WO2006126430A1 - マグネトロン駆動用電源 - Google Patents

マグネトロン駆動用電源 Download PDF

Info

Publication number
WO2006126430A1
WO2006126430A1 PCT/JP2006/309814 JP2006309814W WO2006126430A1 WO 2006126430 A1 WO2006126430 A1 WO 2006126430A1 JP 2006309814 W JP2006309814 W JP 2006309814W WO 2006126430 A1 WO2006126430 A1 WO 2006126430A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
magnetron
driving power
power source
rated voltage
Prior art date
Application number
PCT/JP2006/309814
Other languages
English (en)
French (fr)
Inventor
Shinichi Sakai
Nobuo Shirokawa
Haruo Suenaga
Hideaki Moriya
Manabu Kinoshita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/914,805 priority Critical patent/US20090079353A1/en
Priority to EP06746517A priority patent/EP1885161B1/en
Priority to CN2006800182785A priority patent/CN101185373B/zh
Publication of WO2006126430A1 publication Critical patent/WO2006126430A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits

Definitions

  • the present invention relates to an arrangement of current control means for a magnetron driving power source having a rated voltage of 100V to 120V of an inverter type and a magnetron driving power source having a rated voltage of 200V to 240V, and these two magnetrons. It relates to the common arrangement of output means and grounding for the drive power supply. In particular, it relates to the component arrangement of the magnetron drive power supply with a rated voltage of 200V to 240V.
  • FIG. 6 shows a conventional magnetron driving power source described in Patent Document 1.
  • FIG. 6 it is composed of a rectifying element 1, a switching element 2, a shunt resistor 3, and a substrate 4 (the drawing is seen through the solder surface).
  • FIG. 7 shows a conventional magnetron driving power source described in Patent Document 2.
  • FIG. 7 it is composed of a reference point 11, a first switching element 12, a second switching element 13, a step-up transformer 14, and a high-voltage rectifier 15.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-319134 (FIG. 5 etc.)
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-195658 (Fig. 1 etc.)
  • a first object of the present invention is to solve the above-mentioned conventional problems, and for magnetron driving capable of stable switching driving in which the potential difference between the emitter potential of the switching element and the negative terminal of the rectifying element is minimized.
  • the purpose is to provide a power supply.
  • the 100V to 120V magnetron driving power source also includes the first (12) and second (13) switching elements. From the viewpoint of realizing a magnetron drive power supply with a rated voltage of 100V to 120V at a low cost, such as having to use multiple switching elements such as expensive IGBTs, 100V to 120V In addition, there is a problem of improving the development efficiency by sharing the component arrangement of the magnetron drive power supply having the rated voltage of 200V to 240V and common use.
  • a second object of the present invention is to solve the above-described conventional problems, and includes a magnetron driving power source having a rated voltage range of 100V to 120V having a single switching element, and two switching elements.
  • a magnetron driving power source having a rated voltage range of 100V to 120V having a single switching element, and two switching elements.
  • the purpose is to provide a magnetron drive power supply with high development efficiency by unifying the chassis with a facility type microwave oven such as a 200V outlet.
  • the magnetron driving power source according to the present invention is such that the vicinity of the emitter terminal of the switching element and the vicinity of the negative terminal of the rectifying element are directly connected by the shunt resistor.
  • the magnetron driving power source is characterized.
  • the magnetron driving power source of the present invention is used for a magnetron driving power source having a single switching element provided for a rated voltage category of 100 V to 120 V and a rated voltage category of 200 V to 240 V.
  • the ground position and the filament power supply position for heating the power sword of the magnetron are substantially matched.
  • a magnetron driving power source having a rated voltage range of 100V to 120V having a single switching element and a rated voltage range of 200V to 240V having two switching elements are provided.
  • the magnetron drive power supply component layout, in particular, the ground connection position and the output position of the filament power are shared.
  • the magnetron driving power supply of the present invention can minimize the potential difference between the emitter terminal potential of the switching element and the negative terminal potential of the rectifying element, and can realize stable switching operation and abnormal voltage detection. it can.
  • the arrangement of parts in the magnetron drive power supply in the rated voltage range of 100V to 120V and the magnetron drive power supply in the rated voltage range of 200V to 240V, in particular, the ground connection position and filament output position are standardized, and the chassis is unified Therefore, it is possible to provide an optimum magnetron driving power source according to the power supply voltage.
  • FIG. 1 Pattern diagram of magnetron driving power source provided for rated voltage of 200V to 240V in Embodiment 1 of the present invention, and transparent component arrangement diagram
  • FIG. 2 (&) Circuit diagram of power supply for driving magnetron used for rated voltage category of 100 ⁇ to 120 ⁇ according to Embodiment 1 of the present invention (b) Used for rated voltage category of 200V to 240V Circuit diagram of power source for driving magnetron
  • FIG. 3 is a side view of a main part of a power supply for driving a magnetron in the first embodiment of the present invention.
  • FIG. 4 is a pattern diagram of a magnetron driving power source provided in a rated voltage range of 100 V to 120 V in Embodiment 2 of the present invention, and a transparent component arrangement diagram.
  • FIG. 5 is a perspective view of main parts of a step-up transformer according to Embodiment 2 of the present invention.
  • a first invention includes a unidirectional power supply unit that converts a commercial power supply in a unidirectional direction, a rectifying element that performs full-wave rectification of an AC power supply of the unidirectional power supply unit, at least one semiconductor switching element, A heat sink with a rectifying element and a semiconductor switching element attached thereto, a shunt resistor inserted in series with respect to a location where the output current of the unidirectional power supply unit can be measured, and turning on and off the semiconductor switching element
  • An inverter unit that converts power from a directional power source unit into high-frequency power, a boosting transformer that boosts the output voltage of the inverter unit, a high-voltage rectifying unit that doubles the output voltage of the boosting transformer, and the high-voltage rectifying unit
  • a magnetron driving power source comprising a magnetron that radiates the output of an electromagnetic wave as an electromagnetic wave, in the vicinity of the emitter terminal of the switching element and the By connecting the vicinity of the negative terminal of the rectif
  • the second invention is particularly characterized in that the shunt resistor of the first invention is arranged substantially in parallel between the heat radiating plate, the rectifying element, and an extension line of the switching element. This saves the mounting space of the components, and in particular, has a large number of components to control multiple switching elements.
  • a magnetron drive power supply with a rated voltage range of V can be realized with approximately the same board size.
  • the shunt resistor of the first or second invention is used for a magnetron driving power source provided for a rated voltage classification of 100V to 120V and a rated voltage classification of 200V to 240V.
  • the length of each of the rated voltage sections is approximately proportional to each other, so that the amplification level of the minute signal of the shunt resistance can be made substantially the same. Issues such as circuit commonization and saturation of amplifiers can be avoided.
  • the first switching element according to any one of the first to third aspects is driven by a magnetron having two switching elements provided for a rated voltage classification of 200V to 240V.
  • the first switching element connected to the negative terminal of the rectifying element is disposed between the rectifying element and the second switching element. It is possible to connect the vicinity of the emitter terminal of the first switching element and the vicinity of the negative terminal of the rectifying element, so that the stability of the switching drive and the abnormality detection performance can be improved.
  • the fifth invention in particular, in the third or fourth invention, is a magnetron driving power source having a single switching element provided for the rated voltage classification of 100V to 120V and 200V to 240V.
  • 100 to 120V can be obtained by making each ground position and filament power supply position for heating the magnetron power sword substantially coincide.
  • Common mounting structure for a magnetron drive power supply with a single switching element used for rated voltage divisions and a magnetron drive power supply with two switching elements for 200V to 240V rated voltage classification This makes it possible to develop a magnetron drive power supply that is highly efficient in development due to the unification of the chassis and that is suitable for the power supply voltage. It can be provided.
  • the sixth invention is characterized in that, in particular, the step-up transformer of the fifth invention is integrated with the high-voltage rectifying unit, thereby easily realizing the effect of the fifth invention. Can do.
  • the magnetron driving power source of the fifth or sixth aspect of the invention is the ground.
  • the filament supply position are arranged at portions located at both ends of one side of the substrate, so that an output unit to the magnetron, a power control unit including a unidirectional power supply unit and an inverter unit, and a ground unit
  • the magnetron drive power supply provided for the rated voltage classification of 100V to 120V and the magnetron drive power supply provided for the rated voltage classification of 200V to 240V realized the same safe mounting structure. can do.
  • the eighth invention is characterized in that, in particular, a current transformer is used instead of the shunt resistor in any one of the fifth to seventh inventions, so that the mounting structure can be made common. Therefore, it is possible to provide an optimal magnetron driving power source that has high development efficiency due to the unification of chassis and the like, and that corresponds to the power supply voltage.
  • FIG. 1 shows a pattern diagram of a magnetron driving power source provided for a rated voltage of 200 V to 240 V and a transparent component arrangement in the first embodiment of the present invention.
  • Fig. 2 (a) is a circuit diagram of a magnetron driving power source provided for a rated voltage category of 100V to 120V in the embodiment of the present invention
  • Fig. 2 (b) is a rated voltage category of 200V to 240V.
  • 1 is a circuit diagram of a magnetron driving power supply to be provided.
  • a unidirectional power supply unit 21 that converts a commercial power supply in a unidirectional manner, a rectifier element 1 that full-wave rectifies the AC power of the unidirectional power supply unit 21, and the unidirectional power supply unit 21.
  • the inverter unit 22 that converts the power from the high-frequency power into the high-frequency power, the step-up transformer 23 that boosts the output voltage of the inverter unit 22, the high-voltage rectifier unit 24 that doubles the output voltage of the step-up transformer 23, and
  • a magnetron driving power source is provided that includes a magnetron 25 that radiates the output of the high-voltage rectifier 24 as an electromagnetic wave.
  • the input current flowing to the magnetron driving power source is supplied from the smoothing capacitor 26 via the emitter terminal 121 of the first semiconductor switching element 12 and the jumper wire 27 to the emitter of the first semiconductor switching element 12.
  • the current flows through the shunt resistor 3 located near the terminal 121 and is fed back to the commercial power supply from the negative terminal 101 of the rectifying element 1 located near the shunt resistor 3.
  • the input current flowing through the magnetron driving power source is located near the emitter terminal 121 of the first semiconductor switching element 12, flows through the shunt resistor 3,
  • the potential of the emitter terminal 121 of the first semiconductor switching element 12 and the inverter 22 The potential of the negative terminal 101 of the rectifier element 1 that becomes the ground potential is only the voltage drop that occurs in the low-resistance shunt resistor, and the potential difference between the emitter terminal potential of the switching element and the negative terminal potential of the rectifier element is minimized.
  • the stability of driving can improve the stability of abnormality detection performance.
  • the linear shunt resistor 3 of the present embodiment is aligned with the end face of the leg portion of the heat sink 28 and the terminals of the rectifier element 1 and the first semiconductor switching element 12. By placing them in parallel with each other on the extended line, it is possible to save space for component mounting, especially in a magnetron drive power supply with a rated voltage of 200V to 240V, which has a large number of components.
  • a magnetron drive power supply with a rated voltage range of 200 to 240V and a magnetron drive power supply with a rated voltage range of 100 to 120V can be realized with almost the same board size. .
  • a high-frequency heating apparatus such as a microwave oven mainly used in a countertop is generally 100V in Japan.
  • a high-frequency heating device, etc., installed under the outlet, etc. has been proposed with 200V.
  • the outputs of both high-frequency heating devices are almost the same regardless of the installation form, the current flowing through the shunt resistor 3 is
  • the length of the shunt resistor 3 is 12.5 mm for the magnetron drive power supply provided for the rated voltage category of 100 V, and the length of the shunt resistor 3 is used for the magnetron drive power supply provided for the rated voltage category of 200 V.
  • the printed circuit board layout so that it is 25 mm, the length becomes approximately proportional to each rated voltage category. As a result, it is possible to avoid the problems such as common use of the amplifier circuit and saturation of the amplifier for amplification.
  • the rectifying element 1 and the second switching element 13 Since the first switching element 12 connected to the negative terminal 101 of the rectifying element 1 is disposed between them, the emitter terminal 121 of the first switching element 12 with an appropriate length of the shunt resistor 3 is provided. Can be connected to the vicinity of the negative terminal 101 of the rectifier element 1 to prevent unstable switching drive due to timing detection deviation or the like due to the configuration in which no potential difference occurs, and to the ground potential of the inverter 22 It is possible to prevent an error in detecting an abnormality caused by a change in input current due to a potential difference of the emitter potential 121 of the first switching element 12.
  • FIG. 4 shows a pattern diagram of a magnetron driving power source provided in a rated voltage range of 100 V to 120 V and a transparent component arrangement in the second embodiment of the present invention.
  • a magnetron driving power source having two switching elements 12 and 13 each ground position 41 and filament power supply position 42 for heating the power sword of the magnetron are substantially matched.
  • a magnetron driving power source having a single switching element 2 provided for a rated voltage category of 100V to 120V and a rated voltage range of 200V to 240V are used.
  • the magnetron driving power source having two switching elements 12 and 13 provided for each the grounding position 41 and the filament power supply position 42 for heating the power sword of the magnetron 25 are substantially matched.
  • the mounting structure can be made to be almost the same, and the mounting structure is common in the magnetron driving power source supplied to the rated voltage category of 100 to 120V and the magnetron driving power source supplied to the rated voltage category of 200V to 240V
  • the magnetron driving power source supplied to the rated voltage category of 100 to 120V
  • the magnetron driving power source supplied to the rated voltage category of 200V to 240V
  • chassis such as a 100V built-in microwave oven with a built-in rated voltage of 200V and 100V such as a countertop in Japan, and the same chassis in the North American region.
  • the magnetron driving power source can be provided.
  • each ground position and the filament power supply position for heating the magnetron cathode can be substantially matched, so that the mounting configuration can be substantially matched. It is possible to provide a magnetron driving power source that has high development efficiency and has an optimum configuration and manufacturing cost according to the power source voltage.
  • the step-up transformer 23 and the high-voltage rectifying unit 24 of the present embodiment are integrated together, so that the rated voltage of 200V to 240V is used.
  • the magnetron drive power supply with two switching elements 12 and 13 has a large number of parts, and the high-voltage rectifier 24 is integrated with the step-up transformer 23 to heat each earth position and the magnetron power sword. It is easy for the first time to make the filament power supply positions substantially coincide with each other.
  • the magnetron driving power source having a single switching element 2 provided for the rated voltage category of 100V to 120V and the rated voltage category of 200V to 240V are used.
  • the magnetron driving power supply having two switching elements 12 and 13 each of the grounding positions 41 and the filament power supply position 42 for heating the power sword of the magnetron 25 are abbreviated to the printed circuit board 43.
  • each area of the ground part 41, the filament power supply part 42, the inverter part 22 and the unidirectional power supply part 21 is subjected to a rated voltage of 200V to 240V
  • the magnetron drive power supply can also be clearly separated, improving insulation performance and EMC performance.
  • the magnetron driving power source can minimize the potential difference between the emitter terminal potential of the switching element and the negative terminal potential of the rectifying element, and enables stable switching. Operation and abnormal voltage detection can be realized.
  • the magnetron drive power supply in the rated voltage range of 100V to 12 OV and the magnetron drive power supply in the rated voltage range of 200V to 240V are arranged in common, in particular the ground connection position and filament output position are unified to unify the chassis. It is possible to provide an optimal magnetron drive power supply that is highly efficient in development and that corresponds to the power supply voltage, so it can also be applied to applications such as a universal magnetron drive power supply that is small and does not change its power supply voltage. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Inverter Devices (AREA)

Abstract

 本発明の課題は、安定したインバータ動作と開発効率の良いマグネトロン駆動用電源を供給することである。  本発明によれば、スイッチング素子(12)のエミッタ端子電位(121)と、整流素子(1)のマイナス端子電位(101)の電位差を最小限とすることができ、安定したスイッチング動作と異常電圧検出を実現することができる。また、100V~120Vの定格電圧範囲のマグネトロン駆動用電源と、200V~240Vの定格電圧範囲のマグネトロン駆動用電源の部品配置、とりわけ、アース接続位置(41)、フィラメント出力位置(42)を共通化し、シャーシの統一化などによる開発効率のよい、かつ、電源電圧に応じた最適なマグネトロン駆動用電源を提供することができる。

Description

明 細 書
マグネトロン駆動用電源
技術分野
[0001] 本発明は、インバータ方式の 100V〜120Vの定格電圧を有したマグネトロン駆動 用電源と 200V〜240Vの定格電圧を有したマグネトロン駆動用電源の電流制御手 段の配置と、これら 2つのマグネトロン駆動用電源の出力手段および接地の配置の 共通化に関するものである。とりわけ 200V〜240Vの定格電圧を有したマグネトロン 駆動用電源の部品配置に関するものである。
背景技術
[0002] 従来、この種のマグネトロン駆動用電源はその小型化などの為に入力電力制御対 象として入力電流部のシャント抵抗による検出などが提案されている。(例えば、特許 文献 1参照)。また、 100V〜120Vの定格電圧を有したマグネトロン駆動用電源と 20 0V〜240Vの定格電圧を有したマグネトロン駆動用電源の部品配置の共通化に関 しては基準点力もの部品の配置を共通化しているものもある(例えば、特許文献 2参 照)。
[0003] 図 6は、特許文献 1に記載された従来のマグネトロン駆動用電源を示すものである。
図 6に示すように、整流素子 1と、スイッチング素子 2と、シャント抵抗 3と、基板 4とから 構成されている(図面は半田面より透過して見た図である)。
[0004] 図 7は、特許文献 2に記載された従来のマグネトロン駆動用電源を示すものである。
図 7に示すように、基準点 11と、第 1のスイッチング素子 12と、第 2のスイッチング素 子 13と、昇圧トランス 14と、高圧整流部 15から構成されている。
特許文献 1:特開 2004 - 319134号公報(図 5など)
特許文献 2:特開 2000— 195658号公報(図 1など)
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、前記特許文献 1に記載された従来の構成では、スイッチング素子 2の ェミッタ端子 201からシャント抵抗 3の一端 301までに長いパターンが介在しているた めに、当該区間に流れる大電流の影響を受けてスイッチング素子 2のェミッタ電位 20 1と整流素子 1のマイナス端子 101との間の電圧降下が大きくなる。そのため、スイツ チング動作のためのゲート電位と電力制御のグランドに電位差が生じるためにスイツ チングタイミング検出のずれなどによるスイッチング動作や、異常電圧検出が不安定 になる場合があると 、う課題を有して 、た。
[0006] 本発明の第 1の目的は、前記従来の課題を解決するもので、スイッチング素子のェ ミッタ電位と整流素子のマイナス端子との電位差を極小化した安定したスイッチング 駆動ができるマグネトロン駆動用電源を提供することを目的とする。
[0007] また、前記特許文献 2に記載された従来の構成では、 100V〜120V系のマグネト ロン駆動用電源も第 1 (12)、および第 2 (13)の 2つのスイッチング素子を有する構成 なので、高価な IGBTなどのスイッチング素子を複数個使用しなければならな 、など と 、う、低コストでの 100V〜 120Vの定格電圧を有したマグネトロン駆動用電源の実 現という視点と、 100V〜120Vの定格電圧、および 200V〜240Vの定格電圧を有 したマグネトロン駆動用電源の部品配置の共通化による開発効率の向上という視点 の両立と 、う課題を有して 、た。
[0008] 本発明の第 2の目的は、前記従来の課題を解決するもので、単一のスイッチング素 子を有した 100V〜120Vの定格電圧範囲のマグネトロン駆動用電源と、 2つのスイツ チング素子を有した 200V〜240Vの定格電圧範囲のマグネトロン駆動用電源にお ける部品配置、とりわけ、アース接続位置、フィラメント出力位置を共通化し、たとえば 、 日本国内での 100Vのカウンタートップ型の電子レンジと、 200Vのコン口下などの 設備型電子レンジとのシャーシの統一化などによる開発効率のよいマグネトロン駆動 用電源を提供することを目的とする。
課題を解決するための手段
[0009] 前記従来の課題を解決するために、本発明のマグネトロン駆動用電源は、スィッチ ング素子のェミッタ端子の近傍と前記整流素子のマイナス端子の近傍とを前記シャン ト抵抗で直結したことを特徴とするマグネトロン駆動用電源としたものである。
[0010] これによつて、大電流が流れる長いパターンでの電圧降下がなくなり、スイッチング 素子のェミッタ端子電位と、整流素子のマイナス端子電位の電位差が最小限となる。 [0011] また、本発明のマグネトロン駆動用電源は、 100 V〜 120 Vの定格電圧区分に供さ れる単一のスイッチング素子を有したマグネトロン駆動用電源と 200V〜240Vの定 格電圧区分に供される 2つのスイッチング素子を有したマグネトロン駆動用電源にお いて、各々のアース位置と、前記マグネトロンの力ソードを加熱する為のフィラメント電 力供給位置を略一致させたものである。
[0012] これによつて、単一のスイッチング素子を有したとした 100V〜120Vの定格電圧範 囲のマグネトロン駆動用電源と、 2つのスイッチング素子を有した 200V〜240Vの定 格電圧範囲とのマグネトロン駆動用電源の部品配置、とりわけ、アース接続位置、フ イラメント電力の出力位置を共通化した構成となる。
発明の効果
[0013] 本発明のマグネトロン駆動用電源は、スイッチング素子のェミッタ端子電位と、整流 素子のマイナス端子電位の電位差を最小限とすることができ、安定したスイッチング 動作と異常電圧検出を実現することができる。また、 100V〜120Vの定格電圧範囲 のマグネトロン駆動用電源と、 200V〜240Vの定格電圧範囲のマグネトロン駆動用 電源における部品配置、とりわけ、アース接続位置、フィラメント出力位置を共通化し 、シャーシの統一化などによる開発効率のよい、かつ、電源電圧に応じた最適なマグ ネトロン駆動用電源を提供することができる。 図面の簡単な説明
[0014] [図 1]本発明の実施の形態 1における定格電圧 200V〜240Vに供されるマグネトロ ン駆動用電源のパターン図、及び、透過された部品配置図
[図 2] (&)本発明の実施の形態1にぉける100¥〜120¥の定格電圧区分に供される マグネトロン駆動用電源の回路図(b) 200V〜240Vの定格電圧区分に供されるマ グネトロン駆動用電源の回路図
[図 3]本発明の実施の形態 1におけるマグネトロン駆動用電源の要部側面図
[図 4]本発明の実施の形態 2における定格電圧範囲 100V〜120Vに供されるマグネ トロン駆動用電源のパターン図、及び、透過された部品配置図
[図 5]本発明の実施の形態 2における昇圧トランスの要部斜視図
[図 6]従来のマグネトロン駆動用電源の要部パターン図 [図 7]従来のマグネトロン駆動用電源の部品配置図
符号の説明
[0015] 1 整流素子
2、 12、 13 スイッチング素子
3 シャント抵抗
21 単方向電源部
22 インバータ部
23 昇圧トランス
24 高圧整流部
25 マグネトロン
発明を実施するための最良の形態
[0016] 第 1の発明は、商用電源を単方向に変換する単方向電源部と、前記単方向電源部 の交流電源を全波整流する整流素子と、少なくとも 1個の半導体スイッチング素子と、 前記整流素子と半導体スイッチング素子を取り付けた放熱板と、前記単方向電源部 の出力電流を測定できる個所に対して直列に介挿されるシャント抵抗と、前記半導体 スイッチング素子をオン Zオフすることにより前記単方向電源部からの電力を高周波 電力に変換するインバータ部と、前記インバータ部の出力電圧を昇圧する昇圧トラン スと、前記昇圧トランスの出力電圧を倍電圧整流する高圧整流部と、前記高圧整流 部の出力を電磁波として放射するマグネトロンとを具備するマグネトロン駆動用電源 にお 、て、前記スイッチング素子のェミッタ端子の近傍と前記整流素子のマイナス端 子の近傍とを前記シャント抵抗で直結したことを特徴とするとすることにより、大電流 が流れる長いパターンでの電圧降下がなくなりスイッチング素子のェミッタ端子電位 と、整流素子のマイナス端子電位の電位差が最小限となり、スイッチング駆動の安定 化や異常検出性能の安定ィ匕を図ることができる。
[0017] 第 2の発明は、特に、第 1の発明のシャント抵抗を、前記放熱板と、前記整流素子と スイッチング素子の延長線との間に略並行で配置されたことを特徴とすることにより、 部品実装スペースの節約となり、特に複数のスイッチング素子を制御するために部品 点数の多い 200〜240Vの定格電圧範囲のマグネトロン駆動用電源と、 100〜120 Vの定格電圧範囲のマグネトロン駆動用電源とを略同一の基板サイズで実現するこ とがでさる。
[0018] 第 3の発明は、特に、第 1または第 2の発明のシャント抵抗を、 100V〜120Vの定 格電圧区分に供されるマグネトロン駆動用電源と、 200V〜240Vの定格電圧区分 に供されるマグネトロン駆動用電源において、各々の定格電圧区分の略比例になる ような長さになることを特徴としたことにより、シャント抵抗力 の微少信号の増幅度を 略一致させることができ、増幅回路の共通化や増幅用アンプの飽和などの課題を回 避することができる。
[0019] 第 4の発明は、特に、第 1〜3のいずれか 1つの発明における第一のスイッチング素 子を、 200V〜240Vの定格電圧区分に供される 2つのスイッチング素子を有するマ グネトロン駆動用電源において、前記整流素子と第二のスイッチング素子との間に、 前記整流素子のマイナス端子に接続される第一のスイッチング素子を配置したとする ことにより、適切なシャント抵抗の長さで前記第一のスイッチング素子のェミッタ端子 の近傍と前記整流素子のマイナス端子の近傍とを接続することが可能となり、スイツ チング駆動の安定ィ匕ゃ異常検出性能の安定ィ匕を図ることができる。
[0020] 第 5の発明は、特に、第 3または第 4の発明において、前記 100V〜120Vの定格 電圧区分に供される単一のスイッチング素子を有したマグネトロン駆動用電源と 200 V〜240Vの定格電圧区分に供される 2つのスイッチング素子を有したマグネトロン駆 動用電源において、各々のアース位置と、前記マグネトロンの力ソードを加熱する為 のフィラメント電力供給位置を略一致させることにより、 100〜 120Vの定格電圧区分 に供される単一のスイッチング素子を有したマグネトロン駆動用電源と 200V〜240V の定格電圧区分に供される 2つのスイッチング素子を有したマグネトロン駆動用電源 において、取付け構造を共通化することが可能となり、シャーシの統一化などによる 開発効率のよい、かつ、電源電圧に応じた最適なマグネトロン駆動用電源を提供す ることがでさる。
[0021] 第 6の発明は、特に、第 5の発明の昇圧トランスを、前記高圧整流部と一体化させた ことを特徴とすることにより、前記第 5の発明の効果を容易に実現することができる。
[0022] 第 7の発明は、特に、第 5または第 6の発明のマグネトロン駆動用電源を前記アース 部と、前記フィラメント供給位置とを各々基板の 1辺の両端に位置する部分に配置し たとすることにより、マグネトロンへの出力部、単方向電源部やインバータ部を含んだ 電力制御部、アース部とを分離することができ、 100V〜120Vの定格電圧区分に供 されるマグネトロン駆動用電源と 200V〜240Vの定格電圧区分に供されるマグネト ロン駆動用電源において、安全な同一の取付け構造を実現することができる。
[0023] 第 8の発明は、特に、第 5〜7のいずれか 1つの発明におけるシャント抵抗の代わり にカレントトランスを使用したことを特徴とするとすることにより、取付け構造を共通化 することが可能となり、シャーシの統一化などによる開発効率のよい、かつ、電源電圧 に応じた最適なマグネトロン駆動用電源を提供することができる。
[0024] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実 施の形態によって本発明が限定されるものではない。
[0025] (実施の形態 1)
図 1は、本発明の第 1の実施の形態における定格電圧 200V〜240Vに供されるマ グネトロン駆動用電源のパターン図、及び、透過された部品配置を示すものである。
[0026] 図 2 (a)は、本発明の実施の形態における 100V〜120Vの定格電圧区分に供され るマグネトロン駆動用電源の回路図、図 2 (b)は 200V〜240Vの定格電圧区分に供 されるマグネトロン駆動用電源の回路図を示すものである。
[0027] 図 2 (b)において、商用電源を単方向に変換する単方向電源部 21と、前記単方向 電源部 21の交流電源を全波整流する整流素子 1と、前記単方向電源部 21の出力 電流を測定できる個所に対して直列に介挿されるシャント抵抗 3と、第 1の半導体スィ ツチング素子 12と第 2の半導体スイッチング素子 13とをオン/オフすることにより前 記単方向電源部 21からの電力を高周波電力に変換するインバータ部 22と、前記ィ ンバータ部 22の出力電圧を昇圧する昇圧トランス 23と、前記昇圧トランス 23の出力 電圧を倍電圧整流する高圧整流部 24と、前記高圧整流部 24の出力を電磁波として 放射するマグネトロン 25とを具備するマグネトロン駆動用電源が構成されている。
[0028] 図 1において、前記第 1のスイッチング素子 12のェミッタ端子 121の近傍と前記整流 素子 1のマイナス端子 101の近傍とを前記シャント抵抗 3で直結したことを特徴とした ものである。 [0029] 以上のように構成されたマグネトロン駆動用電源について、以下その動作、作用を 説明する。
[0030] まず、マグネトロン駆動用電源に流れる入力電流は、第 1の半導体スイッチング素 子 12のェミッタ端子 121と、ジャンパー線 27を経由して平滑コンデンサ 26から、第 1 の半導体スイッチング素子 12のェミッタ端子 121に近傍に位置して 、るシャント抵抗 3に流れ、シャント抵抗 3の近傍に位置している整流素子 1のマイナス端子 101から商 用電源に帰還される。
[0031] 以上のように、本実施の形態においてはマグネトロン駆動用電源に流れる入力電 流が第 1の半導体スイッチング素子 12のェミッタ端子 121に近傍に位置して 、るシャ ント抵抗 3に流れ、シャント抵抗 3の近傍に位置している整流素子 1のマイナス端子 1 01から商用電源に帰還される構成とすることにより、第一の半導体スイッチング素子 12のェミッタ端子 121の電位と、インバータ部 22のグランド電位となる整流素子 1の マイナス端子 101の電位が低抵抗のシャント抵抗に発生する電圧降下だけとなり、ス イッチング素子のェミッタ端子電位と、整流素子のマイナス端子電位の電位差が最小 限となり、スイッチング駆動の安定ィ匕ゃ異常検出性能の安定ィ匕を図ることができる。
[0032] また、図 3に示すように、本実施の形態の線状のシャント抵抗 3を放熱板 28の脚部 の端面と整流素子 1、および、第一の半導体スイッチング素子 12の端子の整列され た延長線上との間に略並行で配置することにより、特に、部品点数の多い定格電圧 2 00V〜240Vに供されるマグネトロン駆動用電源において、部品実装のスペースの 節約となり、特に複数のスイッチング素子を制御するために部品点数の多い 200〜2 40Vの定格電圧範囲のマグネトロン駆動用電源と 100〜120Vの定格電圧範囲のマ グネトロン駆動用電源とを略同一の基板サイズで実現することができる。
[0033] また、たとえば、主としてカウンタートップで使用される電子レンジのような高周波加 熱装置は日本の場合 100Vが一般的である。一方、コン口下などに組み込まれてい る高周波加熱装置などは 200Vのものなども提案されている。ここで、双方の高周波 加熱装置の出力は設置形態に関係なくほぼ同一なため、シャント抵抗 3に流れる電 流は
定格電圧 X入力電流 =一定 という関係になるため、シャント抵抗 3の長さを、 100Vの定格電圧区分に供される マグネトロン駆動用電源では 12. 5mmと、 200Vの定格電圧区分に供されるマグネト ロン駆動用電源にぉ ヽては 25mmと ヽうようにプリント基板配置を工夫することで、各 々の定格電圧区分の略比例になるような長さになることを特徴としたことにより、シャ ント抵抗 3からの微少信号の増幅度を略一致させることができ、増幅回路の共通化や 増幅用アンプの飽和などの課題を回避することができる。
[0034] さらに、図 1に示すように、 200V〜240Vの定格電圧区分に供される 2つのスィッチ ング素子を有するマグネトロン駆動用電源において、前記整流素子 1と第二のスイツ チング素子 13との間に、前記整流素子 1のマイナス端子 101に接続される第一のス イッチング素子 12を配置したとすることにより、適切なシャント抵抗 3の長さで前記第 一のスイッチング素子 12のェミッタ端子 121の近傍と前記整流素子 1のマイナス端子 101の近傍とを接続することが可能となり、電位差の発生しない構成によるタイミング 検出のずれ等による不安定なスイッチング駆動の防止や、インバータ部 22のグランド 電位と第 1のスイッチング素子 12のェミッタ電位 121の電位差による、入力電流変化 に伴う異常検出の誤差の防止を図ることができる。
[0035] (実施の形態 2)
図 4は、本発明の第 2の実施の形態における定格電圧範囲 100V〜120Vに供さ れるマグネトロン駆動用電源のパターン図、及び、透過された部品配置を示すもので ある。
[0036] 図 1、及び、図 4において、 100V〜120Vの定格電圧区分に供される単一のスイツ チング素子 2を有したマグネトロン駆動用電源と 200V〜240Vの定格電圧区分に供 される 2つのスイッチング素子 12, 13を有したマグネトロン駆動用電源において、各 々のアース位置 41と、前記マグネトロンの力ソードを加熱する為のフィラメント電力供 給位置 42を略一致させたものである。
[0037] 以上のように構成されたマグネトロン駆動用電源について、以下その動作、作用を 説明する。
[0038] まず図 1、及び、図 4において、 100V〜120Vの定格電圧区分に供される単一の スイッチング素子 2を有したマグネトロン駆動用電源と 200V〜240Vの定格電圧区 分に供される 2つのスイッチング素子 12, 13を有したマグネトロン駆動用電源におい て、各々のアース位置 41と、前記マグネトロン 25の力ソードを加熱する為のフィラメン ト電力供給位置 42を略一致させることにより、取付け構成を略一致させることができ、 100〜120Vの定格電圧区分に供されるマグネトロン駆動用電源と 200V〜240Vの 定格電圧区分に供されるマグネトロン駆動用電源において、取付け構造を共通化す ることが可能となり、たとえば、 日本国内でのカウンタートップなどの 100Vと組み込ま れた設備的な 200Vの定格電圧を有する電子レンジなどのシャーシの統一化や、同 一シャーシでの北米地域での 120V定格電圧と大洋州地域での 240V定格電圧の 開発などによる開発効率のよい、かつ、電源電圧に応じた最適な構成、製造コストを 有したマグネトロン駆動用電源を提供することができる。
[0039] 以上のように、本実施の形態においては各々のアース位置と、マグネトロンのカソー ドを加熱する為のフィラメント電力供給位置を略一致させることにより、取付け構成を 略一致させることができ、開発効率のよい、かつ、電源電圧に応じた最適な構成、製 造コストを有したマグネトロン駆動用電源を提供することができる。
[0040] また、図 5のように本実施の形態の昇圧トランス 23と高圧整流部 24とを一体ィ匕させ たことを特徴とすること〖こより、特に、 200V〜240Vの定格電圧に供される 2つのスィ ツチング素子 12, 13を有するマグネトロン駆動用電源は部品点数も多く高圧整流部 24が昇圧トランス 23と一体化されることにより、各々のアース位置と、マグネトロンの 力ソードを加熱する為のフィラメント電力供給位置を略一致させることがはじめて容易 とすることができる。
[0041] さらに、図 1および図 4に示すように、 100V〜120Vの定格電圧区分に供される単 一のスイッチング素子 2を有したマグネトロン駆動用電源と 200V〜240Vの定格電 圧区分に供される 2つのスイッチング素子 12, 13を有したマグネトロン駆動用電源に おいて、各々のアース位置 41と、前記マグネトロン 25の力ソードを加熱する為のフィ ラメント電力供給位置 42をプリント基板 43の略々 1辺の両端に位置する部分に配置 することにより、アース部 41、フィラメント電力供給部 42、インバータ部 22と単方向電 源部 21の各々の領域が 200V〜240Vの定格電圧に供されるマグネトロン駆動用電 源においても明確に分離することができ、絶縁性能や EMCに対する性能の向上を 図ることができ、かつ同一取付けが可能なマグネトロン駆動用電源を作ることができる
[0042] (実施の形態 3)
今まで、シャント抵抗 3を使用した小型化の効果を基本とした 100V〜120Vの定格 電圧区分に供されるマグネトロン駆動用電源と 200V〜240Vの定格電圧区分に供 されるマグネトロン駆動用電源の特徴について述べてきた力 シャント抵抗 3の代わり にカレントトランスなどの他の電流検出素子を使用することで、電源の小型化という点 は実現することがシャント抵抗を使用した場合に比べ難しいが、それ以外の効果に関 しては、基板サイズを大型化することで実現可能である。
[0043] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2005年 5月 25日出願の日本特許出願、出願番号 2005-152105に基づく ものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0044] 以上のように、本発明にカゝかるマグネトロン駆動用電源は、スイッチング素子のエミ ッタ端子電位と、整流素子のマイナス端子電位の電位差を最小限とすることができ、 安定したスイッチング動作と異常電圧検出を実現することができる。また、 100V〜12 OVの定格電圧範囲のマグネトロン駆動用電源と、 200V〜240Vの定格電圧範囲の マグネトロン駆動用電源の部品配置、とりわけ、アース接続位置、フィラメント出力位 置を共通化し、シャーシの統一化などによる開発効率のよい、かつ、電源電圧に応じ た最適なマグネトロン駆動用電源を提供することができるので、小型でかつ電源電圧 で電源サイズが変わらないユニバーサルマグネトロン駆動電源等の用途にも適用で きる。

Claims

請求の範囲
[1] 商用電源を単方向に変換する単方向電源部と、前記単方向電源部の交流電源を 全波整流する整流素子と、少なくとも 1個の半導体スイッチング素子と、前記整流素 子と半導体スイッチング素子を取り付けた放熱板と、前記単方向電源部の出力電流 を測定できる個所に対して直列に介挿されるシャント抵抗と、前記半導体スィッチン グ素子をオン Zオフすることにより前記単方向電源部からの電力を高周波電力に変 換するインバータ部と、前記インバータ部の出力電圧を昇圧する昇圧トランスと、前 記昇圧トランスの出力電圧を倍電圧整流する高圧整流部と、前記高圧整流部の出力 を電磁波として放射するマグネトロンとを具備するマグネトロン駆動用電源において、 前記スイッチング素子のェミッタ端子の近傍と前記整流素子のマイナス端子の近傍と を前記シャント抵抗で直結したことを特徴とするマグネトロン駆動用電源。
[2] 前記シャント抵抗は前記放熱板と、前記整流素子とスイッチング素子の延長線との 間に略並行で配置されたことを特徴とする請求項 1に記載のマグネトロン駆動用電源
[3] 前記シャント抵抗は 100V〜120Vの定格電圧区分に供されるマグネトロン駆動用 電源と、 200V〜240Vの定格電圧区分に供されるマグネトロン駆動用電源において 、各々の定格電圧区分の略比例になるような長さになることを特徴とした請求項 1また は 2に記載のマグネトロン駆動用電源。
[4] 200V〜240Vの定格電圧区分に供される 2つのスイッチング素子を有するマグネト ロン駆動用電源において、前記整流素子と第二のスイッチング素子との間に、前記 整流素子のマイナス端子に接続される第一のスイッチング素子を配置した請求項 1 〜3のいずれか 1項に記載のマグネトロン駆動用電源。
[5] 前記 100V〜120Vの定格電圧区分に供される単一のスイッチング素子を有したマ グネトロン駆動用電源と 200V〜240Vの定格電圧区分に供される 2つのスィッチン グ素子を有したマグネトロン駆動用電源において、各々のアース位置と、前記マグネ トロンの力ソードを加熱する為のフィラメント電力供給位置を略一致させた請求項 3ま たは 4に記載のマグネトロン駆動用電源。
[6] 前記昇圧トランスは前記高圧整流部と一体化させたことを特徴とする請求項 5記載 のマグネトロン駆動用電源。
[7] 前記アース部と、前記フィラメント供給位置とを各々基板の 1辺の両端に位置する 部分に配置した請求項 5または 6に記載のマグネトロン駆動用電源。
[8] 前記シャント抵抗の代わりにカレントトランスを使用したことを特徴とする請求項 5〜 7のいずれか 1項に記載のマグネトロン駆動用電源。
PCT/JP2006/309814 2005-05-25 2006-05-17 マグネトロン駆動用電源 WO2006126430A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/914,805 US20090079353A1 (en) 2005-05-25 2006-05-17 Magnetron drive power supply
EP06746517A EP1885161B1 (en) 2005-05-25 2006-05-17 Magnetron driving power supply
CN2006800182785A CN101185373B (zh) 2005-05-25 2006-05-17 磁控管驱动电源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005152105A JP4910309B2 (ja) 2005-05-25 2005-05-25 マグネトロン駆動用電源
JP2005-152105 2005-05-25

Publications (1)

Publication Number Publication Date
WO2006126430A1 true WO2006126430A1 (ja) 2006-11-30

Family

ID=37451855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309814 WO2006126430A1 (ja) 2005-05-25 2006-05-17 マグネトロン駆動用電源

Country Status (5)

Country Link
US (1) US20090079353A1 (ja)
EP (1) EP1885161B1 (ja)
JP (1) JP4910309B2 (ja)
CN (1) CN101185373B (ja)
WO (1) WO2006126430A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850080B2 (en) * 2001-03-19 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Inspection method and inspection apparatus
GB201011789D0 (en) * 2010-07-13 2010-08-25 Ceravision Ltd Magnetron power supply
JP5820661B2 (ja) * 2010-09-14 2015-11-24 東京エレクトロン株式会社 マイクロ波照射装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214145A (ja) * 1998-01-21 1999-08-06 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2000195658A (ja) 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd マグネトロン駆動装置
JP2004319690A (ja) * 2003-04-15 2004-11-11 Matsushita Electric Ind Co Ltd マグネトロン駆動用の昇圧トランス及びこれを備えたトランスユニット
JP2004319134A (ja) 2003-04-11 2004-11-11 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2005152105A (ja) 2003-11-21 2005-06-16 Shin Caterpillar Mitsubishi Ltd アームレスト装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265925B1 (en) * 1999-09-30 2001-07-24 Intel Corporation Multi-stage techniques for accurate shutoff of circuit
JP2004111528A (ja) * 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd マグネトロン駆動用昇圧トランス
EP1614326B1 (en) * 2003-04-11 2009-07-29 Panasonic Corporation High frequency heating apparatus
JP4015598B2 (ja) * 2003-07-23 2007-11-28 松下電器産業株式会社 高周波加熱装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214145A (ja) * 1998-01-21 1999-08-06 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2000195658A (ja) 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd マグネトロン駆動装置
JP2004319134A (ja) 2003-04-11 2004-11-11 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2004319690A (ja) * 2003-04-15 2004-11-11 Matsushita Electric Ind Co Ltd マグネトロン駆動用の昇圧トランス及びこれを備えたトランスユニット
JP2005152105A (ja) 2003-11-21 2005-06-16 Shin Caterpillar Mitsubishi Ltd アームレスト装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1885161A4 *

Also Published As

Publication number Publication date
EP1885161A1 (en) 2008-02-06
EP1885161B1 (en) 2011-10-19
US20090079353A1 (en) 2009-03-26
CN101185373B (zh) 2011-06-15
CN101185373A (zh) 2008-05-21
JP2006331771A (ja) 2006-12-07
EP1885161A4 (en) 2009-07-08
JP4910309B2 (ja) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2012035933A1 (ja) インバータ装置
CN106531727A (zh) 具有抗干扰电容器的电子组件
US20120205362A1 (en) Electric Heater and Assembly Therefor
JP2011172329A (ja) 回路基板及びそれを用いた電力変換装置
US20190036284A1 (en) Bus bar and power electronic device with current shaping terminal connector and method of making a terminal connector
JP5991137B2 (ja) 電力変換装置
KR102478332B1 (ko) 고주파 증폭기 장치
JP2014017970A (ja) 電力変換装置
JP2009021345A (ja) パワー半導体モジュール
WO2006126430A1 (ja) マグネトロン駆動用電源
JP2018121406A (ja) 電力変換装置
EP1614326B1 (en) High frequency heating apparatus
EP3780099A1 (en) Semiconductor module
JP2004319134A (ja) 高周波加熱装置
JP3482868B2 (ja) 電源装置
JP5521966B2 (ja) 直流電源装置
TWI677172B (zh) 緩衝器電路及功率半導體模組以及感應加熱用電源裝置
JP2004088936A (ja) 電力変換装置の導体構造
US9253872B2 (en) Inductor assembly and circuit assembly
JP3482882B2 (ja) 高周波電源回路
JP4001078B2 (ja) 高周波加熱装置
US11837826B2 (en) Bus bar and power electronic device with current shaping terminal connector and method of making a terminal connector
JP3484975B2 (ja) 電源装置
JP2020102524A (ja) スイッチング素子ユニット
JPH09223575A (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018278.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11914805

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006746517

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746517

Country of ref document: EP