WO2006136724A2 - Compositions photoprotectrices - Google Patents

Compositions photoprotectrices Download PDF

Info

Publication number
WO2006136724A2
WO2006136724A2 PCT/FR2006/001440 FR2006001440W WO2006136724A2 WO 2006136724 A2 WO2006136724 A2 WO 2006136724A2 FR 2006001440 W FR2006001440 W FR 2006001440W WO 2006136724 A2 WO2006136724 A2 WO 2006136724A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
monodisperse particles
composition
derivatives
particles
Prior art date
Application number
PCT/FR2006/001440
Other languages
English (en)
Other versions
WO2006136724A3 (fr
Inventor
Christophe Dumousseaux
Makoto Kawamoto
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Publication of WO2006136724A2 publication Critical patent/WO2006136724A2/fr
Publication of WO2006136724A3 publication Critical patent/WO2006136724A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8111Homopolymers or copolymers of aliphatic olefines, e.g. polyethylene, polyisobutene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8117Homopolymers or copolymers of aromatic olefines, e.g. polystyrene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/88Polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/895Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/436Interference pigments, e.g. Iridescent, Pearlescent

Definitions

  • the present invention relates to photoprotective compositions, still sometimes referred to as sunscreen products, and filtering agents for absorbing ultraviolet light in such compositions.
  • the quality of the filtration of UVA (320-400 nm) and / or UVB (280-320 m) is related to the absorption height and the filtration width of the filtering agent (s) present in the composition.
  • a photoprotective composition according to the invention may comprise: a physiologically acceptable medium,
  • monodisperse particles capable of forming an ordered network of monodisperse particles on a support on which the composition is applied, this network absorbing UVA and / or UVB and / or infrared radiation.
  • the invention allows the formation of a substantially transparent deposit after application and drying, comprising an ordered network of monodisperse particles having UVA and / or UVB filtration optical properties, or even infrared (for a composition forming a heat shield).
  • the size of the particles may thus be between 80 and 250 ⁇ m, better 100 to 200 nm, for example around 150 nm in the case of a photoprotective composition for filtering UV and between 250 and 1000 nm in the case of a photoprotective composition for filtering the infrared.
  • a photoprotective composition according to the invention has, for example, an SPF index of at least 10, better still 15, better still at least 30, 45 or 60.
  • the Sun Screen Protection Factor (SPF) is defined in article A.
  • the formulation of the composition and in particular the size of the particles is chosen so that the composition has:
  • a transmission factor greater than or equal to 70% better still 80%, better still 85%, even more preferably 90% or even 95% in a range of at least 200 nm, better still at least 300 nm, or even 400 nm , broad in the range -400-800 nm, and / or - a transmission factor less than or equal to 70%, 60%, 50%, 40%,
  • the mass content of monodisperse particles may be greater than or equal to 15%, more preferably 20%.
  • a relatively large concentration of monodisperse particles can facilitate the formation of the "crystalline" network, using a cosmetic applicator for example.
  • a relatively high concentration can indeed lead to a preorganization of the particles by electrostatic repulsion in the composition and / or during drying thereof.
  • microdisperse particles denotes, according to the invention, particles whose average size has a coefficient of variation CV of less than or equal to 15%.
  • the average size D and the standard deviation s can be measured on 250 particles by analysis of an image obtained by means of a scanning electron microscope, for example that of reference S-4500 from HITACHI.
  • An image analysis software can be used to facilitate this measurement, for example the Winroof ® software, marketed by Mitani Corporation.
  • the coefficient of variation of the monodisperse particles is less than or equal to 10%, better still less than or equal to 7%, and even better still less than or equal to 5%, being for example substantially of the order of 3.5%.
  • a small dispersion of the particle size may be favorable to the quality of the compact crystal lattice formed and thus to obtaining bright and bright colors.
  • the mass content of monodisperse particles can range, for example, from 20 to 70%, being for example greater than 25%, 30%, 35%, 40% or 45%.
  • a different content, for example from 1 to 70% may be allowed according to some other aspects of the invention.
  • the shape of the monodisperse particles must be compatible with the formation of an ordered network of monodisperse particles.
  • the formed network may be at least partially cubic centered, cubic face-centered or hexagonal compact or hybrid, formed from these arrangements, or other.
  • a crystal lattice from monodisperse particles are given in Xia et al., Adv. Mater., 12, 693-713 (2000).
  • the shape of the monodisperse particles is spherical, but other forms, including axial symmetry, are possible.
  • the monodisperse particles can be monomaterial or composite.
  • the monodisperse particles may be solid or hollow.
  • Hollow monodisperse particles have a lower density than solid particles and thus allow to occupy more volume for the same mass concentration.
  • the monodisperse particles consist of a material of high density, for example an inorganic material
  • the hollow particles make it possible to limit the phenomena of sedimentation in the composition.
  • the monodisperse particles may be porous or non-porous. The presence of small pores within the particles can decrease the refractive index of these particles.
  • the refractive index n p of the monodisperse particles is different from that n c of the continuous medium extending around the particles after application of the formulation and the difference of these refractive indices is preferably greater than or equal to 0.02, better greater than or equal to 0.05, more preferably greater than or equal to 0.1, being for example between 0.02 and 2, in particular between 0.05 and 1.
  • a difference in refractive index n p- n c too low may require a large number of layers of particles of the ordered network to obtain the desired result.
  • a too important index difference can accentuate the phenomena of light diffusion by the layer and bring about a bleaching of the deposit after application.
  • the refractive index of the monodisperse particles is defined as the average refractive index. In the case of composite particles, it is calculated linearly as a function of the volume proportion of each component.
  • the refractive index of the monodisperse particles may be greater than or equal to that of the medium, for example being greater than or equal to 1.4, especially between 1.4 and 1.7.
  • All monodisperse particles corresponding to the same average size D may have substantially the same refractive index.
  • the monodisperse particles may be colored, that is to say non-white, for example to prevent bleaching of the composition after application to the keratin materials.
  • the color of the monodisperse particles may be provided by the choice of the material or materials constituting each monodisperse particle. It can have the effect of increasing the absorption of light by the particles and decrease the diffusion.
  • the monodisperse particles may in particular incorporate at least one pigment or dye, organic or inorganic, the latter may optionally be fluorescent and have a fluorescence in the ultraviolet or infrared.
  • the monodisperse particles may comprise an inorganic compound, or even be entirely mineral.
  • the monodisperse particles when they are inorganic, they may for example comprise at least one oxide, in particular a metal, chosen for example from oxides of silica, iron, titanium, aluminum, chromium, zinc, copper, of zirconium and cerium and mixtures thereof.
  • the monodisperse particles may also include a metal, including titanium, silver, gold, aluminum, zinc, iron, copper, and mixtures and alloys thereof.
  • the monodisperse particles may comprise an organic compound, or even be entirely organic.
  • polymers in particular with a carbon or silicone chain, for example polystyrene (PS), methyl polyméfacrylate (PMMA), polyacrylamide (PAM), polymers of silicone.
  • PS polystyrene
  • PMMA methyl polyméfacrylate
  • PAM polyacrylamide
  • the monodisperse particles may comprise at least one polymer or copolymer capable of ionizing in order to improve the dispersibility in the medium and the electrostatic stabilization. In aqueous solution, this polymer or copolymer preferably contains carboxylic acid or sulfonic functions.
  • this polymer or copolymer preferably contains carboxylic acid or sulfonic functions.
  • the monodisperse particles are composite, they may for example comprise a core and a "bark" made of different materials, for example organic and / or inorganic materials.
  • the material of the core or bark for example, may be chosen, for example, in order to improve the stability in the environment of the monodisperse particles, to increase their refractive index and / or to color these. and / or to impart to them fluorescence or magnetic susceptibility.
  • the core may consist of an insoluble material in the medium containing the particles, for example an inorganic material, such as silica for example, or an organic material, such as an acrylic polymer, for example.
  • the bark may consist of polymer chains, which may be soluble in the medium containing the particles, the polymer chains may comprise polymers grafted to the surface of the core of the monodisperse particles, which may be insoluble in the medium.
  • Such core particles and polymeric chains also called “hairy” particles, can be stabilized in the medium not only by electrostatic interactions but also by steric interactions of excluded volume type.
  • the additional stabilization and volume provided by the polymer chains makes it easy to incorporate other components into the composition without the risk of destabilization and aggregation of the particles.
  • these other components are, for example, coloring agents or fillers intended, for example, to modify the appearance of the composition or of the support coated therewith.
  • the polymer chains may comprise graft polymer chains, which may contain chemical functions (carboxylic acid, amine, amide, thiol, etc.) capable of interacting with the keratin materials and of improving the adhesion of the composition to the covered support.
  • Polymeric chains can also improve the resistance of the particle network after application to keratin materials.
  • hairy particles are given for example in the publication Ishizu et al., Kagaku To Kogyo, 57 (7) (2004) in the case of a polymer core or in the publication Okubo et al., Colloid & Polymer Science, 280 (3), pp. 290-295 (2002) in the case of a core of silica and polymers polymethyl methacrylate or poly (styrene co maleic anhydride) bark.
  • Another example of a "hairy” particle is given in Tsuji et al., Langmuir, 21, pp 2434-2437 (2005) in the case of a polystyrene core and poly N isopropyl acrylamide hair.
  • the presence of a bark may make it possible to encapsulate therein a compound for which direct contact with the keratin materials or the medium is undesirable.
  • Composite monodisperse particles may further comprise inclusions of a first material in a matrix of a second material.
  • the first material may have a high refractive index to increase the overall refractive index of the particle.
  • the particle may for example comprise inclusions of nanoparticles, for example nanoparticles of titanium oxide.
  • the monodisperse particles may be manufactured according to synthetic methods as described, for example, in the publication Xia et al, Adv. Mater., 12, 693-713 (2000), incorporated by reference.
  • Commercial references for monodisperse particles that may be suitable include Seahoster ® KE-W10 (silica), Seahoster ® KE-W20 (silica), Seahoster ® KE-W25 (silica), Seahoster ® KE-W30 (silica), Seahoster ® KE-P20 (silica), ® Seahoster KE-P30 (silica) from Nippon Shokubai, Optibind ® (polystyrene) 216 or 290 nm microparticles from Seradyn company, Cosmo ® 30 (silica) of la- CCIC, Hipresica ® FQ (silica) in Ube-Nitto company Eposter ® MX-100W (PMMA) and Eposter ® MX-200W (PMMA)
  • the monodisperse particles are, for example, particles of a polymer which are swollen in a solvent, these particles forming a microgel.
  • the monodisperse particles can be contained at least before application in a physiologically acceptable medium for forming on the support on which the composition is applied an ordered network of monodisperse particles.
  • physiologically acceptable medium synonymous with the expression “cosmetically acceptable medium” means a non-toxic medium and may be applied to keratin materials of human beings, including the skin, mucous membranes or superficial body growths.
  • the physiologically acceptable medium is generally adapted to the nature of the support on which the composition is to be applied and to the form in which the composition is intended to be packaged.
  • the monodisperse particles may be contained in a liquid phase.
  • the medium containing the monodisperse particles may be entirely liquid or may contain other particles, as appropriate.
  • the medium may be chosen so as to promote the dispersion of the particles in the medium before the application thereof, in order to avoid aggregation of the particles.
  • the medium may be chosen such that the ordered network of monodisperse particles is formed by regular stacking thereof, after application to the keratin materials, the network not existing in the composition before application and forming for example during the evaporation of a solvent contained in the composition.
  • the refractive index of the medium advantageously has, as indicated previously, a difference with that of the monodisperse particles, this difference being in absolute value preferably greater than or equal to 0.02, better still greater than or equal to 0.05, in particular between 0 , 05 and 1, more preferably greater than or equal to 0.1.
  • the medium may be aqueous, the monodisperse particles may be contained in an aqueous phase.
  • aqueous medium is meant a liquid medium at room temperature and atmospheric pressure which contains a significant fraction of water based on the total weight of the medium.
  • the additional fraction may contain or consist of physiologically acceptable organic solvents miscible with water, for example alcohols or alkylene glycols.
  • the mass content of water of the aqueous medium is preferably greater than or equal to 30%, better still 40%, even more preferably 50%.
  • the medium may be monophasic or multiphasic and may or may not include solids other than monodisperse particles, especially smaller particles or larger particles.
  • the amount of these bodies will be sufficiently small not to interfere with the formation of the ordered network of monodisperse particles and to obtain the desired result.
  • the medium may comprise at least one compound having an OH bond, especially an alcohol function, in a mass content for example greater than or equal to 5%, more preferably 10%.
  • a compound having an OH bond especially an alcohol function
  • a mass content for example greater than or equal to 5%, more preferably 10%.
  • the medium may comprise an alcohol, such as ethanol or isopropanol, for example, or a glycol derivative, especially ethylene glycol or propylene glycol.
  • an alcohol such as ethanol or isopropanol, for example, or a glycol derivative, especially ethylene glycol or propylene glycol.
  • the medium has a relative dielectric constant ⁇ greater than or equal to 10, more preferably 20, more preferably 30.
  • the dielectric constant is measured at a temperature of 25 ° C.
  • a relatively high dielectric constant favors the scheduling of networked monodisperse particles.
  • the conductivity of the composition may be between 5 and 2,000 ⁇ S.cm -1 , in particular between 10 and 4,000 ⁇ S cm -1 , or even between 20 and 400 ⁇ S cm -1 .
  • the medium may be transparent or translucent,
  • the medium containing the monodisperse particles may contain no pigment or dye
  • the coloration of the medium may correspond to the addition of an additional coloring agent.
  • the presence of particles of a relatively large size, such as charges, for example, may not prevent the formation of the network, but on the contrary promote its formation by improving the confinement of the monodisperse particles, the large particles being able to be introduced into certain dislocations of the network.
  • the medium may thus comprise larger particles having a size at least 3, better 5 times that of the monodisperse particles, more preferably 10 times higher.
  • a non-coloring filler may be present in the formulation at a concentration of between 0.1 and 70%, preferably 1 to 50%, preferably 5 to 20%. This charge may have UV or IR absorption properties.
  • the medium may comprise a volatile solvent.
  • volatile solvent means any liquid capable of evaporating on contact with the skin at ambient temperature and under atmospheric pressure.
  • the medium can in particular be chosen so that the composition contains at least 10%, or even at least 30% of volatile solvent.
  • the pH of the composition may range from 1 to 11, for example from 3 to 9.
  • the pH most suitable for the formation of the network may depend on the nature of the monodisperse particles.
  • a basic pH is preferred when the monodisperse particles are inorganic, especially comprising silica.
  • the medium may comprise smaller particles having an average size D less than that of the monodisperse particles by a factor of at least 2, better still at least 3, in order to allow their insertion into the voids left between the monodisperse particles. network.
  • interstitial particles can be inorganic or organic and can improve the cohesion of the network or change the absorption of light by the layers of the network.
  • interstitial particles As an example of interstitial particles, mention may be made of nanoparticles of titanium dioxide, silica, iron oxide, carbon black, of medium size ranging from
  • interstitial particles there may be mentioned particles of a polymer, which is for example in the already polymerized state in the composition before its application to keratin materials, the medium comprising, for example, a latex.
  • the size of the interstitial particles may, where appropriate, vary depending on an external stimulus and / or the concentration of a compound in the medium.
  • the interstitial particles may be water-absorbing. The size of the particles may then for example vary according to the concentration of water in the medium.
  • the variation in size of the interstitial particles may, if necessary, exert an action on the distance between the monodisperse particles and thus have an action on the color produced by the network.
  • the medium may comprise at least one polymer to improve the behavior of the network after its formation.
  • This polymer is for example in the not completely polymerized and / or crosslinked state in the composition before the application thereof and its drying.
  • the crosslinking and / or polymerization may take place after the application of the composition to the keratin materials.
  • the polymerization and / or crosslinking may occur for example after formation of the monodisperse particle network or alternatively before and / or concomitantly with the latter.
  • the medium may comprise a film-forming polymer.
  • the term "film-forming polymer” is intended to mean a polymer capable of forming, by itself or in the presence of an auxiliary film-forming agent, a film which is macroscopically continuous and adheres to the keratin materials, and preferably a cohesive film. and more preferably a film whose cohesion and mechanical properties are such that said film can be isolable and manipulable in isolation, for example when said film is produced by casting on a non-stick surface such as a Teflon or silicone surface.
  • the composition may comprise an aqueous phase and the film-forming polymer may be present in this aqueous phase.
  • the film-forming polymer may be present in this aqueous phase.
  • it will preferably be a dispersion polymer or an amphiphilic or associative polymer.
  • aqueous dispersion polymers can be used: Ultrasol 2075 from Ganz Chemical, Daitosol 5000AD from Daito Kasei, Avalon UR 450 from Noveon, DYNAMX from National Starch, Syntran 5760 from Merpolymer, Acusol OP 301 from Rohm & Haas, Neocryl A 1090 from Avecia.
  • Neocryl XK-90® The acrylic dispersions sold under the names Neocryl XK-90®, Neocryl A-1070®, Neocryl A-1090®, Neocryl® BT-62®, Neocryl A-1079® and Neocryl A-
  • amphiphilic or associative polymers polymers having one to several hydrophilic moieties which render them partially soluble in water and one or more hydrophobic moieties through which the polymers associate or interact.
  • the following associative polymers may be used: Nuvis FX1100 from Elementis, Aculyn 22, Aculyn 44, Aculyn 46 from Rohm & Haas, Viscophobe DB 1000 from Amerchol.
  • the diblock copolymers consisting of a hydrophilic block (polyacrylate, polyethylene glycol) and a hydrophobic block (polystyrene, polysiloxane, can also be used.
  • Soluble polymers in an aqueous phase containing the monodisperse particles can be avoided because they can cause an aggregation of the monodisperse particles.
  • the film-forming polymer may thus be insoluble in such a phase.
  • the composition may comprise an oily phase and the film-forming polymer may be present in this oily phase.
  • the polymer may then be in dispersion or in solution.
  • NAD non-aqueous dispersion
  • microgel for example KSG
  • PS-PA polymers
  • styrene-based copolymers Karlon, Regalite
  • non-aqueous dispersions of lipid-dispersible film-forming polymer in the form of non-aqueous dispersions of polymer particles in one or more silicone and / or hydrocarbon oils and which can be stabilized at their surface by at least one stabilizing agent, in particular a block polymer, grafted or Statistically, mention may be made of acrylic dispersions in isododecane, such as Mexomere PAP® from Chimex, particle dispersions of a grafted ethylenic polymer, preferably acrylic polymer, in a liquid fatty phase, the ethylenic polymer being advantageously dispersed in the no additional stabilizer at the surface of the particles as described in particular in WO 04/055081.
  • radical-forming film-forming polymer is meant a polymer obtained by polymerization of unsaturated monomers, especially ethylenic monomers, each monomer being capable of homopolymerizing (unlike polycondensates).
  • the radical-type film-forming polymers may in particular be polymers, or copolymers, vinylic polymers, in particular acrylic polymers.
  • the vinyl film-forming polymers may result from the polymerization of ethylenically unsaturated monomers having at least one acidic group and / or esters of these acidic monomers and / or amides of these acidic monomers.
  • ⁇ , ⁇ -ethylenic unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid. It is preferable to use (meth) acrylic acid and crotonic acid, and more preferably (meth) acrylic acid.
  • esters of acidic monomers are advantageously chosen from esters of (meth) acrylic acid (also called (meth) acrylates), in particular
  • alkyl (meth) acrylates in particular C 1 -C 30 alkyl, preferably C 1 -C 20,
  • (meth) acrylates of aryl in particular of C 6 -C 10 aryl, hydroxyalkyl (meth) acrylates, in particular hydroxy C 2 -C 6 alkyl.
  • alkyl (meth) acrylates mention may be made of methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate.
  • hydroxyalkyl (meth) acrylates mention may be made of hydroxyethyl acrylate, 2-hydroxypropyl acrylate, hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate.
  • aryl (meth) acrylates mention may be made of benzyl acrylate and phenyl acrylate.
  • Particularly preferred (meth) acrylic acid esters are alkyl (meth) acrylates.
  • the alkyl group of the esters can be either fluorinated or perfluorinated, ie some or all of the hydrogen atoms of the alkyl group are substituted by fluorine atoms.
  • Amides of the acidic monomers include, for example, (meth) acrylamides, and especially N-alkyl (meth) acrylamides, in particular C 2 -C 12 alkyl.
  • N-alkyl (meth) acrylamides mention may be made of N-ethyl acrylamide, N-t-butyl acrylamide, N-t-octyl acrylamide and N-undecylacrylamide.
  • Vinyl-based polymer polymers may also result from the homopolymerization or copolymerization of monomers selected from vinyl esters and styrene monomers.
  • these monomers can be polymerized with acidic monomers and / or their esters and / or their amides, such as those mentioned above.
  • vinyl esters examples include vinyl acetate, vinyl neodecanoate, vinyl pivalate, vinyl benzoate and vinyl t-butyl benzoate.
  • Styrene monomers include styrene and alpha-methyl styrene.
  • film-forming polycondensates mention may be made of polyurethanes, polyesters, polyester amides, polyamides, and epoxy ester resins, polyureas.
  • the polyurethanes may be chosen from anionic, cationic, nonionic or amphoteric polyurethanes, polyurethane-acrylics, poly-urethanes-polyvinylpyrrolidones, polyester-polyurethanes, polyether-polyurethanes, polyureas, polyurea-polyurethanes, and their polyurethanes. mixtures.
  • the polyesters can be obtained, in known manner, by polycondensation of dicarboxylic acids with polyols, especially diols.
  • the dicarboxylic acid can be aliphatic, alicyclic or aromatic. Examples of such acids are: oxalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, acid pimelic acid, 2,2-dimethylglutaric acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, itaconic acid, phthalic acid, dodecanedioic acid , 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, isophthalic acid, terephthalic acid, 2,5-norbornane dicarboxylic acid, diglycolic acid, thiodipropionic acid, 2,5-naphthalenedicarboxylic acid, 2,6
  • dicarboxylic acid monomers may be used alone or in combination with at least two dicarboxylic acid monomers.
  • phthalic acid, isophthalic acid and terephthalic acid are preferably chosen.
  • the diol may be chosen from aliphatic, alicyclic and aromatic diols.
  • a diol chosen from among: ethylene glycol, diethylene glycol, triethylene glycol, 1,3-propanediol, cyclohexane dimethanol, 4-butanediol is preferably used.
  • other polyols it is possible to use glycerol, pentaerythritol, sorbitol, trimethylolpropane.
  • the polyester amides can be obtained in a similar manner to the polyesters by polycondensation of diacids with diamines or amino alcohols.
  • Diamines that may be used include ethylenediamine, hexamethylenediamine, meta- or para-phenylenediamine.
  • aminoalcohol monoethanolamine can be used.
  • the polyester may further comprise at least one monomer bearing at least one -SO3M group, with M representing a hydrogen atom, an NH4 + ammonium ion or a metal ion, for example an Na +, Li +, K +, Mg2 + or Ca2 + ion. , Cu2 +, Fe2 +, Fe3 +.
  • M representing a hydrogen atom, an NH4 + ammonium ion or a metal ion, for example an Na +, Li +, K +, Mg2 + or Ca2 + ion. , Cu2 +, Fe2 +, Fe3 +.
  • a bifunctional aromatic monomer comprising such a group -SO3M.
  • the aromatic nucleus of the bifunctional aromatic monomer additionally carrying a group -SO3M as described above may be chosen for example from benzene, naphthalene, anthracene, diphenyl, oxydiphenyl, sulfonyldiphenyl and methylenediphenyl nuclei.
  • An example of a bifunctional aromatic monomer also bearing an -SO 3 M group is sulfoisophthalic acid, sulphoterephthalic acid, sulphophthalic acid and 4-sulphonaphthalene-2,7-dicarboxylic acid.
  • the film-forming polymer may be a polymer solubilized in a liquid fatty phase comprising organic oils or solvents (it is said that the film-forming polymer is a liposoluble polymer).
  • the liquid fatty phase comprises a volatile oil, optionally mixed with a non-volatile oil.
  • a fat-soluble polymer mention may be made of vinyl ester copolymers (the vinyl group being directly connected to the oxygen atom of the ester group and the vinyl ester having a saturated hydrocarbon radical, linear or branched, from 1 to 19 carbon atoms, linked to the carbonyl ester group) and from at least one other monomer which may be a vinyl ester (different from the vinyl ester already present), an ⁇ -olefin (having from 8 to 28 carbon atoms), an alkyl vinyl ether (the alkyl group of which contains 2 to 18 carbon atoms), or an allyl or methallyl ester (having a linear or branched, saturated hydrocarbon radical of 1 to 19 carbon atoms, bonded to the carbonyl ester group).
  • vinyl ester copolymers the vinyl group being directly connected to the oxygen atom of the ester group and the vinyl ester having a saturated hydrocarbon radical, linear or branched, from 1 to 19 carbon atoms, linked to the carbonyl ester group
  • copolymers may be crosslinked using crosslinking agents which may be of the vinyl type, or of the allyl or methallyl type, such as tetraallyloxyethane, divinylbenzene, divinyl octanedioate, divinyl dodecanedioate, and octadecanedioate. divinyl.
  • crosslinking agents which may be of the vinyl type, or of the allyl or methallyl type, such as tetraallyloxyethane, divinylbenzene, divinyl octanedioate, divinyl dodecanedioate, and octadecanedioate. divinyl.
  • copolymers examples include copolymers: vinyl acetate / allyl stearate, vinyl acetate / vinyl laurate, vinyl acetate / vinyl stearate, vinyl acetate / octadecene, vinyl acetate / octadecylvinylether vinyl propionate / allyl laurate, vinyl propionate / vinyl laurate, vinyl stearate / octadecene-1, vinyl acetate / dodecene-1, vinyl stearate / ethyl vinyl ether, vinyl propionate / cetyl vinyl ether, stearate of vinyl vinyl / allyl acetate, 2,2-dimethyl-2 vinyl octanoate / vinyl laurate, 2,2-dimethyl-2-allyl pentanoate / vinyl laurate, vinyl dimethyl propionate / vinyl stearate, dimethyl allyl propionate / stearate,
  • liposoluble film-forming polymers examples include vinyl ester copolymers and at least one other monomer which may be a vinyl ester, especially vinyl neodecanoate, vinyl benzoate and t-butyl. vinyl benzoate, an ⁇ -olefin, an alkyl vinyl ether, or an allylic or methallyl ester.
  • Liposoluble film-forming polymers that may also be mentioned include liposoluble copolymers, and in particular those resulting from the copolymerization of vinyl esters having from 9 to 22 carbon atoms or of alkyl acrylates or methacrylates, the alkyl radicals having from 10 to 20 carbon atoms.
  • Such liposoluble copolymers may be chosen from copolymers of vinyl polycrystearate, vinyl polystearate crosslinked with divinylbenzene, diallyl ether or diallyl phthalate, copolymers of stearyl poly (meth) acrylate, polyvinylpolate , poly (meth) acrylate lauryl, these poly (meth) acrylates can be crosslinked using dimethacrylate ethylene glycol or tetraethylene glycol.
  • the liposoluble copolymers defined above are known and in particular described in application FR-A-2232303; they can have a weight average molecular weight ranging from 2,000 to 500,000 and preferably from 4,000 to 200,000.
  • liposoluble film-forming polymers that can be used in the invention, mention may also be made of polyalkylenes and especially copolymers of C2-C20 alkenes, such as polybutene, alkylcelluloses with a linear or branched, saturated or non-saturated C1 to C8 alkyl radical, for example ethylcellulose and propylcellulose, copolymers of vinylpyrrolidone (PV) and especially copolymers of vinylpyrrolidone and alkene in
  • VP / eicosene VP / hexadecene
  • VP / triacontene VP / styrene
  • VP / acrylic acid / lauryl methacrylate VP / acrylic acid / lauryl methacrylate.
  • silicone resins generally soluble or swellable in silicone oils, which are crosslinked polyorganosiloxane polymers.
  • the nomenclature of the silicone resins is known under the name of "MDTQ", the resin being described according to the different siloxane monomeric units that it comprises, each of the letters "MDTQ” characterizing a type of unit.
  • siloxysilicate resins such as those sold under the reference SR100O by the company General Electric or under the reference TMS 803 by the company Wacker. Mention may also be made of timethylsiloxysilicate resins sold in a solvent such as cyclomethicone, sold under the name "KF-7312J” by the company Shin-Etsu, "DC 749", “DC 593” by the company Dow Corning.
  • silicone resin copolymers such as those mentioned above with polydimethylsiloxanes, such as the pressure-sensitive adhesive copolymers marketed by Dow Corning under the reference BIO-PSA and described in document US 5 162 410 or the silicone copolymers resulting from the reaction of a silicone resin, such as those described above, and a diorganosiloxane as described in document WO 2004/073626.
  • the film-forming polymer is a film-forming linear ethylenic block polymer, which preferably comprises at least a first sequence and at least a second block having different glass transition temperatures (Tg), said first and second sequences being interconnected by an intermediate sequence comprising at least one constituent monomer of the first block and at least one constituent monomer of the second block.
  • Tg glass transition temperatures
  • the first and second sequences and the block polymer are incompatible with each other.
  • Such polymers are described for example in EP 1411069 or
  • the film-forming polymer may be chosen from block or static polymers and / or copolymers comprising, in particular, polyurethanes, polyacrylics, silicones, fluorinated polymers, butyl gums, copolymers of ethylenes, natural gums and polyvinyl alcohols, and mixtures thereof.
  • Monomers of block or static copolymers comprising at least one combination of monomers whose polymer results in a glass transition temperature below room temperature (25 ° C) can be chosen from among others butadiene, ethylene, propylene, acrylic, methacrylic, isoprene, isobutene, a silicone and mixtures thereof.
  • the film-forming polymer may also be present in the composition in the form of particles in dispersion in an aqueous phase or in a non-aqueous solvent phase, generally known under the name of latex or pseudolatex.
  • the techniques for preparing these dispersions are well known to those skilled in the art.
  • composition according to the invention may comprise a plasticizer promoting the formation of a film with the film-forming polymer.
  • a plasticizer may be chosen from all compounds known to those skilled in the art as being capable of performing the desired function.
  • the medium containing the monodisperse particles contains a film-forming polymer
  • the latter is, for example, an aqueous dispersion of acrylic, vinylic, fluorinated or silicone polymer, or mixtures thereof.
  • the mass content of the film-forming polymer (s) in the composition containing the monodisperse particles ranges, for example, from 0.1 to 10%.
  • the polymerization and / or crosslinking may be carried out by thermal initiation or by ultraviolet radiation.
  • the polymerization can also be carried out by adding an initiator and optionally a crosslinking agent.
  • the medium may also comprise a polymer allowing the formation of a gel, for example before or after the application of the composition to the support to be made up.
  • a polymer allowing the formation of a gel
  • the formation of a gel may, for example, improve the cohesion of the network of monodisperse particles and / or render the latter sensitive to an external stimulus and / or to the concentration of a compound in the medium, for example the concentration of water.
  • the polymer that makes possible the formation of a gel may be chosen from cellulose derivatives, alginates and their derivatives, in particular their derivatives such as propylene glycol alginate, or their salts, such as sodium alginate, alginate or calcium, polyacrylic or polymethacrylic acid derivatives, polyacrylamide derivatives, polyvinylpyrrolidone derivatives, ether or polyvinyl alcohol derivatives, and mixtures thereof, among others.
  • the polymer may in particular be chosen from chemically modified cellulose derivatives, for example chosen from carboxymethylcellulose, sodium carboxymethylcellulose, carboxymethylhydroxyethylcellulose, carboxyethylcellulose, hydroxyethylcellulose, hydroxyethylethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose and methylcellulose. , sodium methylcellulose, microcrystalline cellulose, sodium cellulose sulfate and mixtures thereof.
  • the polymer that makes possible the formation of a gel may also be chosen from natural polymeric derivatives, for example gelatin and glucomannan and galactomannan polysaccharides extracted from seeds, plant fibers, fruits, seaweeds, starch, plant resins, or of microbial origin.
  • natural polymeric derivatives for example gelatin and glucomannan and galactomannan polysaccharides extracted from seeds, plant fibers, fruits, seaweeds, starch, plant resins, or of microbial origin.
  • the mass quantity of polymer intended for the formation of a gel in the composition may be between 0.5 and 40%, better still between 1 and 20%.
  • the polymer intended for the formation of a gel can polymerize after the application of the composition to the support to be made up. Alternatively, the gel is formed before applying the composition to the keratin materials, and then applied thereto.
  • Hydrogels can be obtained from acrylamide monomers, acrylic monomers, vinylpyrrolidone for example.
  • An example of a hydrogel obtained by this method based on N-isopropylacrylamide polymerized under a UV lamp in a colloidal polystyrene crystal is for example described in the patent WO 98/41859.
  • the article of FOULGER et al, Advanced Materials, 13, 1898-1901 (2001) discloses a hydrogel based on polyethylene glycol methacrylate and dimethacrylate.
  • the realization of the gel can also take place before the manufacture of the composition. It is possible, for example, to produce an oily gel based on polydimethylsiloxane elastomer from a network of polystyrene spheres as described in the article by H. Fudouzi et al, Langmuir, 19, 9653-9660 (2003). Fatty phase
  • composition containing the monodisperse particles may be oil-free, the composition according to the invention may nevertheless comprise, in certain embodiments, a fatty phase.
  • the monodisperse particles may or may not be present in this fatty phase.
  • the fatty phase can in particular be volatile.
  • the introduction of one or more oils can be done so as not to lose the staining effect or spectral reflectance sought.
  • the composition may comprise an oil such as, for example, esters and synthetic ethers, linear or branched hydrocarbons of mineral or synthetic origin, fatty alcohols having from 8 to 26 carbon atoms, partially hydrocarbon-based fluorinated oils and / or or silicone, silicone oils such as volatile or non-volatile polymethylsiloxanes (PDMS) with a linear or cyclic silicone chain, liquid or pasty at room temperature, and mixtures thereof, other examples being given below.
  • PDMS volatile or non-volatile polymethylsiloxanes
  • a composition according to the invention may comprise at least one volatile oil.
  • volatile oil means an oil (or non-aqueous medium) capable of evaporating on contact with the skin in less than one hour, at ambient temperature and at atmospheric pressure.
  • the volatile oil is a volatile cosmetic oil which is liquid at ambient temperature, in particular having a non-zero vapor pressure, at ambient temperature and atmospheric pressure, in particular having a vapor pressure ranging from 0.13 Pa to
  • the volatile hydrocarbon oils may be chosen from hydrocarbon oils of animal or vegetable origin having from 8 to 16 carbon atoms, and in particular branched C 8 -C 16 alkanes (also known as isoparaffins), such as isododecane (also called 2.2 , 4,4,6-pentamethyl), isodecane isohexadecane, and for example the oils sold under the trade names Isopar ® or Permethyls® ®.
  • volatile oils for example volatile linear or cyclic silicone oils, in particular those having a viscosity ⁇ 8 centistokes (8 ⁇ 10 -6 m 2 / s), and having in particular from 2 to 10 silicon atoms, and in particular 2 to 7 silicon atoms, these silicones optionally containing alkyl or alkoxy groups having from 1 to 10 carbon atoms, for example the volatile silicone oil that can be used in the invention.
  • volatile linear or cyclic silicone oils in particular those having a viscosity ⁇ 8 centistokes (8 ⁇ 10 -6 m 2 / s), and having in particular from 2 to 10 silicon atoms, and in particular 2 to 7 silicon atoms, these silicones optionally containing alkyl or alkoxy groups having from 1 to 10 carbon atoms, for example the volatile silicone oil that can be used in the invention.
  • dimethicones of viscosity 5 and 6 cSt dimethicones of viscosity 5 and 6 cSt, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, heptamethylhexyltrisiloxane, heptamethyloctyltrisiloxane, hexamethyl disiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, dodecamethylpentasiloxane, and their mixtures.
  • Fluorinated volatile oils such as nonafluoromethoxybutane or perfluoromethylcyclopentane and mixtures thereof can also be used.
  • Non-volatile oils are also possible to use a mixture of the above-mentioned oils.
  • a composition according to the invention may comprise a non-volatile oil.
  • non-volatile oil means an oil having a vapor pressure of less than 0.13 Pa and in particular oils of high molar mass.
  • the non-volatile oils may in particular be chosen from fluorinated hydrocarbon oils which may be fluorinated and / or non-volatile silicone oils.
  • non-volatile hydrocarbon oil which may be suitable for the implementation of the invention, mention may notably be made of:
  • hydrocarbon oils of animal origin such as phytostearyl esters, such as phytostearyl oleate, physostearyl isostearate and lauroyl / octyldodecyl glutanate / phytostearyl, for example sold under the name ELDEW PS203 by AJINOMOTO, triglycerides consisting of esters of fatty acids and glycerol whose fatty acids may have chain lengths varied from C 4 to C 24 , the latter may be linear or branched, saturated or unsaturated; these oils are in particular heptanoic or octanoic triglycerides, wheat germ, sunflower, grape seed, sesame, corn, apricot, castor oil, shea, avocado, olive, soya, sweet almond, palm, rapeseed, cotton, hazelnut, macadamia, jojoba, alfalfa, poppy, pumpkin, squash, blackcurrant, evening
  • hydrocarbon oils of mineral or synthetic origin for example:
  • Synthetic ethers having from 10 to 40 carbon atoms; Linear or branched hydrocarbons of mineral or synthetic origin, such as petroleum jelly, polydecenes, hydrogenated polyisobutene such as sesam, squalane and mixtures thereof, and in particular hydrogenated polyisobutene,
  • Synthetic esters such as oils of formula R 1 COOR 2 in which R 1 represents the residue of a linear or branched fatty acid containing from 1 to 40 carbon atoms and R 2 represents a hydrocarbon chain, in particular branched, containing from 1 to 40 carbon atoms with the proviso that R 1 + R 2 is> 10.
  • esters may in particular be chosen from esters, in particular of fatty acids, for example:
  • Cetostearyl poctanoate esters of isopropyl alcohol, such as isopropyl myristate, isopropyl palmitate, ethyl palmitate, 2-ethylhexyl palmitate, stearate or isostearate.
  • Polyol esters and pentaerythritol esters such as dipentaerythritol tetrahydroxystearate / tetraisostearate,
  • esters of diol dimers and diacid dimers such as Lusplan DD-DA5® and Lusplan DD-D A7®, marketed by the company Nippon Fine Chemical and described in the application FR 03 02809,
  • Branched-chain and / or unsaturated carbon-containing liquid alcohols having 12 to 26 carbon atoms such as 2-octyldodecanol, isostearyl alcohol, oleic alcohol, 2-hexyldecanol or 2-butyloctanol, and 2-undecylpentadecanol; • higher fatty acids such as oleic acid, linoleic acid, linolenic acid and mixtures thereof, and
  • Di-alkyl carbonates the 2 alkyl chains which may be identical or different, such as dicaprylyl carbonate sold under the name Cetiol CC® by Cognis, non-volatile silicone oils, for example polydimethylsiloxanes (PDMS) non-volatile, polydimethylsiloxanes comprising pendant alkyl or alkoxy groups and / or end groups, groups each having from 2 to 24 carbon atoms, phenyl silicones such as phenyl trimethicones, phenyl dimethicones, phenyl trimethylsiloxy diphenylsiloxanes, diphenyl dimethicones, diphenyl methyldiphenyl trisiloxanes, and 2-phenylethyl trimethylsiloxysilicates, dimethicones or phenyltrimethicone with a viscosity less than or equal to 100 Cst, and mixtures thereof,
  • PDMS polydimethylsilox
  • composition containing the monodisperse particles may be free of oil, in particular containing no non-volatile oil. Kits
  • the invention also relates to kits comprising a composition according to the invention.
  • kits may comprise at least one composition intended to form a base layer, also called “base coat” and / or a layer of recouyrement, also called “top coat”.
  • the kit can thus include:
  • a first composition comprising:
  • monodisperse particles a medium allowing the formation on a support on which the composition is applied of an ordered network of monodisperse particles filtering UV or IR;
  • Base layer A second composition for forming a base layer or covering.
  • the base layer is compatible with its application on keratin materials, for example skin, lips, nails, eyelashes or hair, depending on the nature of the desired makeup, including one of those listed above.
  • the base layer may comprise a polymer chosen in particular from film-forming polymers.
  • the base layer can, according to different aspects of the invention, perform one or more of the following functions:
  • the base layer can smooth the support before the application of the composition comprising the monodisperse particles in order to facilitate the formation of the first layers of the network and to obtain a network with the widest possible monocrystalline zones,
  • the base layer can protect the support from UV or IR,
  • the base layer can improve the adhesion of the composition containing the monodisperse particles to the coated support.
  • the base layer may comprise at least one polymer having adhesive or adhesive properties, that is to say capable of becoming adhesive by interaction with another compound.
  • the polymer may in particular have adhesive or adhesive properties as defined in patents FR 2834884, FR 2811546 and FR 2811547.
  • the base layer may further exert an action on the surface tension of the keratin materials to allow, for example, good wettability by the composition layer containing the monodisperse particles and to promote the stacking of the monodisperse particles.
  • the base layer may comprise the same polymer providing at least two of the aforementioned functions, for example those of smoothing and increasing adhesion, or possibly a protective function vis-à-vis the UV or IR.
  • the base layer can be formulated according to the nature of the monodisperse particles.
  • the monodisperse particles may be of polystyrene and the base layer comprise a non-aqueous dispersion NAD in isododecane or polymers DAITOSOL (Daito Kasei) or ULTRASOL (Ganz Chemical) .
  • the monodisperse particles being silica
  • the base layer may comprise Eastman AQ polymer (20%) or PVA (10%).
  • the base layer may comprise a volatile phase.
  • the polymer is preferably capable of forming a film after application and drying of the composition.
  • the formation of the film can be done with the aid of a coalescing agent.
  • the polymer may be in dispersion or in solution in an aqueous or anhydrous phase. This polymer is preferably dispersed in water or in an oil. Even more preferably, the polymer contains at least one function capable of being ionized in aqueous solution, such as a carboxylic acid.
  • the polymer will preferably be insoluble in contact with an aqueous phase after application and drying.
  • Ultrasol 2075 from Ganz Chemical Company
  • Daitosol 5000AD from Daito Kasei
  • Avalure UR 450 from Noveon
  • DYNAMX from National Starch
  • Syntran 5760 from Interpolymer
  • Acusol OP 301 from Rohm & Haas
  • Neocryl A 1090 from Avecia.
  • oily dispersion polymer mention may be made of: NAD and the polymers as disclosed in the application EP-AI 411 069 of the company L'Oréal, the acrylic-silicone polymer dispersion ACRIT 8HV-1023 from the company Tasei Chemical Industries .
  • the volatile phase may be an aqueous phase or an anhydrous phase.
  • an aqueous phase it is preferably water, alcohol and glycol.
  • an anhydrous phase it preferably consists of at least one volatile oil as defined above.
  • the base layer can be colored or unstained, and protect UV or IR or not.
  • a colored base layer it may contain dyes or pigments.
  • the pigments should preferably be dispersed as finely as possible in order to avoid adding roughness to the formed film.
  • the basecoat may contain other solid components (fillers, effect pigments) or other nonvolatile liquid components. These will preferably be in small quantities.
  • a kit according to the invention may comprise a composition intended to form a covering layer by being applied to the composition containing the monodisperse particles.
  • the covering layer may in particular have the function of improving the resistance of the network of monodisperse particles on the support, in particular to increase the resistance to friction of the network and prevent it from being crumbled.
  • the covering layer may comprise one or more polymers that may or may not penetrate into the particle network, the penetration of the polymer causing a change in the refractive index of the medium around the particles and therefore a change in the reflectance spectrum. This effect can be interesting and sought after.
  • the covering layer may comprise a non-volatile solvent. This solvent will penetrate and remain in the medium between the particles and modify the refractive index around the particles.
  • the cover layer may have a high transparency.
  • the covering layer may also have an optical function in order, for example, to exert an influence on the reflectance spectrum of the monodisperse particle network.
  • the cover layer can further slow down moisture uptake or drying of the composition layer containing the ordered network and reduce the variability of the result over time.
  • the covering layer preferably comprises a film-forming polymer.
  • the formulation of the covering layer can be adapted to the nature of the monodisperse particles.
  • the coating layer may comprise a non-aqueous NAD dispersion in isododecane.
  • the coating layer may comprise, for example, an acrylic copolymer or PVA.
  • the covering layer comprises, for example, a non-aqueous dispersion NAD, PVA (10%) or Eastman AQ (20%), DAITOSOL or ULTRASOL polymers.
  • the cover layer may contain monodisperse particles having an average size different from those of the monodisperse particles covered by the cover layer. This can broaden and / or standardize the absorption spectrum of UV and / or IR.
  • the covering layer may in this case be covered, optionally, by a layer intended to improve the holding.
  • the base layer and the cover layer may be simultaneously present, the kit may then comprise:
  • a first cosmetic composition comprising:
  • a third cosmetic composition to be applied to the first composition so as to improve the holding thereof.
  • composition in accordance with the invention may further comprise one or more additional UV filtering agents chosen from organic and / or mineral active and UVA and / or UVB screening agents which are hydrophilic and / or lipophilic and / or or insoluble in commonly used cosmetic solvents.
  • additional UV filtering agents chosen from organic and / or mineral active and UVA and / or UVB screening agents which are hydrophilic and / or lipophilic and / or or insoluble in commonly used cosmetic solvents.
  • the organic filter (s) may be chosen from anthranilates; cinnamic derivatives; dibenzoylmethane derivatives; salicylic derivatives, camphor derivatives; triazine derivatives; benzophenone derivatives; derivatives of ⁇ , ⁇ -diphenylacrylate; benzotriazole derivatives; benzalmalonate derivatives; benzimidazole derivatives; imidazolines; bis-benzoazolyl derivatives; p-aminobenzoic acid derivatives (PABA); benzoxazole derivatives; methylene bis (hydroxyphenyl benzotriazole) derivatives; filter polymers and silicone filters; dimers derived from ⁇ -alkylstyrene, 4,4-diarylbutadiene and mixtures thereof.
  • compositions according to the invention may also contain agents for artificial tanning and / or browning of the skin (self-tanning agents), and more particularly dihydroxyacetone (DHA). They are preferably present in amounts ranging from 0.1 to 10% by weight relative to the total weight of the composition. additives
  • composition containing the monodisperse particles, the base layer and the covering layer may comprise at least one additive chosen from the usual adjuvants in the cosmetics field, such as fillers, hydrophilic or lipophilic gelling agents, active agents, water-soluble or liposolizable, preservatives, moisturizers such as polyols and in particular glycerine, sequestering agents, antioxidants, solvents, perfumes, physical and chemical sunscreens, in particular with UVA and / or UVB, odor absorbers, fitters pH (acids or bases) and mixtures thereof.
  • the additive (s) may especially be chosen from those cited in the CTFA Cosmetic Ingredient Handsbook (K) 6 " 16 Cosmetic and Fragrance Edition Assn, Inc., Washington DC (2004), incorporated herein by reference.
  • composition containing the monodisperse particles may be in different galenical forms used in the cosmetic field, used for topical application: direct, inverse or multiple emulsions, gel, creams, solutions, suspensions, lotions.
  • the composition may be in the form of an aqueous solution or an oily solution, especially gelled, of a liquid or semi-liquid consistency of the milk type, obtained by dispersion of a fatty phase in an aqueous phase (O / W) or vice versa.
  • W / O a triple emulsion
  • W / O / W or H / E / H a triple emulsion
  • suspension or emulsion of soft consistency obtained by dispersion of a fatty phase in an aqueous phase.
  • composition containing the monodisperse particles, and optionally the compositions intended to form the base and covering layers may be applied using an applicator, preferably flocked, for example a mouthpiece or a flocked foam, or a brush, especially with fine and flexible hair.
  • an applicator preferably flocked, for example a mouthpiece or a flocked foam, or a brush, especially with fine and flexible hair.
  • the application can also be carried out differently, for example by means of a foam, a felt, a spatula, a frit, a brush, a comb, a woven or nonwoven.
  • the application may also be carried out with the finger or by directly depositing the composition on the support to be treated, for example by spraying or spraying using for example a piezoelectric device or by transfer of a layer of composition deposited on an intermediate support.
  • composition containing the monodisperse particles may be applied in a thickness of, for example, between 1 and 10 ⁇ m, better still between 2 and 5 ⁇ m.
  • the application of the composition containing the monodisperse particles is carried out for example with a specific gravity of between 1 and 5 mg / cm 2 .
  • the network of monodisperse particles that is formed comprises for example at least six layers of particles, better between six and 20 layers.
  • the application of the composition to the keratin materials can be done in such a way as to allow the network of monodisperse particles to form after the deposition.
  • the medium of the composition can be formulated in such a way that the evaporation of the solvent (s) it contains is sufficiently slow to allow the particles to time to order and also to limit the risk of disorderly agglomeration of the particles. before application.
  • the covering layer is for example applied to a thickness ranging from 0.5 to 10 ⁇ m.
  • the base layer is for example applied to a thickness ranging from 0.5 to 10 ⁇ m.
  • the application of the covering layer can be carried out by spraying.
  • composition may be packaged in any receptacle or on any support provided for this purpose.
  • composition may be in the form of a kit comprising two compositions packaged in two separate receptacles.
  • the composition may be in the form of a kit comprising a first receptacle containing the composition comprising the monodisperse particles and a second receptacle containing at least one of the compositions intended to form the base layer and the covering layer.
  • Example 1 Sun Protection Composition Monodisperse Silica Particles of Size 100 nm * 40%
  • the formulation is applied (quantity applied 2 mg / cm 2 ) on a mimetic support of the skin.
  • the deposit is virtually transparent after application and drying and it selectively reflects light in FUV.
  • the electron microscopic observation of the deposit reveals a compact crystal lattice of silica particles.
  • Such a formulation thus makes it possible to effectively protect the skin from UV radiation.
  • the absorption spectrum is given in FIG.
  • Example 2 Kit with base coat a) Base coat:
  • Photoprotective composition containing the monodisperse particles Monodisperse silica particles (size lOOnm) * 30% Mexoryl SX ** 10% Ultrasol® 2075 (Ganz-Chemical) 3% Water 57%
  • composition containing the monodisperse particles is applied after application and drying of the composition forming the base layer.
  • This kit of composition gives a good protection on the whole field UV.

