JP2017031960A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2017031960A
JP2017031960A JP2015155952A JP2015155952A JP2017031960A JP 2017031960 A JP2017031960 A JP 2017031960A JP 2015155952 A JP2015155952 A JP 2015155952A JP 2015155952 A JP2015155952 A JP 2015155952A JP 2017031960 A JP2017031960 A JP 2017031960A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
amount
catalyst
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015155952A
Other languages
English (en)
Other versions
JP6287996B2 (ja
Inventor
田中 宏幸
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015155952A priority Critical patent/JP6287996B2/ja
Priority to US15/228,477 priority patent/US9945277B2/en
Publication of JP2017031960A publication Critical patent/JP2017031960A/ja
Application granted granted Critical
Publication of JP6287996B2 publication Critical patent/JP6287996B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1455Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor resistivity varying with oxygen concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1614NOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0808NOx storage capacity, i.e. maximum amount of NOx that can be stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】内燃機関の空燃比を理論空燃比からリーン空燃比へ切り換えるときに、SCR触媒へNHを速やかに供給する。
【解決手段】内燃機関の排気通路に三元触媒と、NSR触媒と、SCR触媒と、を順に備え、内燃機関での空燃比を理論空燃比からリーン空燃比に切り換える前に、三元触媒及びNSR触媒の酸素貯蔵量に応じた期間はリッチ空燃比である第一空燃比とした後、SCR触媒のNH吸着量が所定吸着量になるまでの期間は、NOx吸蔵量が吸蔵量閾値未満の場合には第一空燃比よりも高く理論空燃比よりも低い第二空燃比とし、NOx吸蔵量が吸蔵量閾値以上の場合には第一空燃比よりも高く第二空燃比よりも低い第三空燃比とする。
【選択図】図3

Description

本発明は、内燃機関の排気浄化装置に関する。
リーン空燃比で運転可能な内燃機関の排気通路に上流側から順に、三元触媒、吸蔵還元型NOx触媒(以下、NSR触媒ともいう。)、選択還元型NOx触媒(以下、SCR触媒ともいう。)を配置することが知られている。NSR触媒は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していたNOxを還元する。SCR触媒は、還元剤によりNOxを選択還元する。そして、三元触媒またはNSR触媒において排気中のHCやHがNOxと反応することでNHが生成される。このNHは、SCR触媒において還元剤として利用できる。
上記構成においては、三元触媒またはNSR触媒においてNHを生成させるために、排気の空燃比を一時的にリッチ空燃比にするリッチスパイクが実行される。ここで、リッチスパイクの途中で目標空燃比を第一の空燃比から、該第一の空燃比よりも高い空燃比である第二の空燃比へ切り換える技術が知られている(例えば、特許文献1参照。)。このように、リッチスパイクの初期に排気の空燃比をより低くすることにより、三元触媒及びNSR触媒から速やかに酸素を放出させることで、NHを早期に生成させることができる。
ところで、リーン空燃比で運転可能な内燃機関であっても、例えば高負荷運転時に理論空燃比で運転することもある。内燃機関の高負荷運転時にはSCR触媒の温度が高くなって、SCR触媒に吸着されていたNHが放出されることがある。さらに、理論空燃比での運転期間が長くなると、三元触媒及びNSR触媒においてNHの生成ができないため、SCR触媒にNHを供給することができなくなる。そうすると、理論空燃比からリーン空燃比へ切り換えた場合、SCR触媒では還元剤の不足によりNOxを浄化することが困難になり得る。ここで、理論空燃比で運転しているとNSR触媒からNOxが放出されるため、理論空燃比での運転からリーン空燃比での運転に切り換えた後には、NSR触媒にNOxを吸蔵することができる。しかし、内燃機関の運転状態によっては一部のNOxがNSR触媒に吸蔵されずに該NSR触媒から流れ出る虞がある。このときに、SCR触媒でNOxを浄化することができないと、システム全体としてのNOx浄化率が低下する虞がある。したがって、理論空燃比で運転した後にリーン空燃比での運転に移行するときには、SCR触媒に速やかにNHを供給することが望ましい。
これに対し、理論空燃比での運転からリーン空燃比での運転に切り換えるときに、NSR触媒にてNHを生成させることが考えられる。すなわち、NSR触媒にてNHを生成するために、リッチスパイクを実施することが考えられる。しかし、理論空燃比で運転しているときにNSR触媒からNOxが放出されるため、リーン空燃比への切り換え時にはNSR触媒のNOx吸蔵量が少なくなり、NSR触媒においてNHを生成することが困難になる場合もある。一方、三元触媒でNHを生成しても、NSR触媒に酸素が存在する場合には、三元触媒で生成されたNHがNSR触媒において酸素と反応してしまい、NHがSCR触媒へは届かない虞がある。したがって、SCR触媒へすぐにNHを供給できない虞がある。
特許第5534020号公報
本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、内燃機関の空燃比を理論空燃比からリーン空燃比へ切り換えるときに、SCR触媒へNHを速やかに供給することにある。
上記課題を解決するために、内燃機関の排気通路に設けられて酸素貯蔵能を有すると共に、排気の空燃比が理論空燃比よりも低いときにNHを生成する三元触媒と、前記三元触媒よりも下流の排気通路に設けられ酸素貯蔵能を有すると共に、排気の空燃比がリーン空燃比のときにNOxを吸蔵する触媒であって、該触媒が吸蔵したNOxを排気の空燃比が理論空燃比以下のときに還元する吸蔵還元型NOx触媒と、前記吸蔵還元型NOx触媒よりも下流の排気通路に設けられNHを還元剤としてNOxを還元する選択還元型NOx触媒と、前記内燃機関での空燃比を調整する空燃比調整部と、前記吸蔵還元型NOx触媒のNOx吸蔵量を推定するNOx吸蔵量推定部と、前記選択還元型NOx触媒のNH吸着量を推定するNH吸着量推定部と、を備える内燃機関の排気浄化装置において、前記空燃比調整部は、前記内燃機関での空燃比を理論空燃比からリーン空燃比に切り換える前に、前記三元触媒及び前記吸蔵還元型NOx触媒の酸素貯蔵量に応じた期間は理論空燃比よりも低い第一空燃比とし、前記酸素貯蔵量に応じた期間が終了する時点において前記NOx吸蔵量推定部により推定されるNOx吸蔵量が吸蔵量閾値未満の場合には、前記酸素貯蔵量に応じた期間が終了した後に、前記NH吸着量推定部により推定されるNH吸着量が所定吸着量になるまで、前記内燃機関での空燃比を前記第一空燃比よりも高く且つ理論空燃比よりも低い第二空燃比とし、前記NH吸着量推定部により推定されるNH吸着量が前記所定吸着量になったらリーン空燃比に切り換え、前記酸素貯蔵量に応じた期間が終了する時点において前記NOx吸蔵量推定部により推定されるNOx吸蔵量が前記吸蔵量閾値以上の場合には、前記酸素貯蔵量に応じた期間が終了した後に、前記NH吸着量推定部により推定されるNH吸着量が前記所定吸着量になるまで、前記内燃機関での空燃比を前記第一空燃比よりも高く且つ前記第二空燃比よりも低い第三空燃比とし、前記NH吸着量推定部により推定されるNH吸着量が前記所定吸着量になったらリーン空燃比に切り換えるようにした。
空燃比調整部は、内燃機関での空燃比を理論空燃比からリーン空燃比に切り換える前に、一旦リッチ空燃比とする。具体的には、理論空燃比から第一空燃比に切り換え、その後に、第二空燃比または第三空燃比に切り換え、さらにその後にリーン空燃比に切り換える。まずは、リッチ空燃比である第一空燃比として、速やかに酸素を放出させている。この第一空燃比は、三元触媒及びNSR触媒に貯蔵されている酸素を速やかに放出させるために、後述の第二空燃比及び第三空燃比よりも低い空燃比に設定される。すなわち、空燃比が低いほど、より早く三元触媒及びNSR触媒から酸素を放出させることができる。そして、その後にNHを生成するために第二空燃比または第三空燃比に移行して、SCR触媒へNHを供給している。
ここで、NSR触媒でNHを生成させるときと、三元触媒でNHを生成させるときと、で適正な空燃比が異なる。NSR触媒のNOx吸蔵量が吸蔵量閾値以上であれば、NSR触媒を利用してNHを生成することができる。この場合には、第三空燃比に設定される。一方、NSR触媒のNOx吸蔵量が吸蔵量閾値未満の場合には、三元触媒でNHを生成する。この場合には、第二空燃比に設定される。ここでいう吸蔵量閾値は、NSR触媒で十分な量のNHを生成することができるNOx吸蔵量である。すなわち、吸蔵量閾値は、SCR触媒においてNOxを浄化することができる量のNHを生成するために
要するNOx吸蔵量である。
NSR触媒のNOx吸蔵量が吸蔵量閾値以上であれば、このNOxを利用してNHを生成することができるため、より多くのHが含まれるような空燃比とすれば、より多くのNHをNSR触媒で生成することができる。したがって、第三空燃比は、排気中にHが多く含まれる空燃比である。一方、NSR触媒のNOx吸蔵量が吸蔵量閾値未満の場合には、三元触媒においてHとNOxとを反応させてNHを生成させる。したがって、第二空燃比は、排気中にNOx及びHが含まれる空燃比である。結果として、第三空燃比よりも第二空燃比のほうが高くなる。このように、第一空燃比は第二空燃比または第三空燃比よりも、三元触媒及びNSR触媒から酸素を放出させるのに適した空燃比であり、第二空燃比は第三空燃比よりも、三元触媒においてNHを生成させるのに適した空燃比であり、第三空燃比は第二空燃比よりもNSR触媒においてNHを生成させるのに適した空燃比である。
このように、内燃機関での空燃比が理論空燃比のときにNSR触媒からNOxが放出されてNSR触媒のNOx吸蔵量が少ないためにNSR触媒においてNHを生成することが困難であったとしても、第二空燃比とすることにより、三元触媒においてNHを生成することができる。このときには、NSR触媒にNOxが吸蔵されていないため、NHがNSR触媒で消費されることもない。このため、SCR触媒へNHを速やかに供給することができる。なお、所定吸着量は、リーン空燃比に切り換えた場合であっても、SCR触媒においてNOxを浄化することのできるNH吸着量である。したがって、前述の吸蔵量閾値は、SCR触媒のNH吸着量を所定吸着量にし得るNOx吸蔵量とすることもできる。また、三元触媒及び吸蔵還元型NOx触媒の酸素貯蔵量に応じた期間とは、三元触媒及びNSR触媒からの酸素の放出が完了したとみなすことができる期間である。酸素の放出が完了することには、三元触媒及びNSR触媒に貯蔵されている酸素の量が0になることを含むが、厳密に0にならなくてもNHの生成に与える影響が許容範囲内の場合も含むことができる。
また、前記第二空燃比は、前記酸素貯蔵量に応じた期間が終了する時点において前記NOx吸蔵量推定部により推定されるNOx吸蔵量が前記吸蔵量閾値未満の場合に、前記第三空燃比とするよりも前記三元触媒においてNHの生成量が多くなる空燃比であってもよい。
すなわち、NSR触媒のNOx吸蔵量が吸蔵量閾値未満の場合に内燃機関の空燃比を第二空燃比とすることにより、第三空燃比とするよりも、三元触媒において多くのNHを生成させることができる。そうすると、NSR触媒のNOx吸蔵量が吸蔵量閾値未満の場合であっても、SCR触媒へより速やかにNHを供給することができる。なお、第二空燃比は、三元触媒におけるNHの生成量が最も多くなる空燃としてもよい。
また、前記吸蔵還元型NOx触媒よりも下流で且つ前記選択還元型NOx触媒よりも上流の排気通路において、排気の空燃比を検出する空燃比センサを備え、前記空燃比調整部は、前記第一空燃比としている場合に、前記空燃比センサにより検出された空燃比が理論空燃比からリッチ空燃比に変化したときに、前記酸素貯蔵量に応じた期間が終了したとして、前記第二空燃比または前記第三空燃比に切り換えることができる。
第一空燃比とすることにより三元触媒及びNSR触媒から酸素の放出が完了すると、NSR触媒から流れ出る排気の空燃比が理論空燃比からリッチ空燃比に変化する。このため、空燃比センサの検出値が理論空燃比からリッチ空燃比に変化した場合には、第一空燃比から第二空燃比または第三空燃比に切り換えることができる。すなわち、空燃比センサにより検出された空燃比が理論空燃比からリッチ空燃比に変化した時点が、上記の三元触媒
及び吸蔵還元型NOx触媒の酸素貯蔵量に応じた期間が終わる時点である。
また、前記三元触媒及び前記吸蔵還元型NOx触媒の酸素貯蔵量を推定する酸素貯蔵量推定部と、前記吸蔵還元型NOx触媒よりも下流で且つ前記選択還元型NOx触媒よりも上流の排気通路において、排気の空燃比を検出する空燃比センサと、を備え、前記空燃比調整部は、前記第一空燃比としている場合に、前記酸素貯蔵量推定部により推定される酸素貯蔵量が所定貯蔵量以下になったときに、前記第一空燃比から前記第二空燃比または前記第三空燃比に切り換え、前記酸素貯蔵量推定部は、前記空燃比センサにより検出された空燃比が理論空燃比からリッチ空燃比に変化した時点における前記酸素貯蔵量推定部により推定される酸素貯蔵量と前記所定貯蔵量とが等しくなるように、前記酸素貯蔵量推定部により推定される酸素貯蔵量または前記所定貯蔵量を補正することができる。
三元触媒及びNSR触媒の酸素貯蔵量を推定していれば、推定される酸素貯蔵量に基づいて、第一空燃比から第二空燃比または第三空燃比に切り換える時期を決定することができる。この場合、酸素貯蔵量推定部により推定される酸素貯蔵量が所定貯蔵量以下になった時点が、上記の三元触媒及びNSR触媒の酸素貯蔵量に応じた期間が終わる時点である。しかし、三元触媒またはNSR触媒の劣化や個体差により、推定される酸素貯蔵量が実際の酸素貯蔵量からずれる場合もある。一方、空燃比センサにより排気の空燃比を検出していれば、三元触媒及びNSR触媒からの酸素の放出が完了した実際の時期を知ることができる。そして、空燃比センサの検出値が理論空燃比からリッチ空燃比に変化する時点と、酸素貯蔵量推定部により推定される酸素貯蔵量が所定貯蔵量以下になった時点と、がずれている場合には、酸素貯蔵量推定部により推定される酸素貯蔵量が、実際の酸素貯蔵量からずれていると考えられる。したがって、推定される酸素貯蔵量と所定貯蔵量とが等しくなる時期が、空燃比センサにより求められる三元触媒及びNSR触媒からの酸素の放出が完了した実際の時期と等しくなるように、推定される酸素貯蔵量または所定貯蔵量を補正する。これにより、次回以降は、推定される酸素貯蔵量に基づいてより適切な時期に第一空燃比から第二空燃比または第三空燃比に切り換えることができる。なお、所定貯蔵量は、三元触媒及びNSR触媒からの酸素の放出が完了したとみなすことができる酸素貯蔵量である。ここで、第一空燃比から第二空燃比または第三空燃比に切り換える時期を決定するにあたり、酸素貯蔵量推定部により推定される酸素貯蔵量及び空燃比センサの検出値を併用してもよい。この場合、酸素貯蔵量推定部により推定される酸素貯蔵量が所定貯蔵量以下になった時点、または、空燃比センサの検出値がリッチ空燃比に変化する時点、の何れか早い時点で第一空燃比から第二空燃比または第三空燃比に切り換えてもよい。
また、前記空燃比調整部は、前記内燃機関での空燃比を理論空燃比からリーン空燃比に切り換える前に、前記NH吸着量推定部により推定されるNH吸着量が吸着量閾値以上のときは、前記第一空燃比、及び前記第二空燃比若しくは前記第三空燃比を経ずにリーン空燃比に切り換えてもよい。
SCR触媒に十分な量のNHが吸着されている場合には、新たにSCR触媒にNHを吸着させる必要がないので、速やかにリーン空燃比に移行することができる。これにより、燃料消費量を低減することができる。この吸着量閾値は、SCR触媒においてNOxを浄化することができるNH吸着量である。吸着量閾値は、前述の所定吸着量と同じ値であってもよく、異なる値であってもよい。
本発明によれば、内燃機関の空燃比を理論空燃比からリーン空燃比へ切り換えるときに、SCR触媒へNHを速やかに供給することができる。これにより、リーン空燃比に速やかに移行することができる。
実施例に係る内燃機関と、その吸気系及び排気系との概略構成を示す図である。 理論空燃比での運転からリーン空燃比での運転へ移行する際にリッチスパイクを実施するときの目標空燃比及び酸素貯蔵量の推定値の推移を示したタイムチャートである。 実施例1に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。 実施例1に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。 理論空燃比での運転からリーン空燃比での運転へ移行する際にリッチスパイクを実施するときの、目標空燃比、酸素貯蔵量の推定値、三元触媒から流出する排気の空燃比、NSR触媒から流出する排気の空燃比の推移を示したタイムチャートである。 実施例2に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。 実施例3に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。 実施例4に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。
以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
<実施例1>
図1は、本実施例に係る内燃機関と、その吸気系及び排気系との概略構成を示す図である。図1に示す内燃機関1は、ガソリン機関であるが、ディーゼル機関であってもよい。内燃機関1は、たとえば車両に搭載される。
内燃機関1には、排気通路2が接続されている。この排気通路2の途中には、上流側から順に、三元触媒3、吸蔵還元型NOx触媒4(以下、NSR触媒4という。)、選択還元型NOx触媒5(以下、SCR触媒5という。)が備えられている。
三元触媒3は、触媒雰囲気が理論空燃比のときにNOx,HCおよびCOを浄化する。また、三元触媒3は、酸素貯蔵能を有している。すなわち、三元触媒3に流入する排気の空燃比がリーン空燃比であるときに過剰分の酸素を貯蔵し、三元触媒3に流入する排気の空燃比がリッチ空燃比であるときに不足分の酸素を放出することにより、触媒雰囲気が理論空燃比に維持される。このような酸素貯蔵能の作用により、三元触媒3に流入する排気の空燃比が理論空燃比以外であっても、三元触媒3がHC,COおよびNOxを浄化することができる。
NSR触媒4は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していたNOxを還元する。NSR触媒4に供給する還元剤には、内燃機関1から排出される未燃燃料であるHCまたはCOを利用することができる。そして、NSR触媒4も、酸素貯蔵能を有している。
ここで、三元触媒3において、排気中のNOxがHCまたはHと反応してアンモニア(NH)が生成されることがある。また、NSR触媒4において、該NSR触媒4に吸
蔵されているNOxが排気中のHCまたはHと反応してNHが生成されることがある。例えば、燃料の燃焼により発生するCOやHOから、水性ガスシフト反応または水蒸気改質反応によりHが発生すれば、該Hが三元触媒3またはNSR触媒4においてNOと反応してNHが生成される。そして、内燃機関1の空燃比を低くするほど、より多くのHが三元触媒3またはNSR触媒4に流入する傾向にある。
SCR触媒5は、還元剤を吸着しておき、この還元剤によりNOxを選択還元する。SCR触媒5へ供給する還元剤には、三元触媒3またはNSR触媒4にて生成されるNHを利用することができる。
また、三元触媒3よりも上流の排気通路2には、排気の空燃比を検出する第一空燃比センサ11が取り付けられている。さらに、三元触媒3よりも下流で且つNSR触媒4よりも上流の排気通路2には、排気の空燃比を検出する第二空燃比センサ12、及び、排気中のNOx濃度を検出する第一NOxセンサ21が取り付けられている。内燃機関1から第一空燃比センサ11までの排気通路2には、空燃比を変化させる部材が存在しないため、第一空燃比センサ11により内燃機関1での空燃比、または、三元触媒3へ流入する排気の空燃比を検出することができる。一方、第二空燃比センサ12により、三元触媒3から流出する排気の空燃比、または、NSR触媒4に流入する排気の空燃比を検出することができる。さらに、第一NOxセンサ21により、三元触媒3から流出する排気中のNOx濃度、または、NSR触媒4に流入する排気中のNOx濃度を検出することができる。
NSR触媒4よりも下流で且つSCR触媒5よりも上流の排気通路2には、排気の空燃比を検出する第三空燃比センサ13、及び、排気中のNOx濃度を検出する第二NOxセンサ22が取り付けられている。第三空燃比センサ13により、NSR触媒4から流出する排気の空燃比、または、SCR触媒5へ流入する排気の空燃比を検出することができる。一方、第二NOxセンサ22により、NSR触媒4から流出する排気中のNOx濃度、または、SCR触媒5へ流入する排気中のNOx濃度を検出することができる。なお、本実施例においては第三空燃比センサ13が、本発明における空燃比センサに相当する。また、SCR触媒5よりも下流の排気通路2には、排気の空燃比を検出する第四空燃比センサ14が取り付けられている。第四空燃比センサ14により、SCR触媒5から流出する排気の空燃比を検出することができる。
なお、第二空燃比センサ12と第一NOxセンサ21とは、一つのセンサであってもよい。さらに、第三空燃比センサ13と第二NOxセンサ22とは、一つのセンサであってもよい。
内燃機関1には、該内燃機関1へ燃料を供給する噴射弁6が設けられている。さらに、内燃機関1には、吸気通路7が接続されている。吸気通路7の途中には、内燃機関1の吸入空気量を調整するスロットル8が設けられている。スロットル8よりも上流の吸気通路7には、内燃機関1の吸入空気量を検出するエアフローメータ15が取り付けられている。噴射弁6は、内燃機関1の気筒内に直接燃料を噴射するものであってもよく、吸気通路7または吸気ポート(図示省略)に燃料を噴射するものであってもよい。
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。
また、ECU10には、上記センサの他、運転者がアクセルペダル16を踏み込んだ量に応じた電気信号を出力し機関負荷を検知するアクセル開度センサ17、および機関回転速度を検知するクランクポジションセンサ18が電気配線を介して接続され、これら各種
センサの出力信号がECU10に入力される。一方、ECU10には、噴射弁6及びスロットル8が電気配線を介して接続されており、該ECU10によりこれらの機器が制御される。
例えばECU10は、アクセル開度センサ17により検出されるアクセル開度とクランクポジションセンサ18により検出される機関回転速度とから要求吸入空気量を決定する。そして、エアフローメータ15により検出される吸入空気量が要求吸入空気量となるように、スロットル8の開度が制御される。このときに変化する吸入空気量に応じた燃料量を供給するように、ECU10が噴射弁6を制御する。このときに設定される空燃比は、内燃機関1の運転状態に応じて設定される空燃比である。そして、本実施例では、ECU10がリーン空燃比で内燃機関1を運転する。ただし、内燃機関1の冷間始動時や高負荷運転時などにおいては、ECU10は理論空燃比で内燃機関1を運転する。リーン空燃比での運転時には、混合気の空燃比が例えば24となるように、噴射弁6またはスロットル8が制御される。また、理論空燃比での運転時には、混合気の空燃比が例えば14.7となるように、噴射弁6またはスロットル8が制御される。
そして、ECU10は、NSR触媒4に吸蔵されているNOxの還元処理を実施する。NSR触媒4に吸蔵されているNOxの還元時には、噴射弁6から噴射する燃料の量またはスロットル8の開度を調整することにより、NSR触媒4に流入する排気の空燃比を一時的にリッチ空燃比まで低下させる所謂リッチスパイクを実施する。
このリッチスパイクは、例えば、NSR触媒4に吸蔵されているNOx量が上限閾値となった場合に実施される。NSR触媒4のNOx吸蔵量は、たとえば、前回のリッチスパイクを実施後の、NSR触媒4に流入するNOx量と、NSR触媒4から流出するNOx量と、の差を積算することにより算出される。NSR触媒4に流入するNOx量と、NSR触媒4から流出するNOx量とは、第一NOxセンサ21、第二NOxセンサ22、及びエアフローメータ15の検出値に基づいて求めることができる。また、内燃機関1を搭載する車両の走行距離に応じてリッチスパイクを行ってもよい。また、リッチスパイク中に減少するNOx吸蔵量は、NSR触媒4の温度、エアフローメータ15の検出値、排気の空燃比と関連していることから、これらの関係を予め実験またはシミュレーション等により求めることができる。この関係に基づいて、リッチスパイク中に減少するNOx吸蔵量を算出することができる。NSR触媒4のNOx吸蔵量は、上記方法に限らず、他の周知の方法により算出してもよい。なお、本実施例においては、ECU10がNSR触媒4のNOx吸蔵量を算出することで、該ECU10が本発明に係るNOx吸蔵量推定部として機能する。以下、ECU10により算出されるNOx吸蔵量を、推定NOx吸蔵量ともいう。
また、ECU10は、リッチスパイクを実施することにより、三元触媒3またはNSR触媒4にてNHを生成させる。このリッチスパイクは、内燃機関1がリーン空燃比で運転されているときに、SCR触媒5が吸着しているNH量が下限閾値まで減少したときに実施される。また、所定の間隔でリッチスパイクを実施するとしてもよい。SCR触媒5のNH吸着量の推定方法については後述する。
さらにECU10は、理論空燃比での運転からリーン空燃比での運転に切り換え、このときにも、リッチスパイクを実施する。すなわち、理論空燃比からリーン空燃比に直接移行するのではなく、理論空燃比からリッチ空燃比を経て、リーン空燃比に移行する。なお、本実施例においては、ECU10が空燃比を調整することで、該ECU10が本発明に係る空燃比調整部として機能する。
ここで、理論空燃比での運転時には三元触媒3においてNOxを浄化することができる
ためにリッチスパイクを実施していないので、NSR触媒4にてNHがほとんど生成されない。このため、理論空燃比で運転中には、SCR触媒5にNHがほとんど供給されていない。また、排気の空燃比が理論空燃比になるとNSR触媒4からNOxが放出されてしまうため、仮に理論空燃比での運転が終わったときにNHを生成しようとしても、NSR触媒4でNHを生成することが困難となる場合もある。さらに、NSR触媒4から放出されたNOxが、SCR触媒5において還元されるため、SCR触媒5のNH吸着量が減少する。そして、この状態でリーン空燃比に移行すると、SCR触媒5においてNHが不足して、NOxを浄化することが困難となる虞がある。このように、SCR触媒5でNOxを浄化できない場合には、三元触媒3及びNSR触媒4のみでNOxを浄化することになる。そのため、三元触媒3及びNSR触媒4でNOxを浄化することができない状態になったり、NSR触媒4からNOxが放出されるような状態になったりすると、システム全体としてのNOx浄化率が低下する虞がある。
そこで本実施例では、理論空燃比での運転後、リーン空燃比への運転へ切り換える前にリッチスパイクを実施すると共に、リッチスパイク時の空燃比を、二段階に変化させる。本実施例では、最初に第一空燃比に設定し、その後に第二空燃比または第三空燃比に設定する。ここで、三元触媒3またはNSR触媒4に酸素が貯蔵されている間は、リッチスパイク中に触媒から酸素が放出され、触媒雰囲気が理論空燃比となる。このため、NHの生成ができない。また、三元触媒3に酸素が貯蔵されていない場合であっても、NSR触媒4に酸素が貯蔵されている場合には、三元触媒3においてNHが生成されたとしても、このNHは下流にあるNSR触媒4に吸蔵されている酸素により酸化される。このため、NHがSCR触媒5に届かない。したがって、まずは三元触媒3及びNSR触媒4に貯蔵されている酸素を速やかに放出させるために、比較的に低い空燃比である第一空燃比に設定する。この第一空燃比は、例えば12.5である。この第一空燃比は、NSR触媒4に吸蔵されているNOxを還元するのに適した空燃比よりも低い空燃比である。
ここで、第一空燃比を低くするほど、三元触媒3及びNSR触媒4からより速やかに酸素が放出されるが、両触媒を通り抜けるHC量が増加する。そのため、NSR触媒4から流出するHC量が許容範囲内となるように第一空燃比の下限を定める。許容範囲は、要求されるエミッション性能、または、要求される燃費に基づいて決定してもよい。第一空燃比は、実験またはシミュレーション等により求めてもよい。
そして、三元触媒3及びNSR触媒4に酸素が貯蔵されていないとみなされる状態になると、第一空燃比から第二空燃比または第三空燃比に切り換える。第二空燃比及び第三空燃比は第一空燃比よりも高い空燃比で且つ理論空燃比よりも低い空燃比である。第二空燃比または第三空燃比のどちらに切り換えるのかは、NSR触媒4のNOx吸蔵量による。すなわち、第一空燃比での運転が終了する時点での推定NOx吸蔵量が、吸蔵量閾値未満の場合には、第二空燃比が選択され、吸蔵量閾値以上の場合には、第三空燃比が選択される。第二空燃比は第三空燃比よりも高い空燃比である。そして、第二空燃比は、第一空燃比での運転が終了する時点でのNSR触媒4のNOx吸蔵量が吸蔵量閾値未満の場合に、第三空燃比とするよりも、三元触媒3においてNHの生成量が多くなる空燃比である。吸蔵量閾値は、NSR触媒で十分な量のNHを生成することができるNOx吸蔵量である。すなわち、吸蔵量閾値は、リーン空燃比に切り換わった後にSCR触媒5においてNOxを浄化することができる量のNHを生成するために要するNOx吸蔵量である。そして、第二空燃比は、三元触媒3においてNHを生成するのに適した空燃比であり、第三空燃比は、NSR触媒4においてNHを生成するのに適した空燃比である。第二空燃比及び第三空燃比は、結果として、第一空燃比よりも高く且つ理論空燃比よりも低い空燃比になる。そして、第二空燃比または第三空燃比で運転した後にリーン空燃比に切り換える。以下、第二空燃比及び第三空燃比について説明する。
第二空燃比は、空燃比以外の条件が同じであれば、三元触媒3でNHの生成量が最も多くなるような空燃比としてもよい。この場合、第一空燃比は、NHの生成量が最も多くなる空燃比よりも低い空燃比ともいえる。第二空燃比で運転するときには、NSR触媒4に酸素が貯蔵されていないため、三元触媒3で生成されたNHがNSR触媒4で反応することなく通り抜け、SCR触媒5へ到達する。このときには、第二空燃比で運転する前の理論空燃比での運転中にNSR触媒4からNOxが放出されたためにNSR触媒4にはほとんどNOxが吸蔵されておらず、また、第二空燃比で運転するときに内燃機関1から排出されるNOxも三元触媒3でNHを生成するときに消費されてしまうため、NOxがNSR触媒4にほとんど供給されない。すなわち、第二空燃比での運転中には、NSR触媒4にNOxがほとんど吸蔵されておらず、且つ、NSR触媒4へのNOxの供給もないため、NSR触媒4でNHを生成することは困難である。一方、第二空燃比で運転中であっても、三元触媒3では、排気中のNOxを利用してNHを生成することができる。なお、NSR触媒4よりも三元触媒3のほうが排気通路2の上流側に設けられているために、三元触媒3の方が温度が高い。このため、NSR触媒4よりも三元触媒3のほうがNOxの反応性が高いため、三元触媒3でNHを生成したほうが有利である。
第二空燃比は、排気中にNOx及びHが適度に存在する空燃比であり、例えば14.0である。ここで、気筒内の空燃比が低くなるほど、Hの発生量は増加するが、NOxの発生量は減少する。したがって、三元触媒3においてNOx及びHからNHを生成する場合には、空燃比が低すぎるとNOxが不足し、空燃比が高すぎるとHが不足する。このため、H及びNOxが過不足なく反応することで、NHの生成量が最も多くなる。したがって、三元触媒3におけるNHの生成量が最も多くなる空燃比を第二空燃比とすることにより、SCR触媒5のNH吸着量をより速やかに増加させることができる。第二空燃比は、実験またはシミュレーション等により求めてもよい。
一方、NSR触媒4に吸蔵量閾値以上のNOxが吸蔵されている場合には、このNOxを利用してNSR触媒4においてNHを生成することができる。この場合、三元触媒3でNHを生成するために内燃機関1からNOxを排出させる必要はない。すなわち、NSR触媒4でのNHの生成のために内燃機関1からHを排出させればよいため、第三空燃比を第二空燃比よりも多くのHが発生する空燃比に設定すれば、単位時間当たりのNOxとHとの反応量をより多くすることができる。これにより、SCR触媒5のNH吸着量をより速やかに増加させることができる。
図2は、理論空燃比での運転からリーン空燃比での運転へ移行する際にリッチスパイクを実施するときの目標空燃比(目標A/F)及び酸素貯蔵量の推定値の推移を示したタイムチャートである。酸素貯蔵量は、三元触媒3に貯蔵されている酸素の量と、NSR触媒4に貯蔵されている酸素の量と、の合計値であって、ECU10により推定される値である。
T1は、内燃機関1の目標空燃比が、理論空燃比から第一空燃比に切り換わる時点を示している。T2は、内燃機関1の目標空燃比が、第一空燃比から第二空燃比または第三空燃比に切り換わる時点を示している。T3は、内燃機関1の目標空燃比が、第二空燃比または第三空燃比からリーン空燃比へ切り換わる時点を示している。
T1以前の理論空燃比での内燃機関1の運転では、酸素貯蔵量が略一定に維持される。なお、目標空燃比を理論空燃比としても、実際の空燃比は理論空燃比近傍で変動し得る。そして、実際の空燃比が、理論空燃比よりも高いときに酸素が貯蔵され、理論空燃比よりも低いときに酸素が放出される。したがって、厳密には酸素貯蔵量も変動し得るが、その変動量は小さいものと考えられるため、酸素貯蔵量が略一定であると考えることができる。そして、目標空燃比が第一空燃比に設定されると、三元触媒3及びNSR触媒4から酸
素が放出されるため、酸素貯蔵量が徐々に減少する。酸素貯蔵量が略0になると三元触媒3及びNSR触媒4からの酸素の放出が完了したため、第二空燃比または第三空燃比に切り換わる。T2からT3の期間において、実線は三元触媒3においてNHを生成するのに適した第二空燃比を示し、破線はNSR触媒4においてNHを生成するのに適した第三空燃比を示している。なお、説明の便宜のため、第二空燃比及び第三空燃比での運転が終了する時点を共にT3としているが、第二空燃比での運転が終了する時点と第三空燃比での運転が終了する時点とが同じであるとは限らない。そして、SCR触媒5のNH吸着量が十分に多くなった時点であるT3において目標空燃比が第二空燃比または第三空燃比からリーン空燃比に切り換わる。リーン空燃比では、三元触媒3及びNSR触媒4へ酸素が供給されるため、酸素貯蔵量が徐々に増加する。
理論空燃比から第一空燃比に切り換えるタイミングT1は、理論空燃比での運転の必要がなくなったときであり、例えば、内燃機関1の暖機が完了したとき、または、内燃機関1の負荷が所定負荷以下に低下したときである。所定負荷は、リーン空燃比で運転可能な負荷の上限値として予め実験またはシミュレーション等により求めることができる。
第一空燃比から第二空燃比または第三空燃比に切り換えるタイミングT2は、三元触媒3及びNSR触媒4からの酸素の放出が完了したときである。なお、少量の酸素が貯蔵されていたとしても、無視できる程度であれば酸素の放出が完了したものとして扱ってもよい。理論空燃比で十分に長い時間運転したときの酸素貯蔵量は、略一定の値であるため、予め実験またはシミュレーション等により求めることができる。一方、ECU10は、理論空燃比から第一空燃比に切り換えてからの、三元触媒3及びNSR触媒4の酸素貯蔵量を推定する。ここで、三元触媒3及びNSR触媒4の酸素貯蔵量は、吸入空気量の積算値及び空燃比と相関関係にある。すなわち、第一空燃比で運転している場合には、空燃比が同じであれば、吸入空気量の積算値が大きいほど、酸素貯蔵量がより早く減少する。また、吸入空気量の積算値が同じであれば、空燃比が低いほど、酸素貯蔵量がより早く減少する。第一空燃比は固定値であるため、吸入空気量の積算値と、三元触媒3及びNSR触媒4の酸素貯蔵量との関係を、予め実験またはシミュレーション等により求めておけば、吸入空気量の積算値から三元触媒3及びNSR触媒4の酸素貯蔵量を求めることができる。そして、内燃機関1の目標空燃比を理論空燃比から第一空燃比に切り換えた後に酸素貯蔵量を随時算出し、この酸素貯蔵量が所定貯蔵量以下となったときに第二空燃比または第三空燃比に切り換える。所定貯蔵量は、酸素の放出が完了したとみなすことのできる酸素貯蔵量である。この所定貯蔵量は、0としてもよい。なお、本実施例においては、ECU10が酸素貯蔵量を推定することで、該ECU10が本発明に係る酸素貯蔵推定部として機能する。
なお、酸素貯蔵量と所定貯蔵量とを比較して第二空燃比または第三空燃比に切り換えるタイミングT2を求める代わりに、吸入空気量の積算値と閾値とを比較してタイミングT2を求めてもよい。すなわち、第一空燃比は固定値であるため、空燃比を第一空燃比で固定した状態で酸素貯蔵量が所定貯蔵量以下となるときの吸入空気量の積算値を予め実験またはシミュレーション等により求めて閾値として設定してもよい。そして、内燃機関1の目標空燃比を理論空燃比から第一空燃比に切り換えた後に吸入空気量の積算値を随時算出し、この積算値が閾値以上となったときに第二空燃比または第三空燃比に切り換えてもよい。また、三元触媒3及びNSR触媒4からの酸素の放出が完了すると、NSR触媒4から流出する排気の空燃比がリッチ空燃比となる。したがって、第三空燃比センサ13の検出値が、理論空燃比からリッチ空燃比に変化した時点を、第二空燃比または第三空燃比に切り換えるタイミングT2としてもよい。ただし、第三空燃比センサ13の検出値には、若干の時間遅れが伴うため、上記吸入空気量の積算値、又は、推定される酸素貯蔵量に基づいて第二空燃比または第三空燃比に切り換えるほうがより好ましい。なお、三元触媒3及びNSR触媒4の酸素貯蔵量は、上記方法に限らず、他の周知の方法により算出しても
よい。
第二空燃比または第三空燃比からリーン空燃比へ切り換えるタイミングT3は、SCR触媒5に吸着されているNH量が所定吸着量に達したときである。所定吸着量は、リーン空燃比での運転に切り換えた場合であっても、SCR触媒5においてNOxを浄化することのできるNH吸着量として予め実験またはシミュレーション等により求めておく。SCR触媒5に吸着されているNH量は、三元触媒3及びNSR触媒4で生成されたNH量と、SCR触媒5で消費されるNH量と、SCR触媒5から脱離するNH量と、から求めることができる。三元触媒3で単位時間当たりに生成されるNH量は、吸入空気量及び空燃比と相関関係にあるため、三元触媒3で単位時間当たりに生成されるNH量と、吸入空気量及び空燃比と、の関係を予め実験またはシミュレーション等により求めておくことができる。NSR触媒4で単位時間当たりに生成されるNH量は、吸入空気量、空燃比、NOx吸蔵量と相関関係にあるため、NSR触媒4で単位時間あたりに生成されるNH量と、吸入空気量、空燃比、NOx吸蔵量と、の関係を予め実験またはシミュレーション等により求めておくことができる。
SCR触媒5で単位時間当たりに消費されるNH量は、SCR触媒5の温度、吸入空気量、SCR触媒5に流入する排気中のNOx濃度と相関関係にあるため、SCR触媒5で単位時間当たりに消費されるNH量と、SCR触媒5の温度、吸入空気量、SCR触媒5に流入する排気中のNOx濃度と、の関係を予め実験またはシミュレーション等により求めておくことができる。
また、SCR触媒5から単位時間当たりに脱離するNH量は、SCR触媒5の温度及びSCR触媒5のNH吸着量と相関関係にあるため、SCR触媒5から単位時間当たりに脱離するNH量と、SCR触媒5の温度及びSCR触媒5のNH吸着量と、の関係を予め実験またはシミュレーション等により求めておくことができる。このときに利用するSCR触媒5のNH吸着量は、前回演算時の値を用いる。そして、三元触媒3及びNSR触媒4で単位時間当たりに生成されたNH量から、SCR触媒5で単位時間当たりに消費されるNH量と、SCR触媒5から単位時間当たりに脱離するNH量と、を減算した値を積算することにより、SCR触媒5に吸着されているNH量を算出することができる。なお、SCR触媒5に吸着されているNH量は、上記方法に限らず、他の周知の方法により算出してもよい。なお、本実施例においては、ECU10がSCR触媒5のNH吸着量を推定することで、該ECU10が本発明に係るNH吸着量推定部として機能する。
T3において第二空燃比または第三空燃比からリーン空燃比へ切り換えた後は、三元触媒3及びNSR触媒4の酸素貯蔵量が徐々に増加する。このときの三元触媒3及びNSR触媒4の酸素貯蔵量も、吸入空気量の積算値及び空燃比と相関関係にあるため、この関係にしたがって酸素貯蔵量を算出することができる。
図3は、本実施例に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。本ルーチンは、内燃機関1が理論空燃比で運転されている場合に、ECU10により所定の時間毎に実行される。
ステップS101では、リーン空燃比で内燃機関1を運転する条件が成立しているか否か判定される。本ステップでは、リーン空燃比での運転に移行可能であるか否か判定している。例えば、内燃機関1の負荷が所定負荷よりも高い負荷から所定負荷以下に低下した場合には、リーン空燃比で内燃機関1を運転する条件が成立していると判定される。所定負荷は、リーン空燃比での運転が可能な負荷として予め実験またはシミュレーション等により求めてECU10に記憶させておく。また、上記判定に代えて、例えば、内燃機関1
の暖機が完了した場合に、リーン空燃比で内燃機関1を運転する条件が成立していると判定してもよい。この場合、ECU10は、内燃機関1の冷却水温度または潤滑油温度が、暖機完了温度となっているか否か判定する。ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合には本ルーチンを終了させる。
ステップS102では、内燃機関1の目標空燃比が第一空燃比に変更される。本ステップでは、三元触媒3及びNSR触媒4から酸素を速やかに放出させるために、まずは比較的に低い空燃比に設定される。目標空燃比が第一空燃比に変更されると、ECU10は、燃料噴射量、吸入空気量、点火時期などを第一空燃比で運転するときの値に調整する。このときの、燃料噴射量、吸入空気量、点火時期などは、内燃機関1の運転状態と関連付けて、予め実験またはシミュレーション等により求めておく。ステップS102の処理が完了すると、ステップS103へ進む。
ステップS103では、現時点での三元触媒3及びNSR触媒4の酸素貯蔵量が読み込まれる。ECU10は、吸入空気量の積算値及び空燃比に基づいて、本フローチャートとは別に、酸素貯蔵量を随時推定している。本ステップでは、この推定された酸素貯蔵量が読み込まれる。吸入空気量の積算値及び空燃比と酸素貯蔵量との関係は予め実験またはシミュレーション等により求めてECU10に記憶させておく。ステップS103の処理が完了すると、ステップS104へ進む。
ステップS104では、ステップS103で読み込まれた酸素貯蔵量が、所定貯蔵量以下であるか否か判定される。本ステップでは、三元触媒3及びNSR触媒4からの酸素の放出が完了したか否か判定している。すなわち、所定貯蔵量は、三元触媒3及びNSR触媒4からの酸素の放出が完了したとみなすことのできる酸素貯蔵量である。なお、所定貯蔵量は、0としてもよい。ステップS104で肯定判定がなされた場合にはステップS106へ進み、一方、否定判定がなされた場合にはステップS105へ進む。
ステップS105では、リーン空燃比で内燃機関1を運転する条件が成立しているか否か判定される。第一空燃比で運転しているときに例えば内燃機関1の負荷が所定負荷よりも高くなった場合には、リーン空燃比で内燃機関1を運転する条件が成立しておらず、理論空燃比での運転が必要となる。このような場合には、リーン空燃比での運転に移行する前に実施するリッチスパイクも必要なくなるため、第一空燃比で運転する必要もない。したがって第一空燃比での運転を終了して、理論空燃比での運転に移行する。すなわち、ステップS105で肯定判定がなされた場合には、ステップS103へ戻り、第一空燃比での運転が継続する。一方、ステップS105で否定判定がなされた場合には、ステップS114へ進んで内燃機関1の目標空燃比が理論空燃比に変更される。ステップS105で否定判定がなされた場合には、その後にリーン空燃比で内燃機関1を運転する条件が成立すれば、改めて本フローチャートによりリーン空燃比への切り換えが試みられる。
ステップS106では、現時点でのNSR触媒4のNOx吸蔵量が読み込まれる。ECU10は、本フローチャートとは別に、前述のように推定NOx吸蔵量を随時算出している。本ステップでは、ECU10が算出している推定NOx吸蔵量が読み込まれる。本ステップS106で読み込まれる推定NOx吸蔵量は、第一空燃比での運転が終了する時点での推定NOx吸蔵量である。ステップS106の処理が完了すると、ステップS107へ進む。
ステップS107では、ステップS106で読み込まれたNOx吸蔵量が吸蔵量閾値よりも少ないか否か判定される。本ステップS107では、NSR触媒4において十分な量のNHを生成することができない状態であるか否か判定している。吸蔵量閾値は、予め
実験またはシミュレーション等により求めてECU10に記憶させておく。ステップS107で肯定判定がなされた場合にはステップS108へ進み、一方、否定判定がなされた場合にはステップS109へ進む。
ステップS108では、内燃機関1の目標空燃比が第二空燃比に変更される。本ステップでは、SCR触媒5へNHを速やかに供給するために、現時点での内燃機関1の運転状態や三元触媒3の温度において、三元触媒3においてNHの生成量が最も多くなる空燃比に設定される。なお、第二空燃比は、三元触媒3においてNHの生成量が最も多くなる空燃比に限らず、第一空燃比及び第三空燃比よりも高い空燃比であって、仮に第二空燃比の代わりに第一空燃比及び第三空燃比で運転した場合よりも、NHの生成量が多くなる空燃比であればよい。ステップS108の処理が完了すると、ステップS110へ進む。
一方、ステップS109では、内燃機関1の目標空燃比が第三空燃比に変更される。本ステップでは、SCR触媒5へNHを速やかに供給するために、現時点での内燃機関1の運転状態やNSR触媒4の温度において、NSR触媒4においてNHの生成量が最も多くなる空燃比に設定される。なお、第三空燃比は、NSR触媒4においてNHの生成量が最も多くなる空燃比に限らず、第一空燃比よりも高い空燃比で且つ第二空燃比よりも低い空燃比あって、仮に第三空燃比の代わりに第一空燃比及び第二空燃比で運転した場合よりも、NHの生成量が多くなる空燃比であればよい。ステップS109の処理が完了すると、ステップS110へ進む。
ステップS110では、現時点でのSCR触媒5のNH吸着量が読み込まれる。ECU10は、三元触媒3で生成されたNH量またはNSR触媒4で生成されたNH量と、SCR触媒5で消費されるNH量と、SCR触媒5から脱離するNH量と、に基づいて、前述のようにして本フローチャートとは別にNH吸着量を随時推定している。本ステップでは、この推定されたNH吸着量が読み込まれる。ステップS110の処理が完了すると、ステップS111へ進む。
ステップS111では、ステップS110で読み込まれたNH吸着量が、所定吸着量以上であるか否か判定される。本ステップでは、SCR触媒5に十分な量のNHが吸着されたか否か判定される。所定吸着量は、予め実験またはシミュレーション等により求めてECU10に記憶させておく。ステップS111で肯定判定がなされた場合にはステップS112へ進み、一方、否定判定がなされた場合にはステップS113へ進む。
ステップS113では、リーン空燃比で内燃機関1を運転する条件が成立しているか否か判定される。第二空燃比または第三空燃比で運転しているときに例えば内燃機関1の負荷が所定負荷よりも高くなった場合には、リーン空燃比で内燃機関1を運転する条件が成立しておらず、理論空燃比での運転が必要となる。このような場合には、リーン空燃比での運転に移行する前に実施するリッチスパイクも必要なくなるため、第二空燃比または第三空燃比で運転する必要もない。したがって第二空燃比または第三空燃比での運転を終了して、理論空燃比での運転に移行する。すなわち、ステップS113で肯定判定がなされた場合には、ステップS110へ戻り、第二空燃比または第三空燃比での運転が継続する。一方、ステップS113で否定判定がなされた場合には、ステップS114へ進んで内燃機関1の目標空燃比が理論空燃比に変更される。ステップS113で否定判定がなされた場合には、その後にリーン空燃比で内燃機関1を運転する条件が成立すれば、改めて本フローチャートによりリーン空燃比への切り換えが試みられる。
ステップS112では、内燃機関1の目標空燃比がリーン空燃比に変更され、その後、本フローチャートが終了される。このときのリーン空燃比は、最終的な目標空燃比であり
、内燃機関1の運転状態に応じた空燃比である。目標空燃比は、予め実験またはシミュレーションにより最適値を求めておく。
なお、ステップS104では、ステップS103で読み込まれた酸素貯蔵量が、所定貯蔵量以下であるか否か判定しているが、これに代えて、第三空燃比センサ13の検出値が理論空燃比未満であるか否か判定してもよい。この場合、ステップS103は必要ない。ここで、図4は、本実施例に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。本ルーチンは、内燃機関1が理論空燃比で運転されている場合に、ECU10により所定の時間毎に実行される。図3と比較して、ステップS103が省略され、且つ、ステップS104に代えてステップS115が実行される点だけが異なるため、他のステップについては説明及び一部の図示を省略する。
図4に示したフローチャートでは、ステップS102の処理が終了すると、ステップS115へ進む。ステップS115では、第三空燃比センサ13の検出値(NSR触媒A/F)が理論空燃比未満であるか否か判定される。本ステップS115では、三元触媒3及びNSR触媒4からの酸素の放出が完了したか否かを第三空燃比センサ13の検出値に基づいて判定している。すなわち、三元触媒3及びNSR触媒4からの酸素の放出が完了した場合には、NSR触媒4から流れ出る排気の空燃比が理論空燃比からリッチ空燃比に変化する。このため、第三空燃比センサ13の検出値が理論空燃比未満となったことにより、三元触媒3及びNSR触媒4からの酸素の放出が完了したと判断される。ステップS115で肯定判定がなされた場合にはステップS106へ進み、一方、否定判定がなされた場合にはステップS105へ進む。また、ステップS105で肯定判定がなされた場合にはステップS115へ戻る。
以上説明したように本実施例によれば、理論空燃比での運転後、リーン空燃比での運転に切り換える前に、まずは第一空燃比に設定することで、三元触媒3及びNSR触媒4から速やかに酸素を放出させることができる。これにより、SCR触媒5にNHの供給を開始するまでの期間を短縮することができる。次に、第二空燃比または第三空燃比に設定することで、SCR触媒5のNH吸着量を速やかに増加させることができる。さらに、第三空燃比よりも第二空燃比を高くすることにより、NHを生成するのに十分な量のNOxがNSR触媒4に吸蔵されていない場合であっても、三元触媒3によりNHを速やかに生成することができる。したがって、リーン空燃比へ速やかに切り換えることができると共に、リーン空燃比に切り換えた後のNOx浄化率を高く維持することができる。
<実施例2>
実施例1では、第一空燃比から第二空燃比に切り換えるタイミングT2を、ECU10に推定される酸素貯蔵量に基づいて決定している。しかし、三元触媒3またはNSR触媒4の劣化により実際の酸素貯蔵量は変化し得る。そうすると、実際の酸素貯蔵量と、推定される酸素貯蔵量と、に差が生じることがある。このため、酸素貯蔵量の推定値に基づいて第一空燃比から第二空燃比に切り換えると、切り換える時期が不適切となる虞がある。そこで本実施例では、第三空燃比センサ13の検出値を併用して、ECU10が第一空燃比から第二空燃比に切り換える時期を決定する。
ここで、図5は、理論空燃比での運転からリーン空燃比での運転へ移行する際にリッチスパイクを実施するときの、目標空燃比(目標A/F)、酸素貯蔵量の推定値、三元触媒3から流出する排気の空燃比(三元触媒A/F)、NSR触媒4から流出する排気の空燃比(NSR触媒A/F)の推移を示したタイムチャートである。酸素貯蔵量の推定値は、実施例1で説明した方法により推定される。図5は、推定される酸素貯蔵量が略0となる前に、NSR触媒4から流出する排気の空燃比がリッチ空燃比となる場合を示している。
また、図5は、第一空燃比から第二空燃比に切り換わる場合を示している。
内燃機関1の目標空燃比を理論空燃比から第一空燃比に切り換えると、まずは主に三元触媒3から酸素が放出される。そして、三元触媒3からの酸素の放出が完了すると、該三元触媒3から流出する排気の空燃比がリッチ空燃比に変化する(図5のT21)。次に、NSR触媒4の酸素の放出が完了すると、該NSR触媒4から流出する排気の空燃比がリッチ空燃比に変化する(図5のT22)。このときには、実際には三元触媒3及びNSR触媒4からの酸素の放出は完了しているが、酸素貯蔵量の推定値はまだ大きい。そして、図5では、T23で示した時点において、酸素貯蔵量の推定値が略0になる。すなわち、吸入空気量の積算値と、酸素貯蔵量との実際の関係が、予めECU10に記憶されている関係からずれていると考えられる。そこで本実施例では、酸素貯蔵量の推定値が所定貯蔵量以下になっていなくても、第三空燃比センサ13の検出値がリッチ空燃比に変化した場合には、ECU10が、内燃機関1の目標空燃比を第一空燃比から第二空燃比に切り換える。なお、本実施例においては、ECU10が第三空燃比センサ13の検出値に基づいて内燃機関1の目標空燃比を第一空燃比から第二空燃比に切り換えることで、該ECU10が本発明に係る空燃比調整部として機能する。
図6は、本実施例に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。本ルーチンは、内燃機関1が理論空燃比で運転されている場合に、ECU10により所定の時間毎に実行される。図3に示したフローチャートと同じ処理がなされるステップについては同じ符号を付して説明を省略する。また、ステップS106以降の処理及びステップS105で否定判定がなされた後の処理は、図3に示したフローチャートと同じであるため図示を省略する。
図6に示したフローチャートでは、ステップS104で否定判定がなされると、ステップS201へ進む。ステップS201では、第三空燃比センサ13の検出値(NSR触媒A/F)が理論空燃比未満であるか否か判定される。本ステップでは、三元触媒3及びNSR触媒4からの酸素の放出が完了したか否かを第三空燃比センサ13の検出値に基づいて判定している。ステップS201で肯定判定がなされた場合にはステップS106へ進み、一方、否定判定がなされた場合にはステップS105へ進む。
以上説明したように本実施例によれば、第一空燃比から第二空燃比または第三空燃比に切り換えるタイミングをより適正化することができる。
<実施例3>
実施例2では、第三空燃比センサ13の検出値を併用して第一空燃比から第二空燃比に切り換えるタイミングを決定している。本実施例では、さらに、第三空燃比センサ13の検出値が変化した時点における酸素貯蔵量の推定値に基づいて、ECU10が、酸素貯蔵量の推定値または所定貯蔵量を補正する。すなわち、NSR触媒4から流出する排気の空燃比がリッチ空燃比に変化する時点において、酸素貯蔵量の推定値と、所定貯蔵量とが等しくなるように、酸素貯蔵量の推定値または所定貯蔵量を補正する。本実施例では、第三空燃比センサ13の検出値がリッチ空燃比に変化する時点の酸素貯蔵量の推定値を所定貯蔵量とすることで、該所定貯蔵量を補正する。なお、第三空燃比センサ13に異常がないことは、予め周知の技術により確認しておく。本実施例においては、ECU10が酸素貯蔵量の推定値または所定貯蔵量を補正することで、該ECU10が本発明に係る酸素貯蔵量推定部として機能する。
なお、酸素貯蔵量の推定値を補正する場合には、理論空燃比で運転しているときの酸素貯蔵量の推定値を補正してもよく、第一空燃比で運転しているときの酸素貯蔵量の推定値を補正してもよい。また、所定貯蔵量を補正することに代えて、第一空燃比で運転してい
るときの吸入空気量の積算値を補正してもよい。すなわち、第三空燃比センサ13の検出値がリッチ空燃比に変化する時点において酸素貯蔵量の推定値と所定貯蔵量とが等しくなれば、補正方法は問わない。
また、本実施例に係る補正は、第一空燃比から第二空燃比または第三空燃比に切り換える時期が早くなる場合に限り行ってもよい。ここで、第一空燃比で運転している場合には排気中のHC濃度が高くなる。第一空燃比から第二空燃比または第三空燃比に切り換える時期が早くなる方向に補正する場合には、第一空燃比で運転される期間が短くなる方向に補正されるため、より低い空燃比で運転される期間が短くなり、各触媒を通り抜けるHCを低減することができる。一方、第一空燃比から第二空燃比または第三空燃比に切り換える時期が遅くなる方向に補正する場合には、第一空燃比で運転される期間が長くなる方向に補正されるため、より低い空燃比で運転される期間が長くなり、各触媒を通り抜けるHCが増加する虞がある。したがって、第二空燃比または第三空燃比に切り換える時期を早くする場合に限り酸素貯蔵量の推定値または所定貯蔵量を補正することで、大気中に放出されるHC量を低減することができる。なお、酸素貯蔵量の推定値または所定貯蔵量を補正すると第一空燃比から第二空燃比または第三空燃比に切り換える時期が遅くなる場合には、酸素貯蔵量の推定値または所定貯蔵量を補正しないことになる。この場合、三元触媒3またはNSR触媒4に酸素が貯蔵されている状態で、第一空燃比から第二空燃比または第三空燃比に切り換わる。しかし、酸素貯蔵量の推定値または所定貯蔵量を補正しなくても、第二空燃比または第三空燃比に切り換わった後で三元触媒3及びNSR触媒4から酸素を放出させることは可能である。したがって、各触媒を通り抜けるHC量の低減を優先して、第一空燃比から第二空燃比または第三空燃比に切り換える時期が早くなる場合に限り、酸素貯蔵量の推定値または所定貯蔵量を補正しても、本願発明の趣旨を逸脱するものではなくHCを抑制できるのでよい。
図7は、本実施例に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。本ルーチンは、内燃機関1が理論空燃比で運転されている場合に、ECU10により所定の時間毎に実行される。図3または図6に示したフローチャートと同じ処理がなされるステップについては同じ符号を付して説明を省略する。また、ステップS106以降の処理及びステップS105で否定判定がなされた後の処理は、図3に示したフローチャートと同じであるため図示を省略する。
図7に示したフローチャートでは、ステップS201で肯定判定がなされるとステップS301へ進む。ステップS301では、所定貯蔵量が補正される。すなわち、第三空燃比センサ13の検出値が理論空燃比からリッチ空燃比に変化した時点の酸素貯蔵量の推定値を所定貯蔵量として新たにECU10が記憶する。更新後の所定貯蔵量は、次回以降のステップS104で用いられる。なお、ステップS201で肯定判定がなされた場合に限り所定貯蔵量を補正しているので、S104で肯定判定がなされる前に所定貯蔵量を補正していることになる。この場合、第一空燃比から第二空燃比または第三空燃比に切り換える時期が、酸素貯蔵量の推定値に基づいて切り換える時期よりも早くなるので、第一空燃比から第二空燃比または第三空燃比に切り換える時期が早くなる場合に限り所定貯蔵量を補正しているといえる。ステップS301の処理が完了するとステップS106へ進む。なお、本実施例においては、ECU10がステップS104の処理を実行することで、該ECU10が本発明に係る空燃比調整部として機能する。
なお、酸素貯蔵量の推定値または所定貯蔵量を補正するときに、NSR触媒4からの酸素の放出が完了してから第三空燃比センサ13の検出値が変化するまでの時間遅れを考慮してもよい。すなわち、この時間遅れ分だけ前の時点における酸素貯蔵量の推定値と、所定貯蔵量と、が等しくなるように、酸素貯蔵量の推定値または所定貯蔵量を補正してもよい。この時間遅れは、排気流量、及び、NSR触媒4から第三空燃比センサ13までの距
離に基づいて算出することができる。
以上説明したように本実施例によれば、酸素貯蔵量の推定値に基づいて第一空燃比から第二空燃比に変化させる時期をより適切な時期とすることができる。
<実施例4>
本実施例では、理論空燃比での運転後、リーン空燃比での運転に切り換える前に、SCR触媒5のNH吸着量が吸着量閾値未満の場合に限り、第一空燃比での運転及び第二空燃比での運転を経てリーン空燃比へ切り換える。SCR触媒5のNH吸着量が吸着量閾値以上の場合には、ECU10は、リッチ空燃比での運転を経ることなく、理論空燃比からすぐにリーン空燃比に切り換える。なお、本実施例においては、SCR触媒5のNH吸着量が吸着量閾値以上の場合において、ECU10がリッチ空燃比での運転を経ることなく理論空燃比からすぐにリーン空燃比に切り換えることで、該ECU10が本発明に係る空燃比調整部として機能する。
ここで、SCR触媒5に吸着量閾値以上のNHが吸着されている場合には、三元触媒3またはNSR触媒4でNHを生成する必要がない。したがって、SCR触媒5のNH吸着量が吸着量閾値未満の場合に限り、三元触媒3またはNSR触媒4の少なくとも一方でNHを生成させればよい。吸着量閾値は、リーン空燃比に切り換わった後にSCR触媒5においてNOxを浄化することができるNH吸着量である。なお、吸着量閾値は、前述の所定吸着量と同じ値であってもよく、異なる値であってもよい。
図8は、本実施例に係る理論空燃比での運転からリーン空燃比での運転に移行するときの空燃比制御のフローを示したフローチャートである。本ルーチンは、内燃機関1が理論空燃比で運転されている場合に、ECU10により所定の時間毎に実行される。上記フローチャートと同じ処理がなされるステップについては同じ符号を付して説明を省略する。また、ステップS102以降の処理は、図3、図4、図6、または図7に示したフローチャートと同じであるため一部の図示を省略する。
図8に示したフローチャートでは、ステップS101で肯定判定がなされるとステップS401へ進む。ステップS401では、SCR触媒5のNH吸着量が吸着量閾値未満であるか否か判定される。吸着量閾値は、予め実験またはシミュレーション等により求めてECU10に記憶させておく。ステップS401で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合にはステップS112へ進む。すなわち、SCR触媒5のNH吸着量が吸着量閾値以上であれば、内燃機関1の目標空燃比がリッチ空燃比を経ることなくリーン空燃比に変更される。
以上説明したように本実施例によれば、第一空燃比、第二空燃比、第三空燃比での運転が必要でない場合には、速やかにリーン空燃比へ切り換えるため、燃料の消費量を低減することができる。
1 内燃機関
2 排気通路
3 三元触媒
4 吸蔵還元型NOx触媒(NSR触媒)
5 選択還元型NOx触媒(SCR触媒)
6 噴射弁
7 吸気通路
8 スロットル
9 点火プラグ
10 ECU
11 第一空燃比センサ
12 第二空燃比センサ
13 第三空燃比センサ
14 第四空燃比センサ
15 エアフローメータ
16 アクセルペダル
17 アクセル開度センサ
18 クランクポジションセンサ
21 第一NOxセンサ
22 第二NOxセンサ

Claims (5)

  1. 内燃機関の排気通路に設けられて酸素貯蔵能を有すると共に、排気の空燃比が理論空燃比よりも低いときにNHを生成する三元触媒と、
    前記三元触媒よりも下流の排気通路に設けられ酸素貯蔵能を有すると共に、排気の空燃比がリーン空燃比のときにNOxを吸蔵する触媒であって、該触媒が吸蔵したNOxを排気の空燃比が理論空燃比以下のときに還元する吸蔵還元型NOx触媒と、
    前記吸蔵還元型NOx触媒よりも下流の排気通路に設けられNHを還元剤としてNOxを還元する選択還元型NOx触媒と、
    前記内燃機関での空燃比を調整する空燃比調整部と、
    前記吸蔵還元型NOx触媒のNOx吸蔵量を推定するNOx吸蔵量推定部と、
    前記選択還元型NOx触媒のNH吸着量を推定するNH吸着量推定部と、
    を備える内燃機関の排気浄化装置において、
    前記空燃比調整部は、前記内燃機関での空燃比を理論空燃比からリーン空燃比に切り換える前に、前記三元触媒及び前記吸蔵還元型NOx触媒の酸素貯蔵量に応じた期間は理論空燃比よりも低い第一空燃比とし、前記酸素貯蔵量に応じた期間が終了する時点において前記NOx吸蔵量推定部により推定されるNOx吸蔵量が吸蔵量閾値未満の場合には、前記酸素貯蔵量に応じた期間が終了した後に、前記NH吸着量推定部により推定されるNH吸着量が所定吸着量になるまで、前記内燃機関での空燃比を前記第一空燃比よりも高く且つ理論空燃比よりも低い第二空燃比とし、前記NH吸着量推定部により推定されるNH吸着量が前記所定吸着量になったらリーン空燃比に切り換え、前記酸素貯蔵量に応じた期間が終了する時点において前記NOx吸蔵量推定部により推定されるNOx吸蔵量が前記吸蔵量閾値以上の場合には、前記酸素貯蔵量に応じた期間が終了した後に、前記NH吸着量推定部により推定されるNH吸着量が前記所定吸着量になるまで、前記内燃機関での空燃比を前記第一空燃比よりも高く且つ前記第二空燃比よりも低い第三空燃比とし、前記NH吸着量推定部により推定されるNH吸着量が前記所定吸着量になったらリーン空燃比に切り換える内燃機関の排気浄化装置。
  2. 前記第二空燃比は、前記酸素貯蔵量に応じた期間が終了する時点において前記NOx吸蔵量推定部により推定されるNOx吸蔵量が前記吸蔵量閾値未満の場合に、前記第三空燃比とするよりも前記三元触媒においてNHの生成量が多くなる空燃比である請求項1に記載の内燃機関の排気浄化装置。
  3. 前記吸蔵還元型NOx触媒よりも下流で且つ前記選択還元型NOx触媒よりも上流の排気通路において、排気の空燃比を検出する空燃比センサを備え、
    前記空燃比調整部は、前記第一空燃比としている場合に、前記空燃比センサにより検出された空燃比が理論空燃比からリッチ空燃比に変化したときに、前記酸素貯蔵量に応じた期間が終了したとして、前記第二空燃比または前記第三空燃比に切り換える請求項1または2に記載の内燃機関の排気浄化装置。
  4. 前記三元触媒及び前記吸蔵還元型NOx触媒の酸素貯蔵量を推定する酸素貯蔵量推定部と、
    前記吸蔵還元型NOx触媒よりも下流で且つ前記選択還元型NOx触媒よりも上流の排気通路において、排気の空燃比を検出する空燃比センサと、
    を備え、
    前記空燃比調整部は、前記第一空燃比としている場合に、前記酸素貯蔵量推定部により推定される酸素貯蔵量が所定貯蔵量以下になったときに、前記第一空燃比から前記第二空燃比または前記第三空燃比に切り換え、
    前記酸素貯蔵量推定部は、前記空燃比センサにより検出された空燃比が理論空燃比からリッチ空燃比に変化した時点における前記酸素貯蔵量推定部により推定される酸素貯蔵量
    と前記所定貯蔵量とが等しくなるように、前記酸素貯蔵量推定部により推定される酸素貯蔵量または前記所定貯蔵量を補正する請求項1または2に記載の内燃機関の排気浄化装置。
  5. 前記空燃比調整部は、前記内燃機関での空燃比を理論空燃比からリーン空燃比に切り換える前に、前記NH吸着量推定部により推定されるNH吸着量が吸着量閾値以上のときは、前記第一空燃比、及び前記第二空燃比若しくは前記第三空燃比を経ずにリーン空燃比に切り換える請求項1から4の何れか1項に記載の内燃機関の排気浄化装置。
JP2015155952A 2015-08-06 2015-08-06 内燃機関の排気浄化装置 Expired - Fee Related JP6287996B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015155952A JP6287996B2 (ja) 2015-08-06 2015-08-06 内燃機関の排気浄化装置
US15/228,477 US9945277B2 (en) 2015-08-06 2016-08-04 Exhaust gas purification apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155952A JP6287996B2 (ja) 2015-08-06 2015-08-06 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2017031960A true JP2017031960A (ja) 2017-02-09
JP6287996B2 JP6287996B2 (ja) 2018-03-07

Family

ID=57986471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155952A Expired - Fee Related JP6287996B2 (ja) 2015-08-06 2015-08-06 内燃機関の排気浄化装置

Country Status (2)

Country Link
US (1) US9945277B2 (ja)
JP (1) JP6287996B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132229A (ja) * 2018-02-01 2019-08-08 マツダ株式会社 エンジンの排気浄化制御装置
EP3546711A1 (en) 2018-03-30 2019-10-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
JP2019173609A (ja) * 2018-03-27 2019-10-10 株式会社Subaru 排気浄化装置の制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077727B2 (en) 2016-01-13 2018-09-18 GM Global Technology Operations LLC Engine control systems and methods for nitrogen oxide reduction
US9957911B2 (en) * 2016-02-18 2018-05-01 GM Global Technology Operations LLC Dedicated exhaust gas recirculation control systems and methods
JP6512199B2 (ja) 2016-09-30 2019-05-15 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP6512200B2 (ja) * 2016-09-30 2019-05-15 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP6627839B2 (ja) * 2017-10-05 2020-01-08 マツダ株式会社 エンジンの排気浄化制御装置
DE102018216980A1 (de) * 2018-10-04 2020-04-09 Robert Bosch Gmbh Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286102A (ja) * 2007-05-17 2008-11-27 Isuzu Motors Ltd NOx浄化システムの制御方法及びNOx浄化システム
WO2012140775A1 (ja) * 2011-04-15 2012-10-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2013175604A1 (ja) * 2012-05-24 2013-11-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2014033838A1 (ja) * 2012-08-28 2014-03-06 トヨタ自動車株式会社 火花点火式内燃機関の排気浄化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300298A1 (de) * 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
JP4438828B2 (ja) * 2007-06-08 2010-03-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8555617B2 (en) * 2009-03-26 2013-10-15 GM Global Technology Operations LLC Exhaust gas treatment system including a four-way catalyst and urea SCR catalyst and method of using the same
US8677734B2 (en) * 2010-04-19 2014-03-25 GM Global Technology Operations LLC Method of producing ammonia effective to control aftertreatment conditions of NOx emissions
JP5534020B2 (ja) 2010-09-14 2014-06-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6020725B2 (ja) * 2013-07-11 2016-11-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6036772B2 (ja) * 2013-09-25 2016-11-30 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286102A (ja) * 2007-05-17 2008-11-27 Isuzu Motors Ltd NOx浄化システムの制御方法及びNOx浄化システム
WO2012140775A1 (ja) * 2011-04-15 2012-10-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2013175604A1 (ja) * 2012-05-24 2013-11-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2014033838A1 (ja) * 2012-08-28 2014-03-06 トヨタ自動車株式会社 火花点火式内燃機関の排気浄化装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132229A (ja) * 2018-02-01 2019-08-08 マツダ株式会社 エンジンの排気浄化制御装置
JP2019173609A (ja) * 2018-03-27 2019-10-10 株式会社Subaru 排気浄化装置の制御装置
EP3546711A1 (en) 2018-03-30 2019-10-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
JP2019178617A (ja) * 2018-03-30 2019-10-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
US10781734B2 (en) 2018-03-30 2020-09-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine

Also Published As

Publication number Publication date
US9945277B2 (en) 2018-04-17
US20170037757A1 (en) 2017-02-09
JP6287996B2 (ja) 2018-03-07

Similar Documents

Publication Publication Date Title
JP6287996B2 (ja) 内燃機関の排気浄化装置
US10107163B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5949954B2 (ja) 内燃機関の排気浄化装置
US7520274B2 (en) Air fuel ratio sensor deterioration determination system for compression ignition internal combustion engine
EP3064729B1 (en) Exhaust gas control system for internal combustion engine
JP5907269B2 (ja) 内燃機関の排気浄化装置
US10815853B2 (en) Abnormality diagnosis system for an exhaust gas purification apparatus
JP5786943B2 (ja) 内燃機関の排気浄化装置
US7899605B2 (en) Control device for internal combustion engine
JP2015014215A (ja) 内燃機関の排気浄化装置
JP2016079852A (ja) 内燃機関の排気浄化装置の異常判定システム
JP2016079856A (ja) 内燃機関の排気浄化装置の異常判定システム
JP5880592B2 (ja) 排気浄化装置の異常検出装置
JP2016109026A (ja) 内燃機関の排気浄化装置
US10385749B2 (en) Exhaust gas control apparatus for internal combustion engine
JP6439749B2 (ja) 内燃機関の排気浄化装置
JP2009221873A (ja) 内燃機関の排気浄化システム
JP2016125446A (ja) 内燃機関の排気浄化装置
JP2014001682A (ja) 内燃機関の排気浄化装置
JP2009019553A (ja) 内燃機関の排気浄化装置
JP2007010037A (ja) 自動変速機付内燃機関の制御装置
JP4345462B2 (ja) 内燃機関の空燃比制御装置
JP2007278246A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees