WO2012140775A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2012140775A1
WO2012140775A1 PCT/JP2011/059407 JP2011059407W WO2012140775A1 WO 2012140775 A1 WO2012140775 A1 WO 2012140775A1 JP 2011059407 W JP2011059407 W JP 2011059407W WO 2012140775 A1 WO2012140775 A1 WO 2012140775A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nox
coat layer
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2011/059407
Other languages
English (en)
French (fr)
Inventor
櫻井 健治
徹 木所
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11863459.1A priority Critical patent/EP2698515A4/en
Priority to JP2013509720A priority patent/JP5626457B2/ja
Priority to CN201180070137.9A priority patent/CN103477045B/zh
Priority to PCT/JP2011/059407 priority patent/WO2012140775A1/ja
Priority to US14/002,268 priority patent/US9255509B2/en
Publication of WO2012140775A1 publication Critical patent/WO2012140775A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus for an internal combustion engine that includes a NOx storage reduction catalyst and a NOx selective reduction catalyst.
  • Patent Document 1 discloses a catalyst device for NOx reduction removal.
  • the catalyst device of Patent Document 1 is for reducing and removing NOx using HC in a fuel as a reducing agent.
  • This catalyst device has two catalysts having different cell dimensions inside. The two catalysts are arranged adjacent to each other in series so that the catalyst having a large cell size is on the upstream side.
  • an exhaust purification system in which a three-way catalyst (TWC), a NOx storage reduction catalyst (NSR catalyst), and a NOx selective reduction catalyst (SCR catalyst) are arranged in this order from the upstream side of the exhaust passage of the internal combustion engine.
  • TWC three-way catalyst
  • NSR catalyst NOx storage reduction catalyst
  • SCR catalyst NOx selective reduction catalyst
  • Japanese Unexamined Patent Publication No. 10-205325 Japanese Patent Laid-Open No. 2001-079405 Japanese Unexamined Patent Publication No. 2010-265802 Japanese Unexamined Patent Publication No. 2003-245523
  • the NSR catalyst tends to cause so-called sulfur poisoning in which its catalytic performance is lowered by the sulfur content contained in the fuel.
  • the NOx purification performance of the NSR catalyst decreases, a state may occur in which NOx discharged downstream can not be completely purified by the SCR catalyst. Therefore, even in a purification system using an NSR catalyst and an SCR catalyst, it is desired to suppress sulfur poisoning of the NSR catalyst.
  • the above-described prior art catalytic device is intended to improve the purification performance by ensuring the flow of exhaust gas to the entire HC-SCR catalyst by increasing the upstream cell size. Therefore, the above prior art does not contribute at all to sulfur poisoning suppression of the NSR catalyst.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an exhaust purification apparatus improved so as to maintain a high NOx purification rate while suppressing sulfur poisoning of the NSR catalyst. To do.
  • the present invention is an exhaust purification device for an internal combustion engine, and includes an NOx occlusion reduction catalyst that is disposed in an exhaust path of the internal combustion engine and occludes or reduces NOx in the exhaust gas.
  • the NOx occlusion reduction catalyst is formed on the inner wall surface of a cell through which exhaust gas flows, and includes a coat layer having a function as a catalyst. The thickness of the coat layer on the upstream side of the exhaust gas flow is thinner than the thickness of the coat layer on the downstream side.
  • the exhaust purification device may include at least two NOx occlusion reduction catalysts, and these NOx occlusion reduction catalysts may be connected in series to the exhaust gas flow.
  • the thickness of the coat layer of the NOx storage reduction catalyst arranged on the upstream side is made thinner than the thickness of the coat layer of the downstream NOx storage reduction catalyst.
  • the NOx occlusion reduction catalyst may have at least two adjacent regions divided into an upstream side and a downstream side.
  • the thickness of the coat layer in each of the regions is made uniform, and the thickness of the coat layer in the upstream region among these regions is thinner than the thickness of the coat layer in the downstream region.
  • the NOx occlusion reduction catalyst may be formed inside the NOx occlusion reduction catalyst so that the thickness of the coat layer becomes thinner as it goes downstream.
  • the coat layer may contain Rh or Pd, or may contain Al 2 O 3 .
  • the coating layer on the inner wall surface of the cell of the NOx storage reduction catalyst is such that the thickness of the upstream coating layer is thinner than the thickness of the downstream coating layer.
  • the NOx occlusion catalyst tends to take in the sulfur component as the coat layer becomes thicker and tends to cause sulfur poisoning.
  • the coat layer becomes thinner the purification performance of the catalyst becomes lower. There is a tendency.
  • the sulfur poisoning is suppressed by arranging the thin part of the coat layer on the upstream side where the sulfur component is easily taken up, while the thick part of the coat layer is arranged on the downstream side where the sulfur component is difficult to be taken up. This ensures high purification performance. That is, according to the exhaust emission control device of the present invention, it is possible to suppress a decrease in purification performance due to sulfur poisoning and to ensure high purification performance.
  • Embodiments of the present invention will be described below with reference to the drawings.
  • symbol is attached
  • the present invention is not limited to the following embodiments.
  • Embodiment 1 FIG.
  • FIG. 1 is a diagram for explaining the overall configuration of a system according to an embodiment of the present invention.
  • the system according to the present embodiment includes an internal combustion engine 10.
  • An exhaust passage 12 communicates with each cylinder of the internal combustion engine 10.
  • a start catalyst (hereinafter referred to as “SC”) 14 that is a three-way catalyst is disposed in the exhaust passage 12.
  • a NOx occlusion reduction catalyst (hereinafter also referred to as “NSR catalyst”) 16 is disposed downstream of the exhaust passage 12 in the SC 14.
  • the NSR catalyst 16 includes two NSR catalysts 161 and 162, and both the NSR catalysts 161 and 162 are connected in series.
  • a NOx selective reduction catalyst (hereinafter also referred to as “SCR catalyst”) 18 is disposed downstream of the NSR catalyst 16.
  • each NSR catalyst 161, 162 is composed of a Pt layer containing platinum (Pt), an Rh-Pd layer containing rhodium (Rh) and palladium (Pd), and an underlying alumina (Al 2 O 3 ).
  • the Al 2 O 3 layer is formed by laminating in order from the surface.
  • Each layer constituting both NSR catalysts 161 and 162 contains the bases Ba, Li, and K, and these function as occlusion materials.
  • the thickness of the coat layer of the upstream NSR catalyst 161 is 240 g / L.
  • the thickness of the coat layer of the downstream NSR catalyst 162 is 270 g / L. That is, the coating layer of the upstream NSR catalyst 161 is thinner than the coating layer of the NSR catalyst 162.
  • the internal combustion engine 10 easily discharges HC and CO when the air-fuel ratio is rich. Further, it is easy to exhaust NOx when the air-fuel ratio is lean.
  • the SC 14 reduces NOx (purifies to N 2 ) while adsorbing oxygen (O 2 ) in a lean atmosphere.
  • NOx purifies to N 2
  • O 2 oxygen
  • HC and CO are oxidized (purified to H 2 O, CO 2 ) while releasing oxygen.
  • ammonia (NH 3 ) is generated by the reaction of nitrogen and hydrogen or HC and NOx contained in the exhaust gas.
  • the NSR catalyst 16 occludes NOx contained in the exhaust gas under a lean atmosphere. Further, the NSR catalyst 16 releases NOx stored in a rich atmosphere. NOx released in a rich atmosphere is reduced by HC and CO. At this time, NH 3 is also generated in the NSR catalyst 16 as in the case of SC14.
  • the SCR catalyst 18 is configured as a Cu-based zeolite catalyst, and the SC 14 and the NSR catalyst 16 occlude NH 3 produced in a rich atmosphere.
  • NH 3 is used as a reducing agent, and NOx in exhaust gas is absorbed. It has the function of selectively reducing.
  • the SCR catalyst 18 can effectively prevent a situation in which NH 3 and NOx blown downstream of the NSR catalyst 16 are released into the atmosphere.
  • FIG. 2 is a schematic diagram for explaining the storage mechanism of the NSR catalyst under a lean atmosphere when the NSR catalyst is functioning normally.
  • FIG. 3 is a diagram for explaining a purification rate when a purification system having an NSR catalyst and an SCR catalyst is functioning normally.
  • the horizontal axis represents the load, and the vertical axis represents the NOx purification rate (%).
  • the (a) line represents the purification rate of the exhaust gas discharged from the NSR catalyst
  • the (b) line represents the NOx purification rate of the exhaust gas that subsequently flows into the SCR catalyst and discharged from the SCR catalyst. ing.
  • FIG. 4 is a schematic diagram for explaining the storage mechanism of the NSR catalyst in a lean atmosphere when the NSR catalyst causes sulfur poisoning.
  • FIG. 5 is a diagram for explaining the purification rate of the purification system having the NSR catalyst and the SCR catalyst when the NSR catalyst is poisoned with sulfur.
  • the horizontal axis represents the load, and the vertical axis represents the NOx purification rate (%).
  • line (c) represents the purification rate of exhaust gas discharged from the NSR catalyst
  • line (d) represents the purification rate of exhaust gas that subsequently flows into the SCR catalyst and is discharged from the SCR catalyst. Yes.
  • the NSR catalyst 16 is configured to suppress sulfur poisoning of the NSR catalyst as described above.
  • the NSR catalyst 16 includes the upstream NSR catalyst 161 and the downstream NSR catalyst 162, and the thickness of the coat layer on the cell surface is different between the upstream NSR catalyst 161 and the downstream NSR catalyst 162. It is configured as follows.
  • the sulfur component tends to adhere when the coating layer of the catalyst is thick, and tends to become difficult to adhere when it becomes thin.
  • the attached sulfur component also tends to be difficult to desorb when the coat layer is thick, but tends to be easily desorbed when the coat layer is thin. That is, it is considered that the NSR catalyst is likely to cause sulfur poisoning when the coat layer is thick, and the NSR catalyst is less likely to cause sulfur poisoning when the coat layer is thin.
  • the NOx purification performance of the NSR catalyst may be reduced. That is, in order to maintain the purification performance of the NSR catalyst high, a certain amount of coat layer thickness is required. Further, the sulfur component tends to adhere from the upstream side and hardly reach the downstream side.
  • the coating layer of the upstream NSR catalyst 161 is thin, and the coating layer of the downstream NSR catalyst 162 is thick.
  • the NSR catalyst 161 having a thin coat layer is disposed on the upstream side where sulfur poisoning is likely to occur. .
  • an NSR catalyst 162 having a thick catalyst layer with high catalyst purification performance is disposed. Thereby, the fall of the purification performance by sulfur poisoning as the whole NSR catalyst 16 can be suppressed, and the purification performance of the whole purification system can be maintained high.
  • the coat layer is configured by sequentially stacking the Pt layer, the Rh—Pd layer, and the Al 2 O 3 layer as the lower precoat layer.
  • the coat layer is not limited to this configuration.
  • the coating layer may not include the Al 2 O 3 layer but may be formed only from the Pt layer and the Rh—Pd layer, or may be a layer using Ti. Regardless of which coat layer is used, the upstream NSR catalyst coat layer is made thin, and the downstream NSR catalyst coat layer is made thick so that the influence of sulfur poisoning is suppressed and high. Purification performance can be ensured.
  • the upstream NSR catalyst 161 coat layer is 240 g / L and the downstream NSR catalyst 162 coat layer is 270 g / L has been described.
  • the thickness of the coat layer is not limited to this, and is appropriately set according to the required purification rate.
  • the NSR catalyst is not limited to this in the present invention.
  • three or more NSR catalysts having different coat layer thicknesses may be arranged. Even if the number of NSR catalysts increases, it is possible to ensure high purification performance while suppressing sulfur poisoning by installing an NSR catalyst having a thinner coat layer on the upstream side.
  • FIG. 6 is a schematic diagram showing an example of another NSR catalyst used as the purification system according to the embodiment of the present invention.
  • the NSR catalyst 26 in FIG. 6 is a catalyst that is used alone instead of the two NSR catalysts 161 and 162 in the purification system in FIG.
  • the NSR catalyst 26 is divided into two regions 261 and 262 having different coating layer thicknesses.
  • the coating layer on the cell surface of the NSR catalyst 26 is thin in the upstream region 261 and thick in the downstream region 262.
  • the coat layer is formed with a substantially uniform thickness.
  • FIG. 6 illustrates the case where the area is divided into two areas 261 and 262.
  • the NSR catalyst may have three or more regions.
  • the thickness of the coat layer may be increased stepwise from the upstream region to the downstream region.
  • the NSR catalyst is not limited to one in which the inside is divided into a plurality of regions and the thickness of the coat layer is increased stepwise.
  • the NSR catalyst of the present invention may be configured such that the thickness of the coat layer gradually increases from the upstream side to the downstream side.
  • a plurality of NSR catalysts having different coating layer thicknesses inside one NSR catalyst as described above may be arranged in series.
  • the sulfur poisoning can be achieved by making the coat layer thicker stepwise or gradually from the upstream side of the upstream NSR catalyst toward the downstream side of the downstream NSR catalyst. Purifying performance can be ensured while suppressing the above.
  • SCR catalyst NOx selective reduction catalyst

Abstract

 この発明の内燃機関の排気浄化装置は、内燃機関の排気経路に配置され排気ガス中のNOxを吸蔵又は還元するNOx吸蔵還元触媒(161、162)を備える。NOx吸蔵還元触媒(161、162)は、排気ガスが流通するセルの内壁面に形成され、触媒としての機能を有するコート層を備えている。コート層は、排気ガスの流れの上流側のNOx吸蔵還元触媒(161)のコート層の厚さの方が、下流側のNOx吸蔵還元触媒(162)のコート層の厚さに比べて薄くなるように形成されている。この構成により、NOx吸蔵還元触媒(161、162)の硫黄被毒が抑制され、高いNOx浄化率が維持される。

Description

内燃機関の排気浄化装置
 この発明は、内燃機関の排気浄化装置に係り、特に、NOx吸蔵還元触媒とNOx選択還元触媒とを備える内燃機関の排気浄化装置に関する。
 例えば、特許文献1には、NOx還元除去用の触媒装置が開示されている。特許文献1の触媒装置は燃料中のHCを還元剤としてNOxを還元除去するものである。この触媒装置は、内部にセル寸法の異なる2つの触媒を有する。2つの触媒は、セル寸法の大きな触媒が上流側になるようにして、直列に隣接して配置されている。
 また、従来、三元触媒(TWC)、NOx吸蔵還元触媒(NSR触媒)、およびNOx選択還元触媒(SCR触媒)が、内燃機関の排気通路の上流側からこの順序で配置された排気浄化システムが知られている。バンク制御またはリッチスパイクが実行されることによって、三元触媒およびNSR触媒においてアンモニア(NH)が生成され、生成されたアンモニア(NH)はSCR触媒へ供給される。SCR触媒では、供給されたアンモニア(NH)が用いられ、流入するNOxを選択的に還元する。このようなシステムでは、三元触媒、及びNSR触媒で除去されずに残ったNOxを、更にSCR触媒で除去することで、NOxに対する浄化性能を高めることを目的としている。
日本特開平10-205325号公報 日本特開2001-079405号公報 日本特開2010-265802号公報 日本特開2003-245523号公報
 ところで、NSR触媒は、燃料中に含まれる硫黄分によりその触媒性能が低下する、いわゆる硫黄被毒を起こしやすい傾向にある。NSR触媒のNOx浄化性能が低下すると、下流側に排出されたNOxをSCR触媒では浄化しきれない状態が起こり得る。従って、NSR触媒とSCR触媒とを用いた浄化システムにおいても、NSR触媒の硫黄被毒の抑制が望まれる。
 この点、上記従来技術の触媒装置は、上流側のセル寸法を大きなものとすることで、HC-SCR触媒全体への排気の流れを確保して浄化性能を向上させることを目的とする。従って、上記従来技術は、NSR触媒の硫黄被毒抑制に関し何ら寄与するものではない。
 この発明は、上述のような課題を解決するためになされたもので、NSR触媒の硫黄被毒を抑制しつつ、高いNOx浄化率を維持できるよう改良した排気浄化装置を提供することを目的とする。
 この発明は、上記目的を達成するため、内燃機関の排気浄化装置であって、内燃機関の排気経路に配置され排気ガス中のNOxを吸蔵又は還元するNOx吸蔵還元触媒を備える。NOx吸蔵還元触媒は、排気ガスが流通するセルの内壁面に形成され、触媒としての機能を有するコート層を備える。排気ガスの流れの上流側のコート層の厚さの方が、下流側のコート層の厚さに比べて薄い。
 この発明において、排気浄化装置は、少なくとも2つのNOx吸蔵還元触媒を備え、これらNOx吸蔵還元触媒は、排気ガスの流れに対して直列に接続されたものとしてもよい。この場合、上流側に配置されるNOx吸蔵還元触媒のコート層の厚さが、下流側のNOx吸蔵還元触媒のコート層の厚さよりも薄いものとなるようにする。
 この発明において、NOx吸蔵還元触媒が、上流側と下流側とに分けられた隣接する少なくとも2つ領域を有するものとしてもよい。この場合、領域のそれぞれにおけるコート層の厚さを均一とし、かつ、これらの領域のうち、上流側の領域のコート層の厚さが、下流側の領域のコート層の厚さよりも薄いものとする。
 この発明において、NOx吸蔵還元触媒は、そのNOx吸蔵還元触媒内部で、コート層の厚さが下流側になるにつれて薄くなるように形成されたものとしてもよい。
 この発明において、コート層は、Rh又はPdを含むものとしてもよく、また、Alを含むものとしてもよい。
 この発明によれば、NOx吸蔵還元触媒のセル内壁面のコート層を、上流側のコート層の厚さの方が、下流側のコート層の厚さに比べて薄いものとしている。ここで、NOx吸蔵触媒は、コート層の厚さが厚いほど硫黄成分を取り込みやすく、硫黄被毒を起こしやすい傾向にあり、一方、コート層の厚さが薄くなると、触媒の浄化性能が低くなる傾向にある。この発明によれば、硫黄成分を取り込みやすい上流側に、コート層の薄い部分を配置することで、硫黄被毒を抑制し、一方、硫黄成分を取り込み難い下流側にコート層の厚い部分を配置することで、浄化性能を高く確保している。つまり、この発明の排気浄化装置によれば、硫黄被毒による浄化性能の低下を抑制し、高い浄化性能を確保することができる。
この発明の実施の形態におけるシステムの全体構成について説明するための図である。 NSR触媒の吸蔵メカニズムについて説明するための図である。 正常に機能している浄化システムの、NOx浄化率について説明するための図である。 硫黄被毒を起こす場合のNSR触媒の吸着メカニズムについて説明するための図である。 NSR触媒が硫黄被毒を起こしている場合における、NOx浄化率について説明するための図である。 本発明の実施の形態の浄化システムにおける、他のNSR触媒の例を説明するための模式図である。
 以下、図面に基づいてこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。
実施の形態1.
[実施の形態1のシステムの全体構成]
 図1は、本発明の実施の形態のシステムの全体構成を説明するための図である。図1に示すように、本実施の形態のシステムは内燃機関10を備えている。内燃機関10の各気筒には排気通路12が連通している。排気通路12には三元触媒であるスタート触媒(以下、「SC」と称する)14が配置されている。
 排気通路12の、SC14下流には、NOx吸蔵還元触媒(以下「NSR触媒」とも称する)16が配置されている。NSR触媒16は、2つのNSR触媒161、162で構成され、両NSR触媒161、162は直列に連結されている。NSR触媒16下流には、NOx選択還元触媒(以下「SCR触媒」とも称する)18が配置されている。
 ここで、NSR触媒161、162において、排気ガスが通過する複数のセルの内壁面は、触媒として機能するコート層により被覆されている。各NSR触媒161、162のコート層は、白金(Pt)を含むPt層と、ロジウム(Rh)とパラジウム(Pd)とを含むRh-Pd層と、下層のアルミナ(Al)からなるAl層が、表面から順に積層されて構成されている。両NSR触媒161、162を構成する各層には、塩基であるBa、Li、Kが含有され、これらは吸蔵材として機能する。
 上流のNSR触媒161のコート層の厚さは、240g/Lである。一方、下流のNSR触媒162のコート層の厚さは270g/Lである。即ち、上流側のNSR触媒161のコート層の方が、NSR触媒162のコート層より薄くなっている。
[各触媒の機能]
 このシステムにおいて、内燃機関10は、空燃比がリッチである場合に、HCおよびCOを排出し易い。また、空燃比がリーンである場合にNOxを排出しやすい。SC14は、リーン雰囲気では酸素(O)を吸着しながらNOxを還元(Nに浄化)する。他方、リッチ雰囲気では、酸素を放出しながらHCおよびCOを酸化(HO、COに浄化)する。また、リッチ雰囲気下では、排気ガス中に含まれる窒素と水素、或いはHCとNOxが反応することにより、アンモニア(NH)が生成される。
 NSR触媒16はリーン雰囲気下では、排気ガス中に含まれるNOxを吸蔵する。また、NSR触媒16は、リッチ雰囲気下で吸蔵しているNOxを放出する。リッチ雰囲気下で放出されたNOxは、HCやCOにより還元される。この際、SC14の場合と同様に、NSR触媒16においてもNHが生成される。
 SCR触媒18は、Cu系ゼオライト触媒として構成され、SC14およびNSR触媒16が、リッチ雰囲気下で生成するNHを吸蔵し、リーン雰囲気下では、NHを還元剤として、排気ガス中のNOxを選択的に還元する機能を有している。SCR触媒18により、NSR触媒16の下流に吹き抜けてきたNHおよびNOxが大気中に放出される事態を有効に阻止することができる。
[NSR触媒の硫黄被毒について]
 ところで、従来のNSR触媒は、燃料中に含まれる硫黄成分により被毒しやすく(以下、「硫黄被毒」)、その結果、浄化性能の低下を起こしやすい傾向にある。図2は、NSR触媒が正常に機能している場合の、リーン雰囲気下でのNSR触媒の吸蔵メカニズムについて説明するための模式図である。図3は、NSR触媒とSCR触媒とを有する浄化システムが正常に機能している場合の浄化率を説明するための図である。図3において横軸は負荷を表し、縦軸はNOx浄化率(%)を表している。また、図3において(a)線はNSR触媒から排出された排気ガスの浄化率を表し、(b)線は、その後SCR触媒に流入しSCR触媒から排出された排気ガスのNOx浄化率を表している。
 図2に示されるように、NSR触媒が正常に機能している状態においては、白金触媒に酸素とNOが取り込まれ、NOが吸蔵材に吸蔵される。このように、NSR触媒が正常に機能している場合、排気ガスは比較的高いNOx浄化率で浄化される(図3の(a)線参照)。この排気ガスは、SCR触媒に流入し、SCR触媒において高い浄化率で浄化される(図3の(b)線参照)。図3から、正常に機能している場合、この浄化システムは、NOxに対する非常に高い浄化精度を確保できることが確認される。
 図4は、NSR触媒が硫黄被毒を起こす場合の、リーン雰囲気下におけるNSR触媒の吸蔵メカニズムについて説明するための模式図である。図5は、NSR触媒が硫黄被毒している場合の、NSR触媒とSCR触媒とを有する浄化システムの浄化率を説明するための図である。図5において横軸は負荷、縦軸はNOx浄化率(%)を表している。また、図5において(c)線はNSR触媒から排出された排気ガスの浄化率を表し、(d)線は、その後SCR触媒に流入しSCR触媒から排出された排気ガスの浄化率を表している。
 NSR触媒において、排気ガス中の硫黄成分であるSOはNOxより反応しやすい。このため、図4に示されるように、SOは、より多くOと反応し、SOとなり吸蔵材に吸蔵される。これによりNSR触媒は硫黄被毒した状態となる。この状態では、NOxは吸蔵されにくくなり、NSR触媒の浄化性能が低下する(図5の(c)線参照)。その結果、下流のSCR触媒に多量のNOxが排出されることとなる。NOxの排出量が多い場合、下流のSCR触媒だけでは、そのNOxを捕集することができず、排気ガス中にNOxが残留することとなる。図5からも、NSR触媒のNOx浄化性能が低下した場合、浄化システム全体としても、高い浄化性能が確保できていないことがわかる。
[本実施の形態におけるNSR触媒の硫黄被毒抑制のための構成について]
 本実施の形態の浄化システムにおいてNSR触媒16は、上記のようなNSR触媒の硫黄被毒を抑制するよう構成されている。上述したように、NSR触媒16は、上流のNSR触媒161と下流のNSR触媒162とで構成され、上流のNSR触媒161と下流のNSR触媒162とで、セル表面のコート層の厚さが異なるように構成されている。
 ここで、硫黄成分は、触媒のコート層が厚い場合に付着しやすく、薄くなると付着しにくくなる傾向がある。また、付着した硫黄成分についても、コート層が厚い場合には脱離し難い傾向があるが、コート層が薄くなると脱離しやすくなる傾向がある。つまり、NSR触媒は、コート層が厚い場合に硫黄被毒を起こしやすく、コート層が薄い方が、硫黄被毒を起こしにくいものと考えられる。
 一方、コート層が薄くなると、NSR触媒のNOxの浄化性能が低下することが考えられる。つまり、NSR触媒の浄化性能を高く維持するためには、ある程度のコート層の厚さを必要とする。また、更に、硫黄成分は、上流側から付着していき、下流側には到達し難い傾向がある。
 以上のことから、本実施の形態では、上流のNSR触媒161のコート層を薄いものとし、下流のNSR触媒162のコート層を厚いものとしている。つまり、本実施の形態の浄化システムでは、硫黄被毒が起こりやすい上流側には、硫黄成分が付着しにくく、かつ付着した硫黄成分を脱離しやすい、薄いコート層のNSR触媒161が配置される。一方、硫黄被毒を起こしにくい下流側には、逆に、触媒浄化性能の高い、厚いコート層を有するNSR触媒162が配置される。これにより、NSR触媒16全体として、硫黄被毒による浄化性能の低下を抑制することができ、浄化システム全体の浄化性能を高く維持することができる。
 なお、本実施の形態において、コート層は、Pt層と、Rh-Pd層と、下層のプレコート層であるAl層とが順に積層されて構成される場合について説明した。しかし、この発明においてコート層はこの構成に限るものではない。例えばコート層は、Al層を含まず、Pt層と、Rh-Pd層とのみから形成されたものや、Tiを含有する層を用いたものであってもよい。いずれのコート層を用いる場合であっても、上流側のNSR触媒のコート層を薄いものとし、下流側のNSR触媒のコート層を厚いものとすることで、硫黄被毒による影響を抑え、高い浄化性能を確保することができる。
 また、本実施の形態において、上流のNSR触媒161のコート層を240g/Lとし、下流のNSR触媒162のコート層を270g/Lとする場合について説明した。しかし、この発明においてコート層の厚さはこれに限られるものではなく、要求される浄化率等に応じて適宜設定されるものである。
 また、本実施の形態では、NSR触媒16として、上流、下流に直列に2つのNSR触媒161、162を配置する場合について説明した。しかし、この発明においてNSR触媒はこれに限るものではない。例えば、コート層の厚さの異なる3以上のNSR触媒を、配置するものであってもよい。NSR触媒の数が多くなっても、より上流側にコート層のより薄いNSR触媒を設置することで、硫黄被毒を抑制しつつ高い浄化性能を確保することができる。
 また、この発明は、複数のNSR触媒を配置したものに限られず、NSR触媒を1つとし、1のNSR触媒内部でコート層の厚さを変化させたものであってもよい。図6は、本発明の実施の形態の浄化システムとして用いられる他のNSR触媒の例を示す模式図である。図6のNSR触媒26は、図1の浄化システム中の2つのNSR触媒161、162に替えて、単体で用いられる触媒である。
 この例においてNSR触媒26はその内部でコート層の厚さが異なる2つの領域261、262に分けられて構成されている。具体的には、NSR触媒26のセル表面のコート層は、上流側の領域261では薄く、下流側の領域262で厚くなっている。但し、各領域261、262それぞれでは、コート層はほぼ均一の厚さで形成されている。このように1のNSR触媒の内部で、コート層の厚さを異なるものとしても、複数のNSR触媒を配置した場合と同様の効果を得ることができる。
 図6では2つの領域261、262に分けられた場合について説明した。しかし、この発明においてNSR触媒は、3以上の領域を有するものとしてもよい。この場合にも同様に、より上流側の領域から下流側の領域に向けて、段階的にコート層の厚さが厚くなるようにすればよい。
 また、本発明において、NSR触媒は、内部を複数の領域に分け、段階的にコート層の厚さを増加させたものに限るものではない。この発明のNSR触媒は、その内部において、上流側から下流側にいくにつれて、徐々にコート層の厚さが厚くなるような構成としたものであってもよい。
 また、この発明においては、上記のような1のNSR触媒内部でコート層の厚さが異なるようにしたNSR触媒を、複数直列に配置するものとしてもよい。この場合にも、上流側のNSR触媒の上流側から、下流側のNSR触媒の下流側に行くに従って、段階的に、あるいは徐々に、コート層が厚くなるように構成することで、硫黄被毒を抑制しつつ、浄化性能を確保することができる。
 なお、以上の実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、この実施の形態において説明する構造等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
10 内燃機関(エンジン)
12 排気通路
14 スタート触媒(SC)
16、26、161、162 NOx吸蔵還元触媒(NSR触媒)
18 NOx選択還元触媒(SCR触媒)

Claims (6)

  1.  内燃機関の排気経路に配置され排気ガス中のNOxを吸蔵又は還元するNOx吸蔵還元触媒を備え、
     前記NOx吸蔵還元触媒は、排気ガスが流通するセルの内壁面に形成され、触媒としての機能を有するコート層を備え、
     排気ガスの流れの上流側の前記コート層の厚さは、下流側の前記コート層の厚さよりも薄いことを特徴とする内燃機関の排気浄化装置。
  2.  少なくとも2つの前記NOx吸蔵還元触媒を備え、
     前記NOx吸蔵還元触媒は、排気ガスの流れに対して直列に接続され、
     前記NOx吸蔵還元触媒のうち、上流側に配置されるNOx吸蔵還元触媒のコート層は、下流側に配置されるNOx吸蔵還元触媒のコート層よりも薄いことを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  3.  前記NOx吸蔵還元触媒は、上流側と下流側とに分けられた隣接する少なくとも2つ領域を有し、
     前記領域のそれぞれにおける前記コート層の厚さは均一であり、かつ、前記領域のうち、上流側の領域の前記コート層の厚さは、下流側の領域の前記コート層の厚さよりも薄いことを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。
  4.  前記NOx吸蔵還元触媒の前記コート層の厚さは、下流側になるにつれて薄くなるように形成されていることを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。
  5.  前記コート層は、Rh又はPdを含むことを特徴とする請求項1から4のいずれか1項に記載の内燃機関の排気浄化装置。
  6.  前記コート層は、Alを含むことを特徴とする請求項1から5のいずれか1項に記載の内燃機関の排気浄化装置。
PCT/JP2011/059407 2011-04-15 2011-04-15 内燃機関の排気浄化装置 WO2012140775A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11863459.1A EP2698515A4 (en) 2011-04-15 2011-04-15 EXHAUST GAS CLEANER FOR A COMBUSTION ENGINE
JP2013509720A JP5626457B2 (ja) 2011-04-15 2011-04-15 内燃機関の排気浄化装置
CN201180070137.9A CN103477045B (zh) 2011-04-15 2011-04-15 内燃机的排气净化装置
PCT/JP2011/059407 WO2012140775A1 (ja) 2011-04-15 2011-04-15 内燃機関の排気浄化装置
US14/002,268 US9255509B2 (en) 2011-04-15 2011-04-15 Exhaust cleaner for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059407 WO2012140775A1 (ja) 2011-04-15 2011-04-15 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2012140775A1 true WO2012140775A1 (ja) 2012-10-18

Family

ID=47008977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059407 WO2012140775A1 (ja) 2011-04-15 2011-04-15 内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US9255509B2 (ja)
EP (1) EP2698515A4 (ja)
JP (1) JP5626457B2 (ja)
CN (1) CN103477045B (ja)
WO (1) WO2012140775A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093760A (ja) * 2014-11-12 2016-05-26 株式会社キャタラー 排ガス浄化用触媒
JP2016123890A (ja) * 2014-12-26 2016-07-11 日産自動車株式会社 ハニカム型モノリス触媒およびその製造方法
JP2017031960A (ja) * 2015-08-06 2017-02-09 トヨタ自動車株式会社 内燃機関の排気浄化装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545962B2 (ja) * 2015-01-22 2019-07-17 株式会社キャタラー 排ガス浄化用触媒
JP6569637B2 (ja) * 2016-10-14 2019-09-04 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2020183496A1 (en) * 2019-03-11 2020-09-17 Hero MotoCorp Limited Catalyst system for treatment of exhaust gas of automobile and process for making the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205325A (ja) 1997-01-21 1998-08-04 Isuzu Motors Ltd NOx還元除去用ハニカム触媒装置
JP2001079405A (ja) 1999-09-17 2001-03-27 Hitachi Ltd 排気ガス浄化用触媒、排気ガス浄化用触媒担持ハニカム構造体及びその浄化方法
JP2003245523A (ja) 2002-02-25 2003-09-02 Nissan Motor Co Ltd 排気ガス浄化システム
JP2005144294A (ja) * 2003-11-13 2005-06-09 Cataler Corp 排気ガス浄化触媒
JP2010005591A (ja) * 2008-06-30 2010-01-14 Toyota Motor Corp 排ガス浄化用触媒
JP2010110730A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp 排ガス浄化用触媒
JP2010265802A (ja) 2009-05-14 2010-11-25 Honda Motor Co Ltd 内燃機関の排ガス浄化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7673445B2 (en) * 2004-11-09 2010-03-09 Ford Global Technologies, Llc Mechanical apparatus having a catalytic NOx storage and conversion device
EP1825912A4 (en) * 2004-11-25 2010-04-14 Cataler Corp CATALYST FOR THE PURIFICATION OF EXHAUST GAS
JP4751917B2 (ja) * 2008-06-30 2011-08-17 トヨタ自動車株式会社 排ガス浄化用触媒

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205325A (ja) 1997-01-21 1998-08-04 Isuzu Motors Ltd NOx還元除去用ハニカム触媒装置
JP2001079405A (ja) 1999-09-17 2001-03-27 Hitachi Ltd 排気ガス浄化用触媒、排気ガス浄化用触媒担持ハニカム構造体及びその浄化方法
JP2003245523A (ja) 2002-02-25 2003-09-02 Nissan Motor Co Ltd 排気ガス浄化システム
JP2005144294A (ja) * 2003-11-13 2005-06-09 Cataler Corp 排気ガス浄化触媒
JP2010005591A (ja) * 2008-06-30 2010-01-14 Toyota Motor Corp 排ガス浄化用触媒
JP2010110730A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp 排ガス浄化用触媒
JP2010265802A (ja) 2009-05-14 2010-11-25 Honda Motor Co Ltd 内燃機関の排ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698515A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093760A (ja) * 2014-11-12 2016-05-26 株式会社キャタラー 排ガス浄化用触媒
JP2016123890A (ja) * 2014-12-26 2016-07-11 日産自動車株式会社 ハニカム型モノリス触媒およびその製造方法
JP2017031960A (ja) * 2015-08-06 2017-02-09 トヨタ自動車株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
CN103477045B (zh) 2016-09-07
EP2698515A4 (en) 2014-09-03
US20140023561A1 (en) 2014-01-23
CN103477045A (zh) 2013-12-25
JPWO2012140775A1 (ja) 2014-07-28
EP2698515A1 (en) 2014-02-19
US9255509B2 (en) 2016-02-09
JP5626457B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5626457B2 (ja) 内燃機関の排気浄化装置
US8671661B2 (en) Exhaust gas purification method and exhaust gas purification system
WO2006027904A1 (ja) 誘導構造及び排気ガス浄化装置
WO2007123011A1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
WO2011118047A1 (ja) 排ガス浄化用触媒
US11105242B2 (en) Exhaust gas purification device
JP4062231B2 (ja) 内燃機関の排気浄化装置
JP5482222B2 (ja) 内燃機関の排気浄化装置
US20130152552A1 (en) Exhaust emission control device of internal combustion engine
JP5880739B2 (ja) 内燃機関の異常検出装置
JP2008296090A (ja) 排気ガス浄化触媒、排気ガス浄化システム及び排気ガス浄化方法
JP2011220123A (ja) 排気浄化触媒
WO2014016965A1 (ja) 内燃機関の排気浄化装置
EP2832963B2 (en) Exhaust gas purifying device of internal combustion engine
JP5094199B2 (ja) 排ガス浄化装置
CN110344919B (zh) 排气净化装置
JP5640521B2 (ja) 内燃機関の排気浄化装置
JP6569637B2 (ja) 内燃機関の排気浄化装置
JP5653894B2 (ja) 内燃機関の排気浄化装置
JP5525493B2 (ja) 内燃機関の排気浄化装置
WO2014050361A1 (ja) NOx浄化システム
JP2010253389A (ja) NOx浄化触媒
KR20050031526A (ko) 차량용 배기정화장치 및 이를 이용한 연비향상방법
JP2015014225A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14002268

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013509720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011863459

Country of ref document: EP