Abstract

La présente invention concerne une composition photoprotectrice comportant : un milieu physiologiquement acceptable, des particules monodisperses aptes à former un réseau ordonné de particules monodisperses sur un support sur lequel la composition est appliquée, ce réseau absorbant les UVA et/ou les UVB et/ou les infrarouges.

Description

COMPOSITIONS PHOTOPROTECTRICES
La présente invention concerne les compositions photoprotectrices, encore parfois appelées produits solaires, et les agents de filtration destinés à absorber les ultraviolets dans de telles compositions. Arrière-plan
La qualité de la filtration des UVA (320-400 nm) et/ou des UVB (280-320 m) est liée à la hauteur d'absorption et à la largeur de filtration du ou des agents de filtration présents dans la composition.
Les compositions photoprotectrices actuelles utilisent comme agents de filtration : des filtres organiques solubles ou insolubles, et/ou - des pigments inorganiques.
Pour les premiers, le spectre d'absorption est rarement assez large pour couvrir tout le spectre UV. Des associations sont nécessaires. Pour les seconds, l'effet de filtration est dû à l'absorption mais également aux phénomènes de diffusion de la lumière. Le spectre est donc plus large grâce à ce phénomène.
Si la diffusion permet d'élargir le spectre de filtration, elle réduit en revanche sa sélectivité et les produits peuvent apparaître légèrement colorés, ce qui n'est pas souhaitable lorsque l'utilisateur désire garder un aspect naturel. Résumé
II existe un besoin pour allier à la fois une filtration à haute sélectivité spectrale des ultraviolets et/ou infrarouges, et une transparence satisfaisante dans le domaine visible.
Une composition photoprotectrice selon l'invention peut comporter : - un milieu physiologiquement acceptable,
- des particules monodisperses aptes à former un réseau ordonné des particules monodisperses sur un support sur lequel la composition est appliquée, ce réseau absorbant les UVA et/ou les UVB et/ou les infrarouges.
L'invention permet la formation d'un dépôt pratiquement transparent après application et séchage, comportant un réseau ordonné de particules monodisperses présentant des propriétés optiques de filtration des UVA et/ou UVB, voire des infrarouges (pour une composition formant écran thermique). La taille des particules pourra notamment être choisie afin que le réseau filtre les longueurs d'ondes des UVA et/ou UVB, le choix de la taille des particules s'effectuant à partir de la relation de Bragg mλ=2ndsinθ, où m est l'ordre de diffraction, n l'indice de réfraction moyen du milieu, θ l'angle de l'incidence entre la lumière incidente et d la distance entre les plans de diffraction. La taille des particules pourra ainsi être comprise entre 80 et 250 ran, mieux 100 à 200 nm, par exemple autour de 150 nm dans le cas d'une composition photoprotectrice destinée à filtrer les UV et entre 250 et 1000 nm dans le cas d'une composition photoprotectrice destinée à filtrer les infrarouges.
Le réseau de particules monodisperses participe selon l'invention de manière active à la protection. Une composition photoprotectrice selon l'invention présente par exemple un indice SPF d'au moins 10, mieux 15, mieux d'au moins 30, 45 ou 60. L'indice SPF (Sun Screen Protection Factor) est défini dans l'article A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum, J. Soc. Cosmet. Chem., 40, 127-133 (May/June 1989) qui est incorporé par référence. Avantageusement, la formulation de la composition et notamment la taille des particules est choisie de telle sorte que la composition présente :
- un facteur de transmission supérieur ou égal à 70 % , mieux 80 %, mieux 85 %, encore mieux 90 %, voire 95 % dans un intervalle d'au moins 200 nm, mieux d'au moins 300 nm, voire de 400 nm, de large dans la plage- 400-800 nm, et/ou - un facteur de transmission inférieur ou égal à 70 %, 60 %, 50 %, 40 %,
30 %, 20 %, 10 %, 5 % ou encore mieux à 1 %, pour au moins une longueur d'onde dans la plage 290-400 nm, mieux pour la totalité de cette plage.
Un facteur de transmission relativement élevé dans la plage 400 nm-800 nm, de préférence pour une large plage d'incidences, par exemple 0 à 80°, permet de ne pas affecter outre mesure l'aspect naturel de l'utilisateur, tandis qu'un facteur de transmission bas dans la plage 290-400 nm assure une filtration des UV.
La teneur massique en particules monodisperses peut être supérieure ou égale à 15 %, mieux 20 %.
Une concentration relativement importante en particules monodisperses peut faciliter la formation du réseau « cristallin », à l'aide d'un applicateur cosmétique par exemple. Une concentration relativement élevée peut en effet conduire à une préorganisation des particules par répulsion électrostatique dans la composition et/ou lors du séchage de celle-ci.
Particules monodisperses
L'expression « particules monodisperses » désigne selon l'invention des particules dont la taille moyenne présente un coefficient de variation CV inférieur ou égal à 15 %.
Le coefficient de variation CV est défini par la relation CV= — , s étant Pécart-
type de la distribution en taille des particules et D la taille moyenne de celles-ci.
La taille moyenne D et l' écart-type s peuvent être mesurés sur 250 particules par analyse d'une image obtenue à l'aide d'un microscope électronique à balayage, par exemple celui de référence S-4 500 de la société HITACHI. Un logiciel d'analyse d'image peut être utilisé pour faciliter cette mesure, par exemple le logiciel Winroof®, commercialisé par la société Mitani Corporation.
De préférence, le coefficient de variation des particules monodisperses est inférieur ou égal à 10 %, mieux inférieur ou égal à 7 %, voire mieux encore inférieur ou égal à 5 %, étant par exemple sensiblement de l'ordre de 3,5 %. Une faible dispersion de la taille des particules peut être favorable à la qualité du réseau cristallin compact formé et donc à l'obtention de couleurs vives et brillantes.
Selon un aspect de l'invention, la teneur massique en particules monodisperses peut aller par exemple de 20 à 70 %, étant par exemple supérieure à 25 %, 30 %, 35 %, 40 % ou 45 %. Une teneur autre, allant par exemple de 1 à 70 % peut être admise selon certains autres aspects de l'invention.
La forme des particules monodisperses doit être compatible avec la formation d'un réseau ordonné de particules monodisperses. Le réseau formé peut être au moins partiellement cubique centré, cubique face centrée ou hexagonal compact ou hybride, formé à partir de ces agencements, ou autre.
Différents exemples de formation d'un réseau cristallin à partir de particules monodisperses sont donnés dans la publication Xia et al., Adv. Mater., 12, 693-713 (2000). De préférence, la forme des particules monodisperses est sphérique, mais d'autres formes, présentant une symétrie axiale notamment, sont possibles.
Les particules monodisperses peuvent être monomatières ou composites. Les particules monodisperses peuvent être pleines ou creuses.
Des particules monodisperses creuses présentent une densité moindre que des particules pleines et permettant donc d'occuper plus de volume pour une même concentration massique. Dans le cas où les particules monodisperses sont constituées d'un matériau de forte densité, par exemple un matériau inorganique, les particules creuses permettent de limiter les phénomènes de sédimentation dans la composition.
La présence d'air ou d'un autre gaz à l'intérieur des particules après séchage permet d'obtenir une grande différence d'indice de réfraction entre les particules et le milieu environnant, ce qui est favorable en terme d'intensité du pic de diffraction et donc du développement d'une coloration très intense. On peut rajouter de nombreux composés non volatils dans la composition ou sur la composition sans risque de perdre la couleur et de se retrouver avec une composition transparente.
Les particules monodisperses peuvent être poreuses ou non. La présence de pores de petite taille au sein des particules peut diminuer l'indice de réfraction de ces particules.
L'indice de réfraction np des particules monodisperses est différent de celui nc du milieu continu s' étendant autour des particules après application de la formulation et la différence de ces indices de réfraction est de préférence supérieure ou égale à 0,02, mieux supérieure ou égale à 0,05, encore mieux supérieure ou égale à 0,1, étant par exemple comprise entre 0,02 et 2, notamment entre 0,05 et 1.
Une différence d'indice de réfraction np-nc trop faible peut nécessiter un grand nombre de couches de particules du réseau ordonné pour l'obtention du résultat recherché. Une différence d'indice trop importante peut accentuer les phénomènes de diffusion de la lumière par la couche et amener un blanchiment du dépôt après application. L'indice de réfraction des particules monodisperses est défini comme étant l'indice de réfraction moyen. Dans le cas de particules composites, il est calculé de façon linéaire en fonction de la proportion volumique de chaque composant.
L'indice de réfraction des particules monodisperses peut être supérieur ou égal à celui du milieu, étant par exemple supérieur ou égal à 1,4, notamment compris entre 1,4 et 1,7.
Toutes les particules monodisperses correspondant à une même taille moyenne D peuvent avoir sensiblement le même indice de réfraction. Les particules monodisperses peuvent être colorées, c'est-à-dire non blanches, par exemple pour éviter un phénomène de blanchiment de la composition après application sur les matières kératiniques.
Un exemple de particule colorée utilisée pour former un cristal colloïdal est donné dans la publication WO 05/012961.
La couleur des particules monodisperses peut être apportée par le choix du ou des matériaux constituant chaque particule monodisperse. Elle peut avoir pour effet d'augmenter l'absorption de la lumière par les particules et de diminuer la diffusion.
Les particules monodisperses peuvent notamment incorporer au moins un pigment ou colorant, organique ou inorganique, celui-ci pouvant le cas échéant être fluorescent et présenter une fluorescence dans l'ultraviolet ou l'infrarouge.
Les particules monodisperses peuvent comporter un composé inorganique, voire être entièrement minérales.
Lorsque les particules monodisperses sont inorganiques, celles-ci peuvent par exemple comporter au moins un oxyde, notamment métallique et choisi par exemple parmi les oxydes de silice, de fer, de titane, d'aluminium, de chrome, de zinc, de cuivre, de zirconium et de cérium et leurs mélanges. Les particules monodisperses peuvent également comporter un métal, notamment du titane, de l'argent, de l'or, de l'aluminium, du zinc, du fer, du cuivre, et leurs mélanges et alliages. Les particules monodisperses peuvent comporter un composé organique, voire être entièrement organiques.
Parmi les matériaux pouvant convenir pour réaliser des particules monodisperses organiques, on peut citer les polymères, notamment à chaîne carbonée ou siliconée, par exemple le polystyrène (PS), le polyméfacrylate de méthyle (PMMA), le polyacrylamide (PAM), les polymères de silicone.
Les particules monodisperses peuvent comporter au moins un polymère ou copolymère susceptible de s'ioniser afin d'améliorer la dispersibilité dans le milieu et la stabilisation électrostatique. En solution aqueuse, ce polymère ou copolymère contient de préférence des fonctions acide carboxylique ou sulfoniques. Lorsque les particules monodisperses sont composites, celles-ci peuvent par exemple comporter un cœur et une « écorce » réalisés dans des matières différentes, par exemple des matières organiques et/ou minérales. Lorsque les particules monodisperses sont composites, le matériau du cœur ou de l'écorce par exemple peut être choisi par exemple afin d'améliorer la stabilité dans le milieu des particules monodisperses, d'augmenter leur indice de réfraction et/ou pour colorer celles-ci et/ou pour leur conférer une fluorescence ou une susceptibilité magnétique.
Le cœur peut être constitué d'un matériau insoluble dans le milieu contenant les particules, par exemple un matériau inorganique, comme la silice par exemple, ou un matériau organique, comme un polymère acrylique par exemple.
L'écorce peut être constituée de chaînes polymériques, lesquelles peuvent être solubles dans le milieu contenant les particules, les chaînes polymériques pouvant comporter des polymères greffés à la surface du cœur des particules monodisperses, qui lui peut être insoluble dans le milieu.
De telles particules à cœur et chaînes polymériques, encore appelées particules « chevelues », peuvent être stabilisées dans le milieu non seulement par des interactions électrostatiques mais également par des interactions stériques de type volume exclu.
La stabilisation supplémentaire et le volume apporté par les chaînes polymériques permet d'incorporer facilement d'autres composants dans la composition sans risque de déstabilisation et d'agrégation des particules. Ces autres composants sont par exemple des agents de coloration ou des charges destinées par exemple à modifier l'aspect de la composition ou du support revêtu de celle-ci.
Les chaînes polymériques peuvent comporter des chaînes de polymères greffées, lesquelles peuvent contenir des fonctions chimiques (acide carboxylique, aminé, amide, thiol, ...) susceptibles d'interagir avec les matières kératiniques et d'améliorer l'adhésion de la composition sur le support recouvert. Les chaînes polymériques peuvent également améliorer la tenue du réseau de particules après application sur les matières kératiniques.
Des exemples de particules « chevelues » sont donnés par exemple dans la publication Ishizu et al., Kagaku To Kogyo, 57(7) (2004) dans le cas d'un cœur de polymère ou dans la publication Okubo et al., Colloid & Polymer Science, 280(3), pp290- 295 (2002) dans le cas d'un cœur de silice et de polymères poly- méthacrylate de méthyle ou poly(styrène co anhydride maléique) en écorce. Un autre exemple de particule « chevelue » est donné dans la publication Tsuji et al, Langmuir, 21, pp 2434-2437 (2005) dans le cas d'un cœur de polystyrène et de cheveux de poly N isopropyl acrylamide.
Le cas échéant, la présence d'une écorce peut permettre d'encapsuler dans celle-ci un composé pour lequel un contact direct avec les matières kératiniques ou le milieu n'est pas souhaitable.
Les particules monodisperses composites peuvent encore comporter des inclusions d'un premier matériau dans une matrice d'un second matériau. Par exemple, le premier matériau peut présenter un indice de réfraction élevé permettant d'accroître l'indice de réfraction global de la particule. La particule peut par exemple comporter des inclusions de nanoparticules, par exemple des nanoparticules d'oxyde de titane.
Les particules monodisperses peuvent être fabriquées selon des procédés de synthèse tels que décrits par exemple dans la publication Xia et al, Adv. Mater., 12, 693- 713 (2000), incorporé par référence. Comme références commerciales de particules monodisperses pouvant convenir, on peut citer Seahoster® KE-W10 (silice), Seahoster® KE- W20 (silice), Seahoster® KE-W25 (silice), Seahoster® KE-W30 (silice), Seahoster® KE-P20 (silice), Seahoster® KE-P30 (silice) de la société Nippon Shokubai, Optibind® (polystyrène) 216 ou 290 nm microparticles de la société Seradyn, Cosmo® 30 (silice) de la- société CCIC, Hipresica® FQ (silice) de la société Ube-Nitto, Eposter® MX-100W (PMMA) et Eposter® MX-200W (PMMA) de la société Nippon Shokubai.
Des exemples de particules monodisperses à base de silice et de particules magnétiques sont décrits dans l'article XU et al, Chem. Mater. 14, 1249-1256 (2002).
Les particules monodisperses sont par exemple des particules d'un polymère qui sont gonflées dans un solvant, ces particules formant un microgel.
La publication HU et al, Angevandte Chemie 42, 4799-4802 (2003) divulgue des particules à base de poly-N-isopropylacrylamide et une méthode d'obtention de cristaux colloïdaux avec ces particules. De telles particules gonflent plus ou moins en fonction de la température et permettent donc d'obtenir une coloration sensible à la température. Les polymères à base de poly-N-isopropylacrylamide peuvent également être présents dans une écorce de particules monodisperses composites, notamment des particules « chevelues ». Milieu contenant les particules monodisperses
Selon l'invention, les particules monodisperses peuvent être contenues au moins avant l'application dans un milieu physiologiquement acceptable permettant la formation sur le support sur lequel la composition est appliquée d'un réseau ordonné de particules monodisperses.
Par « milieu physiologiquement acceptable », synonyme de l'expression « milieu cosmétiquement acceptable », on désigne un milieu non toxique et susceptible d'être appliqué sur les matières kératiniques d'êtres humains, notamment la peau, les muqueuses ou les phanères. Le milieu physiologiquement acceptable est généralement adapté à la nature du support sur lequel doit être appliquée la composition ainsi qu'à la forme sous laquelle la composition est destinée à être conditionnée.
Les particules monodisperses peuvent être contenues dans une phase liquide.
Le milieu contenant les particules monodisperses peut être entièrement liquide ou contenir d'autres particules, les cas échéant.
Le milieu peut être choisi de manière à favoriser la dispersion des particules dans le milieu avant l'application de celui-ci, afin d'éviter une agrégation des particules.
Le milieu peut être choisi de telle sorte que le réseau ordonné de particules monodisperses se forme par empilement régulier de celles-ci, après l'application sur les matières kératiniques, le réseau n'existant pas dans la composition avant l'application et se formant par exemple lors de l'évaporation d'un solvant contenu dans la composition.
L'indice de réfraction du milieu présente avantageusement, comme indiqué précédemment, une différence avec celui des particules monodisperses, cette différence étant en valeur absolue de préférence supérieure ou égale à 0,02, mieux supérieure ou égale à 0,05, notamment entre 0,05 et 1, mieux encore supérieure ou égale à 0,1.
Le milieu peut être aqueux, les particules monodisperses pouvant être contenues dans une phase aqueuse. Par « milieu aqueux », on désigne un milieu liquide à température ambiante et pression atmosphérique qui contient une fraction importante d'eau rapportée au poids total du milieu. La fraction complémentaire peut contenir ou être constituée de solvants organiques physiologiquement acceptables, miscibles à l'eau, par exemple des alcools ou alkylène glycols. La teneur massique en eau du milieu aqueux est de préférence supérieure ou égale à 30 %, mieux 40 %, encore mieux 50 %. Le milieu peut être monophasique ou multiphasique et comporter ou non des solides autres que les particules monodisperses, notamment des plus petites particules ou des plus grosses particules.
De préférence, en présence d'autres corps solides que les particules monodisperses, la quantité de ces corps sera suffisamment faible pour ne pas gêner la formation du réseau ordonné de particules monodisperses et l'obtention du résultat souhaité.
Le milieu peut comporter au moins un composé présentant une liaison OH, notamment une fonction alcool, en une teneur massique par exemple supérieure ou égale à 5 %, mieux 10 %. Un tel composé peut ralentir l'évaporation sans perturber la formation d'un réseau ordonné.
Le milieu peut comporter un alcool, comme Pethanol ou Pisopropanol, par exemple, ou un dérivé du glycol, notamment l'éthylène glycol ou le propylene glycol.
De préférence, le milieu présente une constante diélectrique relative ε supérieure ou égale à 10, mieux à 20, encore mieux à 30. La constante diélectrique est mesurée à la température de 25 °C. Une constante diélectrique relativement élevée favorise l'ordonnancement des particules monodisperses en réseau.
La conductivité de la composition peut être comprise entre 5 et 2 000 μS.cm"1, notamment entre 10 et 4 000 μS.cm"1, voire entre 20 et 400 μS.cm"1. Le milieu peut être transparent ou translucide, et coloré ou non. Le milieu contenant les particules monodisperses peut ne contenir aucun pigment ou colorant. La coloration du milieu peut correspondre à l'ajout d'un agent de coloration additionnel.
La présence de particules d'une taille relativement grande, tels que des charges par exemple, peut ne pas empêcher la formation du réseau, mais au contraire favoriser sa formation en améliorant le confinement des particules monodisperses, les grosses particules pouvant s'introduire dans certaines dislocations du réseau.
Le milieu peut ainsi comporter des particules plus grosses ayant une taille au moins 3, mieux 5 fois supérieure à celle des particules monodisperses, encore mieux 10 fois plus supérieure. Une charge non colorante peut être présente dans la formulation à une concentration comprise entre 0,1 et 70 %, de préférence 1 à 50 %, de préférence 5 à 20 %. Cette charge peut présenter des propriétés d'absorption des UV ou des IR. De préférence, le milieu peut comporter un solvant volatil. Par «solvant volatil», on entend au sens de l'invention tout liquide susceptible de s'évaporer au contact de la peau, à température ambiante et sous pression atmosphérique.
Le milieu peut notamment être choisi de manière à ce que la composition contienne au moins 10 %, voire d'au moins 30% de solvant volatil.
Le pH de la composition peut aller de 1 à 11, par exemple de 3 à 9. Le pH le plus adapté à la formation du réseau peut dépendre de la nature des particules monodisperses. Un pH basique est préféré lorsque les particules monodisperses sont minérales, notamment comportant de la silice. Le milieu peut comporter des particules plus petites ayant une taille moyenne D inférieure à celle des particules monodisperses, d'un facteur d'au moins 2, mieux d'au moins 3, afin de permettre leur insertion dans les vides laissés entre les particules monodisperses du réseau.
Ces particules interstitielles peuvent être minérales ou organiques et peuvent améliorer la cohésion du réseau ou modifier l'absorption de la lumière par les couches du réseau.
Comme exemple de particules interstitielles, on peut citer les nanoparticules de - dioxyde de titane, de silice, d'oxyde de fer, de noir de carbone, de taille moyenne allant de
•5 à 150 nm, par exemple de 10 à 100 nm. Comme autre exemple de particules interstitielles, on peut mentionner des particules d'un polymère, lequel est par exemple à l'état déjà polymérisé dans la composition avant son application sur les matières kératiniques, le milieu comportant par exemple un latex.
La taille des particules interstitielles peut, le cas échéant, varier en fonction d'un stimulus extérieur et/ou de la concentration d'un composé dans le milieu. Les particules interstitielles peuvent être hydroabsorbantes. La taille des particules peut alors par exemple varier en fonction de la concentration en eau dans le milieu.
La variation de taille des particules interstitielles peut, le cas échéant, exercer une action sur la distance entre les particules monodisperses et ainsi avoir une action sur la couleur produite par le réseau.
Le milieu peut comporter au moins un polymère permettant d'améliorer la tenue du réseau après sa formation. Ce polymère est par exemple à l'état non entièrement polymérisé et/ou réticulé dans la composition avant l'application de celle-ci et son séchage.
Lorsque le milieu contient un polymère qui n'est pas entièrement polymérisé et/ou réticulé avant l'application de la composition sur les matières kératiniques, la réticulation et/ou polymérisation peut avoir lieu après l'application de la composition sur les matières kératiniques.
La polymérisation et/ou réticulation peut intervenir par exemple après la formation du réseau de particules monodisperses ou en variante avant celle-ci et/ou concomitamment à celle-ci. Le milieu peut comporter un polymère filmogène.
Polymère filmogène
Dans la présente invention, on entend par « polymère filmogène », un polymère apte à former à lui seul ou en présence d'un agent auxiliaire de filmification, un film macroscopiquement continu et adhérent sur les matières kératiniques, et de préférence un film cohésif, et mieux encore un film dont la cohésion et les propriétés mécaniques sont telles que ledit film peut être isolable et manipulable isolément, par exemple lorsque ledit film est réalisé par coulage sur une surface antiadhérente comme une surface téflonnée ou siliconnée.
La composition peut comporter une phase aqueuse et le polymère filmogène peut être présent dans cette phase aqueuse. Dans ce cas celui-ci sera de préférence un polymère en dispersion ou un polymère amphiphile ou associatif.
Par «polymère en dispersion » on entend des polymères non solubles dans l'eau présents sous forme de particules de taille variable. Le polymère peut être réticulé ou non. La taille de particules moyenne est typiquement comprise entre 25 et 500nm, de préférence entre 50 et 200 nm. Les polymères en dispersion aqueuse suivants peuvent être utilisés : Ultrasol 2075 de Ganz Chemical, Daitosol 5000AD de Daito Kasei, Avalure UR 450 de Noveon, DYNAMX de National Starch, Syntran 5760 de Merpolymer, Acusol OP 301 de Rohm&Haas, Neocryl A 1090 de Avecia.
Les dispersions acryliques vendues sous les dénominations Neocryl XK-90®, Neocryl A- 1070®, Neocryl A- 1090®, Neocryl BT-62®, Neocryl A- 1079® et Neocryl A-
523® par la société AVECIA-NEORESINS, Dow Latex 432® par la société DOW
CHEMICAL, Daitosol 5000 AD® ou Daitosol 5000 SJ® par la société DAITO KASEY KOGYO; Syntran 5760® par la société Interpolymer, Allianz OPT par la société ROHM & HAAS, les dispersions aqueuses de polymères acryliques ou styrène/acrylique vendues sous le nom de marque JONCRYL® par la société JOHNSON POLYMER ou encore les dispersions aqueuses de polyuréthane vendues sous les dénominations Neorez R-981® et Neorez R-974® par la société AVECIA-NEORESINS, les Avalure UR-405®, Avalure UR-410®, Avalure UR-425®, Avalure UR-450®, Sancure 875®, Sancure 861®, Sancure 878® et Sancure 2060® par la société GOODRICH, Impranil 85® par la société BAYER, Aquamere H-1511® par la société HYDROMER ; les sulfopolyesters vendus sous le nom de marque Eastman AQ® par la société Eastman Chemical Products, les dispersions vinyliques comme le Mexomère PAM® de la société CHIMEX et leurs mélanges, sont d'autres exemples de dispersion aqueuse de particules de polymères fïlmogènes hydrodispersibles.
Par «polymères amphiphiles ou associatifs » on entend des polymères comportant une au plusieurs partie hydrophiles qui les rendent partiellement solubles dans l'eau et une ou plusieurs parties hydrophobes par lesquelles les polymères s'associent ou interagissent. Les polymères associatifs suivants peuvent être utilisés : Nuvis FX1100 de Elementis, Aculyn 22, Aculyn 44, Aculyn 46 de Rohm&Haas, Viscophobe DBlOOO de Amerchol. Les copolymères diblocs constitués d'un bloc hydrophile (polyacrylate, polyéthylène glycol) et d'un bloc hydrophobe (polystyrène, polysiloxane, peuvent également être utilisés.
Des polymères solubles dans une phase aqueuse contenant les particules monodisperses pourront être évités car ils peuvent provoquer une agrégation des particules monodisperses. Le polymère filmogène peut ainsi être non soluble dans une telle phase.
La composition peut comporter une phase huileuse et le polymère filmogène peut être présent dans cette phase huileuse. Le polymère pourra alors être en dispersion ou en solution. Les polymères de type NAD (non aqueous dispersion) ou des microgel (par exemple les KSG) peuvent être utilisés, ainsi que les polymères du type PS-PA ou les copolymères à base de styrène (Kraton, Regalite).
Comme exemples de dispersions non aqueuses de polymère filmogène lipodispersibles sous forme de dispersions non aqueuses de particules de polymère dans une ou plusieurs huiles de silicone et/ou hydrocarbonées et pouvant être stabilisées en leur surface par au moins un agent stabilisant, notamment un polymère séquence, greffé ou statistique, on peut citer les dispersions acryliques dans Pisododécane comme le Mexomère PAP ® de la société CHIMEX, les dispersions de particules d'un polymère éthylénique greffé, de préférence acrylique, dans une phase grasse liquide, le polymère éthylénique étant avantageusement dispersé en l'absence de stabilisant additionnel en surface des particules telles que décrite notamment dans le document WO 04/055081.
Parmi les polymères filmogènes utilisables dans la composition de la présente invention, on peut citer les polymères synthétiques, de type radicalaire ou de type polycondensat, les polymères d'origine naturelle, et leurs mélanges.
Par polymère filmogène radicalaire, on entend un polymère obtenu par polymérisation de monomères à insaturation notamment éthylénique, chaque monomère étant susceptible de s'homopolymériser (à l'inverse des polycondensats).
Les polymères filmogènes de type radicalaire peuvent être notamment des polymères, ou des copolymères, vinyliques, notamment des polymères acryliques.
Les polymères filmogènes vinyliques peuvent résulter de la polymérisation de monomères à insaturation éthylénique ayant au moins un groupement acide et/ou des esters de ces monomères acides ét/ou des amides de ces monomères acides.
Comme monomère porteur de groupement acide, on peut utiliser des acides carboxyliques insaturés α,β-éthyléniques tels que l'acide acrylique, l'acide méthacrylique, l'acide crotonique, l'acide maléique, l'acide itaconique. On utilise de préférence l'acide (méth)acrylique et l'acide crotonique, et plus préférentiellement l'acide (méth)acrylique.
Les esters de monomères acides sont avantageusement choisis parmi les esters de l'acide (méth)acrylique (encore appelé les (méth)acrylates), notamment des
(méth)acrylates d'alkyle, en particulier d'alkyle en C1-C30, de préférence en C1-C20, des
(méth)acrylates d'aryle, en particulier d'aryle en C6-C10, des (méth)acrylates d'hydroxyalkyle, en particulier d'hydroxyalkyle en C2-C6 .
Parmi les (méth)acrylates d'alkyle, on peut citer le méthacrylate de méthyle, le méthacrylate d'éthyle, le méthacrylate de butyle, le méthacrylate d'isobutyle, le méthacrylate d'éthyl-2 hexyle, le méthacrylate de lauryle, le méthacrylate de cyclohexyle.
Parmi les (méth)acrylates d'hydroxyalkyle, on peut citer l'acrylate d'hydroxyéthyle, l'acrylate de 2-hydroxypropyle, le méthacrylate d'hydroxyéthyle, le méthacrylate de 2-hydroxypropyle. Parmi les (méth)acrylates d'aryle, on peut citer l'acrylate de benzyle et l'acrylate de phényle.
Les esters de l'acide (méth)acrylique particulièrement préférés sont les (méth)acrylates d'alkyle. Selon la présente invention, le groupement alkyle des esters peut être soit fluoré, soit perfluoré, c'est-à-dire qu'une partie ou la totalité des atomes d'hydrogène du groupement alkyle sont substitués par des atomes de fluor.
Comme amides des monomères acides, on peut par exemple citer les (méth)acrylamides, et notamment les N-alkyl (méth)acrylamides, en particulier d'alkyl en C2-C12. Parmi les N-alkyl (méth)acrylamides, on peut citer le N-éthyl acrylamide, le N-t- butyl acrylamide, le N-t-octyl acrylamide et le N-undécylacrylamide.
Les polymères fîlmogènes vinyliques peuvent également résulter de l'homopolymérisation ou de la copolymérisation de monomères choisis parmi les esters vinyliques et les monomères styrèniques. En particulier, ces monomères peuvent être polymérisés avec des monomères acides et/ou leurs esters et/ou leurs amides, tels que ceux mentionnés précédemment.
Comme exemple d'esters vinyliques, on peut citer l'acétate de vinyle, le néodécanoate de vinyle, le pivalate de vinyle, le benzoate de vinyle et le t-butyl benzoate de vinyle. Comme monomères styrèniques, on peut citer le styrène et l'alpha-méthyl styrène.
Parmi les polycondensats fîlmogènes, on peut citer les polyuréthanes, les polyesters, les polyesters amides, les polyamides, et les résines époxyesters, les polyurées.
Les polyuréthanes peuvent être choisis parmi les polyuréthanes anioniques, cationiques, non-ioniques ou amphotères, les polyuréthanes-acryliques, les poly-uréthanes- polyvinylpirrolidones, les polyester-polyuréthanes, les polyéther-polyuréthanes, les polyurées, les polyurée-polyuréthanes, et leurs mélanges.
Les polyesters peuvent être obtenus, de façon connue, par polycondensation d'acides dicarboxyliques avec des polyols, notamment des diols. L'acide dicarboxylique peut être aliphatique, alicyclique ou aromatique. On peut citer comme exemple de tels acides : l'acide oxalique, l'acide malonique, l'acide diméthylmalonique, l'acide succinique, l'acide glutarique, l'acide adipique, l'acide pimélique, l'acide 2,2-diméthylglutarique, l'acide azélaïque, l'acide subérique, l'acide sébacique, l'acide fumarique, l'acide maléique, l'acide itaconique, l'acide phtalique, l'acide dodécanedioïque, l'acide 1,3-cyclohexanedicarboxylique, l'acide 1,4- cyclohexanedicarboxylique, l'acide isophtalique, l'acide téréphtalique, l'acide 2,5- norbornane dicarboxylique, l'acide diglycolique, l'acide thiodipropionique, l'acide 2,5- naphtalènedicarboxylique, l'acide 2,6-naphtalènedicarboxylique. Ces monomères acide dicarboxylique peuvent être utilisés seuls ou en combinaison d'au moins deux monomères acide dicarboxylique. Parmi ces monomères, on choisit préférentiellement l'acide phtalique, l'acide isophtalique, l'acide téréphtalique. Le diol peut être choisi parmi les diols aliphatiques, alicycliques, aromatiques.
On utilise de préférence un diol choisi parmi : l'éthylène glycol, le diéthylène glycol, le triéthylène glycol, le 1,3-propanediol, le cyclohexane diméthanol, le 4-butanediol. Comme autres polyols, on peut utiliser le glycérol, le pentaérythritol, le sorbitol, le triméthylol propane. Les polyesters amides peuvent être obtenus de manière analogue aux polyesters, par polycondensation de diacides avec des diamines ou des amino alcools. Comme diamine, on peut utiliser l'éthylènediamine, l'hexamémylènediamine, la meta- ou para-phénylènediamine. Comme aminoalcool, on peut utiliser la monoéthanolamine.
Le polyester peut en outre comprendre au moins un monomère portant au moins un groupement -SO3M, avec M représentant un atome d'hydrogène, un ion ammonium NH4+ ou un ion métallique, comme par exemple un ion Na+, Li+, K+, Mg2+, Ca2+, Cu2+, Fe2+, Fe3+. On peut utiliser notamment un monomère aromatique bifonctionnel comportant un tel groupement -SO3M.
Le noyau aromatique du monomère aromatique bifonctionnel portant en outre un groupement -SO3M tel que décrit ci-dessus peut être choisi par exemple parmi les noyaux benzène, naphtalène, anthracène, diphényl, oxydiphényl, sulfonyldiphényl, méthylènediphényl. On peut citer comme exemple de monomère aromatique bifonctionnel portant en outre un groupement -SO3M : l'acide sulfoisophtalique, l'acide sulfotéréphtalique, l'acide sulfophtalique, l'acide 4-sulfonaphtalène-2,7-dicarboxylique. Selon un exemple de composition selon l'invention, le polymère filmogène peut être un polymère solubilisé dans une phase grasse liquide comprenant des huiles ou solvants organiques (on dit alors que le polymère filmogène est un polymère liposoluble). De préférence, la phase grasse liquide comprend une huile volatile, éventuellement en mélange avec une huile non volatile.
A titre d'exemple de polymère liposoluble, on peut citer les copolymères d'ester vinylique (le groupe vinylique étant directement relié à l'atome d'oxygène du groupe ester et l'ester vinylique ayant un radical hydrocarboné saturé, linéaire ou ramifié, de 1 à 19 atomes de carbone, lié au carbonyle du groupe ester ) et d'au moins un autre monomère qui peut être un ester vinylique (différent de l'ester vinylique déjà présent), une α-oléfme (ayant de 8 à 28 atomes de carbone), un alkylvinyléther (dont le groupe alkyl comporte de 2 à 18 atomes de carbone), ou un ester allylique ou méthallylique (ayant un radical hydrocarboné saturé, linéaire ou ramifié, de 1 à 19 atomes de carbone, lié au carbonyle du groupe ester).
Ces copolymères peuvent être réticulés à l'aide de réticulants qui peuvent être soit du type vinylique, soit du type allylique ou méthallylique, tels que le tétraallyloxyéthane, le divinylbenzène, l'octanedioate de divinyle, le dodécanedioate de divinyle, et l'octadécanedioate de divinyle.
Comme exemples de ces copolymères, on peut citer les copolymères : acétate de vinyle/stéarate d'allyle, l'acétate de vinyle/laurate de vinyle, acétate de vinyle/stéarate de vinyle, acétate de vinyle/octadécène, acétate de vinyle/octadécylvinyléther, propionate de vinyle/laurate d'allyle, propionate de vinyle/laurate de vinyle, stéarate de vinyle/octadécène- 1, acétate de vinyle/dodécène-1, stéarate de vinyle/éthylvinyléther, propionate de vinyle/cétyl vinyle éther, stéarate de vinyle/acétate d'allyle, diméthyl-2, 2 octanoate de vinyle/laurate de vinyle, diméthyl-2, 2 pentanoate d'allyle/laurate de vinyle, diméthyl propionate de vinyle/stéarate de vinyle, diméthyl propionate d'allyle/stéarate de vinyle, propionate de vinyle/stéarate de vinyle, réticulé avec 0,2 % de divinyl benzène, diméthyl propionate de vinyle/laurate de vinyle, réticulé avec 0,2 % de divinyl benzène, acétate de vinyle/octadécyl vinyl éther, réticulé avec 0,2 % de tétraallyloxyéthane, acétate de vinyle/stéarate d'allyle, réticulé avec 0,2 % de divinyl benzène, acétate de vinyle/octadécène- 1 réticulé avec 0,2 % de divinyl benzène et propionate d'allyle/stéarate d'allyle réticulé avec 0,2 % de divinyl benzène. Comme exemple de polymères filmogènes liposolubles, on peut citer les copolymères d'ester vinylique et au moins un autre monomère qui peut être un ester vinylique, notamment le néodécanoate de vinyle, le benzoate de vinyle et le t-butyl benzoate de vinyle, une α-oléfine, un alkylvinyléther, ou un ester allylique ou méthallylique.
Comme polymères filmogènes liposolubles, on peut également citer les copolymères liposolubles, et en particulier ceux résultant de copolymérisation d'esters vinyliques ayant de 9 à 22 atomes de carbone ou d'acrylates ou de méthacrylates d'alkyle, les radicaux alkyles ayant de 10 à 20 atomes de carbone.
De tels copolymères liposolubles peuvent être choisis parmi les copolymères de polystéarate de vinyle, de polystéarate de vinyle réticulé à l'aide de divinylbenzène, de diallyléther ou de phtalate de diallyle, les copolymères de poly(méth)acrylate de stéaryle, de polylaurate de vinyle, de poly(méth)acrylate de lauryle, ces poly(méth)acrylates pouvant être réticulés à l'aide de diméthacrylate de l'éthylène glycol ou de tétraéthylène glycol.
Les copolymères liposolubles définis précédemment sont connus et notamment décrits dans la demande FR-A-2232303 ; ils peuvent avoir un poids moléculaire moyen en poids allant de 2.000 à 500.000 et de préférence de 4.000 à 200.000.
Comme polymères filmogènes liposolubles utilisables dans l'invention, on peut également citer les polyalkylènes et notamment les copolymères d'alcènes en C2-C20, comme le polybutène, les alkylcelluloses avec un radical alkyle linéaire ou ramifié, saturé ou non en Cl à C8 comme l'éthylcellulose et la propylcellulose, les copolymères de la vinylpyrolidone (VP) et notamment les copolymères de la vinylpyrrolidone et d'alcène en
C2 à C40 et mieux en C3 à C20. A titre d'exemple de copolymère de VP utilisable dans l'invention, on peut citer le copolymère de VP/acétate vinyle, VP/méthacrylate d'éthyle, la polyvinylpyrolidone (PVP) butylée, VP/méthacrylate d'éthyle/acide méthacrylique,
VP/eicosène, VP/hexadécène, VP/triacontène, VP/styrène, VP/acide acrylique/méthacrylate de lauryle.
On peut également citer les résines de silicone, généralement solubles ou gonflables dans les huiles de silicone, qui sont des polymères de polyorganosiloxanes réticulés. La nomenclature des résines de silicone est connue sous le nom de "MDTQ", la résine étant décrite en fonction des différentes unités monomèriques siloxane qu'elle comprend, chacune des lettres "MDTQ" caractérisant un type d'unité.
A titre d'exemples de résines polymethylsilsesquioxanes commercialement disponibles, on peut citer celles qui sont commercialisés : par la société Wacker sous la référence Resin MK tels que la Belsil PMS MK :
- par la société SHIN-ETSU sous les références KR-220L. Comme résines siloxysilicates, on peut citer les résines trimethylsiloxysilicate (TMS) telles que celle commercialisées sous la référence SRlOOO par la société General Electric ou sous la référence TMS 803 par la société Wacker. On peut encore citer les résines timéthylsiloxysilicate commercialisées dans un solvant tel que la cyclomethicone, vendues sous la dénomination "KF-7312J" par la société Shin-Etsu, "DC 749", "DC 593" par la société Dow Corning. On peut aussi citer des copolymères de résines de silicone telles que celles citées ci-dessus avec des polydiméthylsiloxanes, comme les copolymères adhésifs sensibles à la pression commercialisés par la société Dow Corning sous la référence BIO- PSA et décrits dans le document US 5 162 410 ou encore les copolymères siliconés issus de la réaction d'un résine de silicone, telle que celles décrite plus haut, et d'un diorganosiloxane tels que décrits dans le document WO 2004/073626.
Selon un exemple de mise en œuvre de l'invention, le polymère filmogène est un polymère éthylénique séquence linéaire filmogène, qui comprend de préférence au moins une première séquence et au moins une deuxième séquence ayant des températures de transition vitreuse (Tg) différentes, lesdites première et deuxième séquences étant reliées entre elles par une séquence intermédiaire comprenant au moins un monomère constitutif de la première séquence et au moins un monomère constitutif de la deuxième séquence.
Avantageusement, les première et deuxième séquences et du polymère séquence sont incompatibles l'une avec l'autre. De tels polymères sont décrits par exemple dans les documents EP 1411069 ou
WO04/028488.
Le polymère filmogène peut être choisi parmi les polymères et/ou copolymères blocs ou statiques comportant notamment les polyuréthanes, polyacryliques, les siliconés, les polymères fluorés, les gommes butyliques, les copolymères d'éthylènes, gommes naturelles et les alcools polyvinyliques et leurs mélanges. Les monomères des copolymères blocs ou statiques comprenant au moins une association de monomères dont le polymère résulte à une température de transition vitreuse inférieure à la température ambiante (25 °C) peuvent être choisis parmi notamment le butadiène, l'éthylène, le propylène, l'acrylique, le méthacrylique, l'isoprène, l'isobutène, une silicone et leurs mélanges.
Le polymère filmogène peut être également présent dans la composition sous la forme de particules en dispersion dans une phase aqueuse ou dans une phase solvant non aqueuse, connue généralement sous le nom de latex ou pseudolatex. Les techniques de préparation de ces dispersions sont bien connues de l'homme du métier.
La composition selon l'invention peut comprendre un agent plastifiant favorisant la formation d'un film avec le polymère filmogène. Un tel agent plastifiant peut être choisi parmi tous les composés connus de l'homme du métier comme étant susceptibles de remplir la fonction recherchée.
Bien entendu, cette liste de polymères n'est pas exhaustive. De préférence, lorsque le milieu contenant les particules monodisperses contient un polymère filmogène, celui-ci est par exemple une dispersion aqueuse de polymère acrylique, vinylique, fluoré, silicone ou leurs mélanges. La teneur massique en polymère(s) filmogène(s) dans la composition contenant les particules monodisperses va par exemple de 0,1 à 10%.
Lorsque la composition contenant les particules monodisperses contient un polymère non entièrement polymérisé et/ou réticulé, la polymérisation et/ou réticulation peut s'effectuer par amorçage thermique ou par rayonnement ultraviolet. La polymérisation peut également s'effectuer par ajout d'un initiateur et éventuellement d'un agent réticulant.
Lorsque l'on souhaite réaliser un réseau de particules monodisperses dans le milieu, il est possible d'ajouter un monomère et un initiateur et éventuellement un agent réticulant, puis d'effectuer la polymérisation. Celle-ci peut avoir lieu au moment de la fabrication de la formulation ou encore après application sur la peau. Cette méthode permet la réalisation de polymères de grande masse moléculaire ou de polymères réticulés. Cela peut permettre de faire varier à façon la rhéologie du système formé.
Le milieu peut également comporter un polymère permettant la formation d'un gel, par exemple avant ou après l'application de la composition sur le support à maquiller. Polymères permettant la formation d'un gel
La formation d'un gel peut par exemple améliorer la cohésion du réseau de particules monodisperses et/ou rendre celui-ci sensible à un stimulus extérieur et/ou à la concentration d'un composé dans le milieu, par exemple la concentration en eau. Le polymère permettant la formation d'un gel peut être choisi parmi les dérivés de cellulose, les alginates et leurs dérivés, notamment leurs dérivés tels que l'alginate de propylène glycol, ou leurs sels comme l'alginate de sodium, l'alginate de calcium, les dérivés d'acide polyacrylique ou polyméthacrylique, les dérivés de polyacrylamide, les dérivés de polyvinylpyrrolidone, les dérivés d'éther ou d'alcool polyvinylique, et leurs mélanges, entre autres.
Le polymère peut être notamment choisi parmi des dérivés de cellulose chimiquement modifiée, par exemple, choisi parmi la carboxyméthylcellulose, la carboxyméthylcellulose sodique, la carboxyméthyl-hydroxyéthylcellulose, la carboxyéthylcellulose, Phydroxyéthylcellulose, l'hydroxyéthyl-éthylcellulose, Phydroxypropylcellulose, l'hydroxypropylméthylcellulose, la méthylcellulose, la méthylcellulose sodique, la cellulose microcristalline, le sulfate de cellulose sodique et leurs mélanges.
Le polymère permettant la formation d'un gel peut être également choisi parmi des dérivés polymériques naturels comme par exemple la gélatine et les polysaccharides glucomannanes et galactomannanes extraits des graines, des fibres de végétaux, des fruits, des algues marines, de l'amidon, des résines de plantes, ou encore d'origine microbienne.
La quantité massique de polymère destiné à la formation d'un gel dans la composition peut être comprise entre 0,5 et 40 %, mieux entre 1 et 20 %.
Le polymère destiné à la formation d'un gel peut polymériser après l'application de la composition sur le support à maquiller. En variante, le gel est formé avant l'application de la composition sur les matières kératiniques, puis appliqué sur celles-ci.
Des hydrogels peuvent être obtenus à partir de monomères acrylamides, acryliques, vinylpyrrolidone par exemple. Un exemple d'hydrogel obtenu par cette méthode à base de N-isopropylacrylamide polymérisé sous lampe UV dans un cristal colloïdal de polystyrène est par exemple décrit dans le brevet WO 98/41859. L'article de FOULGER et al, Advanced Materials, 13, 1898-1901 (2001) décrit un hydrogel à base de polyéthylène glycol méthacrylate et diméthacrylate.
La réalisation du gel peut aussi avoir lieu avant la fabrication de la composition II est possible par exemple de réaliser un gel huileux à base d'élastomère de polydiméthylsiloxane partir d'un réseau de sphères de polystyrène comme cela est décrit dans l'article de H. Fudouzi et al, Langmuir, 19, 9653-9660 (2003). Phase grasse
Bien que la composition contenant les particules monodisperses puisse être exempte d'huile, la composition selon l'invention peut néanmoins comporter dans certains exemples de mise en œuvre une phase grasse. Les particules monodisperses peuvent être contenues ou non dans cette phase grasse.
La phase grasse peut notamment être volatile.
L'introduction d'une ou plusieurs huiles pourra se faire de façon à ne pas perdre l'effet de coloration ou la réflectance spectrale recherché. La composition peut comporter une huile telle que par exemple les esters et les éthers de synthèse, les hydrocarbures linéaires ou ramifiés, d'origine minérale ou synthétique, les alcools gras ayant de 8 à 26 atomes de carbone, les huiles fluorées partiellement hydrocarbonées et/ou siliconées, les huiles de silicone comme les polyméthylsiloxanes (PDMS) volatiles ou non à chaîne siliconée linéaire ou cyclique, liquides ou pâteux à température ambiante et leurs mélanges, d'autres exemples étant donnés ci-après.
Une composition conforme à l'invention peut comprendre au moins une huile volatile.
Huiles volatiles Au sens de la présente invention, on entend par "huile volatile", une huile (ou milieu non aqueux) susceptible de s'évaporer au contact de la peau en moins d'une heure, à température ambiante et à pression atmosphérique.
L'huile volatile est une huile cosmétique volatile, liquide à température ambiante, ayant notamment une pression de vapeur non nulle, à température ambiante et pression atmosphérique, en particulier ayant une pression de vapeur allant de 0,13 Pa à
40 000 Pa (10~3 à 300 mm Hg), en particulier allant de 1,3 Pa à 13 000 Pa (0,01 à 100 mm
Hg), et plus particulièrement allant de 1,3 Pa à 1300 Pa (0,01 à 10 mm Hg). Les huiles hydrocarbonées volatiles peuvent être choisies parmi les huiles hydrocarbonées d'origine animale ou végétale ayant de 8 à 16 atomes de carbone, et notamment les alcanes ramifiés en C8-C16 (appelées aussi isoparaffines) comme Pisododécane (encore appelé 2,2,4,4,6-pentaméthylheptane), l'isodécane, l'isohexadécane, et par exemple les huiles vendues sous les noms commerciaux d'Isopars® ou de Permethyls®.
Comme huiles volatiles, on peut aussi utiliser les silicones volatiles, comme par exemple les huiles de silicones linéaires ou cycliques volatiles, notamment celles ayant une viscosité < 8 centistokes (8 x 10"6 m2/s), et ayant notamment de 2 à 10 atomes de silicium, et en particulier de 2 à 7 atomes de silicium, ces silicones comportant éventuellement des groupes alkyle ou alkoxy ayant de 1 à 10 atomes de carbone. Comme huile de silicone volatile utilisable dans l'invention, on peut citer notamment les diméthicones de viscosité 5 et 6 cSt, l'octaméthyl cyclotétrasiloxane, le décaméthyl cyclopentasiloxane, le dodécaméthyl cyclohexasiloxane, l'heptaméthyl hexyltrisiloxane, l'heptaméthyloctyl trisiloxane, l'hexaméthyl disiloxane, l'octaméthyl trisiloxane, le décaméthyl tétrasiloxane, le dodécaméthyl pentasiloxane, et leurs mélanges.
On peut également utiliser des huiles volatiles fluorées telles que le nonafluorométhoxybutane ou le perfluorométhylcyclopentane, et leurs mélanges.
Il est également possible d'utiliser un mélange des huiles précédemment citées. Huiles non volatiles
Une composition selon l'invention peut comporter une huile non volatile. Au sens de la présente invention, on entend par "huile non-volatile", une huile ayant une pression de vapeur inférieure à 0,13 Pa et notamment des huiles de masse molaire élevée. Les huiles non volatiles peuvent notamment être choisies parmi les huiles hydrocarbonées le cas échéant fluorées et/ou les huiles siliconées non volatiles.
Comme huile hydrocarbonée non volatile pouvant convenir à la mise en œuvre de l'invention, on peut notamment citer :
- les huiles hydrocarbonées d'origine animale, - les huiles hydrocarbonées d'origine végétale telles que les esters de phytostéaryle, tels que l'oléate de phytostéaryle, l'isostéarate de physostéaryle et le glutanate de lauroyl/octyldodécyle/phytostéaryle, par exemple vendu sous la dénomination ELDEW PS203 par AJINOMOTO, les triglycérides constitués d'esters d'acides gras et de glycérol dont les acides gras peuvent avoir des longueurs de chaînes variées de C4 à C24, ces dernières pouvant être linéaires ou ramifiées, saturées ou insaturées ; ces huiles sont notamment des triglycérides héptanoïques ou octanoïques, les huiles de germe de blé, de tournesol, de pépins de raisin, de sésame, de maïs, d'abricot, de ricin, de karité, d'avocat, d'olive, de soja, d'amande douce, de palme, de colza, de coton, de noisette, de macadamia, de jojoba, de luzerne, de pavot, de potimarron, de courge, de cassis, d'onagre, de millet, d'orge, de quinoa, de seigle, de carthame, de bancoulier, de passiflore, de rosier muscat ; le beurre de karité ; ou encore les triglycérides des acides caprylique/caprique comme ceux vendus par la société STÉARINERIES DUBOIS ou ceux vendus sous les dénominations MIGLYOL 810®, 812® et 818® par la société DYNAMIT NOBEL,
- les huiles hydrocarbonées d'origine minérale ou synthétique comme par exemple :
• les éthers de synthèse ayant de 10 à 40 atomes de carbone ; « les hydrocarbures linéaires ou ramifiés, d'origine minérale ou synthétique tels que la vaseline, les polydécènes, le polyisobutène hydrogéné tel que le parléam, le squalane et leurs mélanges, et en particulier le polyisobutène hydrogéné,
• les esters de synthèse comme les huiles de formule R1COOR2 dans laquelle R1 représente le reste d'un acide gras linéaire ou ramifié comportant de 1 à 40 atomes de carbone et R2 représente une chaîne hydrocarbonée notamment ramifiée contenant de 1 à 40 atomes de carbone à condition que R1 + R2 soit > 10.
Les esters peuvent être notamment choisis parmi les esters, notamment d'acide gras comme par exemple :
• Poctanoate de cétostéaryle, les esters de l'alcool isopropylique, tels que le myristate d'isopropyle, le palmitate d'isopropyle, le palmitate d'éthyle, le palmitate de 2- éthyl-hexyle, le stéarate ou l'isostéarate d'isopropyle, l'isostéarate d'isostéaryle, le stéarate d'octyle, les esters hydroxylés comme le lactacte d'isostéaryle, l'hydroxystéarate d'octyle, l'adipate de diisopropyle, les heptanoates, et notamment l'heptanoate d'isostéaryle, octanoates, décanoates ou ricinoléates d'alcools ou de polyalcools comme le dioctanoate de propylène glycol, l'octanoate de cétyle, l'octanoate de tridécyle, le 4-diheptanoate et le palmitate d'éthyle 2-hexyle, le benzoate d'alkyle, le diheptanoate de polyéthylène glycol, le diétyl 2-d'hexanoate de propylèneglycol et leurs mélanges, les benzoates d'alcools en C12 à Cl 5, le laurate d'hexyle, les esters de l'acide néopentanoïque comme le néopentanoate d'isodécyle, le néopentanoate d'isotridécyle, le néopentanoate d'isostéaryle, le néopentanoate d'octyldocécyle, les esters de l'acide isononanoïque comme l'isononanoate d'isononyle, l'isononanoate d'isotridécyle, l'isononanoate d'octyle, les esters hydroxylés comme le lactate d'isostéaryle, le malate de di-isostéaryle ;
• les esters de polyols, et les esters de pentaétrythritol, comme le tétrahydroxystéarate/tétraisostéarate de dipentaérythritol,
• les esters de dimères diols et dimères diacides tels que les Lusplan DD- DA5® et Lusplan DD-D A7®, commercialisés par la société NIPPON FINE CHEMICAL et décrits dans la demande FR 03 02809,
• les alcools gras liquides à température ambiante à chaîne carbonée ramifiée et/ou insaturée ayant de 12 à 26 atomes de carbone comme le 2-octyldodécanol, l'alcool isostéarylique, l'alcool oléique, le 2-hexyldécanol, le 2-butyloctanol, et le 2- undécylpentadécanol, • les acides gras supérieurs tels que l'acide oléique, l'acide linoléique, l'acide linolénique et leurs mélanges, et
• les carbonates de di-alkyle, les 2 chaînes alkyles pouvant être identiques ou différentes, tel que le dicaprylyl carbonate commercialisé sous la dénomination Cetiol CC®, par Cognis, • les huiles de silicone non volatiles, comme par exemple les polydiméthylsiloxanes (PDMS) non volatiles, les polydiméthylsiloxanes comportant des groupements alkyle ou alcoxy pendants et/ou en bouts de chaîne siliconée, groupements ayant chacun de 2 à 24 atomes de carbone, les silicones phénylées comme les phényl triméthicones, les phényl diméthicones, les phényl triméthylsiloxy diphénylsiloxanes, les diphényl diméthicones, les diphényl méthyldiphényl trisiloxanes, et les 2-phényléthyl triméthylsiloxysilicates, les diméthicones ou phényltriméthicone de viscosité inférieure ou égale à 100 Cst, et leurs mélanges,
- et leurs mélanges. La composition contenant les particules monodisperses peut être dépourvue d'huile, notamment ne contenir aucune huile non volatile. Kits
L'invention a encore pour objet des kits comportant une composition selon l'invention.
Ces kits peuvent comporter au moins une composition destinée à former une couche de base, encore appelée « base coat » et/ou une couche de recouyrement, encore appelée « top coat ».
Le kit peut ainsi comporter :
- une première composition comportant :
- des particules monodisperses, - un milieu permettant la formation sur un support sur lequel la composition est appliquée d'un réseau ordonné de particules monodisperses filtrant les UV ou les IR,
- une deuxième composition permettant la formation d'une couche de base ou de recouvrement. Couche de base
La couche de base est compatible avec son application sur les matières kératiniques, par exemple la peau, les lèvres, les ongles, les cils ou les cheveux, selon la nature du maquillage recherché, notamment l'un de ceux énumérés plus haut.
La couche de base peut comporter un polymère choisi notamment parmi les polymères filmogènes.
La couche de base peut, selon différents aspects de l'invention, exercer une ou plusieurs des fonctions suivantes :
- la couche de base peut lisser le support avant l'application de la composition comportant les particules monodisperses afin de faciliter la formation des premières couches du réseau et l'obtention d'un réseau avec des zones monocristallines les plus larges possibles,
- la couche de base peut protéger le support vis-à-vis des UV ou IR,
- la couche de base peut améliorer l'adhérence de la composition contenant les particules monodisperses sur le support maquillé. A cet effet, la couche de base peut comporter au moins un polymère présentant des propriétés adhésives ou pro-adhésives, c'est-à-dire susceptible de devenir adhésif par interaction avec un autre composé. Le polymère peut notamment présenter des propriétés adhésives ou pro-adhésives au sens donné dans les brevets FR 2834884, FR 2811546 et FR 2811547.
La couche de base peut encore exercer une action sur la tension de surface des matières kératiniques afin de permettre par exemple une bonne mouillabilité par la couche de composition contenant les particules monodisperses et favoriser l'empilement des particules monodisperses.
La couche de base peut comporter un même polymère assurant au moins deux des fonctions précitées, par exemple celles de lissage et d'augmentation de l'adhérence, voire éventuellement une fonction de protection vis-à-vis des UV ou IR. La couche de base peut être formulée en fonction de la nature des particules monodisperses.
Dans des exemples non limitatifs de mise en œuvre de l'invention, les particules monodisperses peuvent être en polystyrène et la couche de base comporter une dispersion non aqueuse NAD dans l'isododécane ou les polymères DAITOSOL (Daito Kasei) ou ULTRASOL (Ganz Chemical). Dans d'autres exemples, les particules monodisperses étant en silice, la couche de base peut comporter un polymère Eastman AQ (20 %) ou du PVA (10 %).
La couche de base peut comporter une phase volatile.
Le polymère est de préférence apte à former un film après application et séchage de la composition. La formation du film peut se faire avec l'aide d'un agent de coalescence. Le polymère peut être en dispersion ou en solution dans une phase aqueuse ou anhydre. De préférence ce polymère est en dispersion dans l'eau ou dans une huile. De manière encore plus préférentielle le polymère contient au moins une fonction susceptible de s'ioniser en solution aqueuse comme une acide carboxylique. Le polymère sera de préférence non soluble au contact d'une phase aqueuse après application et séchage.
Il est également possible d'utiliser selon ce procédé dans la couche de base des monomères ou prépolymères qui sont aptes aussi à polymériser après application sur la peau, soit par action des UV, de la chaleur ou de la présence d'eau par exemple. On peut citer par exemples les monomères cyanoacrylate ou les polymères silicones de faible masse portant des fonctions réactives.
Comme exemple de polymères en dispersion aqueuse on peut citer : Ultrasol 2075 de la société Ganz Chemical, Daitosol 5000AD de Daito Kasei, Avalure UR 450 de Noveon, DYNAMX de National Starch, Syntran 5760 de Interpolymer, Acusol OP 301 de Rohm&Haas, Neocryl A 1090 de Avecia.
Comme exemple de polymère en dispersion huileuse on peut citer : NAD et les polymères tels que divulgués dans la demande EP-A-I 411 069 de la société L'Oréal, la dispersion de polymère acrylique-silicone ACRIT 8HV- 1023 de la société Tasei Chemical Industries.
La phase volatile peut être une phase aqueuse ou une phase anhydre. Dans le cas d'une phase aqueuse elle est constituée de préférence d'eau, d'alcool et de glycol. Dans le cas d'une phase anhydre elle est constituée de préférence, d'au moins une huile volatile, telle que définie ci-dessus.
La couche de base peut être colorée ou non colorée, et protéger des UV ou IR ou non. Dans le cas d'une couche de base colorée celle-ci peut contenir des colorants ou des pigments. Les pigments devront de préférence être dispersés le plus finement possible afin d'éviter un apport de rugosité au film formé.
La couche de base peut contenir d'autres composants solides (charges, pigments à effet) ou d'autres composants liquides non volatiles. Ces derniers seront de préférence en faible quantité.
Couche de recouyrement Un kit selon l'invention peut comporter une composition destinée à former une couche de recouvrement en étant appliquée sur la composition contenant les particules monodisperses.
La couche de recouvrement peut notamment avoir pour fonction d'améliorer la tenue du réseau de particules monodisperses sur le support, notamment d'augmenter la résistance à la friction du réseau et éviter son effritement.
La couche de recouvrement peut comporter un ou plusieurs polymères susceptibles de pénétrer ou non dans le réseau de particules, la pénétration du polymère amenant un changement de l'indice de réfraction du milieu autour des particules et donc un changement du spectre de réflectance. Cet effet peut être intéressant et recherché. La couche de recouvrement peut comporter un solvant non volatil. Ce solvant va pénétrer et rester dans le milieu entre les particules et modifier là aussi l'indice de réfraction autour des particules. La couche de recouvrement peut avoir une transparence élevée.
La couche de recouvrement peut encore avoir une fonction optique afin par exemple d'exercer une influence sur le spectre de réflectance du réseau de particules monodisperses. La couche de recouvrement peut encore ralentir la prise d'humidité ou le séchage de la couche de composition contenant le réseau ordonné et réduire la variabilité du résultat au cours du temps.
La couche de recouvrement comporte de préférence un polymère filmogène.
La formulation de la couche de recouvrement peut être adaptée à la nature des particules monodisperses.
Dans l'exemple de particules monodisperses en silice ou en polystyrène, la couche de revêtement peut comporter une dispersion non aqueuse NAD dans l'isododécane. Lorsque les particules monodisperses sont en polystyrène, la couche de revêtement peut comporter par exemple un copolymère acrylique ou du PVA. Pour des particules monodisperses en polystyrène, la couche de recouvrement comporte par exemple une dispersion non aqueuse NAD, du PVA (10 %) ou les polymères Eastman AQ (20 %), DAITOSOL ou ULTRASOL.
La couche de recouvrement peut contenir des particules monodisperses ayant une taille moyenne différente de celles des particules monodisperses recouvertes par la couche de recouvrement. Cela peut élargir et/ou uniformiser le spectre d'absorption des UV et/ou IR.
La couche de recouvrement peut dans ce cas être recouverte, éventuellement, par une couche destinée à en améliorer la tenue.
La couche de base et la couche de recouvrement peuvent être simultanément présentes, le kit pouvant alors comporter :
- une première composition cosmétique comportant :
- des particules monodisperses,
- un milieu physiologiquement acceptable permettant la formation sur un support sur lequel la composition est appliquée d'un réseau ordonné de particules monodisperses filtrant les UV ou les IR, - une deuxième composition cosmétique à appliquer sur le support pour l'application de la première composition, de façon à améliorer l'adhérence de celle-ci sur le support et lisser les surfaces kératiniques,
- une troisième composition cosmétique à appliquer sur la première composition de façon à améliorer la tenue de celle-ci.
Filtres complémentaires
La composition conforme à l'invention peut comporter en outre un ou plusieurs agents de filtration complémentaires filtrant les UV, choisis parmi les filtres organiques et/ou minéraux actifs dans l'UVA et/ou l'UVB, hydrophiles et/ou lipophiles et/ou insolubles dans les solvants cosmétiques couramment utilisés.
Le ou les filtres organiques peuvent être choisis parmi les anthranilates ; les dérivés cinnamiques ; les dérivés de dibenzoylméthane ; les dérivés salicyliques, les dérivés du camphre ; les dérivés de triazine ; les dérivés de la benzophénone ; les dérivés de β,β-diphénylacrylate ; les dérivés de benzotriazole ; les dérivés de benzalmalonate ; les dérivés de benzimidazole ; les imidazolines ; les dérivés bis-benzoazolyle ; les dérivés de l'acide p-aminobenzoïque (PABA) ; les dérivés de benzoxazole ; les dérivés de méthylène bis-(hydroxyphényl benzotriazole) ; les polymères filtres et silicones filtres ; les dimères dérivés d'α-alkylstyrène, les 4,4-diarylbutadiène et leurs mélanges.
Les compositions selon l'invention peuvent également contenir des agents de bronzage et/ou de brunissage artificiels de la peau (agents autobronzants), et plus particulièrement la dihydroxyacétone (DHA). Ils sont présents de préférence dans des quantités allant 0,1 à 10% en poids par rapport au poids total de la composition. Additifs
La composition contenant les particules monodisperses, la couche de base et la couche de recouvrement peuvent comporter au moins un additif choisi parmi les adjuvants habituels dans le domaine cosmétique, tels que les charges, les gélifiants hydrophiles ou lipophiles, les actifs, hydrosolubles ou liposolύbles, les conservateurs, les hydratants tels que les polyols et notamment la glycérine, les séquestrants, les antioxydants, les solvants, les parfums, les filtres solaires physiques et chimiques, notamment aux UVA et/ou aux UVB, les absorbeurs d'odeur, les ajusteurs de pH (acides ou bases) et leurs mélanges. Le ou les additifs peuvent notamment être choisis parmi ceux cités dans le CTFA Cosmetic Ingrédient Handsbook, K)6"16 Edition Cosmetic and fragrance Assn, Inc., Washington DC (2004), incorporé ici par référence.
Formes galéniques La composition contenant les particules monodisperses peut se présenter sous différentes formes galéniques utilisées dans le domaine cosmétique, utilisées pour une application topique : émulsions directes, inverses ou multiples, gel, crèmes, solutions, suspensions, lotions.
La composition peut se présenter sous forme de solution aqueuse ou de solution huileuse notamment gélifiée, d'émulsion de consistance liquide ou semi-liquide du type lait, obtenue par dispersion d'une phase grasse dans une phase aqueuse (H/E) ou inversement (E/H), d'une émulsion triple (E/H/E ou H/E/H), ou de suspension ou émulsion de consistance molle.
Modes d'application La composition contenant les particules monodisperses, ainsi éventuellement que les compositions destinées à former les couches de base et de recouvrement, peut être appliquée en utilisant un applicateur, de préférence floqué, par exemple un embout ou une mousse floquée, ou un pinceau, notamment à poils fins et souples.
L'application peut encore s'effectuer autrement, par exemple au moyen- d'une mousse, d'un feutre, d'une spatule, d'un fritte, d'une brosse, d'un peigne, d'un tissé ou non tissé.
L'application peut encore s'effectuer avec le doigt ou en déposant directement la composition sur le support à traiter, par exemple par pulvérisation ou projection à l'aide par exemple d'un dispositif piézoélectrique ou par transfert d'une couche de composition préalablement déposée sur un support intermédiaire.
La composition contenant les particules monodisperses peut être appliquée selon une épaisseur comprise par exemple entre 1 et 10 μm, mieux entre 2 et 5 μm.
L'application de la composition contenant les particules monodisperses s'effectue par exemple avec une densité massique comprise entre 1 et 5 mg/cm2. Le réseau de particules monodisperses qui est formé comporte par exemple au moins six couches de particules, mieux entre six et 20 couches. L'application de la composition sur les matières kératiniques peut se faire de manière à permettre au réseau de particules monodisperses de se former après le dépôt. Ainsi, le milieu de la composition peut être formulé de telle sorte que l'évaporation du ou des solvants qu'il contient soit suffisamment lente pour laisser au temps aux particules de s'ordonner et pour limiter également le risque d'agglomération désordonné des particules avant l'application.
La couche de recouvrement est par exemple appliquée sur une épaisseur allant de 0,5 à 10 μm. La couche de base est par exemple appliquée sur une épaisseur allant de 0,5 à 10 μm. L'application de la couche de recouvrement peut s'effectuer par pulvérisation.
Conditionnement
La composition peut être conditionnée dans tout réceptacle ou sur tout support prévu à cet effet.
La composition peut se présenter sous la forme d'un kit comprenant deux compositions conditionnées dans deux réceptacles séparés.
Là composition peut se présenter sous la forme d'un kit comprenant un premier réceptacle contenant la composition comportant les particules monodisperses et un deuxième réceptacle contenant l'une au moins des compositions destinées à former la couche de base et la couche de recouvrement.
Exemple proposé
Les teneurs indiquées sont massiques.
Exemple 1 : Composition de protection solaire Particules de silice monodisperse de taille 100 nm* 40 %
Eau 60 %
Ethylène Glycol 10 %
*Seahostar WlO de Nippon Shokubai (les particules de silice on été concentrées après centrifugation pour atteindre la concentration désirée).
La formulation est appliquée (quantité appliquée 2 mg/cm2) sur un support mimétique de la peau. Le dépôt est pratiquement transparent après application et séchage et il réfléchit sélectivement la lumière dans FUV. L'observation au microscope électronique du dépôt fait apparaître un réseau cristallin compact de particules de silice. Une telle formulation permet donc de protéger efficacement la peau du rayonnement UV. Le spectre d'absorption est donné à la figure 1.
Exemple 2 : Kit avec couche de base a) Couche de base :
Ultrasol® 2075 (Ganz Chemical)* 80 %
Tioveil AQ G** 10 % Eau 10 %
* Copolymère d'Acrylate/ammonium méthacrylate en dispersion dans l'eau à une concentration massique de 50 %.
** Dispersion de nanooxyde de titane dans l'eau commercialisé par la société Uniqema.
b) Composition photoprotectrice contenant les particules monodisperses : Particules de silice monodisperse (taille lOOnm)* 30 % Mexoryl SX** 10 % Ultrasol® 2075 (Ganz- Chemical) 3 % Eau 57 %
* Seahostar WlO de Nippon Shokubai (les particules de silice on été concentrées après centrifugation pour atteindre la concentration désirée)
** Filtre UVA en solution aqueuse commercialisé par la société Chimex
La composition contenant les particules monodisperses est appliquée après application et séchage de la composition formant la couche de base. Ce kit de composition donne une bonne protection sur l'ensemble du domaine UV.
L'expression « comportant un » doit être comprise comme étant synonyme de
« comportant au moins un », sauf si le contraire est spécifié. L'expression « compris entre » doit s'entendre bornes incluses, sauf si le contraire est spécifié.

Claims

REVENDICATIONS
1. Composition photoprotectrice comportant : un milieu physiologiquement acceptable, - des particules monodisperses aptes à former un réseau ordonné de particules monodisperses sur un support sur lequel la composition est appliquée, ce réseau absorbant les UVA et/ou les UVB et/ou les infrarouges.
2. Composition selon la revendication 1, la taille des particules étant telle que le réseau absorbe les UVA et/ou les UVB.
3. Composition selon la revendication 1 ou 2, la taille moyenne des particules monodisperses allant de 80 à 250 nm.
4. Composition selon la revendication 3, la taille moyenne des particules monodisperses allant de 100 à 200 nm.
5. Composition selon l'une quelconque des revendications 1 à 4, le milieu contenant les particules monodisperses étant aqueux, les particules monodisperses étant contenues dans une phase aqueuse.
6. Composition selon la revendication 5, la teneur en eau du milieu étant supérieure ou égale à 40 %.
7. Composition selon la revendication 6, la teneur en eau étant comprise entre 50 et 70 %.
8. Composition selon l'une quelconque des revendications précédentes, comportant au moins un alcool ou un alkylène glycol.
9. Composition selon la revendication 8, comportant de l'éthylène glycol.
10. Composition selon l'une quelconque des revendications 1 à 9, dans laquelle l'indice de réfraction des particules monodisperses est supérieur ou égal à 1,4.
11. Composition selon l'une quelconque des revendications précédentes, dans laquelle le coefficient de variation (CV) de la taille des particules monodisperses est inférieur ou égal à 5 %.
12. Composition selon l'une quelconque des revendications précédentes, les particules monodisperses comportant un composé inorganique.
13. Composition selon la revendication précédente, les particules monodisperses comportant un oxyde métallique.
14. Composition selon l'une quelconque des revendications précédentes, les particules monodisperses comportant de la silice.
15. Composition selon l'une quelconque des revendications 1 à 11, les particules monodisperses comportant un composé organique.
16. Composition selon la revendication précédente, les particules monodisperses comportant un polymère choisi parmi le polystyrène (PS), le polymétacrylate de méthyle (PMMA), le polyacrylamide et leurs mélanges et dérivés.
17. Composition selon l'une quelconque des revendications précédentes, la composition présentant un facteur de transmission supérieur ou égal à 70 %, dans un intervalle d'au moins 200 nm de large dans la plage 400-800 nm, et un facteur de transmission inférieur ou égal à 70 % pour au moins une longueur d'onde dans la plage 290-400 nm.
18. Composition selon l'une quelconque des revendications 1 à 17, le facteur de transmission de la composition étant inférieur ou égal à 70 % pour au moins une longueur d'onde dans la plage 290 nm-400 nm.
19. Composition selon l'une quelconque des revendications 1 à 18, le facteur de transmission de la composition étant supérieur ou égal à 70 % dans la plage 400 nm - 800 nm sur au moins un intervalle d'au moins 200 nm.
20. Composition selon l'une quelconque des revendications 1 à 19, comportant en outre au moins un filtre solaire organique ou inorganique complémentaire actif dans
I1UVA et/ou I1UVB.
21. Composition selon la revendication 20, le ou les filtres organiques étant choisis parmi les anthranilates ; les dérivés cinnamiques ; les dérivés de dibenzoylméthane ; les dérivés salicyliques, les dérivés du camphre ; les dérivés de triazine ; les dérivés de la benzophénone ; les dérivés de β,β-diphénylacrylate ; les dérivés de benzotriazole ; les dérivés de benzalmalonate ; les dérivés de benzimidazole ; les imidazolines ; les dérivés bis-benzoazolyle ; les dérivés de l'acide p-aminobenzoïque (PABA) ; les dérivés de benzoxazole ; les dérivés de méthylène bis-(hydroxyphényl benzotriazole) ; les polymères filtres et silicones filtres ; les dimères dérivés d'α- alkylstyrène, les 4,4-diarylbutadiène et leurs mélanges.
22. Composition selon l'une quelconque des revendications 1 à 21, contenant en outre au moins un agent de bronzage et/ou de brunissage artificiel de la peau.
23. Composition selon l'une quelconque des revendications précédentes, la teneur massique en particules monodisperses étant supérieure ou égale à 15 %.
24. Composition selon la revendication 23, la teneur étant supérieure ou égale à 30 %.
25. Procédé de protection des matières kératiniques vis-à-vis du rayonnement solaire, dans lequel les matières kératiniques sont recouvertes d'un réseau de particules monodisperses obtenu au moyen d'une composition telle que définie dans l'une quelconque des revendications précédentes.
26. Procédé selon la revendication 25, le réseau filtrant les UVA et/ou UVB.
PCT/FR2006/001440 2005-06-22 2006-06-22 Compositions photoprotectrices WO2006136724A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US69258505P 2005-06-22 2005-06-22
US60/692,585 2005-06-22
US75854506P 2006-01-13 2006-01-13
US60/758,545 2006-01-13

Publications (2)

Publication Number Publication Date
WO2006136724A2 true WO2006136724A2 (fr) 2006-12-28
WO2006136724A3 WO2006136724A3 (fr) 2007-03-01

Family

ID=37110220

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/FR2006/001440 WO2006136724A2 (fr) 2005-06-22 2006-06-22 Compositions photoprotectrices
PCT/FR2006/001437 WO2006136722A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques
PCT/FR2006/001435 WO2006136720A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques
PCT/FR2006/001441 WO2006136725A2 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues
PCT/FR2006/001438 WO2006136723A2 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues
PCT/FR2006/001434 WO2006136719A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues
PCT/FR2006/001436 WO2006136721A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques

Family Applications After (6)

Application Number Title Priority Date Filing Date
PCT/FR2006/001437 WO2006136722A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques
PCT/FR2006/001435 WO2006136720A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques
PCT/FR2006/001441 WO2006136725A2 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues
PCT/FR2006/001438 WO2006136723A2 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues
PCT/FR2006/001434 WO2006136719A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues
PCT/FR2006/001436 WO2006136721A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques

Country Status (4)

Country Link
US (4) US20090041696A1 (fr)
EP (4) EP1895974A1 (fr)
JP (4) JP2008546747A (fr)
WO (7) WO2006136724A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010861A1 (de) 2007-03-01 2008-09-04 Coty Prestige Lancaster Group Gmbh Kosmetisches Lichtschutzmittel
FR2951076A1 (fr) * 2009-10-12 2011-04-15 Oreal Procede de traitement cosmetique.
WO2011045746A2 (fr) 2009-10-12 2011-04-21 L ' Oreal Composition comprenant une dispersion de particules photoniques et procédés de traitement de divers matériaux
WO2011045741A2 (fr) 2009-10-12 2011-04-21 L'oreal Particules photoniques; compositions les contenant; procédés de photoprotection de divers matériaux
WO2011045740A2 (fr) 2009-10-12 2011-04-21 L'oreal Procédés de photoprotection d'un matériau contre les rayonnements uv solaires au moyen de particules photoniques; compositions correspondantes
FR2956315A1 (fr) * 2010-02-17 2011-08-19 Oreal Procede de traitement cosmetique
WO2011048570A3 (fr) * 2009-10-22 2012-03-01 L'oreal Compositions et films photoprotecteurs, et procédé de préparation
WO2019096959A1 (fr) 2017-11-15 2019-05-23 L'oreal Composition comprenant des particules photoniques, un filtre uv et un polymère acrylique

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200526262A (en) * 2004-01-14 2005-08-16 Shiseido Co Ltd Skin preparations for external use for wrinkle diminution
FR2902647B1 (fr) * 2006-06-22 2008-10-17 Oreal L' Compositions de maquillage des matieres keratiniques
FR2907007A1 (fr) * 2006-10-16 2008-04-18 Oreal Procede de maquillage des matieres keratiniques non fibreuses et composition de maquillage
CN101754999A (zh) * 2007-05-18 2010-06-23 荷兰联合利华有限公司 单分散颗粒
FR2923390B1 (fr) * 2007-11-13 2010-12-31 Oreal Fard a paupieres comprenant une dispersion aqueuse de polymere filmogene.
FR2925849B1 (fr) * 2007-12-27 2010-06-04 Oreal Procede cosmetique procurant un effet allongeant des cils et kit correspondant a base d'un polymere filmogene
EP2498612A1 (fr) * 2009-11-09 2012-09-19 Avon Products, Inc. Composition cosmétique à point d'éclair bas comportant des solvants à taux d'évaporation variables
MX344642B (es) 2009-12-29 2017-01-04 W R Grace & Co -Conn * Composiciones para formar peliculas que tienen un grado deseado de cobertura y metodos para hacer y usar las mismas.
JP6112381B2 (ja) * 2012-03-14 2017-04-12 株式会社寿吉 耳装飾用台座シート剤
US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
EP2979686A1 (fr) * 2013-03-29 2016-02-03 FUJIFILM Corporation Composition d'ongle artificiel, ongle artificiel, procédé de formation d'ongle artificiel, procédé d'élimination d'ongle artificiel, et trousse à ongles
BR112015020663A2 (pt) * 2013-03-29 2017-07-18 Fujifilm Corp composição de unha artificial, unha artificial, método para formar unha artificial, e kit de unha da técnica
WO2016031708A1 (fr) * 2014-08-28 2016-03-03 富士フイルム株式会社 Composition pour ongles artificiels, ongles artificiels, procédé d'élimination d'ongles artificiels et trousse de décoration d'ongles
US10231919B2 (en) * 2016-10-28 2019-03-19 L'oreal Excellent water resistance with an association of two film formers
US10039705B1 (en) 2017-04-28 2018-08-07 National Tsing Hua University Sun protection material and sun protection composition containing the same
US11253461B2 (en) * 2017-10-30 2022-02-22 L'oreal Matte nail compositions containing polylactic acid microparticles
FR3104988B1 (fr) 2019-12-20 2022-01-07 Oreal Procédé de coloration des fibres kératiniques mettant en œuvre une composition comprenant des particules monodisperses à base d’au moins un polymère cationique et une étape de séchage à l’aide d’un dispositif de séchage à air pulsé
FR3104950B1 (fr) 2019-12-20 2022-01-07 Oreal Procédé de coloration des fibres kératiniques mettant en œuvre une composition comprenant des particules monodisperses à base d’au moins un polymère non-ionique et une étape de séchage à l’aide d’un dispositif de séchage à air pulsé

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198608A (ja) * 1986-02-25 1987-09-02 Sumitomo Cement Co Ltd 化粧料
WO2000047167A1 (fr) * 1999-02-09 2000-08-17 Color Access, Inc. Compositions cosmetiques et pharmaceutiques contenant un systeme de coloration cristalline et procede de preparation associe
WO2001030310A1 (fr) * 1999-10-27 2001-05-03 Unilever Plc Compositions de traitement capillaire contenant des substances particulaires
WO2002056854A1 (fr) * 2001-01-18 2002-07-25 L'oreal Composition cosmetique irisee et ses utilisations
US20020160027A1 (en) * 2000-11-09 2002-10-31 Herwig Buchholz Conjugate, its preparation and use
WO2006097332A2 (fr) * 2005-03-16 2006-09-21 Unilever Plc Compositions colorantes et utilisation

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8911859D0 (en) * 1989-05-23 1989-07-12 Ilford Ltd Polymer particles
GB2237199A (en) * 1989-10-27 1991-05-01 Unilever Plc Oral composition comprising monodisperse colloidal silica suspension
US5162410A (en) * 1990-04-13 1992-11-10 Dow Corning Corporation Hot-melt silicon pressure sensitive adhesives with phenyl-containing siloxane fluid additive and related methods and articles
JPH0710765B2 (ja) * 1990-12-27 1995-02-08 花王株式会社 粉体化粧料
JPH072639A (ja) * 1992-11-27 1995-01-06 I S I:Kk サンスクリーン化粧料
US5825643A (en) * 1993-08-25 1998-10-20 Square D Company Programming device for a circuit breaker
WO1997000662A1 (fr) * 1995-06-21 1997-01-09 L'oreal Composition cosmetique comprenant une dispersion de particules de polymere
US5658574A (en) * 1995-10-13 1997-08-19 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Cleansing compositions with dendrimers as mildness agents
FR2743297B1 (fr) * 1996-01-05 1998-03-13 Oreal Composition cosmetiques a base de polycondensats ionisables multisequences polysiloxane/polyurethane et/ou polyuree en solution et utilisation
JP3455066B2 (ja) * 1997-06-30 2003-10-06 花王株式会社 Uv反射粉体及びそれを含有する化粧料
DE19834194B4 (de) * 1998-07-29 2009-03-05 Basf Se Farbmittel enthaltende Dispersionen von Kern/Schale-Partikeln und Kern/Schale-Partikel
FR2783418B1 (fr) * 1998-09-17 2000-11-10 Oreal Composition anti-rides comprenant une association de polymeres tenseurs d'origine synthetique et/ou naturelle et de polyesters dendritiques
FR2783417B1 (fr) * 1998-09-17 2002-06-28 Oreal Compositions topiques cosmetiques ou dermatologiques comprenant des polyesters dendritiques
US6150022A (en) * 1998-12-07 2000-11-21 Flex Products, Inc. Bright metal flake based pigments
US6299979B1 (en) * 1999-12-17 2001-10-09 Ppg Industries Ohio, Inc. Color effect coating compositions having reflective organic pigments
DE20003080U1 (de) * 2000-01-07 2000-04-27 Invitek Gmbh Testkit zur Isolierung hochreiner total RNA unter selektiver Entfernung kontaminierender DNA
DE10024466A1 (de) * 2000-05-18 2001-11-22 Merck Patent Gmbh Pigmente mit Opalstruktur
FR2811547B1 (fr) * 2000-07-13 2003-09-26 Oreal Composition cosmetique longue tenue comprenant un materiau pro-adhesif particulier
FR2811546B1 (fr) * 2000-07-13 2003-09-26 Oreal Kit et procede de maquillage longue tenue
JP2002104932A (ja) * 2000-09-25 2002-04-10 Kao Corp 粉体化粧料
US6649138B2 (en) * 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
FR2819411B1 (fr) * 2001-01-18 2003-02-21 Oreal Composition cosmetique irisee et ses utilisations
JP4530194B2 (ja) * 2001-07-05 2010-08-25 株式会社資生堂 メーキャップ化粧料
US6894086B2 (en) * 2001-12-27 2005-05-17 Ppg Industries Ohio, Inc. Color effect compositions
MXPA03008714A (es) * 2002-09-26 2004-09-10 Oreal Polimeros secuenciados y composiciones cosmeticas que comprenden tales polimeros.
US7297298B2 (en) * 2002-12-25 2007-11-20 Fujifilm Corporation Nano-particles and process for producing nano-particles
US7297678B2 (en) * 2003-03-12 2007-11-20 Genencor International, Inc. Use of repeat sequence protein polymers in personal care compositions
CA2535945A1 (fr) * 2003-08-22 2005-03-03 E-L Management Corp. Systeme d'administration topique contenant des reseaux cristallins colloidaux
US7122078B2 (en) * 2003-12-22 2006-10-17 E. I. Du Pont De Nemours And Company Ink jet ink composition
DE102004032120A1 (de) * 2004-07-01 2006-02-09 Merck Patent Gmbh Beugungsfarbmittel für die Kosmetik
FR2907009A1 (fr) * 2006-10-16 2008-04-18 Oreal Composition cosmetique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198608A (ja) * 1986-02-25 1987-09-02 Sumitomo Cement Co Ltd 化粧料
WO2000047167A1 (fr) * 1999-02-09 2000-08-17 Color Access, Inc. Compositions cosmetiques et pharmaceutiques contenant un systeme de coloration cristalline et procede de preparation associe
WO2001030310A1 (fr) * 1999-10-27 2001-05-03 Unilever Plc Compositions de traitement capillaire contenant des substances particulaires
US20020160027A1 (en) * 2000-11-09 2002-10-31 Herwig Buchholz Conjugate, its preparation and use
WO2002056854A1 (fr) * 2001-01-18 2002-07-25 L'oreal Composition cosmetique irisee et ses utilisations
WO2006097332A2 (fr) * 2005-03-16 2006-09-21 Unilever Plc Compositions colorantes et utilisation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 1995 Derwent Publications Ltd., London, GB; AN 1995-077949 XP002405177 "Sunscreen cosmetic material-comprises titanium dioxide ultrafine particles obtd by oxidising titanium powder contg iron in plasma,etc" & JP 07 002639 A (AYATSURA KESHOHIN KK; ISI YG) 6 janvier 1995 (1995-01-06) *
DATABASE WPI Week 1999 Derwent Publications Ltd., London, GB; AN 1999-163161 XP002405176 "Cosmetics with high transparency - contains mono:disperse fine particles with UV alternative reflective power when applied" & JP 11 021223 A (KAO CORP) 26 janvier 1999 (1999-01-26) *
PATENT ABSTRACTS OF JAPAN & JP 62 198608 A (SUMITOMO CEMENT CO LTD), 2 septembre 1987 (1987-09-02) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010861A1 (de) 2007-03-01 2008-09-04 Coty Prestige Lancaster Group Gmbh Kosmetisches Lichtschutzmittel
FR2951076A1 (fr) * 2009-10-12 2011-04-15 Oreal Procede de traitement cosmetique.
WO2011045746A2 (fr) 2009-10-12 2011-04-21 L ' Oreal Composition comprenant une dispersion de particules photoniques et procédés de traitement de divers matériaux
WO2011045741A2 (fr) 2009-10-12 2011-04-21 L'oreal Particules photoniques; compositions les contenant; procédés de photoprotection de divers matériaux
WO2011045740A2 (fr) 2009-10-12 2011-04-21 L'oreal Procédés de photoprotection d'un matériau contre les rayonnements uv solaires au moyen de particules photoniques; compositions correspondantes
WO2011045740A3 (fr) * 2009-10-12 2012-01-12 L'oreal Procédés de photoprotection d'un matériau contre les rayonnements uv solaires au moyen de particules photoniques; compositions correspondantes
CN102573761A (zh) * 2009-10-12 2012-07-11 欧莱雅 用光子颗粒抗太阳uv辐射的光照保护材料的方法及组合物
CN105708729A (zh) * 2009-10-12 2016-06-29 欧莱雅 用光子颗粒抗太阳uv辐射的光照保护材料方法及组合物
WO2011048570A3 (fr) * 2009-10-22 2012-03-01 L'oreal Compositions et films photoprotecteurs, et procédé de préparation
US9381383B2 (en) 2009-10-22 2016-07-05 L'oreal Photoprotective compositions and films, and a preparation method
FR2956315A1 (fr) * 2010-02-17 2011-08-19 Oreal Procede de traitement cosmetique
WO2019096959A1 (fr) 2017-11-15 2019-05-23 L'oreal Composition comprenant des particules photoniques, un filtre uv et un polymère acrylique

Also Published As

Publication number Publication date
JP2008546746A (ja) 2008-12-25
JP2008546747A (ja) 2008-12-25
JP2008546745A (ja) 2008-12-25
WO2006136721A1 (fr) 2006-12-28
WO2006136723A2 (fr) 2006-12-28
US20090117160A1 (en) 2009-05-07
WO2006136725A3 (fr) 2007-02-22
WO2006136723A3 (fr) 2007-05-10
WO2006136719A1 (fr) 2006-12-28
US20090041695A1 (en) 2009-02-12
WO2006136720A1 (fr) 2006-12-28
EP1895976A2 (fr) 2008-03-12
WO2006136722A1 (fr) 2006-12-28
US20080268002A1 (en) 2008-10-30
EP1895975A1 (fr) 2008-03-12
WO2006136725A2 (fr) 2006-12-28
EP1895974A1 (fr) 2008-03-12
EP1898870A2 (fr) 2008-03-19
WO2006136724A3 (fr) 2007-03-01
US20090041696A1 (en) 2009-02-12
JP2008546748A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
WO2006136724A2 (fr) Compositions photoprotectrices
FR2902647A1 (fr) Compositions de maquillage des matieres keratiniques
EP1552806B1 (fr) Composition de maquillage des fibres kératiniques à tenue dans le temps prolongée
EP1433460B1 (fr) Procédé de maquillage des peaux foncées
FR2909844A1 (fr) Stylo a pointe feutre pour le maquillage des ongles
WO2004055081A2 (fr) Composition de revetement des fibres keratiniques comprenant une dispersion de particules de polymere
CA2380793A1 (fr) Produit de maquillage bicouche contenant un pigment goniochromatique et un pigment monocolore et kit de maquillage contenant ce produit
FR3015251A1 (fr) Composition cosmetique comprenant un polymere a motif dendrimere carbosiloxane et des particules de polymeres expanses
WO2010010295A2 (fr) Composition cosmetique coloree de longue tenue
EP1428843B1 (fr) Dispersions de polymères en milieu siliconé et composition les comprenant
EP1941864A1 (fr) Kit de maquillage des fibres kératiniques
FR2827161A1 (fr) Composition cosmetique comprenant une dispersion de particules
FR2869796A1 (fr) Composition cosmetique pour le maquillage et/ou le soin de la peau, notamment du visage
FR2968979A1 (fr) Composition cosmetique sous forme de produit coule
FR3076218A1 (fr) Composition gelifiee comprenant une microdispersion aqueuse de cire(s)
EP1913933A1 (fr) Composition cosmétique de particules monodisperses
FR2959932A1 (fr) Composition de maquillage et/ou de soin des fibres keratiniques presentant des proprietes de tenue ameliorees
FR2827168A1 (fr) Mascara comprenant des particules solides
WO2015052399A1 (fr) Composition cosmétique de revêtement des fibres kératiniques
FR3003449A1 (fr) Dipositif comprenant une composition de rouge a levres liquide anhydre et un organe d&#39;application poreux
EP3727592B1 (fr) Compositions cosmétiques comprenant des spheroides anhydres dispersés dans une phase siliconée
EP3831357B1 (fr) Composition cosmétique à effet métallique
FR3026945A1 (fr) Composition cosmetique de revetement des fibres keratiniques
FR2907008A1 (fr) Composition cosmetique
FR2907007A1 (fr) Procede de maquillage des matieres keratiniques non fibreuses et composition de maquillage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06778642

Country of ref document: EP

Kind code of ref document: A2