WO2014033838A1 - 火花点火式内燃機関の排気浄化装置 - Google Patents

火花点火式内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2014033838A1
WO2014033838A1 PCT/JP2012/071705 JP2012071705W WO2014033838A1 WO 2014033838 A1 WO2014033838 A1 WO 2014033838A1 JP 2012071705 W JP2012071705 W JP 2012071705W WO 2014033838 A1 WO2014033838 A1 WO 2014033838A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
engine
catalyst
load operation
Prior art date
Application number
PCT/JP2012/071705
Other languages
English (en)
French (fr)
Inventor
櫻井 健治
昂章 中村
中山 茂樹
吉田 耕平
悠樹 美才治
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013552035A priority Critical patent/JP5664801B2/ja
Priority to EP12881142.9A priority patent/EP2740911B1/en
Priority to PCT/JP2012/071705 priority patent/WO2014033838A1/ja
Priority to CN201280036951.3A priority patent/CN103764961B/zh
Priority to US14/234,015 priority patent/US9494097B2/en
Publication of WO2014033838A1 publication Critical patent/WO2014033838A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust emission control device for a spark ignition type internal combustion engine.
  • the amount of ammonia adsorbed on the NO x selective reduction catalyst is controlled so as to be an optimum amount for reducing NO x .
  • adsorb ammonia there are two ways to adsorb ammonia: the adsorption method in which the adsorbed ammonia is easily desorbed and the adsorption method in which the adsorbed ammonia is difficult to desorb. While when it is possible to easily reduce the nO x by ammonia adsorbed, when the manner adsorbed ammonia adsorption be difficult desorbed can not be easily reduced to nO x by ammonia adsorption. Therefore, in the case of reducing the NO x by adsorbing ammonia has to be taken into account for how the adsorption of ammonia.
  • An object of the present invention is to provide an exhaust emission control device for a spark ignition type internal combustion engine that can reduce fuel consumption while favorably reducing NO x using adsorbed ammonia.
  • FIG. 1 is an overall view of a spark ignition type internal combustion engine.
  • FIG. 2 is a diagram schematically showing a surface portion of a three-way catalyst substrate.
  • 3A and 3B are diagrams schematically showing a surface portion and the like of the catalyst carrier of the NO x storage catalyst.
  • 4A and 4B are diagrams for explaining the oxidation-reduction reaction in the NO x storage catalyst.
  • FIG. 5 is a diagram showing NO x release control.
  • FIG. 6 is a diagram showing a map of the exhausted NO x amount NOXA.
  • FIG. 7 is a graph showing the NO x purification rate.
  • FIG. 8 is a diagram showing a change in the amount of desorbed ammonia based on a difference in the way of ammonia adsorption.
  • FIG. 9A and 9B are diagrams for explaining how ammonia is adsorbed.
  • FIG. 10 is a graph showing the relationship between the change in air-fuel ratio and the amount of ammonia generated.
  • FIG. 11 is a diagram showing the relationship between the change in the air-fuel ratio and the amount of ammonia generated.
  • FIG. 12 shows the feedback control of the air-fuel ratio in the combustion chamber to the stoichiometric air-fuel ratio.
  • 13A and 13B are diagrams for explaining the oxidation-reduction reaction in the NO x storage catalyst.
  • 14A and 14B are diagrams for explaining the NO x absorption ability and NO adsorption ability.
  • 15A and 15B are diagrams for explaining the NO x absorption ability and NO adsorption ability.
  • FIG. 16 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the three-way catalyst and the NO x storage catalyst.
  • FIG. 17 is a diagram showing the NO x purification rate.
  • FIG. 18 is a diagram showing an operation region of the engine.
  • FIG. 19 is a time chart showing changes in the fuel injection amount and the like during engine operation.
  • FIG. 20 is a flowchart for performing engine operation control.
  • FIG. 1 shows an overall view of a spark ignition type internal combustion engine.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a cylinder head
  • 4 is a piston
  • 5 is a combustion chamber
  • 6 is a spark plug
  • 7 is an intake valve
  • 8 is an intake port
  • 9 is an exhaust valve
  • Reference numeral 10 denotes an exhaust port.
  • each cylinder has an electronically controlled fuel injection valve 11 for injecting fuel into the combustion chamber 2 and an electronically controlled fuel for injecting fuel into the intake port 8.
  • a pair of fuel injection valves including the injection valves 12 is provided.
  • the intake port 8 of each cylinder is connected to a surge tank 14 via an intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake duct 15.
  • an intake air amount detector 17 and a throttle valve 18 driven by an actuator 18a are arranged.
  • the exhaust port 10 of each cylinder is connected to the inlet of the three-way catalyst 20 via the exhaust manifold 19, and the outlet of the three-way catalyst 20 is connected to the inlet of the NO x storage catalyst 22 via the exhaust pipe 21.
  • the outlet of the NO x storage catalyst 22 is connected to the NO x selective reduction catalyst 23.
  • the exhaust pipe 21 and the surge tank 14 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 24.
  • An electronically controlled EGR control valve 25 is disposed in the EGR passage 24, and a cooling device 26 for cooling the exhaust gas flowing in the EGR passage 24 is disposed around the EGR passage 24.
  • the engine cooling water is guided into the cooling device 26, and the exhaust gas is cooled by the engine cooling water.
  • the electronic control unit 30 is composed of a digital computer and includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36 connected to each other by a bidirectional bus 31. It comprises.
  • An air-fuel ratio sensor 27 for detecting the air-fuel ratio of the exhaust gas discharged from the engine is attached upstream of the three-way catalyst 20, and the oxygen concentration in the exhaust gas is detected downstream of the three-way catalyst 20.
  • an oxygen concentration sensor 28 is attached.
  • Output signals of the air-fuel ratio sensor 27, the oxygen concentration sensor 28, and the intake air amount detector 17 are input to the input port 35 via corresponding AD converters 37, respectively.
  • a load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35. On the other hand, the output port 36 is connected to the spark plug 6, the fuel injection valves 11 and 12, the throttle valve driving actuator 18 a and the EGR control valve 25 via the corresponding drive circuit 38.
  • FIG. 2 schematically shows the surface portion of the base 50 of the three-way catalyst 20.
  • an upper coat layer 51 and a lower coat layer 52 are formed on the catalyst carrier 50 in a laminated form.
  • the upper coat layer 51 is made of rhodium Rh and cerium Ce
  • the lower coat layer 52 is made of platinum Pt and cerium Ce.
  • the amount of cerium Ce contained in the upper coat layer 51 is smaller than the amount of cerium Ce contained in the lower coat layer 52.
  • the upper coat layer 51 can contain zirconia Zr soot
  • the lower coat layer 52 can contain palladium Pd soot.
  • the three-way catalyst 20 is contained in the exhaust gas when combustion is performed in the combustion chamber 5 under the stoichiometric air-fuel ratio, that is, when the air-fuel ratio of the exhaust gas discharged from the engine is the stoichiometric air-fuel ratio. It has a function of simultaneously reducing harmful components HC, CO and NO x contained therein. Therefore, when combustion is performed in the combustion chamber 5 under the stoichiometric air-fuel ratio, harmful components HC, CO and NO x contained in the exhaust gas are purified by the three-way catalyst 20.
  • the air-fuel ratio of the exhaust gas discharged from the combustion chamber 5 becomes almost the stoichiometric air-fuel ratio.
  • the injection amount from the fuel injection valves 11 and 12 is feedback controlled based on the detection signal of the air-fuel ratio sensor 27 so that the air-fuel ratio of the exhaust gas discharged from the combustion chamber 5 fluctuates around the stoichiometric air-fuel ratio. Is done.
  • FIG. 3A schematically shows the surface portion of the base 55 of the NO x storage catalyst 22.
  • the coat layer 56 is formed on the base 55 also in the NO x storage catalyst 22.
  • the coat layer 56 is made of, for example, an aggregate of powder
  • FIG. 3B shows an enlarged view of the powder.
  • noble metal catalysts 61 and 62 are supported on a catalyst carrier 60 made of alumina, for example, of this powder, and further, such as potassium K, sodium Na, and cesium Cs are supported on the catalyst carrier 60.
  • alkali metal barium Ba
  • alkaline earth metals such as calcium Ca, rare earth and silver Ag, such as lanthanides, copper Cu, iron Fe, at least selected from a metal which can donate electrons to NO x, such as iridium Ir
  • a basic layer 63 including one is formed.
  • the noble metal catalyst 61 is made of platinum Pt and the noble metal catalyst 62 is made of rhodium Rh.
  • any of the noble metal catalysts 61 and 62 can be made of platinum Pt.
  • palladium Pd can be supported on the catalyst carrier 60, or palladium Pd can be supported instead of rhodium Rh. That is, the noble metal catalysts 61 and 62 supported on the catalyst carrier 60 are composed of at least one of platinum Pt, rhodium Rh and palladium Pd.
  • FIGS. 4A and 4B shows an enlarged view of FIG. 3B.
  • the catalyst is oxidized on platinum Pt 61 to become NO 2 , and then absorbed into the basic layer 63 and diffused into the basic layer 63 in the form of nitrate ions NO 3 ⁇ to become nitrates.
  • NO x in the exhaust gas is absorbed in the basic layer 63 in the form of nitrate.
  • NO 2 is generated on the surface of platinum Pt 61, and NO x is absorbed in the basic layer 63 and nitrate is generated unless the NO x absorption capacity of the basic layer 63 is saturated.
  • the oxygen concentration in the exhaust gas flowing into the NO x storage catalyst 22 decreases, so that the reaction is in the reverse direction (NO 3 ⁇ ⁇ NO 2 ).
  • the nitrate absorbed in the basic layer 63 is successively released as nitrate ions NO 3 ⁇ from the basic layer 63 in the form of NO 2 as shown in FIG. 4B.
  • the released NO 2 is then reduced by the hydrocarbons HC and CO contained in the exhaust gas.
  • the engine intake passage when the ratio of the supplied air and fuel into the combustion chamber 5 and the NO x storage catalyst 22 upstream of the exhaust passage (hydrocarbon) is referred to as the air-fuel ratio of the exhaust gas, the NO x storage catalyst 22,
  • the air-fuel ratio of the exhaust gas flowing into the NO x storage catalyst 22 is lean, NO x is stored, and when the air-fuel ratio of the exhaust gas flowing into the NO x storage catalyst 22 becomes rich, the stored NO x is released. .
  • NO x in the exhaust gas is stored in the NO x storage catalyst 22.
  • the NO x storage capacity of the NO x storage catalyst 22 is saturated during that time, and as a result, the NO x storage catalyst 22 can store NO x. It will disappear. Therefore, temporarily rich air-fuel ratio in the combustion chamber 5 before the NO x storage capacity of the NO x storage catalyst 22 is saturated, thereby so that to release NO x from the NO x storage catalyst 22.
  • Figure 5 shows the NO x releasing control from the NO x storage catalyst 22 used in the embodiment according to the present invention.
  • the air-fuel ratio (A / F) at is temporarily made rich.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, that is, when the air-fuel ratio of the exhaust gas flowing into the NO x storage catalyst 22 is made rich, combustion is performed under the lean air-fuel ratio.
  • the NO x storage catalyst 22 to the occluded NO x is reduced is released all at once from the NO x storage catalyst 22. As a result, NO x is purified.
  • Occluded amount of NO x ⁇ NOX is calculated from the amount of NO x exhausted from the engine, for example. Is stored in advance in the ROM32 in the form of a map as shown in FIG. 6 as a function of the discharge amount of NO x NOXA is required load L and engine speed N which is discharged from the engine per unit time in this embodiment of the present invention, The occluded NO x amount ⁇ NOX is calculated from this exhausted NO x amount NOXA. In this case, the period during which the air-fuel ratio in the combustion chamber 5 is made rich is usually 1 minute or more.
  • Figure 7 shows the NO x purification rate when so as to purify NO x by absorbing and releasing action of the NO x such, NO x storage catalyst 22 as shown in FIG.
  • the horizontal axis in FIG. 7 indicates the catalyst temperature TC of the NO x storage catalyst 22.
  • reduced catalyst temperature TC When it extremely high NO x purification rate is obtained catalyst temperature TC becomes a high temperature of at least 400 ° C. when the 300 ° C. of 400 ° C. the NO x purification rate To do. The reason why the the catalyst temperature TC becomes equal to or higher than 400 ° C. NO x purification rate is lowered, when the catalyst temperature TC becomes equal to or higher than 400 ° C.
  • NO x becomes difficult occluded, also the form of NO 2 and nitrate is thermally decomposed This is because the NO x storage catalyst 22 is released. That is, as long as NO x is occluded in the form of nitrate, it is difficult to obtain a high NO x purification rate when the catalyst temperature TC is high.
  • the air-fuel ratio of the exhaust gas flowing into the NO x storage catalyst 22 is NO x is released when it is rich from the NO x storage catalyst 22.
  • NO x selective reduction catalyst 23 comprising ammonia from adsorbable zeolite downstream of the NO x storage catalyst 22 and is arranged, therefore, it occurs in the NO x storage catalyst 22
  • the ammonia thus absorbed is adsorbed by the NO x selective reduction catalyst 23.
  • NO x flowing out from the NO x storage catalyst 22 is reduced by the ammonia adsorbed on the NO x selective reduction catalyst 23. That is, in the present invention, when the air-fuel ratio of the exhaust gas flowing into the NO x storage catalyst 22 is maintained lean, NO x contained in the exhaust gas is stored in the NO x storage catalyst 22 and stored at this time. The NO x which has not been reduced is reduced by the ammonia adsorbed on the NO x selective reduction catalyst 23.
  • drawing schematically illustrating de 8 shows the relationship between the temperature TB of the release amount of ammonia and the NO x selective reduction catalyst 23, and the structure of the NO x selective reduction catalyst 23 from the NO x selective reduction catalyst 23 A method of adsorbing ammonia will be described with reference to 9A and 9B.
  • FIG. 8 shows a change in the amount of desorbed ammonia when the temperature TB of the NO x selective reduction catalyst 23 is gradually increased, and when the temperature TB of the NO x selective reduction catalyst 23 is increased from FIG. It can be seen that two peaks appear.
  • One peak (L acid point) in FIG. 8 is due to desorption of ammonia adsorbed on a weak acid point called Lewis acid point (L acid point) as shown in FIG. 9A, and the other peak in FIG.
  • the peak (B acid point) is due to the desorption of ammonia adsorbed on a strong acid point called a Bronsted acid point (B acid point) as shown in FIG. 9B.
  • the ammonia adsorbed at the Bronsted acid point (B acid point), that is, the strong acid point as shown in FIG. 9B comes to NO x when the temperature TB of the NO x selective reduction catalyst 23 is relatively low. Is not desorbed and desorbed only when the temperature TB of the NO x selective reduction catalyst 23 becomes high.
  • the temperature TB of the NO x selective reduction catalyst 23 does not rise to the temperature indicated by the B acid point in FIG. 8, and therefore, the Bronsted acid point (B acid point) as shown in FIG. 9B, that ammonia adsorbed on strong acid sites would not be used for the reduction of nO x. Therefore, in order to reduce NO x by the adsorbed ammonia, it is necessary to adsorb ammonia at a Lewis acid point (L acid point) as shown in FIG. 9A, that is, a weak acid point.
  • L acid point Lewis acid point
  • FIG. 10 shows the air-fuel ratio (A / F) in the combustion chamber 5 when NO x is purified using the NO x storage / release action to the NO x storage catalyst 22 during engine low load operation.
  • the change and the amount of ammonia generated in the NO x storage catalyst 22 are shown.
  • (A / F) b represents the base air-fuel ratio
  • ⁇ (A / F) r represents the richness of the air-fuel ratio
  • ⁇ T represents the rich cycle of the air-fuel ratio.
  • NO x increases the unit time per the NO x storage catalyst 22.
  • NO x is occluded in per unit time the NO x storage catalyst 22 is increased, the additional amount of fuel supplied to the air-fuel ratio in order to release the NO x per unit time to rich is increased.
  • the amount of additional fuel supplied per unit time increases, the amount of ammonia produced per unit time in the NO x storage catalyst 22 increases. That is, as the engine load increases, the amount of ammonia produced per unit time in the NO x storage catalyst 22 increases.
  • ammonia when ammonia reaches the NO x selective reduction catalyst 23, ammonia is adsorbed from a Lewis acid point (L acid point) that is easily adsorbed, that is, from a weak acid point, and when the amount adsorbed to the weak acid point is saturated, Bronsted is difficult to adsorb. Adsorption to an acid point (B acid point), that is, a strong acid point is started.
  • L acid point Lewis acid point
  • B acid point that is, a strong acid point
  • FIG. 11 shows the change in the air-fuel ratio (A / F) in the combustion chamber 5 and the amount of ammonia generated in the NO x storage catalyst 22 at this time.
  • (A / F) b represents the base air-fuel ratio
  • ⁇ (A / F) r represents the richness of the air-fuel ratio
  • ⁇ T represents the air-fuel ratio rich cycle.
  • the base air-fuel ratio (A / F) b is made lower than in the engine low-load operation shown in FIG. / F) r is reduced, and the air-fuel ratio rich cycle ⁇ T is shortened. That is, when the amount of additional fuel injection when the air-fuel ratio is made rich is increased, the amount of reducing agent such as hydrocarbon is also increased, so that the amount of ammonia generated tends to increase. Therefore, in order to reduce the additional fuel injection amount when the air-fuel ratio is made rich, as shown in FIG. 11, the base air-fuel ratio (A / F) b is lowered and the air-fuel ratio rich degree ⁇ (A / F F) r is decreased and the air-fuel ratio rich cycle ⁇ T is shortened.
  • NO x storage catalyst 22 is disposed, NO x selective reduction catalyst 23 is disposed in the engine exhaust passage downstream of NO x storage catalyst 22, and when the air-fuel ratio of the inflowing exhaust gas is made rich, NO x exhaust purification system of an internal combustion engine so as to reduce the NO x in the exhaust gas by ammonia adsorbed on the NO x selective reduction catalyst 23 together with the adsorbed ammonia produced in storage catalyst 22 to the NO x selective reduction catalyst 23
  • the engine is under low load operation, combustion is performed in the combustion chamber 5 with the base air-fuel ratio lean, and when the NO x storage catalyst 22 should release NO x , the air-fuel ratio in the combustion chamber 5 is reduced.
  • the base When the engine load becomes higher than during low engine load operation, the base is set so that the amount of ammonia produced per unit time when the air-fuel ratio is made rich is lower than during low engine load operation.
  • the air-fuel ratio is reduced, the degree of richness of the air-fuel ratio is reduced, and the cycle for enriching the air-fuel ratio is shortened.
  • FIG. 12 shows changes in the air-fuel ratio in the combustion chamber 5 when the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.
  • the base air-fuel ratio is reduced, the degree of richness of the air-fuel ratio is reduced, and the cycle for enriching the air-fuel ratio is shortened as compared with the low engine load operation.
  • Heading way but improves the purification action of the NO x by adsorbing ammonia in the NO x selective reduction catalyst 23, at the same time, that the NO x purification rate in the NO x storage catalyst 22 is improved by the present inventors It was done.
  • the new NO x purification method found by the present inventors is based on the NO adsorption action of the NO x storage catalyst 22.
  • FIGS. 13A and 13B show an enlarged view of FIG. 3B, that is, a surface portion of the catalyst carrier 60 of the NO x storage catalyst 22.
  • FIG. 13A shows the time when combustion is performed under a lean air-fuel ratio
  • FIG. 13B shows the time when the air-fuel ratio in the combustion chamber 5 is made rich.
  • NO x contained in the exhaust gas is absorbed into the basic layer 63 as described above.
  • Part of the NO contained in the exhaust gas is dissociated and adsorbed on the surface of platinum Pt 61 as shown in FIG. 13A.
  • the adsorption amount of NO on the surface of the platinum Pt 61 increases with the passage of time, and therefore, the adsorption amount of NO on the NO x storage catalyst 22 increases with the passage of time.
  • NO x contained in the exhaust gas is NO. is absorbed in the x storage catalyst 22, as on the other hand shown in FIG. 13A, NO contained in the exhaust gas is adsorbed on the NO x storage catalyst 22. That is, at this time, NO x contained in the exhaust gas is stored in the NO x storage catalyst 22.
  • the air-fuel ratio is made rich in the combustion chamber 5
  • the NO x storage catalyst 22 to the absorption or adsorption once was NO x, i.e. NO x NO x that was stored in the storage catalyst 22 is the NO x storage It will be released from the catalyst 22.
  • FIG. 14A shows the NO x absorption ability and the NO adsorption ability when NO x is purified using the NO x storage / release action to the NO x storage catalyst 22, as shown in FIG.
  • the vertical axis in FIG. 14A shows the storage capacity of the NO x which is the sum of the NO x absorption ability and NO adsorption capacity
  • the horizontal axis represents the temperature TC of the NO x storage catalyst 22.
  • Figure 14A when lower than the temperature TC approximately 400 ° C.
  • NO x absorption capacity and NO adsorption capacity is constant,
  • storage capacity of the NO x which is the sum of the absorption capacity and NO adsorption capacity NO x also becomes constant regardless of the temperature TC of the NO x storage catalyst 22.
  • the amount of NO quantity of NO contained in the exhaust gas is adsorbed on the surface of The more the more the platinum Pt 61 as compared to the amount of O 2 becomes more than the amount of O 2, on the contrary As the amount of O 2 contained in the exhaust gas increases as compared with the amount of NO, the amount of NO adsorbed on the surface of platinum Pt 61 decreases as compared with the amount of O 2 . Therefore, the NO adsorption capacity of the NO x storage catalyst 22 decreases as the oxygen concentration in the exhaust gas increases, as shown in FIG. 15A.
  • FIG. 15B shows the NO x absorption capacity of the NO x storage catalyst 22 increases as the oxygen concentration in the exhaust gas increases.
  • region X as shown in FIG. 5, a lean air-fuel ratio in the case that purifies NO x by using insertion releasing action of the NO x into the NO x storage catalyst 22 It shows when combustion is taking place. At this time, it can be seen that the NO adsorption capacity is low and the NO x absorption capacity is high.
  • FIG. 14A described above shows the NO adsorption capacity and the NO x absorption capacity at this time.
  • the oxygen concentration in the exhaust gas may be decreased.
  • NO x absorption ability is reduced.
  • FIG. 14B shows the NO x absorption ability and NO adsorption ability when the oxygen concentration in the exhaust gas is lowered to the region Y in FIGS. 15A and 15B.
  • FIG. 16 shows the change in the air-fuel ratio (A / F) in the combustion chamber 5 when the NO x is purified by utilizing the NO adsorption action and the NO x storage catalyst 22 as shown in FIG. 2 shows the change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the engine.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, the oxygen stored in the three-way catalyst 20 is released and maintained at the stoichiometric air-fuel ratio for a time t1, Thereby, HC, CO and NO x are simultaneously reduced. During this time, as shown in FIG.
  • the air-fuel ratio (A / F) in of the exhaust gas flowing into the NO x storage catalyst 22 is maintained at the stoichiometric air-fuel ratio.
  • the air-fuel ratio (A / F) in of the exhaust gas flowing into the NO x storage catalyst 22 becomes rich during the time t2.
  • NO dissociated and adsorbed on the surface of platinum Pt 61 becomes N 2 on the one hand and a reducing intermediate NCO on the other hand.
  • the reducing intermediate NCO continues to be held or adsorbed on the surface of the basic layer 63 for a while after the generation.
  • the base air-fuel ratio is made smaller, the degree of richness of the air-fuel ratio is made smaller, and the air-fuel ratio is made richer than when the engine load is low.
  • the purification action of the NO x utilizing the adsorption NO, the and purification action of the NO x using the oxygen storage function of a three-way catalyst 20 and adsorbed on the NO x selective reduction catalyst 23 Three purification actions are performed, including NO x purification action by ammonia.
  • the NO x purification rate at this time is shown in FIG. As shown in FIG. 17, in this case, it is understood that the NO x purification rate does not decrease even when the temperature TC of the NO x storage catalyst 22 increases and reaches a high temperature of 400 ° C. or higher.
  • the engine low load operation region I on the engine low load operation side, the engine high load operation region III on the engine high load operation side, and the engine low load operation region I Further, an engine middle load operation region II located between the engine high load operation region III is preset.
  • shaft L of FIG. 18 has shown the required load
  • the horizontal axis N has shown the engine speed.
  • the engine low load operating region I as shown in FIG. 10
  • the NO x purification action is performed in which NO x is purified by utilizing the NO adsorption action.
  • the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.
  • the three-way catalyst 20 is disposed in the engine exhaust passage upstream of the NO x storage catalyst 22, and the engine operating range is defined as a predetermined engine low load operating range I on the engine low load operating side.
  • combustion is performed in the combustion chamber 5 while the base air-fuel ratio is lean, and when the NO x storage catalyst 22 should release NO x , the air-fuel ratio in the combustion chamber 5 Is rich, the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio in a predetermined engine high load operation region III, and the air-fuel ratio is made rich in a predetermined engine medium load operation region II.
  • the base air-fuel ratio in the engine medium load operation region II is an intermediate value between the base air fuel ratio and the stoichiometric air fuel ratio in the engine low load operation region I.
  • FIG. 19 shows changes in the fuel injection amount into the combustion chamber 5, changes in the air-fuel ratio (A / F) in the combustion chamber 5, and changes in the stored NO x amount ⁇ NOX.
  • MAXI represents the first allowable NO x storage amount
  • MAX II represents the second allowable NO x storage amount.
  • the second allowable NO x storage amount MAXII is set to a smaller value than the first allowable NO x storage amount MAXI.
  • the air-fuel ratio in the combustion chamber 5 is temporarily made rich.
  • the temperature of the NO x storage catalyst 22 is high, so that the NO x storage catalyst 22 hardly absorbs NO x , and most of the NO x is composed of adsorbed NO. Therefore, in other words, the NO adsorption amount adsorbed by the NO x storage catalyst 22 is calculated, and the NO adsorption amount ⁇ NOX is calculated when the engine is operating in the engine middle load operation region II.
  • the predetermined allowable NO adsorption amount MAXII is exceeded, the air-fuel ratio (A / F) in the combustion chamber 5 is made rich.
  • the NO x storage amount ⁇ NOX that stored in the NO x storage catalyst 22 are calculated, when the operation of the engine is performed in the engine low load operating region I, the NO x storage When the amount ⁇ NOX exceeds the predetermined first allowable NO x storage amount MAXI, the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, and the engine is operated in the engine middle load operation region II.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, and the second The allowable NO x storage amount MAXII is a smaller value than the first allowable NO x storage amount MAXI.
  • the injection amounts from the fuel injection valves 11 and 12 are feedback-controlled based on the output signal of the air-fuel ratio sensor 27 so that the air-fuel ratio in the combustion chamber 5 becomes the stoichiometric air-fuel ratio. .
  • harmful components HC, CO and NO x contained in the exhaust gas are simultaneously purified in the three-way catalyst 20.
  • FIG. 20 shows an operation control routine. This routine is executed by interruption every predetermined time.
  • step 80 it is judged if the engine operating state is an engine high load operation region III shown in FIG.
  • step 81 the discharge amount of NO x NOXA per unit time from the map shown in FIG. 6 is calculated.
  • occluded amount of NO x ⁇ NOX is calculated by adding the discharge amount of NO x NOXA to ⁇ NOX step 82.
  • step 83 it is judged if the engine operating state is an engine low load operating region I shown in FIG. When the engine operating state is in the engine low load operation region I shown in FIG.
  • step 84 the NO x storage amount ⁇ NOX is discriminated whether or not more than the first allowable the NO x storage amount MAXI is, when the NO x storage amount ⁇ NOX has not exceeded the first tolerance the NO x storage amount MAXI, the step Proceeding to 85, the air-fuel ratio in the combustion chamber 5 is set to a lean air-fuel ratio that is predetermined according to the operating state of the engine. At this time, combustion is performed with the base air-fuel ratio lean.
  • step 86 the routine proceeds to step 86, where the air-fuel ratio in the combustion chamber 5 becomes temporarily rich. ⁇ NOX is cleared. At this time, NO x NO x that was stored in the storage catalyst 22 is released from the NO x storage catalyst 22.
  • step 83 when it is determined in step 83 that the engine operating state is not the engine low load operating region I shown in FIG. 18, that is, the engine operating state is the engine medium load operating region II shown in FIG.
  • the routine proceeds to step 87, where it is determined whether or not the engine operating state has shifted from the engine low load operation region I to the engine middle load operation region II.
  • step 88 the routine proceeds to step 88 where the air-fuel ratio in the combustion chamber 5 is temporarily made rich.
  • the routine proceeds to step 89.
  • step 89 it is determined whether or not the NO x selective reduction catalyst 23 has deteriorated. In this case, for example, when the travel distance of the vehicle exceeds a predetermined distance, it is determined that the NO x selective reduction catalyst 23 has deteriorated. When it is determined at step 89 that the NO x selective reduction catalyst 23 has not deteriorated, the routine proceeds to step 90, where it is determined whether or not the NO x storage amount ⁇ NOX exceeds the second allowable NO x storage amount MAXII. .
  • the routine proceeds to step 91, where the air-fuel ratio in the combustion chamber 5 is set to a lean air space that is predetermined according to the operating state of the engine.
  • the fuel ratio is set.
  • combustion is performed with the base air-fuel ratio lean. Note that the base air-fuel ratio at this time is smaller than the base air-fuel ratio in the engine low load operation region I.
  • step 90 when it is determined in step 90 that the NO x storage amount ⁇ NOX exceeds the second allowable NO x storage amount MAXII, the routine proceeds to step 92, where the air-fuel ratio in the combustion chamber 5 is temporarily rich. ⁇ NOX is cleared. At this time, NO x NO x that was stored in the storage catalyst 22 is released from the NO x storage catalyst 22.
  • step 89 when the NO x selective reduction catalyst 23 is judged to have deteriorated in step 89, it is impossible to perform the purification action of the NO x using the longer adsorption of ammonia in the NO x selective reduction catalyst 23. Accordingly, at this time, the routine proceeds to step 93 where the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.
  • step 80 when it is determined in step 80 that the engine operating state is the engine high load operating region III shown in FIG. 18, the routine proceeds to step 94, where the engine operating state is now changed from the engine medium load operating region II. It is determined whether or not the engine has shifted to the high engine load operation region III. Now, when the engine operating state shifts from the engine middle load operation region II to the engine high load operation region III, the routine proceeds to step 95 where the air-fuel ratio in the combustion chamber 5 is temporarily made rich. On the other hand, when the engine operating state has already shifted from the engine middle load operation region II to the engine high load operation region III, the routine proceeds to step 96. In step 96, the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.
  • combustion chamber 6 spark plugs 11 and 12 fuel injection valve 14 surge tank 19 exhaust manifold 20 a three-way catalyst 22 NO x storage catalyst 23 NO x selective reduction catalyst

Abstract

 機関排気通路内にNOx吸蔵触媒(22)とNOx選択還元触媒(23)とが配置される。機関低負荷運転領域では燃焼室(5)内においてベース空燃比がリーンのもとで燃焼が行われると共にNOx吸蔵触媒(22)からNOを放出すべきときには燃焼室(5)内における空燃比がリッチとされる。機関中負荷運転領域では、空燃比がリッチにされたときに単位時間当り生成されるアンモニア量が機関低負荷運転領域に比べて低下するように、ベース空燃比が小さくされ、空燃比のリッチの度合が小さくされ、空燃比をリッチにする周期が短くされる。

Description

火花点火式内燃機関の排気浄化装置
 本発明は火花点火式内燃機関の排気浄化装置に関する。
 機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOを吸蔵し、流入する排気ガスの空燃比がリッチにされると吸蔵したNOを放出するNOx吸蔵触媒を配置すると共にNOx吸蔵触媒下流の機関排気通路内にNOx選択還元触媒を配置し、NOx吸蔵触媒に流入する排気ガスの空燃比がリッチにされたときにNOx吸蔵触媒において生成されるアンモニアをNOx選択還元触媒に吸着させ、吸着されたアンモニアによって排気ガス中に含まれるNOxを還元するようにしたディーゼル機関が公知である(例えば特許文献1を参照)。
このディーゼル機関では、NOx選択還元触媒に吸着されているアンモニア量がNOxを還元するのに最適な量となるように制御される。しかしながら、アンモニアの吸着の仕方には、吸着したアンモニアが脱離しやすい吸着の仕方と吸着したアンモニアが脱離しづらい吸着の仕方との二つの吸着の仕方があり、アンモニアが脱離しやすい吸着の仕方をした場合には吸着したアンモニアによってNOxを容易に還元することができるが、吸着したアンモニアが脱離しづらい吸着の仕方をした場合には吸着したアンモニアによってNOxを容易に還元することができない。従って、吸着したアンモニアによってNOxを還元する場合には、アンモニアの吸着の仕方について考慮を払わなければならない。
特開2008-286102号公報
 しかしながら、上述のディーゼル機関では、アンモニアの吸着の仕方について考慮が払われておらず、従って吸着したアンモニアを用いてNOxを適切に還元することができないという問題がある。
 本発明の目的は、吸着したアンモニアを用いてNOを良好に還元しつつ燃料消費量を低減することのできる火花点火式内燃機関の排気浄化装置を提供することにある。
 本発明によれば、機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOを吸蔵し、流入する排気ガスの空燃比がリッチにされると吸蔵したNOを放出するNOx吸蔵触媒を配置し、NOx吸蔵触媒下流の機関排気通路内にNOx選択還元触媒を配置して流入する排気ガスの空燃比がリッチにされたときにNOx吸蔵触媒において生成されたアンモニアをNOx選択還元触媒に吸着させると共にNOx選択還元触媒に吸着されているアンモニアによって排気ガス中のNOを還元するようにした火花点火式内燃機関の排気浄化装置において、機関低負荷運転時には、燃焼室内においてベース空燃比がリーンのもとで燃焼が行われると共にNOx吸蔵触媒からNOを放出すべきときには燃焼室内における空燃比がリッチとされ、機関低負荷運転時に比べて機関負荷が高くなったときには、空燃比がリッチにされたときに単位時間当り生成されるアンモニア量が機関低負荷運転時に比べて低下するように、ベース空燃比が小さくされ、空燃比のリッチの度合が小さくされ、空燃比をリッチにする周期が短くされる火花点火式内燃機関の排気浄化装置が提供される。
 吸着したアンモニアによってNOxを良好に浄化しつつ燃料消費量を低減することができる。
図1は火花点火式内燃機関の全体図である。 図2は三元触媒の基体の表面部分を図解的に示す図である。 図3Aおよび3BはNOx吸蔵触媒の触媒担体の表面部分等を図解的に示す図である。 図4Aおよび4BはNOx吸蔵触媒における酸化還元反応を説明するための図である。 図5はNOx放出制御を示す図である。 図6は排出NOx量NOXAのマップを示す図である。 図7はNOx浄化率を示す図である。 図8はアンモニアの吸着の仕方の差異に基づく脱離アンモニア量の変化を示す図である。 図9Aおよび9Bはアンモニアの吸着の仕方を説明するための図である。 図10は空燃比の変化とアンモニア発生量との関係を示す図である。 図11は空燃比の変化とアンモニア発生量との関係を示す図である。 図12は燃焼室内における空燃比を理論空燃比にフィードバック制御したときを示す図である。 図13Aおよび13BはNOx吸蔵触媒における酸化還元反応を説明するための図である。 図14Aおよび14BはNOx吸収能およびNO吸着能を説明するための図である。 図15Aおよび15Bは NOx吸収能およびNO吸着能を説明するための図である。 図16は三元触媒およびNOx吸蔵触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。 図17はNOx浄化率を示す図である。 図18は機関の運転領域を示す図である。 図19は機関運転時における燃料噴射量等の変化を示すタイムチャートである。 図20は機関の運転制御を行うためのフローチャートである。
 図1に火花点火式内燃機関の全体図を示す。
 図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。図1に示されるように、各気筒は燃焼室2内に向けて燃料を噴射するための電子制御式燃料噴射弁11と、吸気ポート8内に向けて燃料を噴射するための電子制御式燃料噴射弁12からなる一対の燃料噴射弁を具備する。各気筒の吸気ポート8は吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気ダクト15を介してエアクリーナ16に連結される。吸気ダクト15内には吸入空気量検出器17と、アクチュエータ18aより駆動されるスロットル弁18とが配置される。
 一方、各気筒の排気ポート10は排気マニホルド19を介して三元触媒20の入口に連結され、三元触媒20の出口は排気管21を介してNOx吸蔵触媒22の入口に連結される。NOx吸蔵触媒22の出口はNOx選択還元触媒23に連結される。一方、排気管21とサージタンク14とは排気ガス再循環(以下、EGRと称す)通路24を介して互いに連結される。EGR通路24内には電子制御式EGR制御弁25が配置され、更にEGR通路24周りにはEGR通路24内を流れる排気ガスを冷却するための冷却装置26が配置される。図1に示される実施例では機関冷却水が冷却装置26内に導かれ、機関冷却水によって排気ガスが冷却される。
 電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。三元触媒20の上流には機関から排出される排気ガスの空燃比を検出するための空燃比センサ27が取り付けられており、三元触媒20の下流には排気ガス中の酸素濃度を検出するための酸素濃度センサ28が取付けられている。これら空燃比センサ27、酸素濃度センサ28および吸入空気量検出器17の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁11,12、スロットル弁駆動用アクチュエータ18aおよびEGR制御弁25に接続される。
 図2は三元触媒20の基体50の表面部分を図解的に示している。図2に示されるように、触媒担体50上には上部コート層51と下部コート層52とが積層状に形成されている。上部コート層51はロジウムRh とセリウムCe からなり、下部コート層52は白金Pt とセリウムCe からなる。なお、この場合、上部コート層51に含まれるセリウムCe の量は下部コート層52に含まれるセリウムCe の量よりも少ない。また、上部コート層51内にはジルコニアZr を含有せしめることができるし、下部コート層52内にはパラジウムPd を含有せしめることもできる。
 この三元触媒20は、燃焼室5内において理論空燃比のもとで燃焼が行われているとき、即ち機関から排出される排気ガスの空燃比が理論空燃比のときに、排気ガス中に含まれる有害成分HC、COおよびNOxを同時に低減する機能を有している。従って、燃焼室5内において理論空燃比のもとで燃焼が行われているときには、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において浄化されることになる。
 なお、燃焼室5内における空燃比を完全に理論空燃比に保持し続けることは不可能であり、従って実際には、燃焼室5から排出された排気ガスの空燃比がほぼ理論空燃比となるように、即ち燃焼室5から排出される排気ガスの空燃比が理論空燃比を中心して振れるように、燃料噴射弁11,12からの噴射量が空燃比センサ27の検出信号に基づいてフィードバック制御される。また、この場合,排気ガスの空燃比の変動の中心が理論空燃比からずれたときには、酸素濃度センサ28の出力信号に基づいて排気ガスの空燃比の変動の中心が理論空燃比に戻るように調整される。このように燃焼室5から排出される排気ガスの空燃比が理論空燃比を中心して振れたとしても、セリウムCe による三元触媒20の酸素貯蔵能力により、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において良好に浄化される。
 図3AはNOx吸蔵触媒22の基体55の表面部分を図解的に示している。図3Aに示されるように、NOx吸蔵触媒22においても基体55上にはコート層56が形成されている。このコート層56は例えば粉体の集合体からなり、図3Bはこの粉体の拡大図を示している。図3Bを参照すると、この粉体の例えばアルミナからなる触媒担体60上には貴金属触媒61,62が担持されており、更にこの触媒担体60上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層63が形成されている。
 一方、図3Bにおいて貴金属触媒61は白金Pt からなり、貴金属触媒62はロジウムRh からなる。なおこの場合、いずれの貴金属触媒61,62も白金Pt から構成することができる。また、触媒担体60上には白金Pt およびロジウムRh に加えて更にパラジウムPd を担持させることができるし、或いはロジウムRh に代えてパラジウムPd を担持させることができる。即ち、触媒担体60に担持されている貴金属触媒61,62は白金Pt、ロジウムRh およびパラジウムPd の少なくとも一つにより構成される。
  次に、NOx吸蔵触媒22のNOxの吸放出作用について、図3Bの拡大図を示す図4Aおよび4Bを参照しつつ説明する。
 さて、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、排気ガス中の酸素濃度が高く、従ってこのとき排気ガス中に含まれるNOは図4Aに示されるように、白金Pt 61上において酸化されてNO2となり、次いで
塩基性層63内に吸収されて硝酸イオンNO3 -の形で塩基性層63内に拡散し、硝酸塩となる。このようにして排気ガス中のNOxが硝酸塩の形で塩基性層63内に吸収されることになる。排気ガス中の酸素濃度が高い限り白金Pt 61の表面でNO2が生成され、塩基性層63のNOx吸収能力が飽和しない限りNOxが塩基性層63内に吸収されて硝酸塩が生成される。
 これに対し、燃焼室5内における空燃比がリッチにされると、NOx吸蔵触媒22に流入する排気ガス中の酸素濃度が低下するために、反応が逆方向(NO3 -→NO2)に進み、斯くして塩基性層63内に吸収されている硝酸塩は順次硝酸イオンNO3 -となって図4Bに示されるようにNO2の形で塩基性層63から放出される。次いで放出されたNO2は排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
 なお、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、NOが白金Pt 61の表面に吸着し、従って排気ガス中のNOはこの吸着作用によってもNOx吸蔵触媒22に保持されることになる。この白金Pt 61の表面に吸着したNOは、燃焼室5内における空燃比がリッチにされると、白金Pt 61の表面から脱離せしめられる。従って吸収および吸着の双方を含む用語として吸蔵という用語を用いると、塩基性層63はNOxを一時的に吸蔵するためのNOx吸蔵剤の役目を果していることになる。従って、機関吸気通路、燃焼室5およびNOx吸蔵触媒22上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOx吸蔵触媒22は、NOx吸蔵触媒22に流入する排気ガスの空燃比がリーンのときにはNOxを吸蔵し、NOx吸蔵触媒22に流入する排気ガスの空燃比がリッチになると吸蔵したNOxを放出することになる。
 このように排気ガスの空燃比がリーンであるとき、即ちリーン空燃比のもとで燃焼が行われているときには、排気ガス中のNOxがNOx吸蔵触媒22に吸蔵される。しかしながら、リーン空燃比のもとでの燃焼が継続して行われると、その間にNOx吸蔵触媒22のNOx吸蔵能力が飽和してしまい、その結果NOx吸蔵触媒22によりNOxを吸蔵できなくなってしまう。従って、NOx吸蔵触媒22のNOx吸蔵能力が飽和する前に燃焼室5内における空燃比を一時的にリッチにし、それによってNOx吸蔵触媒22からNOxを放出させるようにしている。
 図5は、本発明による実施例において用いられているNOx吸蔵触媒22からのNOx放出制御を示している。図5を参照すると、本発明による実施例では、NOx吸蔵触媒22に吸蔵された吸蔵NOx量ΣNOXが予め定められた第一の許容NOx吸蔵量MAXIを越えたときに燃焼室5内における空燃比(A/F)が一時的にリッチにされる。燃焼室5内における空燃比(A/F)がリッチにされると、即ちNOx吸蔵触媒22に流入する排気ガスの空燃比がリッチにされると、リーン空燃比のもとで燃焼が行われているときに、NOx吸蔵触媒22に吸蔵されたNOxがNOx吸蔵触媒22から一気に放出されて還元される。それによってNOxが浄化される。
 吸蔵NOx量ΣNOXは例えば機関から排出されるNOx量から算出される。本発明による実施例では機関から単位時間当り排出される排出NOx量NOXAが要求負荷Lおよび機関回転数Nの関数として図6に示すようなマップの形で予めROM32内に記憶されており、この排出NOx量NOXAから吸蔵NOx量ΣNOXが算出される。この場合、燃焼室5内における空燃比がリッチにされる周期は通常1分以上である。 
 図7は、図5に示すような、NOx吸蔵触媒22のNOxの吸蔵放出作用によりNOxを浄化するようにした場合のNOx浄化率を示している。なお、図7の横軸はNOx吸蔵触媒22の触媒温度TCを示している。この場合には、図7からわかるように、触媒温度TCが300℃から400℃のときには極めて高いNOx浄化率が得られるが触媒温度TCが400℃以上の高温になるとNOx浄化率が低下する。このように触媒温度TCが400℃以上になるとNOx浄化率が低下するのは、触媒温度TCが400℃以上になるとNOxが吸蔵されづらくなり、また硝酸塩が熱分解してNO2の形でNOx吸蔵触媒22から放出されるからである。即ち、NOxを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNOx浄化率を得るのは困難となる。
 ところで、リーン空燃比のもとで燃焼が行われているときには、理論空燃比のもとで燃焼が行われているときに比べて、燃料消費量が少なくなる。従って、燃料消費量を低減するには、できる限り、リーン空燃比のもとで燃焼を行うことが好ましい。しかしながら、図7からわかるように、NOx吸蔵触媒22の温度TCが高くなると、NOx浄化率が低下する。これに対し、理論空燃比のもとで燃焼が行われているときには、三元触媒20の温度TCが高くなっても、NOx浄化率が低下しない。そこで、従来より、NOx吸蔵触媒22の温度TCが低い機関低負荷運転時には、リーン空燃比のもとで燃焼を行い、NOx吸蔵触媒22の温度TCが高くなる機関高負荷運転時には、理論空燃比のもとで燃焼を行うようにしている。
 さて、上述したように、NOx吸蔵触媒22に流入する排気ガスの空燃比がリッチにされるとNOx吸蔵触媒22からNOxが放出される。このときNOx吸蔵触媒22から放出された大部分のNOxはNとなるが、一部のNOxは、排気ガス中に含まれる炭化水素や水の熱分解作用により発生する水素と反応してアンモニアとなる。一方、図1に示されるように本発明では、NOx吸蔵触媒22の下流にアンモニアを吸着可能なゼオライトからなるNOx選択還元触媒23が配置されており、従って、NOx吸蔵触媒22において発生したアンモニアはNOx選択還元触媒23に吸着される。この場合、NOx吸蔵触媒22から流出したNOxはNOx選択還元触媒23に吸着されたアンモニアによって還元される。即ち、本発明では、NOx吸蔵触媒22に流入する排気ガスの空燃比がリーンに維持されているときには、排気ガス中に含まれるNOxはNOx吸蔵触媒22に吸蔵され、このとき吸蔵されなかったNOxはNOx選択還元触媒23に吸着しているアンモニアによって還元されることになる。
 ところで、冒頭で述べたように、NOx選択還元触媒23へのアンモニアの吸着の仕方には、吸着したアンモニアが脱離しやすい吸着の仕方と吸着したアンモニアが脱離しづらい吸着の仕方との二つの吸着の仕方があり、アンモニアが脱離しやすい吸着の仕方をした場合には吸着したアンモニアによってNOxを容易に還元することができるが、吸着したアンモニアが脱離しづらい吸着の仕方をした場合には吸着したアンモニアによってNOxを容易に還元することができない。従って、吸着したアンモニアによってNOxを還元する場合には、アンモニアの吸着の仕方について考慮を払わなければならないことになる。そこで、次に、NOx選択還元触媒23からの脱離アンモニア量とNOx選択還元触媒23の温度TBとの関係を示す図8、およびNOx選択還元触媒23の構造を図解的に示す図9Aおよび9Bを参照しつつ、アンモニアの吸着の仕方について説明する。
 図8は、NOx選択還元触媒23の温度TBを徐々に上昇させたときの脱離アンモニア量の変化を示しており、図8からNOx選択還元触媒23の温度TBを上昇させていくと二つのピークが現れることがわかる。図8における一方のピーク(L酸点)は、図9Aに示されるようなルイス酸点(L酸点)と称される弱酸点に吸着したアンモニアの脱離によるものであり、図8における他方のピーク(B酸点)は、図9Bに示されるようなブレンステッド酸点(B酸点)と称される強酸点に吸着したアンモニアの脱離によるものである。図9Aに示されるようなルイス酸点(L酸点)、即ち弱酸点に吸着したアンモニアは、NOxが到来すると、図8に示される如くNOx選択還元触媒23の温度TBが比較的低いときであっても容易に脱離し、NOxはこの脱離したアンモニアによって容易に還元される。
 これに対し、図9Bに示されるようなブレンステッド酸点(B酸点)、即ち強酸点に吸着したアンモニアは、NOx選択還元触媒23の温度TBが比較的低いときにはNOxが到来しても脱離せず、NOx選択還元触媒23の温度TBが高くなったときに始めて脱離する。通常の運転時には、NOx選択還元触媒23の温度TBは、図8のB酸点で示される温度までは上昇せず、従って図9Bに示されるようなブレンステッド酸点(B酸点)、即ち強酸点に吸着したアンモニアはNOxの還元のために使用できないことになる。従って、吸着したアンモニアによってNOxを還元するには、アンモニアを図9Aに示されるようなルイス酸点(L酸点)、即ち弱酸点に吸着させる必要がある。
 図10は、機関低負荷運転時において、NOx吸蔵触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合の燃焼室5内における空燃比(A/F)の変化と、NOx吸蔵触媒22におけるアンモニア発生量を示している。なお、図10において、(A/F)bはベース空燃比を示しており、Δ(A/F)rは空燃比のリッチ度合いを示しており、ΔTは空燃比のリッチ周期を示している。このとき発生したアンモニアは、図9Aに示されるようなルイス酸点(L酸点)、即ち弱酸点に吸着され、従ってNOx吸蔵触媒22から流出したNOxはNOx選択還元触媒23に吸着しているアンモニアによって良好に還元されることになる。
 機関負荷が高くなると、燃焼室5内において発生するNOxの量が増大し、従って単位時間当りNOx吸蔵触媒22に吸蔵されるNOxが増大する。単位時間当りNOx吸蔵触媒22に吸蔵されるNOxが増大すると、NOxを放出すべく空燃比をリッチにするために単位時間当りに供給される追加の燃料量が増大する。単位時間当りに供給される追加の燃料量が増大すると、NOx吸蔵触媒22において単位時間当り生成されるアンモニア量が増大する。即ち、機関負荷が高くなると、NOx吸蔵触媒22において単位時間当り生成されるアンモニア量が増大することになる。
 ところで、NOx選択還元触媒23にアンモニアが到達すると、アンモニアは吸着しやすいルイス酸点(L酸点)、即ち弱酸点から吸着し、弱酸点への吸着量が飽和すると、吸着しづらいブレンステッド酸点(B酸点)、即ち強酸点への吸着が開始される。この場合、前述したように、強酸点に吸着したアンモニアはNOxの還元に有効に使用することができない。従って、吸着したアンモニアをNOxの還元のために有効に使用するためには全てのアンモニアが強酸点に吸着することなく弱酸点に吸着するようにアンモニアの生成量を抑える必要がある。
 そこで本発明では、上述したように、機関負荷が高くなってNOx吸蔵触媒22において単位時間当り生成されるアンモニア量が増大するときには、単位時間当り生成されるアンモニア量が低下するように燃焼室内における空燃比のリッチの度合いを制御するようにしている。このときの燃焼室5内における空燃比(A/F)の変化と、NOx吸蔵触媒22におけるアンモニア発生量とが図11に示されている。なお、図11において、(A/F)bはベース空燃比を示しており、Δ(A/F)rは空燃比のリッチ度合いを示しており、ΔTは空燃比のリッチ周期を示している。
 図11に示されるように、機関負荷が高くなったときには、図10に示される機関低負荷運転時に比べて、ベース空燃比(A/F)bが低くされ、空燃比のリッチ度合いΔ(A/F)rが小さくされ、空燃比のリッチ周期ΔTが短くされる。即ち、空燃比をリッチにするときの追加の燃料噴射量が多くなると、炭化水素等の還元剤の量も多くなるために、アンモニアの発生量が増大する傾向にある。従って、空燃比をリッチにするときの追加の燃料噴射量を少なくするために図11に示されるように、ベース空燃比(A/F)bが低くされ、空燃比のリッチ度合いΔ(A/F)rが小さくされ、空燃比のリッチ周期ΔTが短くされる。
  即ち、本発明では、機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOを吸蔵し、流入する排気ガスの空燃比がリッチにされると吸蔵したNOを放出するNOx吸蔵触媒22を配置し、NOx吸蔵触媒22下流の機関排気通路内にNOx選択還元触媒23を配置して流入する排気ガスの空燃比がリッチにされたときにNOx吸蔵触媒22において生成されたアンモニアをNOx選択還元触媒23に吸着させると共にNOx選択還元触媒23に吸着されているアンモニアによって排気ガス中のNOを還元するようにした内燃機関の排気浄化装置において、機関低負荷運転時には、燃焼室5内においてベース空燃比がリーンのもとで燃焼が行われると共にNOx吸蔵触媒22からNOを放出すべきときには燃焼室5内における空燃比がリッチとされ、機関低負荷運転時に比べて機関負荷が高くなったときには、空燃比がリッチにされたときに単位時間当り生成されるアンモニア量が機関低負荷運転時に比べて低下するように、ベース空燃比が小さくされ、空燃比のリッチの度合が小さくされ、空燃比をリッチにする周期が短くされる。
 なお、図12は、燃焼室5内における空燃比が理論空燃比にフィードバック制御されている場合の燃焼室5内における空燃比の変化を示している。
 さて、機関負荷が高くなったときに、機関低負荷運転時に比べて、ベース空燃比が小さくされ、空燃比のリッチの度合が小さくされ、空燃比をリッチにする周期が短くされると、上述したように、NOx選択還元触媒23での吸着アンモニアによるNOxの浄化作用が向上するが、このとき同時に、NOx吸蔵触媒22におけるNOx浄化率が向上することが本発明者等により見出されたのである。この本発明者等により見出された新たなNOx浄化方法は、NOx吸蔵触媒22におけるNOの吸着作用に基づいている。
 即ち、従来より、NOx吸蔵触媒22にNOが吸着していることはわかっている。しかしながら、NOx吸蔵触媒22における吸着NOの挙動については、これまでほとんど追求されることはなかった。そこで、本発明者等は、このNOx吸蔵触媒22における吸着NOの挙動を追求し、この吸着NOの吸着特性を利用すると、NOx吸蔵触媒22の温度TCが高いときにリーン空燃比のもとで燃焼を行ったとしても、高いNOx浄化率を確保し得ることを突き止めたのである。この新たなNOx浄化方法は、NOの吸着作用を利用しているので、以下この新たなNOx浄化方法を、吸着NO利用のNOx浄化方法と称する.そこで、次に、この吸着NO利用のNOx浄化方法について図13Aおよび13Bを参照しつつ説明する。
 図13Aおよび13Bは、図3Bの拡大図、即ちNOx吸蔵触媒22の触媒担体60の表面部分を示している。また、図13Aは、リーン空燃比のもとで燃焼が行われているときを示しており、図13Bは、燃焼室5内における空燃比がリッチにされたときを示している。リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、前述したように排気ガス中に含まれるNOxは塩基性層63内に吸収されるが、排気ガス中に含まれるNOの一部は図13Aに示されるように、白金Pt 61の表面に解離して吸着する。この白金Pt 61の表面へのNOの吸着量は時間の経過と共に増大し、従って時間の経過と共にNOx吸蔵触媒22へのNO吸着量は増大することになる。
 一方、燃焼室5内における空燃比がリッチにされると、燃焼室5からは多量の一酸化炭素COが排出され、従ってNOx吸蔵触媒22に流入する排気ガス中には多量の一酸化炭素COが含まれることになる。この一酸化炭素COは図13Bに示されるように、白金Pt 61の表面上に解離吸着しているNOと反応し、このNOは、一方ではN2となり、他方では還元性中間体NCOとなる。この還元性中間体NCOは生成後、暫らくの間、塩基性層63の表面上に保持又は吸着され続ける。従って、塩基性層63上の還元性中間体NCOの量は、時間の経過と共に次第に増大していくことになる。この還元性中間体NCOは排気ガス中に含まれるNOxと反応し、それによって排気ガス中に含まれるNOxが浄化される。
 このように、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、一方では図4Aに示されるように、排気ガス中に含まれるNOxはNOx吸蔵触媒22に吸収され、他方では図13Aに示されるように、排気ガス中に含まれるNOはNOx吸蔵触媒22に吸着される。即ち、このとき排気ガス中に含まれるNOxはNOx吸蔵触媒22に吸蔵されることになる。これに対し、燃焼室5内における空燃比がリッチにされると、NOx吸蔵触媒22に吸収又は吸着されていたNOx、即ちNOx吸蔵触媒22に吸蔵されていたNOxが NOx吸蔵触媒22から放出されることになる。
 図14Aは、図5に示す如く、NOx吸蔵触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合におけるNO吸収能とNO吸着能とを示している。なお、図14Aにおいて縦軸は、NOx吸収能とNO吸着能の和であるNOxの吸蔵能を示しており、横軸はNOx吸蔵触媒22の温度TCを示している。図14Aからわかるように、NOx吸蔵触媒22の温度TCがほぼ400℃よりも低いときには、NOx吸蔵触媒22の温度TCにかかわらずに、NOx吸収能およびNO吸着能は一定であり、従って、NOx吸収能とNO吸着能の和であるNOxの吸蔵能も、NOx吸蔵触媒22の温度TCにかかわらずに一定となる。
 一方、NOx吸蔵触媒22の温度TCが高くなると、白金Pt 61の表面上におけるNOxの酸化反応(NO→NO2)は速くなる。しかしながら、NOx吸蔵触媒22の温度TCが高くなると、NO2が硝酸イオンNO3 -となる反応(NO2+Ba(CO32→Ba(NO32+CO2)が遅くなり、その結果、NOxがNOx吸蔵触媒22に吸蔵されづらくなる。また、NOx吸蔵触媒22の温度TCが高くなると、硝酸塩が熱分解してNO2の形でNOx吸蔵触媒22から放出される。従って、図14Aに示されるように、NOx吸蔵触媒22の温度TCが高くなって400℃以上の高温になるとNOx吸収能が急激に低下する。これに対し、白金Pt 61の表面へのNOの吸着量はNOx吸蔵触媒22の温度TCの影響をほとんど受けない。従って、図14Aに示されるように、NO吸着能はNOx吸蔵触媒22の温度TCが高くなってもほとんど変化しない。
 次に、図15Aおよび15Bを参照しつつ、リーン空燃比のもとで燃焼が行われているときの排気ガス中の酸素濃度と、NO吸着能、NOx吸収能との関係について説明する。最初に、白金Pt 61の表面への吸着について考えてみると、白金Pt 61の表面にはNOとO2とが競争吸着する。即ち、排気ガス中に含まれるNOの量がO2の量に比べて多くなればなるほど白金Pt 61の表面に吸着するNOの量は O2の量に比べて多くなり、これとは逆に、排気ガス中に含まれるO2の量がNOの量に比べて多くなればなるほど白金Pt 61の表面に吸着するNOの量はO2の量に比べて少なくなる。従って、NOx吸蔵触媒22におけるNO吸着能は、図15Aに示されるように、排気ガス中の酸素濃度が高くなるほど低下する。 
 一方、排気ガス中の酸素濃度が高くなればなるほど、排気ガス中のNOの酸化作用が促進され、NOx吸蔵触媒22へのNOxの吸収が促進される。従って、図15Bに示されるように、NOx吸蔵触媒22におけるNOx吸収能は、排気ガス中の酸素濃度が高くなればなるほど、高くなる。なお、図15Aおよび15Bにおいて、領域Xは、図5に示す如く、NOx吸蔵触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合においてリーン空燃比のもとで燃焼が行われているときを示している。このときには、NO吸着能が低く、NOx吸収能が高いことがわかる。前述した図14Aは、このときのNO吸着能とNOx吸収能を示している。
 さて、図14Aを参照しつつ既に説明したように、NOx吸蔵触媒22の温度TCが高くなって400℃以上の高温になるとNOx吸収能が急激に低下する。これに対し、NO吸着能はNOx吸蔵触媒22の温度TCが高くなってもほとんど変化しない。従って、NOx吸蔵触媒22の温度TCが高くなって400℃以上の高温になったときには、NOxの吸収作用を利用したNOx浄化方法を取りやめ、それに代えてNOの吸着作用を利用したNOx浄化方法を用いると、NOxを浄化し得るのではないかということが推測される。しかしながら、図14Aからわかるように、NO吸着能は低く、燃料消費量の増大を招くことなくNOの吸着作用を利用してNOxを浄化するには、NO吸着能を増大させる必要がある。
 この場合、NO吸着能を増大させるには、図15Aからわかるように、排気ガス中の酸素濃度を低下させればよいことになる。このときには、図15Bに示されるように、NOx吸収能は低下する。図15Aおよび15Bにおいて排気ガス中の酸素濃度を領域Yまで低下させたときのNOx吸収能およびNO吸着能が図14Bに示されている。このように排気ガス中の酸素濃度を低下させることによって、NO吸着能を増大させることができる。排気ガス中の酸素濃度を低下させるということは、リーン空燃比のもとで燃焼が行われているときの空燃比(ベース空燃比と称す)を低下させることを意味しており、従ってベース空燃比を低下させることによってNO吸着能を増大させることができる。
 即ち、図11に示されるように、ベース空燃比が低下せしめられると、NOの吸着作用を利用した良好なNOxの浄化作用が行われる。なお、このときには、図11に示されるように、機関低負荷運転時に比べて、ベース空燃比が小さくされるばかりでなく、空燃比のリッチの度合が小さくされ、空燃比をリッチにする周期が短くされると、NOの吸着作用を利用した良好なNOxの浄化作用が行われることが判明している。
 図16は、図11に示される如く、NOの吸着作用を利用してNOxを浄化するようにした場合の燃焼室5内における空燃比(A/F)の変化と、NOx吸蔵触媒22に流入する排気ガスの空燃比(A/F)in の変化とを示している。この場合には、燃焼室5内における空燃比(A/F)がリッチにされると、三元触媒20では貯蔵されている酸素が放出されて時間t1の間、理論空燃比に維持され、それによって、HC、COおよびNOxが同時に低減される。この間、図16に示されるように、NOx吸蔵触媒22に流入する排気ガスの空燃比(A/F)in は理論空燃比に維持される。次いで、三元触媒20の貯蔵酸素が消費されると、NOx吸蔵触媒22に流入する排気ガスの空燃比(A/F)in が、時間t2の間、リッチとなる。このとき図13Bに示されるように、白金Pt 61の表面上に解離吸着しているNOは、一方ではN2となり、他方では還元性中間体NCOとなる。この還元性中間体NCOは生成後、暫らくの間、塩基性層63の表面上に保持又は吸着され続ける。
 次いで、燃焼室5内における空燃比(A/F)が再びリーンに戻されると、今度は
三元触媒20に酸素が貯蔵される。このとき三元触媒20の触媒表面では空燃比が、時間t3の間、理論空燃比に維持され、それによりこのときも、HC、COおよびNOxが同時に低減される。次いで、時間t4の間、排気ガス中に含まれているNOxは、塩基性層63の表面上に保持又は吸着されている還元性中間体NCOと反応して還元性中間体NCOにより還元される。次いで、時間t5の間、排気ガス中に含まれるNOは、図13Aに示されるように、白金Pt 61の表面に解離して吸着する。
 このように、図11に示される如く、機関負荷が高くなったときに、機関低負荷運転時に比べて、ベース空燃比が小さくされ、空燃比のリッチの度合が小さくされ、空燃比をリッチにする周期が短くされると、NOの吸着作用を利用したNOxの浄化作用と、三元触媒20での酸素貯蔵機能を利用したNOxの浄化作用と、NOx選択還元触媒23に吸着しているアンモニアによるNOxの浄化作用との三つの浄化作用が行われる。このときのNOx浄化率が図17に示されている。図17に示されるように、この場合には、NOx吸蔵触媒22の温度TCが高くなって400 ℃以上の高温になっても、NOx浄化率が低下しないことがわかる。
 次に、機関の運転制御の概要について説明する。本発明による一実施例では、図18に示されるように、機関低負荷運転側の機関低負荷運転領域Iと、機関高負荷運転側の機関高負荷運転領域IIIと、機関低負荷運転領域Iおよび機関高負荷運転領域IIIの間に位置する機関中負荷運転領域IIとが予め設定されている。なお、図18の縦軸Lは要求負荷を示しており、横軸Nは機関回転数を示している。この場合、機関低負荷運転領域Iでは、図10に示されるように、NOx吸蔵触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化するようにしたNOxの浄化作用が行われ、機関中負荷運転領域IIでは、図11に示されるように、NOの吸着作用を利用してNOxを浄化するようにしたNOxの浄化作用が行われる。なお、機関高負荷運転領域IIIでは、図12に示されるように、燃焼室5内における空燃比が理論空燃比にフィードバック制御される。
 即ち、この実施例では、NOx吸蔵触媒22上流の機関排気通路内に三元触媒20を配置し、機関の運転領域が、機関低負荷運転側の予め定められた機関低負荷運転領域Iと、機関高負荷運転側の予め定められた機関高負荷運転領域IIIと、機関低負荷運転領域Iおよび機関高負荷運転領域IIIの間に位置する予め定められた機関中負荷運転領域IIからなり、予め定められた機関低負荷運転領域Iでは燃焼室5内においてベース空燃比がリーンのもとで燃焼が行われると共にNOx吸蔵触媒22からNOを放出すべきときには燃焼室5内における空燃比がリッチとされ、予め定められた機関高負荷運転領域IIIでは燃焼室5内における空燃比が理論空燃比にフィードバック制御され、予め定められた機関中負荷運転領域IIでは、空燃比がリッチにされたときに単位時間当り生成されるアンモニア量が機関低負荷運転領域Iに比べて低下するように、ベース空燃比が小さくされ、空燃比のリッチの度合が小さくされ、空燃比がリッチにされる周期が短くされる。
 なお、図10、11および12からわかるように、機関中負荷運転領域IIにおけるベース空燃比は、機関低負荷運転領域Iにおけるベース空燃比と理論空燃比との中間値である。
 次に、低負荷運転から高負荷運転に移行するときを示す図19を参照しつつ、NOx浄化方法について説明する。なお、図19には、燃焼室5内への燃料噴射量の変化と、燃焼室5内における空燃比(A/F)の変化と、吸蔵NOx量ΣNOXの変化を示している。また、図19において、MAXIは第一の許容NOx吸蔵量を示しており、MAXIIは第二の許容NOx吸蔵量を示している。図19から明らかなように、第二の許容NOx吸蔵量MAXIIは第一の許容NOx吸蔵量MAXIに比べて小さな値とされている。
 さて、図19において、機関低負荷運転領域Iにおいては、吸蔵NOx量ΣNOXが第一の許容NOx吸蔵量MAXIを超えると、燃焼室5内における空燃比が一時的にリッチにされる。一方、NOx吸蔵触媒22にNOが吸蔵されている状態で、図11に示される、NOの吸着作用を利用したNOxの浄化方法に切替えられると、NOの吸着作用を利用したNOxの浄化に切替えられた直後に、NOx吸蔵触媒22に吸蔵されているNOの一部が還元されることなく放出される。そこで本発明による実施例では、図19に示されているように、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したときには、燃焼室5内における空燃比(A/F)が一時的にリッチにされる。
 機関中負荷運転領域IIでは図19に示されるように、吸蔵NOx量ΣNOXが第二の許容NOx吸蔵量MAXIIを超えると、燃焼室5内における空燃比が一時的にリッチにされる。この機関中負荷運転領域IIではNOx吸蔵触媒22の温度が高いために、NOx吸蔵触媒22にNOxがほとんど吸収されず、大部分のNOxは吸着NOからなる。従って、別の言い方をすると、NOx吸蔵触媒22に吸着されているNO吸着量が算出されており、機関中負荷運転領域IIにおいて機関の運転が行われているときに、NO吸着量ΣNOXが予め定められた許容NO吸着量MAXIIを超えたときに燃焼室5内における空燃比(A/F)がリッチとされる。
 このようにこの実施例では、 NOx吸蔵触媒22に吸蔵されているNOx吸蔵量ΣNOXが算出されており、機関低負荷運転領域Iにおいて機関の運転が行われているときに、NOx吸蔵量ΣNOXが予め定められた第一の許容NOx吸蔵量MAXIを超えたときに燃焼室5内における空燃比(A/F)がリッチとされ、機関中負荷運転領域IIにおいて機関の運転が行われているときに、NOx吸蔵量ΣNOXが予め定められた第二の許容NOx吸蔵量MAXIIを超えたときに燃焼室5内における空燃比(A/F)がリッチとされ、第二の許容NOx吸蔵量MAXIIは第一の許容NOx吸蔵量MAXIに比べて小さな値とされている。
 一方、NOx吸蔵触媒22にNOが吸蔵されている状態で、図12に示される、理論空燃比へのフィードバック制御によるNOxの浄化方法に切替えられると、理論空燃比へのフィードバック制御によるNOxの浄化方法に切替えられた直後に、NOx吸蔵触媒22に吸蔵されているNOの一部が還元されることなく放出される。そこでこの実施例では、図19に示されているように、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したときには、燃焼室5内における空燃比(A/F)が一時的にリッチにされる。
 機関高負荷運転領域IIIでは、燃焼室5内における空燃比が理論空燃比となるように、空燃比センサ27の出力信号に基づいて各燃料噴射弁11,12からの噴射量がフィードバック制御される。このときには、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において同時に浄化される。
 図20に運転制御ルーチンを示す。このルーチンは一定時間毎の割込みによって実行される。
 図20を参照すると、まず初めにステップ80において、機関の運転状態が図18に示される機関高負荷運転領域IIIであるか否かが判別される。機関の運転状態が機関高負荷運転領域IIIでないときにはステップ81に進み、図6に示すマップから単位時間当りの排出NO量NOXAが算出される。次いでステップ82ではΣNOXに排出NO量NOXAを加算することによって吸蔵NO量ΣNOXが算出される。次いで、ステップ83では、機関の運転状態が図18に示される機関低負荷運転領域Iであるか否かが判別される。機関の運転状態が図18に示される機関低負荷運転領域Iであるときにはステップ84に進む。
 ステップ84では、NOx吸蔵量ΣNOXが第一の許容NOx吸蔵量MAXIを超えたか否かが判別され、NOx吸蔵量ΣNOXが第一の許容NOx吸蔵量MAXIを超えていないときには、ステップ85に進んで、燃焼室5内における空燃比が、機関の運転状態に応じて予め定められているリーン空燃比とされる。このときには、ベース空燃比がリーンのもとで燃焼が行われる。これに対し、ステップ84において、NOx吸蔵量ΣNOXが第一の許容NOx吸蔵量MAXIを超えたと判断されたときには、ステップ86に進んで、燃焼室5内における空燃比が一時的にリッチとされ、ΣNOXがクリアされる。このとき、NOx吸蔵触媒22に吸蔵されていたNOxが NOx吸蔵触媒22から放出される。
 一方、ステップ83において、機関の運転状態が図18に示される機関低負荷運転領域Iではないと判断されたとき、即ち機関の運転状態が図18に示される機関中負荷運転領域IIであると判断されたときには、ステップ87に進んで、今、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したか否かが判別される。今、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したときにはステップ88に進んで燃焼室5内における空燃比が一時的にリッチにされる。これに対し、既に、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行しているときには
ステップ89に進む。
 ステップ89では、NOx選択還元触媒23が劣化したか否かが判別される。この場合、例えば車両の走行距離が予め定められた距離を越えたときにNOx選択還元触媒23が劣化したと判断される。ステップ89においてNOx選択還元触媒23が劣化していないと判別されたときには、ステップ90に進んで、NOx吸蔵量ΣNOXが第二の許容NOx吸蔵量MAXIIを超えたか否かが判別される。NOx吸蔵量ΣNOXが第二の許容NOx吸蔵量MAXIIを超えていないときには、ステップ91に進んで、燃焼室5内における空燃比が、機関の運転状態に応じて予め定められているリーン空燃比とされる。このとき、ベース空燃比がリーンのもとで燃焼が行われる。なお、このときのベース空燃比は機関低負荷運転領域Iにおけるベース空燃比よりも小さい。
 これに対し、ステップ90において、NOx吸蔵量ΣNOXが第二の許容NOx吸蔵量MAXIIを超えたと判断されたときには、ステップ92に進んで、燃焼室5内における空燃比が一時的にリッチとされ、ΣNOXがクリアされる。このとき、NOx吸蔵触媒22に吸蔵されていたNOxが NOx吸蔵触媒22から放出される。一方、ステップ89においてNOx選択還元触媒23が劣化したと判別されたときには、もはやNOx選択還元触媒23においてアンモニアの吸着を用いたNOxの浄化作用を行うことはできない。従って、このときには、ステップ93に進んで燃焼室5内における空燃比が理論空燃比にフィードバック制御される。
 一方、ステップ80において、機関の運転状態が図18に示される機関高負荷運転領域IIIであると判断されたときには、ステップ94に進んで、今、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したか否かが判別される。今、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したときにはステップ95に進んで燃焼室5内における空燃比が一時的にリッチにされる。これに対し、既に、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行しているときにはステップ96に進む。ステップ96では、燃焼室5内における空燃比が理論空燃比にフィードバック制御される。
 5  燃焼室
 6  点火栓
 11,12  燃料噴射弁
 14  サージタンク
 19  排気マニホルド
 20  三元触媒
 22  NOx吸蔵触媒
 23  NOx選択還元触媒

Claims (5)

  1.  機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中のNOを吸蔵し、流入する排気ガスの空燃比がリッチにされると吸蔵したNOを放出するNOx吸蔵触媒を配置し、該NOx吸蔵触媒下流の機関排気通路内にNOx選択還元触媒を配置して該流入する排気ガスの空燃比がリッチにされたときにNOx吸蔵触媒において生成されたアンモニアをNOx選択還元触媒に吸着させると共にNOx選択還元触媒に吸着されているアンモニアによって排気ガス中のNOを還元するようにした火花点火式内燃機関の排気浄化装置において、機関低負荷運転時には、燃焼室内においてベース空燃比がリーンのもとで燃焼が行われると共にNOx吸蔵触媒からNOを放出すべきときには燃焼室内における空燃比がリッチとされ、該機関低負荷運転時に比べて機関負荷が高くなったときには、空燃比がリッチにされたときに単位時間当り生成されるアンモニア量が機関低負荷運転時に比べて低下するように、ベース空燃比が小さくされ、空燃比のリッチの度合が小さくされ、空燃比をリッチにする周期が短くされる火花点火式内燃機関の排気浄化装置。
  2.  該NOx吸蔵触媒上流の機関排気通路内に三元触媒を配置し、機関の運転領域が、機関低負荷運転側の予め定められた機関低負荷運転領域と、機関高負荷運転側の予め定められた機関高負荷運転領域と、該機関低負荷運転領域および該機関高負荷運転領域の間に位置する予め定められた機関中負荷運転領域からなり、該機関低負荷運転領域では燃焼室内においてベース空燃比がリーンのもとで燃焼が行われると共にNOx吸蔵触媒からNOを放出すべきときには燃焼室内における空燃比がリッチとされ、該機関高負荷運転領域では燃焼室内における空燃比が理論空燃比にフィードバック制御され、該機関中負荷運転領域では、空燃比がリッチにされたときに単位時間当り生成されるアンモニア量が機関低負荷運転領域に比べて低下するように、ベース空燃比が小さくされ、空燃比のリッチの度合が小さくされ、空燃比をリッチにする周期が短くされる請求項1に記載の火花点火式内燃機関の排気浄化装置。
  3.  該NOx選択還元触媒が劣化したか否かが判別され、NOx選択還元触媒が劣化したと判断されたときには、該機関中負荷運転領域では燃焼室内における空燃比が理論空燃比にフィードバック制御される請求項2に記載の火花点火式内燃機関の排気浄化装置。
  4.  NOx吸蔵触媒に吸蔵されているNOx吸蔵量が算出されており、上記機関低負荷運転領域において機関の運転が行われているときに、該NOx吸蔵量が予め定められた第一の許容NOx吸蔵量を超えたときに燃焼室内における空燃比がリッチとされ、上記機関中負荷運転領域において機関の運転が行われているときに、該NOx吸蔵量が予め定められた第二の許容NOx吸蔵量を超えたときに燃焼室内における空燃比がリッチとされ、該第二の許容NOx吸蔵量は該第一の許容NOx吸蔵量に比べて小さな値とされている請求項2に記載の火花点火式内燃機関の排気浄化装置。
  5.  NOx吸蔵触媒の触媒担体上には、貴金属触媒が担持されており、更にこの触媒担体上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層が形成されている請求項1に記載の火花点火式内燃機関の排気浄化装置。
PCT/JP2012/071705 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置 WO2014033838A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013552035A JP5664801B2 (ja) 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置
EP12881142.9A EP2740911B1 (en) 2012-08-28 2012-08-28 Exhaust gas purification device for a spark ignition internal combustion engine
PCT/JP2012/071705 WO2014033838A1 (ja) 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置
CN201280036951.3A CN103764961B (zh) 2012-08-28 2012-08-28 火花点火式内燃机的排气净化装置
US14/234,015 US9494097B2 (en) 2012-08-28 2012-08-28 Exhaust purification system of spark ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071705 WO2014033838A1 (ja) 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2014033838A1 true WO2014033838A1 (ja) 2014-03-06

Family

ID=50182688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071705 WO2014033838A1 (ja) 2012-08-28 2012-08-28 火花点火式内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US9494097B2 (ja)
EP (1) EP2740911B1 (ja)
JP (1) JP5664801B2 (ja)
CN (1) CN103764961B (ja)
WO (1) WO2014033838A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031960A (ja) * 2015-08-06 2017-02-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2018009487A (ja) * 2016-07-12 2018-01-18 マツダ株式会社 エンジンの排気浄化装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105852B (zh) * 2013-02-05 2016-03-09 丰田自动车株式会社 内燃机的排气净化装置
US9494072B2 (en) * 2013-02-20 2016-11-15 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
FR3025557B1 (fr) * 2014-09-04 2016-11-18 Peugeot Citroen Automobiles Sa Vehicule automobile a dispositif de depollution ameliore
JP6601449B2 (ja) * 2017-04-04 2019-11-06 トヨタ自動車株式会社 内燃機関の排気浄化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364415A (ja) * 2001-06-07 2002-12-18 Mazda Motor Corp エンジンの排気浄化装置
JP2008286102A (ja) 2007-05-17 2008-11-27 Isuzu Motors Ltd NOx浄化システムの制御方法及びNOx浄化システム
WO2011142028A1 (ja) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4868096B2 (ja) * 2009-09-03 2012-02-01 トヨタ自動車株式会社 内燃機関の排気浄化装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190245A (ja) 1992-12-28 1994-07-12 Mazda Motor Corp 排気ガス浄化用触媒構造
SE519908C2 (sv) * 1998-03-20 2003-04-22 Volvo Car Corp Förfarande och anordning för styrning av förbränningsmotor
DE19961165A1 (de) * 1999-12-17 2001-08-02 Volkswagen Ag Verfahren zur Entschwefelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators
US6928808B2 (en) * 2000-02-17 2005-08-16 Volkswagen Atkiengesellschaft Device and method for controlling the nox regeneration of a nox storage catalyst
DE10007048A1 (de) * 2000-02-17 2001-08-23 Volkswagen Ag Vorrichtung und Verfahren zur Ermittlung einer Regenerationsnotwendigkeit eines NO¶x¶-Speicherkatalysators
JP3858554B2 (ja) * 2000-02-23 2006-12-13 株式会社日立製作所 エンジン排気浄化装置
JP4288942B2 (ja) * 2002-12-20 2009-07-01 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6732507B1 (en) * 2002-12-30 2004-05-11 Southwest Research Institute NOx aftertreatment system and method for internal combustion engines
US7401462B2 (en) * 2004-03-30 2008-07-22 General Motors Corporation Control strategy for lean NOx trap regeneration
JP4572709B2 (ja) * 2005-03-18 2010-11-04 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP3901194B2 (ja) * 2005-04-21 2007-04-04 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
US20080314022A1 (en) * 2007-06-19 2008-12-25 Eaton Corporation Strategy for scheduling LNT regeneration
DE102009010711A1 (de) * 2009-02-27 2010-09-30 Umicore Ag & Co. Kg Stickoxid-Speicherkatalysator zum Einsatz im Kraftfahrzeug in motornaher Position
EP2420655B1 (en) * 2009-04-06 2015-11-04 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
EP2492464B1 (en) 2009-10-20 2015-09-09 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification system of internal combustion engine
EP2503119B1 (en) * 2009-11-18 2015-08-12 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification system for internal combustion engine
US8677734B2 (en) 2010-04-19 2014-03-25 GM Global Technology Operations LLC Method of producing ammonia effective to control aftertreatment conditions of NOx emissions
ES2707591T3 (es) * 2010-07-28 2019-04-04 Toyota Motor Co Ltd Aparato de purificación de escape para motor de combustión interna
US8701390B2 (en) * 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364415A (ja) * 2001-06-07 2002-12-18 Mazda Motor Corp エンジンの排気浄化装置
JP2008286102A (ja) 2007-05-17 2008-11-27 Isuzu Motors Ltd NOx浄化システムの制御方法及びNOx浄化システム
JP4868096B2 (ja) * 2009-09-03 2012-02-01 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2011142028A1 (ja) * 2010-05-14 2011-11-17 トヨタ自動車株式会社 内燃機関の排気浄化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031960A (ja) * 2015-08-06 2017-02-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2018009487A (ja) * 2016-07-12 2018-01-18 マツダ株式会社 エンジンの排気浄化装置

Also Published As

Publication number Publication date
EP2740911A4 (en) 2017-01-04
JPWO2014033838A1 (ja) 2016-08-08
EP2740911A1 (en) 2014-06-11
CN103764961B (zh) 2016-01-13
EP2740911B1 (en) 2021-03-10
JP5664801B2 (ja) 2015-02-04
CN103764961A (zh) 2014-04-30
US9494097B2 (en) 2016-11-15
US20150204261A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
KR101339523B1 (ko) 내연 기관의 배기 정화 장치
JP4868097B1 (ja) 内燃機関の排気浄化装置
WO2011114540A1 (ja) 内燃機関の排気浄化装置
WO2012029189A1 (ja) 内燃機関の排気浄化装置
JP5664801B2 (ja) 火花点火式内燃機関の排気浄化装置
WO2009019951A1 (ja) 内燃機関の排気浄化装置
JP6015760B2 (ja) 火花点火式内燃機関の排気浄化装置
JP4868096B2 (ja) 内燃機関の排気浄化装置
JP5748005B2 (ja) 内燃機関の排気浄化装置
WO2012029190A1 (ja) 内燃機関の排気浄化装置
JP5673861B2 (ja) 内燃機関の排気浄化装置
WO2012053117A1 (ja) 内燃機関の排気浄化装置
JP5835488B2 (ja) 内燃機関の排気浄化装置
EP3030763B1 (en) Exhaust purification system of internal combustion engine
WO2012111171A1 (ja) 内燃機関の排気浄化装置
WO2012014330A1 (ja) 内燃機関の排気浄化装置
US20120042636A1 (en) Exhaust purification system of internal combustion engine
US9103259B2 (en) Exhaust purification system of internal combustion engine
WO2014024311A1 (ja) 火花点火式内燃機関の排気浄化装置
JP2011231755A (ja) 内燃機関の排気浄化装置
JP5168410B2 (ja) 内燃機関の排気浄化装置
EP2503120B1 (en) Nox purification method of an exhaust-gas purifying system for internal-combustion engine
JP5741643B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013552035

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234015

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012881142

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE