WO2006117924A1 - 透明導電膜および透明導電膜用コーティング組成物 - Google Patents

透明導電膜および透明導電膜用コーティング組成物 Download PDF

Info

Publication number
WO2006117924A1
WO2006117924A1 PCT/JP2006/303792 JP2006303792W WO2006117924A1 WO 2006117924 A1 WO2006117924 A1 WO 2006117924A1 JP 2006303792 W JP2006303792 W JP 2006303792W WO 2006117924 A1 WO2006117924 A1 WO 2006117924A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber structure
carbon
conductive film
transparent conductive
Prior art date
Application number
PCT/JP2006/303792
Other languages
English (en)
French (fr)
Inventor
Koichi Handa
Subiantoro
Takayuki Tsukada
Jiayi Shan
Tadashi Ashida
Toshiki Natori
Original Assignee
Bussan Nanotech Research Institute Inc.
Parker Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc., Parker Corporation filed Critical Bussan Nanotech Research Institute Inc.
Priority to EP20060714918 priority Critical patent/EP1876605A1/en
Publication of WO2006117924A1 publication Critical patent/WO2006117924A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Definitions

  • Transparent conductive film and coating composition for transparent conductive film are transparent conductive film and coating composition for transparent conductive film
  • the present invention relates to a transparent conductive film and a coating composition for a transparent conductive film.
  • the present invention relates to a transparent conductive film that exhibits good conductivity while exhibiting good transparency, and a coating composition for transparent conductive film for forming the same.
  • a conductive film having transparency has been used as an electrode material in various electronic devices such as a liquid crystal display device and an organic EL device, and for example, a partition in a clean room or a porthole of a test apparatus! It is used in applications where dust can be removed and static electricity can be removed to prevent adhesion of dust.
  • a transparent conductive film for example, inorganic oxides such as ITO and IZO, metal deposited films, etc. have been widely used. It is difficult to control the electrical characteristics of such transparent conductive films. There are certain restrictions such as limitations on the types of applicable base materials.
  • a conductive film is also known in which a conductive material is imparted by mixing fine particles of metal, metal oxide, or carbon in a matrix.
  • Patent Documents 1 and 2 disclose A conductive transparent resin plate made by blending ultra-fine long carbon fibers into a thermoplastic resin, and Patent Document 3 describes a state where carbon nanotubes are separated one by one or a plurality of them are assembled.
  • a conductive transparent resin board is proposed, which is a bundle of bundles separated and dispersed in a thermoplastic resin.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-62952
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-195993
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-230690
  • an object of the present invention is to provide a novel transparent conductive film and a coating composition for a transparent conductive film that solve the above-described problems in the prior art.
  • the present invention also provides a transparent conductive film and a transparent conductive film, which can improve the electrical characteristics with good controllability and exhibit good transparency without damaging the matrix characteristics with a small amount of addition. It is an object to provide a coating composition. Means for solving the problem
  • the present invention for solving the above-mentioned problems is a transparent conductive film in which a carbon fiber structure is dispersed in a resin matrix, and the carbon fiber structure has a carbon diameter of 15 to LOONm.
  • a carbon fiber structure configured by a fiber sheath, wherein the carbon fiber structure has a granular portion that bonds the carbon fibers to each other in a form in which a plurality of the carbon fibers extend, and
  • the granular part is a transparent conductive film characterized in that it is formed during the carbon fiber growth process.
  • the present invention also shows a transparent conductive film characterized in that 1 to 25 parts by mass of a carbon fiber structure is dispersed with respect to 100 parts by mass of the resin.
  • the present invention further provides a surface having a thickness of 0.1 to 5 111 formed on a glass substrate.
  • a transparent conductive film characterized by having a resistance value of 1.0 to 10 12 ⁇ / mouth or less and a total light transmittance of 30% or more.
  • the present invention that solves the above-mentioned problems is a coating composition for a transparent conductive film, in which a carbon fiber structure is dispersed in a liquid rosin composition containing rosin as a vehicle non-volatile component.
  • the carbon fiber structure is a carbon fiber structure composed of a carbon fiber cover having an outer diameter of 15 to: LOOnm, wherein the carbon fiber structure is a mode in which a plurality of the carbon fibers extend,
  • It is a coating composition for transparent conductive films, characterized in that it has a granular part for bonding carbon fibers to each other, and the granular part is formed during the growth process of the carbon fiber.
  • the present invention also shows a coating composition for a transparent conductive film, comprising 1 to 25 parts by mass of a carbon fiber structure per 100 parts by mass of a liquid resin composition.
  • the present invention is characterized in that it is further prepared by dispersing a carbon fiber structure in a media mill using beads having an average particle diameter of 0.05 to L: 5 mm. Or the coating composition for transparent conductive films of 5 is shown.
  • the present invention further provides a coating for a transparent conductive film, wherein the coating is prepared by performing a dispersion treatment using a high-speed shearing dispersion device prior to the dispersion treatment by the media mill.
  • the composition is shown.
  • the carbon fiber structure blended in the resin matrix as a conductivity imparting agent is formed with a plurality of fine-diameter carbon fibers in the process of growing the carbon fibers.
  • the carbon fiber structure has a sparse structure when compounded in the resin matrix because the carbon fiber has a shape in which the carbon fibers are bonded to each other by a granular part and have a shape in which a plurality of the carbon fibers extend. Even if a small amount is added, fine carbon fibers can be arranged in the matrix with a uniform spread.
  • fine carbon fibers can be uniformly dispersed and distributed throughout the matrix, so even if a small amount is added, a good conductive path is formed throughout the matrix, giving good conductivity with good controllability. Because it can be a conductive film and can be uniformly dispersed, its transparency It will be a good thing.
  • a dispersion stabilizer such as a surfactant is added. Even if it is not used, good uniform dispersion can be achieved, and there is no possibility of destroying the fiber structure in the carbon fiber structure. Therefore, a transparent conductive film having good characteristics as described above can be easily formed. Furthermore, by performing dispersion treatment using a high-speed shearing type dispersion device prior to the dispersion treatment using the above-mentioned media mill, more uniform dispersibility can be obtained, and characteristics can be improved when the film is formed. is there.
  • FIG. 1 is a TEM photograph of an intermediate of a carbon fiber structure used for a transparent conductive film according to the present invention.
  • FIG. 2B is a TEM photograph of a carbon fiber structure used for the transparent conductive film according to the present invention.
  • FIG. 3 is an X-ray diffraction chart of a carbon fiber structure used in the transparent conductive film according to the present invention and an intermediate of the carbon fiber structure.
  • FIG. 4 is a Raman spectroscopic analysis chart of a carbon fiber structure used in the transparent conductive film according to the present invention and an intermediate of the carbon fiber structure.
  • FIG. 5 is an electron micrograph showing a dispersion state of a carbon fiber structure in a transparent conductive film according to the present invention.
  • the transparent conductive film according to the present invention is characterized in that a specific carbon fiber structure as described below is dispersed in a resin matrix.
  • the carbon fiber structure blended in the transparent conductive film according to the present invention is composed of carbon fibers having an outer diameter of 15 to: LOOnm as seen in the TEM photographs shown in FIGS. 2A and 2B, for example.
  • the carbon fiber constituting the carbon fiber structure has an outer diameter in a range of 15 to: LOOnm.
  • the outer diameter is less than 15 nm, the carbon fiber has a polygonal cross section as described later.
  • the smaller the diameter of the carbon fiber the greater the number per unit amount, and the longer the length of the carbon fiber in the axial direction and the higher the electrical conductivity, so that the outer diameter exceeding lOOnm can be obtained. This is because it is not suitable as a carbon fiber structure to be distributed as a conductivity-imparting agent to a matrix such as a resin.
  • the outer diameter of the carbon fiber is particularly desirable because it is in the range of 20 to 7 Onm.
  • cylindrical darafen sheets laminated in a direction perpendicular to the axis that is, a multilayered sheet
  • elasticity that is difficult to bend that is, the property of returning to its original shape after deformation.
  • the fine carbon fiber has an outer diameter that changes along the axial direction. If the outer diameter of the carbon fiber is constant and changes along the axial direction in this way, it is considered that a kind of anchor effect is produced in the carbon fiber in a matrix such as greaves. As a result, the dispersion stability increases.
  • the carbon fiber structure according to the present invention has fine carbon fibers having such a predetermined outer diameter three-dimensionally, and these carbon fibers are grown in excess of the carbon fibers.
  • the granular parts formed in this way are connected to each other and have a shape in which a plurality of the carbon fibers extend from the granular parts.
  • the fine carbon fibers are not simply entangled with each other, but are firmly bonded to each other in the granular portion. For this reason, when arranged in a matrix such as rosin, the structure can be dispersed and blended in the matrix as a bulky structure without being dispersed as a single carbon fiber.
  • the carbon fibers are bonded to each other by the granular portion formed during the growth process of the carbon fiber.
  • the electrical resistance value measured at a constant compression density indicates a simple entangled body of fine carbon fibers or a joint point between fine carbon fibers after carbon fiber synthesis. Compared with the value of a structure or the like attached by a carbonaceous material or its carbide, it shows a very low value and can form a good conductive path when dispersed in a matrix.
  • the carbon-carbon bond in the granular part is sufficiently developed, and it is not clear exactly. Appears to contain a mixed state of sp2 and sp3 bonds.
  • the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces having carbon atomic force are bonded together, and thereafter After the high temperature heat treatment, as shown in FIGS. 2A and 2B, at least a part of the graphene layer constituting the granular part is continuous with the graphene layer constituting the fine carbon fiber extending from the granular part. To be.
  • the graphene layer constituting the granular portion as described above is continuous with the graphene layer constituting the fine carbon fiber. Symbolized by the carbon crystal structure bond (at least a part of the bond is formed, thereby forming a strong bond between the granular portion and the fine carbon fiber. It is what.
  • carbon fiber strength extends from the granular part
  • the term "carbon fiber strength extends from the granular part” means that the granular part and the carbon fiber are merely apparently formed by other binder (including carbonaceous material). It is not intended to indicate a state where they are connected with each other, but as described above, it is mainly connected with a carbon crystal structural bond.
  • the granular part is formed in the growth process of the carbon fiber, and as a trace thereof, at least one catalyst particle or the catalyst particle is subsequently heat-treated in the granular part.
  • the pores (or catalyst particles) are essentially independent of the hollow portion formed inside each fine carbon fiber extending from the granular portion (note that only a small portion is accidentally hollow) Something that has been connected to the department is also observed;).
  • the number of catalyst particles or pores is not particularly limited, but is about 1 to about LOOO, more preferably about 3 to 500 per granular part. By forming the granular portion in the presence of such a number of catalyst particles, it is possible to obtain a granular portion having a desired size as described later.
  • each catalyst particle or hole existing in the granular part is, for example, 1 to: LOOnm, more preferably 2 to 40 nm, and further preferably 3 to 15 nm. .
  • the particle diameter of the granular portion is larger than the outer diameter of the fine carbon fiber as shown in Figs. 2A and 2B.
  • the outer diameter of the fine carbon fiber is 1.3 to 250 times, more preferably 1.5 to: LOO times, and more preferably 2.0 to 25 times.
  • the said value is an average value.
  • the particle size of the granular part which is the bonding point between the carbon fibers
  • a high bonding force is brought about to the carbon fiber extending from the granular part, and the carbon fiber or the like
  • the “particle size of the granular part” in the present specification is a value measured by regarding the granular part which is a bonding point between carbon fibers as one particle.
  • the specific particle size of the granular portion is a force that depends on the size of the carbon fiber structure and the outer diameter of the fine carbon fiber in the carbon fiber structure.
  • the average value is 20 to 5000 nm. It is preferably 25 to 2000 nm, more preferably about 30 to 500 nm.
  • the granular portion is formed in the carbon fiber growth process as described above, it has a relatively nearly spherical shape, and its circularity is 0.2 on average.
  • the carbon fiber structure according to the present invention has a shape in which the carbon fibers are bonded to each other in the granular portion as described above, and a plurality of the carbon fibers extend from the granular portion. Therefore, the structure has a bulky structure in which carbon fibers exist sparsely, In the case of ⁇ or ⁇ , the bulk density force is preferably 0.0001 to 0.05 g / cm 3 , more preferably 0.001 to 0.02 gZcm 3 . If the bulk density exceeds 0.05 gZcm 3 , it is difficult to improve the physical properties of the resin matrix by adding a small amount.
  • the three-dimensional carbon fibers are bonded to each other in the granular portion formed in the growth process.
  • the electrical characteristics of the structure itself are very excellent.
  • the powder resistance value force measured at a constant compression density of 0.8 g / cm 3 is less than 0.02 ⁇ 'cm. More preferably, it is preferably 0.001 to 0.001 ⁇ ′cm. This is because if the powder resistance value exceeds 0.02 ⁇ 'cm, it is difficult to form a good conductive path when blended in the resin matrix.
  • the carbon fiber structure according to the present invention has high, strength, and conductivity, and that it is desirable that there are few defects in the graph sheet constituting the carbon fiber. , Measured by Raman spectroscopy I
  • D ⁇ ratio is 0.2 or less, more preferably G
  • the carbon fiber structure according to the present invention preferably has a combustion start temperature in air of 750 ° C or higher, more preferably 800 to 900 ° C. As described above, since the carbon fiber structure has few defects and the carbon fiber has an intended outer diameter, the carbon fiber structure has such a high thermal stability.
  • the carbon fiber structure having the desired shape as described above is not particularly limited, and can be prepared, for example, as follows.
  • an organic compound such as a hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), which is further heat-treated.
  • an organic compound such as a hydrocarbon
  • hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used.
  • CO carbon monoxide
  • “at least two or more carbon compounds” does not necessarily mean that two or more kinds of raw material organic compounds are used, but one kind of raw material organic compound is used. Even in this case, in the process of synthesizing the fiber structure, for example, a reaction such as hydrodealkylation of toluene and xylene occurs, and in the subsequent thermal decomposition reaction system, Such an embodiment includes two or more carbon compounds having different decomposition temperatures.
  • the decomposition temperature of each carbon compound is not limited to the type of carbon compound. Therefore, by adjusting the composition ratio of two or more carbon compounds in the raw material gas, a relatively large number of combinations are used as the carbon compounds. be able to.
  • alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, Alkenes such as propylene, butylenes, pentenes, heptenes, cyclopentene, etc., especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; benzene, tolylene Aromatic or heteroaromatic hydrocarbons such as styrene, xylene, naphthalene, methenolenaphthalene, indene and phenanthrene, especially aromatic or heteroaromatic hydrocarbons having about 6 to 18 carbon atoms, alcohols such as
  • the carbon fiber structure according to the present invention can be produced efficiently by optimizing the mixing ratio by adjusting the residence time in a predetermined temperature range. can do.
  • the molar ratio of methane / benzene is> 1 to 600, more preferably 1.1 to 200, More preferably, 3 to: LOO is desirable.
  • This value is the gas composition ratio at the inlet of the reactor.
  • toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor and methane and benzene are 1 : In consideration of what occurs in 1, it is sufficient to supply the shortage of methane separately.
  • methane to be added to toluene is not limited to the method of preparing fresh methane separately, but unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.
  • composition ratio within such a range, it is possible to obtain a carbon fiber structure having a structure in which both the carbon fiber portion and the granular portion are sufficiently developed.
  • an inert gas such as argon, helium, or xenon, or hydrogen can be used.
  • transition metals such as iron, cobalt and molybdenum, transition metal compounds such as iron cene and metal acetates, and sulfur compounds such as sulfur, thiophene and iron sulfide is used.
  • a CVD method for hydrocarbons or the like that is normally performed is used, and the mixture of hydrocarbon and catalyst as raw materials is evaporated, and hydrogen gas or the like is introduced into the reactor as a carrier gas. And pyrolyze at a temperature of 800-1300 ° C.
  • a plurality of carbon fiber structures having a sparse three-dimensional structure in which the fibers having an outer diameter of 15 to: LOOnm are joined together by granular materials grown using the catalyst particles as nuclei. Synthesize an aggregate from cm to several tens of centimeters.
  • the thermal decomposition reaction of the hydrocarbon as a raw material mainly occurs on the surface of granular particles grown using catalyst particles as a nucleus, and the recrystallization of carbon generated by the decomposition is the catalyst particles or granular particles. It grows in a fibrous form by moving in a certain direction from the body.
  • the tolerance between the thermal decomposition rate and the growth rate is intentionally changed, for example, as described above, the decomposition temperature as a carbon source.
  • the carbon material is grown three-dimensionally around the granular material that does not grow the carbon material only in the one-dimensional direction.
  • the growth of such three-dimensional carbon fibers is not dependent only on the balance between the pyrolysis rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, The temperature distribution is also affected, and the balance between the pyrolysis reaction and the growth rate is affected not only by the type of carbon source as described above but also by the reaction temperature and gas temperature.
  • the carbon material grows in a fibrous form, whereas when the pyrolysis rate is faster than the growth rate, the carbon material becomes a catalyst particle. Grows in the circumferential direction.
  • the growth direction of the carbon material as described above is made to be a multi-direction under control without making the growth direction constant.
  • Such a three-dimensional structure can be formed.
  • the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas It is desirable to optimize the temperature and the like.
  • a reactor other than the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimal mixing ratio is used.
  • One approach is to generate turbulent flow in the vicinity of the supply port of the source gas supplied to the tank.
  • the turbulent flow here is a turbulent flow that is a vortex and a flow that rushes.
  • metal catalyst fine particles are formed by decomposition of the transition metal compound as a catalyst in the raw material mixed gas immediately after the raw material gas is introduced into the reaction furnace from the supply port. This is brought about through the following steps. That is, the transition metal compound is first decomposed into metal atoms, and then, cluster formation occurs by collision of a plurality of, for example, about 100 atoms. At the stage of this generated cluster, it does not act as a catalyst for fine carbon fibers, and the generated clusters further gather together by collision, resulting in about 3 ⁇ ! It grows to crystalline particles of about lOnm and is used as metal catalyst fine particles for the production of fine carbon fibers.
  • each metal catalyst fine particle of the aggregate is radially formed as a nucleus.
  • the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, the carbon material also grows in the circumferential direction of the catalyst particles, A granular portion is formed around the aggregate to efficiently form a carbon fiber structure having an intended three-dimensional structure.
  • the aggregate of metal catalyst fine particles may include catalyst fine particles that are less active than other catalyst fine particles or that have been deactivated during the reaction.
  • This carbon material layer is considered to form the granular part of the carbon fiber structure according to the present invention by being present at the peripheral position of the aggregate.
  • Specific means for generating a turbulent flow in the raw material gas flow in the vicinity of the raw material gas supply port of the reaction furnace is not particularly limited. It is possible to adopt a means such as providing some kind of collision part at a position where it can interfere with the flow of the raw material gas led out to.
  • the shape of the collision part is not limited in any way as long as a sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part. For example, various shapes of baffle plates If one or more paddles, taper tubes, umbrellas, etc. are used alone or in combination, a plurality of forms can be adopted.
  • the intermediate obtained by heating the catalyst and hydrocarbon mixed gas at a constant temperature in the range of 800 to 1300 ° C is pasted with patch-like sheet pieces that also contain carbon nuclear power. It has a combined (incompletely burnt, incomplete) structure. Many of the defects are very large. Further, the produced intermediate contains unreacted raw materials, non-fibrous carbides, tar content and catalytic metal.
  • this intermediate is heated at 800 to 1200 ° C to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 2400 to 3000 ° C.
  • the desired structure is prepared, and at the same time, the catalyst metal contained in the fiber is removed by evaporation.
  • a reducing gas or a trace amount of carbon monoxide or carbon dioxide may be added to the inert gas atmosphere.
  • the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graph-en-sheet-like layers.
  • a step of crushing the circle-equivalent mean diameter of the carbon fiber structure to several centimeters, and a circle-equivalent mean diameter of the crushed carbon fiber structure Through a process of pulverizing to 50 m: LOO m to obtain a carbon fiber structure having a desired circle equivalent average diameter.
  • annealing is further performed in a state where the bulk density is low (a state in which fibers are stretched as much as possible and a porosity is large). Effective for imparting conductivity to fat.
  • the resin used as the matrix is not particularly limited, and various types such as various types of thermoplastic resins, thermosetting resins, other natural resins or modified products thereof, and the like. Of these, thermosetting resin-based ones are preferred from the viewpoint that thin film coating is easy.
  • the blending amount of the carbon fiber structure in the resin is not particularly limited, but good transparency and conductive properties are obtained.
  • the upper force is generally obtained by dispersing 1 to 25 parts by mass of the carbon fiber structure with respect to 100 parts by mass of the resin. It is preferable that
  • the transparent conductive film of the present invention having such a composition for example, when formed on a glass substrate with a film thickness of 0.1 to 5 / ⁇ ⁇ , has a surface resistance value of 1.0 to 10 12 ⁇ Below the mouth, the total light transmittance can be 30% or more.
  • the haze value of the transparent conductive film is 30% or less.
  • the surface resistance value 10 1 ⁇ : ⁇ 0 4 ⁇ / mouth having a characteristic that the total light transmittance is 50% or more.
  • the surface resistance value is 10 4 to ⁇ 0 12 ⁇ , and the total light transmittance is 30% or more. Each wants to have a certain characteristic.
  • the coating composition according to the present invention is obtained by dispersing a carbon fiber structure having a specific structure as described above in a liquid rosin composition containing rosin as a vehicle non-volatile component.
  • the liquid resin composition used in the present invention is an aqueous or oily resin non-volatile component such as a paint composition, an ink composition, various coating compositions, etc.
  • a resin component include plastic resin, thermosetting resin, and other organic materials having film-forming properties such as natural resins and modified products thereof.
  • acrylic resins such as aqueous acrylic and lacquer.
  • Alkyd various modified alkyds, ester-based polyesters such as unsaturated polyester, melamine, urethane, epoxy, etc., vinyl chloride, vinyl acetate, polyvinyl alcohol, polystyrene, polyamide, phenol resin, furan resin, Examples thereof include, but are not limited to, xylene 'formaldehyde resin and urea resin. And, by such a resin component contained, bake hardening type, room temperature hardening Various types such as molds can be adopted.
  • the cocoon is not particularly limited as a liquid used as a dispersion medium, but is suitable depending on the coconut resin component to be used. Specifically, for example, water; alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, and aryl alcohol; ethylene glycolate, propylene glycol, diethylene glycol, polyethylene glycol, and polypropylene Glycol, diethylene glycol monoethyleno ether, polypropylene glycol mono vinyl ether ether, polyethylene glycol mono alcohol ether, polypropylene glycol monoallyl ether, etc.
  • water alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, and aryl alcohol
  • ethylene glycolate propylene glycol, diethylene glycol, polyethylene glycol, and polypropylene Glycol, diethylene glycol monoethyleno ether, polypropylene glycol mono vinyl ether ether, polyethylene glycol mono alcohol
  • Glycerolole derivatives such as ethinoreethenore and glyceronolemonolinoleetenole; amides such as N-methylpyrrolidone; ethers such as tetrahydrofuran and dioxane; methylethylketone and methylisobutylketone Ketones such as liquid paraffin, decane, decene, methylnaphthalene, decalin, kerosene, diphenylmethane, toluene, dimethylbenzene, ethylbenzene, jetylbenzene, propylbenzene, cyclohexane, partially water added Hydrocarbons such as triphenyl, silicone oils such as polydimethylsiloxane, partially octyl-substituted polydimethylsiloxane, partially phenyl-substituted polydimethylsiloxane
  • the blending amount of the carbon fiber structure with respect to such a liquid resin composition is not particularly limited.
  • about 1 to 25 parts by mass of the carbon fiber structure can be blended with 100 parts by mass of the liquid resin composition.
  • a composition in which the carbon fiber structure is uniformly dispersed can be obtained.
  • the object of the present invention is obstructed. It is possible to add various known additives, for example, colorants such as pigments and dyes, various stabilizers, antioxidants, ultraviolet absorbers, flame retardants, solvents, etc. within a range that does not cause harm.
  • colorants such as pigments and dyes, various stabilizers, antioxidants, ultraviolet absorbers, flame retardants, solvents, etc.
  • the coating composition for transparent conductive film according to the present invention has a relatively high dispersibility because the carbon fiber structure used is a sparse structure as described above and has good dispersibility. It is preferable that the carbon fiber structure is preferably prepared by dispersing the carbon fiber structure using a media mill, particularly a media mill using beads having an average particle diameter of 0.05-1.5-1 mm. More preferably, prior to such a dispersion process using a media mill, the dispersion process is performed using a high-speed shearing dispersion device as described in detail below, followed by a dispersion process using a media mill. More preferably.
  • the average diameter of the beads is preferably 0.05 mm or more, and particularly preferably 0.5 mm or more.
  • the average diameter of the beads is 1.5 mm or less.
  • the material of the beads as the dispersion medium used in the media mill is not particularly limited, and examples thereof include alumina, zircoure, steel, chrome steel, and glass. Among these, Considering the presence of impurities and the magnitude of kinetic energy due to the specific gravity, it is preferable to use zircoyu beads.
  • the shape of the bead is not particularly limited, but generally a spherical shape is used.
  • the structure of the media mill is not particularly limited, and various known media mills can be applied. Specific examples include various known attritors, sand mills, and ball mills.
  • the filling ratio of the beads into the vessel is not particularly limited as long as it is determined depending on the form of the vessel and the stirring bar, but if the ratio is too low, the carbon fiber structure is sufficiently ground. There is a possibility that the cutting action cannot be exhibited. On the other hand, if the ratio is too high, a large driving force is required for rotation, and there is a risk of increasing the contamination of the medium to be treated due to wear of the beads. For this reason, it is desirable that the bead filling ratio be, for example, about 70 to 85% by volume of the effective volume of the vessel.
  • the operating conditions such as the processing time, shaft rotation speed, vessel internal pressure, motor load, etc. depend on the amount of carbon nanostructure blended and the characteristics of the resin to be dispersed, particularly the viscosity and the phase with the carbon nanostructure. It depends on the last name, etc., and may be set appropriately according to the purpose.
  • a high-speed shearing type dispersion device for example, a stirring wheel capable of high-speed rotation and an inner peripheral surface near the outer peripheral surface of the stirring wheel are used. And the wheel is rotated at a high speed at a tip speed of 30 mZs or more, and the centrifugal force of the wheel does not rotate the liquid to be treated against the inner surface of the container, and the wheel is pressed against the thin film.
  • a mixer having a function of agitating the liquid to be treated is preferable, and other in-line rotor and stator set mixers are also preferably used.
  • Specific examples of such a preferable high-speed shearing type dispersion device include TK Fillmix (Special Machine Industries Co., Ltd.).
  • TK Lab Disperser for example, TK Lab Disperser, TK Pipeline Mixer, TK Homomic Line Mill, TK Homogeneter, TK Tunic Mixer, TK Homomic Line Flow, TK Homo Homo Disper (above, special Kika Kogyo Co., Ltd.), Homogenizer 'Polytron (KIN EMATICA AG), Homogenizer ⁇ ⁇ ⁇ Histron (Microtec Co., Ltd.), Biomixer (Nippon Seiki Seisakusho Co., Ltd.), Turbo Mixer (Kodaira Co., Ltd.) It is also possible to use a high-speed shearing type dispersion device such as a manufacturing plant), an ultra disperser (Asada Steel Co., Ltd.), and Ebara Milezaichi (Ebara Manufacturing Co., Ltd.).
  • TG-DTA Mac Science TG-DTA
  • the temperature was increased at a rate of 10 ° CZ while flowing air at a flow rate of 0.1 liters Z, and the combustion behavior was measured.
  • TG shows a weight loss
  • DTA shows an exothermic peak, so the top position of the exothermic peak was defined as the combustion start temperature.
  • the carbon fiber structure after annealing was examined using a powder X-ray diffractometer CiDX3532, manufactured by JEOL Ltd.). ⁇ ⁇ -rays generated at 40 kV and 30 mA in a Cu tube are used, and the surface spacing is measured in accordance with the Gakushin method (latest carbon materials experimental technology (analysis and analysis), carbon materials society edition). Was used as an internal standard.
  • CNT powder lg is weighed and compressed into a resin die (inner dimensions 40 liters, 10W, 80Hmm), and the displacement and load are read.
  • the voltage at that time was measured, and when the density was measured to 0.9 gZcm 3 , the pressure was released and the density after restoration was measured.
  • powder resistance the resistance when compressed to 0.5, 0.8 and 0.9 g / cm 3 shall be measured.
  • the granular part which is a bonding point between carbon fibers, is regarded as one particle, and its contour is converted into image analysis software WinRoof (trade name, Mitani Corp. The area within the contour was obtained, and the equivalent circle diameter of each granular part was calculated and averaged to obtain the average particle diameter of the granular part. Also, the circularity (R) is calculated based on the following equation from the area (A) in the contour measured using the image analysis software and the measured contour length (L) of each granular portion. The degree was obtained and averaged.
  • the outer diameter of the fine carbon fiber in each of the targeted carbon fiber structures is obtained, and from this and the equivalent circle diameter of the granular portion of each of the carbon fiber structures, the granular portion in each carbon fiber structure. was determined as a ratio to the fine carbon fiber and averaged.
  • Can be easily applied with a bar coder.
  • Fine carbon fibers were synthesized using toluene as a raw material by the CVD method.
  • the catalyst was a mixture of Huekousen and Thiophene, and the reaction was carried out in a hydrogen gas reducing atmosphere. Toluene and catalyst are heated to 380 ° C with hydrogen gas and supplied to the production furnace.
  • a carbon fiber structure (first intermediate) was obtained by pyrolysis at ° C.
  • the synthesized intermediate was calcined in nitrogen at 900 ° C to separate hydrocarbons such as tar to obtain a second intermediate.
  • the R value of this second intermediate measured by Raman spectroscopy was 0.98.
  • Figure 1 shows a TEM photograph of this first intermediate dispersed in toluene and observed after preparation of a sample for an electron microscope. Further, this second intermediate was heat treated at 2600 ° C. in argon at high temperature, and the resulting aggregate of carbon fiber structures was pulverized with an airflow pulverizer to obtain a carbon fiber structure according to the present invention.
  • FIGS. 2A and 2B show TEM photographs of the obtained carbon fiber structure dispersed in toluene with ultrasonic waves and observed after preparation of a sample for an electron microscope.
  • the obtained carbon fiber structure had a bulk density of 0.30032 g / cm 3 and Raman I.
  • the temperature was 0.090
  • the TG combustion temperature was 786 ° C
  • the surface separation was 3.383 angstroms
  • the powder resistance value was 0.0024 ⁇ 'cm
  • the density after restoration was 0.25 gZcm 3 .
  • the average particle size of the granular portion in the carbon fiber structure was 443 nm (SD207 nm), which was 7.38 times the outer diameter of the fine carbon fiber in the carbon fiber structure.
  • the circularity of the granular part was 0.67 (SD 0.14) on average.
  • the carbon fiber structure obtained in Synthesis Example 1 above was added to 100 parts by mass of a polyurethane resin solution (non-volatile content: 20%) in the ratio shown in Table 1, and a bead mill (Dynomill, Symenter Enterprises Co., Ltd.) was added. ), Further pulverize under the conditions of Zirco Your beads (bead diameter 0.05 mm, 0.5 mm, 1.0 mm, 1.5 mm), peripheral speed 10 mZ second, bead filling 80 volume%, treatment time 2 hours.
  • the coating composition in which the carbon fiber structure was dispersed was produced by a dispersion treatment.
  • Reference Examples 1-6 A coating composition was produced in the same manner as in Examples 1 to 9 except that the dispersion method was changed to that shown in Table 1, and in the same manner as in Examples 1 to 9, coating properties and total light transmittance were obtained. The surface resistance value was evaluated. The results obtained are shown in Table 1.
  • Multi-walled carbon nanotubes manufactured by Seika Nafin, outer diameter 10-20, length several ⁇ m to several tens ⁇ m
  • Multi-walled carbon nanotubes manufactured by Seika Nafin, outer diameter 10-20, length several ⁇ m to several tens ⁇ m
  • Table 1 a bead mill (DYNO-mILL, Ltd. Shinmaru) using, Jirukoyua beads (bead diameter 0. 05mm, 1. 5mm), the circumferential speed 10mZ seconds, bead loading 80 volume 0/0, the processing time 2
  • a coating composition in which carbon fibers were dispersed was produced.
  • a carbon fiber structure obtained in Synthesis Example 1 above was added to 100 parts by mass of a polyester resin solution (non-volatile content: 65%) at a ratio shown in Table 2, and a bead mill (Dyno Mill, Shinal Enterprises Co., Ltd.) , Further pulverize and disperse under the conditions of zirca beads (bead diameter 0.05 mm, 0.5 mm, 1. Omm, 1.5 mm), peripheral speed 10 mZ second, bead filling 80 volume%, treatment time 2 hours By the treatment, a coating composition in which the carbon fiber structure was dispersed was produced.
  • a coating composition was produced in the same manner as in Examples 10 to 18 except that the dispersion method was changed to the one shown in Table 2, and in the same manner as in Examples 10 to 18, coating properties and total light transmittance were obtained. The surface resistance value was evaluated. Table 2 shows the results obtained.
  • Polyester rosin solution (nonvolatile content: 65%) Percentage shown in Table 2 with 100 parts by mass of multilayer carbon nanotubes (manufactured by Tsinghua Naphin, outer diameter 10-20, length several ⁇ m to several tens ⁇ m) At And pressurization, a bead mill (DYNO-MILL, Ltd. Shinmaru) using, zirconate - Abizu (bead diameter 0. 05mm, 1. 5mm), the circumferential speed 10mZ seconds, bead loading 80 volume 0/0, the processing time A coating composition in which carbon fibers were dispersed was produced by further pulverizing and dispersing under conditions of 2 hours.
  • the carbon fiber structure obtained in Synthesis Example 1 above was added to 100 parts by mass of phenol resin (non-volatile content: 50%) at the ratio shown in Table 3, and a bead mill (Dynomill, Symmarenta I-Plize Co., Ltd.) was added.
  • Zircon beads (bead diameter 0.05 mm, 0.5 mm, 1. Omm, 1.5 mm), peripheral speed 10 mZ seconds, bead filling 80 volume%, treatment time 2 hours, further grinding and dispersion By the treatment, a coating composition in which the carbon fiber structure was dispersed was produced.
  • a coating composition was produced in the same manner as in Examples 19 to 27 except that the dispersion method was changed to that shown in Table 3, and in the same manner as in Examples 19 to 27, coating properties and total light transmittance were obtained. The surface resistance value was evaluated. The results obtained are shown in Table 3.
  • Phenolic resin non-volatile content: 50%
  • Multi-walled carbon nanotubes manufactured by Seika Naphin, outer diameter 10-20 nm, length / zm to tens / zm
  • Table 1 Phenolic resin (non-volatile content: 50%)
  • Multi-walled carbon nanotubes manufactured by Seika Naphin, outer diameter 10-20 nm, length / zm to tens / zm) are added to 100 parts by mass in the proportions shown in Table 1. and, bi Zumiru (Dyno-Mill, Ltd. Shinmaru) using a zirconium - Abbey's (bead diameter 0. 05mm, 1. 5mm), the circumferential speed 10mZ seconds, bead loading 80 volume 0/0, the processing By further pulverizing and dispersing under the conditions of 2 hours, a coating composition in which carbon fibers were dispersed was produced.
  • the carbon fiber structure obtained in Synthesis Example 1 above was added in the ratio shown in Table 4, and a bead mill (Dynomill, Shinmaru Enterprises Co., Ltd.) was added.
  • Zirconia beads (bead diameters 0.05 mm, 0.5 mm, 1.0 mm, 1.5 mm), peripheral speed 10 mZ seconds, bead filling 80 volume%, treatment time 2 hours, further grinding and dispersion treatment As a result, a coating composition in which the carbon fiber structure was dispersed was produced.
  • a coating composition was produced in the same manner as in Examples 28 to 36 except that the dispersion method was changed to that shown in Table 4, and in the same manner as in Examples 28 to 36, coating properties and total light transmittance were obtained. The surface resistance value was evaluated. The results obtained are shown in Table 4.
  • Multi-walled carbon nanotubes manufactured by Tsinghua Nafin, outer diameter 10 to 20 nm, length / zm to tens / zm are added to 100 parts by mass in the proportions shown in Table 1.
  • a bead mill Disnomill, Shinmaru Enterprises Co., Ltd.
  • Zirco Your Beads bead diameter 0.05 mm, 1.5 mm
  • peripheral speed 10 mZ seconds peripheral speed 10 mZ seconds
  • bead filling 80 volume% treatment time 2
  • a coating composition in which carbon fibers were dispersed was produced by further pulverizing and dispersing under time conditions.
  • Example 6 15, 24 and 33 prior to the dispersion treatment using a bead mill, a dispersion treatment for 2 minutes was carried out at a tip speed of 50 mZs using a TK film mix (Special Machine Industries Co., Ltd.). In the same manner as in Examples 6, 15, 24, and 33, a coating composition in which the carbon fiber structure was dispersed was produced.
  • Multi-walled CNT Multi-walled carbon nanotubes (manufactured by Tsinghua Naphin, outer diameter 10-20nm, length several ⁇ to several tens ⁇ )
  • Multi-walled CNT Multi-walled carbon nanotube (Made by Nahuahua, outer diameter 10 to 20 nm, length several ⁇ m to several tens ⁇ m)
  • Multi-walled CNT Multi-walled carbon nanotube (Made by Tsinghua Naphin, outer diameter 10-20mn, length number / xm-several tens / xm)
  • Multi-walled C NT Multi-walled single-bonn nanotube (manufactured by Tsinghua Naphin, outer diameter 10 to 20 nm, length number; u m to several tens / im)

Description

明 細 書
透明導電膜および透明導電膜用コ一ティング組成物
技術分野
[0001] 本発明は透明導電膜および透明導電膜用コーティング組成物に関するものである
。詳しく述べると、本発明は、良好な透明性を有する一方で高い導電特性を発揮す る透明導電膜およびこれを形成するための透明導電膜用コーティング組成物に関す るものである。
背景技術
[0002] 従来、透明性を有する導電膜は、例えば、液晶表示装置や有機 EL装置などの各 種電子デバイスにおける電極材料として、また、例えば、クリーンルームのパーティシ ヨンや試験装置の覼窓と!ヽつた透視可能でかつ塵埃を嫌う部材にお ヽて静電気を除 去して塵埃付着を防止する用途等において用いられて 、る。
[0003] このような透明導電膜としては、従来例えば、 ITOや IZO等といった無機酸ィ匕物系 のもの、金属蒸着フィルム等が広く用いられている力 その電気的特性の制御が困 難である、適用可能な基材の種類が限定される等の制約がある。
[0004] また、マトリックス中に金属、金属酸ィ匕物あるいはカーボン等の微粒子を配合して導 電性を付与してなる導電膜も知られており、さらに例えば、特許文献 1および 2には、 極細の長炭素繊維を熱可塑性榭脂中に配合してなる導電性透明榭脂板が、また特 許文献 3には、カーボンナノチューブが一本一本分離した状態であるいは複数本集 まって束になったものが一束づづ分離した状態で熱可塑性榭脂中に分散してなる導 電性透明榭脂板が提唱されて ヽる。
[0005] し力しながら、これら特許文献 1〜3に示されるものにおいては、単繊維状の長炭素 繊維あるいはカーボンナノチューブを熱可塑性榭脂マトリックスに配合するものであり 、これら繊維をマトリックス中に均一に分散させることが困難であり、面内において均 一な導電特性が得られない虞れが高いものであった。また、分散性を上げようとして マトリックス中での混練を高めると繊維が裁断されてしまうというという問題が生じ、所 定の導電性を得るために、大量の繊維の添加する必要が生じ、透明性を低下させる 原因となっていた。
特許文献 1 :特開 2001— 62952号公報
特許文献 2 :特開 2004— 195993号公報
特許文献 2:特開 2004 - 230690号公報
発明の開示
発明が解決しょうとする課題
[0006] 従って、本発明は、上記従来技術における課題を解決してなる新規な透明導電膜 および透明導電膜用コーティング組成物を提供することを課題とする。
[0007] 本発明はまた、少量の添加にて、マトリックスの特性を損なわずに、電気的特性を 制御性良く改善し、かつ良好な透明性を発揮してなる透明導電膜および透明導電膜 用コーティング組成物を提供することを課題とする。 課題を解決するための手段
[0008] 上記課題を解決するために、本発明者らは鋭意検討の結果、その添加量が少なく ても十分な電気的特性を発揮させるためには、可能な限り微細な炭素繊維を用い、 さらにこれら炭素繊維が一本一本ばらばらになることなく互いに強固に結合し、疎な 構造体で榭脂中に保持されるものであること、また炭素繊維自体の一本一本が極力 欠陥の少ないものであることが有効であること、また、これらをマトリックス中に分散さ せる上で、特定の分散処理を行うことにより、炭素繊維構造を破壊することなく均一に 分散させ得ることを見出し、本発明に到達したものである。
[0009] すなわち、上記課題を解決する本発明は、榭脂マトリックス中に炭素繊維構造体を 分散させてなる透明導電膜であって、前記炭素繊維構造体は、外径 15〜: LOOnmの 炭素繊維カゝら構成される炭素繊維構造体であって、前記炭素繊維構造体は、前記 炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有して おり、かつ当該粒状部は前記炭素繊維の成長過程にお 、て形成されてなるものであ ることを特徴とする透明導電膜である。
[0010] 本発明はまた、榭脂 100質量部に対し、炭素繊維構造体 1〜25質量部を分散させ てなることを特徴とする透明導電膜を示すものである。
本発明はさらに、ガラス基板上に膜厚 0. 1〜5 111に形成された場合おいて、表面 抵抗値 1. 0 Χ 1012 Ω /口以下、全光線透過率が 30%以上であることを特徴とする 透明導電膜を示すものである。
[0011] 上記課題を解決する本発明は、さらに、ビヒクル不揮発成分として榭脂を含有する 液状榭脂組成物中に、炭素繊維構造体を分散させてなる透明導電膜用コーティング 組成物であって、前記炭素繊維構造体は、外径 15〜: LOOnmの炭素繊維カゝら構成さ れる炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出 する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部 は前記炭素繊維の成長過程において形成されてなるものであることを特徴とする透 明導電膜用コーティング組成物である。
[0012] 本発明はまた、液状榭脂組成物 100質量部に対し、炭素繊維構造体 1〜25質量 部を配合してなることを特徴とする透明導電膜用コーティング組成物を示すものであ る。
[0013] 本発明はさらに、平均粒子径 0. 05〜: L 5mmのビーズを用いたメディアミルで、炭 素繊維構造体を分散させて調製されたものであることを特徴とする請求項 4または 5 に記載の透明導電膜用コーティング組成物を示すものである。
[0014] 本発明はさらに、前記メディアミルによる分散処理に先立ち、さらに、高速せん断型 分散装置を用いて分散処理を行うことにより調製されたものであることを特徴とするの 透明導電膜用コーティング組成物を示すものである。
発明の効果
[0015] 本発明にお ヽては、導電性付与剤として榭脂マトリックス中に配合される炭素繊維 構造体が、複数本の微細径の炭素繊維を、前記炭素繊維の成長過程において形成 された粒状部によって互いに強固に結合し、該粒状部力 前記炭素繊維が複数延 出する形状を有するものであるために、榭脂マトリックス中に配合された際、当該炭素 繊維構造体は、疎な構造を残したまま容易に分散し、少量の添加量においても、マト リックス中に、微細な炭素繊維を均一な広がりをもって配置することができる。このよう に、マトリックス全体に微細な炭素繊維を均一に分散分布させ得るため、少量添加に お!ヽてもマトリックス全体に良好な導電性パスが形成され、制御性よく良好な導電性 を付与してなる導電膜とすることができ、また均一分散可能であるため、その透明性 に関しても良好なものとなるものである。
また、このような透明導電膜を形成するコーティング組成物を調製するにおいて、上 記したような所定粒子径のビーズを用いたメディアミルを用いることによって、例えば 、界面活性剤等の分散安定剤を用いずとも、良好な均一分散を達成し得、しかも上 記炭素繊維構造体における繊維構造を破壊する虞れもない。従って、上述したよう な良好な特性を有する透明導電膜を容易に形成し得るものとなる。さら〖こ、上記メデ ィァミルによる分散処理に先立ち、高速せん断型分散装置を用いて分散処理を行う ことにより、より均一な分散性が得られるものとなり、製膜した際における特性向上が 図れるものである。
図面の簡単な説明
[0016] [図 1]本発明に係る透明導電膜に用いられる炭素繊維構造体の中間体の TEM写真 である。
[図 2A]および
[図 2B]は、それぞれ本発明に係る透明導電膜に用いられる炭素繊維構造体の TEM 写真である。
[図 3]本発明に係る透明導電膜に用いられる炭素繊維構造体および該炭素繊維構 造体の中間体の X線回折チャートである。
[図 4]本発明に係る透明導電膜に用いられる炭素繊維構造体および該炭素繊維構 造体の中間体のラマン分光分析チャートである。
[図 5]本発明に係る透明導電膜における炭素繊維構造体の分散状態を示す電子顕 微鏡写真である。
発明を実施するための最良の形態
[0017] 以下、本発明を好ましい実施形態に基づき詳細に説明する。
本発明に係る透明導電膜は、榭脂マトリックス中に以下に述べるような特定の炭素 繊維構造体を分散させてなることを特徴とするものである。
[0018] 本発明に係る透明導電膜に配合される炭素繊維構造体は、例えば、図 2Aおよび 図 2Bに示す TEM写真に見られるように、外径 15〜: LOOnmの炭素繊維から構成さ れる炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出 する態様で、当該炭素繊維を互いに結合する粒状部を有することを特徴とする炭素 繊維構造体である。
[0019] 炭素繊維構造体を構成する炭素繊維の外径を、 15〜: LOOnmの範囲のものとする のは、外径が 15nm未満であると、後述するように炭素繊維の断面が多角形状となら ず、一方、炭素繊維の物性上直径が小さいほど単位量あたりの本数が増えるとともに 、炭素繊維の軸方向への長さも長くなり、高い導電性が得られるため、 lOOnmを越 える外径を有することは、榭脂等のマトリックスへ導電性付与剤として配される炭素繊 維構造体として適当でないためである。なお、炭素繊維の外径としては特に、 20〜7 Onmの範囲内にあること力 より望ましい。この外径範囲のもので、筒状のダラフェン シートが軸直角方向に積層したもの、すなわち多層であるものは、曲がりにくぐ弾性 、すなわち変形後も元の形状に戻ろうとする性質が付与されるため、炭素繊維構造 体がー且圧縮された後においても、榭脂等のマトリックスに配された後において、疎 な構造を採りやすくなる。
[0020] なお、 2400°C以上でァニール処理すると、積層したグラフエンシートの面間隔が狭 まり真密度が 1. 89g/cm3から 2. lg/cm3に増加するとともに、炭素繊維の軸直交 断面が多角形状となり、この構造の炭素繊維は、積層方向および炭素繊維を構成す る筒状のグラフエンシートの面方向の両方において緻密で欠陥の少ないものとなるた め、曲げ剛性 (EI)が向上する。
[0021] カロえて、該微細炭素繊維は、その外径が軸方向に沿って変化するものであることが 望ましい。このように炭素繊維の外径が軸方向に沿って一定でなぐ変化するもので あると、榭脂等のマトリックス中において当該炭素繊維に一種のアンカー効果が生じ るものと思われ、マトリックス中における移動が生じに《分散安定性が高まるものとな る。
[0022] そして本発明に係る炭素繊維構造体にぉ 、ては、このような所定外径を有する微 細炭素繊維が 3次元的に存在するが、これら炭素繊維は、当該炭素繊維の成長過 程にぉ 、て形成された粒状部にぉ 、て互いに結合され、該粒状部から前記炭素繊 維が複数延出する形状を呈しているものである。このように、微細炭素繊維同士が単 に絡合して 、るものではなく、粒状部にお 、て相互に強固に結合されて 、るものであ ることから、榭脂等のマトリックス中に配した場合に当該構造体が炭素繊維単体として 分散されることなぐ嵩高な構造体のままマトリックス中に分散配合されることができる 。また、本発明に係る炭素繊維構造体においては、当該炭素繊維の成長過程にお Vヽて形成された粒状部によって炭素繊維同士が互いに結合されて 、ることから、その 構造体自体の電気的特性等も非常に優れたものであり、例えば、一定圧縮密度にお いて測定した電気抵抗値は、微細炭素繊維の単なる絡合体、あるいは微細炭素繊 維同士の接合点を当該炭素繊維合成後に炭素質物質ないしその炭化物によって付 着させてなる構造体等の値と比較して、非常に低い値を示し、マトリックス中に分散配 合された場合に、良好な導電パスを形成できることができる。
[0023] 当該粒状部は、上述するように炭素繊維の成長過程において形成されるものであ るため、当該粒状部における炭素間結合は十分に発達したものとなり、正確には明ら かではないが、 sp2結合および sp3結合の混合状態を含むと思われる。そして、生成 後 (後述する中間体および第一中間体)においては、粒状部と繊維部とが、炭素原 子力もなるパッチ状のシート片を貼り合せたような構造をもって連続しており、その後 の高温熱処理後においては、図 2Aおよび図 2Bに示されるように、粒状部を構成す るグラフェン層の少なくとも一部は、当該粒状部より延出する微細炭素繊維を構成す るグラフェン層に連続するものとなる。本発明に係る炭素繊維構造体において、粒状 部と微細炭素繊維との間は、上記したような粒状部を構成するグラフ ン層が微細炭 素繊維を構成するグラフ ン層と連続していることに象徴されるように、炭素結晶構造 的な結合によって (少なくともその一部カ 繋がっているものであって、これによつて粒 状部と微細炭素繊維との間の強固な結合が形成されているものである。
[0024] なお、本願明細書において、粒状部から炭素繊維力 ^延出する」とは、粒状部と炭 素繊維とが他の結着剤 (炭素質のものを含む)によって、単に見かけ上で繋がってい るような状態をさすものではなぐ上記したように炭素結晶構造的な結合によって繋が つて 、る状態を主として意味するものである。
[0025] また、当該粒状部は、上述するように炭素繊維の成長過程において形成されるが、 その痕跡として粒状部の内部には、少なくとも 1つの触媒粒子、あるいはその触媒粒 子がその後の熱処理工程にぉ 、て揮発除去されて生じる空孔を有して 、る。この空 孔 (ないし触媒粒子)は、粒状部より延出している各微細炭素繊維の内部に形成され る中空部とは、本質的に独立したものである(なお、ごく一部に、偶発的に中空部と連 続してしまったものも観察される。;)。
[0026] この触媒粒子ないし空孔の数としては特に限定されるものではないが、粒状部 1つ 当りに 1〜: LOOO個程度、より望ましくは 3〜500個程度存在する。このような範囲の数 の触媒粒子の存在下で粒状部が形成されたことによって、後述するような所望の大き さの粒状部とすることができる。
[0027] また、この粒状部中に存在する触媒粒子ないし空孔の 1つ当りの大きさとしては、例 えば、 1〜: LOOnm、より好ましくは 2〜40nm、さらに好ましくは 3〜15nmである。
[0028] さらに、特に限定されるわけではないが、この粒状部の粒径は、図 2Aおよび図 2B に示すように、前記微細炭素繊維の外径よりも大きいことが望ましい。具体的には、 例えば、前記微細炭素繊維の外径の 1. 3〜250倍、より好ましくは 1. 5〜: LOO倍、さ らに好ましくは 2. 0〜25倍である。なお、前記値は平均値である。このように炭素繊 維相互の結合点である粒状部の粒径が十分に大きなものであると、当該粒状部より 延出する炭素繊維に対して高い結合力がもたらされ、榭脂等のマトリックス中に当該 炭素繊維構造体を配した場合に、ある程度のせん弾力を加えた場合であっても、 3 次元的な構造を保持したままマトリックス中に分散させることができる。なお、本明細 書でいう「粒状部の粒径」とは、炭素繊維相互の結合点である粒状部を 1つの粒子と みなして測定した値である。
[0029] その粒状部の具体的な粒径は、炭素繊維構造体の大きさ、炭素繊維構造体中の 微細炭素繊維の外径にも左右される力 例えば、平均値で 20〜5000nm、より好ま しくは 25〜2000nm、さらに好ましくは 30〜500nm程度である。
[0030] さらにこの粒状部は、前記したように炭素繊維の成長過程において形成されるもの であるため、比較的球状に近い形状を有しており、その円形度は、平均値で 0. 2〜 < 1、好ましく ίま 0. 5〜0. 99、より好ましく ίま 0. 7〜0. 98程度である。
[0031] さらに、本発明に係る炭素繊維構造体は、上記したように炭素繊維が粒状部にお いて互いに結合され、該粒状部から前記炭素繊維が複数延出する形状を呈しており 、このため当該構造体は炭素繊維が疎に存在した嵩高な構造を有するが、具体的に ίま、 ί列えば、、その嵩密度力 0. 0001〜0. 05g/cm3、より好ましく ίま 0. 001〜0. 02 gZcm3であることが望ましい。嵩密度が 0. 05gZcm3を超えるものであると、少量添 加によって、榭脂マトリックスの物性を改善することが難しくなるためである。
[0032] また、本発明に係る炭素繊維構造体は、 3次元的に存在する炭素繊維がその成長 過程にお 、て形成された粒状部にお 、て互 、に結合されて 、ることから、上記したよ うに構造体自体の電気的特性等も非常に優れたものであるが、例えば、一定圧縮密 度 0. 8g/cm3において測定した粉体抵抗値力 0. 02 Ω 'cm以下、より望ましくは、 0. 001〜0. 010 Ω 'cmであることが好ましい。粉体抵抗値が 0. 02 Ω 'cmを超える ものであると、榭脂マトリックスに配合された際に、良好な導電パスを形成することが 難しくなるためである。
[0033] また、本発明に係る炭素繊維構造体は、高 、強度および導電性を有する上から、 炭素繊維を構成するグラフエンシート中における欠陥が少ないことが望ましぐ具体 的には、例えば、ラマン分光分析法で測定される I
D Λ比が、 0. 2以下、より好ましく G
は 0. 1以下であることが望ましい。ここで、ラマン分光分析では、大きな単結晶の黒 鉛では 1580cm— 1付近のピーク(Gバンド)しか現れな 、。結晶が有限の微小サイズ であることや格子欠陥により、 1360cm— 1付近にピーク(Dバンド)が出現する。このた め、 Dバンドと Gバンドの強度比 (R=I
1360 /\ =1 Zl )が上記したように所定値以 1580 D G
下であると、グラフエンシート中における欠陥量が少ないことが認められるためである
[0034] 本発明に係る前記炭素繊維構造体はまた、空気中での燃焼開始温度が 750°C以 上、より好ましくは 800〜900°Cであることが望ましい。前記したように炭素繊維構造 体が欠陥が少なぐかつ炭素繊維が所期の外径を有するものであることから、このよう な高 、熱的安定性を有するものとなる。
[0035] 上記したような所期の形状を有する炭素繊維構造体は、特に限定されるものではな いが、例えば、次のようにして調製することができる。
[0036] 基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物を CVD法 で化学熱分解して繊維構造体 (以下、中間体という)を得、これをさらに高温熱処理 する。 [0037] 原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭 素(CO)、エタノール等のアルコール類などが使用できる。特に限定されるわけでは ないが、本発明に係る繊維構造体を得る上においては、炭素源として、分解温度の 異なる少なくとも 2つ以上の炭素化合物を用いることが好ましい。なお、本明細書に おいて述べる「少なくとも 2つ以上の炭素化合物」とは、必ずしも原料有機化合物とし て 2種以上のものを使用するというものではなぐ原料有機化合物としては 1種のもの を使用した場合であっても、繊維構造体の合成反応過程において、例えば、トルエン ゃキシレンの水素脱アルキル化(hydrodealkylation)などのような反応を生じて、その 後の熱分解反応系にお 、ては分解温度の異なる 2つ以上の炭素化合物となって 、る ような態様も含むものである。
[0038] なお、熱分解反応系にお 、て炭素源としてこのように 2種以上の炭素化合物を存在 させた場合、それぞれの炭素化合物の分解温度は、炭素化合物の種類のみでなぐ 原料ガス中の各炭素化合物のガス分圧ないしモル比によっても変動するものである ため、原料ガス中における 2種以上の炭素化合物の組成比を調整することにより、炭 素化合物として比較的多くの組み合わせを用いることができる。
[0039] 例えば、メタン、ェタン、プロパン類、ブタン類、ペンタン類、へキサン類、ヘプタン 類、シクロプロパン、シクロへキサンなどといったアルカンないしシクロアルカン、特に 炭素数 1〜7程度のアルカン;エチレン、プロピレン、ブチレン類、ペンテン類、ヘプテ ン類、シクロペンテンなどといったアルケンないしシクロォレフイン、特に炭素数 1〜7 程度のアルケン;アセチレン、プロピン等のアルキン、特に炭素数 1〜7程度のアルキ ン;ベンゼン、トノレェン、スチレン、キシレン、ナフタレン、メチノレナフタレン、インデン、 フ ナントレン等の芳香族ないし複素芳香族炭化水素、特に炭素数 6〜18程度の芳 香族ないし複素芳香族炭化水素、メタノール、エタノール等のアルコール類、特に炭 素数 1〜7程度のアルコール類;その他、一酸化炭素、ケトン類、エーテル類等の中 力も選択した 2種以上の炭素化合物を、所期の熱分解反応温度域にぉ 、て異なる分 解温度を発揮できるようにガス分圧を調整し、組み合わせて用いること、および Zま たは、所定の温度領域における滞留時間を調整することで可能であり、その混合比 を最適化することで効率よく本発明に係る炭素繊維構造体を製造することができる。 [0040] このような 2種以上の炭素化合物の組み合わせのうち、例えば、メタンとベンゼンと の組み合わせにおいては、メタン/ベンゼンのモル比が、 > 1〜600、より好ましくは 1. 1〜200、さらに好ましくは 3〜: LOOとすることが望ましい。なお、この値は、反応炉 の入り口におけるガス組成比であり、例えば、炭素源の 1つとしてトルエンを使用する 場合には、反応炉内でトルエンが 100%分解して、メタンおよびベンゼンが 1: 1で生 じることを考慮して、不足分のメタンを別途供給するようにすれば良い。例えば、メタ ン Zベンゼンのモル比を 3とする場合には、トルエン 1モルに対し、メタン 2モルを添 加すれば良い。なお、このようなトルエンに対して添加するメタンとしては、必ずしも新 鮮なメタンを別途用意する方法のみならず、当該反応炉より排出される排ガス中に含 まれる未反応のメタンを循環使用することにより用いることも可能である。
[0041] このような範囲内の組成比とすることで、炭素繊維部および粒状部のいずれもが十 分を発達した構造を有する炭素繊維構造体を得ることが可能となる。
なお、雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用い ることがでさる。
[0042] また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフエ口セン、 酢酸金属塩などの遷移金属化合物と硫黄あるいはチォフェン、硫化鉄などの硫黄化 合物の混合物を使用する。
[0043] 中間体の合成は、通常行われている炭化水素等の CVD法を用い、原料となる炭 化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に 導入し、 800〜1300°Cの温度で熱分解する。これにより、外径が 15〜: LOOnmの繊 維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元 構造を有する炭素繊維構造体(中間体)が複数集まった数 cmから数十センチの大き さの集合体を合成する。
[0044] 原料となる炭化水素の熱分解反応は、主として触媒粒子な!/ヽしこれを核として成長 した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒 子ないし粒状体より一定方向に進むことで、繊維状に成長する。し力しながら、本発 明に係る炭素繊維構造体を得る上においては、このような熱分解速度と成長速度と のノ ランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異 なる少なくとも 2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質 を成長させることなぐ粒状体を中心として三次元的に炭素物質を成長させる。もちろ ん、このような三次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスに のみ依存するものではなぐ触媒粒子の結晶面選択性、反応炉内における滞留時間 、炉内温度分布等によっても影響を受け、また、前記熱分解反応と成長速度とのバラ ンスは、上記したような炭素源の種類のみならず、反応温度およびガス温度等によつ ても影響受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、 炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素 物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバラン スを意図的に変化させることで、上記したような炭素物質の成長方向を一定方向とす ることなく、制御下に多方向として、本発明に係るような三次元構造を形成することが できるものである。なお、生成する中間体において、繊維相互が粒状体により結合さ れた前記したような三次元構造を容易に形成する上では、触媒等の組成、反応炉内 における滞留時間、反応温度、およびガス温度等を最適化することが望ましい。
[0045] なお、本発明に係る炭素繊維構造体を効率良く製造する方法としては、上記したよ うな分解温度の異なる 2つ以上の炭素化合物を最適な混合比にて用いるアプローチ 以外に、反応炉に供給される原料ガスに、その供給口近傍において乱流を生じさせ るアプローチを挙げることができる。ここでいう乱流とは、激しく乱れた流れであり、渦 卷、ヽて流れるような流れを ヽぅ。
[0046] 反応炉においては、原料ガスが、その供給口より反応炉内へ導入された直後にお いて、原料混合ガス中の触媒としての遷移金属化合物の分解により金属触媒微粒子 が形成されるが、これは、次のような段階を経てもたらされる。すなわち、まず、遷移 金属化合物が分解され金属原子となり、次いで、複数個、例えば、約 100原子程度 の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では 、微細炭素繊維の触媒として作用せず、生成したクラスター同士が衝突により更に集 合し、約 3ηπ!〜 lOnm程度の金属の結晶性粒子に成長して、微細炭素繊維の製造 用の金属触媒微粒子として利用されることとなる。
[0047] この触媒形成過程において、上記したように激しい乱流による渦流が存在すると、 ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可 能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高 収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイ ズの揃った金属触媒微粒子を得ることができる。さらに、金属触媒微粒子が形成され る過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒 微粒子の集合体を形成する。このようにして金属触媒微粒子が速やかに生成される ため、炭素化合物の分解が促進されて、十分な炭素物質が供給されることになり、前 記集合体の各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長し、一 方で、前記したように一部の炭素化合物の熱分解速度が炭素物質の成長速度よりも 速いと、炭素物質は触媒粒子の周面方向にも成長し、前記集合体の周りに粒状部を 形成し、所期の三次元構造を有する炭素繊維構造体を効率よく形成する。なお、前 記金属触媒微粒子の集合体中には、他の触媒微粒子よりも活性の低 ヽな ヽしは反 応途中で失活してしまった触媒微粒子も一部に含まれていることも考えられ、集合体 として凝集するより以前にこのような触媒微粒子の表面に成長していた、あるいは集 合体となった後にこのような触媒微粒子を核として成長した非繊維状ないしはごく短 い繊維状の炭素物質層が、集合体の周縁位置に存在することで、本発明に係る炭 素繊維構造体の粒状部を形成しているものとも思われる。
[0048] 反応炉の原料ガス供給口近傍にお!ヽて、原料ガスの流れに乱流を生じさせる具体 的手段としては、特に限定されるものではなぐ例えば、原料ガス供給口より反応炉 内に導出される原料ガスの流れに干渉し得る位置に、何らかの衝突部を設ける等の 手段を採ることができる。前記衝突部の形状としては、何ら限定されるものではなぐ 衝突部を起点として発生した渦流によって十分な乱流が反応炉内に形成されるもの であれば良いが、例えば、各種形状の邪魔板、パドル、テーパ管、傘状体等を単独 であるいは複数組み合わせて 1な 、し複数個配置すると 、つた形態を採択することが できる。
[0049] このようにして、触媒および炭化水素の混合ガスを 800〜1300°Cの範囲の一定温 度で加熱生成して得られた中間体は、炭素原子力もなるパッチ状のシート片を貼り合 わせたような (生焼け状態の、不完全な)構造を有し、ラマン分光分析をすると、 ンドが非常に大きぐ欠陥が多い。また、生成した中間体は、未反応原料、非繊維状 炭化物、タール分および触媒金属を含んでいる。
[0050] 従って、このような中間体力 これら残留物を除去し、欠陥が少ない所期の炭素繊 維構造体を得るために、適切な方法で 2400〜3000°Cの高温熱処理する。
[0051] すなわち、例えば、この中間体を 800〜1200°Cで加熱して未反応原料やタール分 などの揮発分を除去した後、 2400〜3000°Cの高温でァニール処理することによつ て所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。 なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガスや微量の 一酸ィ匕炭素ガスを添加してもよ ヽ。
[0052] 前記中間体を 2400〜3000°Cの範囲の温度でァニール処理すると、炭素原子か らなるパッチ状のシート片は、それぞれ結合して複数のグラフエンシート状の層を形 成する。
[0053] また、このような高温熱処理前もしくは処理後において、炭素繊維構造体の円相当 平均径を数 cmに解砕処理する工程と、解砕処理された炭素繊維構造体の円相当 平均径を 50〜: LOO mに粉砕処理する工程とを経ることで、所望の円相当平均径を 有する炭素繊維構造体を得る。なお、解砕処理を経ることなぐ粉砕処理を行っても 良い。また、本発明に係る炭素繊維構造体を複数有する集合体を、使いやすい形、 大きさ、嵩密度に造粒する処理を行っても良い。さら〖こ好ましくは、反応時に形成さ れた上記構造を有効に活用するために、嵩密度が低い状態 (極力繊維が伸びきつた 状態でかつ空隙率が大きい状態)で、ァニール処理するとさらに榭脂への導電性付 与に効果的である。
[0054] 本発明の透明導電膜において、マトリックスとなる榭脂としては、特に限定されるも のではなぐ各種熱可塑性榭脂、熱硬化性榭脂、その他天然樹脂ないしその変性物 等各種のものであり得る力 このうち、薄膜コーティングが容易である点から、熱硬化 性榭脂系のものが好ましい。
[0055] 本発明の透明導電膜にお!、て、榭脂中における前記炭素繊維構造体の配合量と しては、特に限定されるものではないが、良好な透明性および導電特性を得る上力 は、一般的には、榭脂 100質量部に対し、炭素繊維構造体 1〜25質量部を分散させ てなることが好ましい。このような配合を有する本発明の透明導電膜は、例えば、ガラ ス基板上に膜厚 0. 1〜5 /ζ πιに形成された場合おいて、表面抵抗値 1. 0 Χ 1012Ω Ζ口以下、全光線透過率が 30%以上である特性を発揮することができる。また、透 明導電膜のヘイズ値としては、 30%以下となる。
[0056] さらに、例えば、透明電極材料等としての用途においては、例えば、榭脂 100質量 部に対し、炭素繊維構造体 10〜25質量部を分散させることが好ましぐこの場合に おいて、表面抵抗値 101〜: ί04Ω /口、全光線透過率が 50%以上である特性を有 することが、また、例えば、静電除去用窓材等のとしての用途においては、例えば、 榭脂 100質量部に対し、炭素繊維構造体 1〜10質量部を分散させることが好ましぐ この場合において、表面抵抗値 104〜: ί012ΩΖ口、全光線透過率が 30%以上であ る特性を有することがそれぞれ望まし 、。
[0057] 次に、上述したような透明導電膜を形成するための本発明に係るコーティング組成 物について説明する。
[0058] 本発明に係るコーティング組成物は、ビヒクル不揮発成分として榭脂を含有する液 状榭脂組成物中に、上述したような特定構造の炭素繊維構造体を分散させてなるも のである。
[0059] このコーティング組成物において用いられる炭素繊維構造体としては、上記に詳述 した通りのものである。
[0060] 一方、本発明にお 、て用いられる液状榭脂組成物とは、水性または油性の、塗料 組成物、インキ組成物、各種コーティング組成物などといった、ビヒクル不揮発成分と して榭脂を溶媒に溶解あるいは分散媒に分散した各種液状榭脂組成物が含まれる。 榭脂成分としては、可塑性榭脂、熱硬化性榭脂、その他天然樹脂ないしその変性物 等の造膜性を有する有機物が含まれ、具体的には例えば、水性アクリル系、ラッカー などのアクリル系、アルキッド、各種変性アルキッド、不飽和ポリエステルなどのエステ ル系、メラミン系、ウレタン系、エポキシ系、その他、塩化ビニル、酢酸ビニル、ポリビ -ルアルコール、ポリスチレン、ポリアミド、フエノール榭脂、フラン榭脂、キシレン'ホ ルムアルデヒド榭脂、尿素樹脂などを挙げることができるが、これらに何ら限定される ものではない。そして、このような含まれる榭脂成分によって、焼付硬化型、常温硬化 型等の各種タイプを採ることができる。
[0061] また、液状榭脂組成物にお!ヽて、溶媒ある!ヽは分散媒として用いられる液体として も、特に限定されるものではなぐ使用される榭脂成分に応じて、適当なものを選択し 得るが、具体的には、例えば、水;メチルアルコール、エチルアルコール、イソプロピ ルアルコール、ブチルアルコール、ァリルアルコール等のアルコール類;エチレングリ コーノレ、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ポリプ ロピレングリコール、ジエチレングリコーノレモノェチノレエーテル、ポリプロピレングリコ 一ノレモノェチノレエーテル、ポリエチレングリコーノレモノァリノレエーテル、ポリプロピレン グリコールモノアリルエーテル等のダリコールないしその誘導体類;グリセロール、ダリ セローノレモノェチノレエーテノレ、グリセローノレモノァリノレエーテノレ等のグリセローノレな ヽ しその誘導体類; N—メチルピロリドンなどのアミド類;テトラヒドロフラン、ジォキサン等 のエーテル類;メチルェチルケトン、メチルイソブチルケトン等のケトン類;流動バラフ イン、デカン、デセン、メチルナフタレン、デカリン、ケロシン、ジフエ-ルメタン、トルェ ン、ジメチルベンゼン、ェチルベンゼン、ジェチルベンゼン、プロピルベンゼン、シク 口へキサン、部分的に水が添加されたトリフエニル等の炭化水素類、ポリジメチルシロ キサン、部分ォクチル置換ポリジメチルシロキサン、部分フエ-ル置換ポリジメチルシ ロキサン、フルォロシリコーンオイル等のシリコーンオイル類;クロ口ベンゼン、ジクロロ ベンゼン、ブロモベンゼン、クロロジフエ-ル、クロロジフエ-ルメタン等のハロゲン化 炭化水素類;ふつ化物類;安息香酸ェチル、安息香酸ォクチル、フタル酸ジォクチル 、トリメリット酸トリオクチル、セバシン酸ジブチル、(メタ)アクリル酸ェチル、(メタ)ァク リル酸プチル、(メタ)アクリル酸ドデシル等のエステルイ匕合物類などが挙げられる。
[0062] 本発明に力かるコーティング組成物の製造方法において、このような液状榭脂組成 物に対する上記炭素繊維構造体の配合量としては、特に限定されるわけではなぐ 得ようとする透明導電膜に必要とされる電気的特性等に応じて適宜選択されるが、例 えば、液状榭脂組成物 100質量部に対し、炭素繊維構造体 1〜25質量部程度配合 することができる。このような配合割合のいずれの範囲においても、炭素繊維構造体 が均一に分散された組成物を得ることができる。
[0063] なお、本発明において用いられるコーティング組成物中には、本発明の目的を阻 害しない範囲で公知の種々の添加剤、例えば、顔料および染料などの着色剤、各種 安定剤、酸化防止剤、紫外線吸収剤、難燃剤、溶剤等を配合することが可能である
[0064] 本発明に係る透明導電膜用コーティング組成物は、用いられる炭素繊維構造体が 上述したように疎な構造体であって分散性が良好であるため、比較的分散性の高 、 ものとして得られる力 好ましくは、メディアミル、特に、平均粒子径 0. 05-1. 5mm のビーズを用いたメディアミルで、炭素繊維構造体を分散させて調製されたものであ ることが好ましい。さらに好ましくは、このようなメディアミルによる分散処理に先立ち、 以下に詳述するような高速せん断型分散装置を用いて分散処理を行 ヽ、続ヽてメデ ィァミルによる分散処理を施すことにより調製されたものであることがより好ましい。
[0065] なお、メディアミルに用いるビーズの粒子径としては、あまりが小さすぎると、カーボ ンナノ構造体が微細に破断されてしまう虞れがあり、また、ビーズの持つ運動エネル ギ一が小さくなり、分散が進行しない恐れがある。また、取り扱いが困難となるため、 ビーズの平均直径が、 0. 05mm以上であることが好ましぐ 0. 5mm以上であること が特に好ましい。一方、ビーズが大きすぎると、単位体積あたりのビーズ個数が少なく なるため分散効率が低下し、カーボンナノ構造体の粉砕が不十分となり、アスペクト 比が大き 、状態でカーボンナノ構造体が存在することとなって、塗料やコーティング 剤としての液性が得られなくなる虞れがある。このため、ビーズの平均直径が、 1. 5m m以下であることが好ましぐ 1. Omm以下であることが特に好ましい。
[0066] メディアミルに用いられる分散メディアとしてのビーズの材質は特に限定されるもの ではなぐ例えば、アルミナ、ジルコユア、鋼、クロム鋼、ガラスなどを例示することがで きるが、このうち、製品中の不純物の存在、また、比重に起因する運動エネルギーの 大きさを等を考慮すると、ジルコユアビーズを用いることが好ま 、。
ビーズの形状も特に限定されるものではないが、一般的には球形状のものが使用さ れる。
[0067] メディアミルは構造としては、特に限定されるものではなぐ各種公知のメディアミル が適用できる。具体的には、各種公知のアトライター、サンドミル、ボールミルなどが 挙げられる。 [0068] なお、ビーズのベッセルへの充填割合はベッセルや撹拌子の形態等によって決定 すればよぐ特に限定されるものではないが、その割合が低すぎると炭素繊維構造体 に対し十分な粉砕ないし切断作用を発揮できなくなる虞れがある。一方、その割合が 高すぎると、回転に大きな駆動力を必要とし、またビーズの磨耗による被処理媒体の 汚染の増大を引き起こす虞れがある。このため、ビーズの充填割合は、例えば、べッ セルの有効容積の 70〜85容積%程度とすることが望ましい。
[0069] また、処理時間、軸回転数、ベッセル内圧、モーター負荷等の操作条件は、カーボ ンナノ構造体の配合量、および分散させるべき樹脂の特性、特に、粘度やカーボン ナノ構造体との相溶姓などにより左右され、その目的に応じて適宜設定すればよい。
[0070] また、このようなメディアミルによる分散処理に先立ち、用いられる高速せん断型分 散装置としては、例えば、高速回転可能な攪拌ホイールと、この攪拌ホイールの外周 面に近傍する内周面を有する容器部とを有し、当該ホイールを先端速度 30mZs以 上で高速回転させ、ホイールの遠心力によって、被処理液が容器内側面に回転しな 力 薄膜状に押し付けられ、該薄膜に前記ホイールの先端部が接触して、被処理液 を攪拌する機能を有するミキサーが好ましく、その他のインライン ·ローター'ステータ 一式ミキサー等も好ましく用いられる。このような好ましい高速せん断型分散装置とし て、具体的には例えば、 TKフィルミックス (特殊機化工業 (株))等を例示できる。
[0071] また、これら以外にも、例えば、 TKラボディスパー、 TKパイプラインミクサ一、 TKホ モミックラインミル、 TKホモジエツター、 TKュニミキサー、 TKホモミックラインフロー、 TKァヂホモディスパー(以上、特殊機化工業 (株))、ホモジナイザー 'ポリトロン(KIN EMATICA AG)、ホモジナイザ^ ~ ·ヒストロン(Microtec Co., Ltd.)、バイオミキサー(( 株)日本精機製作所)、ターボ型攪拌機((株)小平製作所)、ウルトラデイスパー (浅 田鉄鋼 (株) )、エバラマイルザ一 (荏原製作所 (株) )等の高速せん断型分散装置を 用いることも可能である。
実施例
[0072] 以下、実施例により本発明を更に詳しく説明するが、本発明は下記の実施例に何 ら限定されるものではない。
なお、以下において、各物'性値は次のようにして測定した。 [0073] <嵩密度の測定 >
内径 70mmで分散板付透明円筒に lg粉体を充填し、圧力 0. IMpa、容量 1. 3リツ トルの空気を分散板下部力 送り粉体を吹出し、自然沈降させる。 5回吹出した時点 で沈降後の粉体層の高さを測定する。このとき測定箇所は 6箇所とることとし、 6箇所 の平均を求めた後、嵩密度を算出した。
[0074] <ラマン分光分析 >
堀場ジョバンイボン製 LabRam800を用い、アルゴンレーザーの 514nmの波長を 用いて測定した。
[0075] <TG燃焼温度 >
マックサイエンス製 TG— DTAを用い、空気を 0. 1リットル Z分の流速で流通させ ながら、 10°CZ分の速度で昇温し、燃焼挙動を測定した。燃焼時に TGは減量を示 し、 DTAは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義し た。
[0076] <X線回折 >
粉末 X線回折装置 CiDX3532、 日本電子製)を用いて、ァニール処理後の炭素繊 維構造体を調べた。 Cu管球で 40kV、 30mAで発生させた Κ α線を用いることとし、 面間隔の測定は学振法 (最新の炭素材料実験技術 (分析 ·解析編)、炭素材料学会 編)に従い、シリコン粉末を内部標準として用いた。
[0077] <粉体抵抗および復元性 >
CNT粉体 lgを秤取り、榭脂製ダイス(内寸 40リットル、 10W、 80Hmm)に充填圧 縮し、変位および荷重を読み取る。 4端子法で定電流を流して、そのときの電圧を測 定し、 0. 9gZcm3の密度まで測定したら、圧力を解除し復元後の密度を測定した。 粉体抵抗については、 0. 5、0. 8および 0. 9g/cm3に圧縮したときの抵抗を測定す ることとする。
[0078] <粒状部の平均粒径、円形度、微細炭素繊維との比 >
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。
[0079] 対象とされた各炭素繊維構造体にお!、て、炭素繊維相互の結合点である粒状部を 1つの粒子とみなして、その輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷 商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計 算し、これを平均化して粒状部の平均粒径とした。また、円形度 (R)は、前記画像解 析ソフトウェアを用いて測定した輪郭内の面積 (A)と、各粒状部の実測の輪郭長さ (L) より、次式により各粒状部の円形度を求めこれを平均化した。
R=A*4 π /L2
[0080] さらに、対象とされた各炭素繊維構造体における微細炭素繊維の外径を求め、これ と前記各炭素繊維構造体の粒状部の円相当径から、各炭素繊維構造体における粒 状部の大きさを微細炭素繊維との比として求め、これを平均化した。
[0081] <塗布性>
以下の基準により評価した。
〇:バーコーダ一で容易に塗布できる。
X:バーコーダ一での塗布は困難。
[0082] <全光透過率 >
JIS K 7361に準拠して測定された。ヘーズ ·透過率計 (HM— 150、(株)村上色 材技術研究所製)を用い、ガラス板 (全光線透過率 91. 0%、 50 X 50 X 2mm)に所 定の膜厚に塗布して測定した。
[0083] <表面抵抗値 >
ガラス板上に 50 X 50mmの硬化塗膜を作製し、四探針式抵抗率計 (三菱化学 (株 )製、 MCP— T600、 MCP— ΗΤ4500)を用いて塗膜表面 9箇所の抵抗(Ω )を測 定した。同抵抗計により体積抵抗(Ω 'cm)に換算し、平均値を算出した。
[0084] 合成例 1
CVD法によって、トルエンを原料として微細炭素繊維を合成した。
触媒としてフエ口セン及びチォフェンの混合物を使用し、水素ガスの還元雰囲気で 行った。トルエン、触媒を水素ガスとともに 380°Cに加熱し、生成炉に供給し、 1250 °cで熱分解して、炭素繊維構造体 (第一中間体)を得た。合成された中間体を窒素 中で 900°Cで焼成して、タールなどの炭化水素を分離し、第二中間体を得た。この 第二中間体のラマン分光測定の R値は 0. 98であった。また、この第一中間体をトル ェン中に分散して電子顕微鏡用試料調製後に観察した TEM写真を図 1に示す。 さらにこの第二中間体をアルゴン中で 2600°Cで高温熱処理し、得られた炭素繊維 構造体の集合体を気流粉砕機にて粉砕し、本発明に係る炭素繊維構造体を得た。
[0085] 得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調 製後に観察した TEM写真を図 2Aおよび図 2Bに示す。
さらに高温熱処理前後において、炭素繊維構造体の X線回折およびラマン分光分 析を行い、その変化を調べた。結果を図 3および 4に示す。
[0086] また、得られた炭素繊維構造体の嵩密度は 0. 0032g/cm3、ラマン I
D /\ 比値は G
0. 090、 TG燃焼温度は 786°C、面間隔は 3. 383オングストローム、粉体抵抗値は 0 . 0083 Ω ' cm、復元後の密度は 0. 25gZcm3であった。
[0087] さらに炭素繊維構造体における粒状部の粒径は平均で、 443nm (SD207nm)で あり、炭素繊維構造体における微細炭素繊維の外径の 7. 38倍となる大きさであった 。また粒状部の円形度は、平均値で 0. 67(SD0. 14)であった。
[0088] 実施例 1〜9
ポリウレタン榭脂溶液 (不揮発分 : 20%) 100質量部に、上記合成例 1で得られた炭 素繊維構造体を表 1に示す割合で添加し、ビーズミル (ダイノーミル、(株)シンマルェ ンタープライゼス)を用いて、ジルコユアビーズ(ビーズ径 0. 05mm, 0. 5mm、 1. 0 mm、 1. 5mm)、周速 10mZ秒、ビーズ充填量 80容積%、処理時間 2時間の条件 でさらに粉砕、分散処理することにより、炭素繊維構造体を分散させたコーティング 組成物を製造した。
[0089] この液状榭脂組成物を使用して、ガラス板上に表 1に示す所定膜厚の硬化塗膜を 作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 1に示す。 また、実施例 6で得られた硬化塗膜における炭素繊維構造体の分散状態を電子顕 微鏡により観察した。得られた結果を図 5に示す。
[0090] 参考例 1〜6 分散方法を、表 1に示すものに代えた以外は、実施例 1〜9と同様にして、コーティ ング組成物を製造し、実施例 1〜9と同様にして、塗布性、全光透過率、表面抵抗値 を評価した。得られた結果を表 1に示す。
[0091] 比較例 1〜4
ポリウレタン榭脂溶液 (不揮発分: 20%) 100質量部に、多層カーボンナノチューブ (清華ナフイン製、外径 10〜20應、長さ数 μ m〜数十 μ m)を表 1に示す割合で添カロ し、ビーズミル(ダイノーミル、(株)シンマルエンタープライゼス)を用いて、ジルコユア ビーズ(ビーズ径 0. 05mm, 1. 5mm)、周速 10mZ秒、ビーズ充填量 80容積0 /0、 処理時間 2時間の条件でさらに粉砕、分散処理することにより、炭素繊維を分散させ たコーティング組成物を製造した。
この液状榭脂組成物を使用して、ガラス板上に表 1に示す所定膜厚の硬化塗膜を 作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 1に示す。
[0092] 実施例 10〜18
ポリエステル榭脂溶液 (不揮発分 : 65%) 100質量部に、上記合成例 1で得られた 炭素繊維構造体を表 2に示す割合で添加し、ビーズミル (ダイノーミル、(株)シンマ ルエンタープライゼス)を用いて、ジルコ-ァビーズ(ビーズ径 0. 05mm, 0. 5mm、 1. Omm、 1. 5mm)、周速 10mZ秒、ビーズ充填量 80容積%、処理時間 2時間の 条件でさらに粉砕、分散処理することにより、炭素繊維構造体を分散させたコーティ ング組成物を製造した。
この液状榭脂組成物を使用して、ガラス板上に表 1に示す所定膜厚の硬化塗膜を 作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 2に示す。
[0093] 参考例 7〜12
分散方法を、表 2に示すものに代えた以外は、実施例 10〜18と同様にして、コー ティング組成物を製造し、実施例 10〜18と同様にして、塗布性、全光透過率、表面 抵抗値を評価した。得られた結果を表 2に示す。
[0094] 比較例 5〜8
ポリエステル榭脂溶液 (不揮発分 : 65%) 100質量部に、多層カーボンナノチュー ブ (清華ナフイン製、外径 10〜20應、長さ数 μ m〜数十 μ m)を表 2に示す割合で添 加し、ビーズミル(ダイノーミル、(株)シンマルエンタープライゼス)を用いて、ジルコ- ァビーズ(ビーズ径 0. 05mm, 1. 5mm)、周速 10mZ秒、ビーズ充填量 80容積0 /0 、処理時間 2時間の条件でさらに粉砕、分散処理することにより、炭素繊維を分散さ せたコーティング組成物を製造した。
この液状榭脂組成物を使用して、ガラス板上に表 1に示す所定膜厚の硬化塗膜を 作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 2に示す。
[0095] 実施例 19〜27
フエノール榭脂 (不揮発分 : 50%) 100質量部に、上記合成例 1で得られた炭素繊 維構造体を表 3に示す割合で添加し、ビーズミル (ダイノーミル、(株)シンマルェンタ 一プライゼス)を用いて、ジルコ-ァビーズ(ビーズ径 0. 05mm, 0. 5mm、 1. Omm 、 1. 5mm)、周速 10mZ秒、ビーズ充填量 80容積%、処理時間 2時間の条件でさら に粉砕、分散処理することにより、炭素繊維構造体を分散させたコーティング組成物 を製造した。
この液状榭脂組成物を使用して、ガラス板上に表 3に示す所定膜厚の硬化塗膜を 作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 3に示す。
[0096] 参考例 13〜18
分散方法を、表 3に示すものに代えた以外は、実施例 19〜27と同様にして、コー ティング組成物を製造し、実施例 19〜27と同様にして、塗布性、全光透過率、表面 抵抗値を評価した。得られた結果を表 3に示す。
[0097] 比較例 9〜12
フエノール榭脂(不揮発分:50%) 100質量部に、多層カーボンナノチューブ (清華 ナフイン製、外径 10〜20nm、長さ数/ z m〜数十/ z m)を表 1に示す割合で添カ卩し、ビ ーズミル(ダイノーミル、(株)シンマルエンタープライゼス)を用いて、ジルコ-アビー ズ(ビーズ径 0. 05mm, 1. 5mm)、周速 10mZ秒、ビーズ充填量 80容積0 /0、処理 時間 2時間の条件でさらに粉砕、分散処理することにより、炭素繊維を分散させたコ 一ティング組成物を製造した。
この液状榭脂組成物を使用して、ガラス板上に表 1に示す所定膜厚の硬化塗膜を 作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 1に示す。 [0098] 実施例 28〜36
アクリル榭脂 (不揮発分: 35%) 100質量部に、上記合成例 1で得られた炭素繊維 構造体を表 4に示す割合で添加し、ビーズミル (ダイノーミル、(株)シンマルエンター プライゼス)を用いて、ジルコ-ァビーズ(ビーズ径 0. 05mm, 0. 5mm、 1. 0mm、 1 . 5mm)、周速 10mZ秒、ビーズ充填量 80容積%、処理時間 2時間の条件でさらに 粉砕、分散処理することにより、炭素繊維構造体を分散させたコーティング組成物を 製造した。
この液状榭脂組成物を使用して、ガラス板上に表 3に示す所定膜厚の硬化塗膜を 作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 4に示す。
[0099] 参考例 19〜24
分散方法を、表 4に示すものに代えた以外は、実施例 28〜36と同様にして、コー ティング組成物を製造し、実施例 28〜36と同様にして、塗布性、全光透過率、表面 抵抗値を評価した。得られた結果を表 4に示す。
[0100] 比較例 13〜16
アクリル榭脂 (不揮発分: 35%) 100質量部に、多層カーボンナノチューブ (清華ナ フィン製、外径 10〜20nm、長さ数/ z m〜数十/ z m)を表 1に示す割合で添カ卩し、ビー ズミル(ダイノーミル、(株)シンマルエンタープライゼス)を用いて、ジルコユアビーズ( ビーズ径 0. 05mm, 1. 5mm)、周速 10mZ秒、ビーズ充填量 80容積%、処理時間 2時間の条件でさらに粉砕、分散処理することにより、炭素繊維を分散させたコーティ ング組成物を製造した。
この液状榭脂組成物を使用して、ガラス板上に表 1に示す所定膜厚の硬化塗膜を 作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 1に示す。
[0101] 実施例 37〜40
実施例 6、 15、 24、 33において、ビーズミルを用いた分散処理に先立ち、 TKフィ ルミックス (特殊機化工業 (株))を用い、先端速度 50mZsで、 2分間の分散処理を 行った以外は、実施例 6、 15、 24、 33と同様ににて、炭素繊維構造体を分散させた コ一ティング組成物を製造した。
この液状榭脂組成物を使用して、ガラス板上に表 1〜4に示す所定膜厚の硬化塗 膜を作製し、塗布性、全光透過率、表面抵抗値を評価した。得られた結果を表 1〜4 に示す。
[表 1]
Figure imgf000027_0001
ND :測定不可
多層 CNT :多層カーボンナノチューブ (清華ナフイン製、 外径 10~20nm、 長さ数 μπι〜数十 μπι)
Figure imgf000029_0001
ND:測定不可
多層 CNT:多層カーボンナノチューブ (淸華ナフイン製、 外径 10〜20nm、 長さ数 μ m〜数十 μ m)
s^0104w
Figure imgf000031_0001
N D:測定不可
多層 CNT:多層カーボンナノチューブ (清華ナフイン製、 外径 10〜20mn、 長さ数 /xm〜数十 /xm)
Z6.C0C/900Zdf/X3d OS ^Ζ6.ΐΐ/900Ζ OAV
Figure imgf000033_0001
ND:測定不可
多層 C NT:多層力一ボンナノチューブ (清華ナフイン製、 外径 10〜20nm、 長さ数; u m〜数十/ i m)

Claims

請求の範囲
[1] 榭脂マトリックス中に炭素繊維構造体を分散させてなる透明導電膜であって、前記 炭素繊維構造体は、外径 15〜: LOOnmの炭素繊維から構成される炭素繊維構造体 であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭 素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の 成長過程において形成されてなるものであることを特徴とする透明導電膜。
[2] 榭脂 100質量部に対し、炭素繊維構造体 1〜25質量部を分散させてなることを特 徴とする請求項 1記載の透明導電膜。
[3] ガラス基板上に膜厚 0. 1〜5 mに形成された場合おいて、表面抵抗値 1. 0 X 10 12 Ω Ζ口以下、全光線透過率が 30%以上であることを特徴とする請求項 1または 2に 記載の透明導電膜。
[4] ビヒクル不揮発成分として榭脂を含有する液状榭脂組成物中に、炭素繊維構造体 を分散させてなる透明導電膜用コーティング組成物であって、前記炭素繊維構造体 は、外径 15〜: LOOnmの炭素繊維力も構成される炭素繊維構造体であって、前記炭 素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結 合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程にお 、て 形成されてなるものであることを特徴とする透明導電膜用コーティング組成物。
[5] 液状榭脂組成物 100質量部に対し、炭素繊維構造体 1〜25質量部を配合してな ることを特徴とする請求項 4に記載の透明導電膜用コーティング組成物。
[6] 平均粒子径 0. 05〜: L 5mmのビーズを用いたメディアミルで、炭素繊維構造体を 分散させて調製されたものであることを特徴とする請求項 4または 5に記載の透明導 電膜用コ一ティング組成物。
[7] 前記メディアミルによる分散処理に先立ち、さらに、高速せん断型分散装置を用い て分散処理を行うことにより調製されたものであることを特徴とする請求項 6に記載の 透明導電膜用コーティング組成物。
PCT/JP2006/303792 2005-04-28 2006-02-28 透明導電膜および透明導電膜用コーティング組成物 WO2006117924A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20060714918 EP1876605A1 (en) 2005-04-28 2006-02-28 Transparent electrically conductive film, and coating composition for transparent electrically conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-132691 2005-04-28
JP2005132691A JP2006310154A (ja) 2005-04-28 2005-04-28 透明導電膜および透明導電膜用コーティング組成物

Publications (1)

Publication Number Publication Date
WO2006117924A1 true WO2006117924A1 (ja) 2006-11-09

Family

ID=37307730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303792 WO2006117924A1 (ja) 2005-04-28 2006-02-28 透明導電膜および透明導電膜用コーティング組成物

Country Status (6)

Country Link
US (1) US20060263588A1 (ja)
EP (1) EP1876605A1 (ja)
JP (1) JP2006310154A (ja)
KR (1) KR20070116662A (ja)
CN (1) CN101167142A (ja)
WO (1) WO2006117924A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049588A1 (ja) * 2005-10-25 2007-05-03 Bussan Nanotech Research Institute Inc. 導電性コーティング材料
WO2007102575A1 (ja) * 2006-03-09 2007-09-13 Mitsui & Co., Ltd. 微細炭素繊維構造体
JP2009146898A (ja) * 2007-12-12 2009-07-02 Qinghua Univ 電子素子
JP2011175972A (ja) * 2008-08-22 2011-09-08 Hitachi Chem Co Ltd 感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060053051A1 (en) * 2004-09-07 2006-03-09 Philip Goodman Genergraphic websites
EP2117012B1 (en) * 2007-02-20 2015-04-22 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
KR100895521B1 (ko) * 2007-10-12 2009-04-30 (주)탑나노시스 스프레이 코팅을 이용한 탄소나노튜브 투명도전막 및 그제조방법
CN101458593B (zh) * 2007-12-12 2012-03-14 清华大学 触摸屏及显示装置
CN101419518B (zh) * 2007-10-23 2012-06-20 清华大学 触摸屏
CN101620454A (zh) * 2008-07-04 2010-01-06 清华大学 便携式电脑
CN101458598B (zh) * 2007-12-14 2011-06-08 清华大学 触摸屏及显示装置
CN101470559B (zh) * 2007-12-27 2012-11-21 清华大学 触摸屏及显示装置
CN101464763B (zh) * 2007-12-21 2010-09-29 清华大学 触摸屏的制备方法
CN101470560B (zh) * 2007-12-27 2012-01-25 清华大学 触摸屏及显示装置
CN101458604B (zh) * 2007-12-12 2012-03-28 清华大学 触摸屏及显示装置
CN101458608B (zh) * 2007-12-14 2011-09-28 清华大学 触摸屏的制备方法
CN101655720B (zh) * 2008-08-22 2012-07-18 清华大学 个人数字助理
CN101458600B (zh) * 2007-12-14 2011-11-30 清华大学 触摸屏及显示装置
CN101458599B (zh) * 2007-12-14 2011-06-08 清华大学 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置
CN101676832B (zh) * 2008-09-19 2012-03-28 清华大学 台式电脑
CN101458605B (zh) * 2007-12-12 2011-03-30 鸿富锦精密工业(深圳)有限公司 触摸屏及显示装置
CN101458609B (zh) * 2007-12-14 2011-11-09 清华大学 触摸屏及显示装置
CN101458602B (zh) * 2007-12-12 2011-12-21 清华大学 触摸屏及显示装置
CN101419519B (zh) * 2007-10-23 2012-06-20 清华大学 触摸屏
CN101458597B (zh) * 2007-12-14 2011-06-08 清华大学 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置
CN101458595B (zh) * 2007-12-12 2011-06-08 清华大学 触摸屏及显示装置
CN101656769B (zh) * 2008-08-22 2012-10-10 清华大学 移动电话
CN101470558B (zh) * 2007-12-27 2012-11-21 清华大学 触摸屏及显示装置
CN101458594B (zh) * 2007-12-12 2012-07-18 清华大学 触摸屏及显示装置
CN101458596B (zh) * 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 触摸屏及显示装置
CN101458603B (zh) * 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 触摸屏及显示装置
CN101458606B (zh) * 2007-12-12 2012-06-20 清华大学 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置
CN101470566B (zh) * 2007-12-27 2011-06-08 清华大学 触摸式控制装置
KR100902862B1 (ko) * 2007-11-07 2009-06-16 (주)탑나노시스 투명 전광판 및 그 제조방법
CN101458607B (zh) * 2007-12-14 2010-12-29 清华大学 触摸屏及显示装置
CN101464757A (zh) * 2007-12-21 2009-06-24 清华大学 触摸屏及显示装置
CN101458601B (zh) * 2007-12-14 2012-03-14 清华大学 触摸屏及显示装置
CN101464764B (zh) * 2007-12-21 2012-07-18 清华大学 触摸屏及显示装置
CN101470565B (zh) * 2007-12-27 2011-08-24 清华大学 触摸屏及显示装置
CN101464765B (zh) * 2007-12-21 2011-01-05 鸿富锦精密工业(深圳)有限公司 触摸屏及显示装置
CN101464766B (zh) * 2007-12-21 2011-11-30 清华大学 触摸屏及显示装置
US8574393B2 (en) * 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8237677B2 (en) * 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8390580B2 (en) * 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US20100084161A1 (en) * 2008-10-08 2010-04-08 Robert A. Neal Conductive film and process for making same
JP5079715B2 (ja) * 2009-01-16 2012-11-21 株式会社ジャパンディスプレイウェスト 液晶表示装置
EP2213699A1 (de) * 2009-01-30 2010-08-04 Bayer MaterialScience AG Verfahren zum Einbringen von Kohlenstoffteilchen in eine Polyurethan-Oberflächenschicht
CN101924816B (zh) * 2009-06-12 2013-03-20 清华大学 柔性手机
CN102176338B (zh) * 2011-03-10 2012-10-03 中国科学院上海硅酸盐研究所 一种石墨烯/铜纳米线复合导电材料与制备方法
TWI495183B (zh) * 2013-10-09 2015-08-01 Nat Univ Tsing Hua 電極薄膜之製備方法
JP6233241B2 (ja) * 2014-08-26 2017-11-22 三菱ケミカル株式会社 粉体識別方法
CN104538087A (zh) * 2014-12-24 2015-04-22 宁波东旭成新材料科技有限公司 一种透明导电膜
JP6732295B2 (ja) * 2015-12-10 2020-07-29 エルジー・ケム・リミテッド 導電材分散液およびこれを用いて製造したリチウム二次電池
US10582630B1 (en) * 2015-12-28 2020-03-03 Roger Graham Method and apparatus for managing static electricity
US11584831B2 (en) * 2016-10-03 2023-02-21 Zeon Corporation Method of producing slurry, method of producing composite resin material, and method of producing shaped product
CN115109294B (zh) * 2022-07-18 2023-11-17 苏州纳普乐思纳米材料有限公司 抗静电膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353947A (ja) * 1998-06-09 1999-12-24 Takiron Co Ltd 制電性樹脂成形品及びその二次成形品
JP2002266170A (ja) * 2000-12-20 2002-09-18 Showa Denko Kk 分岐状気相法炭素繊維、透明導電性組成物及びその用途
JP2003089711A (ja) * 2001-09-18 2003-03-28 Nippon Shokubai Co Ltd 硬化性樹脂組成物及び樹脂硬化製品
JP2003227039A (ja) * 2001-11-07 2003-08-15 Showa Denko Kk 微細炭素繊維、その製造方法及びその用途
WO2004007820A1 (ja) * 2002-07-17 2004-01-22 Bussan Nanotech Research Institute Inc. 微細炭素繊維の製造方法
JP2004256964A (ja) * 2003-02-27 2004-09-16 Teijin Ltd 炭素繊維の製造方法
JP3720044B1 (ja) * 2005-03-22 2005-11-24 株式会社物産ナノテク研究所 複合材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286039A (ja) * 1996-04-22 1997-11-04 Komatsu Ltd 板状複合体およびその製造法
WO2004073970A1 (ja) * 1996-12-10 2004-09-02 Makoto Ihira 成形可能な制電性樹脂成形品
US6740403B2 (en) * 2001-04-02 2004-05-25 Toyo Tanso Co., Ltd. Graphitic polyhederal crystals in the form of nanotubes, whiskers and nanorods, methods for their production and uses thereof
JP2003004927A (ja) * 2001-06-27 2003-01-08 Toray Ind Inc カラーフィルター用ペースト、それを使用したカラーフィルター、および液晶表示装置
US6787299B2 (en) * 2002-01-16 2004-09-07 Konica Corporation Silver salt photothermographic imaging material
JP3606855B2 (ja) * 2002-06-28 2005-01-05 ドン ウン インターナショナル カンパニー リミテッド 炭素ナノ粒子の製造方法
JP3964381B2 (ja) * 2002-11-11 2007-08-22 昭和電工株式会社 気相法炭素繊維、その製造方法及び用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353947A (ja) * 1998-06-09 1999-12-24 Takiron Co Ltd 制電性樹脂成形品及びその二次成形品
JP2002266170A (ja) * 2000-12-20 2002-09-18 Showa Denko Kk 分岐状気相法炭素繊維、透明導電性組成物及びその用途
JP2003089711A (ja) * 2001-09-18 2003-03-28 Nippon Shokubai Co Ltd 硬化性樹脂組成物及び樹脂硬化製品
JP2003227039A (ja) * 2001-11-07 2003-08-15 Showa Denko Kk 微細炭素繊維、その製造方法及びその用途
WO2004007820A1 (ja) * 2002-07-17 2004-01-22 Bussan Nanotech Research Institute Inc. 微細炭素繊維の製造方法
JP2004256964A (ja) * 2003-02-27 2004-09-16 Teijin Ltd 炭素繊維の製造方法
JP3720044B1 (ja) * 2005-03-22 2005-11-24 株式会社物産ナノテク研究所 複合材料

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049588A1 (ja) * 2005-10-25 2007-05-03 Bussan Nanotech Research Institute Inc. 導電性コーティング材料
WO2007102575A1 (ja) * 2006-03-09 2007-09-13 Mitsui & Co., Ltd. 微細炭素繊維構造体
US8173261B2 (en) 2006-03-09 2012-05-08 Hodogaya Chemical Co., Ltd Fine carbon fibrous structure
JP2009146898A (ja) * 2007-12-12 2009-07-02 Qinghua Univ 電子素子
JP2011175972A (ja) * 2008-08-22 2011-09-08 Hitachi Chem Co Ltd 感光性導電フィルム、導電膜の形成方法、導電パターンの形成方法及び導電膜基板
US8674233B2 (en) 2008-08-22 2014-03-18 Hitachi Chemical Company, Ltd. Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
US9161442B2 (en) 2008-08-22 2015-10-13 Hitachi Chemical Company, Ltd. Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate

Also Published As

Publication number Publication date
JP2006310154A (ja) 2006-11-09
CN101167142A (zh) 2008-04-23
US20060263588A1 (en) 2006-11-23
EP1876605A1 (en) 2008-01-09
KR20070116662A (ko) 2007-12-10

Similar Documents

Publication Publication Date Title
WO2006117924A1 (ja) 透明導電膜および透明導電膜用コーティング組成物
JP3776111B1 (ja) 炭素繊維構造体
KR101414560B1 (ko) 전도성 필름의 제조방법
WO2010002004A1 (ja) 炭素繊維及び複合材料
CN107107494A (zh) 3d打印机和用于3d打印机的原料
EP2351704A1 (en) Aqueous dispersion of carbon microfibers, process for producing the aqueous dispersion, and article produced using same
JP4847106B2 (ja) 炭素繊維構造体
TW201038472A (en) Carbon nanotube-containing composition, catalyst for carbon nanotube production and carbon nanotube aqueous dispersion liquid
WO2007049588A1 (ja) 導電性コーティング材料
KR100719421B1 (ko) 탄소 섬유 구조체
KR101382016B1 (ko) 그래핀의 제조 방법
JP2007138039A (ja) リサイクル複合材料
JP2007119647A (ja) 複合材料
JP2007254886A (ja) 複合材料
JP4908858B2 (ja) 微細炭素繊維集合体の製造方法
JP2006183227A (ja) 炭素繊維構造体
Martis et al. Optimization of cuprous oxide nanocrystals deposition on multiwalled carbon nanotubes
JP5054915B2 (ja) 炭素繊維構造体の製造方法
WO2017029920A1 (ja) カーボンナノファイバー複合体の製造方法及びカーボンナノファイバー複合体
WO2007046413A1 (ja) 電子放出源
JP5400284B2 (ja) 微細炭素繊維分散液の製造方法
JP2007138048A (ja) 研磨材
JP2007231471A (ja) 微細炭素繊維集合体の製造方法
JP2006089711A (ja) カーボンナノ構造体を含有する液状樹脂組成物の製造方法
多次元炭素複合材料の作製および電気特性に関する研究 STUDY ON PREPARATION AND ELECTRICAL PROPERTIES OF CARBON COMPOSITE MULTIDIMENSIONAL MATERIALS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014161.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006714918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077024764

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006714918

Country of ref document: EP