WO2014033836A1 - 火花点火式内燃機関の排気浄化装置 - Google Patents

火花点火式内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2014033836A1
WO2014033836A1 PCT/JP2012/071693 JP2012071693W WO2014033836A1 WO 2014033836 A1 WO2014033836 A1 WO 2014033836A1 JP 2012071693 W JP2012071693 W JP 2012071693W WO 2014033836 A1 WO2014033836 A1 WO 2014033836A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
catalyst
engine
combustion chamber
Prior art date
Application number
PCT/JP2012/071693
Other languages
English (en)
French (fr)
Inventor
三樹男 井上
吉田 耕平
悠樹 美才治
櫻井 健治
昂章 中村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/071693 priority Critical patent/WO2014033836A1/ja
Priority to EP12883497.5A priority patent/EP2891777B1/en
Priority to US14/423,713 priority patent/US9534552B2/en
Priority to CN201280075496.8A priority patent/CN104704214B/zh
Priority to JP2014532615A priority patent/JP6015760B2/ja
Publication of WO2014033836A1 publication Critical patent/WO2014033836A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/105Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust emission control device for a spark ignition type internal combustion engine.
  • the three-way catalyst downstream of the engine exhaust passage with placing a three-way catalyst in the engine exhaust passage, when the air-fuel ratio of the inflowing exhaust gas lean occludes NO x in the exhaust gas, sky of the exhaust gas flowing ratio is arranged the NO x storage catalyst releases the NO x occluding
  • a lean air-fuel ratio operation of burning fuel under a lean air-fuel ratio is performed
  • an internal combustion engine that is switched to one of a mode and a theoretical air-fuel ratio operation mode in which combustion is performed under a theoretical air-fuel ratio (see, for example, Patent Document 1).
  • the fuel consumption is lower when combustion is performed under a lean air-fuel ratio than when combustion is performed under a stoichiometric air-fuel ratio. Therefore, in such an internal combustion engine, Normally, combustion is performed under a lean air-fuel ratio in the widest possible operating range. However, when burning fuel under a lean air-fuel ratio when the engine load is increased is carried out, the higher the temperature of the NO x storage catalyst, for the result the NO x storage catalytic NO x storage ability is decreased NO x The purification rate will decrease. Therefore, in such an internal combustion engine, when the engine load increases, the operation mode is switched from the lean air-fuel ratio operation mode to the stoichiometric air-fuel ratio operation mode so that the NO x purification rate does not decrease.
  • a three-way catalyst having an oxygen storage function is disposed in the engine exhaust passage, and the oxygen storage amount of the three-way catalyst is a value between zero and the maximum oxygen storage amount.
  • Exhaust gas purification device for a spark ignition type internal combustion engine in which the air-fuel ratio in the combustion chamber is feedback controlled to the stoichiometric air-fuel ratio so that HC, CO and NO x contained in the exhaust gas are simultaneously purified in a three-way catalyst
  • the air-fuel ratio in the combustion chamber is feedback-controlled to the stoichiometric air-fuel ratio, the amount of poisoning of the noble metal catalyst supported on the three-way catalyst is gradually increased, or the amount of noble metal catalyst covered is reduced.
  • the lean ratio of the air-fuel ratio in the combustion chamber is set so that the oxygen storage amount of the three-way catalyst increases to the maximum oxygen storage amount.
  • Theoretical air / fuel ratio The air-fuel ratio in the combustion chamber is kept lean even after the oxygen storage amount of the three-way catalyst reaches the maximum oxygen storage amount, and then returned to rich after the oxygen storage amount of the three-way catalyst reaches the maximum oxygen storage amount.
  • FIG. 1 is an overall view of an internal combustion engine.
  • FIG. 2 is a diagram schematically showing a surface portion of a three-way catalyst substrate.
  • 3A and 3B are diagrams schematically showing a surface portion of the catalyst carrier of the exhaust purification catalyst.
  • 4A, 4B and 4C are diagrams for explaining the purification action in the three-way catalyst.
  • 5A, 5B and 5C are diagrams for explaining the poisoning action of the three-way catalyst.
  • 6A, 6B, 6C, and 6D are diagrams showing the amount of poisoning in the three-way catalyst and the time during which the air-fuel ratio in the combustion chamber is maintained lean.
  • 7A, 7B, 7C, and 7D are diagrams showing the poisoning amount in the three-way catalyst and the time during which the air-fuel ratio in the combustion chamber is rich.
  • 8A, 8B and 8C are diagrams showing the fuel injection time and the like.
  • 9A and 9B are flowcharts for controlling the operation of the engine.
  • 10A and 10B are views for explaining an adsorption reaction and the like in the exhaust purification catalyst.
  • 11A and 11B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
  • FIG. 12 is a diagram showing NO x release control.
  • FIG. 13 is a diagram showing a map of the exhausted NO x amount NOXA.
  • FIG. 14 is a diagram showing the NO x purification rate.
  • FIG. 15 is a graph showing the relationship between the lean-to-rich air-fuel ratio switching period ⁇ TL and the NO x purification rate.
  • FIG. 16 is a diagram showing the NO x purification rate.
  • 17A and 17B are diagrams for explaining the NO x absorption ability and NO adsorption ability.
  • 18A and 18B are diagrams for explaining the NO x absorption ability and NO adsorption ability.
  • 19A, 19B and 19C are time charts showing changes in the air-fuel ratio of the exhaust gas discharged from the engine.
  • FIG. 20 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the three-way catalyst and the exhaust purification catalyst.
  • FIG. 21 is a diagram showing an operation region of the engine.
  • FIG. 22 is a time chart showing changes in the fuel injection amount and the like during engine operation.
  • FIG. 23 is a flowchart for performing engine operation control.
  • FIG. 1 shows an overall view of a spark ignition internal combustion engine using gasoline as fuel.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a cylinder head
  • 4 is a piston
  • 5 is a combustion chamber
  • 6 is a spark plug
  • 7 is an intake valve
  • 8 is an intake port
  • 9 is an exhaust valve
  • Reference numeral 10 denotes an exhaust port.
  • each cylinder injects fuel, i.e. gasoline, into an intake port 8 and an electronically controlled fuel injection valve 11 for injecting fuel, i.e. gasoline, into the combustion chamber 2.
  • a pair of fuel injection valves consisting of an electronically controlled fuel injection valve 12 for this purpose.
  • the intake port 8 of each cylinder is connected to a surge tank 14 via an intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake duct 15.
  • an intake air amount detector 17 and a throttle valve 18 driven by an actuator 18a are arranged.
  • the exhaust port 10 of each cylinder is connected to an inlet of a three-way catalyst 20 having an oxygen storage function through an exhaust manifold 19, and an outlet of the three-way catalyst 20 is connected to an inlet of an exhaust purification catalyst 22 through an exhaust pipe 21. Connected. The outlet of the exhaust purification catalyst 22 is connected to the NO x selective reduction catalyst 23.
  • the exhaust pipe 21 and the surge tank 14 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 24.
  • An electronically controlled EGR control valve 25 is disposed in the EGR passage 24, and a cooling device 26 for cooling the exhaust gas flowing in the EGR passage 24 is disposed around the EGR passage 24.
  • the engine cooling water is guided into the cooling device 26, and the exhaust gas is cooled by the engine cooling water.
  • the electronic control unit 30 is composed of a digital computer and includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36 connected to each other by a bidirectional bus 31. It comprises.
  • An air-fuel ratio sensor 27 for detecting the air-fuel ratio of the exhaust gas discharged from the engine is attached upstream of the three-way catalyst 20, and the oxygen concentration in the exhaust gas is detected downstream of the three-way catalyst 20.
  • an oxygen concentration sensor 28 is attached.
  • Output signals of the air-fuel ratio sensor 27, the oxygen concentration sensor 28, and the intake air amount detector 17 are input to the input port 35 via corresponding AD converters 37, respectively.
  • a load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35. On the other hand, the output port 36 is connected to the spark plug 6, the fuel injection valves 11 and 12, the throttle valve driving actuator 18 a and the EGR control valve 25 via the corresponding drive circuit 38.
  • FIG. 2 schematically shows the surface portion of the base 50 of the three-way catalyst 20.
  • an upper coat layer 51 and a lower coat layer 52 are formed on the catalyst carrier 50 in a laminated form.
  • the upper coat layer 51 is made of rhodium Rh and cerium Ce
  • the lower coat layer 52 is made of platinum Pt and cerium Ce.
  • the amount of cerium Ce contained in the upper coat layer 51 is smaller than the amount of cerium Ce contained in the lower coat layer 52.
  • the upper coat layer 51 can contain zirconia Zr soot
  • the lower coat layer 52 can contain palladium Pd soot.
  • FIG. 3A schematically shows the surface portion of the base 55 of the exhaust purification catalyst 22.
  • a coat layer 56 is formed on the base 55 also in the exhaust purification catalyst 22.
  • the coat layer 56 is made of, for example, an aggregate of powder
  • FIG. 3B shows an enlarged view of the powder.
  • noble metal catalysts 61 and 62 are supported on a catalyst carrier 60 made of alumina, for example, of this powder, and further, such as potassium K, sodium Na, and cesium Cs are supported on the catalyst carrier 60.
  • a basic layer 63 including one is formed. Since the exhaust gas flows along the catalyst carrier 60, it can be said that the noble metal catalysts 61 and 62 are supported on the exhaust gas flow surface of the exhaust purification catalyst 22. Further, since the surface of the basic layer 63 is basic, the surface of the basic layer 63 is referred to as a basic exhaust gas flow surface portion.
  • the noble metal catalyst 61 is made of platinum Pt and the noble metal catalyst 62 is made of rhodium Rh.
  • any of the noble metal catalysts 61 and 62 can be made of platinum Pt.
  • palladium Pd can be supported on the catalyst carrier 60, or palladium Pd can be supported instead of rhodium Rh. That is, the noble metal catalysts 61 and 62 supported on the catalyst carrier 60 are composed of at least one of platinum Pt, rhodium Rh and palladium Pd.
  • the three-way catalyst 20 is in the exhaust gas when combustion is performed in the combustion chamber 5 under the stoichiometric air-fuel ratio, that is, when the air-fuel ratio of the exhaust gas discharged from the engine is the stoichiometric air-fuel ratio. It has simultaneously a function of reducing the harmful components HC, CO and NO x contained in the. Therefore, when combustion is performed in the combustion chamber 5 under the stoichiometric air-fuel ratio, harmful components HC, CO and NO x contained in the exhaust gas are purified by the three-way catalyst 20.
  • the air-fuel ratio of the exhaust gas discharged from the combustion chamber 5 becomes almost the stoichiometric air-fuel ratio.
  • the injection amount from the fuel injection valves 11 and 12 is feedback controlled based on the detection signal of the air-fuel ratio sensor 27 so that the air-fuel ratio of the exhaust gas discharged from the combustion chamber 5 fluctuates around the stoichiometric air-fuel ratio. Is done.
  • FIG. 4A shows the time when the air-fuel ratio of the exhaust gas is slightly richer than the stoichiometric air-fuel ratio.
  • oxygen O 2 held in the form of ceria by cerium Ce is released from the ceria, so that the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio on the surface of the platinum Pt.
  • FIG. 4A shows the time when the air-fuel ratio of the exhaust gas is slightly richer than the stoichiometric air-fuel ratio.
  • oxygen O 2 held in the form of ceria by cerium Ce is released from the ceria, so that the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio on the surface of the platinum Pt.
  • FIG. 4A shows harmful components HC, CO and NO x contained in the exhaust gas are simultaneously purified in the three-way catalyst 20.
  • FIG. 4B shows a case where the air-fuel ratio of the exhaust gas is slightly lean with respect to the stoichiometric air-fuel ratio. At this time, surplus oxygen O 2 with respect to the stoichiometric air-fuel ratio is taken into cerium Ce, so that the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio on the surface of platinum Pt.
  • harmful components HC, CO and NO x contained in the exhaust gas are simultaneously purified in the three-way catalyst 20.
  • the air-fuel ratio of the exhaust gas is changed so that the action of releasing oxygen O 2 from ceria and the action of taking in excess oxygen O 2 by cerium Ce can always occur, harmful components HC contained in the exhaust gas, CO and NO x are well purified in the three-way catalyst 20.
  • the excess uptake action of oxygen O 2 in due to the release action and cerium Ce oxygen O 2 from ceria is so may occur normally, the oxygen storage amount in the three-way catalyst 20 as shown in FIG. 4C
  • the air-fuel ratio in the combustion chamber 5 may be controlled so that the oxygen storage amount in the three-way catalyst 20 is preferably approximately half of the maximum oxygen storage amount so as to be a value between zero and the maximum oxygen storage amount. It will be.
  • the amount of oxygen O 2 released from ceria and the amount of excess oxygen O 2 taken in by cerium Ce can be calculated from the difference between the actual air-fuel ratio and the stoichiometric air-fuel ratio of the exhaust gas and the intake air amount. Therefore, the oxygen storage amount of the three-way catalyst 20 can be calculated.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is theoretically increased.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is slightly less than the stoichiometric air-fuel ratio. Just lean. In this way, the oxygen storage amount in the three-way catalyst 20 is maintained at about half of the maximum oxygen storage amount, and therefore the harmful components HC, CO and NO x contained in the exhaust gas are well purified in the three-way catalyst 20.
  • the air-fuel ratio in the combustion chamber 5 actually fluctuates around the theoretical air-fuel ratio. That is, in the embodiment according to the present invention, the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio so that the oxygen storage amount in the three-way catalyst 20 becomes a value between zero and the maximum oxygen storage amount. As a result, HC, CO and NO x contained in the exhaust gas are simultaneously purified in the three-way catalyst 20.
  • FIGS. 5A and 5B schematically show the poisoning action on the noble metal catalyst Pt as an example.
  • the air-fuel ratio of the exhaust gas becomes rich, as shown in FIG. 5A, hydrocarbon HC and carbon C adhere to the surface of the noble metal catalyst Pt.
  • the surface of the noble metal catalyst Pt 1 It will be poisoned by carbon C.
  • the NO x purification rate decreases.
  • the air-fuel ratio (A / F) in the combustion chamber 5 that is, the base air-fuel ratio (A / F) b is the theoretical sky. It is considerably lean with respect to the fuel ratio. That is, the lean degree of the air-fuel ratio in the combustion chamber 5 is made larger than when the air-fuel ratio is feedback controlled to the stoichiometric air-fuel ratio.
  • the oxygen storage amount in the three-way catalyst 20 reaches the maximum oxygen storage amount, and the air-fuel ratio in the combustion chamber 5 is maintained lean even after the oxygen storage amount reaches the maximum oxygen storage amount.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich. As described above, when the air-fuel ratio in the combustion chamber 5 is maintained lean even after the oxygen storage amount in the three-way catalyst 20 reaches the maximum oxygen storage amount, the poisoning of the noble metal catalyst Pt is recovered.
  • the amount of hydrocarbons HC and carbon C adhering to the surface of the noble metal catalyst Pt during the period when the air-fuel ratio (A / F) in the combustion chamber 5 is rich is reduced.
  • the number increases, it is necessary to increase the time ⁇ TL during which the air-fuel ratio (A / F) in the combustion chamber 5 is maintained lean. Therefore, in the present invention, when recovering the poisoning of the noble metal catalyst Pt, the lean degree of the air-fuel ratio (A / F) in the combustion chamber 5 is compared with that when the air-fuel ratio is feedback controlled to the stoichiometric air-fuel ratio.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is maintained lean even after the oxygen storage amount of the three-way catalyst 20 reaches the maximum oxygen storage amount and then returned to rich.
  • the time ⁇ TL during which the air-fuel ratio (A / F) in the combustion chamber 5 is kept lean is made longer as the poisoning amount of the noble metal catalyst when the air-fuel ratio (A / F) in the combustion chamber 5 is richer is larger. ing.
  • FIG. 6A shows the poisoning amount of the noble metal catalyst by the hydrocarbon HC and carbon C and the fuel injection amount Q when the air-fuel ratio (A / F) in the combustion chamber 5 is kept constant at a constant rich air-fuel ratio.
  • FIG. 6B shows the amount of poisoning of the noble metal catalyst by hydrocarbons HC and carbon C when the air-fuel ratio (A / F) in the combustion chamber 5 is kept at a constant rich air-fuel ratio for a fixed period.
  • the relationship with the temperature TC of the three-way catalyst 20 is shown.
  • FIG. 6C shows the relationship between the air-fuel ratio lean time ⁇ TL required for recovery of poisoning of the noble metal catalyst and the fuel injection amount Q
  • FIG. 6D shows the air-fuel ratio required for recovery of poisoning of the noble metal catalyst.
  • the relationship between the lean time ⁇ TL and the temperature TC of the three-way catalyst 20 is shown.
  • the amount of hydrocarbon HC in the exhaust gas when the air-fuel ratio (A / F) in the combustion chamber 5 is a constant rich air-fuel ratio for a certain period is the fuel injection quantity Q.
  • the amount of hydrocarbons HC and carbon C adhering to the surface of the noble metal catalyst Pt during the rich period increases as the fuel injection amount Q increases, that is, the engine load increases. It increases. Therefore, as described above, as shown in FIG. 6C, when the poisoning of the noble metal catalyst is recovered, the lean time ⁇ TL of the air-fuel ratio is lengthened as the fuel injection amount Q increases, that is, as the engine load increases.
  • the amount of hydrocarbon HC in the exhaust gas when the air-fuel ratio (A / F) in the combustion chamber 5 is kept at a constant rich air-fuel ratio for a fixed period is the three-way catalyst. Accordingly, the amount of hydrocarbons HC and carbon C adhering to the surface of the noble metal catalyst Pt during the rich period decreases as the temperature TC of the three-way catalyst 20 increases. Therefore, as shown in FIG. 6D, when recovering the poisoning of the noble metal catalyst, the higher the temperature TC of the three-way catalyst 20, the shorter the lean time ⁇ TL of the air-fuel ratio.
  • the surface of the noble metal catalyst Pt 2 is not only poisoned by hydrocarbons HC and carbon C but also poisoned by sulfur S and phosphorus P as shown in FIG. 5B. In this case as well, the NO x purification rate decreases.
  • these sulfur S and phosphorus P are reduced and released by HC and CO contained in the exhaust gas as shown in FIG. 5B. Poisoning by phosphorus P is recovered.
  • the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio, the air-fuel ratio of the exhaust gas is made rich in a short cycle.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich relative to the stoichiometric air-fuel ratio as shown in FIG. 5C.
  • the rich degree ⁇ (A / F) r of the air-fuel ratio in the combustion chamber 5 at this time is made larger than when the air-fuel ratio is feedback controlled to the stoichiometric air-fuel ratio.
  • the oxygen storage amount in the three-way catalyst 20 decreases to zero, and the air-fuel ratio in the combustion chamber 5 is maintained rich even after the oxygen storage amount becomes zero.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made lean.
  • the rich degree ⁇ (A / F) r when the air-fuel ratio in the combustion chamber 5 is kept lean to be returned to rich to recover poisoning by sulfur S or phosphorus P is: After the air-fuel ratio is increased so that the oxygen storage amount of the three-way catalyst 20 is reduced to zero, compared to when the stoichiometric air-fuel ratio is feedback-controlled, and after the oxygen storage amount of the three-way catalyst 20 reaches zero However, after the air-fuel ratio in the combustion chamber 5 is maintained rich, it is returned to lean. Note that the amount of poisoning due to sulfur S or phosphorus P increases as the time ⁇ TL for maintaining the air-fuel ratio (A / F) in the combustion chamber 5 lean is increased.
  • the time ⁇ TR for making A / F) rich is lengthened.
  • FIG. 7A shows the relationship between the amount of poisoning caused by sulfur S and phosphorus P and the time ⁇ TL during which the air-fuel ratio in the combustion chamber 5 is kept lean
  • FIG. 7B shows the amount of poisoning caused by sulfur S and phosphorus P.
  • the relationship with the temperature TC of the three-way catalyst 20 is shown
  • FIG. 7C shows the relationship between the rich time ⁇ TR of the air-fuel ratio necessary for recovery of poisoning by sulfur S and phosphorus P and the time ⁇ TL during which the air-fuel ratio in the combustion chamber 5 is kept lean. Shows the relationship between the rich time ⁇ TR of the air-fuel ratio necessary for recovery of poisoning by sulfur S and phosphorus P and the temperature TC of the three-way catalyst 20.
  • the poisoning amount due to sulfur S and phosphorus P increases as the time ⁇ TL for maintaining the air-fuel ratio in the combustion chamber 5 lean is increased. Therefore, as described above, as shown in FIG. 7C, when the poisoning due to sulfur S or phosphorus P is recovered, the air-fuel ratio rich time ⁇ TR increases as the air-fuel ratio lean time ⁇ TL in the combustion chamber 5 increases. Is lengthened.
  • the poisoning amount due to sulfur S and phosphorus P slightly decreases as the temperature TC of the three-way catalyst 20 increases. Therefore, as shown in FIG. 7D, when recovering the poisoning by sulfur S or phosphorus P, the air-fuel rich time ⁇ TR is slightly shortened as the temperature TC of the three-way catalyst 20 increases.
  • the fuel injection amount WT from the fuel injection valves 11 and 12 for obtaining the rich degree ⁇ (A / F) r required at the time of recovery from poisoning is the required load L and the engine speed N.
  • the function is stored in advance in the ROM 32 in the form of a map as shown in FIG. 8A.
  • the optimal lean time ⁇ TL at the time of recovery from poisoning is stored in advance in the ROM 32 as a function of the fuel injection amount Q and the temperature TC of the three-way catalyst 20 in the form of a map as shown in FIG.
  • the optimal rich time ⁇ TR at the time of recovery is stored in advance in the ROM 32 in the form of a map as shown in FIG. 8C as a function of the lean time ⁇ TL and the temperature TC of the three-way catalyst 20.
  • the poisoning amount of the noble metal catalyst by hydrocarbon HC or carbon C increases as the fuel injection amount Q increases, that is, as the engine load increases.
  • the poisoning amount of the noble metal catalyst by hydrocarbon HC or carbon C decreases as the temperature TC of the three-way catalyst 20 increases, that is, as the engine load increases. That is, during engine high load operation, the fuel injection amount Q increases and the poisoning amount increases, but the three-way catalyst 20 becomes a state where the temperature TC becomes high and the poisoning amount decreases. Sometimes the amount of poisoning does not increase that much.
  • the three-way catalyst 20 is in a state where the temperature TC becomes high and the poisoning amount increases, but at this time because the fuel injection amount Q is small and the poisoning amount decreases. However, the amount of poisoning does not increase that much.
  • the poisoning amount of the noble metal catalyst by hydrocarbon HC and carbon C is the highest during the medium load operation when the fuel injection amount Q is relatively large and the temperature TC of the three-way catalyst 20 is difficult to be relatively high. is there. Therefore, in the embodiment shown in FIG.
  • the engine operating state is such that the poisoning amount of the noble metal catalyst supported on the three-way catalyst gradually increases. In other words, at the time of engine load operation, the engine operation capable of recovering poisoning of the three-way catalyst 20 is performed.
  • step 70 it is judged if the engine is in a medium load operation or not.
  • the routine proceeds to step 71 where the air-fuel ratio in the combustion chamber 5 is fed back to the stoichiometric air-fuel ratio so that the oxygen storage amount of the three-way catalyst 20 becomes a value between zero and the maximum oxygen storage amount. Be controlled.
  • step 72 the fuel injection amount WT, the lean time ⁇ TL and the rich time ⁇ TR are calculated from FIGS. 8A, 8B and 8C, respectively. Based on the fuel injection amount WT, the lean time ⁇ TL, and the rich time ⁇ TR, the lean / rich control capable of recovery from poisoning shown in FIG. 5C is performed.
  • FIG. 9B shows an embodiment in which the engine operation is performed in which the poisoning recovery of the three-way catalyst 20 can be performed when the poisoning amount of the noble metal catalyst exceeds the allowable amount during the medium load operation. That is, referring to FIG. 9B, first, at step 75, it is judged if the engine medium load operation is being performed. When it is not during engine load operation, the routine proceeds to step 76, where the air-fuel ratio in the combustion chamber 5 is fed back to the stoichiometric air-fuel ratio so that the oxygen storage amount of the three-way catalyst 20 becomes a value between zero and the maximum oxygen storage amount. Be controlled. On the other hand, when it is determined at step 75 that the engine is in a medium load operation, the routine proceeds to step 77 where the poisoning amount of the noble metal catalyst by hydrocarbon HC or carbon C is integrated.
  • step 78 whether the integrated value PX of poisoning amount of the noble metal catalyst by the hydrocarbon HC and carbon C has exceeded the allowable amount PX O is determined. Proceed to step 76 when the integrated value PX of poisoning amount of the noble metal catalyst does not exceed the allowable amount PX O, so that the oxygen storage amount of the three-way catalyst 20 becomes a value between zero and the maximum oxygen storage amount
  • the air fuel ratio in the combustion chamber 5 is feedback controlled to the stoichiometric air fuel ratio. In contrast, each of FIGS.
  • step 79 when the integrated value PX of poisoning amount of the noble metal catalyst is determined to have exceeded the allowable amount PX O at step 78, the fuel injection amount WT, lean time ⁇ TL and rich time ⁇ TR are calculated, and based on these fuel injection amount WT, lean time ⁇ TL, and rich time ⁇ TR, lean / rich control capable of recovery from poisoning shown in FIG. 5C is performed.
  • the three-way catalyst 20 having an oxygen storage function is arranged in the engine exhaust passage so that the oxygen storage amount of the three-way catalyst 20 is a value between zero and the maximum oxygen storage amount.
  • an exhaust emission control device for a spark ignition type internal combustion engine in which the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio so that HC, CO and NO x contained in the exhaust gas are simultaneously purified in the three-way catalyst 20
  • the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio
  • the poisoning amount of the noble metal catalyst supported on the three-way catalyst 20 gradually increases, or the noble metal catalyst
  • the degree of leanness of the air-fuel ratio in the combustion chamber 5 so that the oxygen storage amount of the three-way catalyst 20 increases to the maximum oxygen storage amount when the poisoning amount of the gas exceeds a predetermined allowable amount
  • the air-fuel ratio The air-fuel ratio is increased as compared to when the air-fuel ratio is feedback
  • the new the NO x purification method the use of the adsorption of NO, following this new the NO x purification method, referred to as the NO x purification method of adsorbing NO use. Therefore, first, the the NO x purification process of the adsorption NO utilized will be described with reference to FIGS. 10A and 10B.
  • FIG. 10A and 10B show an enlarged view of FIG. 3B, that is, a surface portion of the catalyst carrier 60 of the exhaust purification catalyst 22.
  • FIG. FIG. 10A shows when the air-fuel ratio of the exhaust gas is lean
  • FIG. 10B shows when the air-fuel ratio of the exhaust gas is made rich.
  • NO contained in the exhaust gas is dissociated and adsorbed on the surface of the platinum Pt 61 as shown in FIG. 10A.
  • the adsorption amount of NO on the surface of the platinum Pt 61 increases with the passage of time. Therefore, the adsorption amount of NO on the exhaust purification catalyst 22 increases with the passage of time.
  • the exhaust gas flowing into the exhaust purification catalyst 22 contains a large amount of carbon monoxide CO.
  • carbon monoxide CO As carbon monoxide CO is shown in FIG. 10B, it reacts with NO that dissociative adsorption onto the surface of the platinum Pt 61, the NO is a reducing intermediate NCO in N 2, and the other is on the one hand .
  • the reducing intermediate NCO continues to be held or adsorbed on the surface of the basic layer 63 for a while after the generation. Therefore, the amount of the reducing intermediate NCO retained or adsorbed on the surface of the basic layer 63 gradually increases with time.
  • the reducing intermediate NCO reacts with NO x contained in the exhaust gas, whereby NO x contained in the exhaust gas is purified.
  • NO contained in the exhaust gas at this time is NO in FIG. 11A.
  • NO 2 on the platinum Pt 61 is absorbed into the basic layer 63 and diffused into the basic layer 63 in the form of nitrate ions NO 3 ⁇ , It becomes nitrate.
  • NO x in the exhaust gas is absorbed in the basic layer 63 in the form of nitrate.
  • the air-fuel ratio in the combustion chamber 5 is made rich, that is, when the air-fuel ratio of the exhaust gas is made rich, the oxygen concentration in the exhaust gas flowing into the exhaust purification catalyst 22 decreases.
  • the reaction proceeds in the reverse direction (NO 3 ⁇ ⁇ NO 2 ), and thus the nitrate absorbed in the basic layer 63 is successively converted to nitrate ions NO 3 ⁇ and forms NO 2 as shown in FIG. 11B. Is released from the basic layer 63.
  • the released NO 2 is then reduced by the hydrocarbons HC and CO contained in the exhaust gas.
  • the exhaust purification catalyst 22 When the air-fuel ratio of the exhaust gas flowing into the catalyst 22 is lean, NO x is stored, and when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 22 becomes rich, the stored NO x is released.
  • NO x in the exhaust gas begins to be absorbed by the exhaust purification catalyst 22.
  • the NO x storage capability of the exhaust purification catalyst 22 is saturated during that time, and as a result, the exhaust purification catalyst 22 cannot store NO x. End up. Therefore, NO x storage capacity of the exhaust purification catalyst 22 is temporarily made rich the air-fuel ratio in the combustion chamber 5 prior to saturated, NO x is made to release from the exhaust purification catalyst 22 by it.
  • Figure 12 shows the NO x releasing control in a case which is adapted to absorb the NO x in the exhaust purification catalyst.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is temporarily increased. To be rich.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, that is, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 22 is made rich, combustion is performed under the lean air-fuel ratio.
  • NO x stored in the exhaust purification catalyst 22 is released from the exhaust purification catalyst 22 at once and reduced. As a result, NO x is purified.
  • Occluded amount of NO x ⁇ NOX is calculated from the amount of NO x exhausted from the engine, for example. Is stored in advance in the ROM32 in the form of a map as shown in FIG. 13 as a function of the discharge amount of NO x NOXA is required load L and engine speed N which is discharged from the engine per unit time in this embodiment of the present invention, The occluded NO x amount ⁇ NOX is calculated from this exhausted NO x amount NOXA. In this case, the period during which the air-fuel ratio in the combustion chamber 5 is made rich is usually 1 minute or more.
  • Figure 14 shows the NO x purification rate when so as to purify NO x by absorbing and releasing action of Figure 12 as shown, NO x of the exhaust purification catalyst 22.
  • the horizontal axis in FIG. 14 indicates the catalyst temperature TC of the exhaust purification catalyst 22.
  • reduced catalyst temperature TC When it extremely high NO x purification rate is obtained catalyst temperature TC becomes a high temperature of at least 400 ° C. when the 300 ° C. of 400 ° C. the NO x purification rate To do. As described above, the NO x purification rate decreases when the catalyst temperature TC exceeds 400 ° C.
  • the NO x is not easily absorbed when the catalyst temperature TC exceeds 400 ° C., and the nitrate is thermally decomposed to form NO 2 . This is because it is discharged from the exhaust purification catalyst 22. That is, as long as NO x is absorbed in the form of nitrate, it is difficult to obtain a high NO x purification rate when the catalyst temperature TC is high.
  • the amount of NO adsorbed on the surface of platinum Pt 61 is hardly affected by the temperature TC of the exhaust purification catalyst 22. Therefore, if NO x contained in the exhaust gas is adsorbed on the surface of platinum Pt 61 without being absorbed in the form of nitrate in the exhaust purification catalyst 22, the stored amount of NO x is the exhaust purification catalyst 22. It is hardly affected by the temperature TC. By the way, as described above, after a while from the start of the lean air-fuel ratio combustion, the NO x absorption action to the exhaust purification catalyst 22 is started.
  • the purification process of the NO x which is adapted to purify NO x is a the NO x purification method of adsorbing NO use explained with reference to FIGS. 10A and 10B.
  • the period ⁇ TL FIGS. 10A and 10B.
  • FIG. 16 shows the NO x purification rate when NO x is purified by the NO x purification method using adsorption NO. As shown in FIG. 16, in this case, it is understood that the NO x purification rate does not decrease even when the temperature TC of the exhaust purification catalyst 22 is increased to a high temperature of 400 ° C. or higher.
  • the fuel injection valves 11 and 12 follow the fuel injection amount WT calculated from the map shown in FIG. 8A and the lean time ⁇ TL and rich time ⁇ TR calculated from the maps shown in FIGS. 8B and 8C, respectively.
  • the NO x purification action is performed by the NO x purification method using adsorbed NO.
  • the temperature TC of the exhaust purification catalyst 22 becomes high, a high NO x purification rate is obtained and the ternary is achieved.
  • the poisoning of the catalyst 20 can be recovered.
  • the exhaust purification catalyst 22 is disposed in the engine exhaust passage downstream of the three-way catalyst 20, and the noble metal catalysts 61 and 62 are supported on the exhaust gas flow surface of the exhaust purification catalyst 22.
  • a basic exhaust gas flow surface portion is formed around the noble metal catalysts 61 and 62, and the exhaust purification catalyst 22 has a period within a predetermined range of the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 22.
  • FIG. 17A shows the NO x absorption ability and the NO adsorption ability when NO x is purified using the NO x storage / release action to the exhaust purification catalyst 22, as shown in FIG.
  • the vertical axis in FIG. 17A shows the storage capacity of the NO x which is the sum of the absorption capacity and NO adsorption capacity NO x
  • the horizontal axis shows the temperature TC of the exhaust purification catalyst 22.
  • the amount of NO quantity of NO contained in the exhaust gas is adsorbed on the surface of The more the more the platinum Pt 61 as compared to the amount of O 2 becomes more than the amount of O 2, on the contrary As the amount of O 2 contained in the exhaust gas increases as compared with the amount of NO, the amount of NO adsorbed on the surface of platinum Pt 61 decreases as compared with the amount of O 2 . Therefore, as shown in FIG. 18A, the NO adsorption capacity of the exhaust purification catalyst 22 decreases as the oxygen concentration in the exhaust gas increases.
  • FIG. 18B shows the NO x absorption capacity of the exhaust purification catalyst 22 increases as the oxygen concentration in the exhaust gas increases.
  • region X is obtained under the lean air-fuel ratio when NO x is purified by using the NO x storage / release action to exhaust purification catalyst 22, as shown in FIG. It shows when combustion is taking place. At this time, it can be seen that the NO adsorption capacity is low and the NO x absorption capacity is high.
  • FIG. 17A described above shows the NO adsorption capacity and the NO x absorption capacity at this time.
  • the oxygen concentration in the exhaust gas may be decreased.
  • the NO x absorption capacity decreases.
  • FIG. 17B shows the NO x absorption ability and NO adsorption ability when the oxygen concentration in the exhaust gas is lowered to the region Y in FIGS. 18A and 18B.
  • FIG. 19A shows the air-fuel ratio (A / F) in the combustion chamber 5 when NO x is purified by using the NO x storage / release action to the exhaust purification catalyst 22, as in the case shown in FIG. Shows changes.
  • (A / F) b represents the base air-fuel ratio
  • ⁇ (A / F) r represents the richness of the air-fuel ratio
  • ⁇ T represents the switching of the air-fuel ratio from lean to rich.
  • FIG. 19B shows the change in the air-fuel ratio (A / F) in the combustion chamber 5 when NO x is purified by utilizing the NO adsorption action.
  • (A / F) b indicates the base air-fuel ratio
  • ⁇ (A / F) r indicates the richness of the air-fuel ratio
  • ⁇ T indicates the rich period of the air-fuel ratio.
  • FIG. 19C shows a change in the air-fuel ratio in the combustion chamber 5 when the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.
  • FIG. 20 shows the change in the air-fuel ratio (A / F) in the combustion chamber 5 when the NO x is purified by utilizing the NO adsorption action and the exhaust purification catalyst 22 as shown in FIG. 19B. It shows the change in the air-fuel ratio (A / F) in of the inflowing exhaust gas.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, the oxygen stored in the three-way catalyst 20 is released and maintained at the stoichiometric air-fuel ratio for a time t1, Thereby, HC, CO and NO x are simultaneously reduced. During this time, as shown in FIG.
  • the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 22 is maintained at the stoichiometric air-fuel ratio.
  • the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 22 becomes rich during the time t2.
  • NO dissociated and adsorbed on the surface of platinum Pt 61 becomes N 2 on the one hand and a reducing intermediate NCO on the other hand.
  • the reducing intermediate NCO continues to be held or adsorbed on the surface of the basic layer 63 for a while after the generation.
  • An engine medium load operation region II located between the load operation regions III is set in advance.
  • the vertical axis L in FIG. 21 indicates the required load
  • the horizontal axis N indicates the engine speed.
  • the engine low load operating region I as shown in FIG. 19A, purification action of the NO x row which is adapted by using the storage and release action of the NO x purifying NO x in the exhaust gas purifying catalyst 22
  • the middle-medium-load operation region II as shown in FIG.
  • the NO x purification action is performed in which NO x is purified using the NO adsorption action.
  • the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.
  • combustion should be performed in the combustion chamber 5 with the base air-fuel ratio lean, and NO x should be released from the exhaust purification catalyst 22.
  • the air-fuel ratio in the combustion chamber 5 is made rich, and in the predetermined engine high load operation region III, the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio, so that the predetermined engine load operation region II is determined.
  • combustion in the combustion chamber 5 is performed under a base air-fuel ratio smaller than the base air-fuel ratio in the engine low-load operation region I, and the air-fuel ratio rich for NO x release in the engine low-load operation region I
  • the air-fuel ratio in the combustion chamber 5 is made rich with a cycle shorter than the cycle.
  • the base air-fuel ratio in the engine medium load operation region II is an intermediate value between the base air fuel ratio and the stoichiometric air fuel ratio in the engine low load operation region I.
  • the richness of the air-fuel ratio when the air-fuel ratio in the combustion chamber 5 is made rich is the richness of the air-fuel ratio in the engine low load operation region I when the air-fuel ratio in the combustion chamber 5 is made rich. Smaller than the degree.
  • FIG. 22 shows changes in the fuel injection amount into the combustion chamber 5, changes in the air-fuel ratio (A / F) in the combustion chamber 5, and changes in the stored NO x amount ⁇ NOX.
  • MAXI indicates the allowable NO x storage amount.
  • the air-fuel ratio in the combustion chamber 5 is temporarily made rich every time the lean time ⁇ TL elapses. At this time, NO x purification action using adsorbed NO is performed, and poisoning of the three-way catalyst 20 is recovered.
  • NO x is occluded in the exhaust purification catalyst 22 and switched to the NO x purification method by feedback control to the stoichiometric air-fuel ratio shown in FIG. 19C, NO by feedback control to the stoichiometric air-fuel ratio is switched.
  • part of the NO x stored in the exhaust purification catalyst 22 is released without being reduced. Therefore, in the embodiment according to the present invention, as shown in FIG. 22, when the engine operating state shifts from the engine middle load operation region II to the engine high load operation region III, the air-fuel ratio (A / F) is temporarily made rich.
  • the fuel injection valves 11 and 12 are controlled based on the output signal of the air-fuel ratio sensor 27 so that the oxygen storage amount of the three-way catalyst 20 becomes an intermediate value between zero and the maximum oxygen storage amount.
  • the injection amount is feedback-controlled.
  • the air-fuel ratio in the combustion chamber 5 is controlled to the stoichiometric air-fuel ratio, so that harmful components HC, CO and NO x contained in the exhaust gas are simultaneously purified in the three-way catalyst 20.
  • ammonia may be generated at this time.
  • this ammonia is adsorbed by the NO x selective reduction catalyst 23.
  • the ammonia adsorbed on the NO x selective reduction catalyst 23 reacts with NO x contained in the exhaust gas and is used to reduce NO x .
  • FIG. 23 shows an operation control routine. This routine is executed by interruption every predetermined time.
  • step 80 it is judged if the operating state of the engine is an engine high load operating region III shown in FIG.
  • the process proceeds to step 81, the discharge amount of NO x NOXA per unit time from the map shown in FIG. 13 is calculated.
  • occluded amount of NO x ⁇ NOX is calculated by adding the discharge amount of NO x NOXA to ⁇ NOX step 82.
  • step 83 it is judged if the engine operating state is an engine low load operating region I shown in FIG. When the engine operating state is the engine low load operation region I shown in FIG.
  • step 84 whether the NO x storage amount ⁇ NOX has exceeded the allowable the NO x storage amount MAXI is determined, when the NO x storage amount ⁇ NOX does not exceed the allowable the NO x storage amount MAXI, the routine proceeds to step 85, the combustion The air-fuel ratio in the chamber 5 is set to a lean air-fuel ratio that is predetermined according to the operating state of the engine. At this time, combustion is performed with the base air-fuel ratio lean.
  • step 86 when it is determined in step 84 that the NO x storage amount ⁇ NOX exceeds the allowable NO x storage amount MAXI, the routine proceeds to step 86, where the air-fuel ratio in the combustion chamber 5 is temporarily made rich, and ⁇ NOX. Is cleared. At this time, NO x stored in the exhaust purification catalyst 22 is released from the exhaust purification catalyst 22.
  • step 83 when it is determined in step 83 that the engine operating state is not the engine low load operating region I shown in FIG. 21, that is, the engine operating state is the engine medium load operating region II shown in FIG.
  • the routine proceeds to step 87, where it is determined whether or not the engine operating state has shifted from the engine low load operation region I to the engine middle load operation region II.
  • step 88 the routine proceeds to step 88 where the air-fuel ratio in the combustion chamber 5 is temporarily made rich.
  • the routine proceeds to step 89.
  • step 89 the fuel injection amount WT, the lean time ⁇ TL, and the rich time ⁇ TR are calculated from FIGS. 8A, 8B, and 8C, respectively. Based on the fuel injection amount WT, the lean time ⁇ TL, and the rich time ⁇ TR, the values shown in FIG. Lean / rich control that can recover poisoning is performed. At this time, NO x purification action utilizing adsorption of NO takes place.
  • step 80 when it is determined in step 80 that the engine operating state is the engine high load operating region III shown in FIG. 21, the routine proceeds to step 90, where the engine operating state is now changed from the engine medium load operating region II. It is determined whether or not the engine has shifted to the high engine load operation region III. Now, when the engine operating state shifts from the engine middle load operation region II to the engine high load operation region III, the routine proceeds to step 91 where the air-fuel ratio in the combustion chamber 5 is temporarily made rich. On the other hand, when the engine operating state has already shifted from the engine middle load operation region II to the engine high load operation region III, the routine proceeds to step 92. In step 92, the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.

Abstract

 機関排気通路内に酸素貯蔵機能を有する三元触媒(20)と、排気浄化触媒(22)とが配置される。機関中負荷運転時に、三元触媒(20)の酸素貯蔵量が最大酸素貯蔵量まで増大するように、燃焼室(5)内における空燃比のリーンの度合いを大きくすると共に三元触媒(20)の酸素貯蔵量が最大酸素貯蔵量に達した後も燃焼室(5)内における空燃比をリーンに維持した後にリッチに戻し、このとき燃焼室(5)内における空燃比がリーンに維持される時間を、燃焼室(5)内における空燃比がリッチのときの貴金属触媒の被毒量が大きいほど長くする。

Description

火花点火式内燃機関の排気浄化装置
 本発明は火花点火式内燃機関の排気浄化装置に関する。
 機関排気通路内に三元触媒を配置すると共に三元触媒下流の機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOを吸蔵し、流入する排気ガスの空燃比がリッチにされると吸蔵したNOを放出するNOx吸蔵触媒を配置し、機関の運転モードを機関の運転状態に応じて、リーン空燃比のもとで燃焼が行われるリーン空燃比運転モードと理論空燃比のもとで燃焼が行われる理論空燃比運転モードとのいずれか一方に切り替えるようにした内燃機関が公知である(例えば特許文献1を参照)。
 このような内燃機関では、リーン空燃比のもとで燃焼を行う場合の方が、理論空燃比のもとで燃焼を行う場合に比べて燃料消費量が少なく、従ってこのような内燃機関では、通常できるだけ広い運転領域において、リーン空燃比のもとで燃焼を行うようにしている。しかしながら、機関負荷が高くなったときにリーン空燃比のもとで燃焼が行われると、NOx吸蔵触媒の温度が高くなり、その結果NOx吸蔵触媒のNOx吸蔵能力が低下するためにNOx浄化率が低下することになる。そこでこのような内燃機関では、NOx浄化率が低下しないように、機関負荷が高くなったときには、運転モードをリーン空燃比運転モードから理論空燃比運転モードに切り替えるようにしている。
特開2008-38890号公報
 しかしながらこのように、機関負荷が高くなったときに理論空燃比のもとで燃焼を行うと、三元触媒に担持されている貴金属触媒が被毒し、その結果NO浄化率が低下するという問題を生ずる。
 本発明によれば、上記問題を解決するために、機関排気通路内に酸素貯蔵機能を有する三元触媒を配置し、三元触媒の酸素貯蔵量が零と最大酸素貯蔵量との間の値となるように燃焼室内における空燃比を理論空燃比にフィードバック制御して排気ガス中に含まれるHC,COおよびNOxを三元触媒において同時に浄化するようにした火花点火式内燃機関の排気浄化装置において、燃焼室内における空燃比が理論空燃比にフィードバック制御されると三元触媒に担持されている貴金属触媒の被毒量が次第に増大していく機関運転状態になったとき、又は貴金属触媒の被毒量が増大して予め定められた許容量を超えたときに、三元触媒の酸素貯蔵量が最大酸素貯蔵量まで増大するように、燃焼室内における空燃比のリーンの度合いを、空燃比が理論空燃比にフィードバック制御されているときに比べて大きくすると共に三元触媒の酸素貯蔵量が最大酸素貯蔵量に達した後も燃焼室内における空燃比をリーンに維持してその後にリッチに戻し、このとき燃焼室内における空燃比がリーンに維持される時間を、燃焼室内における空燃比がリッチのときの貴金属触媒の被毒量が大きいほど長くするようにした火花点火式内燃機関の排気浄化装置が提供される。
 火花点火式内燃機関において、機関負荷が高くなったときでも高いNOx浄化率を確保することができる。
図1は内燃機関の全体図である。 図2は三元触媒の基体の表面部分を図解的に示す図である。 図3Aおよび3Bは排気浄化触媒の触媒担体の表面部分等を図解的に示す図である。 図4A、4Bおよび4Cは三元触媒における浄化作用を説明するための図である。 図5A、5Bおよび5Cは三元触媒における被毒作用を説明するための図である。 図6A、6B、6Cおよび6Dは三元触媒における被毒量および燃焼室内における空燃比がリーンに維持される時間を示す図である。 図7A、7B、7Cおよび7Dは三元触媒における被毒量および燃焼室内における空燃比がリッチとされる時間を示す図である。 図8A、8Bおよび8Cは燃料噴射時間等を示す図である。 図9Aおよび9Bは機関の運転制御を行うためのフローチャートである。 図10Aおよび10Bは排気浄化触媒における吸着反応等を説明するための図である。 図11Aおよび11Bは排気浄化触媒における酸化還元反応を説明するための図である。 図12はNOx放出制御を示す図である。 図13は排出NOx量NOXAのマップを示す図である。 図14はNOx浄化率を示す図である。 図15は空燃比のリーンからリッチへの切換え周期ΔTLとNOx浄化率との関係を示す図である。 図16はNOx浄化率を示す図である。 図17Aおよび17BはNOx吸収能およびNO吸着能を説明するための図である。 図18Aおよび18Bは NOx吸収能およびNO吸着能を説明するための図である。 図19A,19Bおよび19Cは機関から排出される排気ガスの空燃比の変化を示すタイムチャートである。 図20は三元触媒および排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。 図21は機関の運転領域を示す図である。 図22は機関運転時における燃料噴射量等の変化を示すタイムチャートである。 図23は機関の運転制御を行うためのフローチャートである。
 図1に、燃料としてガソリンを用いた火花点火式内燃機関の全体図を示す。
 図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。図1に示されるように、各気筒は燃焼室2内に向けて燃料、即ちガソリンを噴射するための電子制御式燃料噴射弁11と、吸気ポート8内に向けて燃料、即ちガソリンを噴射するための電子制御式燃料噴射弁12からなる一対の燃料噴射弁を具備する。各気筒の吸気ポート8は吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気ダクト15を介してエアクリーナ16に連結される。吸気ダクト15内には吸入空気量検出器17と、アクチュエータ18aより駆動されるスロットル弁18とが配置される。
 一方、各気筒の排気ポート10は排気マニホルド19を介して酸素貯蔵機能を有する三元触媒20の入口に連結され、三元触媒20の出口は排気管21を介して排気浄化触媒22の入口に連結される。排気浄化触媒22の出口はNOx選択還元触媒23に連結される。一方、排気管21とサージタンク14とは排気ガス再循環(以下、EGRと称す)通路24を介して互いに連結される。EGR通路24内には電子制御式EGR制御弁25が配置され、更にEGR通路24周りにはEGR通路24内を流れる排気ガスを冷却するための冷却装置26が配置される。図1に示される実施例では機関冷却水が冷却装置26内に導かれ、機関冷却水によって排気ガスが冷却される。
 電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。三元触媒20の上流には機関から排出される排気ガスの空燃比を検出するための空燃比センサ27が取り付けられており、三元触媒20の下流には排気ガス中の酸素濃度を検出するための酸素濃度センサ28が取付けられている。これら空燃比センサ27、酸素濃度センサ28および吸入空気量検出器17の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁11,12、スロットル弁駆動用アクチュエータ18aおよびEGR制御弁25に接続される。
 図2は三元触媒20の基体50の表面部分を図解的に示している。図2に示されるように、触媒担体50上には上部コート層51と下部コート層52とが積層状に形成されている。上部コート層51はロジウムRh とセリウムCe からなり、下部コート層52は白金Pt とセリウムCe からなる。なお、この場合、上部コート層51に含まれるセリウムCe の量は下部コート層52に含まれるセリウムCe の量よりも少ない。また、上部コート層51内にはジルコニアZr を含有せしめることができるし、下部コート層52内にはパラジウムPd を含有せしめることもできる。
 図3Aは排気浄化触媒22の基体55の表面部分を図解的に示している。図3Aに示されるように、排気浄化触媒22においても基体55上にはコート層56が形成されている。このコート層56は例えば粉体の集合体からなり、図3Bはこの粉体の拡大図を示している。図3Bを参照すると、この粉体の例えばアルミナからなる触媒担体60上には貴金属触媒61,62が担持されており、更にこの触媒担体60上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層63が形成されている。排気ガスは触媒担体60上に沿って流れるので貴金属触媒61,62は排気浄化触媒22の排気ガス流通表面上に担持されていると言える。また、塩基性層63の表面は塩基性を呈するので塩基性層63の表面は塩基性の排気ガス流通表面部分と称される。
 一方、図3Bにおいて貴金属触媒61は白金Pt からなり、貴金属触媒62はロジウムRh からなる。なおこの場合、いずれの貴金属触媒61,62も白金Pt から構成することができる。また、触媒担体60上には白金Pt およびロジウムRh に加えて更にパラジウムPd を担持させることができるし、或いはロジウムRh に代えてパラジウムPd を担持させることができる。即ち、触媒担体60に担持されている貴金属触媒61,62は白金Pt、ロジウムRh およびパラジウムPd の少なくとも一つにより構成される。
 さて、三元触媒20は、燃焼室5内において理論空燃比のもとで燃焼が行われているとき、即ち機関から排出される排気ガスの空燃比が理論空燃比のときに、排気ガス中に含まれる有害成分HC、COおよびNOxを同時に低減する機能を有している。従って、燃焼室5内において理論空燃比のもとで燃焼が行われているときには、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において浄化されることになる。
 なお、燃焼室5内における空燃比を完全に理論空燃比に保持し続けることは不可能であり、従って実際には、燃焼室5から排出された排気ガスの空燃比がほぼ理論空燃比となるように、即ち燃焼室5から排出される排気ガスの空燃比が理論空燃比を中心して振れるように、燃料噴射弁11,12からの噴射量が空燃比センサ27の検出信号に基づいてフィードバック制御される。また、この場合,排気ガスの空燃比の変動の中心が理論空燃比からずれたときには、酸素濃度センサ28の出力信号に基づいて排気ガスの空燃比の変動の中心が理論空燃比に戻るように調整される。なお、このように燃焼室5から排出される排気ガスの空燃比が理論空燃比を中心して振れたとしても、セリウムCe による三元触媒20の酸素貯蔵能力により、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において良好に浄化される。
 次に、この三元触媒20における浄化作用について図4A、4Bおよび4Cを参照しつつ、もう少し詳細に説明する。図4Aおよび4Bは、三元触媒20における酸化還元反応を図解的に示している。図4Aは排気ガスの空燃比が理論空燃比に対してわずかばかりリッチであるときを示している。このときにはセリウムCe によりセリアの形で保持されている酸素Oがセリアから放出され、それにより白金Pt の表面上では排気ガスの空燃比が理論空燃比となる。その結果、図4Aに示されるように、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において同時に浄化される。一方、図4Bは排気ガスの空燃比が理論空燃比に対してわずかばかりリーンであるときを示している。このときには理論空燃比に対して余剰の酸素OがセリウムCe に取り込まれ、それにより白金Pt の表面上では排気ガスの空燃比が理論空燃比となる。その結果、図4Bに示されるように、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において同時に浄化される。
 このようにセリアからの酸素Oの放出作用およびセリウムCe による余剰の酸素Oの取り込み作用が常時生じ得るように排気ガスの空燃比を変動させると、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において良好に浄化されることになる。この場合、セリアからの酸素Oの放出作用およびセリウムCe による余剰の酸素Oの取り込み作用が常時生じ得るようにするには、図4Cに示されるように三元触媒20における酸素貯蔵量が零と最大酸素貯蔵量との間の値となるように、好ましくは三元触媒20における酸素貯蔵量が最大酸素貯蔵量のほぼ半分となるように燃焼室5内における空燃比を制御すればよいことになる。この場合、セリアからの酸素Oの放出量およびセリウムCe による余剰の酸素Oの取り込み量は排気ガスの実際の空燃比と理論空燃比との差および吸入空気量から算出することができ、従って三元触媒20の酸素貯蔵量を算出できることになる。
 従って、本発明による実施例では、図4Cからわかるように、例えば、算出された酸素貯蔵量が予め定められた上限値X1を超えたときには燃焼室5内における空燃比(A/F)が理論空燃比に対してわずかばかりリッチとされ、算出された酸素貯蔵量が予め定められた下限値X2よりも低下したときには燃焼室5内における空燃比(A/F)が理論空燃比に対してわずかばかりリーンとされる。このようにすると、三元触媒20における酸素貯蔵量が最大酸素貯蔵量のほぼ半分に維持され、従って排気ガス中に含まれる有害成分HC、COおよびNOxが三元触媒20において良好に浄化されることになる。このとき、実際には、燃焼室5内における空燃比は理論空燃比を中心として変動している。即ち、本発明による実施例では、三元触媒20における酸素貯蔵量が零と最大酸素貯蔵量との間の値となるように燃焼室5内における空燃比が理論空燃比にフィードバック制御され、それにより排気ガス中に含まれるHC,COおよびNOxが三元触媒20において同時に浄化される。
 次に、三元触媒20に担持されている貴金属触媒の被毒作用について図5Aおよび5Bを参照しつつ説明する。なお、これら図5Aおよび5Bは、例として貴金属触媒Pt に対する被毒作用を図解的に示している。排気ガスの空燃比がリッチになると図5Aに示されるように貴金属触媒Pt の表面上には炭化水素HCや炭素Cが付着し、その結果貴金属触媒Pt の表面はこれらの付着した炭化水素HCや炭素Cにより被毒することになる。このように貴金属触媒Pt の表面が被毒するとNOx浄化率が低下してしまう。
 ところで、燃焼室5内における空燃比が理論空燃比にフィードバック制御されている場合において機関負荷が低いとき、即ち燃料噴射量が少ないときには排気ガスの空燃比がリッチの期間中に貴金属触媒Pt の表面に付着する炭化水素HCや炭素Cの量は少ない。この場合には、排気ガスの空燃比がリーンになったときにこれら炭化水素HCや炭素Cは図5Aに示されるように排気ガス中の酸素Oによって酸化され、従って貴金属触媒Pt が被毒することはない。しかしながら、燃焼室5内における空燃比が理論空燃比にフィードバック制御されている場合において機関負荷が高くなると、即ち燃料噴射量が多くなると排気ガスの空燃比がリッチの期間中に貴金属触媒Pt の表面に付着する炭化水素HCや炭素Cの量が多くなる。この場合には、排気ガスの空燃比がリーンになったときにこれら炭化水素HCや炭素Cは排気ガス中の酸素Oによって完全に酸化されず、従って炭化水素HCや炭素Cの付着量が次第に増大するために貴金属触媒Pt が被毒することになる。
 このように貴金属触媒Pt が被毒したときに貴金属触媒Pt の被毒を回復するためには、多量の酸素Oが必要となる。そこで本発明では、貴金属触媒Pt の被毒を回復すべきときには、図5Cに示されるように燃焼室5内における空燃比(A/F)、即ちベース空燃比(A/F)bが理論空燃比に対して、かなりリーンとされる。即ち、燃焼室5内における空燃比のリーンの度合いは、空燃比が理論空燃比にフィードバック制御されているときに比べて大きくされる。このとき図5Cからわかるように、三元触媒20における酸素貯蔵量は最大酸素貯蔵量に達し、酸素貯蔵量が最大酸素貯蔵量に達した後も燃焼室5内における空燃比はリーンに維持される。次いで、燃焼室5内における空燃比(A/F)がリッチとされる。このように三元触媒20における酸素貯蔵量が最大酸素貯蔵量に達した後も燃焼室5内における空燃比がリーンに維持されると、貴金属触媒Pt の被毒が回復される。
 一方、貴金属触媒Pt の被毒を回復するためには、燃焼室5内における空燃比(A/F)がリッチの期間中に貴金属触媒Pt の表面に付着する炭化水素HCや炭素Cの量が多くなるほど、燃焼室5内における空燃比(A/F)がリーンに維持される時間ΔTLを長くすることが必要となる。従って、本発明では、貴金属触媒Pt の被毒を回復するときには、燃焼室5内における空燃比(A/F)のリーンの度合いを、空燃比が理論空燃比にフィードバック制御されているときに比べて大きくすると共に三元触媒20の酸素貯蔵量が最大酸素貯蔵量に達した後も燃焼室5内における空燃比(A/F)をリーンに維持してその後にリッチに戻し、このとき燃焼室5内における空燃比(A/F)がリーンに維持される時間ΔTLを、燃焼室5内における空燃比(A/F)がリッチのときの貴金属触媒の被毒量が大きいほど長くするようにしている。
 図6Aは燃焼室5内における空燃比(A/F)が一定の期間、一定のリッチ空燃比とされたときの炭化水素HCや炭素Cによる貴金属触媒の被毒量と燃料噴射量Qとの関係を示しており、図6Bは燃焼室5内における空燃比(A/F)が一定の期間、一定のリッチ空燃比とされたときの炭化水素HCや炭素Cによる貴金属触媒の被毒量と三元触媒20の温度TCとの関係を示している。また、図6Cは貴金属触媒の被毒の回復に必要な空燃比のリーン時間ΔTLと燃料噴射量Qとの関係を示しており、図6Dは貴金属触媒の被毒の回復に必要な空燃比のリーン時間ΔTLと三元触媒20の温度TCとの関係を示している。
 図6Aに示されるように燃焼室5内における空燃比(A/F)が一定の期間、一定のリッチ空燃比とされたときの排気ガス中の炭化水素HCの量は、燃料噴射量Qが増大するほど、即ち機関負荷が高くなるほど増大し、従ってリッチ期間中に貴金属触媒Pt の表面に付着する炭化水素HCや炭素Cの量は、燃料噴射量Qが増大するほど、即ち機関負荷が高くなるほど増大する。従って、前述したように、図6Cに示される如く、貴金属触媒の被毒を回復する際には、燃料噴射量Qが増大するほど、即ち機関負荷が高くなるほど空燃比のリーン時間ΔTLが長くされる。
 一方、図6Bに示されるように燃焼室5内における空燃比(A/F)が一定の期間、一定のリッチ空燃比とされたときの排気ガス中の炭化水素HCの量は、三元触媒20の温度TCが高くなるほど低下し、従ってリッチ期間中に貴金属触媒Pt の表面に付着する炭化水素HCや炭素Cの量は、三元触媒20の温度TCが高くなるほど低下する。従って、図6Dに示されるように、貴金属触媒の被毒を回復する際には、三元触媒20の温度TCが高いほど空燃比のリーン時間ΔTLが短くされる。
 なお、貴金属触媒Pt の表面は炭化水素HCや炭素Cによる被毒を受けるばかりでなく、図5Bに示されるように硫黄SやリンPによる被毒も受ける。この場合もNOx浄化率が低下する。一方、これらの硫黄SやリンPは排気ガスの空燃比がリッチにされると、図5Bに示されるように排気ガス中に含まれるHCやCOにより還元されて放出され、それにより硫黄SやリンPによる被毒が回復される。ところで、燃焼室5内における空燃比が理論空燃比にフィードバック制御されているときには排気ガスの空燃比は短い周期でリッチとされ、従ってこのときには、硫黄SやリンPによる被毒が生ずるや否やこの硫黄SやリンPによる被毒はただちに回復される。これに対し、燃焼室5内における空燃比をリーンに維持する時間が長くなると、硫黄SやリンPの付着量が増大し、従って硫黄SやリンPによる被毒量が増大することになる。
 この場合、硫黄SやリンPによる被毒を回復するためには、多量のHCやCOが必要となる。そこで本発明では、硫黄SやリンPによる被毒を回復すべきときには、図5Cに示されるように燃焼室5内における空燃比(A/F)が理論空燃比に対してリッチとされる。このときの燃焼室5内における空燃比のリッチの度合いΔ(A/F)rは、空燃比が理論空燃比にフィードバック制御されているときに比べて大きくされる。このとき図5Cからわかるように、三元触媒20における酸素貯蔵量は零まで低下し、酸素貯蔵量が零になった後も燃焼室5内における空燃比はリッチに維持される。次いで、燃焼室5内における空燃比(A/F)がリーンとされる。このように三元触媒20における酸素貯蔵量が零になった後も燃焼室5内における空燃比がリッチに維持されると、硫黄SやリンPによる被毒が回復される。
 即ち、本発明では、燃焼室5内における空燃比がリーンに維持された後に硫黄SやリンPによる被毒を回復すべくリッチに戻されたときのリッチ度合いΔ(A/F)rは、三元触媒20の酸素貯蔵量が零まで低下するように、空燃比が理論空燃比にフィードバック制御されているときに比べて大きくされると共に三元触媒20の酸素貯蔵量が零に達した後も燃焼室5内における空燃比はリッチに維持された後にリーンに戻される。なお、燃焼室5内における空燃比(A/F)をリーンに維持する時間ΔTLが長くなるほど硫黄SやリンPによる被毒量が増大する。従って、本発明では、硫黄SやリンPによる被毒を回復するときには、燃焼室5内における空燃比(A/F)をリーンに維持する時間ΔTLが長くなるほど、燃焼室5内における空燃比(A/F)をリッチにする時間ΔTRが長くされる。
 図7Aは、硫黄SやリンPによる被毒量と燃焼室5内における空燃比がリーンに維持される時間ΔTLとの関係を示しており、図7Bは硫黄SやリンPによる被毒量と三元触媒20の温度TCとの関係を示している。また、図7Cは硫黄SやリンPによる被毒の回復に必要な空燃比のリッチ時間ΔTRと燃焼室5内における空燃比がリーンに維持される時間ΔTLとの関係を示しており、図7Dは硫黄SやリンPによる被毒の回復に必要な空燃比のリッチ時間ΔTRと三元触媒20の温度TCとの関係を示している。
 図7Aに示されるように硫黄SやリンPによる被毒量は、燃焼室5内における空燃比をリーンに維持する時間ΔTLが長くなるほど増大する。従って、前述したように、図7Cに示される如く、硫黄SやリンPによる被毒を回復する際には、燃焼室5内における空燃比のリーン時間ΔTLが長くなるほど、空燃比のリッチ時間ΔTRが長くされる。一方、図7Bに示されるように硫黄SやリンPによる被毒量は、三元触媒20の温度TCが高くなるほど少し低下する。従って、図7Dに示されるように、硫黄SやリンPによる被毒を回復する際には、三元触媒20の温度TCが高いほど空燃比のリッチ時間ΔTRが少し短くされる。
 本発明による実施例では、被毒回復時に必要とされるリッチ度合いΔ(A/F)rを得るための燃料噴射弁11,12からの燃料噴射量WTが要求負荷Lおよび機関回転数Nの関数として図8Aに示すようなマップの形で予めROM32内に記憶されている。また、被毒回復時における最適なリーン時間ΔTLが燃料噴射量Qおよび三元触媒20の温度TCの関数として図8Bに示すようなマップの形で予めROM32内に記憶されており、更に被毒回復時における最適なリッチ時間ΔTRがリーン時間ΔTLおよび三元触媒20の温度TCの関数として図8Cに示すようなマップの形で予めROM32内に記憶されている。
 さて、図6Aに示されるように、炭化水素HCや炭素Cによる貴金属触媒の被毒量は燃料噴射量Qが増大するほど、即ち機関負荷が高くなるほど増大する。一方、図6Bに示されるように、炭化水素HCや炭素Cによる貴金属触媒の被毒量は三元触媒20の温度TCが高くなるほど、即ち機関負荷が高くなるほど減少する。即ち、機関高負荷運転時には燃料噴射量Qが多くなって被毒量が増大する運転状態となるが、三元触媒20は温度TCが高くなって被毒量を減少させる状態となるためにこのとき被毒量はそれほど多くならない。一方、機関低負荷運転時には三元触媒20は温度TCが高くなって被毒量が増大する状態となるが、燃料噴射量Qが少なくて被毒量が減少する運転状態となるためにこのときも被毒量はそれほど多くならない。結局、炭化水素HCや炭素Cによる貴金属触媒の被毒量が最も高くなるのは、燃料噴射量Qが比較的多く、三元触媒20の温度TCが比較的高くなりにくい機関中負荷運転時である。そこで図9Aに示される実施例では、燃焼室内における空燃比が理論空燃比にフィードバック制御されると三元触媒に担持されている貴金属触媒の被毒量が次第に増大していく機関運転状態になったとき、即ち機関中負荷運転時に、三元触媒20の被毒回復が可能な機関運転を行うようにしている。
 即ち、図9Aを参照すると、まず初めにステップ70において機関中負荷運転時であるか否かが判別される。機関中負荷運転時でないときにはステップ71に進んで、三元触媒20の酸素貯蔵量が零と最大酸素貯蔵量との間の値となるように燃焼室5内における空燃比が理論空燃比にフィードバック制御される。これに対し、ステップ70において機関中負荷運転時であると判別されたときにはステップ72に進んで図8A,8Bおよび8Cから夫々、燃料噴射量WT、リーン時間ΔTLおよびリッチ時間ΔTRが算出され、これら燃料噴射量WT、リーン時間ΔTLおよびリッチ時間ΔTRに基づいて、図5Cに示される被毒回復が可能なリーン・リッチ制御が行われる。
 図9Bは、機関中負荷運転時において貴金属触媒の被毒量が許容量を超えたときに三元触媒20の被毒回復が可能な機関運転を行うようにした実施例を示している。即ち、図9Bを参照すると、まず初めにステップ75において機関中負荷運転時であるか否かが判別される。機関中負荷運転時でないときにはステップ76に進んで、三元触媒20の酸素貯蔵量が零と最大酸素貯蔵量との間の値となるように燃焼室5内における空燃比が理論空燃比にフィードバック制御される。これに対し、ステップ75において機関中負荷運転時であると判別されたときにはステップ77に進み、炭化水素HCや炭素Cによる貴金属触媒の被毒量が積算される。
 次いで、ステップ78では、炭化水素HCや炭素Cによる貴金属触媒の被毒量の積算値PXが許容量PXを超えたか否かが判別される。貴金属触媒の被毒量の積算値PXが許容量PXを超えていないときにはステップ76に進んで、三元触媒20の酸素貯蔵量が零と最大酸素貯蔵量との間の値となるように燃焼室5内における空燃比が理論空燃比にフィードバック制御される。これに対し、ステップ78において貴金属触媒の被毒量の積算値PXが許容量PXを超えたと判別されたときにはステップ79に進んで図8A,8Bおよび8Cから夫々、燃料噴射量WT、リーン時間ΔTLおよびリッチ時間ΔTRが算出され、これら燃料噴射量WT、リーン時間ΔTLおよびリッチ時間ΔTRに基づいて、図5Cに示される被毒回復が可能なリーン・リッチ制御が行われる。
 このように、本発明では、機関排気通路内に酸素貯蔵機能を有する三元触媒20を配置し、三元触媒20の酸素貯蔵量が零と最大酸素貯蔵量との間の値となるように燃焼室5内における空燃比を理論空燃比にフィードバック制御して排気ガス中に含まれるHC,COおよびNOxを三元触媒20において同時に浄化するようにした火花点火式内燃機関の排気浄化装置において、燃焼室5内における空燃比が理論空燃比にフィードバック制御されると三元触媒20に担持されている貴金属触媒の被毒量が次第に増大していく機関運転状態になったとき、又は貴金属触媒の被毒量が増大して予め定められた許容量を超えたときに、三元触媒20の酸素貯蔵量が最大酸素貯蔵量まで増大するように、燃焼室5内における空燃比のリーンの度合いを、空燃比が理論空燃比にフィードバック制御されているときに比べて大きくすると共に三元触媒20の酸素貯蔵量が最大酸素貯蔵量に達した後も燃焼室5内における空燃比をリーンに維持してその後にリッチに戻し、このとき燃焼室5内における空燃比がリーンに維持される時間を、燃焼室5内における空燃比がリッチのときの貴金属触媒の被毒量が大きいほど長くするようにしている。
 ところで、図5Cに示される被毒回復が可能なリーン・リッチ制御が行われているときには、燃焼室5内における空燃比がリーンのときに、排気ガス中に含まれるNOxが三元触媒20から流出する。しかしながら、本発明による実施例では、このとき三元触媒20から流出したNOxは排気浄化触媒22において浄化される。このときの排気浄化触媒22におけるNOxの浄化作用については、排気浄化触媒13へのNOの吸着作用が大きな影響を与えていることが本発明者等により見出されている。そこで次に、この本発明者等により見出されたNOxの浄化方法について説明する。
 即ち、従来より、排気浄化触媒22にNOが吸着していることはわかっている。しかしながら、吸着NOの挙動については、これまでほとんど追求されることはなかった。そこで、本発明者等は、この吸着NOの挙動を追求し、この吸着NOの吸着特性を利用すると、排気浄化触媒22の温度TCが低いときにリーン空燃比のもとで燃焼を行ったときはもとより、排気浄化触媒22の温度TCが高いときにリーン空燃比のもとで燃焼を行ったとしても、高いNOx浄化率を確保し得ることを突き止めたのである。この新たなNOx浄化方法は、NOの吸着作用を利用しているので、以下この新たなNOx浄化方法を、吸着NO利用のNOx浄化方法と称する.そこで、まず初めに、この吸着NO利用のNOx浄化方法について、図10Aおよび図10Bを参照しつつ説明する。
 図10Aおよび10Bは、図3Bの拡大図、即ち排気浄化触媒22の触媒担体60の表面部分を示している。また、図10Aは、排気ガスの空燃比がリーンのときを示しており、図10Bは、排気ガスの空燃比がリッチにされたときを示している。さて、排気ガスの空燃比がリーンのときには、排気ガス中に含まれるNOは図10Aに示されるように、白金Pt 61の表面に解離して吸着する。この白金Pt 61の表面へのNOの吸着量は時間の経過と共に増大し、従って時間の経過と共に排気浄化触媒22へのNO吸着量は増大することになる。
 一方、排気ガスの空燃比がリッチにされると、排気浄化触媒22に流入する排気ガス中には多量の一酸化炭素COが含まれることになる。この一酸化炭素COは図10Bに示されるように、白金Pt 61の表面上に解離吸着しているNOと反応し、このNOは、一方ではN2となり、他方では還元性中間体NCOとなる。この還元性中間体NCOは生成後、暫らくの間、塩基性層63の表面上に保持又は吸着され続ける。従って、塩基性層63の表面上に保持又は吸着されている還元性中間体NCOの量は、時間の経過と共に次第に増大していくことになる。この還元性中間体NCOは排気ガス中に含まれるNOxと反応し、それによって排気ガス中に含まれるNOxが浄化される。
 このように、排気ガスの空燃比がリーンのときには、図10Aに示されるように、一方では排気ガス中に含まれるNOは排気浄化触媒22に吸着され、他方では排気ガス中に含まれるNOxが塩基性層63の表面上に保持又は吸着されている還元性中間体NCOと反応して浄化される。これに対し、排気ガスの空燃比がリッチにされると、排気浄化触媒22に吸着されていたNOxが排気浄化触媒22から放出され、還元される。従って、図5Cに示されるように排気ガスの空燃比が周期的にリーンからリッチに切り替えられると、排気ガス中に含まれるNOxが排気浄化触媒22において浄化されることになる。
 さて、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、上述したように、排気ガス中に含まれるNOは図10Aに示される如く、白金Pt 61の表面に解離して吸着する。しかしながら、リーン空燃比による燃焼が開始されてから暫らくすると、排気ガス中に含まれるNOxは排気浄化触媒22に吸収される。ここで、図10Aおよび図10Bを参照しつつ説明した吸着NO利用のNOx浄化方法の特徴を明確にするために、次に排気浄化触媒22のNOxの吸収放出作用について、図3Bの拡大図を示す図11Aおよび11Bを参照しつつ説明する。
 さて、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、排気ガス中の酸素濃度が高く、従ってこのとき排気ガス中に含まれるNOは図11Aに示されるように、白金Pt 61上において酸化されてNO2となる。次いで、リーン空燃比による燃焼が開始されてから暫らくすると、白金Pt 61上のNO2は塩基性層63内に吸収されて硝酸イオンNO3 -の形で塩基性層63内に拡散し、硝酸塩となる。このようにして排気ガス中のNOxが硝酸塩の形で塩基性層63内に吸収されることになる。リーン空燃比による燃焼が開始されてから暫らくした後は、排気ガス中の酸素濃度が高い限り白金Pt 61の表面でNO2が生成され、塩基性層63のNOx吸収能力が飽和しない限りNOxが塩基性層63内に吸収されて硝酸塩が生成される。
 これに対し、燃焼室5内における空燃比がリッチにされると、即ち排気ガスの空燃比がリッチにされると、排気浄化触媒22に流入する排気ガス中の酸素濃度が低下するために、反応が逆方向(NO3 -→NO2)に進み、斯くして塩基性層63内に吸収されている硝酸塩は順次硝酸イオンNO3 -となって図11Bに示されるようにNO2の形で塩基性層63から放出される。次いで放出されたNO2は排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
 なお、リーン空燃比のもとで燃焼が行われているときには、上述したように、NOが白金Pt 61の表面に吸着し、従って排気ガス中のNOはこの吸着作用によっても排気浄化触媒22に保持されることになる。この白金Pt 61の表面に吸着したNOは、排気ガスの空燃比がリッチにされると、白金Pt 61の表面から脱離せしめられる。従って吸収および吸着の双方を含む用語として吸蔵という用語を用いると、塩基性層63はNOxを一時的に吸蔵するためのNOx吸蔵剤の役目を果していることになる。従って、機関吸気通路、燃焼室5および排気浄化触媒22上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒22は、排気浄化触媒22に流入する排気ガスの空燃比がリーンのときにはNOxを吸蔵し、排気浄化触媒22に流入する排気ガスの空燃比がリッチになると吸蔵したNOxを放出することになる。
 上述したように、リーン空燃比による燃焼が開始されてから暫らくすると、排気ガス中のNOxが排気浄化触媒22に吸収され始める。しかしながら、リーン空燃比のもとでの燃焼が継続して行われると、その間に排気浄化触媒22のNOx吸蔵能力が飽和してしまい、その結果排気浄化触媒22によりNOxを吸蔵できなくなってしまう。従って、排気浄化触媒22のNOx吸蔵能力が飽和する前に燃焼室5内における空燃比を一時的にリッチにし、それによって排気浄化触媒22からNOxが放出せしめられる。
 図12は、排気浄化触媒にNOxを吸収させるようにした場合のNOx放出制御を示している。図12を参照すると、排気浄化触媒22に吸蔵された吸蔵NOx量ΣNOXが予め定められた許容NOx吸蔵量MAXIを越えたときに燃焼室5内における空燃比(A/F)が一時的にリッチにされる。燃焼室5内における空燃比(A/F)がリッチにされると、即ち排気浄化触媒22に流入する排気ガスの空燃比がリッチにされると、リーン空燃比のもとで燃焼が行われているときに、排気浄化触媒22に吸蔵されたNOxが排気浄化触媒22から一気に放出されて還元される。それによってNOxが浄化される。
 吸蔵NOx量ΣNOXは例えば機関から排出されるNOx量から算出される。本発明による実施例では機関から単位時間当り排出される排出NOx量NOXAが要求負荷Lおよび機関回転数Nの関数として図13に示すようなマップの形で予めROM32内に記憶されており、この排出NOx量NOXAから吸蔵NOx量ΣNOXが算出される。この場合、燃焼室5内における空燃比がリッチにされる周期は通常1分以上である。
 図14は、図12に示すような、排気浄化触媒22のNOxの吸蔵放出作用によりNOxを浄化するようにした場合のNOx浄化率を示している。なお、図14の横軸は排気浄化触媒22の触媒温度TCを示している。この場合には、図14からわかるように、触媒温度TCが300℃から400℃のときには極めて高いNOx浄化率が得られるが触媒温度TCが400℃以上の高温になるとNOx浄化率が低下する。このように触媒温度TCが400℃以上になるとNOx浄化率が低下するのは、触媒温度TCが400℃以上になるとNOxが吸収されづらくなり、また硝酸塩が熱分解してNO2の形で排気浄化触媒22から放出されるからである。即ち、NOxを硝酸塩の形で吸収している限り、触媒温度TCが高いときに高いNOx浄化率を得るのは困難となる。
 これに対し、白金Pt 61の表面へのNOの吸着量は排気浄化触媒22の温度TCの影響をほとんど受けない。従って、排気ガス中に含まれるNOxを、排気浄化触媒22において、硝酸塩の形で吸収することなく、白金Pt 61の表面に吸着させるようにすれば、NOxの吸蔵量は排気浄化触媒22の温度TCの影響をほとんど受けないことになる。ところで、前述したように、リーン空燃比による燃焼が開始されてから暫らくすると、排気浄化触媒22へのNOx吸収作用が開始される。従って、リーン空燃比による燃焼が開始された後、排気浄化触媒22へのNOx吸収作用が開始される前に、燃焼室5内における空燃比をリッチにすると、排気ガス中に含まれるNOxは排気浄化触媒22に吸収されることなく、NOxを浄化できることになる。
 このように、リーン空燃比による燃焼が開始された後、排気浄化触媒22へのNOx吸収作用が開始される前に、燃焼室5内における空燃比をリッチにし、それにより排気ガス中に含まれるNOxを排気浄化触媒22に吸収させることなく、NOxを浄化するようにしたNOxの浄化方法が、図10Aおよび10Bを参照しつつ説明した吸着NO利用のNOx浄化方法である。この場合、上述したように、排気浄化触媒22への流入排気ガスの空燃比がリーンからリッチに切換えられる周期ΔTL(図5C)が長くなると、排気浄化触媒22にNOxが硝酸塩の形で吸収され始める。この場合、排気浄化触媒22への流入排気ガスの空燃比のリーンからリッチへの切換え周期ΔTLが5秒程度よりも長くなるとNOxが硝酸塩の形で塩基性層63内に吸収され始め、従って図15に示されるようにこのリーンからリッチへの切換え周期ΔTLが5秒程度よりも長くなるとNOx浄化率が低下することになる。従ってこのリーンからリッチへの切換え周期ΔTLは5秒以下とする必要がある。因みに、図8Bのマップに示される各リーン時間ΔTLは5秒以下とされている。
 図16は、吸着NO利用のNOx浄化方法によりNOxを浄化するようにした場合のNOx浄化率を示している。図16に示されるように、この場合には、排気浄化触媒22の温度TCが高くなって400 ℃以上の高温になっても、NOx浄化率が低下しないことがわかる。
 従って、機関中負荷運転時に、図8Aに示すマップから算出された燃料噴射量WTと図8Bおよび8Cに示すマップから夫々算出されたリーン時間ΔTLおよびリッチ時間ΔTRとに従い燃料噴射弁11,12から燃料噴射を行うと、吸着NO利用のNOx浄化方法によりNOxの浄化作用が実行され、このときには排気浄化触媒22の温度TCが高くなっても、高いNOx浄化率が得られると共に三元触媒20の被毒を回復できることになる。
 このように、この実施例では、三元触媒20下流の機関排気通路内に排気浄化触媒22を配置し、排気浄化触媒22の排気ガス流通表面上には貴金属触媒61,62が担持されていると共に貴金属触媒61,62周りには塩基性の排気ガス流通表面部分が形成されており、排気浄化触媒22は、排気浄化触媒22に流入する排気ガスの空燃比を予め定められた範囲内の周期でもってリーンからリッチに一時的に切換えると排気ガス中に含まれるNOを還元する性質を有すると共に、リーンからリッチへの切換え周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸収量が増大する性質を有しており、機関運転時に燃焼室5内における空燃比をこの予め定められた範囲内の周期でもってリーンからリッチに一時的に切換え、それによって排気ガス中に含まれるNOxが浄化される。
 次に、通常は、排気浄化触媒22へのNOxの吸蔵放出作用を利用したNOxの浄化方法を用い、必要に応じて吸着NO利用のNOx浄化方法を用いるようにした別の実施例について説明する。この場合、排気浄化触媒22へのNO吸収能とNO吸着能とについて考慮する必要があり、従ってまず初めに、排気浄化触媒22へのNO吸収能とNO吸着能について説明することとする。
 図17Aは、図12に示す如く、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合におけるNO吸収能とNO吸着能とを示している。なお、図17Aにおいて縦軸は、NOx吸収能とNO吸着能の和であるNOxの吸蔵能を示しており、横軸は排気浄化触媒22の温度TCを示している。図17Aからわかるように、排気浄化触媒22の温度TCがほぼ400℃よりも低いときには、排気浄化触媒22の温度TCにかかわらずに、NOx吸収能およびNO吸着能は一定であり、従って、NOx吸収能とNO吸着能の和であるNOxの吸蔵能も、排気浄化触媒22の温度TCにかかわらずに一定となる。
 一方、排気浄化触媒22の温度TCが高くなると、白金Pt 61の表面上におけるNOxの酸化反応(NO→NO2)は速くなる。しかしながら、排気浄化触媒22の温度TCが高くなると、NO2が硝酸イオンNO3 -となる反応(NO2+Ba(CO32→Ba(NO32+CO2)が遅くなり、その結果、NOxが排気浄化触媒22に吸収されづらくなる。また、排気浄化触媒22の温度TCが高くなると、硝酸塩が熱分解してNO2の形で排気浄化触媒22から放出される。従って、図17Aに示されるように、排気浄化触媒22の温度TCが高くなって400℃以上の高温になるとNOx吸収能が急激に低下する。これに対し、白金Pt 61の表面へのNOの吸着量は排気浄化触媒22の温度TCの影響をほとんど受けない。従って、図17Aに示されるように、NO吸着能は排気浄化触媒22の温度TCが高くなってもほとんど変化しない。
 次に、図18Aおよび18Bを参照しつつ、リーン空燃比のもとで燃焼が行われているときの排気ガス中の酸素濃度と、NO吸着能、NOx吸収能との関係について説明する。最初に、白金Pt 61の表面への吸着について考えてみると、白金Pt 61の表面にはNOとO2とが競争吸着する。即ち、排気ガス中に含まれるNOの量がO2の量に比べて多くなればなるほど白金Pt 61の表面に吸着するNOの量は O2の量に比べて多くなり、これとは逆に、排気ガス中に含まれるO2の量がNOの量に比べて多くなればなるほど白金Pt 61の表面に吸着するNOの量はO2の量に比べて少なくなる。従って、排気浄化触媒22におけるNO吸着能は、図18Aに示されるように、排気ガス中の酸素濃度が高くなるほど低下する。
 一方、排気ガス中の酸素濃度が高くなればなるほど、排気ガス中のNOの酸化作用が促進され、排気浄化触媒22へのNOxの吸収が促進される。従って、図18Bに示されるように、排気浄化触媒22におけるNOx吸収能は、排気ガス中の酸素濃度が高くなればなるほど、高くなる。なお、図18Aおよび18Bにおいて、領域Xは、図12に示す如く、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合においてリーン空燃比のもとで燃焼が行われているときを示している。このときには、NO吸着能が低く、NOx吸収能が高いことがわかる。前述した図17Aは、このときのNO吸着能とNOx吸収能を示している。
 さて、図17Aを参照しつつ既に説明したように、排気浄化触媒22の温度TCが高くなって400℃以上の高温になるとNOx吸収能が急激に低下する。これに対し、NO吸着能は排気浄化触媒22の温度TCが高くなってもほとんど変化しない。従って、排気浄化触媒22の温度TCが高くなって400℃以上の高温になったときには、NOxの吸収作用を利用したNOx浄化方法を取りやめ、それに代えてNOの吸着作用を利用したNOx浄化方法を用いると、NOxを浄化し得るのではないかということが推測される。しかしながら、図17Aからわかるように、NO吸着能は低く、燃料消費量の増大を招くことなくNOの吸着作用を利用してNOxを浄化するには、NO吸着能を増大させる必要がある。
 この場合、NO吸着能を増大させるには、図18Aからわかるように、排気ガス中の酸素濃度を低下させればよいことになる。このときには、図18Bに示されるように、NOx吸収能は低下する。図18Aおよび18Bにおいて排気ガス中の酸素濃度を領域Yまで低下させたときのNOx吸収能およびNO吸着能が図17Bに示されている。このように排気ガス中の酸素濃度を低下させることによって、NO吸着能を増大させることができる。排気ガス中の酸素濃度を低下させるということは、リーン空燃比のもとで燃焼が行われているときの空燃比(ベース空燃比)を低下させることを意味しており、従ってベース空燃比を低下させることによってNO吸着能を増大させることができる。
 そこでこの実施例では、NOの吸着作用を利用してNOxを浄化するときには、即ち吸着NO利用のNOx浄化方法においては、ベース空燃比を低下させるようにしている。次に、このことについて、図19Aから図19Cを参照しつつ説明する。図19Aは、図12に示す場合と同様に、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合の燃焼室5内における空燃比(A/F)の変化を示している。なお、図19Aにおいて、(A/F)bはベース空燃比を示しており、Δ(A/F)rは空燃比のリッチ度合いを示しており、ΔTは空燃比のリーンからリッチへの切換え周期を示している。一方、図19Bは、NOの吸着作用を利用してNOxを浄化するようにした場合の燃焼室5内における空燃比(A/F)の変化を示している。なお、図19Bにおいても、(A/F)bはベース空燃比を示しており、Δ(A/F)rは空燃比のリッチ度合いを示しており、ΔTは空燃比のリッチ周期を示している。
 図19Aと図19Bとを比較するとわかるように、図19Bに示される如く、NOの吸着作用を利用してNOxを浄化するようにした場合には、図19Aに示される如く、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合におけるベース空燃比(A/F)bよりも小さいベース空燃比(A/F)bのもとで燃焼室5内における燃焼が行われると共に、図19Aに示される如く、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合におけるNO放出のための空燃比のリーンからリッチへの切換え周期ΔTよりも短い周期でもって燃焼室5内における空燃比がリーンからリッチに切換えられる。一方、図19Cは、燃焼室5内における空燃比が理論空燃比にフィードバック制御されている場合の燃焼室5内における空燃比の変化を示している。
 図20は、図19Bに示される如く、NOの吸着作用を利用してNOxを浄化するようにした場合の燃焼室5内における空燃比(A/F)の変化と、排気浄化触媒22に流入する排気ガスの空燃比(A/F)in の変化とを示している。この場合には、燃焼室5内における空燃比(A/F)がリッチにされると、三元触媒20では貯蔵されている酸素が放出されて時間t1の間、理論空燃比に維持され、それによって、HC、COおよびNOxが同時に低減される。この間、図20に示されるように、排気浄化触媒22に流入する排気ガスの空燃比(A/F)in は理論空燃比に維持される。次いで、三元触媒20の貯蔵酸素が消費されると、排気浄化触媒22に流入する排気ガスの空燃比(A/F)in が、時間t2の間、リッチとなる。このとき図10Bに示されるように、白金Pt 61の表面上に解離吸着しているNOは、一方ではN2となり、他方では還元性中間体NCOとなる。この還元性中間体NCOは生成後、暫らくの間、塩基性層63の表面上に保持又は吸着され続ける。
 次いで、燃焼室5内における空燃比(A/F)が再びリーンに戻されると、今度は三元触媒20に酸素が貯蔵される。このとき三元触媒20の触媒表面では空燃比が、時間t3の間、理論空燃比に維持され、それによりこのときも、HC、COおよびNOxが同時に低減される。次いで、時間t4の間、排気ガス中に含まれているNOxは、塩基性層63の表面上に保持又は吸着されている還元性中間体NCOと反応して還元性中間体NCOにより還元される。次いで、時間t5の間、排気ガス中に含まれるNOは、図10Aに示されるように、白金Pt 61の表面に解離して吸着する。
 このように、図19Bに示される如く、NOの吸着作用を利用してNOxを浄化するようにした場合には、NOの吸着作用を利用したNOxの浄化作用と、三元触媒20での酸素貯蔵機能を利用したNOxの浄化作用との二つの浄化作用が行われる。
 次に、機関の運転制御の概要について説明する。この実施例では、図20に示されるように、機関低負荷運転側の機関低負荷運転領域Iと、機関高負荷運転側の機関高負荷運転領域IIIと、機関低負荷運転領域Iおよび機関高負荷運転領域IIIの間に位置する機関中負荷運転領域IIとが予め設定されている。なお、図21の縦軸Lは要求負荷を示しており、横軸Nは機関回転数を示している。この場合、機関低負荷運転領域Iでは、図19Aに示されるように、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化するようにしたNOxの浄化作用が行われ、機関中負荷運転領域IIでは、図19Bに示されるように、NOの吸着作用を利用してNOxを浄化するようにしたNOxの浄化作用が行われる。なお、機関高負荷運転領域IIIでは、図19Cに示されるように、燃焼室5内における空燃比が理論空燃比にフィードバック制御される。
 即ち、本発明による実施例では、予め定められた機関低負荷運転領域Iでは燃焼室5内においてベース空燃比がリーンのもとで燃焼が行われると共に排気浄化触媒22からNOを放出すべきときには燃焼室5内における空燃比がリッチとされ、予め定められた機関高負荷運転領域IIIでは燃焼室5内における空燃比が理論空燃比にフィードバック制御され、予め定められた機関中負荷運転領域IIでは、機関低負荷運転領域Iにおけるベース空燃比よりも小さいベース空燃比のもとで燃焼室5内における燃焼が行われると共に、機関低負荷運転領域IにおけるNO放出のための空燃比のリッチ周期よりも短い周期でもって燃焼室5内における空燃比がリッチとされる。
 なお、図19Aから図19Cからわかるように、機関中負荷運転領域IIにおけるベース空燃比は、機関低負荷運転領域Iにおけるベース空燃比と理論空燃比との中間値であり、機関中負荷運転領域IIにおいて燃焼室5内における空燃比がリッチにされたときの空燃比のリッチの度合は、機関低負荷運転領域Iにおいて燃焼室5内における空燃比がリッチにされたときの空燃比のリッチの度合に比べて小さい。
 次に、低負荷運転から高負荷運転に移行するときを示す図22を参照しつつ、NOx浄化方法について説明する。なお、図22には、燃焼室5内への燃料噴射量の変化と、燃焼室5内における空燃比(A/F)の変化と、吸蔵NOx量ΣNOXの変化を示している。また、図22において、MAXIは許容NOx吸蔵量を示している。
 さて、図22において、機関低負荷運転領域Iにおいては、吸蔵NOx量ΣNOXが許容NOx吸蔵量MAXIを超えると、燃焼室5内における空燃比が一時的にリッチにされる。一方、排気浄化触媒22にNOが吸蔵されている状態で、図19Bに示される、NOの吸着作用を利用したNOxの浄化方法に切替えられると、NOの吸着作用を利用したNOxの浄化に切替えられた直後に、排気浄化触媒22に吸蔵されているNOの一部が還元されることなく放出される。そこで本発明による実施例では、図22に示されているように、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したときには、燃焼室5内における空燃比(A/F)が一時的にリッチにされる。
 機関中負荷運転領域IIでは図22に示されるように、リーン時間ΔTLが経過する毎に、燃焼室5内における空燃比が一時的にリッチにされる。このときには吸着NOを利用したNOxの浄化作用が行われると共に三元触媒20の被毒が回復される。一方、排気浄化触媒22にNOが吸蔵されている状態で、図19Cに示される、理論空燃比へのフィードバック制御によるNOxの浄化方法に切替えられると、理論空燃比へのフィードバック制御によるNOxの浄化方法に切替えられた直後に、排気浄化触媒22に吸蔵されているNOの一部が還元されることなく放出される。そこで本発明による実施例では、図22に示されているように、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したときには、燃焼室5内における空燃比(A/F)が一時的にリッチにされる。
 機関高負荷運転領域IIIでは、三元触媒20の酸素貯蔵量が零と最大酸素貯蔵量との中間値となるように、空燃比センサ27の出力信号に基づいて各燃料噴射弁11,12からの噴射量がフィードバック制御される。このとき、燃焼室5内における空燃比は理論空燃比に制御され、従って排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において同時に浄化される。
  なお、図22に示されるように空燃比がリッチにされると、このときアンモニアが発生する場合がある。しかしながら、本発明による実施例では、このアンモニアはNOx選択還元触媒23に吸着される。このNOx選択還元触媒23に吸着されたアンモニアは排気ガス中に含まれるNOxと反応し、NOxを還元するために使用される。
 図23に運転制御ルーチンを示す。このルーチンは一定時間毎の割込みによって実行される。
 図23を参照すると、まず初めにステップ80において、機関の運転状態が図21に示される機関高負荷運転領域IIIであるか否かが判別される。機関の運転状態が機関高負荷運転領域IIIでないときにはステップ81に進み、図13に示すマップから単位時間当りの排出NO量NOXAが算出される。次いでステップ82ではΣNOXに排出NO量NOXAを加算することによって吸蔵NO量ΣNOXが算出される。次いで、ステップ83では、機関の運転状態が図21に示される機関低負荷運転領域Iであるか否かが判別される。機関の運転状態が図21に示される機関低負荷運転領域Iであるときにはステップ84に進む。
 ステップ84では、NOx吸蔵量ΣNOXが許容NOx吸蔵量MAXIを超えたか否かが判別され、NOx吸蔵量ΣNOXが許容NOx吸蔵量MAXIを超えていないときには、ステップ85に進んで、燃焼室5内における空燃比が、機関の運転状態に応じて予め定められているリーン空燃比とされる。このときには、ベース空燃比がリーンのもとで燃焼が行われる。これに対し、ステップ84において、NOx吸蔵量ΣNOXが許容NOx吸蔵量MAXIを超えたと判断されたときには、ステップ86に進んで、燃焼室5内における空燃比が一時的にリッチとされ、ΣNOXがクリアされる。このとき、排気浄化触媒22に吸蔵されていたNOxが排気浄化触媒22から放出される。
 一方、ステップ83において、機関の運転状態が図21に示される機関低負荷運転領域Iではないと判断されたとき、即ち機関の運転状態が図21に示される機関中負荷運転領域IIであると判断されたときには、ステップ87に進んで、今、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したか否かが判別される。今、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したときにはステップ88に進んで燃焼室5内における空燃比が一時的にリッチにされる。これに対し、既に、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行しているときには
ステップ89に進む。ステップ89では、図8A,8Bおよび8Cから夫々、燃料噴射量WT、リーン時間ΔTLおよびリッチ時間ΔTRが算出され、これら燃料噴射量WT、リーン時間ΔTLおよびリッチ時間ΔTRに基づいて、図5Cに示される被毒回復が可能なリーン・リッチ制御が行われる。このとき、NOの吸着を利用したNOx浄化作用が行われる。
 一方、ステップ80において、機関の運転状態が図21に示される機関高負荷運転領域IIIであると判断されたときには、ステップ90に進んで、今、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したか否かが判別される。今、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したときにはステップ91に進んで燃焼室5内における空燃比が一時的にリッチにされる。これに対し、既に、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行しているときにはステップ92に進む。ステップ92では、燃焼室5内における空燃比が理論空燃比にフィードバック制御される。
 5  燃焼室
 6  点火栓
 11,12  燃料噴射弁
 14  サージタンク
 19  排気マニホルド
 20  三元触媒
 22  排気浄化触媒

Claims (8)

  1.  機関排気通路内に酸素貯蔵機能を有する三元触媒を配置し、該三元触媒の酸素貯蔵量が零と最大酸素貯蔵量との間の値となるように燃焼室内における空燃比を理論空燃比にフィードバック制御して排気ガス中に含まれるHC,COおよびNOxを該三元触媒において同時に浄化するようにした火花点火式内燃機関の排気浄化装置において、燃焼室内における空燃比が理論空燃比にフィードバック制御されると三元触媒に担持されている貴金属触媒の被毒量が次第に増大していく機関運転状態になったとき、又は該貴金属触媒の被毒量が増大して予め定められた許容量を超えたときに、三元触媒の酸素貯蔵量が最大酸素貯蔵量まで増大するように、燃焼室内における空燃比のリーンの度合いを、該空燃比が理論空燃比にフィードバック制御されているときに比べて大きくすると共に三元触媒の酸素貯蔵量が最大酸素貯蔵量に達した後も燃焼室内における空燃比をリーンに維持してその後にリッチに戻し、このとき燃焼室内における空燃比がリーンに維持される時間を、燃焼室内における空燃比がリッチのときの上記貴金属触媒の被毒量が大きいほど長くするようにした火花点火式内燃機関の排気浄化装置。
  2.  上記燃焼室内における空燃比がリーンに維持される時間は、機関負荷が高くなるほど長くされる請求項1に記載の火花点火式内燃機関の排気浄化装置。
  3.  上記燃焼室内における空燃比がリーンに維持される時間は、三元触媒の温度が高いほど短くされる請求項2に記載の火花点火式内燃機関の排気浄化装置。
  4.  燃焼室内における空燃比がリーンに維持された後にリッチに戻されたときのリッチ度合いは、三元触媒の酸素貯蔵量が零まで低下するように、該空燃比が理論空燃比にフィードバック制御されているときに比べて大きくすると共に三元触媒の酸素貯蔵量が零に達した後も燃焼室内における空燃比をリッチに維持した後にリーンに戻すようにした請求項1に記載の火花点火式内燃機関の排気浄化装置。
  5.  貴金属触媒の被毒量が次第に増大していく機関運転状態は、機関中負荷運転状態である請求項1に記載の火花点火式内燃機関の排気浄化装置。
  6.  上記三元触媒下流の機関排気通路内に排気浄化触媒を配置されており、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、排気浄化触媒に流入する排気ガスの空燃比を予め定められた範囲内の周期でもってリーンからリッチに一時的に切換えると排気ガス中に含まれるNOを還元する性質を有すると共に、該リーンからリッチへの切換え周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸収量が増大する性質を有しており、機関運転時において燃焼室内における空燃比が該予め定められた範囲内の周期でもってリーンからリッチに一時的に切換えられたときに該排気浄化触媒において排気ガス中に含まれるNOxが浄化される請求項1に記載の火花点火式内燃機関の排気浄化装置。
  7.  機関の運転領域が、機関低負荷運転側の予め定められた機関低負荷運転領域と、機関高負荷運転側の予め定められた機関高負荷運転領域と、該機関低負荷運転領域および該機関高負荷運転領域の間に位置する予め定められた機関中負荷運転領域からなり、該予め定められた機関低負荷運転領域では燃焼室内においてベース空燃比がリーンのもとで燃焼が行われると共に排気浄化触媒からNOを放出すべきときには燃焼室内における空燃比がリッチとされ、該予め定められた機関高負荷運転領域では燃焼室内における空燃比が理論空燃比にフィードバック制御され、該予め定められた機関中負荷運転領域では、該機関低負荷運転領域におけるベース空燃比よりも小さいベース空燃比のもとで燃焼室内における燃焼が行われると共に、該機関低負荷運転領域におけるNO放出のための空燃比のリッチ周期よりも短い周期でもって燃焼室内における空燃比がリッチとされる請求項6に記載の火花点火式内燃機関の排気浄化装置。
  8.  排気浄化触媒の触媒担体上には、貴金属触媒が担持されており、更にこの触媒担体上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層が形成されている請求項6に記載の火花点火式内燃機関の排気浄化装置。
PCT/JP2012/071693 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置 WO2014033836A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/071693 WO2014033836A1 (ja) 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置
EP12883497.5A EP2891777B1 (en) 2012-08-28 2012-08-28 Exhaust purification device for spark ignition internal combustion engine
US14/423,713 US9534552B2 (en) 2012-08-28 2012-08-28 Exhaust purification system of spark ignition type internal combustion engine
CN201280075496.8A CN104704214B (zh) 2012-08-28 2012-08-28 火花点火式内燃机的排气净化装置
JP2014532615A JP6015760B2 (ja) 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071693 WO2014033836A1 (ja) 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2014033836A1 true WO2014033836A1 (ja) 2014-03-06

Family

ID=50182686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071693 WO2014033836A1 (ja) 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US9534552B2 (ja)
EP (1) EP2891777B1 (ja)
JP (1) JP6015760B2 (ja)
CN (1) CN104704214B (ja)
WO (1) WO2014033836A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204533A (ja) * 2017-06-02 2018-12-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2021102944A (ja) * 2019-12-25 2021-07-15 トヨタ自動車株式会社 触媒劣化検出装置
JP2022007483A (ja) * 2020-06-26 2022-01-13 トヨタ自動車株式会社 排気浄化触媒の劣化診断装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204434B (zh) * 2013-02-20 2016-12-07 丰田自动车株式会社 内燃机的排气净化装置
JP6946871B2 (ja) * 2017-09-05 2021-10-13 トヨタ自動車株式会社 内燃機関の制御システム
IT201900003269A1 (it) * 2019-03-06 2020-09-06 Fpt Motorenforschung Ag Metodo e gruppo per controllare l'alimentazione di combustibile per un motore a combustione interna ad accensione comandata, in particolare per un motore alimentato a gas naturale

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076496A (ja) * 2003-08-29 2005-03-24 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2007046494A (ja) * 2005-08-08 2007-02-22 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2008038890A (ja) 2006-07-14 2008-02-21 Honda Motor Co Ltd 内燃機関の制御装置
JP2010071141A (ja) * 2008-09-17 2010-04-02 Toyota Motor Corp 内燃機関の排気浄化のための制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181994A (ja) * 1997-09-03 1999-03-26 Nippon Soken Inc 内燃機関の排ガス浄化用触媒の診断装置
JP3402200B2 (ja) * 1998-06-01 2003-04-28 日産自動車株式会社 内燃機関の排気浄化装置
DE10025034A1 (de) * 2000-05-20 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zum Betreiben einer Abgasreinigungsvorrichtung an einem Otto-Motor
JP3680217B2 (ja) * 2000-06-26 2005-08-10 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2003049685A (ja) * 2001-08-02 2003-02-21 Nissan Motor Co Ltd エンジンの排気浄化装置
JP4379232B2 (ja) 2004-07-09 2009-12-09 三菱自動車工業株式会社 排気ガス浄化装置
JP4710846B2 (ja) * 2007-02-21 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP2253821B1 (de) * 2009-05-22 2011-07-20 Umicore AG & Co. KG Verfahren zur Reinigung der Abgase eines Verbrennungsmotors mit einem Katalysator
CA2750738C (en) 2010-03-15 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP5868073B2 (ja) * 2011-08-29 2016-02-24 ダイハツ工業株式会社 内燃機関の制御装置
JP5783423B2 (ja) * 2012-04-06 2015-09-24 トヨタ自動車株式会社 排ガス浄化装置
WO2013179373A1 (ja) * 2012-05-28 2013-12-05 トヨタ自動車株式会社 触媒劣化判定システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076496A (ja) * 2003-08-29 2005-03-24 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2007046494A (ja) * 2005-08-08 2007-02-22 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2008038890A (ja) 2006-07-14 2008-02-21 Honda Motor Co Ltd 内燃機関の制御装置
JP2010071141A (ja) * 2008-09-17 2010-04-02 Toyota Motor Corp 内燃機関の排気浄化のための制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2891777A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204533A (ja) * 2017-06-02 2018-12-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2021102944A (ja) * 2019-12-25 2021-07-15 トヨタ自動車株式会社 触媒劣化検出装置
JP7151696B2 (ja) 2019-12-25 2022-10-12 トヨタ自動車株式会社 触媒劣化検出装置
JP2022007483A (ja) * 2020-06-26 2022-01-13 トヨタ自動車株式会社 排気浄化触媒の劣化診断装置
JP7264120B2 (ja) 2020-06-26 2023-04-25 トヨタ自動車株式会社 排気浄化触媒の劣化診断装置

Also Published As

Publication number Publication date
EP2891777B1 (en) 2016-11-16
US9534552B2 (en) 2017-01-03
US20150240733A1 (en) 2015-08-27
EP2891777A4 (en) 2016-01-27
CN104704214A (zh) 2015-06-10
JP6015760B2 (ja) 2016-10-26
EP2891777A1 (en) 2015-07-08
JPWO2014033836A1 (ja) 2016-08-08
CN104704214B (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
JP5131391B2 (ja) 内燃機関の排気浄化装置
JP4868097B1 (ja) 内燃機関の排気浄化装置
JP5182429B2 (ja) 内燃機関の排気浄化装置
WO2011114501A1 (ja) 内燃機関の排気浄化装置
WO2012029189A1 (ja) 内燃機関の排気浄化装置
WO2012108059A1 (ja) 内燃機関の排気浄化装置
JP6015760B2 (ja) 火花点火式内燃機関の排気浄化装置
JP5664801B2 (ja) 火花点火式内燃機関の排気浄化装置
JP5152415B2 (ja) 内燃機関の排気浄化装置
JP5748005B2 (ja) 内燃機関の排気浄化装置
JP5673861B2 (ja) 内燃機関の排気浄化装置
JP5835488B2 (ja) 内燃機関の排気浄化装置
JP5994931B2 (ja) 内燃機関の排気浄化装置
JP5991285B2 (ja) 内燃機関の排気浄化装置
JP5880776B2 (ja) 内燃機関の排気浄化装置
WO2013018234A1 (ja) 内燃機関の排気浄化装置
US9103259B2 (en) Exhaust purification system of internal combustion engine
WO2014024311A1 (ja) 火花点火式内燃機関の排気浄化装置
JP5168410B2 (ja) 内燃機関の排気浄化装置
JP6183537B2 (ja) 内燃機関の排気浄化装置
JP5741643B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532615

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012883497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012883497

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14423713

Country of ref document: US