WO2006115158A1 - 排気ガス浄化方法及び排気ガス浄化システム - Google Patents

排気ガス浄化方法及び排気ガス浄化システム Download PDF

Info

Publication number
WO2006115158A1
WO2006115158A1 PCT/JP2006/308281 JP2006308281W WO2006115158A1 WO 2006115158 A1 WO2006115158 A1 WO 2006115158A1 JP 2006308281 W JP2006308281 W JP 2006308281W WO 2006115158 A1 WO2006115158 A1 WO 2006115158A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
exhaust gas
fuel
cylinder
catalyst
Prior art date
Application number
PCT/JP2006/308281
Other languages
English (en)
French (fr)
Inventor
Masashi Gabe
Daiji Nagaoka
Original Assignee
Isuzu Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Limited filed Critical Isuzu Motors Limited
Priority to CN200680013118.1A priority Critical patent/CN101163871B/zh
Priority to EP06732139A priority patent/EP1873381B1/en
Priority to US11/886,688 priority patent/US8186148B2/en
Publication of WO2006115158A1 publication Critical patent/WO2006115158A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • F02D41/307Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes to avoid torque shocks

Definitions

  • the present invention relates to an exhaust gas purification method and an exhaust gas purification system including an NOx purification catalyst for reducing and purifying NOx (nitrogen oxides) in exhaust gas of an internal combustion engine. About the system.
  • NOx catalysts for reducing and removing NOx in the exhaust gas from internal combustion engines such as diesel engines and some gasoline engines, and various combustion devices.
  • NOx storage reduction catalysts and NOx direct reduction catalysts as NOx reduction catalysts for diesel engines. These catalysts can effectively purify NOx in the exhaust gas.
  • This NOx occlusion reduction catalyst is applied to an oxide support layer such as alumina (Al 2 O 3) or zeolite.
  • NOx storage material that supports a precious metal that promotes oxidation / reduction reactions and a NOx storage material (NO X storage material) that has a NOx storage function.
  • Platinum (Pt), palladium (Pd), etc. are used as this catalyst noble metal.
  • NOx storage materials include potassium (K), sodium (Na), lithium (Li), alkali metals such as cesium (Ce), alkaline earth metals such as barium (Ba) and calcium (Ca), lanthanum (La ), Some of the rare earths such as yttrium (Y) are used.
  • This NOx occlusion reduction type catalyst is in an air-fuel ratio canon (excessive oxygen) state of inflowing exhaust gas, and O (oxygen) is present in the atmosphere.
  • Nitrogen is oxidized by noble metals to form NO (diacid-nitrogen). This NO is occluded by NOx
  • the NOx occlusion material such as Ba is oxidized to carbon ( CO) and NO is decomposed and released from nitrate. This released NO is a precious metal
  • the NOx direct reduction catalyst is a catalyst in which a catalyst component such as rhodium (Rh) or palladium (Pd) is supported on a support such as ⁇ -type zeolite.
  • a catalyst component such as rhodium (Rh) or palladium (Pd) is supported on a support such as ⁇ -type zeolite.
  • Rh rhodium
  • Pd palladium
  • It combines cerium (Ce), which reduces the oxidation effect of metals and contributes to maintaining NOx reduction ability.
  • a three-way catalyst is provided in the lower layer to promote oxidation-reduction reactions, particularly NOx reduction reactions in a rich state.
  • Iron (Fe) is added to the carrier to improve the NOx purification rate.
  • This NOx direct reduction type catalyst directly reduces NOx to nitrogen (N) in an atmosphere in which the air-fuel ratio of the exhaust gas of an internal combustion engine such as a diesel engine is high such as lean exhaust gas.
  • the metal that is the active substance of the catalyst is oxygen (O
  • Japanese Laid-Open Patent Publication No. 2000-154748 discloses that based on the detected or estimated actual intake air amount and the set stable combustion range where the air-fuel mixture stably burns. The fuel injection amount is limited so that the actual excess air ratio is within the stable combustion range. Further, an internal combustion engine control device that changes the fuel injection period based on the relationship between the fuel injection amount and the stable combustion range has been proposed. In this system, the fuel injection timing is switched to the homogeneous combustion mode during NOx reduction purification control (during regeneration control) of the NOx storage reduction catalyst. [0014] However, the change in the fuel injection timing in the internal combustion engine controller is 1.
  • Patent Document 1 JP-A-6-336916
  • Patent Document 2 JP 2000-154748 A
  • the present invention has been made to solve the above-described problem, and its purpose is to purify NOx when exhaust gas flowing in is rich for purifying NOx in the exhaust gas.
  • an exhaust gas purification system equipped with a NOx purification catalyst that restores capacity the injection timing of fuel injection into the cylinder during the transition period to the rich state and the transition period to the lean state.
  • the exhaust gas purification method for achieving the above-described purpose is to purify NOx when the air-fuel ratio of the exhaust gas is in a lean state and NOx when it is in a rich state.
  • the regeneration control of the NOx purification catalyst is performed. During the period of switching between the lean state and the rich state, the injection timing of the fuel injection into the cylinder is changed in accordance with the change in the combustion air-fuel ratio in the cylinder every moment.
  • the NOx purification catalyst includes a NOx occlusion reduction catalyst, a NOx direct reduction catalyst, and the like. is there.
  • the recovery of NOx purification capacity includes recovery of NOx storage capacity of NOx storage and recovery from sulfur poisoning, recovery of NOx reduction capacity of NOx direct reduction catalyst and recovery from sulfur poisoning, etc. including.
  • the fuel injection timing is changed to a predetermined target timing when switching between the lean combustion mode and the rich combustion mode. Do not advance or retard at a stretch. Also, the fuel injection timing is advanced or retarded in accordance with the combustion air-fuel ratio in the cylinder, which changes relatively slowly due to the intake throttle of the intake system and EGR control. This suppresses the generation of NOx, combustion noise, sudden changes in torque, and deficiencies in drivability.
  • the calculation is performed based on the change in the combustion air-fuel ratio in the cylinder every moment during the switching from the initial lean state to the rich state of the regeneration control. This is characterized in that the fuel injection timing into the cylinder is advanced so that the fuel injection timing is reached.
  • An exhaust gas purification system for achieving the above object purifies NOx when the air-fuel ratio of the exhaust gas is lean, and provides NOx purification capacity when it is rich. It has a NOx purification catalyst that recovers, and catalyst regeneration control means that performs regeneration control to restore the NOx purification capacity of the NOx purification catalyst, and controls the intake system to reduce the intake air amount and the amount of fuel injected into the cylinder
  • the catalyst regeneration control means includes a lean state during the regeneration control of the NOx purification catalyst. During the changeover period of the rich state, the timing of fuel injection into the cylinder is changed in accordance with the change in the combustion air-fuel ratio in the cylinder every moment.
  • the catalyst regeneration control means may cause the combustion air in the cylinder to be instantaneously changed during the switching from the initial lean state to the rich state of the regeneration control.
  • the fuel injection timing into the cylinder is advanced so that the fuel injection timing calculated based on the change in the fuel ratio is reached.
  • the catalyst regeneration control means performs combustion in the cylinder every moment during the switching to the rich state force lean state at the end of the regeneration control.
  • the fuel injection timing into the cylinder is delayed so that the fuel injection timing calculated based on the change in the air-fuel ratio is reached.
  • This exhaust gas purification system occludes NOx when the NOx purification catalyst power exhaust gas air-fuel ratio force is in a lean state and releases NOx that is occluded when in a rich state.
  • NOx occlusion reduction catalyst or exhaust gas air-fuel ratio power NOx is reduced and purified when it is lean, and NOx purification capacity is restored when it is rich NO X direct reduction This can be provided in the case of a type catalyst and can provide a great effect.
  • the combustion air-fuel ratio in the cylinder means the air-fuel ratio of combustion in the cylinder, and the amount of air supplied to the exhaust gas flowing into the NOx storage reduction catalyst and the fuel It is used to distinguish it from the air-fuel ratio of exhaust gas, which is the ratio of the amount (including the amount burned in the cylinder).
  • the fuel injection timing is advanced or retarded at once to the predetermined target timing.
  • the amount of NOx generated by advancing or retarding the fuel injection timing in response to changes in the combustion air-fuel ratio (excess air ratio) in the cylinder that changes due to the intake throttle or EGR control of the intake system In addition, combustion noise, sudden changes in torque, drivability, etc. can be prevented from becoming extremely bad.
  • FIG. 1 is a diagram showing a configuration of an exhaust gas purification system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of control means of the exhaust gas purification system according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a control flow for regeneration of a NOx storage reduction catalyst.
  • FIG. 4 is a diagram showing in detail a flow of rich transition control in the control flow of FIG.
  • FIG. 5 is a diagram showing in detail a lean transition control flow in the control flow of FIG. 3.
  • FIG. 6 is a diagram showing, in a time series, the relationship among the excess air ratio, fuel injection timing, and NOx concentration in the exhaust gas purification method according to the present invention.
  • FIG. 7 is a graph showing the relationship between the excess air ratio, the fuel injection timing, and the NOx concentration in a time series in the case of the exhaust gas purification method in the prior art.
  • FIG. 1 shows a configuration of an exhaust gas purification system 1 according to an embodiment of the present invention.
  • an exhaust gas purification device 20 having an oxidation catalyst 21 and a NOx occlusion reduction type catalyst 22 is disposed in an exhaust passage 3 of an engine (internal combustion engine) E.
  • the acid catalyst 21 is formed as follows. A catalyst coat layer of activated acid, aluminum (Al 2 O 3), etc. on the surface of the carrier that also has a hard cam-like cordierite or heat-resistant steel
  • a catalytically active component made of a noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) is supported on the catalyst coat layer.
  • This acid catalyst oxidizes HC, CO, etc. in the inflowing exhaust gas. As a result, the exhaust gas is brought into a low oxygen state and the exhaust temperature is raised by the combustion heat.
  • the NOx occlusion reduction catalyst 22 is configured by providing a catalyst coating layer on a monolith catalyst.
  • This monolith catalyst is made of cordierite or silicon carbide (SiC) ultra-thin plate stainless steel.
  • the monolith catalyst structural material carrier has a number of cells.
  • This catalyst coat layer is formed of acid aluminum (Al 2 O 3), acid titanium (TiO), or the like. The inner wall of this cell
  • the catalyst coat layer provided on the surface has a large surface area and improves the contact efficiency with the exhaust gas.
  • a catalyst metal such as platinum (Pt) and palladium (Pd) and a NOx occlusion material (NOx occlusion material) such as barium (Ba) are supported on the catalyst coat layer.
  • NOx occlusion reduction type catalyst 22 when the oxygen concentration is high! And the exhaust gas is in a lean air-fuel ratio state, the NOx occlusion material occludes NOx in the exhaust gas. Purify NOx. Also, the stored NOx is released when the oxygen concentration is low or zero in the exhaust gas state (rich air-fuel ratio state). At the same time, the released NOx is reduced by the catalytic action of the catalytic metal. These prevent NOx from flowing into the atmosphere.
  • a first exhaust component concentration sensor 23 is disposed upstream of the acid catalyst 21.
  • a second exhaust component concentration sensor 24 is disposed downstream of the NOx storage reduction catalyst 22.
  • the exhaust component concentration sensors 23 and 24 are composed of a ⁇ sensor (excess air ratio sensor), a NOx concentration sensor, and an oxygen concentration sensor. Instead of the first and second exhaust component concentration sensors 23, 24, an oxygen concentration sensor or an excess air ratio sensor can be used. However, in this case, a separate NOx concentration sensor is used, and control that does not use the measured value of NOx concentration is used. Further, in order to detect the temperature of the exhaust gas, a first temperature sensor 25 is disposed upstream of the oxidation catalyst 21 and a second temperature sensor 26 is disposed downstream of the NOx storage reduction catalyst 22.
  • a control device (ECU: engine control unit) 30 that performs overall control of the operation of the engine E and also performs recovery control of the NOx purification capacity of the NOx storage reduction catalyst 22 is provided. Detection values from the first and second exhaust component concentration sensors 23, 24, the first and second temperature sensors 25, 26, and the like are input to the control device 30.
  • the control device 30 outputs signals for controlling the engine E intake throttle valve (intake throttle valve) 8, the EGR valve 12, the fuel injection valve 16 of the fuel injection common rail electronic control fuel injection device, and the like.
  • air A passes through the air purifier 5 in the intake passage 2 and the mass air flow sensor (MAF sensor) 6 to the turbocharger 7 compressor. The pressure is further increased. The amount of this air A is adjusted by the intake throttle valve 8 and enters the cylinder through the intake manifold. Then, the exhaust gas G generated in the cylinder also has an exhaust hold force in the exhaust passage 3 to drive the turbine of the turbocharger 7. Thereafter, the exhaust gas G becomes the exhaust gas Gc purified by passing through the exhaust gas purifier 20. The purified exhaust gas Gc is discharged into the atmosphere through a silencer (not shown). Part of the exhaust gas G passes through the EGR cooler 11 in the EGR passage 4 as EGR gas Ge. The The amount of the EGR gas Ge is adjusted by the EGR valve 12 and recirculated to the intake manifold.
  • MAF sensor mass air flow sensor
  • the control device power of the exhaust gas purification system 1 is incorporated into the control device 30 of the engine E, and controls the exhaust gas purification system 1 in parallel with the operation control of the engine E.
  • the control device of the exhaust gas purification system 1 includes a regeneration control means C10. As shown in FIG. 2, this regeneration control means C10 includes regeneration start determination means Cll, rich transition control means C12, regeneration continuation control means C13, regeneration end determination means C14, lean transition control means C15, intake system rich control. Means C 16 and fuel system rich control means C 17 are provided.
  • the regeneration control referred to here includes catalyst regeneration control for recovering the NOx storage capacity of the NOx storage material and purging sulfur from the catalyst against sulfur poisoning of the catalyst due to sulfur components in the fuel. Including desulfurization regeneration control.
  • the regeneration start determining means C11 calculates the NOx emission amount ⁇ ⁇ per unit time from the engine operating state, and cumulatively calculates this to obtain the NOx cumulative value ⁇ NOx. .
  • the means C11 determines that the reproduction is started when the NOx accumulated value ⁇ NOx exceeds a predetermined determination value Cn.
  • the means C11 calculates the NOx purification rate from the NOx concentration ratios upstream and downstream of the NOx storage reduction catalyst 22 detected by the first and second exhaust component concentration sensors 23, 24. This means C11 determines that regeneration of the NOx catalyst is started when the calculated NOx purification rate becomes lower than a predetermined determination value.
  • this means C11 determines whether or not sulfur has accumulated until the NOx occlusion capacity is lowered.
  • this determination there is a method of accumulating a sulfur (sulfur) accumulation amount S and determining that regeneration is started when the sulfur accumulation value ⁇ S exceeds a predetermined determination value Cs.
  • the rich transition control means C12 is based on the change in the combustion air-fuel ratio (excess air ratio ⁇ ) in the cylinder from moment to moment while the initial lean state force of the regeneration control is also switched to the rich state. This is means for advancing the fuel injection timing ⁇ of the main fuel injection into the cylinder so that the calculated fuel injection timing ⁇ .
  • the intake system rich control means C16 and the fuel system rich control means C17 reduce the intake air amount and increase the fuel amount.
  • the combustion air-fuel ratio air The fuel injection timing ⁇ ⁇ ⁇ is gradually advanced from the lean fuel injection timing T1 until the target fuel injection timing Tq of rich combustion is reached while responding to the change in the excess ratio ⁇ ).
  • the regeneration continuation control means C13 continues the state of the target air-fuel ratio (target air excess ratio ⁇ q), which is the stoichiometric air-fuel ratio (theoretical air-fuel ratio) or the rich air-fuel ratio as the air-fuel ratio (excess air ratio). It is a means to control so that it does.
  • the intake system rich control means C16 and the fuel system rich control means C17 decrease the intake amount and increase the fuel amount, but keep the fuel injection timing T at the target fuel injection timing Tq. To do.
  • regeneration end determination means C14 determines that regeneration of the NOx catalyst is to be terminated by the following several methods. It is determined that the regeneration of the NOx catalyst is finished when the regeneration control duration has exceeded a predetermined time. Or, calculate the amount of NOx released from the NOx storage reduction catalyst 20 per unit time ⁇ ⁇ ut from the operating state of the engine, and cumulatively calculate this NOx cumulative release value ⁇ NOxout force Predetermined judgment value Cn out When exceeded, it is determined that the regeneration of the NOx catalyst is finished.
  • the NOx concentration power on the upstream and downstream sides of the NOx storage-reduction catalyst 20 is also calculated for the NOx purification rate, and when regeneration of the NOx catalyst ends when this NOx purification rate becomes higher than the predetermined judgment value. judge.
  • desulfurization control it is determined that the regeneration of the NOx catalyst is finished as follows. Accumulate the sulfur (sulfur) purge amount Sout. It is determined that the regeneration of the NOx catalyst is finished when the cumulative sulfur purge amount ⁇ Sout force exceeds the sulfur accumulation amount ⁇ S at the start of regeneration.
  • the lean transition control means C15 is based on the change in the combustion air-fuel ratio (excess air ratio ⁇ ⁇ ) in the cylinder from moment to moment during the switching of the rich state force to the lean state at the end of the regeneration control.
  • This is a means for retarding the fuel injection timing ⁇ of the main fuel injection into the cylinder so that the fuel injection timing ⁇ calculated as described above is obtained.
  • the intake air amount control means C16 and the fuel system richness control means C17 reduce the intake air amount and increase the fuel amount.
  • the fuel injection timing T is gradually retarded from the target fuel injection timing Tq to the lean fuel injection timing loss while coping with a relatively slow change in the combustion air-fuel ratio (excess air ratio ⁇ ).
  • FIG. 6 shows an example of a time series of the excess air ratio, the main fuel injection timing T, and the NOx concentration Cn oxin discharged from the engine car according to the control flow of FIGS.
  • This NOx concentration Cnoxin is the NOx concentration upstream of the NOx storage reduction catalyst 20.
  • control flow in FIG. 3 is shown to be repeatedly executed in parallel with other control flows of engine E during operation of engine E.
  • step S10 the NOx catalyst regeneration start determination means C11 determines whether regeneration is started, that is, whether rich control for catalyst regeneration processing is necessary. Determine whether. If it is determined in step S10 that the playback is started, the process goes to step S20. If it is determined that the playback is not started, the predetermined time (in the interval for determining the playback start) is determined in step S11. During a related time: ⁇ tl), the normal operation is performed, and then the process returns to step S10 and the reproduction start determination is repeatedly performed.
  • This reproduction start determination is performed as follows. For example, based on the map data showing the relationship between the engine operating state such as the engine speed and load, etc., and the NOx emissions, which is set and input in advance, the NOx per unit time is calculated from the engine operating state. Calculate the amount of accumulation ⁇ NOx. This calculated value ⁇ NOx is also cumulatively calculated after the previous regeneration control to calculate the NOx accumulation amount ⁇ NOx. Whether or not the NOx cumulative value ⁇ NOx exceeds the predetermined judgment value Cn is judged as the start of playback.
  • step S20 the rich transition control means C12 responds to the change in the combustion air-fuel ratio (air excess ratio ⁇ ) in the transition period, while the lean fuel injection timing T1 and the target fuel injection for rich combustion.
  • the fuel injection timing T is gradually advanced until the timing Tq is reached.
  • step S21 the intake system rich control means C16 performs control to throttle the intake throttle valve 8 and control to increase the EGR amount by opening the EGR valve 12. , Reduce the amount of fresh air intake.
  • step S22 the fuel system rich control means C By 17, the fuel injection valve 16 is controlled to increase the fuel injection in the cylinder injection to a predetermined fuel injection amount for regeneration control.
  • step S23 from the oxygen concentration measured by the first exhaust component concentration sensor (or oxygen concentration sensor) 23, or the amount of fuel injected into the cylinder and the mass air flow sensor (MAF sensor) 6 From the detected amount of intake air, etc., the instantaneous excess air ratio ⁇ ⁇ (the momentary excess air ratio ⁇ ) is calculated.
  • Tq is the target injection timing
  • T1 is the fuel injection timing during lean control
  • q is the target rich air excess ratio
  • is the lean air excess ratio.
  • This instantaneous injection timing ⁇ ⁇ may be calculated as a value of such a function, or a map data iso-force input in advance may be calculated.
  • step S25 the injection timing ⁇ of the main fuel injection is advanced so that the instantaneous injection timing ⁇ is reached, and regeneration control is performed for a predetermined time (for example, At 2). Do.
  • step S26 it is checked whether or not the instantaneous injection timing Tn is equal to or greater than the target injection timing Tq (Tn ⁇ Tq). If so, step S20 is terminated. If the instantaneous injection time Tn is not equal to or greater than the target injection time Tq, the process returns to step S23.
  • step S 20 the following control is performed at predetermined time intervals At 2 until the instantaneous excess air ratio ⁇ reaches the target regeneration excess air rate q.
  • the main fuel injection is performed at the instant injection timing Tn, and the angle is gradually advanced from the fuel injection timing T1 in the lean control to the target injection timing Tq.
  • step S20 When step S20 is completed, as shown in FIG. 3, the process proceeds to the reproduction continuation control in step S30.
  • the intake system rich control means C16 controls the throttle of the intake throttle valve 8 and also continues the control of opening the EGR valve 12 and increasing the EGR amount, and continues to decrease the intake amount of fresh air.
  • the fuel system rich control means C17 causes the fuel injection amount in the cylinder to be increased, and the main fuel injection is advanced to the target injection timing Tq for a predetermined time (for example, , A t3) continues playback control.
  • the exhaust gas state is changed to a predetermined target air-fuel ratio ⁇ q In the specified temperature range (depending on the catalyst, approximately 200 ° C to 600 ° C for catalyst regeneration, and approximately 500 ° C to 750 ° C for sulfur poisoning recovery at a desulfurizable temperature. C) is maintained.
  • step S40 it is determined in step S40 whether or not the reproduction is completed by the reproduction end determination means C14. If it is determined that the reproduction is not finished, the process returns to step S30 and the reproduction continuation control is repeated until the reproduction is finished. If playback is completed, the process proceeds to lean transition control in step S50.
  • This reproduction end determination is made based on whether or not a predetermined reproduction control completion time set in advance has elapsed, and when it has elapsed, the reproduction end is determined.
  • step S50 as shown in FIG. 5, in step S51, the intake system rich control means C16 stops the throttle control of the intake throttle valve 8, and the EGR valve 12 is set to the valve opening for EGR in normal operation. Close and control to stop the increase in the EGR amount performed by rich control. As a result, the intake amount of fresh air is returned to the normal operation amount.
  • step S52 the fuel injection valve 16 is controlled by the fuel system rich control means C17 to return the fuel injection in the cylinder injection to the fuel injection amount for normal operation, that is, lean operation.
  • step S53 from the oxygen concentration measured by the first exhaust component concentration sensor (or oxygen concentration sensor) 23, an instantaneous excess air ratio ⁇ n (a momentary excess air ratio ⁇ ) is calculated.
  • the instantaneous excess air ratio ⁇ is calculated from the amount of fuel injected into the cylinder and the intake air amount detected by the mass air flow sensor (MAF sensor) 6.
  • step S55 the injection timing of the main fuel injection is delayed so that the instantaneous injection timing ⁇ is reached, and regeneration control is performed for a predetermined time (for example, At 4). Do.
  • step S56 it is checked whether or not the instantaneous injection timing Tn is equal to or less than the lean injection timing T1 ( ⁇ 1). If so, step S50 is terminated. If not, return to Step S53.
  • the instantaneous injection timing Tn is changed at the momentary instantaneous air interval at predetermined time intervals ⁇ t4 until the instantaneous excess air ratio ⁇ becomes the lean excess air ratio ⁇ 1 in normal operation.
  • Tn f ( ⁇ ⁇ ).
  • the main fuel is injected at this instantaneous injection timing Tn, and gradually retarded from the target injection timing Tq to the fuel injection timing T1 during lean control.
  • step S20 to step S50 By the control in step S20 to step S50, the NOx purification capacity is recovered, and the process returns to step S10. Steps S10 to S50 are repeated. However, if an interruption occurs due to the engine being stopped, etc., control goes to step S60 from the middle of the control. In this step S60, do the following: Stores the data before the interrupt occurred. Control end operations such as the end work of each control and various operations are performed. Stop control (stop) and end control (end).
  • the combustion air in the cylinder In the regeneration control for the recovery of the NOx purification capacity for the NOx purification catalyst 12, the combustion air in the cylinder
  • the fuel injection timing T is not advanced or retarded at a stretch around the predetermined target timings Tq and T.
  • the fuel injection timing Tn is advanced or retarded in response to the change in the combustion air-fuel ratio (excess air ratio ⁇ ) in the cylinder, which changes due to the intake throttle and EGR control in the intake system.
  • the present invention can be applied to any NOx purification catalyst that purifies NOx in the lean state and recovers the NOx purification ability in the rich state.
  • the exhaust gas purification method and exhaust gas purification system of the present invention having the excellent effects described above are extremely effectively used as an exhaust gas purification method and an exhaust gas purification system for an internal combustion engine mounted on an automobile. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 吸気量を減少する吸気系の制御とシリンダ内への燃料噴射量を増加する燃料系の制御とを併用して、再生制御のリッチ状態の制御を行う排気ガス浄化システム(1)において、前記NOx浄化触媒(12)の再生制御に際してのリーン状態とリッチ状態の切り替え期間の間(t1,t2)、時々刻々のシリンダ内の燃焼空燃比の変化(λn)に対応させて、シリンダ内への燃料噴射の噴射時期(Tn)を変化させる。これにより、リッチ状態への移行期やリーン状態への移行期間の間で、シリンダ内への燃料噴射の噴射時期の過度の進角や過度の遅角から生じる、失火や燃焼騒音やトルク変動やドライバビィテ-等の悪化を防止できる。

Description

明 細 書
排気ガス浄化方法及び排気ガス浄化システム
技術分野
[0001] 本発明は、内燃機関の排気ガス中の NOx (窒素酸ィ匕物)を還元して浄ィ匕する NOx 浄ィ匕触媒を備えた排気ガス浄ィ匕方法及び排気ガス浄ィ匕システムに関する。
背景技術
[0002] ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の 排気ガス中力 NOxを還元除去するための NOx触媒について、種々の研究や提案 がなされている。その中に、ディーゼルエンジン用の NOx低減触媒として、 NOx吸 蔵還元型触媒や NOx直接還元型触媒等がある。これらの触媒により、有効に排気ガ ス中の NOxを浄化できる。
[0003] この NOx吸蔵還元型触媒は、アルミナ (Al O )、ゼォライト等の酸ィ匕物担持層に、
2 3
酸化 ·還元反応を促進する触媒貴金属と、 NOx吸蔵機能を有する NOx吸蔵材 (NO X吸蔵物質)を担持した触媒である。この触媒貴金属としては、白金 (Pt)やパラジゥ ム(Pd)等が用いられる。 NOx吸蔵材には、カリウム (K)、ナトリウム (Na)、リチウム (L i)、セシウム(Ce)等のアルカリ金属、バリウム(Ba)、カルシウム(Ca)等のアルカリ土 類金属、ランタン (La)、イットリウム (Y)等の希土類等の中の幾つかが用いられる。
[0004] この NOx吸蔵還元型触媒は、流入する排気ガスの空燃比カ^ーン (酸素過多)状 態であって雰囲気中に O (酸素)が存在する場合には、排気ガス中の NO (—酸ィ匕
2
窒素)が貴金属類により酸化されて NO (二酸ィ匕窒素)となる。この NO は NOx吸蔵
2 2
材に硝酸塩 (Ba NO等)として蓄積される。
2 4
[0005] また、流入する排気ガスの空燃比が理論空燃比やリッチ (低酸素濃度)状態になつ て雰囲気中に酸素が存在しなくなると、 Ba等の NOx吸蔵材はー酸ィ匕炭素(CO)と結 合し、硝酸塩から NOが分解されて放出される。この放出された NO は貴金属類の
2 2
三元機能により排気ガス中に含まれている未燃炭化水素 (HC)や CO等で還元され 窒素 (N )となる。その結果、排気ガス中の諸成分は、二酸化炭素 (CO ),水 (H O
2 2 2
) ,窒素 (N )等の無害な物質として大気中に放出される。 [0006] そのため、 NOx吸蔵還元型触媒を備えた排気ガス浄ィ匕システムでは、 NOx吸蔵 能力が飽和に近くなると、吸蔵された NOxを放出させて触媒を再生するために、再 生操作を行っている。この再生操作では、理論空燃比より燃料を多くして、排気ガス の空燃比をリッチにして、流入する排気ガスの酸素濃度を低下させた還元組成排気 ガスを触媒に供給する。この NOx吸蔵能力回復用のリッチ制御を行うことにより、吸 収した NOxを放出させて、この放出された NOxを貴金属触媒により還元させる。
[0007] そして、 NOx吸蔵還元型触媒を効果的に機能させるためには、リーン状態で吸蔵 した NOxを還元するのに必要十分な量の還元剤をリッチ状態時に供給する必要が ある。しかし、ディーゼル機関では、リッチの状態を燃料系のみで実現しょうとすると、 燃費が悪化する。そのため、例えば、 日本の特開平 6— 336916号公報では、還元 排気ガスを発生させるために、吸気量を減少すると共に、シリンダ内燃焼をリッチ燃 焼に切り替えている。この吸気量の減少は、吸気を絞り弁で絞ると共に、 EGR弁を開 いて EGRガスを大量に供給することで行う。また、リッチ燃焼はリッチ深さを深くする ための燃料の追カ卩で行う。
[0008] 一方、 NOx直接還元型触媒は、 β型ゼオライト等の担体に触媒成分であるロジゥ ム (Rh)やパラジウム(Pd)等の金属を担持させたものである。更に、次のようなことを 行う。金属の酸化作用を軽減し、 NOx還元能力の保持に寄与するセリウム(Ce)を配 合する。下層に三元触媒を設けて酸化還元反応、特にリッチ状態における NOxの還 元反応を促進する。 NOxの浄化率を向上させるために担体に鉄 (Fe)をカ卩える。
[0009] この NOx直接還元型触媒は、ディーゼルエンジン等の内燃機関の排気ガスの空 燃比が、リーン状態の排気ガスのような酸素濃度が高い雰囲気では、 NOxを窒素 (N )に直接還元する。しかし、この還元の際に、触媒の活性物質である金属に酸素(O
2 2
)が吸着して還元性能が悪化する。そのため、排気ガスの空燃比が理論空燃比ゃリ ツチ状態になるように、排気ガス中の酸素濃度を略ゼロに近い状態にして、触媒の活 性物質を再生して活性化する必要がある。
[0010] そして、 NOx吸蔵還元型触媒と同様に、通常のエンジン運転状態である場合、即 ち、排気ガスの空燃比がリーン状態の場合に、 NOxを浄ィ匕する。この浄化に際して 酸化された触媒を、リッチ状態の場合に還元して、 NOx浄化能力を回復する。 [0011] しかし、この再生制御のリッチ燃焼時に、リーン燃焼時の燃料噴射時期と同じタイミ ングで燃料噴射を行うと、大量の不活性ガス (EGRガス)と吸気絞りによって吸気量 が減少しているので、着火遅れが増大し失火が生じる。そこで、リッチ燃焼に切り替え ると同時に、燃料噴射時期を 10° 程度進角させている。
[0012] し力しながら、吸気系と燃料系を組み合わせて、リッチ制御を行う場合には、この吸 気系制御と燃料系制御とでは、応答性に違いがある。つまり、吸気系によるリッチ制 御では、大量の EGRガスを循環させて吸気中の酸素濃度を下げる。しかし、この EG Rガスの循環には時間が掛カるので、目標空燃比になるのに時間が掛かる。従って、 応答は緩慢となり、空気系の制御の応答性は悪い。一方、燃料系によるリッチ制御で は、吸気系の比較的穏やかな変化に対して、燃料系の噴射時期の進角や遅角は極 めて迅速に行われる。そのため、図 7の tlに示すように、通常運転のリーン状態から 再生制御のリッチ状態に移行する時、即ち、リッチ燃焼への初期過渡期には、吸気 系の空気過剰率えがリッチ条件え qに達する前に、燃料系の噴射時期 Tの進角が完 了してしまう。また、図 7の t2に示すように、再生制御のリッチ状態から通常運転のリ ーン状態に移行する時、即ち、リーン燃焼への初期過渡期には、吸気系の空気過剰 率えがリ―ン条件 λ ΐに達する前に、燃料系の噴射時期 Τの遅角が完了してしまう。 そのため、 ΝΟχの発生量 Cnoxinや燃焼騒音やトルク等が急増加し、ドライバビィテ 一の著 、悪ィ匕を招くと!、う問題が発生する。
[0013] なお、空気過剰率の切換時に、目標吸入空気量の変化に対して実吸入空気量の 変化が遅れて、実吸入空気量の変化が燃料噴射量の変化よりも遅れる。そのため、 オーバーリッチになって失火したり、ェミッションが悪ィ匕したり、トルクショックが発生す る。これらのことを防止するために、日本の特開 2000— 154748号公報では、検出 又は推定した実吸入空気量と、設定された、混合気が安定燃焼する安定燃焼え範 囲とに基づいて、実際の空気過剰率えが安定燃焼え範囲内となるように燃料噴射量 を制限する。更に、燃料噴射量と安定燃焼え範囲との関係に基づいて、燃料噴射時 期を変更する内燃機関制御装置が提案されている。この装置では、 NOx吸蔵還元 型触媒の NOx還元浄化制御中(再生制御中)は、燃料噴射時期を均質燃焼モード に切り換えている。 [0014] し力しながら、この内燃機関制御装置における燃料噴射時期の変更とは、 = 1.
3〜3に対する成層燃焼モードと、 1 =0. 7〜1. 4に対する均質燃焼モードとの間に おける変更である。つまり、各モード内における燃料噴射時期の時々刻々の変更で は無い。従って、上記のような電子制御による非常に高速で行われる噴射時期の変 更と、応答の遅い吸気系の変化とから生じる問題、即ち、リッチ燃焼への過渡期ゃリ ーン燃焼への過渡期における問題を解決することができな 、。
特許文献 1:特開平 6— 336916号公報
特許文献 2:特開 2000— 154748号公報
発明の開示
発明が解決しょうとする課題
[0015] 本発明は、上記の問題を解決するためになされたものであり、その目的は、排気ガ ス中の NOxの浄化のために、流入する排気ガスがリッチ状態の時に NOx浄ィ匕能力 を回復する NOx浄ィ匕触媒を備えた排気ガス浄ィ匕システムにお 、て、リッチ状態への 移行期やリーン状態への移行期間の間で、シリンダ内への燃料噴射の噴射時期の 過度の進角や過度の遅角から生じる失火や、燃焼騒音や、トルク変動や、ドライバビ ィテ一等の悪ィ匕を防止できる排気ガス浄ィ匕方法及び排気ガス浄ィ匕システムを提供す ることにめる。
課題を解決するための手段
[0016] 以上のような目的を達成するための排気ガス浄ィ匕方法は、排気ガスの空燃比が、リ ーン状態の場合に NOxを浄ィ匕し、かつ、リッチ状態の場合に NOx浄ィ匕能力を回復 する NOx浄化触媒と、前記 NOx浄化触媒の NOx浄化能力を回復するための再生 制御を行う触媒再生制御手段とを備え、吸気量を減少する吸気系の制御とシリンダ 内への燃料噴射量を増加する燃料系の制御とを併用して前記再生制御のリッチ状 態の制御を行う排気ガス浄ィ匕システムにお 、て、前記 NOx浄ィ匕触媒の再生制御に 際してのリーン状態とリッチ状態の切り替え期間の間、時々刻々のシリンダ内の燃焼 空燃比の変化に対応させて、シリンダ内への燃料噴射の噴射時期を変化させること を特徴とする。
[0017] ここで 、う NOx浄化触媒には NOx吸蔵還元型触媒や NOx直接還元型触媒等が ある。 NOx浄ィ匕能力の回復には、 NOx吸蔵還元型触媒の NOx吸蔵能力の回復や 硫黄被毒からの回復、また、 NOx直接還元型触媒の NOx還元能力の回復や硫黄 被毒からの回復等を含む。
[0018] この方法では、 NOx浄ィ匕触媒の NOx浄ィ匕能力の回復のための再生制御に際して 、リーン燃焼形態とリッチ燃焼形態との切替時において、燃料噴射時期を所定の目 標時期まで一気に進角又は遅角させることはしない。また、吸気系の吸気絞りや EG R制御によって比較的遅い変化をするシリンダ内の燃焼空燃比に対応させて、燃料 噴射時期を進角又は遅角させる。これにより、 NOxの発生、燃焼騒音の発生、トルク の急激変化、ドライバビリィテ一の悪ィ匕等が抑制される。
[0019] そして、上記の排気ガス浄ィ匕方法において、前記再生制御の初期のリーン状態か らリッチ状態への切り替えの間、時々刻々のシリンダ内の燃焼空燃比の変化に基づ いて算出された燃料噴射時期になるように、シリンダ内への燃料噴射時期を進角さ せることを特徴とする。
[0020] また、上記の排気ガス浄化方法にお!、て、前記再生制御の終期のリッチ状態からリ ーン状態への切り替えの間、時々刻々のシリンダ内の燃焼空燃比の変化に基づいて 算出された燃料噴射時期になるように、シリンダ内への燃料噴射時期を遅角させるこ とを特徴とする。
[0021] そして、上記の目的を達成するための排気ガス浄ィ匕システムは、排気ガスの空燃比 力 リーン状態の場合に NOxを浄ィ匕し、かつ、リッチ状態の場合に NOx浄化能力を 回復する NOx浄化触媒と、前記 NOx浄化触媒の NOx浄化能力を回復するための 再生制御を行う触媒再生制御手段とを備え、吸気量を減少する吸気系の制御とシリ ンダ内への燃料噴射量を増加する燃料系の制御とを併用して前記再生制御のリッチ 状態の制御を行う排気ガス浄ィ匕システムにおいて、前記触媒再生制御手段が、前記 NOx浄ィ匕触媒の再生制御に際してのリーン状態とリッチ状態の切り替え期間の間、 時々刻々のシリンダ内の燃焼空燃比の変化に対応させて、シリンダ内への燃料噴射 の噴射時期を変化させるように構成される。
[0022] この構成の排気ガス浄ィ匕システムにより、上記の排気ガス浄ィ匕方法を実施でき、こ の方法と同様な効果を奏することができる。 [0023] そして、上記の排気ガス浄ィ匕システムにお 、て、前記触媒再生制御手段が、前記 再生制御の初期のリーン状態からリッチ状態への切り替えの間、時々刻々のシリンダ 内の燃焼空燃比の変化に基づいて算出された燃料噴射時期になるように、シリンダ 内への燃料噴射時期を進角させるように構成される。
[0024] また、上記の排気ガス浄ィ匕システムにお 、て、前記触媒再生制御手段が、前記再 生制御の終期のリッチ状態力 リーン状態への切り替えの間、時々刻々のシリンダ内 の燃焼空燃比の変化に基づいて算出された燃料噴射時期になるように、シリンダ内 への燃料噴射時期を遅角させるように構成される。
[0025] この排気ガス浄ィ匕システムは、前記 NOx浄ィ匕触媒力 排気ガスの空燃比力 リーン 状態の場合に NOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していた NOxを放出す ると共に還元する NOx吸蔵還元型触媒、又は、排気ガスの空燃比力 リーン状態の 場合に NOxを還元浄ィ匕し、かつ、リッチ状態の場合に NOx浄ィ匕能力を回復する NO X直接還元型触媒である場合に提供でき、大きな効果を奏することができる。
[0026] なお、ここでいぅシリンダ内の燃焼空燃比とは、シリンダ内における燃焼の空燃比を 意味するものであり、 NOx吸蔵還元型触媒に流入する排気ガス中に供給した空気 量と燃料量 (シリンダ内で燃焼した分も含めて)との比である排気ガスの空燃比と区別 するために使用している。
発明の効果
[0027] 以上説明したように、本発明に係る排気ガス浄ィ匕方法及び排気ガス浄ィ匕システム によれば、 NOx浄ィ匕触媒の NOx浄ィ匕能力の回復のための再生制御に際して、シリ ンダ内の燃焼空燃比カ^ーンとなる燃焼形態とリッチとなる燃焼形態との間の燃焼形 態の切替時において、燃料噴射時期を所定の目標時期まで一気に進角又は遅角さ せずに、吸気系の吸気絞りや EGR制御によって変化するシリンダ内の燃焼空燃比( 空気過剰率え)の変化に対応させて、燃料噴射時期を進角又は遅角させることにより 、 NOxの発生量、燃焼騒音、トルクの急激変化、ドライバビリィテ一等が極端に悪ィ匕 することを防止できる。
図面の簡単な説明
[0028] [図 1]本発明に係る実施の形態の排気ガス浄ィ匕システムの構成を示す図である。 [図 2]本発明に係る実施の形態の排気ガス浄化システムの制御手段の構成を示す図 である。
[図 3]NOx吸蔵還元型触媒の再生のための制御フローの一例を示す図である。
[図 4]図 3の制御フローのリッチ移行制御のフローを詳細に示す図である。
[図 5]図 3の制御フローのリーン移行制御のフローを詳細に示す図である。
[図 6]本発明に係る排気ガス浄化方法の場合の空気過剰率と燃料噴射時期と NOx 濃度との関係を時系列で示す図である。
[図 7]従来技術における排気ガス浄ィ匕方法の場合の空気過剰率と燃料噴射時期と N Ox濃度との関係を時系列で示す図である。
発明を実施するための最良の形態
[0029] 以下、本発明に係る実施の形態の排気ガス浄ィ匕方法及び排気ガス浄ィ匕システムに ついて、図面を参照しながら説明する。
[0030] 図 1に、本発明の実施の形態の排気ガス浄化システム 1の構成を示す。この排気ガ ス浄ィ匕システム 1では、エンジン(内燃機関) Eの排気通路 3に、酸化触媒 21と NOx 吸蔵還元型触媒 22を有する排気ガス浄化装置 20が配置される。
[0031] この酸ィ匕触媒 21は、次のようにして形成される。ハ-カム状のコージエライトあるい は耐熱鋼力もなる担体の表面に、活性酸ィ匕アルミニウム (Al O )等の触媒コート層
2 3
を設ける。この触媒コート層に、白金 (Pt)、パラジウム (Pd)、ロジウム (Rh)等の貴金 属からなる触媒活性成分を担持させる。この酸ィ匕触媒は流入してくる排気ガス中の H C, CO等を酸化する。これにより、排気ガスを低酸素状態にすると共に、燃焼熱によ り排気温度を上げる。
[0032] NOx吸蔵還元型触媒 22は、モノリス触媒に、触媒コート層を設けて構成される。こ のモノリス触媒はコージヱライト若しくは炭化珪素(SiC)極薄板ステンレスで形成され る。このモノリス触媒の構造材の担体は、多数のセルを有している。この触媒コート層 は、酸ィ匕アルミニウム (Al O )、酸ィ匕チタン (TiO)等で形成される。このセルの内壁
2 3
に設けられる触媒コート層は、大きな表面積を持っており、排気ガスとの接触効率を 高めている。この触媒コート層に、白金 (Pt)、パラジウム (Pd)等の触媒金属とバリウ ム(Ba)等の NOx吸蔵材 (NOx吸蔵物質)を担持させる。 [0033] この NOx吸蔵還元型触媒 22では、酸素濃度が高!、排気ガスの状態 (リーン空燃 比状態)の時に、排気ガス中の NOxを NOx吸蔵材が吸蔵することにより、排気ガス 中の NOxを浄ィ匕する。また、酸素濃度が低いかゼロの排気ガス状態 (リッチ空燃比 状態)の時に、吸蔵した NOxを放出する。それと共に、放出された NOxを触媒金属 の触媒作用により還元する。これらにより、大気中への NOxの流出を防止する。
[0034] そして、この酸ィ匕触媒 21の上流側に第 1排気成分濃度センサ 23を配置する。 NOx 吸蔵還元型触媒 22の下流側に第 2排気成分濃度センサ 24を配置する。この排気成 分濃度センサ 23、 24は、 λセンサ(空気過剰率センサ)と NOx濃度センサと酸素濃 度センサとがー体ィ匕したものである。なお、第 1及び第 2排気成分濃度センサ 23, 24 の代りに、酸素濃度センサ又は空気過剰率センサを用いることもできる。しかし、この 場合には、 NOx濃度センサを別に設けるカゝ、 NOx濃度の測定値を使用しない制御 を用いる。また、排気ガスの温度を検出するために、酸化触媒 21の上流側に第 1温 度センサー 25を配置すると共に、 NOx吸蔵還元型触媒 22の下流側に第 2温度セン サー 26を配置する。
[0035] そして、エンジン Eの運転の全般的な制御を行うと共に、 NOx吸蔵還元型触媒 22 の NOx浄ィ匕能力の回復制御も行う制御装置 (ECU:エンジンコントロールユニット) 3 0が設けられる。この制御装置 30に第 1及び第 2排気成分濃度センサ 23, 24や第 1 及び第 2温度センサ 25, 26等からの検出値が入力される。この制御装置 30からェン ジン Eの吸気絞り弁(吸気スロットル弁) 8、 EGR弁 12、燃料噴射用のコモンレール電 子制御燃料噴射装置の燃料噴射弁 16等を制御する信号が出力される。
[0036] この排気ガス浄ィ匕システム 1にお 、ては、空気 Aは、吸気通路 2の空気清浄器 5、マ スエアフローセンサ(MAFセンサ) 6を通過して、ターボチャージャ 7のコンプレッサに より圧縮昇圧される。この空気 Aは、吸気絞り弁 8によりその量を調整されて吸気マ二 ホールドよりシリンダ内に入る。そして、シリンダ内で発生した排気ガス Gは、排気マ- ホールド力も排気通路 3に出て、ターボチャージャ 7のタービンを駆動する。その後、 排気ガス Gは、排気ガス浄ィ匕装置 20を通過して浄ィ匕された排気ガス Gcとなる。この 浄ィ匕された排気ガス Gcは、図示しない消音器を通って大気中に排出される。また、 排気ガス Gの一部は、 EGRガス Geとして、 EGR通路 4の EGRクーラー 11を通過す る。この EGRガス Geは、 EGR弁 12でその量を調整されて吸気マ-ホールドに再循 環される。
[0037] そして、排気ガス浄ィ匕システム 1の制御装置力 エンジン Eの制御装置 30に組み込 まれ、エンジン Eの運転制御と並行して、排気ガス浄ィ匕システム 1の制御を行う。この 排気ガス浄ィ匕システム 1の制御装置は、再生制御手段 C10を備えて構成される。図 2 に示すように、この再生制御手段 C10は、再生開始判定手段 Cl l、リッチ移行制御 手段 C12、再生継続制御手段 C13、再生終了判定手段 C14、リーン移行制御手段 C 15、吸気系リッチ制御手段 C 16と燃料系リッチ制御手段 C 17を有する。
[0038] なお、ここでいう再生制御には、 NOx吸蔵物質の NOx吸蔵能力を回復するための 触媒再生制御と、燃料中の硫黄成分による触媒の硫黄被毒に対して硫黄を触媒か らパージする脱硫再生制御とを含むものとする。
[0039] 再生開始判定手段 C11は、触媒再生制御の場合には、エンジンの運転状態から 単位時間当たりの NOxの排出量 Δ ΝΟχを算出し、これを累積計算して NOx累積値 ∑ NOxを求める。この手段 C11は、この NOx累積値∑ NOxが所定の判定値 Cnを 超えた時に再生を開始すると判定する。あるいは、この手段 C11は、第 1及び第 2排 気成分濃度センサ 23、 24で検出した NOx吸蔵還元型触媒 22の上流側と下流側の NOx濃度カゝら NOx浄ィ匕率を算出する。この手段 C11は、算出された NOx浄ィ匕率が 所定の判定値より低くなつた場合に、 NOx触媒の再生を開始すると判定する。
[0040] また、この手段 C11は、硫黄被毒からの回復のための脱硫制御の場合には、 NOx 吸蔵能力が低下するまで硫黄が蓄積したか否かを判定する。この判定の方法として は、硫黄 (サルファ)蓄積量 Sを累積計算し、この硫黄累積値∑Sが所定の判定値 Cs を超えた時に再生を開始すると判定する等の方法がある。
[0041] また、リッチ移行制御手段 C12は、再生制御の初期のリーン状態力もリッチ状態へ の切り替えの間、時々刻々のシリンダ内の燃焼空燃比(空気過剰率 λ η)の変化に基 づいて算出された燃料噴射時期 Τηになるように、シリンダ内への主燃料噴射の燃料 噴射時期 Τを進角させる手段である。この制御では、リッチ移行開始時に、吸気系リツ チ制御手段 C16と燃料系リッチ制御手段 C17により、吸気量を減少するとともに、燃 料量を増加する。その後、過渡期における比較的遅い変化である燃焼空燃比 (空気 過剰率 λ η)の変化に対応させながら、リーン燃料噴射時期 T1カゝらリッチ燃焼の目標 燃料噴射時期 Tqになるまで徐々に燃料噴射時期 Τを進角させる。
[0042] また、再生継続制御手段 C13は、空燃比 (空気過剰率え)をストィキ空燃比 (理論 空燃比)又はリッチ空燃比である目標空燃比(目標空気過剰率 λ q)の状態を継続す るように制御する手段である。この制御では、吸気系リッチ制御手段 C16と燃料系リツ チ制御手段 C17により、吸気量を減少すると共に燃料量を増加するが、燃料噴射時 期 Tを目標燃料噴射時期 Tqにした状態のままとする。
[0043] 再生終了判定手段 C14は、触媒再生制御の場合には、次の幾つかの方法などに よって、 NOx触媒の再生を終了すると判定する。再生制御の継続時間が所定の時 間を経過した時に、 NOx触媒の再生を終了すると判定する。又は、エンジンの運転 状態から、単位時間当たりの NOx吸蔵還元型触媒 20からの NOxの放出量 Δ ΝΟχο utを算出し、これを累積計算した NOx累積放出値∑NOxout力 所定の判定値 Cn outを超えた時に、 NOx触媒の再生を終了すると判定する。あるいは、 NOx吸蔵還 元型触媒 20の上流側と下流側の NOx濃度力も NOx浄ィ匕率を算出し、この NOx浄 化率が所定の判定値より高くなつた時に NOx触媒の再生を終了すると判定する。ま た、脱硫制御の場合には、次のようにして、 NOx触媒の再生を終了すると判定する。 硫黄 (サルファ)パージ量 Soutを積算する。この累積硫黄パージ量∑Sout力 再生 開始時の硫黄蓄積量∑Sを上回った時に NOx触媒の再生を終了すると判定する。
[0044] そして、リーン移行制御手段 C15は、再生制御の終期の、リッチ状態力もリーン状 態への切り替えの間、時々刻々のシリンダ内の燃焼空燃比(空気過剰率 λ η)の変化 に基づいて算出された燃料噴射時期 Τηになるように、シリンダ内への主燃料噴射の 燃料噴射時期 Τを遅角させる手段である。この制御では、リーン移行開始時に、吸気 系リツチ制御手段 C 16と燃料系リツチ制御手段 C 17により、吸気量を減少するととも に、燃料量を増加する。その後、比較的遅い燃焼空燃比 (空気過剰率 λ η)の変化に 対応させながら、目標燃料噴射時期 Tqからリーン燃料噴射時期損になるまで、徐々 に燃料噴射時期 Tを遅角させる。
[0045] そして、この排気ガス浄化システム 1では、エンジン Eの制御装置 30に組み込まれ た再生制御手段 C10により、図 3〜図 5に例示するような制御フローに従って、 NOx 吸蔵還元型触媒 20の再生制御が行われる。また、図 6に、この図 3〜図 5の制御フロ 一による、空気過剰率えと主燃料噴射時期 Tとエンジンカゝら排出される NOx濃度 Cn oxinの時系列の一例を示す。この NOx濃度 Cnoxinは、 NOx吸蔵還元型触媒 20の 上流側の NOx濃度である。
[0046] なお、この図 3の制御フローは、エンジン Eの運転に際して、エンジン Eの他の制御 フローと並行して、繰返し実行されるものとして示してある。
[0047] この図 3の制御フローがスタートすると、ステップ S10で、 NOx触媒の再生開始判 定手段 C11により、再生開始か否か、即ち、触媒の再生処理用のリッチ制御が必要 であるか否かを判定する。このステップ S10で再生開始であると判定された場合には 、ステップ S20に行き、再生開始ではないと判定された場合には、ステップ S 11で所 定の時間(再生開始の判定を行うインターバルに関係する時間:例えば、 Δ tl)の間 、通常運転を行い、その後、ステップ S10に戻り、再生開始の判定を繰り返し行う。
[0048] この再生開始の判定は、次のようにして行われる。例えば、予め設定され入力され た、エンジンの回転数や負荷等のエンジンの運転状態を示す量と NOx排出量の関 係を示すマップデータを基に、エンジンの運転状態から単位時間当たりの NOxの蓄 積量 Δ NOxを算出する。この算出値 Δ NOxを前回の再生制御後力も累積計算して 、 NOx蓄積量∑ NOxを算出する。この NOx累積値∑ NOxが所定の判定値 Cnを超 えたカゝ否かで再生開始の判定を行う。なお、測定した NOx濃度を使用する場合には 、入口 NOx濃度 Cnoxinと出口 NOx濃度 Cnoxoutの差 Δ Cm ( = Cnoxin Cnoxout )と、マスエアフローセンサ 6で測定される吸気量 Vaとから、単位時間当たりの NOx 累積量 Δ ΝΟχ ( = Δ Οη XVa)を計算する。これを累積計算して、 NOx蓄積量 Σ Ν Oxを算出する。
[0049] ステップ S20では、リッチ移行制御手段 C12により、過渡期の燃焼空燃比(空気過 剰率 λ η)の変化に対応させながら、リーン燃料噴射時期 T1カゝらリッチ燃焼の目標燃 料噴射時期 Tqになるまで、徐々に燃料噴射時期 Tを進角させる。
[0050] より詳細には、図 4に示すように、ステップ S21で、吸気系リッチ制御手段 C16により 、吸気絞り弁 8を絞る制御と共に EGR弁 12を開けて EGR量を増加させる制御をして 、新気の吸気量を減少させる。そして、次のステップ S22で、燃料系リッチ制御手段 C 17により、燃料噴射弁 16を制御してシリンダ内噴射における燃料噴射を、再生制御 用の所定の燃料噴射量に増加する。
[0051] そして、ステップ S23で、第 1排気成分濃度センサ(又は酸素濃度センサ) 23で計 測した酸素濃度から、又は、シリンダ内に噴射される燃料量とマスエアフローセンサ( MAFセンサ) 6で検出した吸入空気量等から、瞬時空気過剰率 λ η (時々刻々の空 気過剰率 λ )を算出する。
[0052] 次のステップ S24で、瞬時噴射時期 Τηを、例えば、 Tn=f ( λ η) = (Tq— Tl) X ( ( λ 1— λ n) Z ( λ 1—え q) ) +T1の計算式等で算出する。ここで、 Tqは目標噴射時期 、 T1はリーン制御時の燃料噴射時期、 qは目標リッチ空気過剰率、 λ ΐはリーン空 気過剰率である。この瞬時噴射時期 Τηの算出は、この様な関数の値として求めても よぐ予め入力されたマップデータ等力も算出してもよい。
[0053] そして、次のステップ S25で、この瞬時噴射時期 Τηになるように、主燃料噴射の噴 射時期 Τを進角して、所定の時間(例えば、 A t2)の間、再生制御を行う。この後に、 ステップ S26において、瞬時噴射時期 Tnが目標噴射時期 Tq以上になった (Tn≥T q)か否かをチェックし、以上であれば、ステップ S20を終了する。また、瞬時噴射時 期 Tnが目標噴射時期 Tq以上でなければ、ステップ S23に戻る。
[0054] つまり、このステップ S 20では、瞬時空気過剰率 λ ηが触媒再生用の目標空気過剰 率え qになるまで、所定の時間 A t2間隔で、次のような制御を行う。瞬時噴射時期 T nをその時々刻々の瞬時空気過剰率 λ ηから Tn=f ( λ η)で算出する。この瞬時噴 射時期 Tnで主燃料噴射を行 ヽ、徐々にリーン制御時の燃料噴射時期 T1から目標噴 射時期 Tqに進角させる。
[0055] ステップ S20を終了すると、図 3に示すように、ステップ S30の再生継続制御に行く 。このステップ S30では、吸気系リッチ制御手段 C16により、吸気絞り弁 8を絞る制御 と共に、 EGR弁 12を開けて EGR量を増加させる制御を継続し、新気の吸気量の減 少を継続する。また、燃料系リッチ制御手段 C17により、シリンダ内の燃料噴射にお いて、増カロした燃料噴射量で、かつ、主燃料噴射を目標噴射時期 Tqに進角した状 態で、所定の時間(例えば、 A t3)の間、再生制御を継続する。
[0056] このステップ S30の再生継続制御により、排気ガスの状態を所定の目標空燃比 λ q のリッチ状態に維持すると共に、所定の温度範囲 (触媒にもよるが、触媒再生では、 概ね 200°C〜600°C、硫黄被毒回復では、脱硫可能な温度で概ね 500°C〜750°C )に維持する。
[0057] このステップ S30の後は、ステップ S40で再生終了判定手段 C14により、再生終了 か否かを判定する。この判定で、再生終了でなければ、ステップ S30に戻り、再生終 了まで再生継続制御を繰り返す。そして、再生終了であれば、ステップ S50のリーン 移行制御に行く。
[0058] この再生終了の判定は、再生 «続時間が予め設定された所定の再生制御完了時 間を経過したか否かで判定し、経過した場合に再生終了と判定する。また、 NOx濃 度を計測している場合は、入口 NOx濃度 Cnoxinと出口 NOx濃度 Cnoxoutの差 A C m ( = Cnoxin Cnoxout)が、所定の判定値 Dnよりも大きいか否かによって判定する 。つまり、 A Cmが所定の判定値 Dn以上となった場合には NOx浄ィ匕能力が回復さ れたとして、リッチ制御を終了する。あるいは、出口 NOx濃度 Cnoxoutと入口 NOx濃 度 Cnoxinの比 RCm ( = CnoxoutZCnoxin )力 所定の判定値 Rnよりも大きいか否 かによつて判定する。
[0059] ステップ S50では、図 5に示すように、ステップ S51で、吸気系リッチ制御手段 C16 により、吸気絞り弁 8を絞る制御を止めると共に EGR弁 12を通常運転の EGR用の弁 開度に閉じて、リッチ制御で行った EGR量の増加を止める制御をする。これにより、 新気の吸気量を通常運転の量に戻す。そして、次のステップ S52で、燃料系リッチ制 御手段 C17により、燃料噴射弁 16を制御して、シリンダ内噴射における燃料噴射を、 通常運転用、即ち、リーン運転用の燃料噴射量に戻す。
[0060] そして、ステップ S53で、第 1排気成分濃度センサ(又は酸素濃度センサ) 23で計 測した酸素濃度から、瞬時空気過剰率 λ n (時々刻々の空気過剰率 λ )を算出する。 又は、シリンダ内に噴射される燃料量と、マスエアフローセンサ(MAFセンサ) 6で検 出した吸入空気量等とから、瞬時空気過剰率 λ ηを算出する。
[0061] 次のステップ S54で、瞬時噴射時期 Τηを、ステップ S24と同じ、 Τη=ί ( λ η)の計 算式等で算出する。そして、次のステップ S55で、この瞬時噴射時期 Τηになるように 、主燃料噴射の噴射時期を遅角して、所定の時間(例えば、 A t4)の間、再生制御を 行う。この後に、ステップ S56において、瞬時噴射時期 Tnがリーン噴射時期 T1以下 になった (Τη≤Τ1)か否かをチェックし、以下であれば、ステップ S50を終了する。ま た、以下でなければ、ステップ S53に戻る。
[0062] つまり、このステップ S50では、瞬時空気過剰率 λ ηが通常運転のリーン空気過剰 率 λ 1になるまで、所定の時間 Δ t4間隔で、瞬時噴射時期 Tnをその時々刻々の瞬 時空気過剰率 λ ηから Tn=f ( λ η)で算出する。この瞬時噴射時期 Tnで主燃料噴 射を行い、徐々に目標噴射時期 Tqからリーン制御時の燃料噴射時期 T1に遅角させ る。
[0063] このステップ S20〜ステップ S50における制御により、 NOx浄化能力を回復し、ス テツプ S10に戻る。このステップ S10〜ステップ S50を繰り返す。し力し、エンジンの 停止などにより割り込みが生じると、制御の途中からステップ S60に行く。このステツ プ S60で、次のようなことを行う。割り込み発生前のデータを記憶する。各制御や各 種操作の終了作業などの制御終了操作を行う。制御を停止して (ストップ)、制御を終 了する (エンド)。
[0064] この図 3〜図 5の制御フローによれば、 NOx浄化触媒 12の再生制御に際してのリ ーン状態とリッチ状態の切り替え期間では、即ち、 tl, t2の間では、時々刻々のシリ ンダ内の燃焼空燃比(空気過剰率 λ η)の変化に対応させて、シリンダ内への主燃料 噴射の噴射時期 Τを変化させることができる。
[0065] そして、上記の排気ガス浄ィ匕方法及び排気ガス浄ィ匕システム 1によれば、 NOx浄 化触媒 12に対する NOx浄ィ匕能力の回復のための再生制御に際して、シリンダ内の 燃焼空燃比がリーンとなる燃焼形態とリッチとなる燃焼形態との間の、燃焼形態の切 替時において、燃料噴射時期 Tを所定の目標時期 Tq, Tほで一気に進角又は遅角 させること無ぐ吸気系の吸気絞りや EGR制御によって変化するシリンダ内の燃焼空 燃比 (空気過剰率 λ η)の変化に対応させて、燃料噴射時期 Tnを進角又は遅角させ る。これにより、 NOxの発生量、燃焼騒音、トルクの急激変化、ドライバビリィテ一等の 極端な悪ィ匕等を防止できる。
[0066] なお、上記では、 NOx浄ィ匕触媒として、 NOx吸蔵還元型触媒を例にして説明した 力 NOx浄ィ匕触媒として、直接還元型触媒を使用した場合でも、同様である。要は、 排気ガスの空燃比力 リーン状態の場合に NOxを浄ィ匕し、リッチ状態の場合に NOx 浄化能力を回復する NOx浄化触媒であれば、本発明を適用できる。
産業上の利用可能性
上述した優れた効果を有する本発明の排気ガス浄化方法及び排気ガス浄化システ ムは、自動車搭載の内燃機関等の排気ガス浄ィ匕方法及び排気ガス浄ィ匕システムとし て、極めて有効に利用することができる。

Claims

請求の範囲
[1] 排気ガスの空燃比が、リーン状態の場合に NOxを浄ィ匕し、かつ、リッチ状態の場合 に NOx浄ィヒ能力を回復する NOx浄ィヒ触媒と、前記 NOx浄化触媒の NOx浄化能力 を回復するための再生制御を行う触媒再生制御手段とを備え、吸気量を減少する吸 気系の制御とシリンダ内への燃料噴射量を増加する燃料系の制御とを併用して前記 再生制御のリッチ状態の制御を行う排気ガス浄ィ匕システムにおいて、
前記 NOx浄ィ匕触媒の再生制御に際してのリーン状態とリッチ状態の切り替え期間 の間、時々刻々のシリンダ内の燃焼空燃比の変化に対応させて、シリンダ内への燃 料噴射の噴射時期を変化させることを特徴とする排気ガス浄化方法。
[2] 前記再生制御の初期のリーン状態からリッチ状態への切り替えの間、時々刻々の シリンダ内の燃焼空燃比の変化に基づいて算出された燃料噴射時期になるように、 シリンダ内への燃料噴射時期を進角させることを特徴とする請求項 1記載の排気ガス 浄化方法。
[3] 前記再生制御の終期のリッチ状態からリーン状態への切り替えの間、時々刻々の シリンダ内の燃焼空燃比の変化に基づいて算出された燃料噴射時期になるように、 シリンダ内への燃料噴射時期を遅角させることを特徴とする請求項 1又は 2記載の排 気ガス浄化方法。
[4] 排気ガスの空燃比が、リーン状態の場合に NOxを浄ィ匕し、かつ、リッチ状態の場合 に NOx浄ィヒ能力を回復する NOx浄ィヒ触媒と、前記 NOx浄化触媒の NOx浄化能力 を回復するための再生制御を行う触媒再生制御手段とを備え、吸気量を減少する吸 気系の制御とシリンダ内への燃料噴射量を増加する燃料系の制御とを併用して前記 再生制御のリッチ状態の制御を行う排気ガス浄ィ匕システムにおいて、
前記触媒再生制御手段が、前記 NOx浄化触媒の再生制御に際してのリーン状態 とリッチ状態の切り替え期間の間、時々刻々のシリンダ内の燃焼空燃比の変化に対 応させて、シリンダ内への燃料噴射の噴射時期を変化させることを特徴とする排気ガ ス净ィヒシステム。
[5] 前記触媒再生制御手段が、前記再生制御の初期のリーン状態からリッチ状態への 切り替えの間、時々刻々のシリンダ内の燃焼空燃比の変化に基づいて算出された燃 料噴射時期になるように、シリンダ内への燃料噴射時期を進角させることを特徴とす る請求項 4記載の排気ガス浄ィ匕システム。
[6] 前記触媒再生制御手段が、前記再生制御の終期のリッチ状態からリーン状態への 切り替えの間、時々刻々のシリンダ内の燃焼空燃比の変化に基づいて算出された燃 料噴射時期になるように、シリンダ内への燃料噴射時期を遅角させることを特徴とす る請求項 4又は 5記載の排気ガス浄ィ匕システム。
[7] 前記 NOx浄ィ匕触媒が、排気ガスの空燃比が、リーン状態の場合に NOxを吸蔵し、 かつ、リッチ状態の場合に吸蔵していた NOxを放出すると共に還元する NOx吸蔵還 元型触媒、又は、排気ガスの空燃比力 リーン状態の場合に NOxを還元浄ィ匕し、か つ、リッチ状態の場合に NOx浄ィ匕能力を回復する NOx直接還元型触媒であることを 特徴とする請求項 4〜6記載の排気ガス浄ィ匕システム。
PCT/JP2006/308281 2005-04-21 2006-04-20 排気ガス浄化方法及び排気ガス浄化システム WO2006115158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680013118.1A CN101163871B (zh) 2005-04-21 2006-04-20 废气净化方法及废气净化系统
EP06732139A EP1873381B1 (en) 2005-04-21 2006-04-20 Exhaust gas purifying method and purifier
US11/886,688 US8186148B2 (en) 2005-04-21 2006-04-20 Exhaust gas purifying method and purifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005123475A JP3901194B2 (ja) 2005-04-21 2005-04-21 排気ガス浄化方法及び排気ガス浄化システム
JP2005-123475 2005-04-21

Publications (1)

Publication Number Publication Date
WO2006115158A1 true WO2006115158A1 (ja) 2006-11-02

Family

ID=37214776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308281 WO2006115158A1 (ja) 2005-04-21 2006-04-20 排気ガス浄化方法及び排気ガス浄化システム

Country Status (5)

Country Link
US (1) US8186148B2 (ja)
EP (1) EP1873381B1 (ja)
JP (1) JP3901194B2 (ja)
CN (1) CN101163871B (ja)
WO (1) WO2006115158A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614351A (zh) * 2019-03-20 2021-11-05 沃尔沃遍达公司 用于控制内燃机的方法和控制系统

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799455B2 (ja) * 2007-03-22 2011-10-26 本田技研工業株式会社 内燃機関の制御装置
JP2010185325A (ja) * 2009-02-11 2010-08-26 Denso Corp NOx触媒の劣化診断装置
US20100318276A1 (en) * 2009-06-10 2010-12-16 Zhengbai Liu Control Strategy For A Diesel Engine During Lean-Rich Modulation
DE102009029257B3 (de) * 2009-09-08 2010-10-28 Ford Global Technologies, LLC, Dearborn Identifikation einer Luft- und/oder Kraftstoffdosierungsabweichung
JP5348190B2 (ja) * 2011-06-29 2013-11-20 トヨタ自動車株式会社 内燃機関の制御装置
WO2014033838A1 (ja) * 2012-08-28 2014-03-06 トヨタ自動車株式会社 火花点火式内燃機関の排気浄化装置
DE112014000290T5 (de) * 2013-01-23 2015-10-15 Borgwarner Inc. Akustik-Messvorrichtung
JP5748005B2 (ja) * 2013-02-20 2015-07-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6153196B2 (ja) * 2013-06-14 2017-06-28 ユニゼオ株式会社 Mn+置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素の除去方法
JP6112020B2 (ja) * 2014-01-07 2017-04-12 マツダ株式会社 ハイブリッド車
JP2016061145A (ja) * 2014-09-12 2016-04-25 いすゞ自動車株式会社 排気浄化システム
JP6398505B2 (ja) * 2014-09-12 2018-10-03 いすゞ自動車株式会社 排気浄化システム
JP6287802B2 (ja) * 2014-12-12 2018-03-07 トヨタ自動車株式会社 内燃機関の制御装置
JP6443033B2 (ja) * 2014-12-19 2018-12-26 いすゞ自動車株式会社 排気浄化システム
JP6481392B2 (ja) * 2015-02-02 2019-03-13 いすゞ自動車株式会社 排気浄化システム
JP2017186931A (ja) * 2016-04-04 2017-10-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6686684B2 (ja) 2016-05-11 2020-04-22 いすゞ自動車株式会社 排ガス浄化システム
US11047277B2 (en) * 2018-05-09 2021-06-29 Transportation Ip Holdings, Llc Method and systems for particulate matter control
CN114856773A (zh) * 2021-06-30 2022-08-05 长城汽车股份有限公司 一种dpf再生的控制方法、装置及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356127A (ja) * 1999-06-14 2000-12-26 Hino Motors Ltd 排ガス浄化装置
JP2001200715A (ja) * 2000-01-17 2001-07-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002195072A (ja) * 2000-12-27 2002-07-10 Mitsubishi Motors Corp 筒内噴射型内燃機関の制御装置
JP2005090278A (ja) * 2003-09-12 2005-04-07 Toyota Motor Corp 内燃機関の燃料噴射時期制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153575A (ja) * 1990-10-17 1992-05-27 Hitachi Ltd 内燃機関の制御方法
JP2605579B2 (ja) 1993-05-31 1997-04-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2000154748A (ja) 1998-11-17 2000-06-06 Denso Corp 内燃機関制御装置
DE10026379A1 (de) * 2000-05-27 2001-12-13 Volkswagen Ag Verfahren und Vorrichtung zur Durchführung einer Regeneration eines NOx-Speicherkatalysators
JP2001355485A (ja) * 2000-06-16 2001-12-26 Isuzu Motors Ltd 窒素酸化物吸蔵還元型触媒を備えた排気ガス浄化装置
EP1291513B1 (en) * 2001-09-07 2010-11-10 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device of engine
JP2003090250A (ja) * 2001-09-18 2003-03-28 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
CN100453776C (zh) * 2002-02-12 2009-01-21 五十铃自动车株式会社 废气净化系统和废气净化方法
JP4158577B2 (ja) * 2003-04-02 2008-10-01 日産自動車株式会社 エンジンの燃焼制御装置
JP4055670B2 (ja) * 2003-07-30 2008-03-05 日産自動車株式会社 エンジンの排気浄化装置
US7239954B2 (en) * 2004-09-17 2007-07-03 Southwest Research Institute Method for rapid, stable torque transition between lean rich combustion modes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356127A (ja) * 1999-06-14 2000-12-26 Hino Motors Ltd 排ガス浄化装置
JP2001200715A (ja) * 2000-01-17 2001-07-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002195072A (ja) * 2000-12-27 2002-07-10 Mitsubishi Motors Corp 筒内噴射型内燃機関の制御装置
JP2005090278A (ja) * 2003-09-12 2005-04-07 Toyota Motor Corp 内燃機関の燃料噴射時期制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614351A (zh) * 2019-03-20 2021-11-05 沃尔沃遍达公司 用于控制内燃机的方法和控制系统
US11808223B2 (en) 2019-03-20 2023-11-07 Volvo Penta Corporation Method and a control system for controlling an internal combustion engine
CN113614351B (zh) * 2019-03-20 2023-12-01 沃尔沃遍达公司 用于控制内燃机的方法和控制系统

Also Published As

Publication number Publication date
CN101163871B (zh) 2010-07-14
CN101163871A (zh) 2008-04-16
EP1873381A1 (en) 2008-01-02
US8186148B2 (en) 2012-05-29
EP1873381B1 (en) 2011-12-07
US20080202098A1 (en) 2008-08-28
EP1873381A4 (en) 2009-11-11
JP2006299952A (ja) 2006-11-02
JP3901194B2 (ja) 2007-04-04

Similar Documents

Publication Publication Date Title
JP3901194B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
JP4175427B1 (ja) NOx浄化システムの制御方法及びNOx浄化システム
JP4415648B2 (ja) サルファパージ制御方法及び排気ガス浄化システム
US7963103B2 (en) Exhaust gas purification method and system
JP5217102B2 (ja) NOx浄化システムの制御方法及びNOx浄化システム
JP4140636B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
WO2006123510A1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
WO2014033836A1 (ja) 火花点火式内燃機関の排気浄化装置
WO2014128860A1 (ja) 内燃機関の排気浄化装置
JP3925357B2 (ja) 排気ガス浄化システムの制御方法
JP5835488B2 (ja) 内燃機関の排気浄化装置
WO2010106695A1 (ja) 内燃機関の排気浄化装置
JP4075641B2 (ja) 内燃機関の排気ガス浄化システム
JP3922408B2 (ja) 内燃機関の排気浄化装置
JP4165085B2 (ja) エンジンの排気浄化装置
JP2009019515A (ja) NOx浄化システム及びNOx浄化システムの制御方法
JP4506348B2 (ja) 内燃機関の排気浄化装置
JP2006083746A (ja) 排気ガス浄化方法及び排気ガス浄化システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013118.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11886688

Country of ref document: US

Ref document number: 2006732139

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006732139

Country of ref document: EP