、 従来から種々の造粒機が用いられて 、るが、上記の揺動ミキサーを用いることもでき る。ところが、上記の揺動ミキサーは、本来、容器内の材料を混合するために用いる ものであるため、上記のようなスラリー状の混練物を粒状物にする際の造粒効率が低 ぐし力も、ノ ツチ処理となるので、粒状物の製造に時間が力かるという問題点があつ た。
[0007] また、回転ドラムを用いた上記従来の造粒機では、回転ドラムの一端力も他端へ送 る間に造粒化する構造を有するため、連続的に造粒処理を行うことができると!、う利 点があるが、それでも、回転ドラムの内面に形成された螺旋状のプレートのみで造粒 化を行うため、造粒効率が低いという問題点がある。
[0008] さらに、上記の回転ドラム及びロータを用いた細粒化機では、団塊物を破砕 ·細粒 化する場合には適して 、るものの、細かな粒径を有する粒子を含む混練物力 なる ペースト状の原料を大きな粒に造粒することができず、また、このような造粒処理に用 V、る場合には造粒効率がきわめて低 、と 、う問題点がある。
[0009] そこで本発明は上記問題点を解決するものであり、その課題は、混練物から粒状物 を製造するための造粒方法或いは造粒機であって、従来よりも造粒効率を高めること によって短時間に粒状物を製造することのできる技術を提供することにある。また、他 の課題は、粒状物を効率的かつ連続的に製造できる技術を提供することにある。 課題を解決するための手段
[0010] 上記課題を解決するために本発明の造粒方法は、筒状の回転ドラムを回転させな がら、該回転ドラムの内部に偏心して配置され、軸線方向に沿って複数の羽根を備 えたロータを回転させた状態で、前記回転ドラムの内部に混練物力 なる原料を投 入して造粒を行う造粒方法であって、前記回転ドラムの前記一端寄りの範囲にぉ ヽ て前記羽根により前記回転ドラムの前記他端側へ向けて前記原料を送るとともに、前 記回転ドラムの前記他端寄りの範囲において前記羽根により前記回転ドラムの前記 一端側へ向けて前記原料を戻す態様で造粒を行うことを特徴とすることを特徴とする
[0011] この発明によれば、回転ドラムの内部で回転ドラムの回転とロータの羽根の回動に よって原料が攪拌されるとともに、回転ドラムの他端寄りの範囲において羽根により原 料が一端側へ戻されることにより、回転ドラムの軸線方向中央部近傍において粒状 物の再整形作用が生じるため、粒状物の粒度のばらつきを低減できるとともに造粒効 率を高めることができる。
[0012] また、本発明の別の造粒方法は、筒状の回転ドラムを回転させながら、該回転ドラ ムの内部に偏心して配置され、軸線方向に沿って複数の羽根を備えたロータを回転 させた状態で、前記回転ドラムの内部に混練物からなる原料を投入して造粒を行う造 粒方法であって、前記回転ドラムと前記ロータを同一回転方向に回転させる態様で 造粒を行うことを特徴とする。
[0013] この発明によれば、回転ドラムの内部で回転ドラムの回転とロータの羽根の回動に よって原料が攪拌されるとともに、回転ドラムとロータを同一回転方向に回転させるこ と〖こより、回転ドラムとロータの間に配置された原料に対し羽根による原料の分離作 用が効率的に生じるとともに一旦生成された粒状物への影響を低減できるため、粒 状物の粒度のばらつきを低減できるとともに造粒効率を高めることができる。
[0014] 本発明にお 、て、前記回転ドラム及び前記ロータを前記回転ドラムの前記一端から 前記他端へ向けて下方に傾斜させた状態で造粒を行うことが好ましい。このようにす ると、回転ドラム内で重力によって原料が下方へ送られるので、回転ドラムの一端か ら原料を投入し、他端から粒状物を排出させるようにすることで、造粒処理を連続して 行うことができる。ただし、回転ドラム及びロータを水平に設置した場合でも、ロータに 設けられる複数の羽根による推進力が全体として回転ドラムの一端側力 他端側に 向かう材料の流れを生成するように構成すれば、上記と同様に造粒処理を連続的に 行うことができる。
[0015] 次に、本発明の造粒機は、筒状の回転ドラムと、該回転ドラムの内部に偏心して配 置され、軸線方向に沿って複数の羽根を備えたロータと、前記回転ドラムを回転駆動 するドラム回転駆動手段と、前記ロータを回転駆動するロータ回転駆動手段とを具備 する造粒機において、前記ロータは、前記回転ドラムの一端寄りの範囲に原料若しく は粒状物を前記回転ドラムの他端側へ送る順送り構造を有する羽根を備えていると ともに、前記回転ドラムの前記他端寄りの範囲に原料若しくは粒状物を前記回転ドラ ムの前記一端側へ戻す逆戻し構造を有する羽根を備えていることを特徴とする。
[0016] また、本発明の別の造粒機は、筒状の回転ドラムと、該回転ドラムの内部に偏心し て配置され、軸線方向に沿って複数の羽根を備えたロータと、前記回転ドラムを回転 駆動するドラム回転駆動手段と、前記ロータを回転駆動するロータ回転駆動手段とを 具備する造粒機にぉ 、て、前記ドラム回転駆動手段及び前記ロータ回転駆動手段 は、前記回転ドラムと前記ロータを同一回転方向に回転駆動するように構成されて 、 ることを特徴とする。
[0017] 本発明において、前記回転ドラム及び前記ロータは前記回転ドラムの前記一端か ら前記他端へ向けて下方に傾斜して 、ることが好ま 、。
[0018] 本発明において、前記複数の羽根が前記ロータの軸線周りの偏心した位置に設け られていることが望ましい。これによれば、ロータの軸線周りに偏心した位置に設けら れた複数の羽根が原料に対して相互に異なる深さに到達して攪拌するので、攪拌作 用を原料に対して効率的に施すことができる。したがって、回転ドラムの回転動作とと もに原料に対する攪拌作用をさらに高めることができるため、均一で迅速な造粒処理 を実現できる。
[0019] さらに、本発明の焼却灰によるブロックの製造方法は、焼却灰に結着剤を混合して 混練してスラリー状の混練物を形成し、この混練物を請求項 1乃至 3の 、ずれか一項 に記載の造粒方法により造粒加工して粒状物を形成し、その後、該粒状物を骨材と して用いてブロックを製造することを特徴とする。
図面の簡単な説明
[0020] [図 1]本発明の実施形態に係る造粒機の縦断面図。
[図 2]図 1の II II線に沿った断面を示す縦断面矢視図。
[図 3]焼却灰によるブロックの製造工程を示す工程説明図。
符号の説明
[0021] 10 造流機
11 回転ドラム
12 ロータ
12A 羽根
12A1 羽根
12A2 羽根
14 ドラム回転駆動手段
16 ロータ回転駆動手段
発明を実施するための最良の形態
[0022] 次に、添付図面を参照して本発明に係る造粒方法、造粒機、及び、焼却灰による ブロックの製造方法の実施形態について詳細に説明する。図 1は、本発明に係る造 粒機 10の構造を軸線方向に沿った断面で示す概略縦断面図であり、図 2は、造粒 機 10の構造を軸線方向と直交する断面で示す概略縦断面図(図 1の Π-Π線断面矢 視図)である。
[0023] 造粒機 10は、筒状の回転ドラム 11と、この回転ドラム 11の内部に偏心して配置さ れるロータ 12とを有する。回転ドラム 11は図示例の場合円筒状に構成されている。 回転ドラム 11は、その外周面上に固定された環状の案内レール 13A、及び、この案 内レール 13Aを下方力 支持する複数の支持ローラ 13B等力 なる案内支持構造 によって軸線周りに回転自在に支持されている。また、回転ドラムは、その軸線が一 端 11aから他端 l ibへ斜め下方に向くように、傾斜姿勢で設置されている。
[0024] 回転ドラム 11の外周面には環状のスプロケット状の係合部 14Aが固定され、この係 合部 14Aに対してチェーン等で構成される駆動帯 14Bが係合している。この駆動帯 14Bは図 2に示す伝動部 14Cを介して駆動モータ 14Dに連結されている。この駆動 モータ 14Dが稼動すると、伝動部 14C及び駆動帯 14Bを介して回転ドラム 11が図 1 の右側から見て時計回りに回転駆動される。なお、上記係合部 14A、駆動帯 14B、 伝動部 14C及び駆動モータ 14Dはドラム回転駆動手段 14を構成する。
[0025] ロータ 12には、外周方向に突出する複数の羽根 12Aが軸線方向に沿って設けら れている。この羽根 12Aは、回転軸 12Sの外周面力も突出する支持軸 12Bの先端に 固定されている。なお、羽根 12Aを図示例の支持軸 12Bと一体のものとして構成して も構わない。ロータ 12には、回転軸 12Sの軸線周りの異なる角度位置に複数の羽根 12Aが設けられて 、るとともに、軸線方向に沿って複数の羽根 12Aが配列されて ヽ る。複数の羽根 12Aの配列態様は任意であるが、回転軸 12Sの周りに螺旋状に配 列されて!、ることが望まし!/、。
[0026] ロータ 12は、両端の軸支部 15によって回転自在に軸支されている。ここで、ロータ 12の回転軸は回転ドラム 11の回転軸より斜め下方に配置され、特に詳しくは、回転 ドラム 11の回転軸から、当該回転軸の直下位置よりも回転ドラム 11の回転方向に進 んだ下方の位置へ斜めに向力う方向に配置されている。また、ロータ 12は、上記回 転ドラム 11と同様に、回転ドラム 11の一端 11a側力 他端 l ib側へ下方に向けて傾 斜した姿勢で設置されている。図示例の場合、回転ドラム 11の軸線とロータ 12の軸 線とはほぼ平行になるように構成されている。ただし、回転ドラム 11の軸線とロータ 1 2の軸線とは完全に平行でなくても構わない。ロータ 12は伝動部 16Aを介して駆動 モータ 16Bに連結されている。この駆動モータ 16Bを稼動させることで、ロータ 12は 図 1の右側から見て時計回りに回転駆動される。なお、上記の伝動部 16A及び駆動 モータ 16Bはロータ回転駆動手段 16を構成する。
[0027] 複数の羽根 12Aは、ロータ 12の軸線方向に沿って姿勢が変化するように構成され ている。回転ドラム 11の一端 11a側では複数の羽根 12Aはロータ 12の回転方向に 対して傾斜した姿勢にあり、その結果、ロータ 12を図 1の右側力も見て時計回りに回 転駆動したとき、原料 Mを回転ドラム 11の他端 l ib側へ送るように作用する。このよう な作用を果たす順送り構造を備えた羽根 12A1は、回転ドラム 11の一端 11a寄りの 順送り範囲 Xにお 、て設けられて 、る。 [0028] 一方、回転ドラム 11の他端 l ib寄りの範囲 Yには、順送り範囲 X内の羽根 12A1と は逆方向に傾斜した複数の羽根 12A2が設けられ、これらの羽根 12A2は、ロータ 1 2を図 1の右側力 見て時計回りに回転駆動したとき、原料 Μを回転ドラム 11の一端 11a側に戻すように作用する。このような作用を果たす逆戻し構造を備えた羽根 12A 2が形成される上記範囲 Yを以下単に「逆戻し範囲 Y」 t 、う。
[0029] 上記の順送り範囲 X内に設けられた複数の羽根 12A1は、原料 M若しくは粒状物 を図 1の左側へ向けて (順方向に)送り、また、上記の逆戻し範囲 Y内に設けられた複 数の羽根 12A2は、原料 M若しくは粒状物を図 1の右側へ向けて(逆方向に)戻す。 したがって、ロータ 12は、回転ドラム 11内に投入された原料 Mを順送り範囲 Xと逆戻 し範囲 Yの間に集めるように作用する。特に、逆戻し範囲 Yの羽根 12A2は、ー且形 成された粒状物を再び上流側へ戻し、粒状物に対する再整形作用を生じさせる。
[0030] ただし、本実施形態では、回転ドラム 11及びロータ 12が共に傾斜姿勢で設置され 、しカゝも、複数の羽根 12Aが全体としては原料 Mやこれから生成された粒状物を回 転ドラム 11の一端 1 la側から他端 1 lb側へ送るように構成されて 、るので、回転ドラ ム 11の一端 1 laに原料 Mを投入すると、回転ドラム 11の他端 1 lbから粒状物 Nが排 出され、連続して造粒処理を施すことができる。
[0031] 順送り範囲 Xと逆戻し範囲 Yの間には、基本的にロータ 12の軸線方向に原料 Mや 粒状物 Nを移動させない中央範囲 Zを設けることが好ま 、。この中央範囲 Zでは、 複数の羽根 12Aは基本的に原料 M及び粒状物 Nに対して軸線方向の推進力を生じ ないように構成されている。具体的には、複数の羽根 12Aはロータ 12の回転方向に 沿った姿勢を有して 、る。この中央範囲 Zを設けなくても本実施形態では上記の効果 を得ることができるが、この中央範囲 Zを設けることで、粒状物 Nの粒度のばらつきや 造粒速度の変動をさらに抑制できる。
[0032] また、逆戻し範囲 Yよりもさらに回転ドラム 11の他端 l ib側には、基本的にロータ 12 の軸線方向に原料 Mや粒状物 Nを移動させな 、排出範囲 Wを設けることが好ま 、 。この排出範囲 Wにおいても、複数の羽根 12Aはロータ 12の回転方向に沿った姿 勢を有して 、る。この排出範囲 Wを設けなくても本実施形態では上記の効果を得るこ とができる力 この排出範囲 Wを設けることで、粒状物 Nの粒度のばらつきや造粒速 度の変動をさらに抑制できる。
[0033] なお、羽根 12Aは図示例の場合、板状材で構成されて上記の姿勢となって ヽるが 、本実施形態の羽根 12Aはこのような形状に限られず、結果的に、上記と同様に、原 料 M及び粒状物 Nに対して軸線方向の推進力を与えたり与えなかつたりするように 構成されていればよい。
[0034] 図 2に示すように、ロータ 12の羽根 12Aは、ロータ 12の軸線(回転軸 12Sの軸線) に対して偏心した位置に配置されている。換言すれば、ロータ 12の軸線回りに配置 された複数の羽根 12Aのうち、異なる角度位置に設けられた複数の羽根 12Aは、口 ータ 12の軸線力 相互に異なる距離に配置されて 、る。
[0035] 回転ドラム 11の一端 11aからは、原料 Mに対して適度に水等の液体を混入するた めの散液管 17が導入されている。この散液管 17は、液体を回転ドラム 11の内部に 噴出して原料 Mの調整 (例えば水分調整)を行うためのものである。
[0036] 回転ドラム 11の一端 11aには、原料供給路 18の供給口が上方力 臨み、この原料 供給路 18を介して原料 Mが回転ドラム 11の内部に投入されるように構成されて!、る 。また、回転ドラム 11の他端 l ibの下方には搬出コンベア 19が配置され、回転ドラム 11の他端 l ibから粒状物 Nが排出されると、この排出コンベア 19によって搬出される ように構成されている。
[0037] 以上説明した本実施形態の造粒機 10では、図 1に示すように、順送り範囲 Xでは 羽根 12A1によって原料 Mが順方向に送られつつ分離されて 、くが、逆戻し範囲 Y では羽根 12A2によって粒状物が逆方向に戻される。すなわち、上記逆戻し範囲 Y においては、或る程度小さな粒状物は羽根 12A2の間から順方向に送られて回転ド ラム 11の他端 l ibで排出されるが、それよりも大きな粒状物は羽根 12A2によって逆 方向に戻されるので、例えば中央範囲 Z内においてさらに攪拌され、再整形される。 これによつて、中央範囲 Zでは、順送り範囲 Xから順方向に送られてくる原料 M力も分 離された粒状物と、ー且、逆戻し範囲 Yに進んで力 逆方向に戻されてくる粒状物と が混合され、さらに攪拌作用を受けることになる。これにより、逆戻し範囲 Yよりも下流 側へ排出される粒状物 Nの外径のばらつきが低減され、造粒速度の変動も抑制され 、しカゝも、効率的に造粒処理を施すことができる。なお、粒状物 Nの粒径や造粒効率 は、回転ドラム 11とロータ 12の回転速度及びこれらの間の回転速度比を変えること によって調節できる。特に、回転ドラム 11とロータ 12の回転速度及び回転速度比を 調整して、粒状物 Nについて所定の品位が確保される範囲内で造粒速度が最も高く なるようにすることが望ま 、。
[0038] また、図 2に示すように、本実施形態では、回転ドラム 11とロータ 12が同一回転方 向に回転するので、原料 Mを過剰に攪拌することがなぐ原料 M力 羽根 12Aによつ て少しずつ粒状物を分離することができるとともに、一旦生成された粒状物 Nに影響 を与えることを与えにくく構成できる。このため、回転ドラム 11とロータ 12が逆方向に 回転する場合に比べて粒状物の生成効率を高めることができる。ここで、複数の羽根 12 Aがロータ 12の軸線周りに偏心した位置に配置されて!、るので、回転ドラム 11の 下部に配置された原料 Mに対して相互に異なる態様で作用することにより、造粒効 率をさらに向上させることができる。
[0039] 図 3は、上記の造粒機 10を用いたブロックの製造工程を模式的に示す概略工程図 である。この製造工程においては、焼却場など力も排出される焼却灰 Aに、水 B及び セメント、酸ィ匕カルシウム、水酸ィ匕カルシウムなどの結着剤 Cを混合してミキサー 1に おいて混練し、スラリー(ペースト)状の混練物 Dを形成する。ここで、珪酸系のカルシ ゥム化合物(高炉スラグ)や硫酸系のカルシウム化合物 (石膏)などの微粉末を適量 加えることにより、特定の有害物質 (アルカリだけでは不溶ィ匕できない鉛やクロムなど の両性重金属類やダイォキシン等)の溶出を防ぐことができる。この混練物 Dは、搬 送手段 2などによって搬送されて上記の造粒機 10に運ばれ、回転ドラム 11の内部に 投入される。投入された混練物 Dは、ロータ 12が配置された回転ドラム 11内で攪拌さ れながら次第に粒状になり、最終的に粒状物 Eとなる。この粒状物 Eは、ミキサー 3に 投入され、骨材として水 F及びセメント Gと混練されてコンクリート Hを形成する。そし て、このコンクリート Hを型 4にて成形することによってブロック Iが形成される。
[0040] 尚、本発明の造粒方法、造粒機、及び、焼却灰によるブロックの製造方法は、上述 の図示例にのみ限定されるものではなぐ本発明の要旨を逸脱しない範囲内におい て種々変更を加え得ることは勿論である。

Claims

請求の範囲
[1] 筒状の回転ドラムを回転させながら、該回転ドラムの内部に偏心して配置され、軸 線方向に沿って複数の羽根を備えたロータを回転させた状態で、前記回転ドラムの 内部に混練物力もなる原料を投入して造粒を行う造粒方法であって、前記回転ドラム の前記一端寄りの範囲において前記羽根により前記回転ドラムの前記他端側へ向け て前記原料を送るとともに、前記回転ドラムの前記他端寄りの範囲において前記羽 根により前記回転ドラムの前記一端側へ向けて前記原料を戻す態様で造粒を行うこ とを特徴とする造粒方法。
[2] 筒状の回転ドラムを回転させながら、該回転ドラムの内部に偏心して配置され、軸 線方向に沿って複数の羽根を備えたロータを回転させた状態で、前記回転ドラムの 内部に混練物力もなる原料を投入して造粒を行う造粒方法であって、前記回転ドラム と前記ロータを同一回転方向に回転させる態様で造粒を行うことを特徴とする造粒方 法。
[3] 前記回転ドラム及び前記ロータを前記回転ドラムの前記一端から前記他端へ向け て下方に傾斜させた状態で造粒を行うことを特徴とする請求項 1又は 2に記載の造粒 方法。
[4] 筒状の回転ドラムと、該回転ドラムの内部に偏心して配置され、軸線方向に沿って 複数の羽根を備えたロータと、前記回転ドラムを回転駆動するドラム回転駆動手段と 、前記ロータを回転駆動するロータ回転駆動手段とを具備する造粒機において、前 記ロータは、前記回転ドラムの一端寄りの範囲に原料若しくは粒状物を前記回転ドラ ムの他端側へ送る順送り構造を有する羽根を備えているとともに、前記回転ドラムの 前記他端寄りの範囲に原料若しくは粒状物を前記回転ドラムの前記一端側へ戻す 逆戻し構造を有する羽根を備えていることを特徴とする造粒機。
[5] 筒状の回転ドラムと、該回転ドラムの内部に偏心して配置され、軸線方向に沿って 複数の羽根を備えたロータと、前記回転ドラムを回転駆動するドラム回転駆動手段と 、前記ロータを回転駆動するロータ回転駆動手段とを具備する造粒機において、前 記ドラム回転駆動手段及び前記ロータ回転駆動手段は、前記回転ドラムと前記ロー タを同一回転方向に回転駆動するように構成されていることを特徴とする造粒機。
[6] 前記回転ドラム及び前記ロータは前記回転ドラムの前記一端から前記他端へ向け て下方に傾斜していることを特徴とする請求項 4又は 5に記載の造粒機。
[7] 前記複数の羽根が前記ロータの軸線周りの偏心した位置に設けられていることを特 徴とする請求項 4乃至 6のいずれか一項に記載の造粒機。
[8] 焼却灰に結着剤を混合して混練してスラリー状の混練物を形成し、この混練物を請 求項 1乃至 3のいずれか一項に記載の造粒方法により造粒加工して粒状物を形成し 、その後、該粒状物を骨材として用いてブロックを製造することを特徴とする焼却灰に よるブロックの製造方法。
PCT/JP2006/314105 2005-07-15 2006-07-14 造粒方法、造粒機及び焼却灰によるブロックの製造方法 WO2007010877A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-207056 2005-07-15
JP2005207056A JP2008237942A (ja) 2005-07-15 2005-07-15 造粒方法、造粒機及び焼却灰によるブロックの製造方法

Publications (1)

Publication Number Publication Date
WO2007010877A1 true WO2007010877A1 (ja) 2007-01-25

Family

ID=37668758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314105 WO2007010877A1 (ja) 2005-07-15 2006-07-14 造粒方法、造粒機及び焼却灰によるブロックの製造方法

Country Status (2)

Country Link
JP (1) JP2008237942A (ja)
WO (1) WO2007010877A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046765A (ja) * 2009-08-25 2011-03-10 Nippon Synthetic Chem Ind Co Ltd:The 活性エネルギー線硬化型エマルジョン組成物及びコーティング剤組成物
CZ306481B6 (cs) * 2015-07-24 2017-02-08 Sedlecký kaolin a.s. Způsob výroby hrudkujícího silikátového steliva
CN113584302A (zh) * 2021-07-28 2021-11-02 江阴市创裕机械有限公司 一种钢厂除尘灰的连续造粒工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211174A (en) * 1975-07-17 1977-01-27 Nippon Sheet Glass Co Ltd Rotary drum type granulating machine
JPS60135214A (ja) * 1983-12-23 1985-07-18 大平洋機工株式会社 コンクリ−ト用二軸型混合機
JPS62171744A (ja) * 1986-01-22 1987-07-28 Hitachi Metals Ltd 汚泥ケ−キの造粒機
JPS6349238A (ja) * 1986-08-20 1988-03-02 Neotetsuku:Kk 連続混合機
JPH1034394A (ja) * 1996-07-24 1998-02-10 Ngk Insulators Ltd 造粒装置およびその装置を用いた骨材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211174A (en) * 1975-07-17 1977-01-27 Nippon Sheet Glass Co Ltd Rotary drum type granulating machine
JPS60135214A (ja) * 1983-12-23 1985-07-18 大平洋機工株式会社 コンクリ−ト用二軸型混合機
JPS62171744A (ja) * 1986-01-22 1987-07-28 Hitachi Metals Ltd 汚泥ケ−キの造粒機
JPS6349238A (ja) * 1986-08-20 1988-03-02 Neotetsuku:Kk 連続混合機
JPH1034394A (ja) * 1996-07-24 1998-02-10 Ngk Insulators Ltd 造粒装置およびその装置を用いた骨材の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046765A (ja) * 2009-08-25 2011-03-10 Nippon Synthetic Chem Ind Co Ltd:The 活性エネルギー線硬化型エマルジョン組成物及びコーティング剤組成物
CZ306481B6 (cs) * 2015-07-24 2017-02-08 Sedlecký kaolin a.s. Způsob výroby hrudkujícího silikátového steliva
CN113584302A (zh) * 2021-07-28 2021-11-02 江阴市创裕机械有限公司 一种钢厂除尘灰的连续造粒工艺
CN113584302B (zh) * 2021-07-28 2023-07-25 江阴市创裕机械有限公司 一种钢厂除尘灰的连续造粒工艺

Also Published As

Publication number Publication date
JP2008237942A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
AU2017225809B2 (en) Mixer, system for applying a building material and method for producing a structure from building material
JP2006239554A (ja) 混練装置
WO2007010877A1 (ja) 造粒方法、造粒機及び焼却灰によるブロックの製造方法
JP2003261961A (ja) 土質改良システム
JP5004502B2 (ja) 混練解砕装置
JP2010279939A (ja) 汚泥の再資源化装置及び処理方法
JP2006130443A (ja) 脱水ケーキの連続造粒システム
JPH1085701A (ja) プラスチックスを含むシュレッダーダストの押出し固形化装置
JP3189755U (ja) 撹拌装置
JP2002079072A (ja) 焼却鶏ふんの造粒方法
JP2003145195A (ja) 細粒化再生処理装置
JP2001334162A (ja) 脱水ケーキ細粒化装置
JP2562116B2 (ja) 解砕機
JP2001321650A (ja) 混練造粒装置
JP2011240319A (ja) 廃棄物残渣類の処理方法と廃棄物残渣類の造粒機
JP6310957B2 (ja) 連続式団粒化撹拌装置
JP2642863B2 (ja) 造粒装置用トロンメル
JP2002179235A (ja) 混練物コンベア
JP2595461B2 (ja) 粘性土の造粒装置
JP2006062835A (ja) プロペラ、撹拌機、およびコンベア
JP2001090103A (ja) 解砕造粒装置及び発生土処理装置
CN116834157B (zh) 一种高强度耐磨浇注料的自动配料装置
JP2003096817A (ja) 汚土改良装置
JP2007044601A (ja) 泥土、汚泥等の再資源化方法および再資源化装置
JP2006272142A (ja) 汚泥の重金属類溶出防止処理方法および処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP