WO2006126520A1 - ドライエッチング方法、微細構造形成方法、モールド及びその製造方法 - Google Patents

ドライエッチング方法、微細構造形成方法、モールド及びその製造方法 Download PDF

Info

Publication number
WO2006126520A1
WO2006126520A1 PCT/JP2006/310214 JP2006310214W WO2006126520A1 WO 2006126520 A1 WO2006126520 A1 WO 2006126520A1 JP 2006310214 W JP2006310214 W JP 2006310214W WO 2006126520 A1 WO2006126520 A1 WO 2006126520A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
etching
gas containing
mold
atoms
Prior art date
Application number
PCT/JP2006/310214
Other languages
English (en)
French (fr)
Inventor
Hideo Nakagawa
Masaru Sasago
Tomoyasu Murakami
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006535896A priority Critical patent/JPWO2006126520A1/ja
Priority to US11/659,109 priority patent/US7919005B2/en
Priority to EP06756470A priority patent/EP1884505A1/en
Publication of WO2006126520A1 publication Critical patent/WO2006126520A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00523Etching material
    • B81C1/00531Dry etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5346Dry etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/0143Focussed beam, i.e. laser, ion or e-beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/412Profiled surfaces fine structured, e.g. fresnel lenses, prismatic reflectors, other sharp-edged surface profiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a technique for finely processing a substance containing tungsten (W) and carbon (C), a mold including a substance containing tungsten (W) and carbon (C) as a constituent element, and a method for forming the mold, Relates to a method for suitably manufacturing a molding die having a fine pattern shape using a cemented carbide containing tungsten and carbon as main components.
  • An optical waveguide which is a main component of an optical circuit component, is generally made by forming a desired groove pattern on a glass substrate using a lithography technique typified by a semiconductor process and a dry etching technique. Can do. However, since this method requires an expensive manufacturing apparatus, there is a problem that it is difficult to reduce the cost of the optical waveguide component. Therefore, as described in Patent Document 1, a mold (so-called mold) in which a desired concavo-convex structure is formed is press-bonded to the surface of a soft plastic material having glass power, thereby allowing the desired surface to be formed on the glass surface. A method for forming such an optical waveguide or the like has attracted attention.
  • a desired optical waveguide can be mass-produced as long as there is a mold, and an optical circuit component can be provided inexpensively.
  • the mold since this glass forming method needs to be performed at high temperature and high pressure, the mold is required to have heat resistance, rigidity and durability.
  • a WC alloy mainly composed of tungsten (W) and carbon (C), which are super hard metals.
  • Patent Document 2 describes that WC is made of CF or SF.
  • a conventional dry etching method will be described with reference to FIGS. 6 (a) and 6 (b).
  • a reaction chamber 101 or a gas supply port 102 capable of maintaining pressure in a reduced pressure state is provided, and a gas exhaust port 103 is provided.
  • a plasma generator 104 is provided above the reaction chamber 101 to bring the gas supplied from the gas supply port 102 into a plasma state.
  • An insulator 105 is provided.
  • An RF (radio wave) power source 108 for applying a bias to the electrode 106 is provided outside the reaction chamber 101.
  • etching shown in FIG. 6 (a) is exemplified by using CF as an etching gas.
  • CF is removed from the gas supply port 102.
  • a resist pattern 112 is formed on the WC substrate 111.
  • the pattern side wall force of the WC substrate 111 formed by etching is a bowed shape, that is, a bowing shape for the following reason.
  • the etching of the WC substrate 111 In the etching of the WC substrate 111, most ions, like the ion 113a, are incident on the WC substrate 111 almost perpendicularly.
  • the ions basically have an energy spread (ion energy angular distribution). Therefore, there are ions that are incident on the WC substrate 111 at an angle, such as the ions 113b. Therefore, anisotropic (vertical) etching of the WC substrate 111 is realized by the ions 113a incident perpendicularly to the WC substrate 111 using the resist pattern 112 as an etching mask.
  • the pattern side wall of the WC substrate 111 is etched by the impact of the ions 113b obliquely incident on the WC substrate 111. As a result, the pattern side wall has a bowing shape as shown in FIG. End up
  • a resist pattern 122 is formed on the WC alloy substrate 121 as shown in FIG. 7 (b).
  • the resist pattern 122 is usually formed by a lithography technique.
  • pattern transfer is performed on the WC alloy substrate 121 using the resist pattern 122 as a mask. At that time, pattern transfer is performed by dry etching technology.
  • the ions 123 incident on the WC alloy substrate 121 from the plasma have an energy spread. Therefore, in addition to the component A incident perpendicularly to the surface of the WC alloy substrate 121, in addition, there are components that are obliquely incident on the surface, that is, oblique incident components B and C. As a result, the pattern sidewalls of the WC alloy substrate 121 are etched by these obliquely incident ions, as shown in FIG. 7 (c).
  • the etching cross-sectional shape is a so-called bowing shape.
  • nanoimprint method such as nanoimprint lithography (see, for example, Patent Document 3 and Non-Patent Document 1) proposed by SY Chou et al. .
  • the nanoimprint method is a technology for forming a fine resist pattern by pressing a mold against a resist thin film formed on a semiconductor wafer.
  • the nanoimprint method is still aimed at forming a nano-order fine pattern as a minimum dimension. It is a technology under development.
  • an easily processed SiO film or SiN film is used for the microstructure forming part of the conventional mold used in the nanoimprint method.
  • Patent Document 1 Japanese Patent No. 3152831
  • Patent Document 2 JP-A-1-98229
  • Patent Document 3 US Patent No. 5772905
  • Non-Patent Document 1 Stephen Y. Chou et al., Appl. Phys. Lett., Vol. 67, 1995, p. 3114-311 6
  • Patent Document 4 JP-A-2-94520
  • the conventional dry etching method has a problem that a highly accurate fine structure cannot be formed on the surface of the WC alloy and the inside thereof. As a result, there was a serious problem that a WC alloy mold having a high-definition fine structure could not be manufactured.
  • an object of the present invention is to provide a WC alloy dry etching method capable of realizing a vertical etching shape by preventing etching of a pattern side wall.
  • the present invention can form a highly accurate microstructure with a vertical shape on the surface and inside of the WC alloy. It is an object of the present invention to provide a fine structure forming method.
  • an object of the present invention is to provide a WC alloy mold having a high-definition microstructure and a manufacturing method thereof.
  • the dry etching method according to the present invention performs etching on an object containing tungsten and carbon by using plasma generated by gas force containing chlorine atoms.
  • an etching force that can realize a high-precision vertical shape or a high-precision forward taper shape without a bowing shape on the surface and inside of an object containing tungsten and carbon is possible. It becomes.
  • the object containing tungsten and carbon include an object composed mainly of WC alloy or WC (the total composition of W and C is 50 at% or more).
  • the gas containing a chlorine atom also has a force of chlorine molecules, hydrogen chloride molecules, or boron trichloride molecules or a mixture of two or more thereof. In this way, since these molecules are relatively small molecules, it is easy to handle gas supply and the like, and chlorine can be efficiently generated by plasma discharge.
  • the plasma is generated by a mixed gas force of the gas containing chlorine atoms and the gas containing oxygen atoms.
  • the etching rate of the object containing tungsten and carbon can be increased by the effect of adding oxygen.
  • the gas containing oxygen atoms also has a force of oxygen molecules, nitric oxide molecules, oxysulfur molecules or oxycarbon molecules, or a mixture of two or more thereof. If it does in this way, oxygen can be supplied efficiently.
  • the gas containing chlorine atoms preferably contains oxygen atoms.
  • the etching rate of the object containing tungsten and carbon can be increased by the effect of adding oxygen.
  • the plasma is generated from a gas mixture containing a gas containing chlorine atoms and a rare gas.
  • the plasma discharge can be further stabilized by the noble gas-added calorie effect, so-called process win.
  • the dough (applicable process condition range) can be easily expanded.
  • the plasma may be generated from a mixed gas of the gas containing chlorine atoms and a gas containing halogen atoms other than chlorine atoms.
  • the gas containing a halogen atom may be a gas containing a fluorine atom, a gas containing a bromine atom, or a gas containing an iodine atom, or a mixed gas of two or more thereof.
  • the etching rate can be improved by the effect of fluorine without impairing the vertical shape processing characteristics by chlorine.
  • the effect of bromine or iodine can increase the side wall protection effect of the processed part, so that not only vertical shape machining can be realized.
  • a forward taper shape machining can be realized.
  • the gas containing chlorine atoms may contain fluorine atoms. Specifically, CIF, CC1F, CCl F, CCl F, CIF Br or CIF
  • the gas containing a chlorine atom may contain a halogen atom other than a chlorine atom.
  • a halogen atom other than a chlorine atom.
  • IC1 CIF Br, CIF I, BrCl or the like may be used.
  • the fine structure forming method according to the present invention includes a step of forming a mask pattern on an object containing tungsten and carbon, and a plasma generated from a gas containing chlorine atoms using the mask pattern. Etching the object.
  • an etching force that can realize a highly accurate vertical shape or a high accuracy forward taper shape on the surface and inside of an object containing tungsten and carbon can be obtained. Is possible.
  • the gas containing a chlorine atom preferably has a force of chlorine molecule, hydrogen chloride molecule or boron trichloride molecule, or a mixture of two or more thereof. .
  • these molecules are relatively small molecules, it is easy to handle gas supply and the like, and chlorine can be efficiently generated by plasma discharge. For this reason, high-precision vertical shape processing can be performed at a lower cost on an object containing tungsten and carbon.
  • the plasma is generated from a mixed gas of the gas containing chlorine atoms and the gas containing oxygen atoms.
  • the etching rate of the object containing tungsten and carbon is increased due to the effect of addition of oxygen, so that high-precision vertical shape processing can be performed on the object at high speed.
  • the gas containing oxygen atoms is a force of oxygen molecules, nitric oxide molecules, sulfur oxide molecules, or oxidized carbon molecules, or a mixture of two or more thereof. In this way, since oxygen can be supplied efficiently, high-precision vertical shape processing can be performed stably and at high speed on an object containing tungsten and carbon.
  • the gas containing chlorine atoms preferably contains oxygen atoms.
  • the etching rate of the object containing tungsten and carbon is increased due to the effect of addition of oxygen, so that high-precision vertical shape processing can be performed on the object at high speed.
  • the plasma is preferably generated from a mixed gas mixture of the gas containing chlorine atoms and a rare gas.
  • the plasma discharge can be made more stable due to the effect of adding a rare gas, so that highly accurate vertical shape processing can be stably performed on an object containing tungsten and carbon.
  • the plasma may be generated from a mixed gas of the gas containing chlorine atoms and a gas containing halogen atoms other than chlorine atoms.
  • the gas containing a halogen atom may be a gas containing a fluorine atom, a gas containing a bromine atom, or a gas containing an iodine atom, or a mixed gas of two or more of them! / ⁇ .
  • the etching rate can be improved by the effect of fluorine without impairing the vertical shape addition characteristics by chlorine, so an object containing tungsten and carbon.
  • the gas containing chlorine atoms contains fluorine atoms. It may be. Specifically, C1F, CC1F, CC1 F, CC1 F, C1F Br or C1F I
  • the gas containing chlorine atoms may contain halogen atoms other than chlorine atoms.
  • the gas containing chlorine atoms may contain halogen atoms other than chlorine atoms.
  • IC1, C1F Br, C1F I, BrCl or the like may be used.
  • an object containing tungsten and carbon is covered with a mold using a plasma generated from a gas containing chlorine atoms.
  • the mold manufacturing method of the present invention since it is a mold manufacturing method using the dry etching method of the present invention, an object force including tungsten and carbon and a vertical cross-sectional shape or a forward tapered cross section are obtained. It is possible to manufacture a mold having minute irregularities having a shape.
  • the gas containing chlorine atoms preferably has a force of chlorine molecules, hydrogen chloride molecules, or boron trichloride molecules or a mixture of two or more thereof. .
  • these molecules are relatively small molecules, it is easy to handle gas supply and the like, and chlorine can be efficiently generated by plasma discharge. For this reason, it is possible to manufacture a mold having minute unevenness having a highly accurate vertical side wall at a lower cost.
  • the plasma also generates a mixed gas force of the gas containing chlorine atoms and the gas containing oxygen atoms.
  • the etching rate of the object containing tungsten and carbon is increased due to the effect of addition of oxygen, so that a mold having minute unevenness having a highly accurate vertical side wall can be manufactured at high speed.
  • the gas containing oxygen atoms also has a force of oxygen molecules, nitric oxide molecules, oxysulfur molecules or oxycarbon molecules, or a mixture of two or more thereof. In this way, since oxygen can be supplied efficiently, it is possible to stably and rapidly manufacture a mold having minute unevenness having a highly accurate vertical side wall.
  • the gas containing chlorine atoms preferably contains oxygen atoms. This increases the etching rate of the object containing tungsten and carbon due to the effect of oxygen addition. A mold having small irregularities can be manufactured at high speed.
  • the plasma is generated from a gas mixture containing a chlorine atom and a rare gas. In this way, since the plasma discharge becomes more stable due to the noble gas-added calorie effect, it is possible to more stably manufacture a mold having minute irregularities having high-precision vertical side walls.
  • the plasma may be generated from a mixed gas of the gas containing chlorine atoms and a gas containing halogen atoms other than chlorine atoms.
  • the gas containing a halogen atom may be a gas containing a fluorine atom, a gas containing a bromine atom, or a gas containing an iodine atom, or a mixed gas of two or more thereof.
  • the etching rate can be improved by the effect of fluorine without impairing the vertical shape processing characteristics by chlorine, so that a highly accurate vertical shape side wall can be obtained.
  • the gas containing chlorine atoms may contain fluorine atoms. Specifically, C1F, CC1F, CCl F, CCl F, C1F Br or C1F
  • the gas containing chlorine atoms may contain a halogen atom other than chlorine atoms.
  • a halogen atom other than chlorine atoms.
  • IC1, C1F Br, C1F I, BrCl or the like may be used.
  • the mold according to the present invention is manufactured by molding an object containing tungsten and carbon using plasma generated from a gas vessel containing chlorine atoms.
  • the mold of the present invention since it is a mold manufactured by using the dry etching method of the present invention, the object force including tungsten and carbon is obtained, and the microscopic shape has a vertical sectional shape or a forward tapered sectional shape. A mold having irregularities can be provided.
  • the gas containing chlorine atoms is a force of a chlorine molecule, a hydrogen chloride molecule, or a boron trichloride molecule, or a mixture of two or more thereof. In this way, since these molecules are relatively small molecules, it is easy to handle gas supply and the like, and chlorine can be efficiently generated by plasma discharge. Therefore, it is possible to provide a mold having minute irregularities having a highly accurate vertical side wall at a lower cost.
  • the plasma is preferably generated from a mixed gas of the gas containing chlorine atoms and the gas containing oxygen atoms.
  • the etching rate of the object containing tungsten and carbon is increased due to the effect of addition of oxygen, so that a mold having fine irregularities having a highly accurate vertical side wall can be manufactured and provided at high speed.
  • the gas containing oxygen atoms is a force of oxygen molecules, nitric oxide molecules, sulfur oxide molecules or carbon oxide molecules or a mixture of two or more thereof. In this way, oxygen can be supplied efficiently, so that a mold having minute irregularities having highly accurate vertical sidewalls can be manufactured and provided stably.
  • the gas containing chlorine atoms preferably contains oxygen atoms.
  • the etching rate of the object containing tungsten and carbon is increased due to the effect of addition of oxygen, so that a mold having minute unevenness having a highly accurate vertical side wall can be manufactured and provided at high speed.
  • the plasma is preferably generated from a mixed gas of the gas containing chlorine atoms and a rare gas.
  • the plasma discharge becomes more stable due to the effect of adding a rare gas, it is possible to more stably manufacture and provide a mold having minute unevenness having a highly accurate vertical side wall.
  • the plasma may be generated from a mixed gas of the gas containing chlorine atoms and a gas containing halogen atoms other than chlorine atoms.
  • the gas containing a halogen atom may be a gas containing a fluorine atom, a gas containing a bromine atom, a gas containing an iodine atom, or a mixed gas of two or more thereof.
  • gas containing fluorine atoms when gas containing fluorine atoms is mixed, the vertical shape processing characteristics by chlorine Since the etching rate can be improved by the effect of fluorine without impairing the mold, a mold having minute unevenness having a highly accurate vertical side wall can be manufactured and provided at a higher speed.
  • the side wall protection effect of the processed part can be increased by the effect of bromine or iodine. It is possible to provide a mold having minute unevenness having a highly accurate forward tapered side wall that is not limited to a mold having unevenness.
  • the gas containing chlorine atoms may contain fluorine atoms. Specifically, using C1F, CC1F, CC1 F, CC1 F, C1F Br, C1F I, etc.
  • the gas containing chlorine atoms may contain halogen atoms other than chlorine atoms.
  • the gas containing chlorine atoms may contain halogen atoms other than chlorine atoms.
  • Another dry etching method provides a first material containing any one of an iodine atom, a chlorine atom, and a bromine atom with respect to a forming material having a cemented carbide strength mainly composed of tungsten and carbon.
  • Etching is performed using plasma radicals generated from an etching gas column that is a mixture of a second gas that also has an inert gas force and a third gas that also has an oxygen gas force.
  • an etching mask having a predetermined pattern shape is formed on the surface of a forming material made of a cemented carbide mainly composed of tungsten and carbon.
  • An etching gas formed by mixing the forming step with a first gas containing any of iodine atoms, chlorine atoms or bromine atoms, a second gas having an inert gas force, and a third gas having an oxygen gas force And dry-etching the forming material with plasma radicals generated by the substrate to form convex portions corresponding to the etching mask.
  • the etching gas is 0.13 or more of the third gas with respect to the first gas.
  • the first gas is a gas containing iodine atoms
  • the first gas is hydrogen iodide gas or trifluoromethane iodide.
  • the gas containing the chlorine atoms as the first gas is preferable.
  • the first gas is preferably chlorine gas or trichloroboron gas.
  • the first gas is a gas containing bromine atoms, bromine gas or hydrogen bromide gas. Is preferred to be.
  • the second gas is argon.
  • the pattern bottom can be etched efficiently not only by chlorine but also by fluorine, so that higher-speed vertical shape etching can be performed.
  • fine irregularities having a vertical cross-sectional shape or a forward tapered cross-sectional shape can be formed on the surface and inside of an object containing tungsten and carbon.
  • the mold manufacturing method of the present invention it is possible to manufacture a mold having microscopic irregularities having an object force including tungsten and carbon and having a vertical cross-sectional shape or a forward tapered cross-sectional shape.
  • the mold of the present invention it is possible to provide a mold that has an object force including tungsten and carbon and has minute unevenness having a vertical sectional shape or a forward tapered sectional shape.
  • the etching rate is remarkably improved as compared with the case of using a fluorine-based gas, and in addition to this, the etching rate is further improved by further mixing oxygen gas into the etching gas. Therefore, even when the etching depth is set to a relatively large value of about 10 m, for example, the etching process can be completed in a short time.
  • the cross-sectional shape of the etching mask can be maintained as a rectangular initial cross-sectional shape without causing a shape change due to side etching in the etching mask, and the etching condition during the etching process can be maintained.
  • the amount of product generated can be suppressed.
  • the second gas mixed in the etching gas as an inert gas effectively removes the etching compound generated on the surface of the forming material by sputtering. As described above, for example, even when a convex part having a relatively large height of about 10 / zm is formed on the base as a fine pattern, the side wall of the convex part after the formation is relative to the base.
  • the etching rate of the forming material mainly composed of tungsten and carbon is set to the mixing ratio of the oxygen gas that is the third gas to the first gas containing any one of iodine atom, chlorine atom, and bromine atom. Therefore, if the mixing ratio of the third gas to the first gas is set in the range of 0.15 or more and 0.6 or less, a high etching rate can be obtained.
  • the first gas is a gas containing iodine atoms
  • a high etching rate of about 300 nm or more can be obtained per minute
  • the first gas is either a chlorine atom or a bromine atom.
  • a high etching rate of about 150 to 200 nm per minute can be obtained. Therefore, in etching using a fluorine-based gas as an etching gas, for example, an etching time for obtaining a desired etching depth is required as compared with the case where an etching time as long as about 200 minutes is required to etch to a depth of 10 ⁇ m. Time can be significantly reduced.
  • the third gas with respect to the first gas containing any one of iodine atom, chlorine atom and bromine atom is used.
  • the mixing ratio of certain oxygen gas is set to 0.3, the etching rate can be maximized.
  • the first gas is a gas containing iodine atoms
  • the etching rate reaches a maximum value of about 500 nm per minute, and etching is performed to a depth of about 10 m by etching for 20 minutes. It becomes possible.
  • the etching rate reaches a maximum value of about 350 nm per minute and can be etched to a depth of about 7 ⁇ m by 20 minutes of etching. Become. Furthermore, when the first gas is a gas containing bromine atoms, the etching rate is about 300 nm per minute, and etching can be performed to a depth of about 6 ⁇ m by etching for 20 minutes. It becomes. As described above, by setting the mixing ratio of the oxygen gas that is the third gas to the first gas containing any one of iodine atom, chlorine atom, or bromine atom to 0.3, a desired etching depth is set. The etching time for obtaining the above can be further greatly shortened.
  • the gas when the first gas is a gas containing iodine atoms, the gas is hydrogen iodide gas or In the case of trifluoromethane iodide, these gases are easily gasified. Ching can be performed stably.
  • the first gas is a gas containing a chlorine atom
  • the gas is a chlorine gas or a trichloride salt.
  • boron gas is used, these gases are easily gasified, so that dry etching can be performed stably.
  • the gas is bromine gas or hydrogen bromide.
  • these gases are easily gasified, so that dry etching can be performed stably.
  • the inert gas that is the second gas is argon
  • the forming material is tungsten, carbon, and Even in the case of a cemented carbide containing as a main component, the compound produced by etching can be efficiently removed by sputtering.
  • argon gas has the advantage of being inexpensive.
  • FIG. 1 (a) and (b) are explanatory views of a dry etching method according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a dry etching method according to a second embodiment of the present invention.
  • 3 (a) and 3 (b) are explanatory views of a dry etching method according to a third embodiment of the present invention.
  • 4 (a) to 4 (f) are cross-sectional views showing respective steps of a microstructure forming method and a mold manufacturing method using the same according to a fourth embodiment of the present invention.
  • FIG. 5 (a) is a cross-sectional view of the entire mold according to the fifth embodiment of the present invention
  • FIGS. 5 (b) to 5 (g) are the surfaces of the mold shown in FIG. 5 (a), respectively. It is a figure which shows the state which expanded the micro unevenness
  • FIGS. 6 (a) and 6 (b) are explanatory views of a conventional dry etching method.
  • FIGS. 7A to 7D are cross-sectional views showing respective steps of a conventional microstructure forming method and a mold manufacturing method using the same.
  • FIGS. 8 (a) to 8 (c) are cross-sectional views showing respective steps of a molding die manufacturing method according to a comparative example.
  • FIGS. 9 (a) and 9 (b) are cross-sectional views showing respective steps of a method for producing a molding die according to a comparative example.
  • FIG. 10 is a diagram showing a schematic cross-sectional configuration of an ICP plasma etching apparatus for embodying a molding die manufacturing method according to a sixth embodiment of the present invention.
  • FIGS. 11 (a) to 11 (c) are cross-sectional views showing respective steps of a method for manufacturing a molding die according to the sixth embodiment of the present invention and its modification.
  • FIG. 12 is a perspective view showing a molding die to be formed by the molding die manufacturing method according to the sixth embodiment of the present invention and its modification.
  • FIG. 13 is a view showing the relationship between the mixing rate of oxygen gas with respect to hydrogen iodide gas in the etching gas and the etching rate in the method for manufacturing a molding die according to the sixth embodiment of the present invention. .
  • FIG. 14 shows an outline of a hot press molding machine for manufacturing a waveguide substrate using a molding die manufactured by the molding die manufacturing method according to the sixth embodiment of the present invention and its modification. Show the cross-sectional structure.
  • FIG. 15 (a) is a view showing another example of the cross-sectional configuration of the molding die manufactured by the manufacturing method of the molding die according to the sixth embodiment of the present invention and its modification.
  • 15 (b) and (c) are cross-sectional views showing respective steps for producing the molding die shown in FIG. 15 (a).
  • FIG. 16 is a diagram showing a schematic cross-sectional configuration of an ICP plasma etching apparatus for embodying the manufacturing method of the molding die according to the first modification of the sixth embodiment of the present invention. 17] FIG. 17 shows the relationship between the mixing rate of oxygen gas with respect to chlorine gas in the etching gas and the etching rate in the manufacturing method of the molding die according to the first modification of the sixth embodiment of the present invention. FIG. 17
  • FIG. 18 is a diagram showing a schematic cross-sectional configuration of an ICP plasma etching apparatus for embodying a method for manufacturing a molding die according to a second modification of the sixth embodiment of the present invention.
  • FIG. 19 shows the mixing ratio of oxygen gas to the hydrogen bromide gas in the etching gas and the etching rate in the manufacturing method of the molding die according to the second modification of the sixth embodiment of the present invention.
  • FIGS. 1 (a) and 1 (b) are explanatory views of a dry etching method according to the first embodiment of the present invention.
  • a gas supply port 2 and a gas exhaust port 3 are provided in a reaction chamber 1 capable of maintaining pressure in a reduced pressure state.
  • a plasma generation device 4 for bringing the gas supplied from the gas supply port 2 into a plasma state is provided in the upper part of the reaction chamber 1.
  • an electrode 6 serving as a mounting table for an object to be processed, specifically, a WC alloy substrate or a substrate having a WC alloy on its surface (hereinafter collectively referred to as a WC substrate) 7 is provided at the bottom of the reaction chamber 1. It is provided via an insulator 5.
  • An RF (radio wave) power source 8 for applying a bias to the electrode 6 is provided outside the reaction chamber 1.
  • C1 gas is introduced into the reaction chamber 1 from the gas supply port 2 and is introduced into the plasma generator 4.
  • plasma 50 composed of C1 gas is generated, and at the same time, R is applied to the WC substrate 7 by the RF power supply 8.
  • FIG. 1 (b) shows a state where the WC substrate is being etched by the dry etching method of the present embodiment. As shown in FIG.
  • the power is omitted in the figure.
  • Chlorine radicals (see Chlorine radical 9 in Fig. 1 (a)) are isotropically scattered from the plasma.
  • chlorine radicals are partially physically adsorbed or chemically adsorbed on the etching cache surface (the bottom and side walls of the WC substrate 11 and the top and sides of the resist pattern 12), or are reflected on the etched surface. It is thought that it returns to the gas phase or is re-released after being physically adsorbed once on the etching surface.
  • the spontaneous chemical reaction due to chlorine radicals adsorbed on the etching cage surface is less likely to occur than in the case of fluorine.
  • the boiling points of WC1 and WC1 are 275.6 ° C and 346.7 respectively.
  • etching that can realize a high-precision vertical shape without a bowing shape is formed on the surface and inside of a WC alloy that is a substance mainly composed of tungsten and carbon. It can be carried out.
  • chlorine molecules are used as the gas containing chlorine atoms.
  • either hydrogen chloride molecules or boron trichloride molecules are used instead of chlorine molecules.
  • a mixture of two gases or a mixture of all of chlorine molecules, hydrogen chloride molecules and boron trichloride molecules may be used.
  • the dry etching method of the present invention can also be carried out using other chlorine-containing gases other than those described above, but in general, the larger the molecules, the lower the vapor pressure and, in some cases, the solid source. And the cost of using it increases.
  • the flow rate of the gas containing oxygen is less than 10% of the total gas flow rate of the gas containing chlorine and oxygen, respectively.
  • the flow rate of the gas containing oxygen may be set to a desired flow rate within a range of approximately 50% or less of the total gas flow rate.
  • oxygen gas can be efficiently supplied by using any of oxygen molecules, nitric oxide molecules, sulfur oxide molecules, carbon oxide molecules, or a mixture of two or more thereof as the gas containing oxygen atoms.
  • a gas containing chlorine atoms and oxygen atoms such as COC1, C1FO, NOCl, NO Cl, SO
  • the plasma discharge when a rare gas is mixed with a gas containing chlorine atoms, the plasma discharge can be further stabilized by the effect of the rare gas addition, so-called process flow. Indo can be expanded easily. Specifically, by mixing the rare gas at a flow rate several times higher than that of chlorine gas, the electron temperature in the plasma is regulated by the electron temperature of the rare gas, so that the plasma discharge is stabilized.
  • Ar may be used as the rare gas.
  • He, Ne, Ar, Kr, Xe or Rn as the rare gas, the electron temperature in the plasma can be increased or decreased.
  • the electron temperature of a plasma consisting of a rare gas greatly depends on the first ion energy of the rare gas, when a plasma with a high electron temperature is desired to be generated, a rare gas with a lower atomic number is replaced with a low electron temperature. If you want to generate this plasma, use a rare gas with a higher atomic number. Of course, two or more rare gases may be mixed and used.
  • a reactive ion etching (RIE) apparatus such as a parallel plate type, a dual frequency parallel plate RIE apparatus, a magnetron-enhanced RIE (MERIE) apparatus, Inductively coupled plasma (ICP) etching equipment, electron cyclotron resonance (ECR) etching equipment, UHF plasma etching equipment, or magnetic neutral loop discharge (NLD) etching equipment, etc. It may be used.
  • RIE reactive ion etching
  • MIE magnetron-enhanced RIE
  • ICP Inductively coupled plasma
  • ECR electron cyclotron resonance
  • UHF plasma etching equipment UHF plasma etching equipment
  • NLD magnetic neutral loop discharge
  • the range of etching conditions of this embodiment is, for example, a gas flow rate of several tens to several lOOccZmin (room temperature), and a pressure of 0.1 to 20 Pa.
  • the high-frequency plasma for generating plasma is 100 to several kW, and the RF bias is 100 to LkW
  • a force for etching a WC substrate mainly composed of tungsten and carbon is used.
  • Either a substance or a semiconductor substance may be an etching target.
  • the substance containing tungsten and carbon further contains nitrogen, the same effect as in the present embodiment can be obtained. That is, the same effect as that of the present embodiment can be obtained even when a WCN alloy or a WNC alloy is an etching target.
  • the dry etching method of this embodiment is different from that of the first embodiment in that a mixed gas of a gas containing chlorine and a gas containing fluorine is used instead of the gas containing chlorine.
  • dry etching is performed on a material mainly composed of tungsten and carbon by generating plasma.
  • FIG. 2 is an explanatory diagram of the dry etching method according to the second embodiment of the present invention, and shows a state during the etching of the WC substrate by the dry etching method.
  • the etching apparatus shown in FIG. 1 (a) is used as in the first embodiment.
  • the case of using chlorine molecules as the gas containing chlorine and CF as the gas containing fluorine is used.
  • the WC substrate 11 is etched.
  • W etching by F + ions is added to the etching of W by C1 + ions as in the first embodiment, this embodiment is different from the case of the first embodiment.
  • WC1 reattaches to the processing side surface of the WC substrate 11 and the side surface of the resist pattern 12 to form the sidewall protective film 14.
  • a part of WF which is another reaction product, contributes to the formation of the side wall protective film 14, but most of the other is reflected by the surface of the side wall protective film 14 and removed. Therefore, the etching reaction of the pattern side wall of the WC substrate 11 due to the ions 15c obliquely incident on the WC substrate 11 is prevented by the side wall protective film 14.
  • a vertical etching shape can be realized on the surface and inside of the WC substrate 11.
  • the salt By using a gas containing fluorine in combination with a gas containing fluorine, high-speed etching can be realized not only by the effect of chlorine but also by the effect of fluorine.
  • chlorine molecules are used as the gas containing chlorine atoms.
  • either hydrogen chloride molecules or boron trichloride molecules are used instead of chlorine molecules.
  • a mixture of two gases or a mixture of all of chlorine molecules, hydrogen chloride molecules and boron trichloride molecules may be used.
  • the dry etching method of the present invention can also be carried out using other chlorine-containing gases other than those described above, but in general, the larger the molecules, the lower the vapor pressure and, in some cases, the solid source. And the cost of using it increases.
  • a hydrogen fluoride carbon gas such as CH 3 F may be used. Or mixed with gas containing fluorine atoms.
  • Chlorine fluoride gas such as 3 may be used.
  • F fluorine fluoride gas
  • F gas or the like diluted to about 3% by volume with He in advance.
  • each of the gases containing fluorine atoms has a small molecular weight, the gas can be supplied easily and a low-cost etching force can be obtained.
  • fluorine atoms with respect to the total flow rate of the gas containing chlorine atoms and the gas containing fluorine atoms are used. It is more preferable to set the mixing ratio of the gas containing about 30% by volume to about 70% by volume, preferably about 20% by volume to about 80% by volume. In this way, it is possible to obtain the effect of a high etching rate, which is an advantage of the gas containing fluorine atoms without losing the side wall protective film formation effect by WC1, which is a characteristic of the gas containing chlorine atoms.
  • the C is removed as CO or CO by oxygen radicals and oxygen ions.
  • the flow rate of the gas containing oxygen may be set to a desired flow rate within a range of approximately 50% or less of the total gas flow rate.
  • oxygen can be efficiently supplied by using any of oxygen molecules, nitrogen oxide molecules, sulfur oxide molecules, carbon oxide molecules, or a mixture of two or more thereof as the gas containing oxygen atoms.
  • a gas containing oxygen atoms for example, a gas containing chlorine atoms and oxygen atoms, for example, COC1, C1FO, NOCl, NOCl, SOC1, SOCI, or SOHC1 is used.
  • the plasma discharge when rare gas is mixed with a gas containing chlorine atoms and a gas containing fluorine atoms, the plasma discharge can be further stabilized due to the effect of the rare gas addition.
  • the so-called process window can be easily enlarged.
  • the electron temperature in the plasma is regulated by the electron temperature of the rare gas, so that the plasma discharge is stabilized.
  • Ar may be used as the rare gas.
  • He, Ne, Ar, Kr, Xe or Rn as the rare gas, the electron temperature in the plasma can be increased or decreased.
  • the electron temperature of a plasma that also has a rare gas force depends greatly on the first ion energy of the rare gas, if you want to generate a plasma with a high electron temperature, use a lower noble gas with a lower atomic number. When you want to generate electron temperature plasma, you can use a rare gas with a larger atomic number. Of course, two or more rare gases may be mixed and used.
  • a reactive ion etching (RIE) apparatus such as a parallel plate type, a dual frequency parallel plate type RIE apparatus, a magnetron-enhanced RIE (MERIE) apparatus,
  • RIE reactive ion etching
  • MIE magnetron-enhanced RIE
  • a misaligned etching apparatus such as an inductively coupled plasma (ICP) etching apparatus, an electron cyclotron resonance (ECR) etching apparatus, a UHF plasma etching apparatus, or a magnetic neutral discharge (NLD) etching apparatus may be used.
  • ICP inductively coupled plasma
  • ECR electron cyclotron resonance
  • NLD magnetic neutral discharge
  • a force for etching a WC substrate mainly composed of tungsten and carbon is used.
  • a metal having a surface containing a substance containing tungsten and carbon Either an insulating material or a semiconductor material may be an etching target.
  • the substance containing tungsten and carbon further contains nitrogen, the same effect as in the present embodiment can be obtained. That is, the same effect as that of the present embodiment can be obtained even when a WCN alloy or a WNC alloy is an etching target.
  • the dry etching method of the present embodiment is different from that of the first embodiment in that a mixed gas of a gas containing chlorine and at least one of a gas containing bromine and a gas containing iodine is used instead of the gas containing chlorine.
  • This is the dry etching of a substance mainly composed of tandastain and carbon by generating plasma.
  • FIGS. 3A and 3B are explanatory views of a dry etching method according to the third embodiment of the present invention, showing a state in the middle of etching of a WC substrate by the dry etching method.
  • FIG. 3 (a) shows a case where the sidewall protective film is formed thin
  • FIG. 3 (b) shows a case where the sidewall protective film is formed thick.
  • the etching apparatus shown in FIG. 1 (a) is used.
  • the side wall protective film 14 prevents the etching reaction on the pattern side wall of the WC substrate 11 due to the ions 16c obliquely incident on the WC substrate 11.
  • a vertical etching shape can be realized on the surface and inside of the WC substrate 11 as shown in FIG. 3A, and the sidewall protective film 14 is relatively thick.
  • a forward tapered etching shape can be realized on the surface and inside of the WC substrate 11.
  • the mixing ratio of the gas containing bromine atoms or the gas containing iodine atoms to the total flow rate of the gas containing chlorine atoms and the gas containing bromine atoms or the gas containing iodine atoms is about 30. It is preferable to set it in the range of about volume% or less. Further, even when the mixing ratio is less than about 5%, the side wall protective film formation effect by the gas containing bromine atoms or the gas containing iodine atoms can be sufficiently obtained.
  • a mixing ratio of a gas containing chlorine atoms and a gas containing bromine atoms a mixing ratio of a gas containing chlorine atoms and a gas containing iodine atoms, or a gas containing chlorine atoms and a gas containing bromine atoms and iodine atoms
  • the thickness of the side wall protective film can be changed by changing the mixing ratio with the gas containing gas. For example, if each mixing ratio is less than 5%, a relatively thin sidewall protective film 14 can be formed as shown in FIG. On the other hand, by increasing the respective mixing ratios, the thickness of the sidewall protective film 14 can be increased.
  • the thickness of the sidewall protective film 14 gradually increases, and when it exceeds about 10%, as shown in FIG. However, the thickness of the sidewall protective film 14 is increased to such an extent that etching with a forward tapered shape can be realized.
  • the following effects can be obtained. That is, a gas containing a bromine atom in a gas containing a chlorine atom or By mixing and using at least one of the gas containing iodine atoms, the side wall protection effect of the processed part can be increased by the effect of bromine or iodine, so that not only the vertical shape but also the forward tapered shape is etched. Can be processed to obtain
  • the gas containing bromine atoms will be described by taking Br as an example.
  • HBr HBr
  • HI gas containing iodine atoms
  • a bromine atom or an iodine atom such as IC1, C1F Br, C1F I, or BrCl.
  • the same etching rate increase effect by F as in the second embodiment can be obtained at the same time.
  • the C is CO or CO by oxygen radicals and oxygen ions.
  • the flow rate of the gas containing oxygen is equal to the total gas flow rate of the gas containing each of chlorine, bromine (or iodine) and oxygen. Even if it is less than 10%, it occurs sufficiently.
  • the flow rate of the gas containing oxygen may be set to a desired flow rate within a range of approximately 50% or less of the total gas flow rate.
  • oxygen can be supplied efficiently.
  • a gas containing oxygen atoms for example, a gas containing chlorine atoms and oxygen atoms, such as COC1, C1FO, NOCl, NOCl, SOC1, SO
  • the addition of the gas containing oxygen atoms described above greatly helps to enlarge the process window.
  • the plasma discharge when a rare gas is mixed with a gas containing chlorine atoms and a gas containing bromine atoms or iodine atoms, the plasma discharge can be further stabilized due to the effect of the rare gas addition, so-called.
  • the process window can be easily enlarged. Specifically, by mixing the rare gas at a flow rate several times higher than that of the chlorine gas, the electron temperature in the plasma is regulated by the electron temperature of the rare gas, so that the plasma discharge is stabilized.
  • Ar may be used as the rare gas.
  • He, Ne, Ar, Kr, Xe or Rn as the rare gas, the electron temperature in the plasma can be increased or decreased.
  • the electron temperature of the plasma which is a rare gas catalyst, greatly depends on the first ion energy of the rare gas
  • a rare gas with a smaller atomic number is used.
  • a rare gas having a higher atomic number may be used.
  • two or more rare gases may be mixed and used.
  • a reactive ion etching (RIE) apparatus such as a parallel plate type, a dual frequency parallel plate RIE apparatus, a magnetron-enhanced RIE (MERIE) apparatus,
  • RIE reactive ion etching
  • MIE magnetron-enhanced RIE
  • a misaligned etching apparatus such as an inductively coupled plasma (ICP) etching apparatus, an electron cyclotron resonance (ECR) etching apparatus, a UHF plasma etching apparatus, or a magnetic neutral discharge (NLD) etching apparatus may be used.
  • ICP inductively coupled plasma
  • ECR electron cyclotron resonance
  • NLD magnetic neutral discharge
  • the force for etching a WC substrate mainly composed of tungsten and carbon has a substance containing tungsten and carbon on the surface instead. Any metal, insulating material, or semiconductor material may be used as an etching target.
  • the substance containing tungsten and carbon further contains nitrogen, the same effect as in the present embodiment can be obtained. That is, the same effect as that of the present embodiment can be obtained even when a WCN alloy or a WNC alloy is used as an etching target.
  • FIGS. 4A to 4F are cross-sectional views showing respective steps of a mold manufacturing method according to the fourth embodiment of the present invention.
  • a resist pattern 22 is formed on the WC alloy substrate 21 as shown in FIG. 4 (b).
  • the resist pattern 22 is usually formed from a lithography technique.
  • a resist pattern 22 is formed.
  • the pattern is transferred to the WC alloy substrate 21 by performing dry etching on the WC alloy substrate 21 with plasma generated from a gas catalyst containing at least chlorine atoms as a mask.
  • dry etching is performed using any dry etching apparatus,
  • a WC composite with a micro-concave structure with vertical sidewalls is provided.
  • a WC alloy mold made of the gold substrate 21 is formed.
  • etching conditions in which the sidewall protective film is formed thick are used.
  • dry etching is performed on the WC alloy substrate 21 by a plasma in which a gas force containing at least chlorine atoms is also generated, so that the WC alloy substrate The pattern may be transferred to 21.
  • a fine structure having a forward tapered shape as an etching cross-sectional shape is formed on the WC alloy substrate 21.
  • the sidewall protective film 24b is deposited to a thickness greater than that necessary to prevent side wall etching by ions, so that the opening area of the processed portion becomes narrower as the etching progresses.
  • a WC alloy mold comprising a WC alloy substrate 21 having a fine concavo-convex structure having a forward tapered side wall is formed.
  • the fine structure forming method and the mold manufacturing method according to the present embodiment include a step of forming a resist pattern on an object containing tungsten and carbon, and the resist pattern as a mask. And etching the object with a plasma generated from a gas containing at least chlorine atoms. That is, since the present embodiment uses the dry etching method of the present invention (first to third embodiments), the surface and the inside of an object containing tandastene and carbon are highly accurate with no bowing shape. It becomes possible to process into a vertical shape or a highly accurate forward tapered shape. Therefore, it is possible to reliably form a mold having minute irregularities having a vertical sectional shape or a forward tapered sectional shape.
  • the force using a resist pattern as an etching mask may be replaced with a hard mask made of an insulating film.
  • any of chlorine molecules, hydrogen chloride molecules, or boron trichloride molecules, or a mixture of two or more of them may be used.
  • these molecules are relatively small molecules, it is easy to handle gas supply and the like, and chlorine can be efficiently generated by plasma discharge. Therefore, it is cheaper and more precise for substances containing tungsten and carbon.
  • Vertical shape processing can be performed every time. As a result, it is possible to manufacture a mold having minute irregularities having a highly accurate vertical side wall at a lower cost.
  • the etching rate is increased due to the effect of addition of oxygen, so that high-precision vertical shape processing can be performed at high speed on a substance containing tungsten and carbon.
  • FO NOCl, NOCl, SOC1, SOCI, SOHC1, or the like may be used.
  • the plasma discharge can be made more stable due to the effect of the addition of a rare gas, so that highly accurate vertical shape calorie can be more stably performed on a substance containing tungsten and carbon. it can. As a result, it is possible to more stably manufacture a mold having minute irregularities having high-precision vertical side walls.
  • a gas containing fluorine atoms it is preferable to mix a gas containing fluorine atoms with a gas containing chlorine atoms.
  • the etching rate can be improved by the effect of fluorine that does not impair the vertical shape characteristics due to chlorine. For this reason, it is possible to perform high-precision vertical shape processing at a higher speed with respect to a substance containing tungsten and carbon. As a result, it is possible to manufacture a mold having fine unevenness having a highly accurate vertical side wall at a higher speed.
  • the gas containing fluorine atoms CF
  • fluorocarbon gas such as C F or hydrogen fluoride carbon gas such as CHF or CH F
  • a gas containing chlorine atoms and fluorine atoms for example, a chlorine fluoride gas such as C1F may be used.
  • fluorine atom F may be used as the gas to be included, but in this case, for safety, 3% by volume with He in advance.
  • fluorine atoms are included with respect to the total flow rate of the gas containing chlorine atoms and the gas containing fluorine atoms. It is more preferable to set the gas mixing ratio in the range of about 30% to about 70% by volume, which is preferably set in the range of about 20% to about 80% by volume. In this way, it is possible to obtain the effect of a high etching rate, which is an advantage of the gas containing fluorine atoms without losing the side wall protective film formation effect by WC1, which is a characteristic of the gas containing chlorine atoms.
  • a gas containing a bromine atom or a gas containing an iodine atom it is preferable to mix at least one of a gas containing a bromine atom or a gas containing an iodine atom with a gas containing a chlorine atom.
  • a gas containing a bromine atom or a gas containing an iodine atom it is preferable to mix at least one of a gas containing a bromine atom or a gas containing an iodine atom with a gas containing a chlorine atom.
  • I, HI or the like may be used as the gas.
  • Gas containing at least one of iodine atoms such as IC1, C1F Br, C1F I or BrCl
  • a molecular gas such as elemental and halogen carbon may be used.
  • the same etching rate increase effect by F as in the second embodiment can be obtained at the same time.
  • a gas containing chlorine atoms or a gas containing bromine atoms or iodine When mixing at least one of the gas containing elemental atoms, the mixing ratio of the gas containing bromine atoms or the gas containing iodine atoms to the total flow rate of the gas containing chlorine atoms and the gas containing bromine atoms or the gas containing iodine atoms Is preferably set to a range of about 30% by volume or less. Further, even when the mixing ratio is less than about 5%, the effect of forming a sidewall protective film by a gas containing bromine atoms or a gas containing iodine atoms can be sufficiently obtained.
  • a mixing ratio of a gas containing chlorine atoms and a gas containing bromine atoms a mixing ratio of a gas containing chlorine atoms and a gas containing iodine atoms, or a gas containing chlorine atoms and a gas containing bromine atoms and iodine atoms
  • the thickness of the side wall protective film can be changed by changing the mixing ratio with the gas containing gas. For example, if the mixing ratio is less than 5%, a relatively thin sidewall protective film 24a can be formed as shown in FIG. 4 (c). For this reason, it is possible to perform etching processing in which the processing cross section becomes a vertical shape.
  • the thickness of the sidewall protective film can be increased. Specifically, when the mixing ratio is 8% or more, the thickness of the sidewall protective film gradually increases, and when it exceeds about 10%, the processed cross section becomes as shown in FIG. The thickness of the sidewall protective film 24b increases to such an extent that etching with a forward tapered shape can be realized.
  • a reactive ion etching (RIE) apparatus such as a parallel plate type, a two-frequency parallel plate type RIE apparatus, a magnetron-enhanced RIE (MERIE) apparatus,
  • RIE reactive ion etching
  • MIE magnetron-enhanced RIE
  • a misaligned etching apparatus such as an inductively coupled plasma (ICP) etching apparatus, an electron cyclotron resonance (ECR) etching apparatus, a UHF plasma etching apparatus, or a magnetic neutral discharge (NLD) etching apparatus may be used.
  • ICP inductively coupled plasma
  • ECR electron cyclotron resonance
  • NLD magnetic neutral discharge
  • force for etching a WC substrate mainly composed of tungsten and carbon.
  • Either a substance or a semiconductor substance may be an etching target.
  • the substance containing tungsten and carbon further contains nitrogen, the same effect as in the present embodiment can be obtained. That is, the same effect as that of the present embodiment can be obtained even when a WCN alloy or a WNC alloy is an etching target.
  • the mold according to the present embodiment is the same as that of the mold described in the fourth embodiment. Obtained by the method.
  • FIG. 5 (a) is an overall cross-sectional view of the mold according to this embodiment.
  • an object 32 containing tungsten and carbon, such as a WC alloy is formed on a base substrate 31.
  • minute irregularities having a vertical shape (a shape having a wall perpendicular to the substrate surface) or a forward taper shape are formed by the dry etching method of the first to third embodiments.
  • Figures 5 (b) to 5 (d) and 5 (e) to (g) show an enlarged view of the minute irregularities on the mold surface (area surrounded by the alternate long and short dash line) shown in Figure 5 (a). Is shown.
  • the mold according to the present embodiment is formed by performing dry etching with plasma generated from a gas containing at least chlorine atoms on a material containing tungsten and carbon, As shown in Fig. 5 (b) to (d), a mold having micro unevenness with a vertical cross-sectional shape without a bowing shape, and a forward taper cross-sectional shape as shown in Figs. 5 (e) to (g) It is possible to realize a mold having minute irregularities having
  • a substrate 31a (Fig. 5 (b) or Fig. 5 (e)) also having a metal or conductive material force
  • a substrate 31b (Fig. 5 (c)) also having an insulating material force
  • the substrate 31c made of a semiconductor material (Fig. 5 (d) or Fig. 5 (g)) may be selected according to the application that may be misaligned.
  • the substrate 31a may be used as the base substrate 31 when it is used with electricity flowing on the mold surface.
  • the substrate 31b may be used as the base substrate 31.
  • any one of a chlorine molecule, a hydrogen chloride molecule, a boron trichloride molecule, or a mixture of two or more of them is used. May be.
  • handling such as gas supply becomes easy, and chlorine can be efficiently generated by plasma discharge. Therefore, it is possible to provide a mold having fine irregularities having a highly accurate vertical side wall at a lower cost.
  • a gas containing oxygen atoms it is preferable to mix a gas containing oxygen atoms with a gas containing chlorine atoms used for mold production.
  • the etching rate is increased due to the effect of addition of oxygen, so that a module with minute irregularities having a highly accurate vertical side wall is provided.
  • gas containing chlorine atoms and oxygen atoms such as COC1, C1FO
  • the plasma discharge can be further stabilized by the effect of adding a rare gas, so that a mold having minute irregularities having a highly accurate vertical side wall can be more stably manufactured and provided.
  • a gas containing a fluorine atom it is preferable to mix a gas containing a fluorine atom with a gas containing a chlorine atom used for mold manufacture.
  • the etching rate can be improved by the effect of fluorine without impairing the vertical shape processing characteristics by chlorine. For this reason, it is possible to manufacture and provide a mold having minute unevenness having a highly accurate vertical side wall even faster.
  • a gas containing chlorine atoms and fluorine atoms such as C1F
  • a chlorine fluoride gas such as 3 may be used.
  • the side wall protection effect of the processed part can be increased due to the effect of bromine or iodine. Therefore, the side wall of the high-precision forward taper shape is not sufficient only by the mold having the minute unevenness having the high-precision vertical side wall. It is also possible to provide a mold having minute irregularities.
  • a gas containing bromine atoms or a gas containing iodine atoms instead of mixing at least one of a gas containing bromine atoms or a gas containing iodine atoms, a gas containing chlorine atoms and at least one of bromine atoms or iodine atoms, for example, IC1, C1F Br, C1F I or BrCl Etc. may be used.
  • a mold having fine irregularities processed with high precision can be stably supplied at low cost.
  • a normal force forward taper to the substrate surface in the cross-sectional shape of the convex portion, it is It is possible to freely create minute irregularities having side walls up to a short side) in a wc alloy or the like.
  • the processing dimension limit of the micro unevenness in the mold according to the present embodiment greatly depends on the lithography technology for forming the resist pattern, and processing up to the current minimum dimension of about 50 nm is possible.
  • the mold according to the present embodiment can be used in a wide range of fields up to nanoimprinting that pursues the minimum manufacturing capacity of optical circuit components with large processing dimensions.
  • the mold of this embodiment since the mold of this embodiment has a vertical or forward taper processing cross section without a bowing shape, the concave portion of the mold is not subjected to clogging with the material on the side where the irregularities are transferred. The mold can be easily peeled off.
  • the surface of the mold according to the present embodiment is made of metal, a Teflon coat, or a silicon coupling material. What is necessary is just to process. Further, the surface treatment material may be arbitrarily selected according to the substance on the side where the unevenness is transferred by the action of the mold.
  • a substance containing tungsten and carbon is used as the surface material of the mold.
  • the substance further contains nitrogen, the same effect as in the present embodiment is obtained. can get. That is, the same effect as that of the present embodiment can be obtained even when a WCN alloy or a WNC alloy is used.
  • a waveguide substrate having an optical waveguide In the manufacture of a waveguide substrate having an optical waveguide, it is generally used in a semiconductor manufacturing process, and a desired substrate is formed on a glass substrate using lithography and dry etching. A method of forming a fine groove pattern is employed. However, in this method, since it is necessary to form a groove pattern using an expensive apparatus for all glass substrates, a waveguide substrate cannot be obtained at low cost.
  • a V-groove for holding an optical fiber, an optical element insertion groove orthogonal to the V-groove, an optical waveguide, and the like on the surface of a glass substrate that is a soft plastic material conventionally has been proposed (see, for example, Patent Document 1).
  • a molding die (mold) for molding a waveguide substrate can be processed, it is possible to mass-produce waveguide substrates having the same shape simply by performing hot press molding using the molding die. Thus, an inexpensive waveguide substrate can be obtained.
  • the glass molding technique described above is generally used as a glass lens manufacturing process, and it is necessary to perform the molding force at high temperature and high pressure. Therefore, heat resistance, rigidity, and durability are required for molding dies.
  • the above-mentioned molding dies are made of a hard metal made of, for example, an alloy of tungsten and carbon (tungsten carbide). It is common to form.
  • a fine pattern is formed by dry etching using an etching gas on a thin film such as a tungsten carbide film or a silicon tungsten film.
  • a thin film such as a tungsten carbide film or a silicon tungsten film.
  • the processed surface of the cemented carbide is a simple curved surface.
  • the molding die can be easily manufactured by machining such as grinding with a diamond.
  • machining such as grinding with a diamond.
  • the longer production time results in lower productivity and higher costs.
  • this electrical discharge machining is suitable for the fabrication of molding dies for automobiles and electrical products, but when applied to the fabrication of waveguide substrates, it forms fine patterns with high precision on cemented carbide. It becomes difficult.
  • a conventional method for forming a fine pattern on a tungsten-based material by dry etching is generally employed for etching a thin film in a semiconductor process.
  • a fluorine-based etching gas for example, CHF, CF or
  • the etching rate of tungsten carbide is extremely high.
  • the etching depth in thin film etching is as small as 1 micron or less, so a low etching rate is almost no problem! /.
  • the temperature of the forming material that also has the cemented carbide strength as the etching time elapses.
  • the temperature changes in an unstable manner, so that it becomes difficult to control the etching amount and the etching selectivity with respect to the etching mask is deteriorated.
  • the shape of the etching mask changes due to side etching, there arises a problem that it is difficult to obtain a desired fine pattern shape while processing accuracy is extremely poor.
  • FIGS. 8 (a) to 8 (c) and FIGS. 9 (a) and 9 (b) are cross-sectional views showing respective steps of a method for manufacturing a molding die according to a comparative example.
  • a rectangular cross section is formed on a forming material 40 made of a cemented carbide mainly composed of tungsten and carbon by a lift-off method using gold, cobalt, or nickel as a material.
  • An etching mask 41 having a predetermined pattern having a shape is formed.
  • the compound force forming material 40 generated by etching adheres to the side wall of the convex portion formed by etching, the side wall becomes difficult to be etched. Therefore, as shown in FIG.
  • the sectional shape of the projection obtained by removing the etching mask 41 after completion is not the sectional shape having a desired vertical side wall.
  • the etching depth is set to be relatively large in the dry etching for the forming material 40
  • the etching time becomes longer, and the etching mask 41 is gradually etched as the long etching time elapses.
  • the cross-sectional shape of the etching mask 41 changes from a rectangular initial cross-sectional shape indicated by a broken line in FIG. 9A or 9B to a shape indicated by a solid line, respectively.
  • the temperature of the forming material 40 rises and the etching rate becomes unstable.
  • the phenomenon that the compound produced by etching adheres to the side wall during etching (the side wall of the convex portion of the forming material 40) and the side wall is etched becomes remarkable.
  • the etching selectivity to the etching mask 41 is extremely deteriorated and the transfer of the mask shape is deteriorated due to the difference in the adhesion of the compounds and the occurrence of side etching.
  • the cross-sectional shape of the protrusion formed by etching is as shown in FIG.
  • a manufacturing method of a molding die (mold) according to a sixth embodiment of the present invention and a modification thereof to be described later has been made in view of the above-described conventional problems, and contains tungsten and carbon as main components. It is an object of the present invention to produce a molding die in which a fine pattern having a rectangular cross-sectional shape is formed with high accuracy on a forming material made of a cemented carbide as described above with high productivity and at low cost.
  • FIG. 10 is a diagram showing a schematic cross-sectional configuration of an ICP plasma etching apparatus for embodying the molding die manufacturing method of the present embodiment.
  • an ICP plasma etching apparatus having a well-known configuration is used, and the workpiece W, which is a forming material, is dry-etched using the ICP plasma etching apparatus, and a waveguide substrate or the like is used.
  • an upper electrode 202 that also has a coil force and a lower electrode 203 that serves as a workpiece mounting table are provided so as to face each other.
  • An ICP plasma RF power source 204 is connected to the upper electrode 202, and a bias RF power source 207 is connected to the lower electrode 203.
  • a cooling water pipe 208 for cooling the workpiece is provided inside the lower electrode 203.
  • a workpiece W which is a forming material of a molding die to be formed, is placed in a positioned state.
  • Work W is a cemented carbide obtained by sintering an alloy consisting of tungsten and carbon at high temperature and high pressure, and contains, for example, a metal such as cobalt at several to 10 and several at% as a binder. .
  • a cemented carbide obtained by plasma sintering and containing almost no binder can also be used.
  • the etching gas generator 210 that generates the etching gas includes a hydrogen gas iodide as a reactive gas in the first gas tank 211A, and an argon gas as an inert gas from the second gas tank 212 and a third gas tank.
  • the oxygen gas is introduced from the tank 213 while adjusting the flow rate to a predetermined ratio (mixing ratio) described later, and the three introduced gases are mixed to generate a desired etching gas.
  • the generated etching gas is supplied into the processing chamber 201.
  • FIG. 12 is a perspective view showing a molding die 214 to be formed by the plasma etching apparatus.
  • a portion 214b is formed.
  • the configuration of the molding die is shown in a simplified manner, but in reality, the rail-like convex portion 214 b is formed as a fine pattern.
  • the etching mask 217 having a shape corresponding to the rail-shaped protrusion 214b is formed in advance on the surface.
  • the etching mask 217 is formed as follows. That is, after forming a resist having a pattern obtained by inverting the desired rail-shaped convex pattern on the surface of the workpiece W, nickel is deposited on the entire surface of the workpiece W by a sputtering method, and then, An etching mask 217 made of nickel, for example, is formed by removing the resist and unnecessary nickel deposited thereon by a lift-off method.
  • the etching mask 217 is formed as a predetermined fine pattern in which strip shapes having a width of 5 / z m and a thickness of 2 m are arranged at high density.
  • the vacuum pump 209 is driven to The inside is evacuated to a predetermined degree of vacuum, and then the etching gas generator 210 is driven to introduce the etching gas into the processing chamber 201.
  • the ming gas is a mixture of hydrogen iodide gas, argon gas and oxygen gas.
  • hydrogen iodide gas: argon gas: oxygen gas 25cc: 50cc: The mixing ratio is set to 5cc.
  • the driving power is supplied from the ICP plasma RF power source 204 to the upper electrode 202 and the driving power is supplied from the nose RF power source 207 to the lower electrode 203.
  • the etching gas is excited in the processing chamber 201, and high-density plasma radicals are generated around the upper electrode 202 (ICP portion). Therefore, as shown in FIG.
  • the plasma radical 218 force attracted to the lower electrode 203 is perpendicularly incident on the surface of the workpiece W including the etching mask 217, and thereby dry etching of the workpiece W proceeds.
  • the dry etching conditions are as follows: the supply power from the ICP plasma RF power supply 204 to the upper electrode 202 is 500 W, the supply power from the bias RF power supply 207 to the lower electrode 203 is 300 W, and the processing chamber 201 Set the internal pressure to 2 Pa, the cooling temperature of the work W by cooling water pipe 208 to 25 ° C, and the etching time to 20 minutes.
  • hydrogen iodide gas force that is a reactive gas in the etching gas is generated.
  • the generated reactive radical force works on the surface of the work W, that is, the alloy surface of tungsten and carbon. Dry etching proceeds by removing the generated tungsten iodide and carbon iodide.
  • the argon gas which is an inert gas in the etching gas, functions to accelerate etching by removing etching compounds generated on the etching surface.
  • the etching mask 217 is removed by wet etching using an acid such as hydrochloric acid or nitric acid.
  • an acid such as hydrochloric acid or nitric acid.
  • the etching rate is increased to about 2 OOnm per minute by using hydrogen iodide gas as a reaction gas in the etching gas. . That is, compared with the etching rate of 1 ⁇ m per 20 minutes in the case of dry etching using a conventional fluorine-based gas, The great rate has improved to about 4 / zm in 20 minutes.
  • the etching rate is further improved by mixing oxygen gas in the etching gas. This is because reactive radicals generated from the etching gas containing oxygen gas are combined with carbon in the workpiece W to become carbonized oxygen, and as a result, the etching reaction is accelerated.
  • the etching rate when oxygen gas is mixed into the etching gas depends on the mixing ratio (flow rate ratio) of oxygen gas to hydrogen iodide gas, as shown in FIG. To do. Specifically, when the mixing ratio of oxygen gas to hydrogen iodide gas is set in the range of 0.15 to 0.6, a large etching rate of about 300 nm or more per minute can be obtained. When the mixing rate is set to 0.3, the maximum etching rate of about 500 nm per minute can be obtained. Therefore, when the mixing ratio is set to 0.3, it is possible to etch to a depth of about 10 m by etching for 20 minutes.
  • an etching time of 200 minutes is required for etching to a depth of 10 m. That is, according to the present embodiment, the etching time for obtaining a desired etching depth can be greatly shortened as compared with the prior art.
  • an etching gas in which oxygen gas is mixed with hydrogen iodide gas even when a relatively large etching depth of about 10 ⁇ m is set.
  • the etching rate is remarkably improved as described above, and it is possible to prevent the etching mask 217 from undergoing a shape change due to side etching due to a long etching time. . That is, the etching mask 217 can maintain a rectangular initial cross-sectional shape.
  • the etching process can be completed within a short etching time so that the amount of etching compound generated does not increase.
  • the argon gas mixed in the etching gas as an inert gas effectively removes the etching compound generated on the surface of the workpiece W by sputtering.
  • 214b is 10 Even though it has a relatively large height of about / zm and is formed as a high-density pattern, the side wall of the rail-like convex portion 214b is exactly perpendicular to the base 214a. That is, the rail-like convex portion 214b is formed to have a desired rectangular cross-sectional shape.
  • the shape of the rail-shaped convex portion 214b can be controlled with high accuracy. Furthermore, in the dry etching of the present embodiment, the etching time can be greatly shortened, so that the molding die 214 can be manufactured with high productivity, and the cost can be reduced.
  • hydrogen iodide gas is used as a reaction gas containing iodine atoms.
  • an appropriate amount of trifluoromethane iodide may be used.
  • other easily gasified iodides may be used.
  • other inert gases such as neon may be used as the inert gas.
  • a gas such as nitrogen is used in addition to these inert gases. It may be added.
  • the etching mask 217 the force exemplified in the case of forming with nickel in this embodiment.
  • the etching mask may be formed using another metal that is difficult to be etched such as cobalt or copper. ,.
  • Fig. 14 shows a schematic cross-sectional configuration of a hot press molding machine for manufacturing a waveguide substrate.
  • a pneumatic cylinder 220 is provided at the ceiling of the hot press molding machine 219.
  • an upper press head 222 incorporating a heater 221 is provided at the lower end of the pneumatic cylinder 220. It is attached.
  • a molding die 214 manufactured by dry etching according to the present embodiment is fixed to the lower surface of the upper press head 222 as an upper molding die in such a manner that the rail-like convex portion 214b faces downward.
  • a lower press head 224 with a built-in heater 223 is installed in the lower part of the hot press molding machine 219, and a holding mold 228 guides the upper surface of the lower press head 224.
  • a molding material 229 having a soft and flexible material force is placed on the upper surface of the holding mold 228.
  • the molding material 229 is mounted on the upper surface of the holding mold 228.
  • the inside is replaced with a nitrogen atmosphere, and the heating heaters 221 and 223 are further driven so that the inside is desired. Heated to a temperature, for example 450 ° C to 630 ° C.
  • the pneumatic cylinder 220 is operated and the upper press head 222 is lowered, and the molding die 214 fixed to the lower surface of the upper press head 222 is pressed against the molding material 229 with a predetermined pressure. It is done. As a result, a groove corresponding to the rail-like convex portion 214 b of the molding die 214 is formed on the surface of the molding material 229 by plastic deformation.
  • the inside of the hot press molding machine 219 is cooled to a temperature in the range from room temperature to 150 ° C, and then manufactured. The waveguide substrate is taken out from the hot press molding machine 219.
  • the molding die 214 can be processed with high accuracy by the manufacturing method of the present embodiment, it is possible to mass-produce waveguide substrates of the same shape simply by performing hot press molding using the molding die 214. Therefore, an inexpensive waveguide substrate can be provided.
  • the cemented carbide mainly composed of tungsten and carbon can be dry etched at an extremely high etching rate, and the etching with respect to the etching mask can be performed. Since the selectivity is extremely improved, for example, a molding die 230 having a cross-sectional shape as shown in FIG. 15 (a) can be manufactured with high accuracy. As shown in FIG. 15 (a), in the molding die 230, rail-like convex portions 230c having inclined side walls 230b on both sides are formed on the base 230a.
  • the side wall 230b of the inclined surface to be formed and the rail-shaped convex portion are formed on the surface of the work W to be the molding die 230.
  • An etching mask 231 having a shape corresponding to 230c is formed.
  • the slope portions 23 la on both sides which become both side walls of the etching mask 231 are set to a desired thickness in consideration of the set etching time.
  • the lower end portion (tip portion) of the slope portion 231a of the etching mask 231 is removed by etching before the elapse of a predetermined time when the rail-like convex portion 230c is formed at the center portion of the workpiece W, and thereafter the rail-like convex portion
  • the entire slope portion 231a is removed by etching.
  • the portion for forming the rail-like convex portion 230c in the etching mask 231 remains.
  • the sloped side wall 230b is formed on the workpiece W, so that the cross-sectional shape shown in FIG. A molding die 230 having the following can be obtained.
  • molding die manufacturing method using dry etching of the present embodiment it becomes possible to dry-etch the cemented carbide at a high etching rate.
  • Molding die for hot press molding In addition to the use for manufacturing 214, glass molding die, high-strength fine tool, wear-resistant fine tool, corrosion-resistant fine tool or heat-resistant fine tool It can be suitably applied to applications such as the production of molds such as tools.
  • FIG. 16 is a diagram showing a schematic cross-sectional configuration of an ICP plasma etching apparatus for embodying the manufacturing method of the molding die of this modification.
  • the same components as those in the ICP plasma etching apparatus used in the sixth embodiment shown in FIG. the ICP plasma etching apparatus used in this modification differs from the ICP plasma etching apparatus used in the sixth embodiment shown in FIG. 10 in that hydrogen iodide gas as a reactive gas is used.
  • the first gas tank 211B for supplying chlorine gas as a reactive gas is provided in place of the first gas tank 211A for supplying gas.
  • the etching gas generator 210 that generates the etching gas also uses the first gas tank 211B as the reactive gas, the chlorine gas as the reactive gas, and the argon gas as the inert gas from the second gas tank 212. Then, oxygen gas is introduced from the third gas tank 213 while adjusting the flow rate to a predetermined ratio (mixing ratio) described later, and the three introduced gases are mixed to generate a desired etching gas, The generated etching gas is supplied into the processing chamber 201.
  • the manufacturing method of the molding die of this modified example uses chlorine gas as a reactive gas in the etching gas.
  • 11 is basically the same as the sixth embodiment shown in FIGS. 11A to 11C and FIG.
  • an etching mask 217 having a shape corresponding to the rail-shaped convex portion 214b is formed in advance on the surface of the cake W.
  • the method for forming the etching mask 217 is the same as in the sixth embodiment, for example.
  • etching gas generator 210 is driven to introduce the etching gas into the processing chamber 201.
  • This etching gas is a mixture of chlorine gas, argon gas, and oxygen gas as described above.
  • chlorine gas: argon gas: oxygen gas 25cc, depending on the gas flow rate per minute. : 50cc: Set to a mixing ratio of 5 cc.
  • driving power is supplied from the ICP plasma RF power source 204 to the upper electrode 202, and driving power is supplied from the nose RF power source 207 to the lower electrode 203.
  • the etching gas is excited in the processing chamber 201, and high-density plasma radicals are generated around the upper electrode 202 (ICP portion). Therefore, as shown in FIG.
  • the plasma radial 218 force attracted to the electrode 203 is incident perpendicularly to the surface of the workpiece W including the etching mask 217, and thereby dry etching of the workpiece W proceeds.
  • the reactive radical force generated by the chlorine gas that is the reactive gas in the etching gas is generated on the surface of the workpiece W, that is, the alloy surface of tungsten and carbon.
  • the argon gas which is an inert gas in the etching gas functions to remove the etching compound generated on the etching surface and promote the etching.
  • the etching mask 217 is removed by wet etching using an acid such as hydrochloric acid or nitric acid, as in the sixth embodiment.
  • a desired molding die 214 as shown in FIG. 11 (c) and FIG. 12, that is, a molding die 214 in which rail-shaped convex portions 214b having a predetermined pattern are formed on the surface of the base 214a is obtained.
  • the etching rate is increased to about 200 nm per minute by using chlorine gas as the reaction gas in the etching gas.
  • the etching rate of this modification is markedly improved to about 4 m in 20 minutes compared to the etching rate of 1 ⁇ m in 20 minutes in the case of dry etching using conventional fluorine-based gas.
  • the etching rate is further improved by mixing oxygen gas in the etching gas. This is because the reactive radical generated by the etching gas force including oxygen gas is combined with carbon in the workpiece W to become oxygen carbide, and as a result, the etching reaction is promoted.
  • the etching rate when oxygen gas is mixed into the etching gas depends on the mixing ratio (flow rate ratio) of oxygen gas to chlorine gas, as shown in FIG. .
  • the mixing ratio of oxygen gas to chlorine gas is set in the range of 0.15 to 0.6, a large etching rate of about 150 to 200 nm or more can be obtained per minute.
  • the mixing ratio is set to 0.3, the maximum etching rate of about 350 nm per minute can be obtained. Therefore, when the mixing ratio is set to 0.3, it is possible to etch to a depth of about 7 m by etching for 20 minutes.
  • the base plate 214 is similar to the sixth embodiment.
  • the rail-shaped convex portion 214b formed on 214a has a relatively large height of about 10 m and is formed as a high-density pattern
  • the side wall of the rail-shaped convex portion 214b is the base 214a. Is exactly perpendicular to. That is, the rail-shaped convex portion 214b is formed to have a desired rectangular cross-sectional shape.
  • the shape control of the rail-like convex portion 214b can be performed with high accuracy. Furthermore, in the dry etching of this modification, the etching time is greatly shortened, so that the molding die 214 can be manufactured with high productivity and the cost can be reduced.
  • the etching mask 217 is formed of nickel in the present modification, but instead of this, the etching mask may be formed using another metal that is difficult to be etched such as copper or copper. Yo ...
  • a method of manufacturing a waveguide substrate by hot press molding using a molding die 214 in which rail-shaped convex portions 214b having a desired rectangular cross section are formed with high density and high accuracy is the same as the sixth embodiment shown in FIGS. 14 and 15 (a) to 15 (c).
  • FIG. 18 is a diagram showing a schematic cross-sectional configuration of an ICP plasma etching apparatus for embodying the manufacturing method of the molding die of this modification.
  • the same components as those in the ICP plasma etching apparatus used in the sixth embodiment shown in FIG. As shown in FIG. 18, the ICP plasma etching apparatus used in this modification differs from the ICP plasma etching apparatus used in the sixth embodiment shown in FIG. 10 in that hydrogen iodide gas as a reactive gas is used.
  • the first gas tank 211C for supplying hydrogen bromide gas as a reactive gas is provided in place of the first gas tank 211A for supplying gas.
  • the etching gas generator 210 that generates the etching gas has the first gas tank 211C force as well as the hydrogen bromide gas as the reactive gas and the argon gas as the inert gas from the second gas tank 212.
  • the oxygen gas is introduced from the third gas tank 213 while adjusting the flow rate to a predetermined ratio (mixing ratio) described later, and the three introduced gases are mixed to produce a desired etching gas. Then, the generated etching gas is supplied into the processing chamber 201.
  • the manufacturing method of the molding die of this modification is basically shown in Figs. 11 (a) to 11 (c) and Fig. 11 except that hydrogen bromide gas is used as the reactive gas in the etching gas. This is the same as the sixth embodiment shown in FIG.
  • an etching mask 217 having a shape corresponding to the rail-shaped convex portion 214b is formed in advance on the surface of the cake W.
  • the method for forming the etching mask 217 is the same as in the sixth embodiment, for example.
  • the vacuum pump 209 is driven to move the inside of the processing channel 201.
  • the etching gas generator 210 is driven to introduce the etching gas into the processing chamber 201.
  • the driving power is supplied from the ICP plasma RF power source 204 to the upper electrode 202 and the driving power is supplied from the nose RF power source 207 to the lower electrode 203.
  • the etching gas is excited in the processing chamber 201, and high-density plasma radicals are generated around the upper electrode 202 (ICP portion). Therefore, as shown in FIG.
  • the plasma radial 218 force attracted to the electrode 203 is incident perpendicularly to the surface of the workpiece W including the etching mask 217, and thereby dry etching of the workpiece W proceeds.
  • the reactive radical force generated from the hydrogen bromide gas acts on the surface of the work W, that is, the alloy surface of tungsten and carbon.
  • dry etching proceeds as tungsten bromide and carbon bromide are removed.
  • the argon gas that is an inert gas in the etching gas functions to remove the etching compound generated on the etching surface and promote the etching.
  • the etching mask 217 is removed by wet etching using an acid such as hydrochloric acid or nitric acid, as in the sixth embodiment.
  • an acid such as hydrochloric acid or nitric acid
  • the etching rate is increased to about 20 Onm per minute by using hydrogen bromide gas as the reaction gas in the etching gas. .
  • the etching rate of this modification is significantly improved to about 4 m in 20 minutes compared to the etching rate of 1 ⁇ m in 20 minutes in the case of dry etching using conventional fluorine-based gas.
  • the etching rate is further improved by mixing oxygen gas in the etching gas. . This is because the reactive radical generated by the etching gas force including oxygen gas is combined with carbon in the workpiece W to become oxygen carbide, and as a result, the etching reaction is promoted.
  • the etching rate when oxygen gas is mixed into the etching gas is equal to the mixing ratio (flow rate ratio) of oxygen gas to hydrogen bromide gas, as shown in FIG. Dependent.
  • the mixing ratio of oxygen gas to hydrogen bromide gas is set in the range of 0.15 to 0.6, a large etching rate of about 150 to 200 nm or more can be obtained in one minute.
  • the mixing ratio is set to 0.3, a maximum etching rate of about 300 nm per minute can be obtained. Therefore, when the mixing ratio is set to 0.3, it is possible to etch to a depth of about 6 m by etching for 20 minutes.
  • an etching time of 200 minutes is required for etching to a depth of 10 ⁇ m. That is, according to the present modification, the etching time for obtaining a desired etching depth can be greatly shortened as compared with the prior art.
  • an etching gas in which oxygen gas is mixed with hydrogen bromide gas even when the etching depth is set to a relatively large size of about 10 ⁇ m. Since the etching rate is remarkably improved as described above, it is possible to prevent the etching mask 217 from being changed in shape due to side etching due to the longer etching time. That is, the etching mask 217 can maintain a rectangular initial cross-sectional shape. In addition, the etching process can be completed within an etching time as short as the amount of the etching compound generated does not increase. However, the argon gas mixed in the etching gas as an inert gas effectively removes the etching compound generated on the surface of the workpiece W by sputtering.
  • the base plate 214 is similar to the sixth embodiment.
  • the rail-shaped convex portion 214b formed on 214a has a relatively large height of about 10 m and is formed as a high-density pattern
  • the side wall of the rail-shaped convex portion 214b is the base 214a. Is exactly perpendicular to. That is, the rail-shaped convex portion 214b has a desired rectangular cross-sectional shape. To be formed.
  • the shape control of the rail-like convex portion 214b can be performed with high accuracy. Furthermore, in the dry etching of this modification, the etching time is greatly shortened, so that the molding die 214 can be manufactured with high productivity and the cost can be reduced.
  • the force using hydrogen bromide gas as the reaction gas containing bromine atoms instead of or in addition to this, bromine gas, boron tribromide, carbon tetrabromide or An appropriate amount of methyl bromide may be used. Alternatively, other bromides that are easily gasified may be used. In addition to the argon gas exemplified in this modification, other inert gases such as neon may be used as the inert gas. In addition, a gas such as nitrogen in addition to these inert gases. May be added. Further, for the etching mask 217, the force exemplified in the case of being formed of nickel in this modification example. Alternatively, the etching mask may be formed using another metal that is difficult to be etched such as cobalt or copper. ,.
  • the dry etching method of the present invention is useful as a method for finely processing a substance containing tandasten and carbon such as a WC alloy with high accuracy.
  • the fine structure forming method of the present invention is very useful as a method for forming a fine pattern with high accuracy on a substance containing tungsten and carbon such as a WC alloy.
  • the dry etching method and the microstructure formation method of the present invention as a technology for dramatically improving and facilitating the processing of WC alloy as a super hard material are in the MEMS (Micro-Electro-Mechanical System) field. Can open up a big path to the use of WC alloys, etc.
  • MEMS Micro-Electro-Mechanical System
  • the mold manufacturing method of the present invention is necessary for manufacturing a mold having high-precision micro unevenness using a material containing tungsten and carbon such as a WC alloy as a mold base material. It is essential.
  • the mold of the present invention has a configuration in which ultra-high precision micro unevenness is provided on a WC alloy or the like which is a cemented carbide. It can be used not only as a mold for nanoimprinting but also as a high-precision micro-concave mold with high durability in all fields.
  • a forming material having a cemented carbide strength mainly composed of tungsten and carbon is formed of an iodine atom, a chlorine atom or a bromine atom.
  • Dry etching is performed by plasma radicals generated from an etching gas obtained by mixing a first gas containing any of the above, a second gas having an inert gas force, and a third gas having an oxygen gas. For this reason, even when a pattern having a relatively large etching depth is formed at a high density, a desired rectangular cross section in which the side wall of the convex portion formed by etching is exactly perpendicular to the base. And a molding die having a small surface roughness of the etched surface can be produced with high accuracy. In addition, since the etching time can be greatly shortened, it is possible to reduce the cost by producing a molding die with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Optical Integrated Circuits (AREA)
  • Ceramic Products (AREA)

Abstract

 WC基板7に対して、塩素原子を含むガスから生成されたプラズマ50によりエッチングを行なう。

Description

明 細 書
ドライエッチング方法、微細構造形成方法、モールド及びその製造方法 技術分野
[0001] 本発明は、タングステン (W)及び炭素(C)を含む物質を微細加工する技術並びに タングステン (W)及び炭素(C)を含む物質を構成要素とするモールド及びその形成 方法に関し、さらにはタングステンと炭素とを主成分とする超硬合金を形成材料として 、微細なパターン形状を有する成形金型を好適に製造する方法に関する。
背景技術
[0002] 近年、インターネットの普及に伴 、、高速通信インフラとして光通信システムの必要 性が高まってきている。この高速通信システムを一般家庭に導入し、さらに普及させ るためには、光通信システムを構成する光回路部品の低価格を実現する技術が必要 である。
[0003] 光回路部品の主構成要素である光導波路は、一般に、半導体プロセスに代表され るリソグラフィ技術とドライエッチング技術とを用いてガラス基板上に所望の溝パター ンを形成することによって作ることができる。ところが、この方法では高価な製造装置 が必要となるため、光導波路部品の低コストィ匕が困難であるという問題があった。そ のため、特許文献 1に記載されているように、所望の凹凸構造が形成されたモールド (所謂、金型)をガラス力 なる軟ィ匕材料表面に圧着させることによって、ガラス表面 上に所望の光導波路等を形成する方法が注目されている。この方法によれば、モー ルドさえあれば所望の光導波路を大量生産することが可能となり、光回路部品を安 価に提供することができる。しかしながら、このガラス形成方法は高温高圧状態で行う ことが必要であるため、モールドには耐熱性、剛性及び耐久性が要求される。この条 件を満たす材料として、超硬金属であるタングステン (W)と炭素 (C)とを主成分とす る WC合金がある。
[0004] WC合金表面に微細なパターンを形成する方法としては、特許文献 1に記載されて いるようなダイヤモンドバイトによる切削加工法がある力 当該カ卩工法によってモール ド上に刻み込める凹凸の寸法は数ミクロン以上であり、また、当該加工法は加工均一 性についても限界がある。ダイヤモンドバイトによる切削加工により実現可能な凹凸 寸法の範囲のみならず 1 μ m以下の凹凸寸法での加工を実現する方法として、リソグ ラフィ技術とドライエッチング技術とを用いる微細加工技術が有効である。この方法で は、微小凹凸の形成が可能なだけはでなぐ加工バラツキが少なぐダイヤモンドバイ トによる切削加工法よりも低コストでモールドを製造できると言う利点がある。
[0005] WC合金のドライエッチング技術として、特許文献 2には、 CF又は SFにより WC
4 6 合金をドライエッチングできることが開示されて 、る。
[0006] 以下、図 6 (a)及び (b)を参照しながら、従来のドライエッチング方法にっ 、て説明 する。図 6 (a)に示すように、減圧状態で圧力を保持することが可能な反応室 101〖こ はガス供給口 102が設けられていると共にガス排気口 103が設けられている。また、 反応室 101の上部には、ガス供給口 102から供給されたガスをプラズマ状態にする プラズマ発生装置 104が設けられている。また、反応室 101の下部には、被処理物、 具体的には WC合金基板又は WC合金を表面に備えた基板 (以下、合わせて WC基 板と称する) 107の載置台となる電極 106が絶縁体 105を介して設けられている。反 応室 101の外部には、電極 106にバイアスを印加するための RF (ラジオ波)電源 10 8が設けられている。
[0007] 次に、エッチングガスとして CFを用いた場合を例として、図 6 (a)に示すエッチング
4
装置の動作について説明する。図 6 (a)に示すように、 CFをガス供給口 102から反
4
応室 101内に導入し、プラズマ発生装置 104により CF力もなるプラズマ 150を生成
4
すると同時に、 RF電源 108により WC基板 107に RFバイアスを印加する。その結果 、プラズマ 150中に、 C、 F又は CF (n= l〜4)のラジカル 109及びそれらのイオン 1 10が生成される。ここで、通常、ドライエッチングに用いるプラズマ 150中では、プラ ズマ 150により生成される原子数 ·分子数比率は、 [F] > [CF ]》[C]となる。ラジカ ル 109は等方的に拡散して WC基板 107に到達する力 イオン 110はプラズマ 150と WC基板 107との間で加速されるので、 WC基板 107に対してほぼ垂直に入射する。 特に、 F原子を含む F+イオン及び CFn+イオンが WC基板 107に入射する場合には、 WCの結合を切断し、 Wは WF (x= l〜6)として放出される。一方、 Cは CF (y= l
〜4)として再放出される。 [0008] 図 6 (b)を参照しながら、 WC基板表面におけるエッチング反応をさらに詳細に説明 する。図 6 (b)に示すように、 WC基板 111上にレジストパターン 112が形成されて!ヽ る。レジストパターン 112をマスクとして、 F+又は CF+であるイオン 113a及び 113bを 用いて WC基板 111に対してエッチングを行うと、 WC基板 111を構成する Wは WF (x= l〜6) 114として放出される。このとき、エッチングにより形成された WC基板 11 1のパターン側壁力 以下に述べる理由によって、弓なりになった形状つまりボウイン グ(Bowing)形状になる。
[0009] WC基板 111のエッチングにおいて、ほとんどのイオンは、イオン 113aのように、 W C基板 111に対してほぼ垂直に入射する力 基本的にイオンはエネルギー広がり(ィ オンエネルギー角度分布)を持っているために、イオン 113bのように、 WC基板 111 に対して斜めに入射するイオンが存在する。従って、 WC基板 111に対して垂直に入 射するイオン 113aにより、レジストパターン 112をエッチングマスクとして WC基板 11 1の異方性 (垂直)エッチングが実現される。しかしながら、 WC基板 111に対して斜 めに入射するイオン 113bの衝撃により、 WC基板 111のパターン側壁がエッチングさ れ、結果的に当該パターン側壁が図 6 (b)に示すようなボウイング形状になってしまう
[0010] 次に、従来の WC合金への微細構造形成方法及びそれを用いたモールドの製造 方法につ!、て、図 7 (a)〜 (d)を参照しながら説明する。
[0011] 図 7 (a)に示すように、 WC合金基板 121を用意した後、図 7 (b)に示すように、 WC 合金基板 121上にレジストパターン 122を形成する。レジストパターン 122は、通常、 リソグラフィ技術により形成される。次に、図 7 (c)に示すように、レジストパターン 122 をマスクとして WC合金基板 121に対してパターン転写を行う。その際、パターン転写 はドライエッチング技術により行われる。
[0012] 前記の従来のドライエッチング技術を用いると、プラズマ中から WC合金基板 121 に入射するイオン 123はエネルギー広がりを持っているため、 WC合金基板 121表 面に垂直に入射する成分 A以外に、当該表面に対して角度を持って斜めに入射す る成分、つまり斜入射成分 B及び Cが存在する。そのため、これらの斜入射イオンによ り、 WC合金基板 121のパターン側壁がエッチングされる結果、図 7 (c)に示すように 、エッチング断面形状は、所謂、ボウイング形状になる。
[0013] 次に、レジストパターン 122をアツシング除去した後、洗浄を実施する。これにより、 図 7 (d)に示すように、表面及び内部に微細な凹凸構造を備えた WC合金基板 121 力 なるモールドが形成される。
[0014] 尚、モールドを用いた加工を行う従来技術としては、 S. Y. Chou等により提案され て 、るナノインプリントリソグラフィ (例えば特許文献 3及び非特許文献 1参照)等のナ ノインプリント法という技術がある。ナノインプリント法は、半導体ウェハ上に形成され たレジスト薄膜にモールドを押圧することにより、微細なレジストパターンを形成する 技術であって、最小寸法としてナノオーダの微細パターンを形成することを目的とし て現在も開発中の技術である。ナノインプリント法に用いられる従来のモールドの微 細構造形成部には、加工が容易な SiO膜又は Si N膜などが用いられている。
2 3 4
特許文献 1 :特許第 3152831号公報
特許文献 2:特開平 1― 98229号公報
特許文献 3:米国特許 5772905号公報
非特許文献 1 : Stephen Y. Chou他、 Appl. Phys. Lett., Vol. 67、 1995年、 p.3114- 311 6
特許文献 4:特開平 2— 94520号公報
発明の開示
発明が解決しょうとする課題
[0015] し力しながら、従来の CF又は SF によるドライエッチング方法では、前述のように、
4 6
パターン底部だけではなくパターン側壁もエッチングされて当該側壁がボウイング形 状となるため、垂直エッチング形状が得られず高性能な加工ができな 、と 、う問題が あった。また、従来のドライエッチング方法による加工は、 WC合金表面及びその内 部に高精度な微細構造を形成できないという問題を有していた。その結果、高精細 微細構造を備えた WC合金モールドを製造できな ヽと 、う大きな問題があった。
[0016] 前記に鑑み、本発明は、パターン側壁のエッチングを防止して垂直エッチング形状 を実現できる WC合金のドライエッチング方法を提供することを目的とする。また、本 発明は、 WC合金表面及びその内部に垂直形状の高精度な微細構造を形成できる 微細構造形成方法を提供することを目的とする。さらに、本発明は、高精細微細構造 を備えた WC合金モールド及びその製造方法を提供することを目的とする。
課題を解決するための手段
[0017] 前記の目的を達成するため、本発明に係るドライエッチング方法は、タングステンと 炭素とを含む物体に対して、塩素原子を含むガス力 生成されたプラズマを用いて エッチングを行なう。
[0018] 本発明のドライエッチング方法によると、タングステンと炭素とを含む物体の表面及 び内部に、ボウイング形状の無 、高精度垂直形状又は高精度順テーパ形状を実現 できるエッチング力卩ェが可能となる。尚、タングステンと炭素とを含む物体としては、 W C合金又は WCを主成分とする (Wと Cとの合計組成が 50at%以上である)物体等が ある。
[0019] 本発明のドライエッチング方法において、前記塩素原子を含むガスは、塩素分子、 塩化水素分子若しくは三塩化硼素分子の!/、ずれか又はそれらの 2つ以上の混合物 力もなることが好ましい。このようにすると、これらの分子は比較的小さな分子であるた め、ガス供給等の取り扱いが容易になると共に、プラズマ放電により塩素を効率良く 生成することができる。
[0020] 本発明のドライエッチング方法にぉ 、て、前記プラズマは、前記塩素原子を含むガ スと酸素原子を含むガスとの混合ガス力 生成されることが好まし 、。このようにすると 、酸素の添加効果により、タングステンと炭素とを含む物体のエッチングレートを高く することができる。この場合、前記酸素原子を含むガスは、酸素分子、酸化窒素分子 、酸ィヒ硫黄分子若しくは酸ィヒ炭素分子のいずれか又はそれらの 2つ以上の混合物 力もなることが好ましい。このようにすると、効率良く酸素を供給することができる。
[0021] 本発明のドライエッチング方法において、前記塩素原子を含むガスは酸素原子を 含むことが好ましい。このようにすると、酸素の添加効果により、タングステンと炭素と を含む物体のエッチングレートを高くすることができる。
[0022] 本発明のドライエッチング方法にぉ 、て、前記プラズマは、前記塩素原子を含むガ スと希ガスとの混合ガスカゝら生成されることが好ましい。このようにすると、希ガス添カロ 効果により、プラズマ放電をさらに安定ィ匕させることができるので、所謂プロセスウィン ドウ (適用可能なプロセス条件幅)を容易に拡大することができる。
[0023] 本発明のドライエッチング方法にぉ 、て、前記プラズマは、前記塩素原子を含むガ スと塩素原子以外のハロゲン原子を含むガスとの混合ガスから生成されてもょ ヽ。ま た、前記ハロゲン原子を含むガスは、弗素原子を含むガス、臭素原子を含むガス若 しくはヨウ素原子を含むガスの 、ずれか又はそれらの 2つ以上の混合ガスであっても よい。具体的には、弗素原子を含むガスを混合させた場合には、塩素による垂直形 状加工特性を損なうことなぐ弗素の効果によりエッチングレートを向上させることがで きる。また、臭素原子を含むガス又はヨウ素原子を含むガスを混合させた場合には、 臭素又はヨウ素の効果により加工部の側壁保護効果を増大させることができるため、 垂直形状加工を実現できるのみならず順テーパ形状加工を実現できる。
[0024] 本発明のドライエッチング方法において、前記塩素原子を含むガスは弗素原子を 含んでいてもよい。具体的には、 CIF 、 CC1F 、 CCl F、 CCl F、 CIF Br又は CIF
3 3 3 2 2 2
I
2 等を用いてもよい。
[0025] 本発明のドライエッチング方法において、前記塩素原子を含むガスは塩素原子以 外のハロゲン原子を含んでいてもよい。具体的には、 CIF、 CC1F 、 CCl F、 CCl F
3 3 3 2
、 IC1、 CIF Br、 CIF I又は BrCl等を用いてもよい。
2 2 2
[0026] 本発明に係る微細構造形成方法は、タングステンと炭素とを含む物体上にマスクパ ターンを形成する工程と、前記マスクパターンを用いて、塩素原子を含むガスから生 成されたプラズマにより前記物体をエッチングする工程とを備えている。
[0027] 本発明の微細構造形成方法によると、タングステンと炭素とを含む物体の表面及び 内部に、ボウイング形状の無!、高精度垂直形状又は高精度順テーパ形状を実現で きるエッチング力卩ェが可能となる。
[0028] 本発明の微細構造形成方法において、前記塩素原子を含むガスは、塩素分子、 塩化水素分子若しくは三塩化硼素分子の!/、ずれか又はそれらの 2つ以上の混合物 力もなることが好ましい。このようにすると、これらの分子は比較的小さな分子であるた め、ガス供給等の取り扱いが容易になると共に、プラズマ放電により塩素を効率良く 生成することができる。このため、タングステンと炭素とを含む物体に対して、より安価 に高精度垂直形状加工を行うことができる。 [0029] 本発明の微細構造形成方法にお!ヽて、前記プラズマは、前記塩素原子を含むガス と酸素原子を含むガスとの混合ガスカゝら生成されることが好まし ヽ。このよう〖こすると、 酸素の添加効果により、タングステンと炭素とを含む物体のエッチングレートが高くな るため、当該物体に対して高速に高精度垂直形状加工を行うことができる。この場合 、前記酸素原子を含むガスは、酸素分子、酸化窒素分子、酸化硫黄分子若しくは酸 化炭素分子の 、ずれか又はそれらの 2つ以上の混合物力 なることが好まし 、。この ようにすると、効率良く酸素を供給することができるため、タングステンと炭素とを含む 物体に対して安定且つ高速に高精度垂直形状加工を行うことができる。
[0030] 本発明の微細構造形成方法にお!、て、前記塩素原子を含むガスは酸素原子を含 むことが好ましい。このようにすると、酸素の添加効果により、タングステンと炭素とを 含む物体のエッチングレートが高くなるため、当該物体に対して高速に高精度垂直 形状加工を行うことができる。
[0031] 本発明の微細構造形成方法にお!ヽて、前記プラズマは、前記塩素原子を含むガス と希ガスとの混合ガスカゝら生成されることが好ましい。このようにすると、希ガス添加効 果により、プラズマ放電をより安定ィ匕させることができるため、タングステンと炭素とを 含む物体に対して安定に高精度垂直形状加工を行うことができる。
[0032] 本発明の微細構造形成方法にお!ヽて、前記プラズマは、前記塩素原子を含むガス と塩素原子以外のハロゲン原子を含むガスとの混合ガスから生成されてもょ ヽ。また 、前記ハロゲン原子を含むガスは、弗素原子を含むガス、臭素原子を含むガス若しく はヨウ素原子を含むガスの 、ずれか又はそれらの 2つ以上の混合ガスであってもよ!/ヽ 。具体的には、弗素原子を含むガスを混合させた場合には、塩素による垂直形状加 ェ特性を損なうことなぐ弗素の効果によりエッチングレートを向上させることができる ため、タングステンと炭素とを含む物体に対して、より一層高速に高精度垂直形状加 ェを行うことができる。また、臭素原子を含むガス又はヨウ素原子を含むガスを混合さ せた場合には、臭素又はヨウ素の効果により加工部の側壁保護効果を増大させるこ とができるため、高精度垂直形状加工を実現できるのみならず高精度順テーパ形状 加工を実現できる。
[0033] 本発明の微細構造形成方法にお!、て、前記塩素原子を含むガスは弗素原子を含 んでいてもよい。具体的には、 C1F、 CC1F、 CC1 F、 CC1 F、 C1F Br又は C1F I
3 3 3 2 2 2 2 等を用いてもよい。
[0034] 本発明の微細構造形成方法にお!、て、前記塩素原子を含むガスは塩素原子以外 のハロゲン原子を含んでいてもよい。具体的には、 C1F、 CC1F、 CC1 F、 CC1 F
3 3 3 2 2
、 IC1、 C1F Br、 C1F I又は BrCl等を用いてもよい。
2 2
[0035] 本発明に係るモールドの製造方法は、塩素原子を含むガスから生成されたプラズ マを用いて、タングステンと炭素とを含む物体をモールドにカ卩ェする。
[0036] 本発明のモールドの製造方法によると、本発明のドライエッチング方法を用いたモ 一ルドの製造方法であるため、タングステンと炭素とを含む物体力 なり且つ垂直断 面形状又は順テーパ断面形状を持つ微小凹凸を備えたモールドを製造できる。
[0037] 本発明のモールドの製造方法において、前記塩素原子を含むガスは、塩素分子、 塩化水素分子若しくは三塩化硼素分子の!/、ずれか又はそれらの 2つ以上の混合物 力もなることが好ましい。このようにすると、これらの分子は比較的小さな分子であるた め、ガス供給等の取り扱いが容易になると共に、プラズマ放電により塩素を効率良く 生成することができる。このため、高精度垂直形状の側壁を有する微小凹凸を備えた モールドをより安価に製造することができる。
[0038] 本発明のモールドの製造方法にぉ 、て、前記プラズマは、前記塩素原子を含むガ スと酸素原子を含むガスとの混合ガス力も生成されることが好まし 、。このようにすると 、酸素の添加効果により、タングステンと炭素とを含む物体のエッチングレートが高く なるため、高精度垂直形状の側壁を有する微小凹凸を備えたモールドを高速に製造 することができる。この場合、前記酸素原子を含むガスは、酸素分子、酸化窒素分子 、酸ィヒ硫黄分子若しくは酸ィヒ炭素分子のいずれか又はそれらの 2つ以上の混合物 力もなることが好ましい。このようにすると、効率良く酸素を供給することができるため 、高精度垂直形状の側壁を有する微小凹凸を備えたモールドを安定且つ高速に製 造することができる。
[0039] 本発明のモールドの製造方法において、前記塩素原子を含むガスは酸素原子を 含むことが好ましい。このようにすると、酸素の添加効果により、タングステンと炭素と を含む物体のエッチングレートが高くなるため、高精度垂直形状の側壁を有する微 小凹凸を備えたモールドを高速に製造することができる。
[0040] 本発明のモールドの製造方法にぉ 、て、前記プラズマは、前記塩素原子を含むガ スと希ガスとの混合ガスカゝら生成されることが好ましい。このようにすると、希ガス添カロ 効果により、プラズマ放電がより安定ィヒするため、高精度垂直形状の側壁を有する微 小凹凸を備えたモールドをより安定に製造することができる。
[0041] 本発明のモールドの製造方法において、前記プラズマは、前記塩素原子を含むガ スと塩素原子以外のハロゲン原子を含むガスとの混合ガスから生成されてもょ ヽ。ま た、前記ハロゲン原子を含むガスは、弗素原子を含むガス、臭素原子を含むガス若 しくはヨウ素原子を含むガスの 、ずれか又はそれらの 2つ以上の混合ガスであっても よい。具体的には、弗素原子を含むガスを混合させた場合には、塩素による垂直形 状加工特性を損なうことなぐ弗素の効果によりエッチングレートを向上させることがで きるため、高精度垂直形状の側壁を有する微小凹凸を備えたモールドをより一層高 速に製造することができる。また、臭素原子を含むガス又はヨウ素原子を含むガスを 混合させた場合には、臭素又はヨウ素の効果により加工部の側壁保護効果を増大さ せることができるため、高精度垂直形状の側壁を有する微小凹凸を備えたモールド だけではなぐ高精度順テーパ形状の側壁を有する微小凹凸を備えたモールドを製 造することができる。
[0042] 本発明のモールドの製造方法において、前記塩素原子を含むガスは弗素原子を 含んでいてもよい。具体的には、 C1F、 CC1F、 CCl F、 CCl F、 C1F Br又は C1F
3 3 3 2 2 2
I
2 等を用いてもよい。
[0043] 本発明のモールドの製造方法において、前記塩素原子を含むガスは塩素原子以 外のハロゲン原子を含んでいてもよい。具体的には、 C1F、 CC1F、 CCl F、 CCl F
3 3 3 2
、 IC1、 C1F Br、 C1F I又は BrCl等を用いてもよい。
2 2 2
[0044] 本発明に係るモールドは、塩素原子を含むガスカゝら生成されたプラズマを用いて、 タングステンと炭素とを含む物体を成形加工することにより製造されている。
[0045] 本発明のモールドによると、本発明のドライエッチング方法を用いて製造されたモ 一ルドであるため、タングステンと炭素とを含む物体力 なり且つ垂直断面形状又は 順テーパ断面形状を持つ微小凹凸を備えたモールドを提供できる。 [0046] 本発明のモールドにおいて、前記塩素原子を含むガスは、塩素分子、塩化水素分 子若しくは三塩化硼素分子の 、ずれか又はそれらの 2つ以上の混合物力 なること が好ましい。このようにすると、これらの分子は比較的小さな分子であるため、ガス供 給等の取り扱いが容易になると共に、プラズマ放電により塩素を効率良く生成するこ とができる。このため、高精度垂直形状の側壁を有する微小凹凸を備えたモールドを より安価に提供できる。
[0047] 本発明のモールドにお 、て、前記プラズマは、前記塩素原子を含むガスと酸素原 子を含むガスとの混合ガスから生成されることが好ましい。このよう〖こすると、酸素の 添加効果により、タングステンと炭素とを含む物体のエッチングレートが高くなるため 、高精度垂直形状の側壁を有する微小凹凸を備えたモールドを高速に製造'提供で きる。この場合、前記酸素原子を含むガスは、酸素分子、酸化窒素分子、酸化硫黄 分子若しくは酸化炭素分子の 、ずれか又はそれらの 2つ以上の混合物力 なること が好ましい。このようにすると、効率良く酸素を供給することができるため、高精度垂 直形状の側壁を有する微小凹凸を備えたモールドを安定且つ高速に製造'提供でき る。
[0048] 本発明のモールドにおいて、前記塩素原子を含むガスは酸素原子を含むことが好 ましい。このようにすると、酸素の添加効果により、タングステンと炭素とを含む物体の エッチングレートが高くなるため、高精度垂直形状の側壁を有する微小凹凸を備えた モールドを高速に製造'提供できる。
[0049] 本発明のモールドにお 、て、前記プラズマは、前記塩素原子を含むガスと希ガスと の混合ガスから生成されることが好ましい。このよう〖こすると、希ガス添加効果により、 プラズマ放電がより安定ィ匕するため、高精度垂直形状の側壁を有する微小凹凸を備 えたモールドをより安定に製造'提供できる。
[0050] 本発明のモールドにお 、て、前記プラズマは、前記塩素原子を含むガスと塩素原 子以外のハロゲン原子を含むガスとの混合ガスカゝら生成されてもよい。また、前記ハ ロゲン原子を含むガスは、弗素原子を含むガス、臭素原子を含むガス若しくはヨウ素 原子を含むガスのいずれか又はそれらの 2つ以上の混合ガスであってもよい。具体 的には、弗素原子を含むガスを混合させた場合には、塩素による垂直形状加工特性 を損なうことなぐ弗素の効果によりエッチングレートを向上させることができるため、 高精度垂直形状の側壁を有する微小凹凸を備えたモールドをより一層高速に製造- 提供できる。また、臭素原子を含むガス又はヨウ素原子を含むガスを混合させた場合 には、臭素又はヨウ素の効果により加工部の側壁保護効果を増大させることができる ため、高精度垂直形状の側壁を有する微小凹凸を備えたモールドだけではなぐ高 精度順テーパ形状の側壁を有する微小凹凸を備えたモールドを提供できる。
[0051] 本発明のモールドにおいて、前記塩素原子を含むガスは弗素原子を含んでいても よい。具体的には、 C1F 、 CC1F 、 CC1 F、 CC1 F 、 C1F Br又は C1F I等を用いて
3 3 3 2 2 2 2
ちょい。
[0052] 本発明のモールドにおいて、前記塩素原子を含むガスは塩素原子以外のハロゲン 原子を含んでいてもよい。具体的には、 C1F 、 CC1F、 CC1 F、 CC1 F 、 IC1、 C1F
3 3 3 2 2 2
Br、 C1F I又は BrCl等を用いてもよい。
2
[0053] 本発明に係る他のドライエッチング方法は、タングステンと炭素とを主成分とする超 硬合金力 なる形成材料に対して、ヨウ素原子、塩素原子又は臭素原子のいずれか を含む第 1のガスと不活性ガス力もなる第 2のガスと酸素ガス力もなる第 3のガスとを 混合してなるエッチングガスカゝら生成されたプラズマラジカルを用いてエッチングを行
[0054] また、本発明に係る他の成形金型 (モールド)の製造方法は、タングステンと炭素と を主成分とする超硬合金からなる形成材料の表面に所定のパターン形状を有するェ ツチングマスクを形成する工程と、ヨウ素原子、塩素原子又は臭素原子のいずれかを 含む第 1のガスと不活性ガス力もなる第 2のガスと酸素ガス力もなる第 3のガスとを混 合してなるエッチングガスカゝら生成されたプラズマラジカルにより前記形成材料をドラ ィエッチングして、前記エッチングマスクに対応した凸部を形成する工程とを備えて いる。
[0055] 本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお!、て、 前記エッチングガスは、前記第 1のガスに対して前記第 3のガスを 0. 15以上で且つ 0. 6以下の混合率で混合してなることが好ましい。
[0056] 本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお!、て、 前記第 1のガスがヨウ素原子を含むガスである場合には前記第 1のガスはヨウ化水素 ガス又はヨウ化トリフルォロメタンであることが好ましぐ前記第 1のガスが塩素原子を 含むガスである場合には前記第 1のガスは塩素ガス又は三塩ィ匕硼素ガスであること が好ましぐ前記第 1のガスが臭素原子を含むガスである場合には臭素ガス又は臭 化水素ガスであることが好まし 、。
[0057] 本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお!、て、 前記第 2のガスはアルゴンであることが好ましい。
発明の効果
[0058] 本発明に係るドライエッチング方法によると、従来の CF又は SF によるドライエツ
4 6
チング方法の場合に生成される WF (x= l〜6)よりも揮発性の低い WC1 (x= l〜6 )がエッチング反応表面から生成されるため、その一部がエッチング途中の物体 (W C合金等のタングステンと炭素とを含む物体)のパターン側壁に再付着する。この W C1の再付着により側壁保護膜が生成されるため、パターン側壁に入射するイオンの 衝撃によるエッチング反応を阻止することができるので、垂直なエッチング断面形状 を実現することができる。
[0059] また、本発明に係るドライエッチング方法によると、塩素を含むガスに弗素を含むガ スを混合することにより、揮発性の低い WC1 (x= l〜6)により側壁保護膜を形成し た状態でパターン底部を塩素だけではなく弗素によっても効率良くエッチングできる ため、より高速な垂直形状エッチングが可能となる。
[0060] さらに、本発明に係るドライエッチング方法によると、塩素を含むガスに臭素を含む ガス又はヨウ素を含むガスのいずれかを混合することにより、 WC1 (x= l〜6)よりも さらに揮発性の低い WBr (x= l〜6)又はWI (x= 1〜6)がエッチング表面から生 成されるため、 WC1だけが生成される場合と比べて、より厚い側壁保護膜を形成す ることができる。従って、垂直形状エッチングだけではなく順テーパ形状エッチングが 実現可能となる。
[0061] 本発明に係る微細構造形成方法によると、タングステンと炭素とを含む物体の表面 及び内部に、垂直断面形状又は順テーパ断面形状を持つ微小凹凸を形成すること ができる。 [0062] 本発明に係るモールドの製造方法によると、タングステンと炭素とを含む物体力もな り且つ垂直断面形状又は順テーパ断面形状を持つ微小凹凸を備えたモールドを製 造できる。
[0063] 本発明に係るモールドによると、タングステンと炭素とを含む物体力もなり且つ垂直 断面形状又は順テーパ断面形状を持つ微小凹凸を備えたモールドを提供できる。
[0064] 尚、本発明に係るドライエッチング方法、微細構造形成方法、モールドの製造方法 及びモールドのそれぞれにおいて、タングステンと炭素とを含む物体にさらに窒素( N)が含まれていても、全く同様の効果が得られる。すなわち、本発明を WCN合金又 は WNC合金等に適用しても、全く同様の効果が得られる。
[0065] 本発明に係る他のドライエッチング方法及び他の成形金型の製造方法によると、ェ ツチングガスにおける第 1のガスとしてヨウ素原子、塩素原子又は臭素原子のいずれ かを含むガスを用いることにより、フッ素系ガスを用いた場合に比較してエッチングレ 一トが格段に向上し、これに加えてさらにエッチングガス中に酸素ガスを混合すること によってエッチングレートが一層向上する。そのため、エッチング深さを例えば 10 m程度の比較的大きな値に設定した場合であっても、短時間でエッチング処理を終 了させることができる。従って、エッチング処理が終了するまでの間、エッチングマスク にサイドエッチングによる形状変化を生じさせることなくエッチングマスクの断面形状 を矩形状の初期断面形状のまま維持できると共に、エッチング処理中におけるエッチ ングイ匕合物の生成量を抑制することができる。また、不活性ガスとしてエッチングガス 中に混入した第 2のガスは、エッチングに伴 、形成材料表面に生成されるエッチング 化合物をスパッタリングにより効果的に除去する。以上のように、例えば 10 /z m程度 の比較的大きな高さを有する凸部を微細パターンとして基台上に形成する場合であ つても、形成後の当該凸部の側壁が基台に対して正確に垂直となる所望の矩形状断 面形状を得ることができる。また、第 2のガスによるエッチングィ匕合物の除去によって エッチング面の表面粗さが小さくなるので、所望形状の成形金型を高精度に製造す ることができる。さらに、エッチング時間が大幅に短縮されることにより、高い生産性で 成形金型を製作でき、それによつてコストの低減を図ることができる。
[0066] また、本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお いては、タングステンと炭素とを主成分とする形成材料のエッチングレートが、ヨウ素 原子、塩素原子又は臭素原子のいずれかを含む第 1のガスに対する第 3のガスであ る酸素ガスの混合率に依存するので、第 1のガスに対する第 3のガスの混合率を 0. 1 5以上で且つ 0. 6以下の範囲に設定すれば、高いエッチングレートを得ることができ る。具体的には、第 1のガスがヨウ素原子を含むガスである場合には 1分間に約 300 nm以上の高いエッチングレートを得ることができ、第 1のガスが塩素原子又は臭素原 子のいずれかを含むガスである場合には 1分間に 150〜200nm程度の高いエッチ ングレートを得ることができる。従って、フッ素系ガスをエッチングガスとするエツチン グにおいて例えば 10 μ mの深さまでエッチングするのに約 200分もの長いエツチン グ時間を要するのに比較して、所望のエッチング深さを得るためのエッチング時間を 大幅に短縮することができる。
[0067] 特に、本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお いて、ヨウ素原子、塩素原子又は臭素原子のいずれかを含む第 1のガスに対する第 3のガスである酸素ガスの混合率を 0. 3に設定した場合には、エッチングレートを最 大化することができる。具体的には、第 1のガスがヨウ素原子を含むガスである場合に はエッチングレートが 1分間に約 500nmの最大値となって、 20分間のエッチングによ つて約 10 mの深さまでエッチングすることが可能となる。また、第 1のガスが塩素原 子を含むガスである場合にはエッチングレートが 1分間に約 350nmの最大値となつ て、 20分間のエッチングによって約 7 μ mの深さまでエッチングすることが可能となる 。さらに、第 1のガスが臭素原子を含むガスである場合にはエッチングレートが 1分間 に約 300nmの最大値となって、 20分間のエッチングによって約 6 μ mの深さまでェ ツチングすることが可能となる。以上のように、ヨウ素原子、塩素原子又は臭素原子の いずれかを含む第 1のガスに対する第 3のガスである酸素ガスの混合率を 0. 3に設 定することによって、所望のエッチング深さを得るためのエッチング時間を一層大幅 に短縮することができる。
[0068] また、本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお いて、第 1のガスがヨウ素原子を含むガスである場合に当該ガスがヨウ化水素ガス又 はヨウ化トリフルォロメタンであると、これらのガスは容易にガス化するので、ドライエツ チングを安定して行うことができる。
[0069] また、本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお いて、第 1のガスが塩素原子を含むガスである場合に当該ガスが塩素ガス又は三塩 化硼素ガスであると、これらのガスは容易にガス化するので、ドライエッチングを安定 して行うことができる。
[0070] また、本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお いて、第 1のガスが臭素原子を含むガスである場合に当該ガスが臭素ガス又は臭化 水素ガスであると、これらのガスは容易にガス化するので、ドライエッチングを安定し て行うことができる。
[0071] また、本発明に係る他のドライエッチング方法及び他の成形金型の製造方法にお いて、第 2のガスである不活性ガスがアルゴンであると、形成材料がタングステンと炭 素とを主成分とする超硬合金であっても、エッチングにより生成される化合物を効率 的にスパッタリングして除去することができる。しかも、アルゴンガスには安価であると いう利点がある。
図面の簡単な説明
[0072] [図 1]図 1 (a)及び (b)は本発明の第 1の実施形態に係るドライエッチング方法の説明 図である。
[図 2]図 2は本発明の第 2の実施形態に係るドライエッチング方法の説明図である。
[図 3]図 3 (a)及び (b)は本発明の第 3の実施形態に係るドライエッチング方法の説明 図である。
[図 4]図 4 (a)〜 (f)は本発明の第 4の実施形態に係る微細構造形成方法及びそれを 用いたモールドの製造方法の各工程を示す断面図である。
[図 5]図 5 (a)は本発明の第 5の実施形態に係るモールドの全体の断面図であり、図 5 (b)〜 (g)はそれぞれ図 5 (a)に示すモールドの表面における微小凹凸を拡大した様 子を示す図である。
[図 6]図 6 (a)及び (b)は従来のドライエッチング方法の説明図である。
[図 7]図 7 (a)〜 (d)は従来の微細構造形成方法及びそれを用いたモールドの製造 方法の各工程を示す断面図である。 [図 8]図 8 (a)〜 (c)は比較例に係る成形金型の製造方法の各工程を示す断面図で ある。
[図 9]図 9 (a)及び (b)は比較例に係る成形金型の製造方法の各工程を示す断面図 である。
[図 10]図 10は本発明の第 6の実施形態に係る成形金型の製造方法を具現化するた めの ICPプラズマエッチング装置の概略断面構成を示す図である。
圆 11]図 11 (a)〜 (c)は本発明の第 6の実施形態及びその変形例に係る成形金型 の製造方法の各工程を示す断面図である。
圆 12]図 12は本発明の第 6の実施形態及びその変形例に係る成形金型の製造方法 により形成すべき成形金型を示す斜視図である。
圆 13]図 13は本発明の第 6の実施形態に係る成形金型の製造方法における、エツ チングガス中のヨウ化水素ガスに対する酸素ガスの混合率とエッチングレートとの関 係を示す図である。
圆 14]図 14は本発明の第 6の実施形態及びその変形例に係る成形金型の製造方法 によって製造された成形金型を用いて導波路基板を製作するための熱プレス成形機 の概略断面構成を示して ヽる。
[図 15]図 15 (a)は本発明の第 6の実施形態及びその変形例に係る成形金型の製造 方法により製造された成形金型の断面構成の他例を示す図であり、図 15 (b)及び (c )は図 15 (a)に示す成形金型を製造するための各工程を示す断面図である。
圆 16]図 16は本発明の第 6の実施形態の第 1変形例に係る成形金型の製造方法を 具現ィ匕するための ICPプラズマエッチング装置の概略断面構成を示す図である。 圆 17]図 17は本発明の第 6の実施形態の第 1変形例に係る成形金型の製造方法に おける、エッチングガス中の塩素ガスに対する酸素ガスの混合率とエッチングレートと の関係を示す図である。
圆 18]図 18は本発明の第 6の実施形態の第 2変形例に係る成形金型の製造方法を 具現ィ匕するための ICPプラズマエッチング装置の概略断面構成を示す図である。 圆 19]図 19は本発明の第 6の実施形態の第 2変形例に係る成形金型の製造方法に おける、エッチングガス中の臭化水素ガスに対する酸素ガスの混合率とエッチングレ ートとの関係を示す図である。
符号の説明
1 汉応室
2 ガス供給口
3 ガス排気口
4 プラズマ発生装置
5 絶縁体
6 電極
7 WC基板
8 RF電源
9 塩素ラジカノレ
10 塩素イオン
11 WC基板
12 レジストノ ターン
13aゝ 13bゝ 13c イオン
14 側壁保護膜
15aゝ 15bゝ 15c イオン
16a、 16b、 16c イオン
21 WC合金基板
22 レジストノターン
23 イオン
24aゝ 24b 側壁保護膜
31 下地基板
31a 金属又は導電性物質からなる基板
31b 絶縁物質からなる基板
31c 半導体物質からなる基板
32 タングステンと炭素とを含む物体
50 プラズマ 201 処理チャンバ
202 上部電極
203 下部電極
204 ICPプラズマ RF電源
207 バイアス RF電源
208 冷却水管路
209 真空ポンプ
210 エッチングガス生成装置
211A 、211B、211C 第 1のガスタンク
212 第 2のガスタンク
213 第 3のガスタンク
214 成形金型
214a 基台
214b レール状凸部
217 エッチングマスク
218 プラズマラジカル
219 熱プレス成形機
220 空圧シリンダ
221 加熱用ヒータ
222 上部プレスヘッド
223 加熱用ヒータ
224 下部プレスヘッド
227 ガイド部材
228 保持型
229 成形素材
230 成形金型
230a 基台
230b 側壁 230c レーノレ状凸咅
231 エッチングマスク
231a 斜面部
W ワーク
発明を実施するための最良の形態
[0074] (第 1の実施形態)
以下、本発明の第 1の実施形態に係るドライエッチング方法について、図面を参照 しながら説明する。
[0075] 図 1 (a)及び (b)は、本発明の第 1の実施形態に係るドライエッチング方法の説明図 である。図 1 (a)に示すように、減圧状態で圧力を保持することが可能な反応室 1には ガス供給口 2が設けられていると共にガス排気口 3が設けられている。また、反応室 1 の上部には、ガス供給口 2から供給されたガスをプラズマ状態にするプラズマ発生装 置 4が設けられている。また、反応室 1の下部には、被処理物、具体的には WC合金 基板又は WC合金を表面に備えた基板 (以下、合わせて WC基板と称する) 7の載置 台となる電極 6が絶縁体 5を介して設けられている。反応室 1の外部には、電極 6にバ ィァスを印加するための RF (ラジオ波)電源 8が設けられて 、る。
[0076] 次に、エッチングガスとして塩素ガスを用いた場合を例として、図 1 (a)に示すエッチ ング装置の動作つまり本実施形態のドライエッチング方法について説明する。図 1 (a )に示すように、 C1ガスをガス供給口 2から反応室 1に導入し、プラズマ発生装置 4に
2
より C1ガスからなるプラズマ 50を生成すると同時に、 RF電源 8により WC基板 7に R
2
Fバイアスを印加する。その結果、プラズマ 50中に、塩素ラジカル (Cl * (n= l、 2) ) 9 と塩素ィォン(じ1 + (11= 1、2) ) 10とが生成される。尚、本願において、「*」は、励起 状態にある原子も含めてラジカルを表すものとする。
[0077] 塩素ラジカル 9は等方的に拡散して WC基板 7に到達するが、塩素イオン 10はブラ ズマ 50と WC基板 7との間で加速されるので、 WC基板 7に対してほぼ垂直に入射す る。このとき、塩素イオン 10がその運動エネルギーにより WCの結合を切断して Wと 反応し、 WC1 (x= l〜6)が放出される。一方、 Cは CC1 (x= l〜4)として除去され る。 [0078] 図 1 (b)を参照しながら、 WC基板表面におけるエッチング反応をさらに詳細に説明 する。図 1 (b)は、本実施形態のドライエッチング方法による WC基板のエッチング途 中の様子を示している。図 1 (b)に示すように、 WC基板 11上にレジストパターン 12を 形成した後、レジストパターン 12をマスクとして、 CI (n= l、 2)イオンであるイオン 13 a、 13b及び 13cを用いて WC基板 11に対してエッチングを行うと、 WC基板 11を構 成する Wは、側壁保護膜 14となる WC1 (x= l〜6)として放出される。尚、図示は省 略している力 塩素ラジカル(図 1 (a)の塩素ラジカル 9参照)は、プラズマ中から等方 的に飛散する。また、塩素ラジカルは、エッチングカ卩ェ表面 (WC基板 11のパターン 底部及び側壁部並びにレジストパターン 12の上部及び側部)に部分的に物理吸着 若しくは化学吸着したり、エッチング加工表面で反射して気相中に戻ったり、又はェ ツチング加工表面に一度物理吸着した後に再放出されたり等するものと考えられる。 ここで、エッチングカ卩ェ表面に吸着した塩素ラジカルによる自発的化学反応は、弗素 の場合と比べると、力なり起こりにくい。
[0079] 一方、塩素イオンのうち、 WC基板 11にほぼ垂直に入射したイオン 13aは、イオン 衝撃エネルギーによって wと Cとの結合を切断すると共に Wと化学結合し、反応生成 物としての WC1を生成する。ここで、 WC1は複数の入射塩素イオンと何回も反応し 、最終的には WC1又は WC1等の分子として気相中に放出される。また、塩素ィォ
5 6
ン 13bのように、エッチング反応表面で Wと化学反応し、その結果、生成された反応 生成物 WC1が気相中に放出されてエッチング途中の WC基板 11のパターン側壁又 はレジストパターン 12の側面に吸着する場合も生じる。特に、 WC1の X= l〜4の場 合に、この付着が生じやすい。 WC1は、 WF に比べて蒸気圧が低いため、付着後 の再放出確率が低くなるので、 WC基板 11のパターン側壁に吸着した WC1は当該 側壁に堆積したまま側壁保護膜 14を形成する。このことは、 WFの沸点力 S17. 5°C (
6
大気圧)であるのに対し、 WC1及び WC1の沸点がそれぞれ 275. 6°C及び 346. 7
5 6
°Cであることからも容易に推察できる。この側壁保護膜 14の存在により、 WC基板 11 に対して斜めに入射してくる塩素イオン 13cによるパターン側壁のエッチングは防止 されるので、当該側壁には従来技術の様なボウイング形状が発生しない。尚、 WC基 板 11中の Cは、反応生成物として CC1 = 1〜4)、特にじじ1の形でエッチング除
4 去される。
[0080] このように本実施形態のドライエッチング方法によると、タングステンと炭素とを主成 分とする物質である WC合金の表面及び内部に、ボウイング形状の無い高精度垂直 形状を実現できるエッチングを行うことができる。
[0081] 尚、本実施形態において、塩素原子を含むガスとして、塩素分子を用いた場合に ついて説明してきたが、塩素分子に代えて、塩化水素分子又は三塩化硼素分子の いずれかを用いてもよい。また、塩素分子、塩化水素分子及び三塩化硼素分子のう ちの 2つのガス又は全てのガスの混合物を用いてもよい。このようにすると、これらの 分子は比較的小さな分子であるため、ガス供給等の取り扱いが容易になると共に、プ ラズマ放電により塩素を効率良く生成することができる。その結果、低コストでガス供 給を行うことができる。もちろん、上記以外のその他の塩素を含むガスを用いても、本 発明のドライエッチング方法は実施可能であるが、一般に大きな分子ほど蒸気圧が 低くなり、場合によっては固体ソースになるため、その供給が困難になると共にそれを 使用するためのコストが増大する。
[0082] また、本実施形態にお!ヽて、塩素原子を含むガスに酸素原子を含むガスを混合す ると、エッチングレートを高くすることができる。これは、 Wが塩素イオンにより除去され た後に残存する Cが CC1 (x= l〜4)として除去されるのに加えて、酸素ラジカル及 び酸素イオンにより当該 Cが CO又は COとして除去される効果が生まれるためであ
2
る。この効果は、酸素を含むガスの流量が、塩素及び酸素のそれぞれを含むガスの 全体ガス流量の 10%未満であっても十分に生じる。また、実用的には、全体ガス流 量のおよそ 50%以下の範囲内で、酸素を含むガスの流量を所望の流量に設定すれ ばよい。また、酸素原子を含むガスとして、酸素分子、酸化窒素分子、酸化硫黄分子 若しくは酸化炭素分子の 、ずれか又はそれらの 2つ以上の混合物を用いると、効率 良く酸素を供給することができる。また、酸素原子を含むガスを混合することに代えて 、塩素原子と酸素原子とを含むガス、例えば COC1、 C1FO 、 NOCl、 NO Cl、 SO
2 3 2
CI、 SO CI又は SO HC1等を用いてもよい。
2 2 2 3
[0083] また、本実施形態にぉ ヽて、塩素原子を含むガスに希ガスを混合すると、希ガス添 加効果により、プラズマ放電をさらに安定ィ匕させることができるので、所謂プロセスゥ インドウを容易に拡大することができる。具体的には、塩素ガスの数倍以上の流量で 希ガスを混合することにより、プラズマ中の電子温度が希ガスの電子温度によって規 定される結果、プラズマ放電が安定ィ匕する。希ガスとしては例えば Arを使用してもよ い。また、希ガスとして He、 Ne、 Ar、 Kr、 Xe又は Rnを選択することにより、プラズマ 中の電子温度を高くすることもできるし又は低くすることもできる。すなわち、希ガスか らなるプラズマの電子温度は希ガスの第 1イオンィ匕エネルギーに大きく依存している ため、高い電子温度のプラズマを生成したいときには、より小さな原子番号の希ガス を、低い電子温度のプラズマを生成したいときには、より大きな原子番号の希ガスを 用いればよい。もちろん、 2つ以上の希ガスを混合して用いても良い。
[0084] また、本実施形態にぉ 、て用いるエッチング装置としては、平行平板型等の反応性 イオンエッチング (RIE)装置、 2周波平行平板型 RIE装置、マグネトロンェンハンスト RIE (MERIE)装置、誘導結合プラズマ(ICP: inductively coupled plasma)エツチン グ装置、電子サイクロトロン共鳴 (ECR)エッチング装置、 UHFプラズマエッチング装 置又は磁気中性線放電 (NLD : neutral loop discharge)エッチング装置等のいずれ のエッチング装置を用いてもよい。また、装置方式により、最適なエッチング条件は異 なるが、本実施形態のエッチング条件の範囲については、例えばガス流量が数 10〜 数 lOOccZmin (室温)であり、圧力が 0. l〜20Paであり、プラズマ生成用高周波パ ヮ一が 100〜数 kWであり、 RFバイアスが 100〜: LkWである。
[0085] また、本実施形態にぉ ヽて、タングステン及び炭素を主成分とする WC基板をエツ チング対象とした力 これに代えて、タングステン及び炭素を含む物質を表面に有す る金属、絶縁物質又は半導体物質のいずれかをエッチング対象としてもよい。また、 タングステン及び炭素を含む物質にさらに窒素が含まれていても、本実施形態と同 様の効果が得られる。すなわち、 WCN合金又は WNC合金をエッチング対象として も、本実施形態と同様の効果が得られる。
[0086] (第 2の実施形態)
以下、本発明の第 2の実施形態に係るドライエッチング方法について、図面を参照 しながら説明する。本実施形態のドライエッチング方法が第 1の実施形態と異なる点 は、塩素を含むガスに代えて、塩素を含むガスと弗素を含むガスとの混合ガスを用い てプラズマを生成することによって、タングステン及び炭素を主成分とする物質をドラ ィエッチングすることである。
[0087] 図 2は、本発明の第 2の実施形態に係るドライエッチング方法の説明図であり、ドラ ィエッチング方法による WC基板のエッチング途中の様子を示している。尚、本実施 形態においては、第 1の実施形態と同様に、図 1 (a)に示すエッチング装置を用いる 。以下、塩素を含むガスとして塩素分子、弗素を含むガスとして CFを用いた場合を
4
例として、本実施形態のドライエッチング方法について説明する。
[0088] 図 2に示すように、本実施形態においては、 WC基板 11上にレジストパターン 12を 形成した後、レジストパターン 12をマスクとして、塩素分子から生成された Cl + (n= l 、 2)イオン又は CF力も生成された F+イオンであるイオン 15a、 15b及び 15cを用い
4
て WC基板 11に対してエッチングを行う。
[0089] 本実施形態においては、第 1の実施形態と同様の C1 +イオンによる Wのエッチング に、 F+イオンによる Wのエッチングが加わるため、本実施形態の方が第 1の実施形態 の場合と比べてより高速に Wをエッチングできる。具体的には、塩素イオン又は弗素 イオンのうち、 WC基板 11にほぼ垂直に入射したイオン 15aは、イオン衝撃エネルギ 一によつて Wと Cとの結合を切断すると共に Wと化学結合し、反応生成物である WC1 (x= 1〜6)又は WF (x= 1〜6)として気相中に脱離する結果、 Wが除去される。ま た、 C1 +イオン又は F+イオンであるイオン 15bにより生じたエッチング反応生成物 WC 1及び WFのうち WC1は WC基板 11の加工側面及びレジストパターン 12の側面に 再付着して側壁保護膜 14を形成する。ここで、もう一つの反応生成物である WFの 一部は側壁保護膜 14の形成に寄与するものの、その他の大部分は側壁保護膜 14 の表面で反射して脱離除去される。従って、 WC基板 11に対して斜めに入射してくる イオン 15cによる WC基板 11のパターン側壁のエッチング反応は、側壁保護膜 14に より防止されること〖こなる。その結果、図 2に示すように、 WC基板 11の表面及び内部 に垂直エッチング形状を実現できる。尚、本実施形態において、 WC基板 11中の C は、 CC1 (y= l〜4)だけではなぐ CF (y= 1〜4)としても除去されるので、結果と y y
して WCのエッチング速度が増大する。
[0090] 以上のように、第 2の実施形態によると、第 1の実施形態と同様の効果に加えて、塩 素を含むガスに弗素を含むガスを混合して使用することにより、塩素の効果によって 垂直エッチング形状を実現できるだけではなぐ弗素の効果によって高速エッチング ち実現することがでさる。
[0091] 尚、本実施形態において、塩素原子を含むガスとして、塩素分子を用いた場合に ついて説明してきたが、塩素分子に代えて、塩化水素分子又は三塩化硼素分子の いずれかを用いてもよい。また、塩素分子、塩化水素分子及び三塩化硼素分子のう ちの 2つのガス又は全てのガスの混合物を用いてもよい。このようにすると、これらの 分子は比較的小さな分子であるため、ガス供給等の取り扱いが容易になると共に、プ ラズマ放電により塩素を効率良く生成することができる。その結果、低コストでガス供 給を行うことができる。もちろん、上記以外のその他の塩素を含むガスを用いても、本 発明のドライエッチング方法は実施可能であるが、一般に大きな分子ほど蒸気圧が 低くなり、場合によっては固体ソースになるため、その供給が困難になると共にそれを 使用するためのコストが増大する。
[0092] また、本実施形態において、弗素原子を含むガスとして、 CFを用いた場合につい
4
て説明してきた力 これに代えて、 C F等の他のフッ化炭素ガス又は CHF若しくは
2 6 3
CH F等のフッ化水素炭素ガスを用いてもよい。或いは、弗素原子を含むガスを混
2 2
合することに代えて、塩素原子と弗素原子とを含むガス、例えば C1F
3等の弗化塩素 ガスを用いてもよい。尚、弗素原子を含むガスとして、 F
2を用いてもよいが、この場合
、安全上、予め Heによって 3体積%程度に希釈した Fガス等を用いることが好ましい
2
。また、上述の弗素原子を含む各ガスは、いずれも分子量が小さいため、ガス供給を 簡便に行うことができ、低コストのエッチング力卩ェが可能となる。
[0093] また、本実施形態のように、塩素原子を含むガスと弗素原子を含むガスとを混合し て用いる場合、塩素原子を含むガスと弗素原子を含むガスとの合計流量に対する弗 素原子を含むガスの混合比を約 20体積%〜約 80体積%程度の範囲に設定するこ とが好ましぐ約 30体積%〜約 70体積%程度の範囲に設定することがさらに好まし い。このようにすると、塩素原子を含むガスの特徴である WC1による側壁保護膜生 成効果を失効することなぐ弗素原子を含むガスの利点である高エッチングレートの 効果を得ることができる。言い換えると、塩素原子を含むガス及び弗素原子を含むガ スのそれぞれによる効果を両方とも得ることができる。また、いずれかのガスによる効 果を特に強調したい場合には、前述の混合比の範囲において、効果を強調したいガ スの混合率を高くすればょ 、。
[0094] また、本実施形態にお!ヽて、塩素原子を含むガス及び弗素原子を含むガスに酸素 原子を含むガスを混合すると、エッチングレートをさらに高くすることができる。これは 、 Wが塩素イオンにより除去された後に残存する Cが CC1 (y= l〜4)として除去され y
るのにカ卩えて、酸素ラジカル及び酸素イオンにより当該 Cが CO又は COとして除去
2
される効果が生まれるためである。この効果は、酸素を含むガスの流量力 塩素、弗 素及び酸素のそれぞれを含むガスの全体ガス流量の 10%未満であっても十分に生 じる。また、実用的には、全体ガス流量のおよそ 50%以下の範囲内で、酸素を含む ガスの流量を所望の流量に設定すればよい。また、酸素原子を含むガスとして、酸素 分子、酸化窒素分子、酸化硫黄分子若しくは酸化炭素分子のいずれか又はそれら の 2つ以上の混合物を用いると、効率良く酸素を供給することができる。また、酸素原 子を含むガスを混合することに代えて、例えば塩素原子と酸素原子とを含むガス、例 えば COC1、 C1FO 、 NOCl、 NO Cl、 SOC1、 SO CI又は SO HC1等を用いて
2 3 2 2 2 2 3
ちょい。
[0095] また、本実施形態にぉ 、て、塩素原子を含むガス及び弗素原子を含むガスに希ガ スを混合すると、希ガス添加効果により、プラズマ放電をさらに安定化させることがで きるので、所謂プロセスウィンドウを容易に拡大することができる。具体的には、塩素 ガスの数倍以上の流量で希ガスを混合することにより、プラズマ中の電子温度が希ガ スの電子温度によって規定される結果、プラズマ放電が安定ィ匕する。希ガスとしては 例えば Arを使用してもよい。また、希ガスとして He、 Ne、 Ar、 Kr、 Xe又は Rnを選択 することにより、プラズマ中の電子温度を高くすることもできるし又は低くすることもでき る。すなわち、希ガス力もなるプラズマの電子温度は希ガスの第 1イオンィ匕エネルギ 一に大きく依存しているため、高い電子温度のプラズマを生成したいときには、より小 さな原子番号の希ガスを、低い電子温度のプラズマを生成したいときには、より大き な原子番号の希ガスを用いればよい。もちろん、 2つ以上の希ガスを混合して用いて も良い。 [0096] また、本実施形態にぉ 、て用いるエッチング装置としては、平行平板型等の反応性 イオンエッチング (RIE)装置、 2周波平行平板型 RIE装置、マグネトロンェンハンスト RIE (MERIE)装置、誘導結合プラズマ (ICP)エッチング装置、電子サイクロトロン共 鳴 (ECR)エッチング装置、 UHFプラズマエッチング装置又は磁気中性線放電 (NL D)エッチング装置等の 、ずれのエッチング装置を用いてもよ 、。
[0097] また、本実施形態にお!ヽて、タングステン及び炭素を主成分とする WC基板をエツ チング対象とした力 これに代えて、タングステン及び炭素を含む物質を表面に有す る金属、絶縁物質又は半導体物質のいずれかをエッチング対象としてもよい。また、 タングステン及び炭素を含む物質にさらに窒素が含まれていても、本実施形態と同 様の効果が得られる。すなわち、 WCN合金又は WNC合金をエッチング対象として も、本実施形態と同様の効果が得られる。
[0098] (第 3の実施形態)
以下、本発明の第 3の実施形態に係るドライエッチング方法について、図面を参照 しながら説明する。本実施形態のドライエッチング方法が第 1の実施形態と異なる点 は、塩素を含むガスに代えて、塩素を含むガスと臭素を含むガス又はヨウ素を含むガ スの少なくとも一方との混合ガスを用いてプラズマを生成することによって、タンダステ ン及び炭素を主成分とする物質をドライエッチングすることである。
[0099] 図 3 (a)及び (b)は、本発明の第 3の実施形態に係るドライエッチング方法の説明図 であり、ドライエッチング方法による WC基板のエッチング途中の様子を示して 、る。 尚、図 3 (a)は側壁保護膜が薄く形成される場合を示しており、図 3 (b)は側壁保護膜 が厚く形成される場合を示している。また、本実施形態においては、第 1の実施形態 と同様に、図 1 (a)に示すエッチング装置を用いる。以下、塩素を含むガスとして C1、
2 臭素を含むガスとして Br、ヨウ素を含むガスとして Iを用いた場合を例として、本実
2 2
施形態のドライエッチング方法にっ 、て説明する。
[0100] 図 3 (a)及び (b)に示すように、本実施形態においては、 WC基板 11上にレジストパ ターン 12を形成した後、レジストパターン 12をマスクとして、 C1力も生成された Cl + (
2 n n= l、 2)イオン、 Br力も生成された Br + (n= 1、 2)イオン又は Iから生成された 1 +(
2 n 2 n n= l、 2)イオンであるイオン 16a、 16b及び 16cを用いて WC基板 11に対してエッチ ングを行う。具体的には、塩素イオン、臭素イオン又はヨウ素イオンのうち、 WC基板 1 1にほぼ垂直に入射したイオン 16aは、イオン衝撃エネルギーによって Wと Cとの結 合を切断すると共に Wと化学結合し、反応生成物である WC1 (x= l〜6)、WBr (x = 1〜6)又は WI (x= l〜6)として気相中に脱離する結果、 Wが除去される。また、 C1 +イオン、 Br +イオン又は I +イオンであるイオン 16bにより生じたエッチング反応生 成物の一部は WC基板 11の加工側面及びレジストパターン 12の側面に再付着して 側壁保護膜 14を形成する。その際の付着確率は、 WI >WBr >WC1の順である 。従って、 WC基板 11に対して斜めに入射してくるイオン 16cによる WC基板 11のパ ターン側壁のエッチング反応は、側壁保護膜 14により防止されることになる。その結 果、側壁保護膜 14が比較的薄い場合には、図 3 (a)に示すように、 WC基板 11の表 面及び内部に垂直エッチング形状を実現でき、側壁保護膜 14が比較的厚い場合に は、図 3 (b)に示すように、 WC基板 11の表面及び内部に順テーパ形状のエッチング 形状を実現できる。
[0101] 尚、本実施形態において、塩素原子を含むガスと臭素原子を含むガス又はヨウ素 原子を含むガスとの合計流量に対する臭素原子を含むガス又はヨウ素原子を含むガ スの混合比を約 30体積%程度以下の範囲に設定することが好ましい。また、当該混 合比が 5%程度未満であっても、臭素原子を含むガス又はヨウ素原子を含むガスに よる側壁保護膜形成効果は十分に得られる。さらに、塩素原子を含むガスと臭素原 子を含むガスとの混合比、塩素原子を含むガスとヨウ素原子を含むガスとの混合比、 又は塩素原子を含むガスと臭素原子を含むガスとヨウ素原子を含むガスとの混合比 を変えることにより、側壁保護膜の厚さを変えることができる。例えば前記各混合比が 5%未満であれば、図 3 (a)に示すように、比較的薄い側壁保護膜 14を形成できる。 一方、前記各混合比を大きくすることにより、側壁保護膜 14の厚さを厚くすることがで きる。具体的には、前記各混合比が 8%以上になると、徐々に側壁保護膜 14の厚さ が厚くなつてきて、約 10%を超えると、図 3 (b)に示すように、加工断面が順テーパ形 状になるエッチングを実現できる程度に側壁保護膜 14の膜厚が厚くなる。
[0102] 以上のように、第 3の実施形態によると、第 1の実施形態と同様の効果に加えて、次 のような効果が得られる。すなわち、塩素原子を含むガスに臭素原子を含むガス又は ヨウ素原子を含むガスの少なくとも一方を混合して使用することにより、臭素又はヨウ 素の効果によって加工部の側壁保護効果を増大させることができるため、垂直形状 だけではなく順テーパ形状のエッチング形状も得られるように加工を行うことができる
[0103] 尚、本実施形態において、塩素原子を含むガスとして、塩素分子を用いた場合に ついて説明してきたが、塩素分子に代えて、塩化水素分子又は三塩化硼素分子の いずれかを用いてもよい。また、塩素分子、塩化水素分子及び三塩化硼素分子のう ちの 2つのガス又は全てのガスの混合物を用いてもよい。このようにすると、これらの 分子は比較的小さな分子であるため、ガス供給等の取り扱いが容易になると共に、プ ラズマ放電により塩素を効率良く生成することができる。その結果、低コストでガス供 給を行うことができる。もちろん、上記以外のその他の塩素を含むガスを用いても、本 発明のドライエッチング方法は実施可能であるが、一般に大きな分子ほど蒸気圧が 低くなり、場合によっては固体ソースになるため、その供給が困難になると共にそれを 使用するためのコストが増大する。
[0104] また、本実施形態において、臭素原子を含むガスとしては、 Brを例にとって説明し
2
た力 これに代えて、例えば HBr等を用いてもよい。また、ヨウ素原子を含むガスとし ては、 Iを例にとって説明した力 これに代えて、例えば HI等を用いてもよい。或い
2
は、塩素原子と臭素原子又はヨウ素原子の少なくとも一方とを含むガス、例えば IC1、 C1F Br、 C1F I又は BrCl等を用いてもよい。さらに、 CF CI 、 CF Br 又は CF I
2 2 4 4 4
(x= l〜3)等の炭素、弗素及びハロゲン力もなる分子ガスを用いてもよい。この場 合、第 2の実施形態と同様の Fによるエッチングレート増大効果を同時に得ることもで きる。
[0105] また、本実施形態において、塩素原子を含むガス及び臭素原子又はヨウ素原子を 含むガスに酸素原子を含むガスを混合すると、エッチングレートをさらに高くすること ができる。これは、 Wが塩素イオンにより除去された後に残存する Cが CC1 (y= l〜 y
4)として除去されるのにカ卩えて、酸素ラジカル及び酸素イオンにより当該 Cが CO又
2 は COとして除去される効果が生まれるためである。この効果は、酸素を含むガスの 流量が、塩素、臭素(又はヨウ素)及び酸素のそれぞれを含むガスの全体ガス流量の 10%未満であっても十分に生じる。また、実用的には、全体ガス流量のおよそ 50% 以下の範囲内で、酸素を含むガスの流量を所望の流量に設定すればよい。また、酸 素原子を含むガスとして、酸素分子、酸化窒素分子、酸化硫黄分子若しくは酸化炭 素分子のいずれか又はそれらの 2つ以上の混合物を用いると、効率良く酸素を供給 することができる。また、酸素原子を含むガスを混合することに代えて、例えば塩素原 子と酸素原子とを含むガス、例えば COC1、 C1FO 、 NOCl、 NO Cl、 SOC1、 SO
2 3 2 2 2
CI又は SO HC1等を用いてもよい。特に、反応生成物の再付着性が増大する本実
2 3
施形態の場合、上述の酸素原子を含むガスの添加は、プロセスウィンドウの拡大に 大きく役立つ。
[0106] また、本実施形態において、塩素原子を含むガス及び臭素原子又はヨウ素原子を 含むガスに希ガスを混合すると、希ガス添加効果により、プラズマ放電をさらに安定 化させることができるので、所謂プロセスウィンドウを容易に拡大することができる。具 体的には、塩素ガスの数倍以上の流量で希ガスを混合することにより、プラズマ中の 電子温度が希ガスの電子温度によって規定される結果、プラズマ放電が安定ィヒする 。希ガスとしては例えば Arを使用してもよい。また、希ガスとして He、 Ne、 Ar、 Kr、 X e又は Rnを選択することにより、プラズマ中の電子温度を高くすることもできるし又は 低くすることもできる。すなわち、希ガスカゝらなるプラズマの電子温度は希ガスの第 1ィ オンィ匕エネルギーに大きく依存して 、るため、高 、電子温度のプラズマを生成した ヽ ときには、より小さな原子番号の希ガスを、低い電子温度のプラズマを生成したいとき には、より大きな原子番号の希ガスを用いればよい。もちろん、 2つ以上の希ガスを混 合して用いても良い。
[0107] また、本実施形態にぉ 、て用いるエッチング装置としては、平行平板型等の反応性 イオンエッチング (RIE)装置、 2周波平行平板型 RIE装置、マグネトロンェンハンスト RIE (MERIE)装置、誘導結合プラズマ (ICP)エッチング装置、電子サイクロトロン共 鳴 (ECR)エッチング装置、 UHFプラズマエッチング装置又は磁気中性線放電 (NL D)エッチング装置等の 、ずれのエッチング装置を用いてもよ 、。
[0108] また、本実施形態にぉ ヽて、タングステン及び炭素を主成分とする WC基板をエツ チング対象とした力 これに代えて、タングステン及び炭素を含む物質を表面に有す る金属、絶縁物質又は半導体物質のいずれかをエッチング対象としてもよい。また、 タングステン及び炭素を含む物質にさらに窒素が含まれていても、本実施形態と同 様の効果が得られる。すなわち、 WCN合金又は WNC合金をエッチング対象として も、本実施形態と同様の効果が得られる。
[0109] (第 4の実施形態)
以下、本発明の第 4の実施形態に係る微細構造形成方法及びそれを用いたモー ルドの製造方法について、図面を参照しながら説明する。尚、本実施形態は、第 1〜 第 3の実施形態で説明したドライエッチング方法を応用するものである。
[0110] 図 4 (a)〜 (f)は、本発明の第 4の実施形態に係るモールドの製造方法の各工程を 示す断面図である。
[0111] まず、図 4 (a)に示すように、 WC合金基板 21を用意した後、図 4 (b)に示すように、 WC合金基板 21上にレジストパターン 22を形成する。ここで、レジストパターン 22は 、通常、リソグラフィ技術〖こより形成される。
[0112] 次に、側壁保護膜が薄く形成されるエッチング条件 (第 3の実施形態 (特に図 3 (a) ) 参照)を用いて、図 4 (c)に示すように、レジストパターン 22をマスクとして、少なくとも 塩素原子を含むガスカゝら生成されたプラズマにより WC合金基板 21に対してドライエ ツチングを行うことによって、 WC合金基板 21にパターンを転写する。一般に、如何な るドライエッチング装置を用いてドライエッチングを行った場合にも、プラズマ中から
WC合金基板 21に入射するイオン 23はエネルギー広がりを持っているため、基板表 面に垂直に入射する成分 A以外に、基板表面に角度を持って入射する成分つまり斜 入射成分 B及び Cが存在する。しかしながら、少なくとも塩素原子を含むガスから生 成されたプラズマによりドライエッチングを行うことにより、エッチング反応生成物であ る WC1 (x= 1〜6)が加工側面に側壁保護膜 24aを形成するため、イオン 23の斜入 射成分 B及び Cによる側壁エッチングを防止できる。そのため、図 4 (c)に示すように、 エッチング断面形状として基板表面に垂直な断面形状を有する微細構造が形成され る。
[0113] 次に、レジストパターン 22及び側壁保護膜 24aをアツシング及び洗浄により除去す る。これにより、図 4 (d)に示すように、垂直側壁を持つ微小凹凸構造を備えた WC合 金基板 21からなる WC合金モールドが形成される。
[0114] 一方、図 4 (c)及び (d)に示す工程に代えて、側壁保護膜が厚く形成されるエッチ ング条件 (第 3の実施形態 (特に図 3 (b) )参照)を用いて、図 4 (e)に示すように、レジ ストパターン 22をマスクとして、少なくとも塩素原子を含むガス力も生成されたプラズ マにより WC合金基板 21に対してドライエッチングを行うことによって、 WC合金基板 21にパターンを転写してもよい。この場合、 WC合金基板 21には、エッチング断面形 状として順テーパ形状を有する微細構造が形成される。その理由は、イオンによる側 壁エッチングを防止するために必要な厚さ以上に側壁保護膜 24bが堆積されるため 、エッチングの進行に伴い、加工部の開口領域が狭くなるためである。
[0115] 次に、レジストパターン 22及び側壁保護膜 24bをアツシング及び洗浄により除去す る。これにより、図 4 (f)に示すように、順テーパ形状側壁を持つ微小凹凸構造を備え た WC合金基板 21からなる WC合金モールドが形成される。
[0116] 以上に説明したように、本実施形態に係る微細構造形成方法及びモールドの製造 方法は、タングステンと炭素とを含む物体上にレジストパターンを形成する工程と、前 記レジストパターンをマスクとして、少なくとも塩素原子を含むガスから生成されたブラ ズマにより前記物体をエッチングする工程とを備えている。すなわち、本実施形態は 本発明のドライエッチング方法 (第 1〜第 3の実施形態)を用いるものであるため、タン ダステンと炭素とを含む物体の表面及び内部を、ボウイング形状の無 、高精度垂直 形状又は高精度順テーパ形状に加工することが可能となる。従って、垂直断面形状 又は順テーパ断面形状を持つ微小凹凸を備えたモールドを確実に形成することがで きる。
[0117] 尚、本実施形態において、エッチングマスクとしてレジストパターンを用いた力 これ に代えて、絶縁膜からなるハードマスク等を用いても良 、ことは言うまでもな 、。
[0118] また、本実施形態において、塩素原子を含むガスとしては、塩素分子、塩化水素分 子若しくは三塩化硼素分子の 、ずれか又はそれらの 2つの以上のガスの混合物を用 いてもよい。このようにすると、これらの分子は比較的小さな分子であるため、ガス供 給等の取り扱いが容易になると共に、プラズマ放電により塩素を効率良く生成するこ とができる。従って、タングステンと炭素とを含む物質に対して、より安価に且つ高精 度に垂直形状加工を行うことができる。その結果、高精度垂直形状の側壁を有する 微小凹凸を備えたモールドをより安価に製造することができる。
[0119] また、本実施形態において、塩素原子を含むガスに酸素原子を含むガスを混合す ることが好ましい。このようにすると、酸素の添加効果によりエッチングレートが高くな るため、タングステンと炭素とを含む物質に対して高速に高精度垂直形状加工を行う ことができる。その結果、高精度垂直形状の側壁を有する微小凹凸を備えたモール ドを高速に製造することができる。ここで、酸素原子を含むガスとして、酸素分子、酸 化窒素分子、酸化硫黄分子若しくは酸化炭素分子のいずれか又はそれらの 2っ以 上の混合物を用いることが好ましい。このようにすると、効率良く酸素を供給すること ができるため、タングステンと炭素とを含む物質に対して、安定且つ高速に高精度垂 直形状加工を行うことができる。その結果、高精度垂直形状の側壁を有する微小凹 凸を備えたモールドを安定且つ高速に製造することができる。また、酸素原子を含む ガスを混合することに代えて、塩素原子と酸素原子とを含むガス、例えば COC1、 C1
2
FO 、 NOCl、 NO Cl、 SOC1、 SO CI又は SO HC1等を用いてもよい。
3 2 2 2 2 3
[0120] また、本実施形態にぉ ヽて、塩素原子を含むガスに希ガスを混合すること好ま ヽ 。このよう〖こすると、希ガス添加効果により、プラズマ放電をより安定ィ匕させることがで きるため、タングステンと炭素とを含む物質に対して、より安定に高精度垂直形状カロ ェを行うことができる。その結果、高精度垂直形状の側壁を有する微小凹凸を備えた モールドをより安定に製造することができる。
[0121] また、本実施形態において、塩素原子を含むガスに弗素原子を含むガスを混合す ることが好ましい。このようにすると、塩素による垂直形状カ卩ェ特性を損なうことなぐ 弗素の効果によりエッチングレートを向上させることができる。このため、タングステン と炭素とを含む物質に対して、より一層高速に高精度垂直形状加工を行うことができ る。その結果、高精度垂直形状の側壁を有する微小凹凸を備えたモールドをより一 層高速に製造することができる。ここで、弗素原子を含むガスとしては、 CF
4若しくは
C F等のフッ化炭素ガス又は CHF若しくは CH F等のフッ化水素炭素ガスを用
2 6 3 2 2
いてもよい。或いは、弗素原子を含むガスを混合することに代えて、塩素原子と弗素 原子とを含むガス、例えば C1F等の弗化塩素ガスを用いてもよい。また、弗素原子を 含むガスとして、 Fを用いてもよいが、この場合、安全上、予め Heによって 3体積%
2
程度に希釈した Fガスを用いることが好ましい。また、上述の弗素原子を含む各ガス
2
は、いずれも分子量が小さいため、ガス供給を簡便に行うことができ、低コストのエツ チンダカ卩ェが可能となる。
[0122] また、本実施形態において、塩素原子を含むガスと弗素原子を含むガスとを混合し て用いる場合、塩素原子を含むガスと弗素原子を含むガスとの合計流量に対する弗 素原子を含むガスの混合比を約 20体積%〜約 80体積%程度の範囲に設定するこ とが好ましぐ約 30体積%〜約 70体積%程度の範囲に設定することがさらに好まし い。このようにすると、塩素原子を含むガスの特徴である WC1による側壁保護膜生 成効果を失効することなぐ弗素原子を含むガスの利点である高エッチングレートの 効果を得ることができる。その結果、加工断面が垂直形状になるエッチング加工を高 速に行うことができる。言い換えると、塩素原子を含むガス及び弗素原子を含むガス のそれぞれによる効果を両方とも得ることができる。また、いずれかのガスによる効果 を特に強調したい場合には、前述の混合比の範囲において、効果を強調したいガス の混合率を高くすればよい。
[0123] また、本実施形態において、塩素原子を含むガスに臭素原子を含むガス又はヨウ 素原子を含むガスの少なくとも一方を混合することが好ましい。このようにすると、臭 素又はヨウ素の効果により加工部の側壁保護効果を増大させることができるため、高 精度垂直加工だけではなく高精度の順テーパ形状加工をも行うことができる。その結 果、高精度垂直形状の側壁を有する微小凹凸を備えたモールドだけでなぐ高精度 順テーパ形状の側壁を有する微小凹凸を備えたモールドを製造できる。ここで、臭素 原子を含むガスとしては、例えば Br、 HBr等を用いてもよい。また、ヨウ素原子を含
2
むガスとしては、例えば I 、 HI等を用いてもよい。或いは、塩素原子と臭素原子又は
2
ヨウ素原子の少なくとも一方とを含むガス、例えば IC1、 C1F Br、 C1F I又は BrCl等
2 2
を用いてもよい。さらに、 CF CI 、 CF Br 又は CF I (x= l〜3)等の炭素、弗
4 4 4
素及びハロゲンカゝらなる分子ガスを用いてもよい。この場合、第 2の実施形態と同様 の Fによるエッチングレート増大効果を同時に得ることもできる。
[0124] また、本実施形態において、塩素原子を含むガスに臭素原子を含むガス又はヨウ 素原子を含むガスの少なくとも一方を混合する場合、塩素原子を含むガスと臭素原 子を含むガス又はヨウ素原子を含むガスとの合計流量に対する臭素原子を含むガス 又はヨウ素原子を含むガスの混合比を約 30体積%程度以下の範囲に設定すること が好ましい。また、当該混合比が 5%程度未満であっても、臭素原子を含むガス又は ヨウ素原子を含むガスによる側壁保護膜形成効果は十分に得られる。さらに、塩素原 子を含むガスと臭素原子を含むガスとの混合比、塩素原子を含むガスとヨウ素原子を 含むガスとの混合比、又は塩素原子を含むガスと臭素原子を含むガスとヨウ素原子 を含むガスとの混合比を変えることにより、側壁保護膜の厚さを変えることができる。 例えば前記各混合比が 5%未満であれば、図 4 (c)に示すように、比較的薄い側壁 保護膜 24aを形成できる。このため、加工断面が垂直形状になるエッチング加工を行 うことができる。一方、前記各混合比を大きくすることにより、側壁保護膜の厚さを厚く することができる。具体的には、前記各混合比が 8%以上になると、徐々に側壁保護 膜の厚さが厚くなつてきて、約 10%を超えると、図 4 (e)に示すように、加工断面が順 テーパ形状になるエッチングを実現できる程度に側壁保護膜 24bの膜厚が厚くなる。
[0125] また、本実施形態にぉ 、て用いるエッチング装置としては、平行平板型等の反応性 イオンエッチング (RIE)装置、 2周波平行平板型 RIE装置、マグネトロンェンハンスト RIE (MERIE)装置、誘導結合プラズマ (ICP)エッチング装置、電子サイクロトロン共 鳴 (ECR)エッチング装置、 UHFプラズマエッチング装置又は磁気中性線放電 (NL D)エッチング装置等の 、ずれのエッチング装置を用いてもよ 、。
[0126] また、本実施形態にぉ ヽて、タングステン及び炭素を主成分とする WC基板をエツ チング対象とした力 これに代えて、タングステン及び炭素を含む物質を表面に有す る金属、絶縁物質又は半導体物質のいずれかをエッチング対象としてもよい。また、 タングステン及び炭素を含む物質にさらに窒素が含まれていても、本実施形態と同 様の効果が得られる。すなわち、 WCN合金又は WNC合金をエッチング対象として も、本実施形態と同様の効果が得られる。
[0127] (第 5の実施形態)
以下、本発明の第 5の実施形態に係るモールドについて、図面を参照しながら説明 する。尚、本実施形態に係るモールドは、第 4の実施形態で説明したモールドの製造 方法によって得られたものである。
[0128] 図 5 (a)は、本実施形態に係るモールドの全体の断面図である。図 5 (a)に示すよう に、下地基板 31上に、例えば WC合金等の、タングステンと炭素とを含む物体 32が 成膜されている。物体 32の表面には、第 1〜第 3の実施形態のドライエッチング方法 によって垂直形状 (基板表面に対して垂直な壁を持つ形状)又は順テーパ形状を持 つ微小凹凸が形成されている。また、図 5 (b)〜(d)及び図 5 (e)〜(g)はそれぞれ、 図 5 (a)に示すモールドの表面 (一点鎖線で囲んだ領域)における微小凹凸を拡大し た様子を示している。
[0129] 本実施形態に係るモールドは、タングステンと炭素とを含む物質に対して、少なくと も塩素原子を含むガスから生成されたプラズマによるドライエッチングを行うことにより 形成されたものであるため、図 5 (b)〜(d)に示すような、ボウイング形状のない垂直 断面形状を持つ微小凹凸を有するモールド、及び図 5 (e)〜 (g)に示すような、順テ ーパ断面形状を持つ微小凹凸を有するモールドを実現できる。
[0130] ここで、モールドの下地基板 31としては、金属若しくは導電性物質力もなる基板 31 a (図 5 (b)又は図 5 (e) )、絶縁物質力もなる基板 31b (図 5 (c)又は図 5 (f) )、又は半 導体物質からなる基板 31c (図 5 (d)又は図 5 (g) )の 、ずれであってもよぐ用途に応 じて選べばよい。例えば、モールド表面に電気を流しながら使用する際には下地基 板 31として基板 31aを使用すればよい。また、モールドを電気的に絶縁した状態で 用いる場合には下地基板 31として基板 31bを使用すればよい。
[0131] 尚、本実施形態において、モールド製造に用いる塩素原子を含むガスとしては、塩 素分子、塩化水素分子若しくは三塩化硼素分子のいずれか又はそれらの 2つの以 上のガスの混合物を用いてもよい。このようにすると、これらの分子は比較的小さな分 子であるため、ガス供給等の取り扱いが容易になると共に、プラズマ放電により塩素 を効率良く生成することができる。従って、高精度垂直形状の側壁を有する微小凹凸 を備えたモールドをより安価に提供することができる。
[0132] また、本実施形態において、モールド製造に用いる塩素原子を含むガスに酸素原 子を含むガスを混合することが好ましい。このようにすると、酸素の添加効果によりェ ツチングレートが高くなるため、高精度垂直形状の側壁を有する微小凹凸を備えたモ 一ルドを高速に製造'提供することができる。ここで、酸素原子を含むガスとして、酸 素分子、酸化窒素分子、酸化硫黄分子若しくは酸化炭素分子のいずれか又はそれ らの 2つ以上の混合物を用いることが好ましい。このようにすると、効率良く酸素を供 給することができるため、高精度垂直形状の側壁を有する微小凹凸を備えたモール ドを安定且つ高速に製造'提供することができる。また、酸素原子を含むガスを混合 することに代えて、塩素原子と酸素原子とを含むガス、例えば COC1、 C1FO
2 3、 NO
Cl、 NO Cl、 SOC1、 SO CI又は SO HC1等を用いてもよい。
2 2 2 2 3
[0133] また、本実施形態において、モールド製造に用いる塩素原子を含むガスに希ガス を混合することが好ましい。このようにすると、希ガス添加効果により、プラズマ放電を より安定化させることができるため、高精度垂直形状の側壁を有する微小凹凸を備え たモールドをより安定に製造 ·提供することができる。
[0134] また、本実施形態において、モールド製造に用いる塩素原子を含むガスに弗素原 子を含むガスを混合することが好ましい。このようにすると、塩素による垂直形状加工 特性を損なうことなぐ弗素の効果によりエッチングレートを向上させることができる。こ のため、高精度垂直形状の側壁を有する微小凹凸を備えたモールドをより一層高速 に製造'提供することができる。また、弗素原子を含むガスを混合することに代えて、 塩素原子と弗素原子とを含むガス、例えば C1F
3等の弗化塩素ガスを用いてもよい。
[0135] また、本実施形態において、モールド製造に用いる塩素原子を含むガスに臭素原 子を含むガス又はヨウ素原子を含むガスの少なくとも一方を混合することが好ましい。 このようにすると、臭素又はヨウ素の効果により加工部の側壁保護効果を増大させる ことができるため、高精度垂直形状の側壁を有する微小凹凸を備えたモールドだけ ではなぐ高精度順テーパ形状の側壁を有する微小凹凸を備えたモールドをも提供 することができる。また、臭素原子を含むガス又はヨウ素原子を含むガスの少なくとも 一方を混合することに代えて、塩素原子と臭素原子又はヨウ素原子の少なくとも一方 とを含むガス、例えば IC1、 C1F Br、 C1F I又は BrCl等を用いてもよい。
2 2
[0136] 以上のように、本実施形態によると、高精度に加工された微小凹凸を有するモール ドを安価に且つ容易に安定して供給することができる。また、微小凹凸の断面形状と して、基板表面に対して垂直力 順テーパ(凸部の断面形状において底辺よりも上 辺が短い状態)までの側壁を有する微小凹凸を wc合金等に自由に作り込むことが 可能となる。
[0137] 尚、本実施形態に係るモールドにおける微小凹凸の加工寸法限界はレジストバタ ーンを形成するリソグラフィ技術に大きく依存しており、現在最小寸法 50nm程度まで の加工が可能である。また、本実施形態に係るモールドは、加工寸法の大きな光回 路部品の製造力 最小寸法を追求するナノインプリントまでの幅広い分野に活用す ることができる。また、本実施形態のモールドは、ボウイング形状のない垂直又は順テ ーパの加工断面を持っているため、当該モールドの凹部に、凹凸が転写される側の 物質が詰まることがなぐ押圧転写後にモールドを容易に剥がすことができる。さらに 、本実施形態のモールドの目詰まり防止をより確実なものにして使用耐久回数を大き くするためには、本実施形態のモールドの微小凹凸表面に金属、テフロンコート又は シリコンカップリング材等による処理等を行えばよい。また、当該表面処理材料は、モ 一ルドの作用により凹凸が転写される側の物質に応じて、任意に選べばよい。
[0138] また、本実施形態にぉ 、て、モールドの表面材料として、タングステン及び炭素を 含む物質を用いたが、当該物質にさらに窒素が含まれていても、本実施形態と同様 の効果が得られる。すなわち、 WCN合金又は WNC合金を用いても、本実施形態と 同様の効果が得られる。
[0139] (比較例)
以下、比較例に係る成形金型の製造方法について説明するに当たり、まず、その 前提事項について述べる。
[0140] 近年では、インターネットの家庭への浸透や映像メディアのデジタルィ匕が促進され つつあるのに伴い、ギガビット級の高速通信インフラの重要性が高まっており、このよ うな高速通信インフラとして期待されているのが光通信システムである。このような高 速通信システムの一般家庭などへの導入を達成するためには、低価格なモジュール が必要であり、そのために必要な技術的課題の一つは、光導波路を低コストで形成 する技術を開発することである。
[0141] 光導波路を有する導波路基板の製造に際しては、半導体の製造プロセスに一般的 に用いられて 、るリソグラフィー及びドライエッチングを用いてガラス基板上に所望の 微細溝パターンを形成する方法が採用されている。ところが、この方法では、全ての ガラス基板に対して高価な装置を用いて溝パターンを形成する必要があるため、導 波路基板を低コストに得ることができない。
[0142] これに対して、従来、軟ィ匕材料であるガラス基板の表面に、光ファイバを保持するた めの V溝と、この V溝に直交する光学素子挿入用溝と、光導波路とを熱プレス成形に より形成する方法が提案されている (例えば特許文献 1参照)。この方法によれば、導 波路基板を成形するための成形金型 (モールド)を加工できれば、その成形金型を 用いた熱プレス成形を行うだけで同一形状の導波路基板を大量生産することができ 、それによつて安価な導波路基板を得ることができる。
[0143] 上述のガラス成形技術は、従来、ガラスレンズの製造プロセスとして一般的に用い られており、その成形力卩ェに際しては高温及び高圧での実施が必要である。そのた め、成形金型には、耐熱性、剛性及び耐久性が求められるので、従来、例えばタンダ ステンと炭素との合金 (タングステンカーバイド)からなる超硬金属を形成材料として 上記成形金型が形成されるのが一般的である。
[0144] 一方、半導体の製造プロセスでは、炭化タングステン膜又は珪ィ匕タングステン膜な どの薄膜に対してエッチングガスを用いたドライエッチングを行うことにより微細なパタ ーンを形成することが行われている(例えば特許文献 2及び特許文献 4参照)。この パターン形成方法では、レジスト膜をパターンユングして所望形状のエッチングマス クを加工形成すれば、異方性プラズマエッチングにより所望形状の微細なパターンを 高精度に得ることができる。
[0145] ところで、前述の超硬合金からなる成形金型を上記ガラスレンズの成形金型に適用 する場合には、超硬合金の加工面が単なる曲面であるので、超硬合金に対してダイ ャモンドによる研削等の機械加工を行うことによって当該成形金型を容易に製作する ことができる。し力しながら、このような機械加工によって上記導波路基板を製作しょう とした場合には、ミクロンサイズの矩形状断面のパターンを高密度に有する光導波路 を高精度に加工することが困難であると共に、製作時間が長くなつて生産性の低下 やコスト高を招く。これに対して、より生産性が高い方法として、超硬合金に対して放 電加工を行うことにより導波路基板用の成形金型を製作する方法を用いることも考え られるが、この放電加工は自動車用や電気製品用の成形金型の製作には適してい るが、導波路基板の製作に適用した場合には、超硬合金に微細パターンを高精度に 形成することが困難となる。
[0146] 一方、従来のドライエッチングによりタングステン系の材料に微細なパターンを形成 する方法は、半導体プロセスにおける薄膜のエッチングに一般的に採用されている。 ここで、エッチングガスとしては、フッ素系のエッチングガス(例えば CHF、CF又は
3 3
SFなど)が用いられているため、タングステンカーバイドのエッチングレートは極めて
6
低くなる。但し、半導体プロセスでは、薄膜エッチングにおけるエッチング深さが 1ミク ロン以下と小さ 、ので、エッチングレートが低 、ことは殆ど問題にならな!/、。
[0147] しカゝしながら、上記導波路基板用の成形金型の製作を目的として超硬合金をドライ エッチングしょうとする場合には、 10〜: LOOミクロンオーダーのエッチング深さを必要 とするので、前述のような低いエッチングレートでドライエッチングを行うと、エッチング 時間が非常に長くかかり過ぎてしまう。実測結果によると、超硬合金をフッ素系のエツ チングガスによってドライエッチングする場合には、 20分のエッチング時間でエッチ ング深さが約 1 μ m程度であるので、所望のエッチング深さ、例えば 10 μ mのエッチ ング深さを得ようとすれば、 200分という極端に長いエッチング時間が必要となる。こ れは、タングステンカーバイドにおけるタングステンと炭素との結合が強いので、通常 のタングステンィ匕合物のエッチングのように蒸気圧の高!ヽフッ化物を形成することが 困難である結果であると考えられる。従って、前述の超硬合金をフッ素系のエツチン グガスによりドライエッチングして導波路基板用の成形金型を製作しょうとすれば、生 産性が非常に低くなると共に相当のコスト高を招くこととなる。
[0148] し力も、所望のエッチング深さを得るためのエッチング時間が以上のように極端に長 くなる場合には、エッチング時間が経過するのに伴って超硬合金力もなる形成材料 の温度が徐々に高くなると共にその温度が不安定に変化するので、エッチング量の 制御が困難になると共にエッチングマスクに対するエッチング選択比が悪くなる。また 、エッチングマスクの形状がサイドエッチングにより変化するので、加工精度が極めて 悪くなつて所望の微細なパターン形状を得ることが困難となる問題も生じる。
[0149] 以下、比較例に係る成形金型の製造方法について図面を参照しながら具体的に 説明する。図 8 (a)〜(c)及び図 9 (a)、(b)は比較例に係る成形金型の製造方法の 各工程を示す断面図である。
[0150] まず、図 8 (a)に示すように、タングステンと炭素とを主成分とする超硬合金からなる 形成材料 40上に、金、コバルト又はニッケルを材料としてリフトオフ法により矩形状の 断面形状を有する所定パターンのエッチングマスク 41を形成する。
[0151] 次に、図 8 (b)に示すように、フッ素系ガスをエッチングガスとして生成したプラズマ ラジカル 42により、形成材料 40に対してエッチング深さが比較的小さ ヽドライエッチ ングを行う。このとき、比較的小さいエッチング深さで形成材料 40をエッチングするだ けであるにもかかわらず、エッチングレートが低いためにエッチング時間が長くなる。 その結果、長いエッチング時間が経過するのにしたがってエッチングマスク 41の側 面も形成材料 40と共に徐々にエッチングされながら蒸発していくため、エッチングマ スク 41の断面形状の幅は、図 8 (a)に示す矩形状の初期断面形状の幅 dlよりも小さ い幅 d2まで削減される。
[0152] また、エッチングにより生成された化合物力 形成材料 40におけるエッチングにより 形成された凸部の側壁に付着するため、当該側壁がエッチングされにくくなるため、 図 8 (c)に示すように、エッチング終了後にエッチングマスク 41を除去して得られる凸 部の断面形状は、所望の垂直な側壁を有する断面形状とはならな 、。
[0153] さらに、形成材料 40に対するドライエッチングにおいてエッチング深さを比較的大 きく設定した場合には、エッチング時間が一層長くなり、その長いエッチング時間が 経過するのにしたがってエッチングマスク 41も徐々にエッチングされながら蒸発する 結果、エッチングマスク 41の断面形状は、図 9 (a)又は (b)にそれぞれ破線で示す矩 形状の初期断面形状から実線で示す形状へ変化する。このとき、エッチング時間が 長くなるのに伴って形成材料 40の温度が上昇してエッチングレートが不安定になる。 また、エッチングにより生成される化合物がエッチング中の側壁 (形成材料 40の凸部 の側壁)に付着して当該側壁がエッチングされに《なる現象も顕著になる。その結 果、化合物の付着の相違やサイドエッチングの発生などに起因して、エッチングマス ク 41に対するエッチング選択性が極端に悪くなると共にマスク形状の転写性が悪くな る。このため、エッチングにより形成された凸部の断面形状は、図 9 (a)に示すような 末広がりの断面形状や図 9 (b)に示すような鼓状に膨らんだ断面形状になってしまい 、所望の垂直な側壁を有する矩形断面形状(図 9 (a)又は (b)にそれぞれ 2点鎖線で 示す)を得ることができない。
[0154] 後述する本発明の第 6の実施形態及びその変形例に係る成形金型 (モールド)の 製造方法は、上記従来の課題に鑑みてなされたものであり、タングステンと炭素とを 主成分とする超硬合金からなる形成材料に矩形状の断面形状を有する微細なバタ ーンを高精度に形成した成形金型を高い生産性で且つ安価に製造することを目的と するものである。
[0155] (第 6の実施形態)
以下、本発明の第 6の実施形態に係る成形金型の製造方法について図面を参照 しながら説明する。
[0156] 図 10は本実施形態の成形金型の製造方法を具現化するための ICPプラズマエツ チング装置の概略断面構成を示す図である。尚、本実施形態においては、当該 ICP プラズマエッチング装置として周知の構成を有するものを用いており、当該 ICPブラ ズマエッチング装置を用いて形成材料であるワーク Wをドライエッチングして導波路 基板などの成形金型を形成する。
[0157] 図 10に示すように、 ICPプラズマエッチング装置の処理チャンバ 201の内部には、 コイル力もなる上部電極 202と、ワーク載置台となる下部電極 203とが互いに相対向 する配置で設けられて 、る。上部電極 202には ICPプラズマ RF電源 204が接続され ていると共に、下部電極 203にはバイアス RF電源 207が接続されている。下部電極 203の内部にはワーク冷却用の冷却水管路 208が設けられている。下部電極 203の 上面には、形成すべき成形金型の形成材料であるワーク Wが位置決め状態で載置 される。ワーク Wは、タングステンと炭素とからなる合金を高温及び高圧で焼結した超 硬合金であり、結合材 (バインダ)として、例えばコバルトなどの金属が数 at%から 10 数 at%含まれている。尚、ワーク Wとして、プラズマ焼結によって得られた、バインダ を殆ど含まな 、超硬合金を用いることもできる。
[0158] 上記処理チャンバ 201においては、真空ポンプ 209の駆動により内部空気又はェ ツチング処理後のエッチングガス力 S排気されて所定の真空度に真空引きされると共 に、新たなエッチングガスが内部に導入される。上記エッチングガスを生成するエツ チングガス生成装置 210は、第 1のガスタンク 211A力も反応性ガスとしてのヨウ化水 素ガスを、第 2のガスタンク 212から不活性ガスとしてのアルゴンガスを、第 3のガスタ ンク 213から酸素ガスを、後述する所定の割合 (混合率)となる流量に調整しながらそ れぞれ導入し、導入した 3種の上記ガスを混合して所望のエッチングガスを生成し、 当該生成したエッチングガスを処理チャンバ 201の内部に供給する。
[0159] 続いて、上記ワーク Wをドライエッチングして所望の成形金型を形成する方法につ V、て説明する。図 11 (a)〜 (c)は本実施形態の成形金型の製造方法の各工程を示 す断面図である。図 12は、上記プラズマエッチング装置により形成すべき成形金型 2 14を示す斜視図である。図 12に示すように、成形金型 214においては、基台 214a の表面に、導波路基板の光ファイバ保持用溝を熱プレス成形により形成するための 矩形状断面を有する所定パターンのレール状凸部 214bが形成されている。尚、図 1 2では成形金型の構成を簡略化して示しているが、実際にはレール状凸部 214bが 微細なパターンとして形成されて 、る。
[0160] 本実施形態の成形金型の製造方法にお!、ては、まず、ワーク Wの処理チャンバ 20 1内への搬入の前に、図 11 (a)に示すように、ワーク Wの表面に、上記レール状凸部 214bに対応した形状のエッチングマスク 217を予め形成する。エッチングマスク 217 の形成方法は例えば次の通りである。すなわち、ワーク Wの表面に、所望のレール状 凸部パターンを反転させたパターンを持つレジストを形成した後、ワーク Wの表面全 体に、スパッタ法によりニッケルを膜状に堆積し、その後、前記レジストとその上に堆 積された不要なニッケルとをリフトオフ法により除去することによって、例えばニッケル よりなるエッチングマスク 217を形成する。本実施形態においては、エッチングマスク 217は、幅 5 /z m、膜厚 2 mの帯形状が高密度に配置されてなる所定の微細パタ ーンとして形成されている。
[0161] 次に、前述のように所定パターンのエッチングマスク 217が予め形成されたワーク Wを処理チャンバ 201内の下部電極 203上に載置した後、真空ポンプ 209を駆動し て処理チャンバ 201の内部を所定の真空度に真空引きし、その後、エッチングガス生 成装置 210を駆動してエッチングガスを処理チャンバ 201内に導入する。このエッチ ングガスは、前述のようにヨウ化水素ガスとアルゴンガスと酸素ガスとを混合したもの であるが、 1分当たりのガス流量比において、例えば、ヨウ化水素ガス:アルゴンガス: 酸素ガス = 25cc: 50cc: 5ccの混合割合に設定されて 、る。
[0162] 続いて、 ICPプラズマ RF電源 204から上部電極 202に駆動電力を供給すると共に 、ノ ィァス RF電源 207から下部電極 203に駆動電力を供給する。これにより、処理 チャンバ 201内において前記エッチングガスが励起されて、上部電極 202 (ICP部) の周辺に高密度のプラズマラジカルが発生するので、図 11 (b)に示すように、上部 電極 202から下部電極 203に引き寄せられるプラズマラジカル 218力 エッチングマ スク 217を含むワーク Wの表面に対して垂直に入射し、これによつてワーク Wのドライ エッチングが進行していく。
[0163] 尚、本実施形態では、ドライエッチングの条件として、 ICPプラズマ RF電源 204から 上部電極 202への供給電力を 500W、バイアス RF電源 207から下部電極 203への 供給電力を 300W、処理チャンバ 201内の圧力を 2Pa、冷却水管路 208によるヮー ク Wの冷却設定温度を 25°C、エッチング時間を 20分にそれぞれ設定する。
[0164] また、本実施形態では、前記エッチングガス中の反応性ガスであるヨウ化水素ガス 力 生成された反応性ラジカル力 ワーク W表面つまりタングステンと炭素との合金表 面に作用し、それにより生じた、タングステンのヨウ化物と炭素のヨウ化物とが除去さ れることによってドライエッチングが進行していく。このとき、前記エッチングガス中の 不活性ガスであるアルゴンガスは、エッチング面に生じたエッチングィ匕合物を除去し てエッチングを促進するように機能する。
[0165] 次に、エッチングが終了したならば、エッチングマスク 217を、例えば塩酸や硝酸な どの酸によるウエットエッチングによって除去する。これにより、図 11 (c)及び図 12に 示すような所望の成形金型 214、つまり基台 214aの表面に所定パターンのレール状 凸部 214bが形成されてなる成形金型 214が得られる。
[0166] 図 11 (b)に示すドライエッチングによる成形金型 214の製造では、エッチングガス 中の反応ガスとしてヨウ化水素ガスを用いたことにより、エッチングレートが 1分間に 2 OOnm程度まで高くなる。すなわち、従来のフッ素系ガスを用いたドライエッチングの 場合における 20分間に 1 μ mのエッチングレートと比較して、本実施形態のエツチン グレートは 20分間に約 4 /z mと格段に向上している。また、本実施形態においては、 エッチングガス中に酸素ガスを混合したことによってエッチングレートがさらに向上し ている。これは、酸素ガスを含むエッチングガスから生じた反応性ラジカルがワーク W 中の炭素と結合して炭化酸素となり、その結果、エッチング反応が促進されるためで ある。
[0167] 尚、本実施形態にぉ 、て酸素ガスをエッチングガス中に混入させる場合のエツチン グレートは、図 13に示すように、ヨウ化水素ガスに対する酸素ガスの混合率 (流量比) に依存する。具体的には、ヨウ化水素ガスに対する酸素ガスの混合率を 0. 15〜0. 6 の範囲に設定した場合には、 1分間に約 300nm以上の大きなエッチングレートを得 ることができ、上記混合率を 0. 3に設定した場合には、 1分間に約 500nmというエツ チングレートの最大値を得ることができる。従って、上記混合率を 0. 3に設定した場 合には、 20分間のエッチングによって約 10 mの深さまでエッチングすることが可能 となる。一方、従来のフッ素系ガスをエッチングガスとするドライエッチングでは 10 mの深さまでエッチングするのに 200分ものエッチング時間を要する。すなわち、本 実施形態によれば、従来技術と比べて、所望のエッチング深さを得るためのエツチン グ時間を大幅に短縮できる。
[0168] 以上のように、本実施形態のドライエッチングでは、 10 μ m程度の比較的大き ヽェ ツチング深さに設定した場合であっても、ヨウ化水素ガスに酸素ガスを混合したエッチ ングガスを用いることによって、エッチングレートが上述のように格段に向上して 、るこ と力ら、エッチング時間が長くなることに起因してエッチングマスク 217にサイドエッチ ングによる形状変化が生じることを防止できる。すなわち、エッチングマスク 217が矩 形状の初期断面形状を維持することができる。また、エッチング化合物の生成量が多 くならないように短いエッチング時間内にエッチング処理を終了させることができる。し 力も、不活性ガスとしてエッチングガス中に混入させたアルゴンガスは、エッチングに 伴ってワーク Wの表面に生成するエッチング化合物をスパッタリングにより効果的に 除去する。
[0169] このような本実施形態のドライエッチングを行った結果得られた成形金型 214にお いては、図 11 (c)に示すように、基台 214a上に形成されるレール状凸部 214bが 10 /z m程度の比較的大きい高さを有すると共に高密度パターンとして形成されているに もかかわらず、レール状凸部 214bの側壁は基台 214aに対して正確に垂直となる。 すなわち、レール状凸部 214bは所望の矩形断面形状を有するように形成される。ま た、上述のアルゴンガスによるエッチング化合物の除去によってエッチング面の表面 粗さが小さくなるため、レール状凸部 214bの形状制御を高精度に行うことができる。 さらに、本実施形態のドライエッチングでは、エッチング時間が大幅に短縮されること により、高い生産性で成形金型 214を製作し、コストの低減を図ることができる。
[0170] 尚、本実施形態においては、ヨウ素原子を含む反応ガスとしてヨウ化水素ガスを用 いたが、これに代えて、又はこれに加えて、ヨウ化トリフルォロメタンを適量用いてもよ い。或いは、他のガス化し易いヨウ化物を用いてもよい。また、不活性ガスとしては、 本実施形態で例示したアルゴンガスの他に、ネオン等の他の不活性ガスを用いても よぐまた、これらの不活性ガスにカ卩えて窒素等のガスを添加してもよい。さらに、エツ チングマスク 217については、本実施形態ではニッケルにより形成する場合を例示し た力 これに代えて、コバルトや銅等のエッチングされにくい他の金属を用いてエッチ ングマスクを形成してもよ 、。
[0171] 以下、上述のように所望の矩形断面状のレール状凸部 214bが高密度且つ高精度 に形成された成形金型 214を用いて、導波路基板を熱プレス成形により製作する方 法について説明する。
[0172] 図 14は、導波路基板を製作するための熱プレス成形機の概略断面構成を示して いる。図 14に示すように、熱プレス成形機 219の天井部には空圧シリンダ 220が設け られており、この空圧シリンダ 220の下端部に、加熱用ヒータ 221が内蔵された上部 プレスヘッド 222が取り付けられている。この上部プレスヘッド 222の下面には、本実 施形態のドライエッチングにより製作された成形金型 214が、レール状凸部 214bが 下方を向く配置で上部成形金型として固着されている。
[0173] 一方、熱プレス成形機 219の内部下方には、加熱用ヒータ 223が内蔵された下部 プレスヘッド 224が設置されており、この下部プレスヘッド 224の上面には、保持型 2 28がガイド部材 227の内部に位置決め固定された状態で取り付けられており、保持 型 228の上面に、軟ィ匕性材料力もなる成形素材 229が載置されている。 [0174] 上記熱プレス成形機 219においては、成形素材 229を保持型 228上に設置した後 、内部が窒素雰囲気に置換され、さらに、加熱用ヒータ 221及び 223が駆動されて内 部が所望の温度、例えば 450°C〜630°Cまで加熱される。この状態において、空圧 シリンダ 220が作動して上部プレスヘッド 222が下降し、この上部プレスヘッド 222の 下面に固着されている成形金型 214が成形素材 229に対して所定の圧力で押し付 けられる。これにより、成形素材 229の表面には、成形金型 214のレール状凸部 214 bに対応した溝が塑性変形により形成される。このように成形素材 229に溝が形成さ れてなる導波路基板の製作が終了すると、熱プレス成形機 219の内部が室温から 15 0°Cまでの範囲の温度に冷却された後、製作済みの導波路基板が熱プレス成形機 2 19から取り出される。従って、本実施形態の製造方法によって成形金型 214を高精 度に加工できれば、その成形金型 214を用いた熱プレス成形を行うだけで、同一形 状の導波路基板を大量生産することができるので、安価な導波路基板を提供するこ とが可能となる。
[0175] また、成形金型 214の製造に採用した本実施形態のドライエッチング方法では、タ ングステンと炭素とを主成分とする超硬合金を極めて高いエッチングレートでドライエ ツチングできると共にエッチングマスクに対するエッチング選択比が極めて向上して いるので、例えば図 15 (a)に示すような断面形状を有する成形金型 230をも高精度 に製造することが可能である。図 15 (a)に示すように、成形金型 230においては、両 側に傾斜面となった側壁 230bを有するレール状凸部 230cが基台 230a上に形成さ れている。
[0176] この成形金型 230の製造に際しては、例えば図 15 (b)に示すように、成形金型 23 0となるワーク Wの表面に、形成すべき傾斜面の側壁 230bとレール状凸部 230cとに 対応した形状のエッチングマスク 231を形成する。ここで、エッチングマスク 231の両 側壁となる両側の斜面部 23 laは、設定したエッチング時間を考慮して所望の厚さに 設定される。これにより、ワーク Wの中央部にレール状凸部 230cが形成される所定 時間の経過前にエッチングマスク 231の斜面部 231aの下端部(先端部)がエツチン グにより除去され、その後、レール状凸部 230cの形成が完了する時点で斜面部 231 aの全体がエッチングにより除去される。その結果、例えば図 15 (c)に示すように、ェ ツチング終了後には、エッチングマスク 231におけるレール状凸部 230cを形成する ための部分のみが残存することになる。また、エッチングマスク 231の斜面部 231aが その下端部力も徐々にエッチングにより除去されていくのに伴ってワーク Wに斜面状 の側壁 230bが形成されるので、図 15 (a)に示した断面形状を有する成形金型 230 を得ることができる。
[0177] 以上のように、本実施形態のドライエッチングを用いた成形金型の製造方法による と、高エッチングレートで超硬合金をドライエッチングすることが可能となるので、上述 した導波路基板を熱プレス成形するための成形金型 214を製造する用途の他にも、 ガラス成形用の成形金型、又は高強度の微細工具、耐磨耗性微細工具、耐蝕性微 細工具若しくは耐熱性微細工具等の成形金型を製造する用途等にも好適に適用す ることがでさる。
[0178] (第 6の実施形態の第 1変形例)
以下、本発明の第 6の実施形態の第 1変形例に係る成形金型の製造方法について 図面を参照しながら説明する。
[0179] 図 16は本変形例の成形金型の製造方法を具現化するための ICPプラズマエッチ ング装置の概略断面構成を示す図である。尚、図 16においては、図 10に示す第 6の 実施形態で用いる ICPプラズマエッチング装置と同一の構成要素には同一の符号を 付すことにより説明を省略する。図 16に示すように、本変形例で用いる ICPプラズマ エッチング装置が、図 10に示す第 6の実施形態で用いる ICPプラズマエッチング装 置と異なっている点は、反応性ガスとしてのヨウ化水素ガスを供給するための第 1の ガスタンク 211Aに代えて、反応性ガスとしての塩素ガスを供給するための第 1のガス タンク 211Bを備えていることである。すなわち、本変形例においては、エッチングガ スを生成するエッチングガス生成装置 210は、第 1のガスタンク 211B力も反応性ガス としての塩素ガスを、第 2のガスタンク 212から不活性ガスとしてのアルゴンガスを、第 3のガスタンク 213から酸素ガスを、後述する所定の割合 (混合率)となる流量に調整 しながらそれぞれ導入し、導入した 3種の上記ガスを混合して所望のエッチングガス を生成し、当該生成したエッチングガスを処理チャンバ 201の内部に供給する。
[0180] 本変形例の成形金型の製造方法は、エッチングガス中の反応性ガスとして塩素ガ スを用いる点を除いて、基本的に図 11 (a)〜(c)及び図 12に示す第 6の実施形態と 同じである。
[0181] すなわち、本変形例の成形金型の製造方法においては、第 6の実施形態と同様に 、まず、ワーク Wの処理チャンバ 201内への搬入の前に、図 11 (a)〖こ示すように、ヮ ーク Wの表面に、上記レール状凸部 214bに対応した形状のエッチングマスク 217を 予め形成する。エッチングマスク 217の形成方法は例えば第 6の実施形態と同様で ある。
[0182] 次に、所定パターンのエッチングマスク 217が予め形成されたワーク Wを処理チヤ ンバ 201内の下部電極 203上に載置した後、真空ポンプ 209を駆動して処理チャン ノ 201の内部を所定の真空度に真空引きし、その後、エッチングガス生成装置 210 を駆動してエッチングガスを処理チャンバ 201内に導入する。このエッチングガスは、 前述のように塩素ガスとアルゴンガスと酸素ガスとを混合したものであるが、 1分当たり のガス流量比にぉ 、て、例えば、塩素ガス:アルゴンガス:酸素ガス = 25cc: 50cc: 5 ccの混合割合に設定されて ヽる。
[0183] 続いて、第 6の実施形態と同様に、 ICPプラズマ RF電源 204から上部電極 202に 駆動電力を供給すると共に、ノ^ァス RF電源 207から下部電極 203に駆動電力を 供給する。これにより、処理チャンバ 201内において前記エッチングガスが励起され て、上部電極 202 (ICP部)の周辺に高密度のプラズマラジカルが発生するので、図 1 Kb)に示すように、上部電極 202から下部電極 203に引き寄せられるプラズマラジ カル 218力 エッチングマスク 217を含むワーク Wの表面に対して垂直に入射し、こ れによってワーク Wのドライエッチングが進行していく。
[0184] 尚、本変形例のドライエッチングの条件は例えば第 6の実施形態と同様である。
[0185] また、本変形例では、前記エッチングガス中の反応性ガスである塩素ガス力 生成 された反応性ラジカル力 ワーク W表面つまりタングステンと炭素との合金表面に作 用し、それにより生じた、タングステンの塩ィ匕物と炭素の塩ィ匕物とが除去されることに よってドライエッチングが進行していく。このとき、前記エッチングガス中の不活性ガス であるアルゴンガスは、エッチング面に生じたエッチング化合物を除去してエッチング を促進するように機能する。 [0186] 次に、エッチングが終了したならば、第 6の実施形態と同様に、エッチングマスク 21 7を、例えば塩酸や硝酸などの酸によるウエットエッチングによって除去する。これに よって、図 11 (c)及び図 12に示すような所望の成形金型 214、つまり基台 214aの表 面に所定パターンのレール状凸部 214bが形成されてなる成形金型 214が得られる
[0187] 図 11 (b)に示すドライエッチングによる成形金型 214の製造では、エッチングガス 中の反応ガスとして塩素ガスを用いたことにより、エッチングレートが 1分間に 200nm 程度まで高くなる。すなわち、従来のフッ素系ガスを用いたドライエッチングの場合に おける 20分間に 1 μ mのエッチングレートと比較して、本変形例のエッチングレートは 20分間に約 4 mと格段に向上している。また、本変形例においては、エッチングガ ス中に酸素ガスを混合したことによってエッチングレートがさらに向上している。これ は、酸素ガスを含むエッチングガス力 生じた反応性ラジカルがワーク W中の炭素と 結合して炭化酸素となり、その結果、エッチング反応が促進されるためである。
[0188] 尚、本変形例にお!、て酸素ガスをエッチングガス中に混入させる場合のエッチング レートは、図 17に示すように、塩素ガスに対する酸素ガスの混合率 (流量比)に依存 する。具体的には、塩素ガスに対する酸素ガスの混合率を 0. 15〜0. 6の範囲に設 定した場合には、 1分間に約 150〜200nm以上の大きなエッチングレートを得ること ができ、上記混合率を 0. 3に設定した場合には、 1分間に約 350nmというエッチング レートの最大値を得ることができる。従って、上記混合率を 0. 3に設定した場合には 、 20分間のエッチングによって約 7 mの深さまでエッチングすることが可能となる。 一方、従来のフッ素系ガスをエッチングガスとするドライエッチングでは 10 mの深さ までエッチングするのに 200分ものエッチング時間を要する。すなわち、本変形例に よれば、従来技術と比べて、所望のエッチング深さを得るためのエッチング時間を大 幅に短縮できる。
[0189] 以上のように、本変形例のドライエッチングでは、 10 μ m程度の比較的大き 、エツ チング深さに設定した場合であっても、塩素ガスに酸素ガスを混合したエッチングガ スを用いることによって、エッチングレートが上述のように格段に向上して 、ることから 、エッチング時間が長くなることに起因してエッチングマスク 217にサイドエッチングに よる形状変化が生じることを防止できる。すなわち、エッチングマスク 217が矩形状の 初期断面形状を維持することができる。また、エッチングィ匕合物の生成量が多くなら な 、ように短 、エッチング時間内にエッチング処理を終了させることができる。しかも 、不活性ガスとしてエッチングガス中に混入させたアルゴンガスは、エッチングに伴つ てワーク Wの表面に生成するエッチングィ匕合物をスパッタリングにより効果的に除去 する。
[0190] このような本変形例のドライエッチングを行った結果得られた成形金型 214にお ヽ ては、第 6の実施形態と同様に、図 11 (c)に示すように、基台 214a上に形成されるレ 一ル状凸部 214bが 10 m程度の比較的大きい高さを有すると共に高密度パターン として形成されているにもかかわらず、レール状凸部 214bの側壁は基台 214aに対 して正確に垂直となる。すなわち、レール状凸部 214bは所望の矩形断面形状を有 するように形成される。また、上述のアルゴンガスによるエッチング化合物の除去によ つてエッチング面の表面粗さが小さくなるため、レール状凸部 214bの形状制御を高 精度に行うことができる。さらに、本変形例のドライエッチングでは、エッチング時間が 大幅に短縮されることにより、高い生産性で成形金型 214を製作し、コストの低減を 図ることができる。
[0191] 尚、本変形例においては、塩素原子を含む反応ガスとして塩素ガスを用いた力 こ れに代えて、又はこれにカ卩えて、三塩化硼素、四塩ィ匕炭素又はクロ口ホルムを適量 用いてもよい。或いは、他のガス化し易い塩ィ匕物を用いてもよい。また、不活性ガスと しては、本変形例で例示したアルゴンガスの他に、ネオン等の他の不活性ガスを用 いてもよぐまた、これらの不活性ガスに加えて窒素等のガスを添加してもよい。さらに 、エッチングマスク 217については、本変形例ではニッケルにより形成する場合を例 示したが、これに代えて、コノ レトゃ銅等のエッチングされにくい他の金属を用いて エッチングマスクを形成してもよ 、。
[0192] また、上述のように所望の矩形断面状のレール状凸部 214bが高密度且つ高精度 に形成された成形金型 214を用いて、導波路基板を熱プレス成形により製作する方 法については、図 14及び図 15 (a)〜(c)に示す第 6の実施形態と同様である。
[0193] (第 6の実施形態の第 2変形例) 以下、本発明の第 6の実施形態の第 2変形例に係る成形金型の製造方法について 図面を参照しながら説明する。
[0194] 図 18は本変形例の成形金型の製造方法を具現化するための ICPプラズマエッチ ング装置の概略断面構成を示す図である。尚、図 18においては、図 10に示す第 6の 実施形態で用いる ICPプラズマエッチング装置と同一の構成要素には同一の符号を 付すことにより説明を省略する。図 18に示すように、本変形例で用いる ICPプラズマ エッチング装置が、図 10に示す第 6の実施形態で用いる ICPプラズマエッチング装 置と異なっている点は、反応性ガスとしてのヨウ化水素ガスを供給するための第 1の ガスタンク 211Aに代えて、反応性ガスとしての臭化水素ガスを供給するための第 1 のガスタンク 211Cを備えていることである。すなわち、本変形例においては、エッチ ングガスを生成するエッチングガス生成装置 210は、第 1のガスタンク 211C力も反応 性ガスとしての臭化水素ガスを、第 2のガスタンク 212から不活性ガスとしてのァルゴ ンガスを、第 3のガスタンク 213から酸素ガスを、後述する所定の割合 (混合率)となる 流量に調整しながらそれぞれ導入し、導入した 3種の上記ガスを混合して所望のエツ チングガスを生成し、当該生成したエッチングガスを処理チャンバ 201の内部に供給 する。
[0195] 本変形例の成形金型の製造方法は、エッチングガス中の反応性ガスとして臭化水 素ガスを用いる点を除 、て、基本的に図 11 (a)〜 (c)及び図 12に示す第 6の実施形 態と同じである。
[0196] すなわち、本変形例の成形金型の製造方法においては、第 6の実施形態と同様に 、まず、ワーク Wの処理チャンバ 201内への搬入の前に、図 11 (a)〖こ示すように、ヮ ーク Wの表面に、上記レール状凸部 214bに対応した形状のエッチングマスク 217を 予め形成する。エッチングマスク 217の形成方法は例えば第 6の実施形態と同様で ある。
[0197] 次に、所定パターンのエッチングマスク 217が予め形成されたワーク Wを処理チヤ ンバ 201内の下部電極 203上に載置した後、真空ポンプ 209を駆動して処理チャン ノ 201の内部を所定の真空度に真空引きし、その後、エッチングガス生成装置 210 を駆動してエッチングガスを処理チャンバ 201内に導入する。このエッチングガスは、 前述のように臭化水素ガスとアルゴンガスと酸素ガスとを混合したものである力 1分 当たりのガス流量比において、例えば、臭化水素ガス:アルゴンガス:酸素ガス = 25c c: 50cc: 5ccの混合割合に設定されて!ヽる。
[0198] 続いて、第 6の実施形態と同様に、 ICPプラズマ RF電源 204から上部電極 202に 駆動電力を供給すると共に、ノ^ァス RF電源 207から下部電極 203に駆動電力を 供給する。これにより、処理チャンバ 201内において前記エッチングガスが励起され て、上部電極 202 (ICP部)の周辺に高密度のプラズマラジカルが発生するので、図 1 Kb)に示すように、上部電極 202から下部電極 203に引き寄せられるプラズマラジ カル 218力 エッチングマスク 217を含むワーク Wの表面に対して垂直に入射し、こ れによってワーク Wのドライエッチングが進行していく。
[0199] 尚、本変形例のドライエッチングの条件は例えば第 6の実施形態と同様である。
[0200] また、本変形例では、前記エッチングガス中の反応性ガスである臭化水素ガスから 生成された反応性ラジカル力 ワーク W表面つまりタングステンと炭素との合金表面 に作用し、それにより生じた、タングステンの臭化物と炭素の臭化物とが除去されるこ とによってドライエッチングが進行していく。このとき、前記エッチングガス中の不活性 ガスであるアルゴンガスは、エッチング面に生じたエッチング化合物を除去してエッチ ングを促進するように機能する。
[0201] 次に、エッチングが終了したならば、第 6の実施形態と同様に、エッチングマスク 21 7を、例えば塩酸や硝酸などの酸によるウエットエッチングによって除去する。これに よって、図 11 (c)及び図 12に示すような所望の成形金型 214、つまり基台 214aの表 面に所定パターンのレール状凸部 214bが形成されてなる成形金型 214が得られる
[0202] 図 11 (b)に示すドライエッチングによる成形金型 214の製造では、エッチングガス 中の反応ガスとして臭化水素ガスを用いたことにより、エッチングレートが 1分間に 20 Onm程度まで高くなる。すなわち、従来のフッ素系ガスを用いたドライエッチングの場 合における 20分間に 1 μ mのエッチングレートと比較して、本変形例のエッチングレ ートは 20分間に約 4 mと格段に向上している。また、本変形例においては、エッチ ングガス中に酸素ガスを混合したことによってエッチングレートがさらに向上している 。これは、酸素ガスを含むエッチングガス力 生じた反応性ラジカルがワーク W中の 炭素と結合して炭化酸素となり、その結果、エッチング反応が促進されるためである。
[0203] 尚、本変形例にお!、て酸素ガスをエッチングガス中に混入させる場合のエッチング レートは、図 19に示すように、臭化水素ガスに対する酸素ガスの混合率 (流量比)に 依存する。具体的には、臭化水素ガスに対する酸素ガスの混合率を 0. 15〜0. 6の 範囲に設定した場合には、 1分間に約 150〜200nm以上の大きなエッチングレート を得ることができ、上記混合率を 0. 3に設定した場合には、 1分間に約 300nmという エッチングレートの最大値を得ることができる。従って、上記混合率を 0. 3に設定した 場合には、 20分間のエッチングによって約 6 mの深さまでエッチングすることが可 能となる。一方、従来のフッ素系ガスをエッチングガスとするドライエッチングでは 10 μ mの深さまでエッチングするのに 200分ものエッチング時間を要する。すなわち、 本変形例によれば、従来技術と比べて、所望のエッチング深さを得るためのエツチン グ時間を大幅に短縮できる。
[0204] 以上のように、本変形例のドライエッチングでは、 10 μ m程度の比較的大き 、エツ チング深さに設定した場合であっても、臭化水素ガスに酸素ガスを混合したエツチン グガスを用いることによって、エッチングレートが上述のように格段に向上していること から、エッチング時間が長くなることに起因してエッチングマスク 217にサイドエツチン グによる形状変化が生じることを防止できる。すなわち、エッチングマスク 217が矩形 状の初期断面形状を維持することができる。また、エッチングィ匕合物の生成量が多く ならな 、ように短 、エッチング時間内にエッチング処理を終了させることができる。し 力も、不活性ガスとしてエッチングガス中に混入させたアルゴンガスは、エッチングに 伴ってワーク Wの表面に生成するエッチング化合物をスパッタリングにより効果的に 除去する。
[0205] このような本変形例のドライエッチングを行った結果得られた成形金型 214にお ヽ ては、第 6の実施形態と同様に、図 11 (c)に示すように、基台 214a上に形成されるレ 一ル状凸部 214bが 10 m程度の比較的大きい高さを有すると共に高密度パターン として形成されているにもかかわらず、レール状凸部 214bの側壁は基台 214aに対 して正確に垂直となる。すなわち、レール状凸部 214bは所望の矩形断面形状を有 するように形成される。また、上述のアルゴンガスによるエッチング化合物の除去によ つてエッチング面の表面粗さが小さくなるため、レール状凸部 214bの形状制御を高 精度に行うことができる。さらに、本変形例のドライエッチングでは、エッチング時間が 大幅に短縮されることにより、高い生産性で成形金型 214を製作し、コストの低減を 図ることができる。
[0206] 尚、本変形例においては、臭素原子を含む反応ガスとして臭化水素ガスを用いた 力 これに代えて、又はこれに加えて、臭素ガス、三臭化硼素、四臭化炭素又は臭化 メチルを適量用いてもよい。或いは、他のガス化し易い臭化物を用いてもよい。また、 不活性ガスとしては、本変形例で例示したアルゴンガスの他に、ネオン等の他の不活 性ガスを用いてもよぐまた、これらの不活性ガスにカ卩えて窒素等のガスを添加しても よい。さらに、エッチングマスク 217については、本変形例ではニッケルにより形成す る場合を例示した力 これに代えて、コバルトや銅等のエッチングされにくい他の金 属を用いてエッチングマスクを形成してもよ 、。
[0207] また、上述のように所望の矩形断面状のレール状凸部 214bが高密度且つ高精度 に形成された成形金型 214を用いて、導波路基板を熱プレス成形により製作する方 法については、図 14及び図 15 (a)〜(c)に示す第 6の実施形態と同様である。
産業上の利用可能性
[0208] 以上に説明したように、本発明のドライエッチング方法は、 WC合金のようなタンダス テンと炭素とを含む物質を高精度に微細加工する方法として有用である。また、本発 明の微細構造形成方法は、 WC合金のようなタングステンと炭素とを含む物質に高精 度に微細パターンを形成する方法として非常に有用である。すなわち、超硬材として の WC合金等の加工を飛躍的に高精度化し且つ容易にする技術として本発明のドラ ィエッチング方法及び微細構造形成方法は、 MEMS (Micro-Electro-Mechanical Sy stems)分野での WC合金等の利用に大きな道を開くことができる。
[0209] また、本発明のモールド製造方法は、 WC合金のようなタングステンと炭素とを含む 物質をモールド母材として使用して、高精度な微小凹凸を備えたモールドを製造す るのに必要不可欠である。また、本発明のモールドは、超硬合金である WC合金等に 超高精度な微小凹凸を設けた構成であるため、光回路部品の製造用モールド又は ナノインプリント用のモールドのみならず、あらゆる分野における耐久性の高い高精 度微小凹凸モールドとして用いることができる。
さらに、本発明の他のドライエッチング方法及び他の成形金型の製造方法におい ては、タングステンと炭素とを主成分とする超硬合金力もなる形成材料を、ヨウ素原子 、塩素原子又は臭素原子のいずれかを含む第 1のガスと不活性ガス力 なる第 2の ガスと酸素ガスからなる第 3のガスとを混合してなるエッチングガスから生成されたプ ラズマラジカルによりドライエッチングする。このため、エッチング深さが比較的大きい ノ ターンを高密度に形成する場合であっても、エッチングにより形成された凸部の側 壁が基台に対して正確に垂直となる所望の矩形状断面を有し且つエッチング面の表 面粗さが小さい成形金型を高精度に製造することができる。また、エッチング時間を 大幅に短縮することができるので、成形金型を高い生産性で製作してコストの低減を 図ることができる。

Claims

請求の範囲
[1] タングステンと炭素とを含む物体に対して、塩素原子を含むガスから生成されたプ ラズマを用いてエッチングを行なうことを特徴とするドライエッチング方法。
[2] 請求項 1に記載のドライエッチング方法にぉ 、て、
前記塩素原子を含むガスは、塩素分子、塩ィ匕水素分子若しくは三塩ィ匕硼素分子の いずれか又はそれらの 2つ以上の混合物力 なることを特徴とするドライエッチング方 法。
[3] 請求項 1に記載のドライエッチング方法にぉ 、て、
前記プラズマは、前記塩素原子を含むガスと酸素原子を含むガスとの混合ガスカゝら 生成されることを特徴とするドライエッチング方法。
[4] 請求項 3に記載のドライエッチング方法にぉ 、て、
前記酸素原子を含むガスは、酸素分子、酸化窒素分子、酸化硫黄分子若しくは酸 化炭素分子のいずれか又はそれらの 2つ以上の混合物力 なることを特徴とするドラ ィエッチング方法。
[5] 請求項 1に記載のドライエッチング方法にぉ 、て、
前記塩素原子を含むガスは酸素原子を含むことを特徴とするドライエッチング方法
[6] 請求項 1に記載のドライエッチング方法にぉ 、て、
前記プラズマは、前記塩素原子を含むガスと希ガスとの混合ガスカゝら生成されるこ とを特徴とするドライエッチング方法。
[7] 請求項 1に記載のドライエッチング方法にぉ 、て、
前記プラズマは、前記塩素原子を含むガスと塩素原子以外のハロゲン原子を含む ガスとの混合ガスカゝら生成されることを特徴とするドライエッチング方法。
[8] 請求項 7に記載のドライエッチング方法にぉ 、て、
前記ハロゲン原子を含むガスは、弗素原子を含むガス、臭素原子を含むガス若しく はヨウ素原子を含むガスのいずれか又はそれらの 2つ以上の混合ガスであることを特 徴とするドライエッチング方法。
[9] 請求項 1に記載のドライエッチング方法にぉ ヽて、 前記塩素原子を含むガスは弗素原子を含むことを特徴とするドライエッチング方法
[10] 請求項 1に記載のドライエッチング方法にぉ 、て、
前記塩素原子を含むガスは塩素原子以外のハロゲン原子を含むことを特徴とする ドライエッチング方法。
[11] タングステンと炭素とを含む物体上にマスクパターンを形成する工程と、
前記マスクパターンを用いて、塩素原子を含むガスカゝら生成されたプラズマにより 前記物体をエッチングする工程とを備えていることを特徴とする微細構造形成方法。
[12] 請求項 11に記載の微細構造形成方法にお!、て、
前記塩素原子を含むガスは、塩素分子、塩ィ匕水素分子若しくは三塩ィ匕硼素分子の いずれか又はそれらの 2つ以上の混合物力 なることを特徴とする微細構造形成方 法。
[13] 請求項 11に記載の微細構造形成方法にお!、て、
前記プラズマは、前記塩素原子を含むガスと酸素原子を含むガスとの混合ガスカゝら 生成されることを特徴とする微細構造形成方法。
[14] 請求項 13に記載の微細構造形成方法において、
前記酸素原子を含むガスは、酸素分子、酸化窒素分子、酸化硫黄分子若しくは酸 化炭素分子のいずれか又はそれらの 2つ以上の混合物力 なることを特徴とする微 細構造形成方法。
[15] 請求項 11に記載の微細構造形成方法にお!、て、
前記塩素原子を含むガスは酸素原子を含むことを特徴とする微細構造形成方法。
[16] 請求項 11に記載の微細構造形成方法にお!、て、
前記プラズマは、前記塩素原子を含むガスと希ガスとの混合ガスカゝら生成されるこ とを特徴とする微細構造形成方法。
[17] 請求項 11に記載の微細構造形成方法にぉ 、て、
前記プラズマは、前記塩素原子を含むガスと塩素原子以外のハロゲン原子を含む ガスとの混合ガスから生成されることを特徴とする微細構造形成方法。
[18] 請求項 17に記載の微細構造形成方法において、 前記ハロゲン原子を含むガスは、弗素原子を含むガス、臭素原子を含むガス若しく はヨウ素原子を含むガスのいずれか又はそれらの 2つ以上の混合ガスであることを特 徴とする微細構造形成方法。
[19] 請求項 11に記載の微細構造形成方法にお!、て、
前記塩素原子を含むガスは弗素原子を含むことを特徴とする微細構造形成方法。
[20] 請求項 11に記載の微細構造形成方法にお!、て、
前記塩素原子を含むガスは塩素原子以外のハロゲン原子を含むことを特徴とする 微細構造形成方法。
[21] 塩素原子を含むガスカゝら生成されたプラズマを用いて、タングステンと炭素とを含む 物体をモールドにカ卩ェすることを特徴とするモールドの製造方法。
[22] 請求項 21に記載のモールドの製造方法にぉ 、て、
前記塩素原子を含むガスは、塩素分子、塩化水素分子若しくは三塩化硼素分子の いずれか又はそれらの 2つ以上の混合物力もなることを特徴とするモールドの製造方 法。
[23] 請求項 21に記載のモールドの製造方法にぉ 、て、
前記プラズマは、前記塩素原子を含むガスと酸素原子を含むガスとの混合ガスカゝら 生成されることを特徴とするモールドの製造方法。
[24] 請求項 23に記載のモールドの製造方法にぉ 、て、
前記酸素原子を含むガスは、酸素分子、酸化窒素分子、酸化硫黄分子若しくは酸 化炭素分子のいずれか又はそれらの 2つ以上の混合物力 なることを特徴とするモ 一ルドの製造方法。
[25] 請求項 21に記載のモールドの製造方法にぉ 、て、
前記塩素原子を含むガスは酸素原子を含むことを特徴とするモールドの製造方法
[26] 請求項 21に記載のモールドの製造方法にぉ 、て、
前記プラズマは、前記塩素原子を含むガスと希ガスとの混合ガスカゝら生成されるこ とを特徴とするモールドの製造方法。
[27] 請求項 21に記載のモールドの製造方法にぉ 、て、 前記プラズマは、前記塩素原子を含むガスと塩素原子以外のハロゲン原子を含む ガスとの混合ガスカゝら生成されることを特徴とするモールドの製造方法。
[28] 請求項 27に記載のモールドの製造方法において、
前記ハロゲン原子を含むガスは、弗素原子を含むガス、臭素原子を含むガス若しく はヨウ素原子を含むガスのいずれか又はそれらの 2つ以上の混合ガスであることを特 徴とするモールドの製造方法。
[29] 請求項 21に記載のモールドの製造方法にぉ 、て、
前記塩素原子を含むガスは弗素原子を含むことを特徴とするモールドの製造方法
[30] 請求項 21に記載のモールドの製造方法にぉ 、て、
前記塩素原子を含むガスは塩素原子以外のハロゲン原子を含むことを特徴とする モールドの製造方法。
[31] 塩素原子を含むガス力も生成されたプラズマを用いて、タングステンと炭素とを含む 物体を成形加工することにより製造されたことを特徴とするモールド。
[32] 請求項 31に記載のモールドにおいて、
前記塩素原子を含むガスは、塩素分子、塩化水素分子若しくは三塩化硼素分子の いずれか又はそれらの 2つ以上の混合物力もなることを特徴とするモールド。
[33] 請求項 31に記載のモールドにおいて、
前記プラズマは、前記塩素原子を含むガスと酸素原子を含むガスとの混合ガスカゝら 生成されることを特徴とするモールド。
[34] 請求項 33に記載のモールドにおいて、
前記酸素原子を含むガスは、酸素分子、酸化窒素分子、酸化硫黄分子若しくは酸 化炭素分子のいずれか又はそれらの 2つ以上の混合物力 なることを特徴とするモ 一ノレド。
[35] 請求項 31に記載のモールドにおいて、
前記塩素原子を含むガスは酸素原子を含むことを特徴とするモールド。
[36] 請求項 31に記載のモールドにおいて、
前記プラズマは、前記塩素原子を含むガスと希ガスとの混合ガスカゝら生成されるこ とを特徴とするモールド。
[37] 請求項 31に記載のモールドにおいて、
前記プラズマは、前記塩素原子を含むガスと塩素原子以外のハロゲン原子を含む ガスとの混合ガス力 生成されることを特徴とするモールド。
[38] 請求項 37に記載のモールドにおいて、
前記ハロゲン原子を含むガスは、弗素原子を含むガス、臭素原子を含むガス若しく はヨウ素原子を含むガスのいずれか又はそれらの 2つ以上の混合ガスであることを特 徴とするモールド。
[39] 請求項 31に記載のモールドにおいて、
前記塩素原子を含むガスは弗素原子を含むことを特徴とするモールド。
[40] 請求項 31に記載のモールドにおいて、
前記塩素原子を含むガスは塩素原子以外のハロゲン原子を含むことを特徴とする モーノレド。
[41] タングステンと炭素とを主成分とする超硬合金力もなる形成材料に対して、ヨウ素原 子を含む第 1のガスと不活性ガス力もなる第 2のガスと酸素ガス力もなる第 3のガスと を混合してなるエッチングガスカゝら生成されたプラズマラジカルを用いてエッチングを 行うことを特徴とするドライエッチング方法。
[42] 請求項 41に記載のドライエッチング方法にぉ 、て、
前記エッチングガスは、前記第 1のガスに対して前記第 3のガスを 0. 15以上で且 つ 0. 6以下の混合率で混合してなることを特徴とするドライエッチング方法。
[43] 請求項 41に記載のドライエッチング方法にぉ 、て、
前記第 1のガスはヨウ化水素ガス又はヨウ化トリフルォロメタンであることを特徴とす るドライエッチング方法。
[44] 請求項 41に記載のドライエッチング方法にぉ 、て、
前記第 2のガスはアルゴンであることを特徴とするドライエッチング方法。
[45] タングステンと炭素とを主成分とする超硬合金からなる形成材料の表面に所定のパ ターン形状を有するエッチングマスクを形成する工程と、
ヨウ素原子を含む第 1のガスと不活性ガスカゝらなる第 2のガスと酸素ガスカゝらなる第 3のガスとを混合してなるエッチングガスカゝら生成されたプラズマラジカルにより前記 形成材料をドライエッチングして、前記エッチングマスクに対応した凸部を形成する 工程とを備えて!/、ることを特徴とする成形金型の製造方法。
[46] 請求項 45に記載の成形金型の製造方法にお 、て、
前記エッチングガスは、前記第 1のガスに対して前記第 3のガスを 0. 15以上で且 つ 0. 6以下の混合率で混合してなることを特徴とする成形金型の製造方法。
[47] 請求項 45に記載の成形金型の製造方法にお 、て、
前記第 1のガスはヨウ化水素ガス又はヨウ化トリフルォロメタンであることを特徴とす る成形金型の製造方法。
[48] 請求項 45に記載の成形金型の製造方法にお 、て、
前記第 2のガスはアルゴンであることを特徴とする成形金型の製造方法。
[49] タングステンと炭素とを主成分とする超硬合金からなる形成材料に対して、塩素原 子を含む第 1のガスと不活性ガス力もなる第 2のガスと酸素ガス力もなる第 3のガスと を混合してなるエッチングガスカゝら生成されたプラズマラジカルを用いてエッチングを 行うことを特徴とするドライエッチング方法。
[50] 請求項 49に記載のドライエッチング方法にぉ 、て、
前記エッチングガスは、前記第 1のガスに対して前記第 3のガスを 0. 15以上で且 つ 0. 6以下の混合率で混合してなることを特徴とするドライエッチング方法。
[51] 請求項 49に記載のドライエッチング方法にぉ 、て、
前記第 1のガスは塩素ガス又は三塩ィ匕硼素ガスであることを特徴とするドライエッチ ング方法。
[52] 請求項 49に記載のドライエッチング方法にぉ 、て、
前記第 2のガスはアルゴンであることを特徴とするドライエッチング方法。
[53] タングステンと炭素とを主成分とする超硬合金からなる形成材料の表面に所定のパ ターン形状を有するエッチングマスクを形成する工程と、
塩素原子を含む第 1のガスと不活性ガス力もなる第 2のガスと酸素ガス力 なる第 3 のガスとを混合してなるエッチングガスカゝら生成されたプラズマラジカルにより前記形 成材料をドライエッチングして、前記エッチングマスクに対応した凸部を形成するェ 程とを備えて!/、ることを特徴とする成形金型の製造方法。
[54] 請求項 53に記載の成形金型の製造方法にお 、て、
前記エッチングガスは、前記第 1のガスに対して前記第 3のガスを 0. 15以上で且 つ 0. 6以下の混合率で混合してなることを特徴とする成形金型の製造方法。
[55] 請求項 53に記載の成形金型の製造方法において、
前記第 1のガスは塩素ガス又は三塩ィ匕硼素ガスであることを特徴とする成形金型の 製造方法。
[56] 請求項 53に記載の成形金型の製造方法において、
前記第 2のガスはアルゴンであることを特徴とする成形金型の製造方法。
[57] タングステンと炭素とを主成分とする超硬合金力もなる形成材料に対して、臭素原 子を含む第 1のガスと不活性ガス力もなる第 2のガスと酸素ガス力もなる第 3のガスと を混合してなるエッチングガスカゝら生成されたプラズマラジカルを用いてエッチングを 行うことを特徴とするドライエッチング方法。
[58] 請求項 57に記載のドライエッチング方法にぉ 、て、
前記エッチングガスは、前記第 1のガスに対して前記第 3のガスを 0. 15以上で且 つ 0. 6以下の混合率で混合してなることを特徴とするドライエッチング方法。
[59] 請求項 57に記載のドライエッチング方法にぉ 、て、
前記第 1のガスは臭素ガス又は臭化水素ガスであることを特徴とするドライエツチン グ方法。
[60] 請求項 57に記載のドライエッチング方法にぉ 、て、
前記第 2のガスはアルゴンであることを特徴とするドライエッチング方法。
[61] タングステンと炭素とを主成分とする超硬合金からなる形成材料の表面に所定のパ ターン形状を有するエッチングマスクを形成する工程と、
臭素原子を含む第 1のガスと不活性ガスカゝらなる第 2のガスと酸素ガスカゝらなる第 3 のガスとを混合してなるエッチングガスカゝら生成されたプラズマラジカルにより前記形 成材料をドライエッチングして、前記エッチングマスクに対応した凸部を形成するェ 程とを備えて!/、ることを特徴とする成形金型の製造方法。
[62] 請求項 61に記載の成形金型の製造方法にお 、て、 前記エッチングガスは、前記第 1のガスに対して前記第 3のガスを 0. 15以上で且 つ 0. 6以下の混合率で混合してなることを特徴とする成形金型の製造方法。
[63] 請求項 61に記載の成形金型の製造方法にお 、て、
前記第 1のガスは臭素ガス又は臭化水素ガスであることを特徴とする成形金型の製 造方法。
[64] 請求項 61に記載の成形金型の製造方法にお 、て、
前記第 2のガスはアルゴンであることを特徴とする成形金型の製造方法。
PCT/JP2006/310214 2005-05-24 2006-05-23 ドライエッチング方法、微細構造形成方法、モールド及びその製造方法 WO2006126520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006535896A JPWO2006126520A1 (ja) 2005-05-24 2006-05-23 ドライエッチング方法、微細構造形成方法、モールド及びその製造方法
US11/659,109 US7919005B2 (en) 2005-05-24 2006-05-23 Dry etching method, fine structure formation method, mold and mold fabrication method
EP06756470A EP1884505A1 (en) 2005-05-24 2006-05-23 Dry etching method, method for forming fine structure, mold and method for producing same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-151413 2005-05-24
JP2005151412 2005-05-24
JP2005151413 2005-05-24
JP2005-151414 2005-05-24
JP2005151414 2005-05-24
JP2005-151412 2005-05-24
JP2006034852 2006-02-13
JP2006-034852 2006-02-13

Publications (1)

Publication Number Publication Date
WO2006126520A1 true WO2006126520A1 (ja) 2006-11-30

Family

ID=37451945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310214 WO2006126520A1 (ja) 2005-05-24 2006-05-23 ドライエッチング方法、微細構造形成方法、モールド及びその製造方法

Country Status (5)

Country Link
US (1) US7919005B2 (ja)
EP (1) EP1884505A1 (ja)
JP (1) JPWO2006126520A1 (ja)
KR (1) KR20080017290A (ja)
WO (1) WO2006126520A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057858A (ja) * 2008-01-23 2015-03-26 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツングSolvay Fluor GmbH 太陽電池の製造方法
US9093388B2 (en) 2010-02-01 2015-07-28 Central Glass Company, Limited Dry etching agent and dry etching method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937895A1 (fr) * 2008-11-04 2010-05-07 Commissariat Energie Atomique Moule presentant une surface nanostructuree pour realiser des pieces polymeres nanostructurees et procede de fabrication d'un tel moule.
US9933570B2 (en) * 2016-03-01 2018-04-03 Futurewei Technologies, Inc. Integration of V-grooves on silicon-on-insulator (SOI) platform for direct fiber coupling

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629253A (ja) * 1991-04-17 1994-02-04 Intel Corp 半導体基板上のデバイスの製造中に平行板反応器内で耐火性金属層をエッチングする方法
JPH06188225A (ja) * 1992-12-21 1994-07-08 Sony Corp ドライエッチング方法
JPH07221074A (ja) * 1994-02-01 1995-08-18 Sony Corp ドライエッチング方法
JPH07263426A (ja) * 1994-03-25 1995-10-13 Sony Corp 積層配線のドライエッチング方法
JPH07335624A (ja) * 1994-06-10 1995-12-22 Sony Corp ドライエッチング方法
JPH08339987A (ja) * 1995-06-09 1996-12-24 Sony Corp 配線形成方法
JPH10337734A (ja) * 1997-06-06 1998-12-22 Hoya Corp 成形型およびその製造方法
JP2002025986A (ja) * 2000-07-06 2002-01-25 Matsushita Electric Ind Co Ltd ドライエッチング方法
JP2004039777A (ja) * 2002-07-02 2004-02-05 Matsushita Electric Ind Co Ltd プラズマ処理方法
JP2004268331A (ja) * 2003-03-06 2004-09-30 Minolta Co Ltd 光学素子用金型およびその金型製造方法
JP2005026444A (ja) * 2003-07-02 2005-01-27 Sharp Corp ドライエッチング方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298112A (en) * 1987-08-28 1994-03-29 Kabushiki Kaisha Toshiba Method for removing composite attached to material by dry etching
JPH0198229A (ja) 1987-10-09 1989-04-17 Fujitsu Ltd 半導体装置の製造方法
JPH0294520A (ja) 1988-09-30 1990-04-05 Toshiba Corp ドライエッチング方法
JP3152831B2 (ja) 1994-01-28 2001-04-03 松下電器産業株式会社 光学部品実装基板およびその製造方法
US6420095B1 (en) * 1994-03-18 2002-07-16 Fujitsu Limited Manufacture of semiconductor device using A-C anti-reflection coating
EP0732624B1 (en) * 1995-03-17 2001-10-10 Ebara Corporation Fabrication method with energy beam
JPH08274077A (ja) * 1995-03-31 1996-10-18 Sony Corp プラズマエッチング方法
US5650059A (en) * 1995-08-11 1997-07-22 Credo Tool Company Method of making cemented carbide substrate
US5814238A (en) * 1995-10-12 1998-09-29 Sandia Corporation Method for dry etching of transition metals
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US6156243A (en) * 1997-04-25 2000-12-05 Hoya Corporation Mold and method of producing the same
US6168737B1 (en) * 1998-02-23 2001-01-02 The Regents Of The University Of California Method of casting patterned dielectric structures
US6214247B1 (en) * 1998-06-10 2001-04-10 Tdy Industries, Inc. Substrate treatment method
US20040224504A1 (en) * 2000-06-23 2004-11-11 Gadgil Prasad N. Apparatus and method for plasma enhanced monolayer processing
US7311852B2 (en) * 2001-03-30 2007-12-25 Lam Research Corporation Method of plasma etching low-k dielectric materials
US6610447B2 (en) * 2001-03-30 2003-08-26 Intel Corporation Extreme ultraviolet mask with improved absorber
US7371688B2 (en) 2003-09-30 2008-05-13 Air Products And Chemicals, Inc. Removal of transition metal ternary and/or quaternary barrier materials from a substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629253A (ja) * 1991-04-17 1994-02-04 Intel Corp 半導体基板上のデバイスの製造中に平行板反応器内で耐火性金属層をエッチングする方法
JPH06188225A (ja) * 1992-12-21 1994-07-08 Sony Corp ドライエッチング方法
JPH07221074A (ja) * 1994-02-01 1995-08-18 Sony Corp ドライエッチング方法
JPH07263426A (ja) * 1994-03-25 1995-10-13 Sony Corp 積層配線のドライエッチング方法
JPH07335624A (ja) * 1994-06-10 1995-12-22 Sony Corp ドライエッチング方法
JPH08339987A (ja) * 1995-06-09 1996-12-24 Sony Corp 配線形成方法
JPH10337734A (ja) * 1997-06-06 1998-12-22 Hoya Corp 成形型およびその製造方法
JP2002025986A (ja) * 2000-07-06 2002-01-25 Matsushita Electric Ind Co Ltd ドライエッチング方法
JP2004039777A (ja) * 2002-07-02 2004-02-05 Matsushita Electric Ind Co Ltd プラズマ処理方法
JP2004268331A (ja) * 2003-03-06 2004-09-30 Minolta Co Ltd 光学素子用金型およびその金型製造方法
JP2005026444A (ja) * 2003-07-02 2005-01-27 Sharp Corp ドライエッチング方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057858A (ja) * 2008-01-23 2015-03-26 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツングSolvay Fluor GmbH 太陽電池の製造方法
US9093388B2 (en) 2010-02-01 2015-07-28 Central Glass Company, Limited Dry etching agent and dry etching method using the same
US9230821B2 (en) 2010-02-01 2016-01-05 Central Glass Company, Limited Dry etching agent and dry etching method using the same

Also Published As

Publication number Publication date
EP1884505A1 (en) 2008-02-06
US7919005B2 (en) 2011-04-05
US20090011065A1 (en) 2009-01-08
JPWO2006126520A1 (ja) 2008-12-25
KR20080017290A (ko) 2008-02-26

Similar Documents

Publication Publication Date Title
JP4783169B2 (ja) ドライエッチング方法、微細構造形成方法、モールド及びその製造方法
TWI757334B (zh) 準原子層蝕刻方法
US20110027999A1 (en) Etch method in the manufacture of an integrated circuit
KR20160044545A (ko) 하드마스크를 측면으로 트리밍하기 위한 방법
JPH03159235A (ja) エッチング方法
US7906030B2 (en) Dry etching method, fine structure formation method, mold and mold fabrication method
JP4749174B2 (ja) ドライエッチング方法、微細構造形成方法、モールド及びその製造方法
JP2011165855A (ja) パターン形成方法
WO2006126520A1 (ja) ドライエッチング方法、微細構造形成方法、モールド及びその製造方法
TWI605516B (zh) 含矽基板之蝕刻方法
JP2009292703A (ja) 光学素子成形用の金型の製造方法および光学素子の製造方法
JP2006216630A (ja) シリコン基体の加工方法、溝構造を有するシリコン基体、光学素子成形金型、シリコン製光学素子
Shul et al. Selective deep-Si-trench etching with dimensional control
TWI849546B (zh) 沉積膜之形成方法
JP3037780B2 (ja) マイクロエミッタの製造方法
CN114300354B (en) Manufacturing method of asymmetric semiconductor structure
JP2012126113A (ja) 金属デポジションを用いたナノインプリント金型の製造方法
WO2020129725A1 (ja) ハロゲンフッ化物によるエッチング方法、半導体の製造方法
JPH05160078A (ja) ドライエッチング方法
CN118621442A (zh) 一种铌酸锂基板的刻蚀方法
JP2006103981A (ja) 炭化珪素構造体及びそれを備えた光学レンズ用金型と電子放出素子並びに炭化珪素構造体の製造方法
JP2020203817A (ja) シリコンナノチューブの製造方法
Cho et al. Fabrication of field emitter arrays using the mold method for FED application
JP2009155152A (ja) 光学素子成形用金型の製造方法および光学素子の製造方法
CN118266061A (zh) 沉积膜的形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006535896

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006756470

Country of ref document: EP

Ref document number: 200680000516.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11659109

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077003716

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006756470

Country of ref document: EP