WO2006109684A1 - 記録装置及び方法、再生装置及び方法、記録再生装置及び方法、並びにコンピュータプログラム - Google Patents

記録装置及び方法、再生装置及び方法、記録再生装置及び方法、並びにコンピュータプログラム Download PDF

Info

Publication number
WO2006109684A1
WO2006109684A1 PCT/JP2006/307350 JP2006307350W WO2006109684A1 WO 2006109684 A1 WO2006109684 A1 WO 2006109684A1 JP 2006307350 W JP2006307350 W JP 2006307350W WO 2006109684 A1 WO2006109684 A1 WO 2006109684A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
control
error signal
servo
tracking
Prior art date
Application number
PCT/JP2006/307350
Other languages
English (en)
French (fr)
Inventor
Naoharu Yanagawa
Masufumi Asada
Kunihiko Horikawa
Akira Shirota
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007512948A priority Critical patent/JPWO2006109684A1/ja
Priority to US11/918,052 priority patent/US7859965B2/en
Publication of WO2006109684A1 publication Critical patent/WO2006109684A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0941Methods and circuits for servo gain or phase compensation during operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0948Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for detection and avoidance or compensation of imperfections on the carrier, e.g. dust, scratches, dropouts
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0953Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for eccentricity of the disc or disc tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc

Definitions

  • the present invention relates to a recording apparatus and method such as a DVD recorder for recording data on a recording medium such as a DVD and a CD (Compact Disc), a reproducing apparatus for reproducing data from the recording medium, and
  • a recording apparatus and method such as a DVD recorder for recording data on a recording medium such as a DVD and a CD (Compact Disc), a reproducing apparatus for reproducing data from the recording medium
  • the present invention relates to a technical field of a method, a recording / reproducing apparatus and method capable of both recording and reproduction, and a computer program for recording or reproduction control.
  • Patent Document 1 when performing high-speed recording or playback on a recording medium such as a DVD, focus control (focus processing, auto focus ff control, focus servo, focusing processing) is stable. And a technique relating to a recording or reproducing method for performing tracking control (tracking processing, tracking automatic control, tracking servo). Specifically, first, the characteristics of the recording medium are detected from the high-frequency component included in the focus error signal used in the focus processing or the tracking error signal used in the tracking processing.
  • the “characteristic” according to the present invention means (i) physical mechanical characteristics caused by the shape and structure of the recording medium such as eccentric acceleration and surface runout acceleration.
  • (ii) it may mean chemical or natural characteristics corresponding to the state of the recording surface such as scratches, dust, fingerprints, and oil stains.
  • One cause of this characteristic is group deformation.
  • the region where the group is partially deformed is generally caused by the fact that the shape of the stamper is not properly transferred when the injection molding machine in the manufacturing process is rapidly cooled. ing.
  • the rotational speed (and hence the linear recording speed) of the recording medium is reduced, and the focus processing and tracking processing are performed stably.
  • the “three-beam tracking process” means that a laser beam irradiated from an optical pickup is incident on a diffraction grating, and (i) a main beam mainly used for recording data (information).
  • a main beam mainly used for recording data information
  • Two sub-beams mainly used for tracking processing are generated, and tracking processing is performed using the two sub-beams. More specifically, for example, on the recording surface of a single-layer type optical disc, these sub-beam spots are arranged so as to be shifted by half the track pitch as compared to the main beam spot.
  • the reflected light of the two sub beams is received by, for example, a two-divided photodetector. Tracking processing is performed by detecting the difference in the amount of light (or phase) received by each of the two divided photodetectors.
  • a general recording device such as a disk drive is also provided with a sensor for detecting vibration, and when the detected amount of vibration exceeds a predetermined value, the rotational speed is reduced. Control is taking place.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-62945
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-312146
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-373419
  • Non-Patent Document 1 “Optical Head for Magneto-Optical Disk”, Electronic Materials, Industrial Research Committee, issued July 1, 1988, 27th issue, No. 7, p73-74
  • the recording apparatus has a capability of recording at a high speed such as 16 times speed, for example, but the value indicating the characteristics of the recording medium is far from the allowable range, that is, If the characteristics are not appropriate, there is a problem that it is technically difficult to record at high speed.
  • a recording device capable of high-speed recording records to a recording medium that has the characteristics capable of high-speed recording, the possibility is realized even though higher-speed recording is possible. It has a technical problem.
  • the recording film (recording layer) of the recording medium has appropriate recording medium characteristics even if the recording film characteristics (recording characteristics, recording layer characteristics) capable of high-speed recording are maintained. Na In such a case, there is a problem that it is technically difficult to perform recording at high speed. In other words, if a recording device capable of high-speed recording records on a recording medium that has characteristics capable of high-speed recording in addition to recording characteristics capable of high-speed recording, higher speed is possible. Despite being able to record well, there is a technical problem that the possibility has not been realized.
  • the present invention has been made in view of, for example, the above-described conventional problems. For example, variations in characteristics of a recording surface of an individual recording medium such as an optical disc, or characteristics of individual recording media Recording apparatus and method, reproducing apparatus and method, recording / reproducing apparatus and method, and computer for recording or reproducing control, which makes it possible to record or reproduce data at a higher speed by minimizing the influence of variations in data
  • the issue is to provide a program.
  • a recording apparatus of the present invention has recording means (optical pickup, laser drive circuit) for recording data by irradiating a disk-shaped recording medium with laser light
  • the drive means (drive circuit, actuator, objective lens) that performs at least one of tracking control and focus control and the drive means are automatically based on an error signal in the at least one control.
  • Area where the characteristics of the recording medium (the state of the recording surface such as eccentricity, surface runout, scratches and dust) are not good based on the servo means to be controlled and the high frequency component included in the error signal in the at least one control
  • a control condition gain: gain
  • the recording apparatus of the present invention first, by the specifying means (detection circuit), based on the high frequency component included in the error signal in tracking control or focus control, the characteristics of the recording medium (eccentricity, Identifies areas where surface shake, scratches, dust, etc. are not good) Is done.
  • control condition means various factors that can determine the performance and properties of the control operation such as gain in automatic control (servo).
  • the recording apparatus can function and function even for a recording medium in which data cannot be recorded at high speed and data is recorded at low speed. Data can be recorded based on a high recording speed held as force.
  • the specifying means has, as the characteristic, at least one of eccentric acceleration, surface deflection acceleration, and warpage acceleration in the rotation operation of the recording medium. Based on the above, the region is specified.
  • the detected area is identified as an area where the characteristics of the recording medium are not good.
  • the specifying means includes an eccentric acceleration detecting means for detecting the eccentric acceleration, a surface shake acceleration detecting means for detecting the surface shake acceleration, and the It includes at least one of warp acceleration detecting means for detecting the warp acceleration.
  • the specifying unit specifies the region based on a comparison between a value of the high frequency component and a predetermined threshold value. [0021] According to this aspect, it is possible to specify a region where the characteristics of the recording medium are not good with high accuracy and speed by using a specifying unit including, for example, a window comparator.
  • a concentric or spiral recording track for recording the data is formed on the recording medium
  • the specifying unit specifies the region based on the high-frequency component periodically generated in the recording track.
  • a periodic error signal is generated periodically at a predetermined position (rotation angle of the reference position force) on the optical disc without dealing with a sudden error signal error due to noise or the like. It is possible to deal with an error signal error. Therefore, it becomes possible to record data more quickly and efficiently.
  • control means includes: (i) the servo means as the control condition so that a gain (gain) in the automatic control is larger than a standard value.
  • the recording means is controlled so that the recording power of the laser beam is larger than a standard value.
  • the area corresponding to the area where the eccentric acceleration is increased due to the deformation (distortion) of the group formed on the recording track of the recording medium such as an optical disk the area
  • the “standard value” according to the present invention is a gain or recording power optimally set by automatic control in an area where the characteristics of the recording medium are good.
  • the recording power is made larger than the standard value corresponding to the region where the surface vibration acceleration is increased due to surface vibration in the recording medium.
  • focus processing focus servo
  • the unit It is possible to suppress a decrease in recording power per area.
  • the recording apparatus further includes an acquisition unit configured to acquire the magnitude of the error signal in the specified area, and the control unit includes the acquired error signal.
  • the servo means is controlled on the basis of a table indicating the optimum value of the magnitude of the gain in the automatic control using the value indicating the magnitude as a parameter.
  • control means under the control of the control means, it is possible to more quickly determine control conditions such as a gain for dealing with eccentricity based on the table.
  • the recording apparatus further includes an acquisition unit configured to acquire the magnitude of the error signal in the specified area, and the control unit is configured to acquire the error signal acquired.
  • the recording means is controlled based on a table indicating the optimum value of the recording power of the laser beam using a value indicating the size as a parameter.
  • control means under the control of the control means, it is possible to more quickly determine the recording conditions such as the recording power to cope with the surface shake based on the table.
  • control means may: (i) when the value indicating the magnitude of the error signal increases, set the magnitude of the gain in the automatic control in one direction. (Ii) when the value indicating the magnitude of the error signal decreases, the magnitude of the gain is changed in the other direction (immediately before).
  • the servo means is controlled so that the optimum value is changed in the same direction as the determined increase / decrease direction).
  • control means (i) when the value indicating the magnitude of the error signal increases, sets the magnitude of the recording power of the laser light to (Ii) when the value indicating the magnitude of the error signal decreases, the magnitude of the recording power is changed to another direction ( The recording means is controlled so that the optimum value is changed in the same direction as the increase / decrease direction determined immediately before.
  • control means includes a position of the specified area. At least one of the servo unit and the recording unit is controlled based on position information indicating a position (WC signal indicating a rotation angle).
  • data can be recorded at higher speed in a recording medium, for example, periodically and at a certain angle, and more accurately and quickly corresponding to an area where the characteristics of the recording medium are poor. It becomes possible.
  • control means is one of the servo means and the recording means in a section or a period showing a high level value included in the wind comparator signal as the position information. You may comprise so that at least one may be controlled.
  • Control conditions and recording conditions can be changed.
  • control means further controls the servo means and the recording means so as to record the data on a trial basis.
  • the region having poor characteristics is specified, and the control condition and the recording condition are determined corresponding to this region. Based on this specified area and the determined control conditions and recording conditions, actual full-scale recording is performed.
  • control means (i) interrupts the recording in a recording area including the specified area, (ii) the control condition, and the recording At least one of the conditions is changed, and (iii) the servo means and the recording means are controlled so as to resume the recording.
  • the recording is temporarily interrupted, and the control condition and the recording condition are changed.
  • control means is configured to control the servo based on the control condition and identification information indicating whether or not the force has changed at least one of the recording conditions. Means and the recording means are controlled.
  • control means determines whether or not the force to further change the control condition and the recording condition is based on the identification information.
  • the control means can change the control condition and the recording condition with higher accuracy, and the reproduction quality of the recorded data can be improved.
  • control means is provided in the specified area.
  • the servo means is controlled so that the automatic control is not activated.
  • control means controls the servo means so as not to operate the automatic control based on an expression indicating a predetermined relationship or a table. It may be configured.
  • the recording means includes a diffracting means for diffracting the laser beam, and the diffracting means includes (i) recording the data, reproducing the data, The main beam used for performing at least one of the tracking control and the focus control, and (ii) at least two sub beams used for performing the at least one process are generated, and the recording is performed.
  • Means optical pickup, laser drive circuit
  • the control means is configured to record the high frequency.
  • the recording means is controlled based on the components.
  • the preceding beam in the three-beam tracking process characteristics that are faster than the main beam that is actually recorded by a time corresponding to one rotation of the recording medium are not good.
  • the region can be specified by, for example, a high frequency component included in the detected error signal outside the allowable range. Therefore, recording based on tracking processing (focus processing) to which optimum control conditions are applied can be performed on the main beam, and data can be recorded at high speed under optimum recording conditions in real time. Recording can be performed.
  • the deflection for changing the deflection direction of the laser beam At least one of an element and a refractive index changing element that changes the refractive index of the laser light, and the control means further changes the deflection direction of the laser light at a high speed in the specified region.
  • the deflection element is controlled, or the refractive index changing element is controlled so as to change the refractive index of the laser beam at high speed.
  • the laser light deflection direction and the refractive index are changed at high speed. Therefore, for example, it is possible to record data at a higher speed by reducing the influence of variations in the mechanical characteristics of a recording surface of an individual recording medium such as an optical disk or variations in characteristics of individual recording media. .
  • the reproducing apparatus of the present invention reproduces data by irradiating a disc-shaped recording medium with laser light (optical pickup, laser driving circuit),
  • the drive means (drive circuit, actuator, objective lens) that performs at least one of tracking control and focus control, and the drive means are automatically based on an error signal in the at least one control.
  • Area where the characteristics of the recording medium (the state of the recording surface such as eccentricity, surface runout, scratches and dust) are not good based on the servo means to be controlled and the high frequency component included in the error signal in the at least one control
  • a control condition gain: gain
  • an area where the characteristics of the recording medium (the state of the recording surface such as eccentricity, runout, scratches, dust, etc.) are poor is specified in substantially the same manner as the recording apparatus described above. Is done.
  • control condition or the reproduction condition such as the reproduction power is changed in the specified area.
  • the playback apparatus can function and function even for a recording medium in which data cannot be played back at high speed and data is played back at low speed. Data can be reproduced based on a high reproduction speed held as force.
  • the reproducing apparatus of the present invention can also adopt various aspects.
  • the recording / reproducing apparatus of the present invention performs recording / reproducing means (optical pick-up, laser, etc.) for recording or reproducing data by irradiating a disc-shaped recording medium with laser light.
  • Drive circuit drive circuit
  • drive means drive circuit, actuator, objective lens
  • the servo means for automatically controlling the drive means, and the characteristics of the recording medium (recording surface such as eccentricity, runout, scratches and dust) based on the high frequency component contained in the error signal in the at least one control.
  • a region where the characteristics (eccentricity, surface runout) of the recording medium are not good is specified in substantially the same manner as the recording apparatus described above.
  • control conditions under the control of the control means, in this specified area !, control conditions, recording conditions
  • the recording / reproducing apparatus of the present invention can also adopt various aspects.
  • the recording method of the present invention provides (i) recording means for recording data by irradiating a disc-shaped recording medium with laser light (optical pickup, laser driving circuit). ), And (ii) a recording method in a recording apparatus provided with driving means (driving circuit, actuator, objective lens) that performs at least one of tracking control and focus control at the time of recording.
  • the servo process for automatically controlling the driving means and on the basis of the high frequency component included in the error signal in the at least one control, the characteristics of the recording medium (eccentricity, runout, (I) in the automatic control, in a specific process for specifying an area where the state of the recording surface (such as scratches and dust) is not good, and in the specified area (Ii) in addition to or instead of controlling the servo process to change the control condition (gain: gain); and (ii) a control process to control the recording means to change the recording condition of the laser beam; Equipped with.
  • the characteristics of the recording medium eccentricity, runout, (I) in the automatic control, in a specific process for specifying an area where the state of the recording surface (such as scratches and dust) is not good, and in the specified area (Ii) in addition to or instead of controlling the servo process to change the control condition (gain: gain); and (ii) a control process to control the recording means to change the recording condition of the laser beam; Equipped with.
  • the recording method of the present invention can also adopt various aspects.
  • the reproducing method of the present invention provides (i) reproducing means for reproducing data by irradiating a disk-shaped recording medium with laser light (optical pickup, laser driving circuit). And (ii) tracking control and focus control during the playback.
  • a playback method in a playback apparatus comprising a drive means (drive circuit, actuator, objective lens) for performing at least one control, wherein the servo process automatically controls the drive means based on an error signal in the at least one control And specifying a region where the characteristics of the recording medium (the state of the recording surface such as eccentricity, runout, scratches, dust, etc.) are not good based on the high-frequency component included in the error signal in the at least one control (Ii)
  • gain gain
  • the laser a control step of controlling the regeneration means so as to change the light regeneration condition.
  • the playback method of the present invention can also adopt various aspects.
  • the recording / reproducing method of the present invention provides (i) a recording / reproducing means for recording or reproducing data by irradiating a disk-shaped recording medium with a laser beam (optical pickup, (Ii) a recording / reproducing method in a recording / reproducing apparatus comprising driving means (driving circuit, actuator, objective lens) for performing at least one of tracking control and focus control at the time of recording or reproduction.
  • a servo process for automatically controlling the driving means, and on the characteristic of the recording medium based on a high frequency component included in the error signal in the at least one control
  • a specifying step for specifying an area in which the recording surface state such as eccentricity, surface runout, scratches or dust is not good, and the specified area I)
  • the control condition gain: gain
  • the laser light recording condition or reproducing condition a control step of controlling the recording / reproducing means so as to be changed.
  • the various recording / reproducing apparatuses of the present invention described above have various types. Benefits can be enjoyed.
  • the recording / reproducing method of the present invention can also adopt various aspects.
  • a computer program for recording control of the present invention is a recording control program for controlling a computer provided in the recording apparatus of the present invention described above (including various aspects thereof).
  • a computer program for playback control of the present invention is a program for playback control that controls a computer provided in the playback device of the present invention described above (including various aspects thereof).
  • a computer program for recording / reproducing control provides a recording / reproducing for controlling a computer provided in the above-described recording / reproducing apparatus of the present invention (including various aspects thereof).
  • a computer program for control which causes the computer to function as at least part of the recording / reproducing means, the driving means, the servo means, the specifying means, and the control means.
  • each computer program of the present invention if the computer program is read from a recording medium such as a ROM, a CD-ROM, a DVD-ROM, and a hard disk storing the computer program, the computer program is executed.
  • the computer program is downloaded to a computer via communication means and then executed, the above-described recording device, reproducing device, or recording / reproducing device of the present invention can be realized relatively easily.
  • each computer program of the present invention can also adopt various aspects.
  • a computer program product in a computer-readable medium is a program that can be executed by a computer provided in the above-described recording device (including various aspects thereof) of the present invention.
  • the instructions are clearly embodied, and the computer is caused to function as at least a part of the recording means, the driving means, the servo means, the specifying means, and the control means.
  • a computer program product in a computer-readable medium is a program that can be executed by a computer provided in the above-described playback device of the present invention (including various aspects thereof).
  • the instructions are clearly embodied, and the computer is caused to function as at least part of the reproducing means, the driving means, the servo means, the specifying means, and the control means.
  • a computer program product in a computer-readable medium is executable by a computer provided in the above-described recording / reproducing apparatus of the present invention (including various aspects thereof).
  • Program instructions are clearly embodied, and the computer is caused to function as at least part of the recording / reproducing means, the driving means, the servo means, the specifying means, and the control means.
  • each computer program product of the present invention if the computer program product is read into a computer from a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk storing the computer program product, or
  • a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk storing the computer program product
  • the computer program product which is a transmission wave
  • the computer program product may also be configured with a computer-readable code (or computer-readable instruction) that functions as the above-described recording apparatus, reproducing apparatus, or recording / reproducing apparatus of the present invention.
  • the recording unit, the driving unit, the specifying unit and the process, and the control unit and the process are provided. Therefore, for example, it is possible to record data at a higher speed by reducing the influence of variation in characteristics on the recording surface of each recording medium such as an optical disk or variation in characteristics of each recording medium.
  • the reproducing apparatus the driving means, the specifying means and the process, and the control means and the process are provided. Therefore, for example, it is possible to reproduce data at a higher speed by reducing the influence of variation in characteristics on the recording surface of an individual recording medium such as an optical disc or variation in characteristics of individual recording media. .
  • the recording / reproducing means, the driving means, the specifying means and process, and the control means and process are provided. Therefore, it is possible to record or reproduce data at a higher speed by reducing the influence of variations in the characteristics of individual recording surfaces of recording media such as optical discs or variations in characteristics of individual recording media. It becomes.
  • the computer is caused to function as at least one of the above-described recording apparatus, reproducing apparatus, and recording / reproducing apparatus of the present invention.
  • the recording device, the reproducing device, and the recording / reproducing device can be used to reduce the influence of variation in characteristics on the recording surface of an individual recording medium such as an optical disk, or variation in characteristics of individual recording media. Data can be recorded or played back at a higher speed.
  • FIG. 1 is a block diagram conceptually showing the basic structure for mainly performing the tracking process of the recording / reproducing apparatus 1T according to the first embodiment of the recording apparatus of the present invention.
  • FIG. 2 is a block diagram conceptually showing the basic structure for mainly performing the focusing process of the recording / reproducing apparatus 1F in the first example of the recording apparatus of the present invention.
  • FIG. 3 is a flowchart showing one recording operation centered on tracking processing or focusing processing by the recording / reproducing apparatus 1T according to the first embodiment of the recording apparatus of the present invention.
  • FIG. 4 schematically shows a process for creating a wind comparator signal indicating a region having poor mechanical characteristics, which is specified based on a high frequency component included in an error signal in the tracking processing (focus processing) of the present invention.
  • FIG. 5 is a flowchart showing another recording operation centering on the selection of the optimum recording partition by the recording / reproducing apparatus 1F according to the first embodiment of the recording apparatus of the present invention.
  • the recording apparatus ITa of the present invention is a block diagram conceptually showing the basic structure of a recording / reproducing apparatus in a modification of the first embodiment of the first embodiment.
  • FIG. 7 is a block diagram conceptually showing the basic structure of a recording / reproducing apparatus in another modification of the first embodiment of the recording apparatus lFa of the present invention.
  • FIG. 8 A block diagram conceptually showing the basic structure of the recording / reproducing apparatus in the second example of the recording apparatus 2T of the present invention.
  • FIG. 10 is a block diagram conceptually showing the basic structure of a recording / reproducing apparatus in tracking processing according to another modification of the second embodiment of recording apparatus 2Ta of the present invention.
  • FIG. 11 is a block diagram conceptually showing the basic structure of a recording / reproducing apparatus 2a in focus processing, according to another modification of the second embodiment of recording apparatus 2Fa of the present invention.
  • FIG. 13 A block diagram conceptually showing another basic structure of the recording / reproducing apparatus in the third example of the recording apparatus 3F of the present invention.
  • FIG. 14 is a plan view conceptually showing modes of a main beam and a sub beam irradiated to an optical disk by a recording / reproducing apparatus 3T (3F) according to a third embodiment of the recording apparatus of the present invention.
  • FIG. 15 is a flowchart showing an overall operation including a recording operation and a control operation by the recording / reproducing apparatus 3T (3F) according to the third embodiment of the recording apparatus of the present invention.
  • FIG. 17 is a flowchart showing another control operation centering on the focus processing by the recording / reproducing apparatus 3F according to the third embodiment of the recording apparatus of the present invention.
  • FIG. 20 is a flowchart showing a real-time recording operation by the recording / reproducing apparatus 6 in the sixth embodiment of the recording apparatus of the present invention.
  • a recording / reproducing apparatus 1 according to a first embodiment of the recording apparatus of the present invention will be described with reference to FIGS.
  • the description will be made mainly on the recording operation among the operations performed by the recording / reproducing apparatus.
  • the present invention can be applied to the reproducing operation in substantially the same manner.
  • FIG. 1 is a block diagram conceptually showing the basic structure for mainly performing the tracking process of the recording / reproducing apparatus 1T according to the first embodiment of the recording apparatus of the present invention.
  • FIG. 2 is a block diagram conceptually showing the basic structure for mainly performing the focusing process of the recording / reproducing apparatus 1 F according to the first embodiment of the recording apparatus of the present invention.
  • the recording / reproducing apparatus 1T has a control unit (CPU: Central Processing Unit) 10, an eccentric acceleration detection circuit 22, and a basic configuration that mainly performs tracking processing. 3 beam) Tracking servo circuit 31T, tracking gain selection circuit 32T, tracking drive circuit 33T, tracking actuator 55T, laser drive circuit 40, optical pickup 50, signal processing unit 60, reproduction A part 70 and a spindle motor 80 are provided.
  • CPU Central Processing Unit
  • eccentric acceleration detection circuit 22 mainly performs tracking processing.
  • 3 beam Tracking servo circuit 31T, tracking gain selection circuit 32T, tracking drive circuit 33T, tracking actuator 55T, laser drive circuit 40, optical pickup 50, signal processing unit 60, reproduction A part 70 and a spindle motor 80 are provided.
  • the recording / reproducing apparatus 1F is a (3-beam) tracking servo circuit 31T and a tracking gain selecting circuit 32T, which are the basic configuration of the recording / reproducing apparatus 1T shown in FIG.
  • the basic configuration for mainly performing the focus processing includes a surface acceleration detection circuit 21, a force servo circuit 31F, and a focus gain selection circuit 32F.
  • the focus drive circuit 33F and the focus actuator 55F are provided.
  • elements having the same reference numerals should have substantially the same functions.
  • the recording / reproducing apparatus 1T (recording / reproducing apparatus 1F) is an optical disc.
  • the recording / reproducing apparatus 1T is an optical disc.
  • data is recorded at a high recording speed such as 18 times speed, and data recorded on the optical disc 100 is reproduced.
  • the control unit (CPU) 10 is mainly configured by a CPU (Central Processing Unit), and outputs a control signal to the above-described various components via a control line (not shown), thereby recording / reproducing device 1T ( The overall control of the recording / reproducing device 1F) is performed.
  • CPU Central Processing Unit
  • the optical bep-up 50 includes a hologram laser 51, a grating element 52, a collimating lens (condensing lens) 53, an objective lens 54, the focus actuator 55F described above, and a tracking assembly. Eta 55T.
  • the hologram laser 51 constitutes one specific example of the “recording means” in the present invention, and comprises a laser chip (not shown), a substrate, a light receiving element, a hologram element, and the like.
  • the laser chip and the light receiving element are arranged on the same substrate, and the hologram element is provided facing the output side of the laser beam LB on the substrate.
  • the laser chip emits laser light LB, and the light receiving element receives the input laser light LB.
  • the hologram element 51 transmits the laser beam LB output from the laser chip as it is, and also refracts the incident laser beam with a surface force opposite to the incident surface of the laser beam LB, to the light receiving element on the substrate. Collect light.
  • the hologram laser 51 has a function as a light source and a detector.
  • a three-beam tracking method may be used to perform tracking processing (tracking control). Therefore, a light receiving element that receives the reflected light of the laser beam LB (more specifically, each of a plurality of light receiving elements corresponding to a main beam and a sub beam, which will be described later), for example, has a light receiving portion divided into two parts (or 4 divisions).
  • the light receiving element includes a light receiving unit D1 that receives reflected light of the left half of the laser beam LB and a light receiving unit D2 that receives reflected light of the right half of the laser light LB on the basis of the traveling direction of the laser light LB on the optical disc 100. Have it.
  • the grating element 52 diffracts the laser beam LB emitted from the hologram laser 51.
  • the grating element 52 may generate a main beam for mainly recording data and performing tracking processing and two sub beams for mainly performing tracking processing.
  • the grating element 52 may be configured to include a transparent substrate having a large number of slits (or grooves), or may be configured to include a liquid crystal slit including a liquid crystal element.
  • the hologram laser 51 indicates the laser beam LB itself that is also radiated, and the entire main beam and two sub beams generated in the grating element 52 are shown. Note that this may indicate.
  • the condensing lens (collimating lens) 53 makes the incident laser beam LB substantially parallel and incident on the object lens 54. More specifically, each of the main beam and the two sub beams generated in the grating element 52 is made substantially parallel light and is incident on the objective lens 54.
  • the objective lens 54 is configured to include the focus actuator 55F and the tracking actuator 55T described above.
  • the focus actuator 55F and the tracking actuator 55T have a drive mechanism for changing the arrangement position of the objective lens 54.
  • the laser beam LB that has been made substantially parallel by the condenser lens 53 is incident on the objective lens 54.
  • the objective lens 54 irradiates the optical disc 100 with these laser beams LB ⁇ .
  • the tracking servo circuit 31T generates a tracking servo control signal (tracking error signal) S31T based on the received light signal S51T output from the hologram laser 51 !.
  • the tracking servo circuit 31T may be configured to perform a three-beam tracking servo that can handle a plurality of wavelengths.
  • the tracking controller servo control signal S31T is generated by subtracting the push-pull signals of the two sub beams from the push-pull signal of the main beam.
  • the tracking servo circuit 31T The king servo control signal S31T is supplied to the eccentric acceleration detection circuit 22 and the tracking gain selection circuit 32T.
  • the three-beam tracking method is the same as the above-described prior art or other conventional technology, and thus the basic description thereof is omitted.
  • the eccentric acceleration detection circuit 22 detects a high frequency component of the tracking error signal.
  • the eccentric acceleration detection circuit 22 detects an abnormality when a high-frequency component of the tracking error signal outside the allowable range is detected with two different thresholds set by a comparator such as a window comparator. A signal notifying that it has been output is output to the control unit 10.
  • the tracking gain selection circuit 32T selects the tracking processing gain (Gain) in the specified region under the control of the control unit 10, and outputs the tracking gain signal S32T to the tracking drive circuit 33T. To do.
  • the tracking drive circuit 33T together with the tracking actuator 55T and the objective lens 54, constitutes one specific example of the "drive means" of the present invention. Tracking drive circuit 33T
  • the tracking gain selection circuit 32T generates the actuator driving signal S33T based on the tracking gain signal S32T supplied from the tracking gain selection circuit 32T, and drives the tracking actuator 55T. That is, the tracking drive circuit 33T controls the tracking actuator 55T by supplying the actuator drive signal S33T, and adjusts the position of the objective lens 54 in the radial direction (that is, the tracking direction) of the optical disk 100.
  • the tracking actuator 55T moves (drives) the position of the objective lens 54 in the tracking direction in accordance with the actuator drive signal S33T supplied from the tracking drive circuit 33T. In this way, tracking processing (tracking control) is performed.
  • the focus servo circuit 31F generates a focus servo control signal (focus error signal, S-shaped focus signal) S31F based on the light reception signal S51F output from the hologram laser 51. After that, the focus servo circuit 31F sends the generated focus servo control signal S31F to the surface shake acceleration detection circuit 21 and the focus gain selection circuit 32F. And supply to.
  • a focus servo control signal focus error signal, S-shaped focus signal
  • the surface shake acceleration detection circuit 21 detects a high frequency component of the focus error signal. Then, the surface shake acceleration detection circuit 21 detects an abnormality when a high frequency component of the focus error signal outside the allowable range is detected with two different thresholds set in advance by a comparator such as a window comparator. A signal notifying that is output to the control unit 10.
  • the focus gain selection circuit 32F selects the focus processing gain in the specified area under the control of the control unit 10, and outputs the focus gain signal S32F to the focus drive circuit 33F. To do.
  • the focus drive circuit 33F together with the focus actuator 55F and the objective lens 54, constitutes one specific example of the “drive means” of the present invention.
  • the focus drive circuit 33F has an actuator drive signal based on (i) the focus servo control signal S31F that is also supplied with the focus servo circuit 31F and (ii) the focus gain signal S32F that is also supplied with the focus gain selection circuit 32F. Generate S33F and drive the focus actuator 55F.
  • the focus drive circuit 33F controls the focus actuator 55F by supplying the actuator drive signal S33F, and adjusts the distance of the objective lens 54 to the optical disc 100 (ie, the position in the focus direction).
  • the focus actuator 55F moves (drives) the position of the objective lens 54 in the focus direction in accordance with the actuator drive signal S33F to which the force of the focus drive circuit 33F is also supplied. In this way, focus processing (focus control) is performed.
  • the laser drive circuit 40 is mainly composed of an amplifier circuit, amplifies the recording signal S60 input from the signal processing unit 60 to generate a laser drive signal S40, and the optical pickup.
  • the laser drive signal S40 is supplied to 50 hologram lasers 51.
  • the amplification factor in the laser drive circuit 40 is controlled by the signal processing unit 60.
  • a phase change V or thermal change can be caused from the hologram laser 51 to the optical disc 100.
  • the amplification factor is controlled so that a laser beam LB of an energy amount (hereinafter referred to as “recording power” t) is output.
  • the amplification factor is controlled so that a laser beam LB having an energy amount (hereinafter referred to as “reproduction power”) is output from the hologram laser 51 without being generated.
  • the laser drive circuit 40 is provided in the optical pickup 50! /, Or! /.
  • the signal processing unit 60 has an input terminal IN, and based on a control signal supplied from the control unit 10 through a control line (not shown), data input from the outside through the input terminal IN. Is subjected to signal processing and output to the laser drive circuit 40 as a recording signal S60. More specifically, the signal processing unit 60 adds an address, a parity correction code (ECC) and a sync frame (synchronization frame) to the data input from the outside, Alternatively, the recording signal S60 is generated by performing scramble processing or performing various modulations such as 8Z16 modulation.
  • ECC parity correction code
  • sync frame synchronization frame
  • the reproduction unit 70 has an output terminal OUT and corresponds to the light reception signal S 51a supplied from the hologram laser 51 based on a control signal supplied from the control unit 10 via a control line (not shown). Output the playback data to the output terminal OUT.
  • the light reception signal S51a is a signal indicating the amount of light received for each light receiving element, which is obtained by receiving the reflected light of the laser beam LB received by the hologram laser 51 with a plurality of light receiving elements.
  • the reflected light of the laser beam LB is received by the light receiving elements corresponding to the main beam and the two sub beams, and the received light signal S51a corresponding to the main beam and the two sub beams is obtained. It is done.
  • the spindle motor 80 is configured to rotate the optical disc 100 at a predetermined speed based on a spindle servo control signal generated by the light reception signal S51T output from the hologram laser 51 or the like.
  • the spindle motor 80 may be configured to set a rotation angle for specifying an abnormal position or an abnormal section described later.
  • FIG. 3 is a flowchart showing one recording operation centering on the tracking process (focus process) by the recording / reproducing apparatus in the first embodiment of the recording apparatus of the present invention.
  • Figure 4 shows the creation of a window comparator signal that indicates a region with poor characteristics (mechanical characteristics) based on high-frequency components included in the error signal in the tracking process (focus process) of the present invention! It is the wave form diagram etc. which showed the process typically.
  • step S101 when the optical disk is loaded (inserted), the optical disk is rotated by the spindle motor 80 under the control of the control unit 10, for example, corresponding to the maximum recording speed.
  • Data recording is started by the laser light emitted from the optical pickup 50 (step S101).
  • the eccentricity acceleration detection circuit 22 detects, for example, the eccentricity acceleration (surface vibration acceleration) outside the allowable range. Is determined (step S102).
  • an error signal in tracking processing under the control of the control unit 10 a so-called tracking error signal (TE Signal) or an error signal in focus processing, so-called focus error signal (FE signal), an abnormal value of a high-frequency component, and an abnormal section (abnormal region) in which the abnormal value is detected (step) S103).
  • the optical pickup 50 performs tracking processing in a region where the group is partially deformed, for example, a tracking error signal including a high frequency component is detected, and a large eccentric acceleration outside the allowable range is detected.
  • the partial deformation of this group is caused by the fact that the shape of the stamper is not properly transferred when the injection molding machine in the manufacturing process is cooled rapidly.
  • the tracking error signal in the servo open state includes a high-frequency component. Contains ingredients. As shown in Fig. 4 (b), the value of this high frequency component depends on the upper and lower limits for stable tracking servo. The abnormal value is outside the allowable range shown. Note that a section in which this abnormal value is detected is an abnormal section. As will be described later, the focus error signal (S-shaped focus signal) in the focus servo can be considered in a similar manner.
  • the abnormal position or abnormal section on the optical disc where the abnormal value of the high frequency component is detected is specified (step S104). More specifically, the specified abnormal position may be indicated by the rotation angle of the reference position force on the optical disc.
  • the control unit 10 generates a window comparator signal (WC signal) that can define the abnormal position and abnormal section in the recording operation (step S105).
  • WC signal window comparator signal
  • the abnormal period on the time axis such as the system clock corresponding to the abnormal section is caused by this window comparator signal, for example, experimental, empirical, theoretical or simulation. On the basis of etc., it will be made determinable.
  • this window comparator signal has (i) gain and recording power.
  • High-level interval (HL: High Level Interval), which is a variable range, and (ii) Standard control based on recording power determined by normal tracking servo (focus servo) or normal OPC (Optimum Power Control) And a low level period (Low Level Period).
  • the high-level section may be defined so that a predetermined width including an abnormal position on the optical disk where the abnormal value of the high-frequency component is detected or the abnormal section may be defined, or the abnormal position or abnormal section may be centered. However, the predetermined width may be defined.
  • a tracking gain selection circuit 32T (focus gain selection circuit 32F) holds, for example, a value larger than the standard value, that is, holds a predetermined value in an abnormal section.
  • the gain is selected, and a tracking gain signal S32T (focus gain signal S32F) based on the selected gain is output (step S106).
  • the gain for holding the predetermined value is selected quickly and accurately based on a predetermined formula or a predetermined table using the detected eccentric acceleration as a parameter. Also good.
  • the predetermined formula and the predetermined table may be prepared in advance by experiments or simulations.
  • Step S108 this determination may be made based on the playback quality of the data recorded under the applied gain.
  • a jitter value is applied as the reproduction quality
  • the standard jitter value allowable range indicating the average reproduction quality is, for example, about 8 to 9 percent including the detection error.
  • jitter values less than 8 percent have been found to indicate good playback quality.
  • jitter values that are relatively greater than 9 percent have been found to indicate poor playback quality.
  • the reproduction RF envelope when a reproduction RF envelope is applied as the reproduction quality, the reproduction RF envelope is within a specified range within a range including an error of ⁇ 15%. It may be determined based on whether or not. In addition, the determination may be made based on whether or not the reproduction RF envelope, 11T modulation degree, or 3T modulation degree is increased. Judgment may be made based on the above-mentioned jitter characteristics and whether or not the reproduction RF envelope (envelope characteristics) is constant (flat).
  • the correction may be made by the method in a modification of the second embodiment (see FIG. 10 and the like) described later.
  • other reproduction quality such as a PI error that is an error rate obtained by counting the modulation degree of the RF signal and the number of errors when reproducing the data, Judge it based on whether or not the RF signal itself has a low error rate.
  • the RF envelope is closely related to the optimum gain. It has also been found that the jitter value and the asymmetry value (zero is the best) have a large correlation with the optimum recording power described later. It is known that the PI error has a close correlation with the eccentric acceleration caused by detrack and the surface acceleration caused by the defocus.
  • step S108 If the applied gain is optimal as a result of the determination in step S108 (step S108)
  • step S109 actual data is recorded (step S109).
  • step S108 determines whether the applied gain is optimal as a result of the determination in step S108 (step S108: No).
  • the tracking gain selection circuit 32T focus gain is again controlled under the control of the control unit 10.
  • the selection circuit 32F selects a gain that holds a predetermined value in the abnormal section (step S106).
  • step S102 determines whether an eccentric acceleration (surface acceleration) outside the allowable range is not detected (step S102: No). If, as a result of the determination in step S102, for example, an eccentric acceleration (surface acceleration) outside the allowable range is not detected (step S102: No), as described above, the actual data Is recorded (step S109).
  • FIG. 5 is a flowchart showing another recording operation centering on selection of the optimum recording power by the recording / reproducing apparatus according to the first embodiment of the recording apparatus of the present invention.
  • FIG. 5 the same processing as in FIG.
  • the surface vibration acceleration detection circuit 21 detects, for example, the surface vibration acceleration outside the allowable range. Is determined (step S201).
  • step S201 when a surface shake acceleration outside the allowable range is detected (step S201: Yes), under the control of the control unit 10, an error signal in the focus processing, that is, a high frequency included in the so-called focus error signal (FE signal).
  • FE signal focus error signal
  • step S202 An abnormal value of the component and an abnormal interval are detected. More specifically, when the optical pickup 50 performs focus processing in, for example, a potato chip shape, that is, an area where the recording surface is wavy, a large surface shake acceleration outside this allowable range is detected.
  • step S201 The generation of the wavy region of the recording surface is generally caused by the manufacturing process and the storage process.
  • step S201 for example, if the surface runout acceleration outside the allowable range is not detected (step S201: No), the actual data is recorded as described above (step S201). 109).
  • a laser drive circuit 40 holds a value larger than the standard value, for example, under the control of the control unit 10, that is, in an abnormal section.
  • a recording power holding a predetermined value is selected (step S203). Specifically, the recording power holding the predetermined value may be quickly and accurately selected based on a predetermined formula or a predetermined table using the detected eccentric acceleration as a parameter. Good.
  • the laser drive signal S40 to which the recording power holding a predetermined value is applied is output by the laser drive circuit 40 in the above-described noise level region, and the hologram is output.
  • the laser 51 is driven (step S204).
  • step S205 it is determined whether or not the applied recording power is optimum under the control of the control unit 10 (step S205). Note that the determination criteria and the like may be substantially the same as the one recording operation centering on the tracking process described above.
  • the reproduction quality is optimal in the abnormal section where the eccentric acceleration and the runout acceleration outside the allowable range are detected.
  • gain, recording power, or servo offset force is optimized corresponding to this abnormal area.
  • the quality control for producing a recording medium such as an optical disc has the advantage that it is not complicated and is conventional.
  • FIG. 6 is a block diagram conceptually showing the basic structure of the recording / reproducing apparatus ITa.
  • FIG. 7 is a block diagram conceptually showing the basic structure of the recording / reproducing apparatus lFa.
  • the recording / reproducing apparatus ITa includes a lens position sensor 56T in the tracking process, in particular.
  • the recording / reproducing apparatus lFa includes a lens position sensor 56F in focus processing.
  • the other components and the operating principle are substantially the same as those in the first embodiment described above, and a description thereof will be omitted.
  • the objective lens 54 can identify an abnormal position (abnormal section) where tracking processing and focus processing are not performed accurately, that is, an abnormal position (abnormal section) not following the track accurately.
  • the lens position sensor 56T (56F) may be configured to include an arithmetic circuit that calculates the difference, such as a subtractor.
  • the amount of current flowing through the tracking actuator 55T and the focus actuator 55F is monitored (monitoring).
  • the inclination angle of the objective lens 54 in the radial direction can be uniquely determined by the product of the amount of current flowing through the actuator and the drive sensitivity value. It is.
  • the abnormal position may be specified only by monitoring the position of the lens or the amount of current.
  • FIG. 8 is a block diagram conceptually showing the basic structure of the recording / reproducing apparatus 2T in the second example of the recording apparatus of the present invention.
  • the recording / reproducing apparatus 2T has a low-pass filter LPF, a high-pass filter HPF, an optimum gain adjustment circuit 32Ta, and an optimum as the tracking gain selection circuit 32T.
  • the gain adjustment circuit 32Tb may be provided.
  • the other components and the operating principle are substantially the same as those of the first embodiment described above, and the description thereof is omitted.
  • the tracking error signal S31T passes through the low-pass filter LPF and the high-pass filter HPF, respectively.
  • an optimum gain adjustment circuit is controlled under the control of the control unit 10.
  • the tracking gain signal S32T for normal tracking servo is output to the tracking drive circuit 33T by 32Ta.
  • the optimum gain adjustment circuit 32Tb under the control of the control unit 10 Tracking gain signal for performing tracking servo based on gain S32T force Output to tracking drive circuit 33T.
  • the tracking gain signal S32T via the low pass filter LPF may be selected, for example, by a switching circuit, or the tracking gain via the no pass filter HPF may be selected.
  • Signal S32T may be selected ⁇ .
  • FIG. 9 is a block diagram conceptually showing the basic structure of the recording / reproducing apparatus 2F in the modification of the second embodiment of the recording apparatus of the present invention.
  • the recording / reproducing apparatus 2F particularly includes a low-pass filter LPF, a high-pass filter HPF, and an optimum gain adjustment circuit 32Fa as the focus gain selection circuit 32F. And an optimum gain adjustment circuit 32Fb.
  • LPF low-pass filter
  • HPF high-pass filter
  • HPF high-pass filter
  • 32Fa optimum gain adjustment circuit
  • 32Fb optimum gain adjustment circuit
  • the focus error signal S31F passes through the low pass filter LPF and the no pass filter HPF, respectively.
  • Optimum gain adjustment under the control of the control unit 10 in the section (region) corresponding to the low-frequency component included in the focus error signal that has passed through the low-pass filter LPF, that is, in the section where the surface vibration acceleration is small The circuit 32Fa outputs a focus gain signal S32F for normal focus servo to the focus drive circuit 33F.
  • power control based on the recording power determined by normal OPC (Optimum Power Control) is performed during this period.
  • the optimum gain adjustment circuit is controlled under the control of the control unit 10.
  • the focus gain signal S32F for performing the focus servo based on the optimum gain in this section is output to the focus drive circuit 33F by 32Fb.
  • the focus gain signal S32F via the low-pass filter LPF may be selected, for example, by a switching circuit, or the focus gain signal S32F via the high-pass filter HPF may be selected. Also good.
  • power control may be performed so that, for example, a recording power larger than the recording power determined by OPC (Optimum Power Control) is output!
  • FIG. 10 is a block diagram conceptually showing the basic structure of the recording / reproducing apparatus 2Ta.
  • FIG. 11 is a block diagram conceptually showing the basic structure of the recording / reproducing apparatus 2Fa. Note that another modification of the second embodiment may be applied as another modification of the first embodiment.
  • a recording / reproducing apparatus 2Ta is different from the recording / reproducing apparatus 2T of FIG. 59T may be further provided.
  • the other components and the principle of operation are substantially the same as those of the second embodiment described above, and a description thereof will be omitted.
  • the tracking gain signal S32Ta is input to the tracking drive circuit 33T via the low-pass filter LPF.
  • a tracking gain signal S32Tb is input to the element driving circuit 59T via the high pass filter HPF.
  • the high-speed deflection element 57T can cope with a high-frequency component having a larger frequency.
  • the high-speed deflection element 57T enables laser light at a higher speed in response to high-frequency components larger than the drive frequency and large eccentric acceleration, which depend on the performance of the tracking actuator 55T. It is possible to change the deflection direction. More specifically, an AOD (Audio Optical Defector) can be cited as a specific example of the high-speed deflection element 57T.
  • laser light is deflected by generating ultrasonic waves in a special crystal such as tellurium dioxide or LiNb03, and turning on or off the diffraction grating in the crystal at high speed. The direction is changed.
  • This principle is commonly used in laser printers and high-speed fax machines.
  • the recording / reproducing apparatus 2Fa is, in particular, a high-speed refractive index changing element 57F with respect to the recording / reproducing apparatus 2F of FIG.
  • An element drive circuit 59F may be further provided. Note that a focus gain signal S32Fa is input to the focus drive circuit 33F via a low-pass filter LPF. The element drive circuit 59F has a focus gain via a high-pass filter HPF. Signal S32Fb is input.
  • This high-speed refractive index changing element 57F refracts the laser light at a higher speed in response to a high-frequency component larger than the drive frequency and a large surface vibration acceleration, which depend on the performance of the focus actuator 55F.
  • the rate can be changed.
  • a material using an electro-optic effect such as Piezo Actuators or a material such as liquid crystal can be cited.
  • the high-speed refractive index changing element 57F includes an optical member whose refractive index changes at high speed. In this optical member, the refraction angle of diverging light passing through the optical member is changed at high speed.
  • the high-speed refractive index changing element 57F for example, a beam expander used in an optical system of a Blu-ray system may be adopted. This beam expander causes the light beam incident on the objective lens 54 to diverge or condense, resulting in spherical aberration in the reverse direction, and the effect of spherical aberration caused by actual substrate thickness variation. Can be reduced.
  • the recording / reproducing apparatus 2F b may include both the high-speed refractive index changing element 57F.
  • FIG. 12 is a block diagram conceptually showing the basic structure of the recording / reproducing apparatus 3T in the third example of the recording apparatus of the present invention.
  • FIG. 13 FIG. 5 is a block diagram conceptually showing another basic structure of the recording / reproducing apparatus 3F in the third example of the recording apparatus of the present invention.
  • FIG. 14 is a plan view conceptually showing aspects of a main beam and a sub beam irradiated on an optical disk by a recording / reproducing apparatus 3T (recording / reproducing apparatus 3F) according to a third embodiment of the recording apparatus of the present invention.
  • . 14 shows spots formed on the recording layer by the main beam and the two sub-beams, but the appearance of the laser beam spot in FIG. 14 is merely an example, and the actual spot is not shown. Please indicate the size of the diameter etc. faithfully.
  • the recording / reproducing apparatus 3T (recording / reproducing apparatus 3F) according to the third embodiment particularly includes a preceding beam detecting circuit 91 and a trailing beam detecting circuit 92. It may also be configured.
  • the other components and the operating principle are substantially the same as those of the second embodiment described above, and a description thereof will be omitted.
  • the three laser light forces of the preceding beam, the main beam, and the subsequent beam are also configured. More specifically, when the laser beam LB is focused on the recording surface, that is, when data is recorded on the recording layer, the main beam is spotted on the groove track GT on which data is currently recorded. Form. In addition, at a position shifted by half the track pitch Tp from the spot formed by the main beam (specifically, on the two land tracks LT adjacent to the groove track GT on which data is being recorded) The sub beam forms a spot.
  • the sub-beam that forms the spot is placed on the upper right side of the spot formed by the main beam in FIG.
  • the sub beam that forms a spot in the lower left (that is, on the inner circumference side) of the spot formed by the main beam is called a trailing beam.
  • the recorded portion where the data has already been recorded is shown in a shaded pattern. That is, no data is recorded on the groove track GT located at both ends of the spot formed by the preceding beam. On the other hand, data is recorded on the groove track GT located at both ends of the spot formed by the trailing beam.
  • the center of the spot formed by the main beam is not substantially the center of the groove track GT (that is, a tracking shift occurs as shown by a solid spot in FIG. 14). If not, the center of the spot formed by each of the preceding beam and the following beam is formed approximately at the center of the land track LT. Therefore, the amount of reflected light of the preceding beam received by each of the two divided light receiving parts D1 and D2 is substantially the same, and is received by each of the two divided light receiving parts D1 and D2. The amount of reflected light of the trailing beam is substantially the same. That is, the amount of reflected light in the right part and the left part of the spot formed by the preceding beam is equivalent, and the amount of reflected light in the right part and the left part of the spot formed by the succeeding beam is equivalent. ,.
  • the center of the spot formed by the main beam deviates from the approximate center of the groove track GT, for example, to the right (ie, when tracking deviation occurs as shown by the dotted line in Fig. 14).
  • the center of the spot formed by each of the preceding beam and the following beam is formed at a position shifted to the right side of the substantially central force of the land track LT.
  • the amount of reflected light of the preceding beam received by each of the two divided light receiving parts D1 and D2 is different, and is received by each of the two divided light receiving parts D1 and D2.
  • the amount of reflected light from the trailing beam is different.
  • the amount of reflected light in the right and left portions of the spot formed by the preceding beam is different, and the amount of reflected light in the right and left portions of the spot formed by the subsequent beam is different.
  • tracking processing is performed so that they are equal to each other.
  • FIG. 15 is a flowchart showing the entire operation including the recording operation and the control operation by the recording / reproducing apparatus in the third embodiment of the recording apparatus of the present invention.
  • step S301 first, under the control of the control unit 10, recording by the three-beam tracking process is started by the optical pickup 50 (step S301). [0185] Next, data is actually recorded by the optical pickup 50 under the control of the control unit 10 (step S301c).
  • step S305 it is determined whether or not the force to end the recording is controlled under the control of the control unit 10 (step S305).
  • step S305 If recording is not finished here (step S305: No), the process returns to step S301c and data recording continues.
  • step S305 when the recording is ended (step S305: Yes), the series of recording operations is ended.
  • a control operation including a tracking process or a focus process is performed simultaneously with or before or after the recording operation described above.
  • the control operation including the tracking process or the focus process will be described with reference to FIGS. 16 and 17 described later.
  • FIG. 16 is a flowchart showing one control operation centering on the tracking processing by the recording / reproducing apparatus in the third embodiment of the recording apparatus of the present invention.
  • Step S302 the force / power at which a tracking error signal (TE signal) outside the set range is detected is determined by the preceding beam in the three-beam tracking process.
  • a tracking error signal outside the setting range that is, when the tracking error signal is not within the setting range (step S3 02: No)
  • the control unit 10 is under control.
  • an abnormal value of the high frequency component included in the tracking error signal (TE signal) and an abnormal section (abnormal region) where the abnormal value is detected are detected (step S103).
  • step S302: Yes it is determined again whether or not the tracking error signal is detected as described above (step S302).
  • step S 104 the abnormal position or abnormal section on the optical disc where the abnormal value of the high frequency component is detected in the preceding beam is specified.
  • a window comparator signal capable of defining the abnormal position and the abnormal section in the recording operation is created (step S105).
  • the optimum gain adjustment circuit 32Tb adjusts the gain to hold a predetermined value in the abnormal section detected by the preceding beam (step S303).
  • a tracking process to which the adjusted gain is applied is performed by the main beam that performs actual recording (step S304). Then, the process returns to step S302 described above.
  • a value indicating the reproduction quality of the recorded information is measured by the subsequent beam at the same time as or after the above-described step S304, and the measured value is obtained. Based on this, it is determined whether or not the gain adjusted as described above is appropriate. If it is not appropriate, the gain may be subjected to negative feedback control (feedback control).
  • FIG. 17 is a flowchart showing another control operation centered on the focus processing by the recording / reproducing apparatus in the third example of the recording apparatus of the present invention.
  • the same steps as those in FIG. 16 described above are denoted by the same step numbers, and description thereof will be omitted as appropriate.
  • step S302a After recording by the three-beam tracking process is started by the optical pickup 50, under the control of the control unit 10, the preceding beam in the three-beam tracking process is used, for example, outside the set range. It is determined whether or not a focus error signal (FE signal) is detected (step S302a). For example, when a focus error signal outside the setting range is detected, that is, when the focus error signal is not within the setting range (step S302a: No), the processing from step S103 to step S105 described above is performed. . On the other hand, when it is within the focus error signal force setting range (step S302a: Yes), as described above, it is again determined whether or not the focus error signal is detected (step S302a). [0198] Next, under the control of the control unit 10, the laser drive circuit 40 adjusts the recording power to hold a predetermined value in the abnormal section detected by the preceding beam (step S303a).
  • FE signal focus error signal
  • step S304a the adjusted recording power is applied by the main beam that performs actual recording, and the hologram laser 51 is driven. Then, the process returns to step S302a described above.
  • a recording / reproducing apparatus 4 in a fourth embodiment of the recording apparatus of the present invention will be described with reference to FIG. Note that the components according to the fourth embodiment are substantially the same as those of the first to third embodiments described above, and a description thereof will be omitted.
  • FIG. 18 is a flowchart showing a real-time recording operation by the recording / reproducing apparatus 4 in the fourth embodiment of the recording apparatus of the present invention.
  • the same steps as those in the first to third embodiments described above are denoted by the same step numbers, and description thereof will be omitted as appropriate.
  • the tracking error signal in the main beam is an allowable value indicated by an upper limit value and a lower limit value for stably performing tracking servo. It is determined whether or not an abnormal value outside the range is taken (step S401).
  • step S401 determines whether or not an abnormal value outside the range.
  • the processes from step S104 to step S107 described above are performed.
  • step S401: Yes when it is determined that the tracking error signal has an abnormal value (step S401: Yes), as described above, it is determined whether or not to end the recording (step S30). 5) 0
  • a recording / reproducing apparatus 5 in a fifth embodiment of the recording apparatus of the present invention will be described with reference to FIG. Note that the components according to the fifth embodiment are substantially the same as those of the first to third embodiments described above, and a description thereof will be omitted.
  • FIG. 19 is a flowchart showing a real-time recording operation by the recording / reproducing apparatus 5 in the fifth embodiment of the recording apparatus of the present invention.
  • a tracking error signal depends on an upper limit value and a lower limit value for stably performing tracking servo. If it is determined that the abnormal value is outside the allowable range indicated (step S401: No), the abnormal value of the tracking error signal is detected under the control of the control unit 10, and is stored by a storage means such as a memory. Is stored (step S501).
  • step S104 and step S105 are performed.
  • the tracking gain selection circuit 32T holds a predetermined value in the abnormal section based on the abnormal value of the tracking error signal stored.
  • the gain is selected (step S502).
  • the gain holding the predetermined value is quickly and accurately selected based on a predetermined formula or a predetermined table using the stored tracking error signal as a parameter. May be.
  • the predetermined formula and the predetermined table may be prepared in advance by experiments or simulations.
  • step S107 the process of step S107 described above is performed.
  • a recording / reproducing apparatus 6 according to a sixth embodiment of the recording apparatus of the present invention will be described with reference to FIG.
  • the components according to the sixth embodiment are the first to third components described above. Since it is almost the same as the embodiment, the description is omitted.
  • FIG. 20 is a flowchart showing the real-time recording operation by the recording / reproducing apparatus 6 in the sixth embodiment of the recording apparatus of the present invention.
  • the same steps as those in the first to fifth embodiments described above are denoted by the same step numbers, and description thereof will be omitted as appropriate.
  • step S101 after data recording is started by the laser light emitted from the optical pickup 50, the variable “t” is controlled under the control of the control unit 10. "0" is substituted for "" (step S601).
  • step S401 for example, as a result of the determination of whether or not the tracking error signal is abnormal in each track, it is determined that the tracking error signal takes an abnormal value. If this is the case (step S401: No), as described above, the abnormal position or abnormal section on the optical disc where the abnormal value is detected is specified under the control of the control unit 10 (step S104). In particular, it may be confirmed that an abnormality in the tracking error signal occurs almost at the same Cf position (rotation angle from the reference position).
  • step S602 the variable "t" is incremented by "1" (step S602). Therefore, it is possible to count the number of tracks in which the tracking error signal abnormality occurs continuously.
  • step S603 under the control of the control unit 10, it is determined whether or not the variable “t” is equal to the predetermined number “n” (step S603).
  • the predetermined number “n” according to the present embodiment is determined based on the nature of the “abnormality” according to the present invention, for example, experimentally, empirically, theoretically, or based on simulation. Also good.
  • step S603 it is determined whether or not the variable “t” is equal to the predetermined number “n”, so that the abnormality of the tracking error signal continues over the “n” tracks. It is possible to determine whether or not the force is generated. If it occurs continuously over “n” tracks, the gain is set to an optimum value.
  • the position where the tracking error signal abnormality occurs can be predicted, for example, the rotation angle from the reference position gradually changes as the track moves to the outer track. In some cases, to reflect this trend, the position where the gain is set to the optimum value, that is, the high level section included in the aforementioned window comparator signal, may be gradually shifted as the track moves. Good.
  • a recording / reproducing apparatus 7 in a seventh embodiment of the recording apparatus of the present invention is described with reference to FIG. Note that the components according to the seventh embodiment are substantially the same as those of the first to third embodiments described above, and a description thereof will be omitted.
  • FIG. 21 is a flowchart showing the recording operation of the real time processing by the recording / reproducing apparatus 7 in the seventh example of the recording apparatus of the present invention.
  • the same steps as those in the first to sixth embodiments described above are given the same step numbers, and description thereof will be omitted as appropriate.
  • step S401 when it is determined that the tracking error signal has an abnormal value as a result of the determination in step S401 described above (step S401: No), recording is performed under the control of the control unit 10. Is interrupted (step S701).
  • step S401a when it is determined that the tracking error signal has an abnormal value within the setting range as a result of the determination in step S401a similar to step S401 described above (step S401a: No), the control unit Under the control of 10, the above-described processes from step S104 to step S107 are performed, and the gain is changed to an optimum value.
  • step S104 thus, as in the sixth embodiment described above, it is possible to specify an abnormal position that occurs continuously over “n” tracks. Further, this step S401a may be omitted.
  • step S401a determines whether the tracking error signal is within the set range and does not take an abnormal value. If it is determined that the tracking error signal is within the set range and does not take an abnormal value (step S401a: Yes), control is performed as described above. Recording is resumed under the control of unit 10 (step S703).
  • a recording / reproducing apparatus 8 according to an eighth embodiment of the recording apparatus of the present invention will be described with reference to FIG. Note that the components according to the eighth embodiment are substantially the same as those of the first to third embodiments described above, and a description thereof will be omitted.
  • FIG. 22 is a flowchart showing the recording operation of the real time processing by the recording / reproducing apparatus 8 in the eighth example of the recording apparatus of the present invention.
  • the same steps as those in the first to seventh embodiments described above are denoted by the same step numbers, and description thereof will be omitted as appropriate.
  • step S801 After data recording is started by the laser light emitted from the optical pickup 50 in step S101 described above, the variable “f” is controlled under the control of the control unit 10. "0" is substituted into “" (step S801).
  • step S401: No when it is determined that the tracking error signal force is an abnormal value as a result of the determination in step S401 described above (step S401: No), the variable "f" is set to “0" under the control of the control unit 10. ”Is determined (step S802). If “f” is equal to “0” (step S802: Yes), “1” is assigned to variable “f” under the control of control unit 10 (step S80).
  • step S80 the tracking error signal detected in step S401 is stored as a variable “TE1” by a storage means such as a memory (step S80).
  • step S104 force is also processed in step S107.
  • the gain is changed to an optimum value.
  • step S802 determines whether “f” is equal to “0” as a result of the determination in step S802 or “No”
  • the tracking detected in step S401 is detected.
  • the error signal is stored as a variable “TE2” by storage means such as a memory (step S805). Specifically, since “f” is “1”, it is found that the optimum force in the previous stage is not sufficient.
  • step S806 under the control of the control unit 10, it is determined whether or not the value of the variable “TE1” is greater than the value of the variable “TE2” (step S806).
  • step S806: Yes when the value power of the variable “TE1” is larger than the value of the variable “TE2” (step S806: Yes), the abnormal value of the tracking error signal has decreased, so that the gain is controlled under the control of the control unit 10. Is changed by a predetermined amount in the same direction as the increase / decrease direction for which the optimum value was determined immediately before (step S807).
  • the value of the variable "TE2" is substituted into the variable "TE1" (step S808). Therefore, the abnormal value determined to be smaller as a result of the comparison this time is compared with the next detected abnormal value, so that it is more based on the value of the tracking error signal that is not detected in the time direction. This makes it possible to determine the increase / decrease of abnormal values with high accuracy.
  • step S806 the value of the variable “TE1” is not larger than the value of the variable “TE2”, that is, smaller (step S806: No), the abnormal value of the tracking error signal increases. Therefore, under the control of the control unit 10, the magnitude of the gain is changed by a predetermined amount in the direction opposite to the increase / decrease direction in which the optimum value was determined immediately before (step S809).
  • step S401: Yes if it is not determined that the tracking error signal force has an abnormal value as a result of the determination in step S401 described above (step S401: Yes), the control unit 10 controls the variable "f" to have a "0" force. Substituted (step S801a).
  • the recording / reproducing apparatus 9 in the ninth embodiment of the recording apparatus of the present invention will be described. This will be explained. Note that the components according to the ninth embodiment are substantially the same as those of the first to third embodiments described above, and a description thereof will be omitted.
  • FIG. 23 is a flowchart showing the recording operation of the real-time process by the recording / reproducing apparatus 9 in the ninth example of the recording apparatus of the present invention.
  • processes similar to those in the first to eighth embodiments described above are denoted by the same step numbers, and description thereof will be omitted as appropriate.
  • step S401 when it is determined that the tracking error signal has an abnormal value as a result of the determination in step S401 described above (step S401: No), the control unit 10 performs the above-described control. Each process of step S104 and step S105 is performed.
  • the tracking gain selection circuit 32T prevents the actuator from following the abnormal value of the tracking error signal in the abnormal section, that is, the tracking process is not performed (
  • the gain that holds the predetermined value to be turned off is selected (step S901).
  • the gain holding the predetermined value may be selected quickly and accurately based on a predetermined formula or a predetermined table.
  • the maximum value of the section where the actuator does not follow the abnormal value of the tracking error signal that is, the section where the tracking process is not performed (turned off)
  • the so-called maximum off possible angle “Atr” is It may be determined by the following formula (10)!
  • Atr ⁇ Tp / ⁇ (Rl-Rs) / 180 ⁇ > X (1 / m)--(10)
  • the radial position in one track varies depending on, for example, the angle of the reference position force due to the eccentricity of the optical disk.
  • the difference in the maximum radial position in the target track is (Rl-Rs), and this difference is only a half turn (180 degrees) from the maximum radial position "R1" to the minimum radial position "Rs".
  • Rotating Caused by. Therefore, ⁇ (Rl-Rs) Zl80 ⁇ in Equation (10) represents the amount of movement in the radial direction of the track when it is rotated by 1 degree.
  • ⁇ TpZ ⁇ (R 1 ⁇ Rs) Zl80 ⁇ > in Equation (10) indicates the angle that moves one track in the radial direction. This means that if the tracking process is performed, rotation of this angle will cause the various actuators to be displaced by one track in the radial direction.
  • the radial position of various actuators does not change, and the radial position of the track is shifted by one track due to the eccentricity.
  • the allowable range is set to a constant “lZm” of one track in consideration of the recording characteristics (recording film characteristics) in the recording layer.
  • the constant “m” is preferably about “10”. However, it turns out that the larger the “m”, the shorter the maximum off possible angle “Atr”, so that the tracking process becomes more stable.
  • the tracking drive circuit 33T is configured to prevent the actuator from following the abnormal value of the tracking error signal during the above-described abnormal period.
  • the actuator driving signal S33T to which a gain for holding a predetermined value for not performing (turning off) the tracking process, is applied, and the tracking actuator 55T is driven (step S902). More specifically, the various actuators are maintained in their positions prior to being turned off.
  • the force of the fourth embodiment described above is the same as that of the ninth embodiment.
  • the force of performing the recording operation based on the tracking error signal In addition to or instead of the tracking error signal, (ii)
  • the recording operation may be performed based on a focus error signal or power control determined by, for example, OPC.
  • the power described for a recording / reproducing device for additional recording such as a DVD-R recorder or a DVD + R recorder. It can be applied to a recording / playback device such as a recorder or DVD + RW recorder. Furthermore, the present invention can be applied to a recording / reproducing apparatus for large capacity recording using a blue laser for recording / reproducing.
  • the present invention is not limited to the above-described embodiments, but the claims and the entire specification.
  • the recording apparatus and method, the reproducing apparatus and method, the recording and reproducing apparatus and method, and the computer program for recording or reproducing control that can be changed as appropriate without departing from the gist or idea of the invention that can be read Is also included in the technical scope of the present invention.
  • a recording apparatus and method, a reproducing apparatus and method, a recording / reproducing apparatus and method, and a computer program according to the present invention include a DVD recorder and a DVD player for recording and reproducing data on a recording medium such as a DVD and a CD (Compact Disc). It can be used for recording and playback devices such as. Further, the present invention can also be used for an information recording / reproducing apparatus that is mounted on or connectable to various computer equipment for consumer use or business use.

Abstract

 記録装置(1T等)は、(i)記録媒体に対してレーザ光を照射することでデータの記録を行う記録手段(50や40)と、(ii)トラッキング処理、又はフォーカス処理を行う駆動手段(33Tや33F、55Tや55F、54)と、(iii)エラー信号に基づいて、駆動手段を自動制御するサーボ手段(31Tや31F)と、(iv)エラー信号に含まれる高周波成分に基づいて、記録媒体の特性(偏芯等)が良好でない領域を特定する特定手段(21や22)と、(v)特定された領域において、(v-i)自動制御における利得を変化させるようにサーボ手段を制御し、(v-ii)レーザ光の記録パワーを変化させるように記録手段を制御する制御手段(10)とを備える。

Description

明 細 書
記録装置及び方法、再生装置及び方法、記録再生装置及び方法、並び にコンピュータプログラム
技術分野
[0001] 本発明は、例えば DVD、 CD (Compact Disc)等の記録媒体にデータを記録するた めの DVDレコーダ等の記録装置及び方法、当該記録媒体からデータを再生するた めの再生装置及び方法、このような記録及び再生の両方が可能である記録再生装 置及び方法、並びに、記録又は再生制御用のコンピュータプログラムの技術分野に 関する。
背景技術
[0002] 特許文献 1においては、例えば DVD等の記録媒体に対して高速に記録又は再生 を行う際に、安定的にフォーカス帘 U御(フォーカス処理、フォーカス自動 ff¾御、フォー カスサーボ、フォーカシング処理)やトラッキング制御(トラッキング処理、トラッキング 自動制御、トラッキングサーボ)を行う記録又は再生方法に関する技術が開示されて いる。詳細には、先ず、フォーカス処理で利用されるフォーカスエラー信号、又はトラ ッキング処理で利用されるトラッキングエラー信号に含まれる高周波成分から、当該 記録媒体における特性が検出される。ここに、本願発明に係る「特性」とは、(i)例え ば偏芯加速度や面振れ加速度等の当該記録媒体における形状や構造等に起因す る物理的な機械的な特性を意味してもよいし、(ii)傷、埃、指紋、油汚れ等の記録面 の状態に対応した化学的又は自然的な特性を意味してもよい。尚、この特性が発生 する一の原因としては、グループの変形が挙げられる。このように、グループが部分 的に変形した領域が発生するのは、一般的に製造工程における射出成型器が、急 激に冷却された場合、スタンパの形状が適切に転写されないこと等に起因している。 次に、それらの加速度が所定閾値を越える状態が、所定頻度だけ継続された場合、 当該記録媒体の回転速度(ひいては線記録速度)が低下され、安定的にフォーカス 処理やトラッキング処理が行われる。
[0003] より詳細には、トラッキング処理の一具体例として、非特許文献 1に記載されるように 、 DPP (Differential push-pull)方式の 3ビームトラッキング処理が考案されている。こ こに、本願発明に係る「3ビームトラッキング処理」とは、光ピックアップから照射される レーザ光を回折格子に入射させることで、 (i)主としてデータ (情報)の記録に利用さ れるメインビームと、(ii)主としてトラッキング処理に利用される二つのサブビームとが 生成され、二つのサブビームを利用してトラッキング処理が行われる技術である。より 具体的には、例えば単層型の光ディスクの記録面上において、これらのサブビーム のスポットは、メインビームのスポットと比較してトラックピッチの半分だけずらされて配 置されている。二つのサブビームの反射光は、例えば二分割されたフォトディテクタ 等により受光される。この二分割されたフォトディテクタにおいて夫々受光される光量 (或いは、位相)の差が検出されることでトラッキング処理が行われる。
[0004] 他方、一般のディスクドライブ等の記録装置においても、振動を検出するセンサが 備えられて構成されており、検出された振動量が、所定値より大きくなつた場合、回転 速度を低下させる制御が行われて 、る。
[0005] 特許文献 1 :特開 2004— 62945号公報
特許文献 2 :特開 2003— 312146号公報
特許文献 3 :特開 2002— 373419号公報
非特許文献 1 :「光磁気ディスク用光学ヘッド」、電子材料、工業調査会、昭和 63年 7 月 1日発行、第二十七卷、第七号、 p73— 74
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、記録装置においては、例えば 16倍速等の高速に記録する能力があ るにも関わらず、当該記録媒体の特性を示す値が、許容範囲から離れている場合、 即ち、特性が適正でない場合、高速に記録を行うことが技術的に困難であるという問 題点がある。言い換えると、高速な記録が可能な記録装置が、高速な記録が可能な 特性を保持する記録媒体に対して記録するのであれば、より高速な記録ができるに も関わらず、その可能性が実現されて 、な 、と 、う技術的な問題点を有して 、る。
[0007] 同様にして、記録媒体の記録膜 (記録層)においては、高速に記録可能な記録膜 特性 (記録特性、記録層特性)を保持していても、当該記録媒体の特性が適正でな い場合、高速に記録を行うことが技術的に困難であるという問題点がある。言い換え ると、高速な記録が可能な記録装置が、高速な記録が可能な記録特性に加えて、高 速な記録が可能な特性を保持する記録媒体に対して記録するのであれば、より高速 な記録ができるにも関わらず、その可能性が実現されていないという技術的な問題点 を有している。
[0008] 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えば光ディ スク等の記録媒体の一個体の記録面における特性のばらつき、又は記録媒体の個 体毎の特性のばらつきの影響をより小さくして、データをより高速に記録又は再生す ることを可能ならしめる記録装置及び方法、再生装置及び方法、記録再生装置及び 方法、並びに、記録又は再生制御用のコンピュータプログラムを提供することを課題 とする。
課題を解決するための手段
[0009] (記録装置)
以下、本発明に係る記録装置について説明する。
[0010] 本発明の記録装置は上記課題を解決するために、ディスク状の記録媒体に対して レーザ光を照射することでデータの記録を行う記録手段 (光ピックアップ、レーザ駆動 回路)と、前記記録に際して、トラッキング制御、及びフォーカス制御のうち少なくとも 一方の制御を行う駆動手段 (駆動回路、ァクチユエータ、対物レンズ)と、前記少なく とも一方の制御におけるエラー信号に基づ 、て、前記駆動手段を自動制御するサー ボ手段と、前記少なくとも一方の制御におけるエラー信号に含まれる高周波成分に 基づいて、前記記録媒体の特性 (偏芯、面振れ、傷や埃等の記録面の状態)が良好 でない領域を特定する特定手段 (検出回路)と、前記特定された領域において、 (i) 前記自動制御における制御条件 (ゲイン:利得)を変化させるように前記サーボ手段 を制御することに加えて、又は、代えて (ii)前記レーザ光の記録条件を変化させるよ うに前記記録手段を制御する制御手段 (CPU)とを備える。
[0011] 本発明の記録装置によれば、先ず、特定手段 (検出回路)によって、トラッキング制 御、又はフォーカス制御におけるエラー信号に含まれる高周波成分に基づいて、記 録媒体の特性 (偏芯、面振れ、傷や埃等の記録面の状態)が良好でない領域が特定 される。
[0012] 次に、制御手段の制御下で、この特定された領域において、例えば再生品質が最 適になるように、制御条件、又は、例えば記録パワー等の記録条件が変化される。こ こに、本願発明に係る「制御条件」とは、例えば自動制御 (サーボ)における利得 (ゲ イン)等の制御動作における性能や性質を決定可能な各種の要因を意味する。
[0013] 従って、特性が良好でな 、領域が存在するために、従来、データの高速な記録が できず、低速にデータが記録されていた記録媒体に対しても、記録装置が機能や能 力として保持する高速な記録速度に基づいて、データを記録することが可能となる。
[0014] 以上の結果、例えば光ディスク等の記録媒体の一個体の記録面における特性のば らつき、又は記録媒体の個体毎の特性のばらつきの影響を小さくして、データをより 高速に記録することが可能となる。
[0015] 本発明の記録装置の一の態様では、前記特定手段は、前記特性として、前記記録 媒体の回転動作における、偏芯加速度、面振れ加速度、及び反り加速度のうちの少 なくとも一つに基づいて、前記領域を特定する。
[0016] この態様によれば、特定手段によって、例えば光ディスク等の記録媒体において、 偏芯加速度、面振れ加速度及び反り加速度のうちの少なくとも一つの値が、例えば 許容範囲外として検出された場合、当該検出された領域が、記録媒体の特性が良好 でな!ヽ領域として特定される。
[0017] この結果、より高精度且つ迅速に、記録媒体の特性が良好でない領域を特定する ことが可能である。
[0018] 本発明の記録装置の他の態様では、前記特定手段は、前記偏芯加速度を検出す る偏芯加速度検出手段、前記面振れ加速度を検出する面振れ加速度検出手段、及 び、前記反り加速度を検出する反り加速度検出手段のうちの少なくとも一つを含む。
[0019] この態様によれば、例えば、ウィンドコンパレータ等により構成される各種検出手段 によって、より高精度且つ迅速に、記録媒体の特性が良好でない領域を特定するこ とが可能である。
[0020] 本発明の記録装置の他の態様では、前記特定手段は、前記高周波成分の値と、 所定閾値との比較に基づいて、前記領域を特定する。 [0021] この態様によれば、例えば、ウィンドコンパレータ等により構成される特定手段によ つて、より高精度且つ迅速に、記録媒体の特性が良好でない領域を特定することが 可能である。
[0022] 本発明の記録装置の他の態様では、前記記録媒体にお!、ては、前記データを記 録するための同心円状の又はスパイラル状の記録トラックが形成されており、
前記特定手段は、前記記録トラックにおいて周期的に発生する、前記高周波成分 に基づいて、前記領域を特定する。
[0023] この態様によれば、例えばノイズ等の影響による突発的なエラー信号の異常には 対応しないで、例えば光ディスク上の所定の位置 (基準位置力 の回転角度)におい て周期的に発生するエラー信号の異常に対応することが可能となる。よって、データ をより高速且つ効率的に記録することが可能となる。
[0024] 本発明の記録装置の他の態様では、前記制御手段は、 (i)前記制御条件として、 前記自動制御における利得 (ゲイン: Gain)を標準値より大きくさせるように前記サー ボ手段を制御することに加えて、又は、代えて (ii)前記記録条件として、前記レーザ 光の記録パワーを標準値より大きくさせるように前記記録手段を制御する。
[0025] この態様によれば、例えば光ディスク等の記録媒体の記録トラックに形成されたグ ループの変形 (ゆがみ)に起因して、偏芯加速度が大きくなつた領域に対応して、そ の領域における利得を、標準値より大きくさせることによって、記録トラックに、より追 随させることが可能となり、高速な記録の実現性をより高めることが可能となる。ここに 、本願発明に係る「標準値」とは、記録媒体の特性が良好である領域において、自動 制御により最適に設定された利得、又は記録パワーのことである。
[0026] 他方、記録媒体における面振れに起因して、面振れ加速度が大きくなつた領域に 対応して、記録パワーを、標準値より大きくさせる。このこと〖こよって、フォーカス処理( フォーカスサーボ)を安定的に行うことができず、記録媒体に照射されるレーザ光の ビーム径が大きくなつた状態、即ち、デフォーカスの状態の領域において、単位面積 当たりの記録パワーが小さくなることを抑制することが可能となる。
[0027] この結果、例えば光ディスク等の記録媒体の一個体の記録面における偏芯や面振 れ等の特性のばらつきの影響を小さくして、データをより高速に記録することが可能と なる。
[0028] 本発明の記録装置の他の態様では、前記特定された領域における、前記エラー信 号の大きさを取得する取得手段を更に備え、前記制御手段は、前記取得されたエラ 一信号の大きさを示す値をパラメータとした、前記自動制御における利得の大きさの 最適値を示すテーブルに基づ 、て、前記サーボ手段を制御する。
[0029] この態様によれば、制御手段の制御下で、テーブルに基づいて、偏芯に対応する ための利得等の制御条件を、より迅速に決定することが可能となる。
[0030] 本発明の記録装置の他の態様では、前記特定された領域における、前記エラー信 号の大きさを取得する取得手段を更に備え、前記制御手段は、前記取得されたエラ 一信号の大きさを示す値をパラメータとした、前記レーザ光の記録パワーの大きさの 最適値を示すテーブルに基づ ヽて、前記記録手段を制御する。
[0031] この態様によれば、制御手段の制御下で、テーブルに基づいて、面振れに対応す るための記録パワー等の記録条件を、より迅速に決定することが可能となる。
[0032] 本発明の記録装置の他の態様では、前記制御手段は、 (i)前記エラー信号の大き さを示す値が増加する際には、前記自動制御における利得の大きさを一の方向(直 前に最適値を決定した増減方向と逆方向)に変化させ、(ii)前記エラー信号の大きさ を示す値が減少する際には、前記利得の大きさを他の方向(直前に最適値を決定し た増減方向と同一方向)に変化させるように前記サーボ手段を制御する。
[0033] この態様によれば、時間軸上におけるエラー信号の変化に対応して、偏芯に対応 するための利得等の制御条件を、より高精度に決定することが可能となる。
[0034] 本発明の記録装置の他の態様では、前記制御手段は、 (i)前記エラー信号の大き さを示す値が増加する際には、前記レーザ光の記録パワーの大きさを一の方向(直 前に最適値を決定した増減方向と逆方向)に変化させ、(ii)前記エラー信号の大きさ を示す値が減少する際には、前記記録パワーの大きさを他の方向(直前に最適値を 決定した増減方向と同一方向)に変化させるように前記記録手段を制御する。
[0035] この態様によれば、時間軸上におけるエラー信号の変化に対応して、面振れに対 応するための記録パワー等の記録条件を、より高精度に決定することが可能となる。
[0036] 本発明の記録装置の他の態様では、前記制御手段は、前記特定された領域の位 置を示す位置情報(回転角度を示す WC信号)に基づいて、前記サーボ手段、及び 前記記録手段のうちの少なくとも一つを制御する。
[0037] この態様によれば、記録媒体で、例えば一定の角度において周期的に発生する、 記録媒体の特性が良好でない領域に、より的確且つ迅速に対応して、データをより 高速に記録することが可能となる。
[0038] この制御手段に係る態様では、前記制御手段は、前記位置情報としてのウィンドコ ンパレータ信号に含まれるハイレベルな値を示す区間又は期間において、前記サー ボ手段、及び前記記録手段のうちの少なくとも一つを制御するように構成してもよい。
[0039] このように構成すれば、記録媒体の特性が良好でな 、領域を、より高精度に特定し
、制御条件や記録条件を変化させることが可能である。
[0040] 本発明の記録装置の他の態様では、前記制御手段は、更に、試用的に、前記デー タの記録を行うように、前記サーボ手段、及び前記記録手段を制御する。
[0041] この態様によれば、試用的なデータの記録において、特性が良好でない領域を特 定すると共に、この領域に対応して、制御条件や記録条件が決定される。この特定さ れた領域と、決定された制御条件や記録条件に基づいて、実際の本格記録が行わ れる。
[0042] この結果、データを、より高速且つ高精度に記録することが可能となる。
[0043] 本発明の記録装置の他の態様では、前記制御手段は、前記特定された領域を含 む記録領域において、(i)前記記録を中断させ、(ii)前記制御条件、及び前記記録 条件のうち少なくとも一つを変化させ、(iii)前記記録を再開させるように、前記サーボ 手段、及び前記記録手段を制御する。
[0044] この態様によれば、一旦記録を中断させ、制御条件や記録条件が変化されることで
、データを、より高精度に記録することが可能となる。
[0045] 本発明の記録装置の他の態様では、前記制御手段は、前記制御条件、及び前記 記録条件のうち少なくとも一つを変化させた力否かを示す識別情報に基づいて、前 記サーボ手段、及び前記記録手段を制御する。
[0046] この態様によれば、制御手段によって、識別情報に基づいて、制御条件や記録条 件を更に変化させる力否かが決定される。 [0047] この結果、制御手段によって、より高精度に制御条件や記録条件を変化させること が可能となり、記録されるデータの再生品質を高めることが可能となる。
[0048] 本発明の記録装置の他の態様では、前記制御手段は、前記特定された領域にお
V、て、前記自動制御を作動させな 、ように前記サーボ手段を制御する。
[0049] この態様によれば、特性が良好でな 、領域にぉ 、て、より簡便な自動制御が行わ れるので、データの高速な記録の実現性をより高めることが可能となる。
[0050] この制御手段に係る態様では、前記制御手段は、所定の関係を示す式、又はテー ブルに基づ 、て、前記自動制御を作動させな 、ように前記サーボ手段を制御するよ うに構成してもよい。
[0051] このように構成すれば、所定の関係を示す式、又はテーブルに基づいて、例えば デトラックを発生させないようにするための制限をかけることが可能となる。よって、高 速な記録をより安定的に実現することが可能である。
[0052] 本発明の記録装置の他の態様では、前記記録手段は、前記レーザ光を回折させる 回折手段を含み、前記回折手段は、(i)前記データの記録、前記データの再生、前 記トラッキング制御、及び、前記フォーカス制御のうち少なくとも一つの処理を行うた めに用いられるメインビーム、並びに(ii)前記少なくとも一つの処理を行うために用い られる、少なくとも 2つのサブビームを生成し、前記記録手段 (光ピックアップ、レーザ 駆動回路)は、前記メインビーム、及び前記サブビームのうち少なくとも一つに含まれ るレーザ光を照射することで前記データの記録を行い、前記制御手段は、前記高周 波成分に基づいて、前記記録手段を制御する。
[0053] この態様によれば、例えば 3ビームトラッキング処理における先行ビームを利用する ことで、実際に記録をしているメインビームより、記録媒体の一回転に相当する時間 だけ早ぐ特性が良好でない領域を、例えば検出された許容範囲外のエラー信号に 含まれる高周波成分によって、特定することが可能となる。従って、メインビームにお いて、最適な制御条件が適用されたトラッキング処理 (フォーカス処理)に基づいた記 録を行うことが可能となると共に、リアルタイムで最適にされた記録条件でデータの高 速な記録を行うことが可能となる。
[0054] 本発明の記録装置の他の態様では、前記レーザ光の偏向方向を変化させる偏向 素子、及び、レーザ光の屈折率を変化させる屈折率変更素子のうち少なくとも一方を 更に備え、前記制御手段は、更に、前記特定された領域において、レーザ光の偏向 方向を高速に変化させるように前記偏向素子を制御する、又は、レーザ光の屈折率 を高速に変化させるように前記屈折率変更素子を制御する。
[0055] この態様によれば、制御手段の制御下で、記録手段における、制御条件や、記録 条件を変化させることに加えて、レーザ光の偏向方向や、屈折率を高速に変化させ る。従って、例えば光ディスク等の記録媒体の一個体の記録面における機械特性の ばらつき、又は記録媒体の個体毎の特性のばらつきの影響をより小さくして、データ をより高速に記録することが可能となる。
[0056] (再生装置)
以下、本発明に係る再生装置について説明する。
[0057] 本発明の再生装置は上記課題を解決するために、ディスク状の記録媒体に対して レーザ光を照射することでデータの再生を行う再生手段 (光ピックアップ、レーザ駆動 回路)と、前記再生に際して、トラッキング制御、及びフォーカス制御のうち少なくとも 一方の制御を行う駆動手段 (駆動回路、ァクチユエータ、対物レンズ)と、前記少なく とも一方の制御におけるエラー信号に基づ 、て、前記駆動手段を自動制御するサー ボ手段と、前記少なくとも一方の制御におけるエラー信号に含まれる高周波成分に 基づいて、前記記録媒体の特性 (偏芯、面振れ、傷や埃等の記録面の状態)が良好 でない領域を特定する特定手段 (検出回路)と、前記特定された領域において、 (i) 前記自動制御における制御条件 (ゲイン:利得)を変化させるように前記サーボ手段 を制御することに加えて、又は、代えて (ii)前記レーザ光の再生条件を変化させるよ うに前記再生手段を制御する制御手段 (CPU)とを備える。
[0058] 本発明の再生装置によれば、上述した記録装置と概ね同様にして、記録媒体の特 性 (偏芯、面振れ、傷や埃等の記録面の状態)が良好でない領域が特定される。
[0059] 次に、制御手段の制御下で、この特定された領域にお!、て、制御条件、又は、例え ば再生パワー等の再生条件が変化される。
[0060] 従って、特性が良好でな 、領域が存在するために、従来、データの高速な再生が できず、低速にデータが再生されていた記録媒体に対しても、再生装置が機能や能 力として保持する高速な再生速度に基づいて、データを再生することが可能となる。
[0061] 以上の結果、例えば光ディスク等の記録媒体の一個体の記録面における特性のば らつき、又は記録媒体の個体毎の特性のばらつきの影響を小さくして、データをより 高速に再生することが可能となる。
[0062] 尚、上述した本発明の記録装置における各種態様に対応して、本発明の再生装置 も各種態様を採ることが可能である。
[0063] (記録再生装置)
以下、本発明に係る記録再生装置について説明する。
[0064] 本発明の記録再生装置は上記課題を解決するために、ディスク状の記録媒体に対 してレーザ光を照射することでデータの記録又は再生を行う記録再生手段 (光ピック アップ、レーザ駆動回路)と、前記記録又は再生に際して、トラッキング制御、及びフ オーカス制御のうち少なくとも一方の制御を行う駆動手段 (駆動回路、ァクチユエータ 、対物レンズ)と、前記少なくとも一方の制御におけるエラー信号に基づいて、前記駆 動手段を自動制御するサーボ手段と、前記少なくとも一方の制御におけるエラー信 号に含まれる高周波成分に基づいて、前記記録媒体の特性 (偏芯、面振れ、傷や埃 等の記録面の状態)が良好でな!、領域を特定する特定手段 (検出回路)と、前記特 定された領域にぉ 、て、 (i)前記自動制御における制御条件 (ゲイン:利得)を変化さ せるように前記サーボ手段を制御することに加えて、又は、代えて (ii)前記レーザ光 の記録条件又は再生条件を変化させるように前記記録再生手段を制御する制御手 段 (CPU)とを備える。
[0065] 本発明の記録再生装置によれば、上述した記録装置と概ね同様にして、記録媒体 の特性 (偏芯、面振れ)が良好でない領域が特定される。
[0066] 次に、制御手段の制御下で、この特定された領域にお!、て、制御条件、記録条件
、又は再生条件が変化される。
[0067] 従って、特性が良好でな 、領域が存在するために、従来、データの高速な記録又 は再生ができず、低速にデータが記録又は再生されていた記録媒体に対しても、記 録再生装置が機能や能力として保持する高速な記録又は再生速度に基づいて、デ ータを記録又は再生することが可能となる。 [0068] 以上の結果、例えば光ディスク等の記録媒体の一個体の記録面における特性のば らつき、又は記録媒体の個体毎の特性のばらつきの影響を小さくして、データをより 高速に記録又は再生することが可能となる。
[0069] 尚、上述した本発明の記録装置又は再生装置における各種態様に対応して、本発 明の記録再生装置も各種態様を採ることが可能である。
[0070] (記録方法)
以下、本発明に係る記録方法について説明する。
[0071] 本発明の記録方法は上記課題を解決するために、(i)ディスク状の記録媒体に対し てレーザ光を照射することでデータの記録を行う記録手段 (光ピックアップ、レーザ駆 動回路)、及び (ii)前記記録に際して、トラッキング制御、及びフォーカス制御のうち 少なくとも一方の制御を行う駆動手段 (駆動回路、ァクチユエータ、対物レンズ)を備 える記録装置における記録方法であって、前記少なくとも一方の制御におけるエラー 信号に基づいて、前記駆動手段を自動制御するサーボ工程と、前記少なくとも一方 の制御におけるエラー信号に含まれる高周波成分に基づいて、前記記録媒体の特 性 (偏芯、面振れ、傷や埃等の記録面の状態)が良好でない領域を特定する特定ェ 程と、前記特定された領域において、(i)前記自動制御における制御条件 (ゲイン: 利得)を変化させるように前記サーボ工程を制御することに加えて、又は、代えて (ii) 前記レーザ光の記録条件を変化させるように前記記録手段を制御する制御工程とを 備える。
[0072] 本発明の記録方法によれば、上述した本発明の記録装置が有する各種利益を享 受することが可能となる。
[0073] 尚、上述した本発明の記録装置が有する各種態様に対応して、本発明の記録方法 も各種態様を採ることが可能である。
[0074] (再生方法)
以下、本発明に係る再生方法について説明する。
[0075] 本発明の再生方法は上記課題を解決するために、(i)ディスク状の記録媒体に対し てレーザ光を照射することでデータの再生を行う再生手段 (光ピックアップ、レーザ駆 動回路)、及び (ii)前記再生に際して、トラッキング制御、及びフォーカス制御のうち 少なくとも一方の制御を行う駆動手段 (駆動回路、ァクチユエータ、対物レンズ)を備 える再生装置における再生方法であって、前記少なくとも一方の制御におけるエラー 信号に基づいて、前記駆動手段を自動制御するサーボ工程と、前記少なくとも一方 の制御におけるエラー信号に含まれる高周波成分に基づいて、前記記録媒体の特 性 (偏芯、面振れ、傷や埃等の記録面の状態)が良好でない領域を特定する特定ェ 程と、前記特定された領域において、(i)前記自動制御における制御条件 (ゲイン: 利得)を変化させるように前記サーボ工程を制御することに加えて、又は、代えて (ii) 前記レーザ光の再生条件を変化させるように前記再生手段を制御する制御工程とを 備える。
[0076] 本発明の再生方法によれば、上述した本発明の再生装置が有する各種利益を享 受することが可能となる。
[0077] 尚、上述した本発明の再生装置が有する各種態様に対応して、本発明の再生方法 も各種態様を採ることが可能である。
[0078] (記録再生方法)
以下、本発明に係る記録再生方法について説明する。
[0079] 本発明の記録再生方法は上記課題を解決するために、(i)ディスク状の記録媒体 に対してレーザ光を照射することでデータの記録又は再生を行う記録再生手段 (光 ピックアップ、レーザ駆動回路)、及び (ii)前記記録又は再生に際して、トラッキング 制御、及びフォーカス制御のうち少なくとも一方の制御を行う駆動手段 (駆動回路、 ァクチユエータ、対物レンズ)を備える記録再生装置における記録再生方法であって 、前記少なくとも一方の制御におけるエラー信号に基づいて、前記駆動手段を自動 制御するサーボ工程と、前記少なくとも一方の制御におけるエラー信号に含まれる高 周波成分に基づいて、前記記録媒体の特性 (偏芯、面振れ、傷や埃等の記録面の 状態)が良好でない領域を特定する特定工程と、前記特定された領域において、 (i) 前記自動制御における制御条件 (ゲイン:利得)を変化させるように前記サーボ工程 を制御することに加えて、又は、代えて (ii)前記レーザ光の記録条件又は再生条件 を変化させるように前記記録再生手段を制御する制御工程とを備える。
[0080] 本発明の記録再生方法によれば、上述した本発明の記録再生装置が有する各種 利益を享受することが可能となる。
[0081] 尚、上述した本発明の記録再生装置が有する各種態様に対応して、本発明の記録 再生方法も各種態様を採ることが可能である。
[0082] (コンピュータプログラム)
以下、本発明に係るコンピュータプログラムについて説明する。
[0083] 本発明の記録制御用のコンピュータプログラムは上記課題を解決するために、上 述した本発明の記録装置 (但し、その各種態様を含む)に備えられたコンピュータを 制御する記録制御用のコンピュータプログラムであって該コンピュータを、前記記録 手段、前記駆動手段、前記サーボ手段、前記特定手段、及び、前記制御手段のうち 少なくとも一部として機能させる。
[0084] 本発明の再生制御用のコンピュータプログラムは上記課題を解決するために、上 述した本発明の再生装置 (但し、その各種態様を含む)に備えられたコンピュータを 制御する再生制御用のコンピュータプログラムであって該コンピュータを、前記再生 手段、前記駆動手段、前記サーボ手段、前記特定手段、及び、前記制御手段のうち 少なくとも一部として機能させる。
[0085] 本発明の記録再生制御用のコンピュータプログラムは上記課題を解決するために 、上述した本発明の記録再生装置 (但し、その各種態様を含む)に備えられたコンビ ユータを制御する記録再生制御用のコンピュータプログラムであって該コンピュータ を、前記記録再生手段、前記駆動手段、前記サーボ手段、前記特定手段、及び、前 記制御手段のうち少なくとも一部として機能させる。
[0086] 本発明の各コンピュータプログラムによれば、当該コンピュータプログラムを格納す る ROM、 CD-ROM, DVD-ROM,ハードディスク等の記録媒体から、当該コン ピュータプログラムをコンピュータに読み込んで実行させれば、或いは、当該コンビュ ータプログラムを、通信手段を介してコンピュータにダウンロードさせた後に実行させ れば、上述した本発明の記録装置、再生装置、又は記録再生装置を比較的簡単に 実現できる。
[0087] 尚、上述した本発明の記録装置、再生装置、及び記録再生装置における各種態様 に対応して、本発明の各コンピュータプログラムも各種態様を採ることが可能である。 [0088] コンピュータ読取可能な媒体内のコンピュータプログラム製品は上記課題を解決す るために、上述した本発明の記録装置 (但し、その各種態様を含む)に備えられたコ ンピュータにより実行可能なプログラム命令を明白に具現ィ匕し、該コンピュータを、前 記記録手段、前記駆動手段、前記サーボ手段、前記特定手段、及び、前記制御手 段のうち少なくとも一部として機能させる。
[0089] コンピュータ読取可能な媒体内のコンピュータプログラム製品は上記課題を解決す るために、上述した本発明の再生装置 (但し、その各種態様を含む)に備えられたコ ンピュータにより実行可能なプログラム命令を明白に具現ィ匕し、該コンピュータを、前 記再生手段、前記駆動手段、前記サーボ手段、前記特定手段、及び、前記制御手 段のうち少なくとも一部として機能させる。
[0090] コンピュータ読取可能な媒体内のコンピュータプログラム製品は上記課題を解決す るために、上述した本発明の記録再生装置 (但し、その各種態様を含む)に備えられ たコンピュータにより実行可會なプログラム命令を明白に具現ィ匕し、該コンピュータを 、前記記録再生手段、前記駆動手段、前記サーボ手段、前記特定手段、及び、前記 制御手段のうち少なくとも一部として機能させる。
[0091] 本発明の各コンピュータプログラム製品によれば、当該コンピュータプログラム製品 を格納する ROM、 CD-ROM, DVD-ROM,ハードディスク等の記録媒体から、 当該コンピュータプログラム製品をコンピュータに読み込めば、或いは、例えば伝送 波である当該コンピュータプログラム製品を、通信手段を介してコンピュータにダウン ロードすれば、上述した本発明の記録装置、再生装置、又は記録再生装置を比較的 容易に実施可能となる。更に具体的には、当該コンピュータプログラム製品は、上述 した本発明の記録装置、再生装置、又は記録再生装置として機能させるコンピュータ 読取可能なコード (或 、はコンピュータ読取可能な命令)力も構成されてよ 、。 本発 明のこのような作用及び他の利得は次に説明する実施例から明らかにされる。
[0092] 以上説明したように、本発明の記録装置及び方法によれば、記録手段、駆動手段 、特定手段及び工程、並びに、制御手段及び工程を備える。従って、例えば光デイス ク等の記録媒体の一個体の記録面における特性のばらつき、又は記録媒体の個体 毎の特性のばらつきの影響を小さくして、データをより高速に記録することが可能とな る。
[0093] また、本発明の再生装置及び方法によれば、再生手段、駆動手段、特定手段及び 工程、並びに、制御手段及び工程を備える。従って、例えば光ディスク等の記録媒 体の一個体の記録面における特性のばらつき、又は記録媒体の個体毎の特性のば らつきの影響を小さくして、データをより高速に再生することが可能となる。
[0094] 更に、また、本発明の記録再生装置及び方法によれば、記録再生手段、駆動手段 、特定手段及び工程、並びに、制御手段及び工程を備える。従って、例えば光デイス ク等の記録媒体の一個体の記録面における特性のばらつき、又は記録媒体の個体 毎の特性のばらつきの影響を小さくして、データをより高速に記録又は再生すること が可能となる。
[0095] 更に、また、本発明のコンピュータプログラムによれば、コンピュータを上述した本発 明の記録装置、再生装置、及び記録再生装置のうちの少なくとも一つとして機能させ る。従って、記録装置、再生装置、及び記録再生装置をして、例えば光ディスク等の 記録媒体の一個体の記録面における特性のばらつき、又は記録媒体の個体毎の特 性のばらつきの影響を小さくして、データをより高速に記録又は再生せしめることが可 能となる。
図面の簡単な説明
[0096] [図 1]本発明の記録装置の第 1実施例に係る記録再生装置 1Tのトラッキング処理を 主に行う基本構成を概念的に示すブロック図である。
[図 2]本発明の記録装置の第 1実施例に係る記録再生装置 1Fのフォーカス処理を主 に行う基本構成を概念的に示すブロック図である。
[図 3]本発明の記録装置の第 1実施例に係る記録再生装置 1Tによるトラッキング処 理、又はフォーカス処理を中心とした一の記録動作を示したフローチャートである。
[図 4]本発明のトラッキング処理 (フォーカス処理)におけるエラー信号に含まれる高 周波成分に基づいて特定された、機械特性が良好でない領域を示すウィンドコンパ レータ信号の作成工程を模式的に示した波形図等である。
[図 5]本発明の記録装置の第 1実施例に係る記録再生装置 1Fによる最適な記録パヮ 一の選別を中心とした他の記録動作を示したフローチャートである。 圆 6]本発明の記録装置 ITaの第 1実施例の一の変形例に係る記録再生装置の基 本構成を概念的に示すブロック図である。
[図 7]本発明の記録装置 lFaの第 1実施例の他の変形例に係る記録再生装置の基 本構成を概念的に示すブロック図である。
圆 8]本発明の記録装置 2Tの第 2実施例に係る記録再生装置の基本構成を概念的 に示すブロック図である。
圆 9]本発明の記録装置 2Fの第 2実施例の一の変形例に係る記録再生装置の基本 構成を概念的に示すブロック図である。
圆 10]本発明の記録装置 2Taの第 2実施例の他の変形例に係る、トラッキング処理 における記録再生装置の基本構成を概念的に示すブロック図である。
[図 11]本発明の記録装置 2Faの第 2実施例の他の変形例に係る、フォーカス処理に おける記録再生装置 2aの基本構成を概念的に示すブロック図である。
圆 12]本発明の記録装置 3Tの第 3実施例に係る記録再生装置の基本構成を概念 的に示すブロック図である。
圆 13]本発明の記録装置 3Fの第 3実施例に係る記録再生装置の他の基本構成を 概念的に示すブロック図である。
[図 14]本発明の記録装置の第 3実施例に係る記録再生装置 3T(3F)によって、光デ イスクに照射されたメインビーム、及びサブビームの態様を概念的に示す平面図であ る。
[図 15]本発明の記録装置の第 3実施例に係る記録再生装置 3T(3F)による記録動 作、及び制御動作を含む全体動作を示したフローチャートである。
圆 16]本発明の記録装置の第 3実施例に係る記録再生装置 3Tによるトラッキング処 理を中心とした一の制御動作を示したフローチャートである。
圆 17]本発明の記録装置の第 3実施例に係る記録再生装置 3Fによるフォーカス処 理を中心とした他の制御動作を示したフローチャートである。
圆 18]本発明の記録装置の第 4実施例に係る記録再生装置 4によるリアルタイムの記 録動作を示したフローチャートである。
圆 19]本発明の記録装置の第 5実施例に係る記録再生装置 5によるリアルタイムの記 録動作を示したフローチャートである。
[図 20]本発明の記録装置の第 6実施例に係る記録再生装置 6によるリアルタイムの記 録動作を示したフローチャートである。
圆 21]本発明の記録装置の第 7実施例に係る記録再生装置 7によるリアルタイム処 理の記録動作を示したフローチャートである。
圆 22]本発明の記録装置の第 8実施例に係る記録再生装置 8によるリアルタイム処 理の記録動作を示したフローチャートである。
圆 23]本発明の記録装置の第 9実施例に係る記録再生装置 9によるリアルタイム処 理の記録動作を示したフローチャートである。
符号の説明
1T 録再生装置
1F 記録再生装置
10 制御部
21 面振れ加速度検出器
22 偏芯加速度検出器
31F フォーカスサーボ回路
31T (3ビーム)トラッキングサーボ回路
32F フォーカスゲイン選另 ij回路
32T トラッキングゲイン選別回路
33F フォーカス駆動回路
33T トラッキング駆動回路
40 レーザ駆動回路
50 光ピックアップ
60 信号処理部
70 再生部
80 スピンドノレモータ
100 光ディスク
発明を実施するための最良の形態 [0098] 以下、本発明を実施するための最良の形態について実施例毎に順に図面に基づ いて説明する。
[0099] (1)記録装置の第 1実施例
最初に、本発明の記録装置の第 1実施例に係る記録再生装置 1について、図 1から 図 7を参照して説明する。尚、本実施例では、記録再生装置によって行われる動作 のうち記録動作を中心にして説明するが、再生動作についても概ね同様に適用でき ることは言うまでもない。
[0100] (1 1)基本構成
先ず、本発明の記録装置の第 1実施例に係る記録再生装置 1の基本構成につい て、図 1、及び図 2を参照して説明する。ここに、図 1は、本発明の記録装置の第 1実 施例に係る記録再生装置 1Tのトラッキング処理を主に行う基本構成を概念的に示 すブロック図である。図 2は、本発明の記録装置の第 1実施例に係る記録再生装置 1 Fのフォーカス処理を主に行う基本構成を概念的に示すブロック図である。
[0101] 図 1に示されるように、記録再生装置 1Tは、トラッキング処理を主に行う基本構成と して、制御部(CPU: Central Processing Unit) 10と、偏芯加速度検出回路 22と、 (3 ビーム)トラッキングサーボ回路 31Tと、トラッキングゲイン選別回路 32Tと、トラツキン グ駆動回路 33Tと、トラッキングァクチユエータ 55Tと、レーザ駆動回路 40と、光ピッ クアップ 50と、信号処理部 60と、再生部 70と、スピンドルモータ 80とを備えて構成さ れている。
[0102] 他方、図 2に示されるように、記録再生装置 1Fは、図 1に示された記録再生装置 1T の基本構成である、(3ビーム)トラッキングサーボ回路 31Tと、トラッキングゲイン選別 回路 32Tと、トラッキング駆動回路 33Tと、トラッキングァクチユエータ 55Tとに代えて 、フォーカス処理を主に行う基本構成として、面振れ加速度検出回路 21と、フォー力 スサーボ回路 31Fと、フォーカスゲイン選別回路 32Fと、フォーカス駆動回路 33Fと、 フォーカスァクチユエータ 55Fとを備えて構成されている。尚、図 1及び図 2中におい て、同じ符号が付されている要素ついては、概ね同様の機能を有しているようにして ちょい。
[0103] 図 1及び図 2に示されるように、記録再生装置 1T (記録再生装置 1F)は、光ディスク 100に対して、レーザ光 LBを照射することによって、例えば 18倍速等の高速な記録 速度で、データを記録すると共に、光ディスク 100に記録されたデータを再生する装 置である。
[0104] 制御部(CPU) 10は、主として CPU (Central Processing Unit)により構成され、図 示しな 、制御線を介して上述した各種構成要素に制御信号を出力することで、記録 再生装置 1T (記録再生装置 1F)の全体を統括制御する。
[0105] 光ビップアップ 50は、ホログラムレーザ 51と、グレーティング素子 52と、コリメ一トレ ンズ (集光レンズ) 53と、対物レンズ 54と、前述したフォーカスァクチユエータ 55Fと、 トラッキングァクチユエータ 55Tとを備える。
[0106] (1 - 1 - 1) 光ピックアップ内の構成要素
ホログラムレーザ 51は、本発明における「記録手段」の一具体例を構成しており、図 示しないレーザチップや基板ゃ受光素子やホログラム素子などを有して構成されて いる。レーザチップと受光素子は同一の基板上に配置されており、ホログラム素子は 基板のレーザ光 LBの出力側に対向して設けられている。レーザチップはレーザ光 L Bを放射し、受光素子は入力されるレーザ光 LBを受光する。ホログラム素子 51は、レ 一ザチップから出力されたレーザ光 LBを、そのまま透過させると共に、当該レーザ光 LBの入射面と反対の面力 入射されるレーザ光を屈折させて、基板上の受光素子 に集光させる。このように、ホログラムレーザ 51は、光源及びディテクタとしての機能 を有している。
[0107] また、本実施例においては、トラッキング処理(トラッキング制御)を行なうために 3ビ ームトラッキング方式を用いているようにしてもよい。従って、レーザ光 LBの反射光を 受光する受光素子 (より具体的には、後述のメインビーム及びサブビームの夫々に対 応する複数の受光素子の夫々)は、その受光部分が例えば 2分割(或いは、 4分割) されている。例えば、受光素子は、レーザ光 LBの光ディスク 100上における進行方 向を基準として、レーザ光 LBの左側半分の反射光を受光する受光部 D1と右側半分 の反射光を受光する受光部 D2とを有して 、る。このように分割された受光部 D1及び D2を有する受光素子からは、夫々の受光部分において得られる信号の和である総 和信号や差である差分信号ないしはプッシュプル信号が、受光信号として、再生部 7 0とトラッキングサーボ回路 31Tとフォーカスサーボ回路 31Fへ出力される。
[0108] グレーティング素子 52は、ホログラムレーザ 51から放射されるレーザ光 LBを回折さ せる。特に、このグレーティング素子 52は、後述されるように、主としてデータを記録 し且つトラッキング処理を行なうためのメインビームと主としてトラッキング処理を行なう ための二つのサブビームとを生成するようにしてもよい。また、このグレーティング素 子 52は、例えば多数のスリット (ないしは、溝)を有する透明基板を含んで構成されて いてもよいし、或いは液晶素子を含む液晶スリットを含んで構成されていてもよい。尚 、以下の説明では、レーザ光 LBと単純に表記している場合は、ホログラムレーザ 51 力も放射されるレーザ光 LB自体を示す他、グレーティング素子 52において生成され るメインビーム及び二つのサブビームの全体を示す場合もあることを注記しておく。
[0109] 集光レンズ (コリメートレンズ) 53には、入射したレーザ光 LBを略平行光にして、対 物レンズ 54に入射させる。より具体的には、グレーティング素子 52において生成され たメインビーム及び二つのサブビームの夫々を略平行光にして対物レンズ 54に入射 させる。
[0110] 対物レンズ 54は、前述したフォーカスァクチユエータ 55Fと、トラッキングァクチユエ ータ 55Tとを備えて構成されている。フォーカスァクチユエータ 55Fと、トラッキングァ クチユエータ 55Tとは、対物レンズ 54の配置位置を変更するための駆動機構を有し ている。また、対物レンズ 54には、集光レンズ 53によって略平行光にされたレーザ光 LBが入射される。対物レンズ 54は、これらのレーザ光 LB^^光して、光ディスク 100 に照射する。
[0111] (1 - 1 - 2) トラッキング処理を行う構成要素
特に、図 1を参照して、トラッキング処理を行う構成要素について説明する。
[0112] トラッキングサーボ回路 31Tは、ホログラムレーザ 51から出力される受光信号 S51T に基づ!/、て、トラッキングサーボ制御信号(トラッキングエラー信号) S31Tを生成する 。尚、このトラッキングサーボ回路 31Tは、複数の波長に対応可能な 3ビームトラツキ ングサーボを行うように構成してもよい。この場合、より具体的には、メインビームのプ ッシュプル信号から二つのサブビームのプッシュプル信号を減算することでトラツキン ダサーボ制御信号 S31Tを生成する。その後、トラッキングサーボ回路 31Tは、トラッ キングサーボ制御信号 S31Tを、偏芯加速度検出回路 22と、トラッキングゲイン選別 回路 32Tとに供給する。尚、 3ビームトラッキング方式については、上述した先行技術 或いはその他の従来技術と同様であるため、その基本的な説明につ 、ては省略する
[0113] 偏芯加速度検出回路 22は、トラッキングエラー信号の高周波成分を検出する。そし て、偏芯加速度検出回路 22は、例えばウィンドコンパレータ等の比較器によって、予 め設定された 2つの異なる閾値で許容範囲外のトラッキングエラー信号の高周波成 分が検出されると、異常を検出した旨を知らせる信号を制御部 10に出力する。
[0114] トラッキングゲイン選別回路 32Tは、制御部 10の制御下で、特定された領域におけ るトラッキング処理の利得 (ゲイン: Gain)を選別し、トラッキング駆動回路 33Tに、トラ ッキングゲイン信号 S32Tを出力する。
[0115] トラッキング駆動回路 33Tは、トラッキングァクチユエータ 55Tと対物レンズ 54と共 に、本発明の「駆動手段」の一具体例を構成している。トラッキング駆動回路 33Tは、
(i)トラッキングサーボ回路 31Tから供給されるトラッキングサーボ制御信号 S31Tと、
(ii)トラッキングゲイン選別回路 32Tから供給されるトラッキングゲイン信号 S32Tとに 基づいて、ァクチユエータ駆動信号 S33Tを生成し、トラッキングァクチユエータ 55T を駆動させる。即ち、トラッキング駆動回路 33Tは、ァクチユエータ駆動信号 S33Tを 供給することによってトラッキングァクチユエータ 55Tを制御し、対物レンズ 54の光デ イスク 100の径方向(即ち、トラッキング方向)における位置を調整する。
[0116] トラッキングァクチユエータ 55Tは、トラッキング駆動回路 33Tから供給されるァクチ ユエータ駆動信号 S33Tに従って、対物レンズ 54の位置をトラッキング方向に移動( 駆動)させる。このようにして、トラッキング処理(トラッキング制御)が行なわれる。
[0117] (1 - 1 - 3) フォーカス処理を行う構成要素
特に、図 2を参照して、フォーカス処理を行う構成要素について説明する。
[0118] フォーカスサーボ回路 31Fは、ホログラムレーザ 51から出力される受光信号 S51F に基づいて、フォーカスサーボ制御信号 (フォーカスエラー信号、 S字フォーカス信号 ) S31Fを生成する。その後、フォーカスサーボ回路 31Fは、生成したフォーカスサー ボ制御信号 S31Fを、面振れ加速度検出回路 21と、フォーカスゲイン選別回路 32F とに供給する。
[0119] 面振れ加速度検出回路 21は、フォーカスエラー信号の高周波成分を検出する。そ して、面振れ加速度検出回路 21は、例えばウィンドコンパレータ等の比較器によって 、予め設定された 2つの異なる閾値で許容範囲外のフォーカスエラー信号の高周波 成分が検出されると、異常を検出した旨を知らせる信号を制御部 10に出力する。
[0120] フォーカスゲイン選別回路 32Fは、制御部 10の制御下で、特定された領域におけ るフォーカス処理の利得(ゲイン: Gain)を選別し、フォーカス駆動回路 33Fに、フォー カスゲイン信号 S32Fを出力する。
[0121] フォーカス駆動回路 33Fは、フォーカスァクチユエータ 55Fと対物レンズ 54と共に、 本発明の「駆動手段」の一具体例を構成している。フォーカス駆動回路 33Fは、(i)フ オーカスサーボ回路 31F力も供給されるフォーカスサーボ制御信号 S31Fと、(ii)フ オーカスゲイン選別回路 32F力も供給されるフォーカスゲイン信号 S32Fとに基づい て、ァクチユエータ駆動信号 S33Fを生成し、フォーカスァクチユエータ 55Fを駆動さ せる。即ち、フォーカス駆動回路 33Fは、ァクチユエータ駆動信号 S33Fを供給する ことによってフォーカスァクチユエータ 55Fを制御し、対物レンズ 54の光ディスク 100 に対する距離 (即ち、フォーカス方向における位置)を調整する。
[0122] フォーカスァクチユエータ 55Fは、フォーカス駆動回路 33F力も供給されるァクチュ エータ駆動信号 S33Fに従って、対物レンズ 54の位置をフォーカス方向に移動(駆 動)させる。このようにして、フォーカス処理 (フォーカス制御)が行なわれる。
[0123] (1 - 1 -4) レーザ光のパワーの制御を行う構成要素
図 1及び図 2に示されるように、レーザ駆動回路 40は主として増幅回路により構成さ れ、信号処理部 60から入力された記録信号 S60を増幅等してレーザ駆動信号 S40 を生成し、光ピックアップ 50のホログラムレーザ 51にレーザ駆動信号 S40を供給する 。レーザ駆動回路 40における増幅率は信号処理部 60により制御され、光ディスク 10 0にデータを記録する場合には、ホログラムレーザ 51から光ディスク 100に相変化な V、しは熱変化を生じさせることができるエネルギー量(以下、「記録パワー」 t 、う)の レーザ光 LBが出力されるように増幅率が制御される。一方、光ディスク 100に記録さ れて 、るデータを再生する場合、光ディスク 100にお 、て相変化な 、しは熱変化が 生じな 、エネルギー量(以下、「再生パワー」と 、う)のレーザ光 LBがホログラムレー ザ 51から出力されるように増幅率が制御される。尚、レーザ駆動回路 40は、光ピック アップ 50内に設けられて!/、てもよ!/、。
[0124] (1 - 1 - 5) その他の構成要素
信号処理部 60は、入力端子 INを有しており、図示しない制御線を介して制御部 1 0から供給される制御信号に基づいて、入力端子 INを介して外部から入力されたデ ータに信号処理を施し、記録信号 S60としてレーザ駆動回路 40に出力する。より具 体的には、信号処理部 60は、外部から入力されたデータに対して、アドレスやパリテ ィゃ訂正符号(ECC : Error Correction Code)や syncフレーム(同期フレーム)を付カロ したり、或いはスクランブル処理を施したり、或いは 8Z16変調等の各種変調を行な うことで、記録信号 S60を生成する。
[0125] 再生部 70は、出力端子 OUTを有しており、図示しない制御線を介して制御部 10 力 供給される制御信号に基づいて、ホログラムレーザ 51から供給される受光信号 S 51aに対応した再生データを出力端子 OUTに出力する。受光信号 S51aは、ホログ ラムレーザ 51が受光したレーザ光 LBの反射光を複数の受光素子などにより受光し て得られる、受光素子毎の受光光量等を示す信号である。特に、本実施例では、メイ ンビーム及び二つのサブビームの夫々に対応した受光素子などにより、レーザ光 LB の反射光が受光され、メインビーム及び二つのサブビームの夫々に対応した受光信 号 S51aが得られる。
[0126] スピンドルモータ 80は、ホログラムレーザ 51から出力される受光信号 S51T等により 生成されるスピンドルサーボ制御信号に基づ 、て、所定速度で光ディスク 100を回 転させるように構成されている。特に、制御部 10の制御下で、スピンドルモータ 80は 、後述される異常位置や異常区間を特定するための回転角度を設定できるようにし てもよい。
[0127] (1 2)動作原理
次に、図 3から図 5を参照して、本発明の記録装置の第 1実施例に係る記録再生装 置における動作原理について説明する。
[0128] (1 - 2- 1)最適なゲインの選別を中心とした一の記録動作 先ず、第 1実施例に係るトラッキング処理、又はフォーカス処理を中心とした一の記 録動作の手順について図 3及び図 4を参照して説明する。ここに、図 3は、本発明の 記録装置の第 1実施例に係る記録再生装置によるトラッキング処理 (フォーカス処理) を中心とした一の記録動作を示したフローチャートである。図 4は、本発明のトラツキ ング処理 (フォーカス処理)におけるエラー信号に含まれる高周波成分に基づ!、て特 定された、特性 (機械特性)が良好でない領域を示すウィンドコンパレータ信号の作 成工程を模式的に示した波形図等である。
[0129] 図 3に示されるように、先ず、光ディスクがローデイング (挿入)されると、制御部 10の 制御下で、スピンドルモータ 80によって、例えば最高記録速度に対応して光ディスク が回転されつつ、光ピックアップ 50から照射されるレーザ光により、データの記録が 開始される(ステップ S101)。
[0130] 次に、制御部 10の制御下で、偏芯加速度検出回路 22 (面振れ加速度検出回路 2 1)によって、例えば許容範囲外の偏芯加速度 (面振れ加速度)が検出される力否か が判定される (ステップ S102)。ここで、例えば許容範囲外の偏芯加速度(面振れ加 速度)が検出された場合 (ステップ S102 : Yes)、制御部 10の制御下で、トラッキング 処理におけるエラー信号、所謂、トラッキングエラー信号 (TE信号)、又はフォーカス 処理におけるエラー信号、所謂、フォーカスエラー信号 (FE信号)に含まれる高周波 成分の異常値と、当該異常値が検出される異常区間 (異常領域)とが検出される (ス テツプ S103)。より詳細には、光ピックアップ 50が、例えばグループが部分的に変形 した領域において、トラッキング処理を行うと、高周波成分を含むトラッキングエラー 信号が検出され、許容範囲外の大きな偏芯加速度が検出される。尚、このグループ が部分的に変形した領域が発生するのは、一般に製造工程における射出成型器が 、急激に冷却された場合、スタンパの形状が適切に転写されないこと等に起因してい る。
[0131] このトラッキングエラー信号に含まれる高周波成分の異常値と異常区間とについて 、より具体的には、図 4 (a)に示されるように、サーボオープン状態のトラッキングエラ 一信号には、高周波成分が含まれている。そして、図 4 (b)に示されるように、この高 周波成分の値が、トラッキングサーボを安定的に行うための上限値と下限値とによつ て示された許容範囲外の異常値となる。尚、この異常値が検出される区間が異常区 間となる。尚、後述されるように、フォーカスサーボにおけるフォーカスエラー信号 (S 字フォーカス信号)につ 、ても概ね同様に考えることが可能である。
[0132] 次に、制御部 10の制御下で、高周波成分の異常値が検出された、光ディスク上の 異常位置や異常区間が特定される (ステップ S104)。より具体的には、この特定され た異常位置は、光ディスク上の基準位置力 の回転角度等によって示されるようにし てもよい。
[0133] 次に、制御部 10によって、この異常位置や異常区間を、記録動作において規定可 能なウィンドコンパレータ信号 (WC信号)が作成される (ステップ S105)。尚、制御部 10の制御下で、このウィンドコンパレータ信号によって、異常区間に対応される、シス テムクロック等の時間軸上の異常期間が、例えば、実験的、経験的又は理論的若しく はシミュレーション等に基づ 、て、決定可能にされてもょ 、。
[0134] より具体的には、図 4 (c)にカ卩えて、図 4 (a)及び図 4 (b)に示されるように、このウイ ンドコンパレータ信号は、(i)利得や記録パワーを変化させる区間であるハイレベル 区間(HL: High Level Interval)と、(ii)通常のトラッキングサーボ(フォーカスサーボ) 、又は通常の OPC (Optimum Power Control)で決定された記録パワーに基づくパヮ 一制御が行われる区間であるローレベル区間(Low Level Period)とを備えて構成さ れている。このハイレベル区間は、高周波成分の異常値が検出された、光ディスク上 の異常位置や異常区間を含む所定の幅を規定可能であるようにしてもよいし、この異 常位置や異常区間を中心としつつ所定の幅を規定可能であるようにしてもよい。
[0135] 次に、制御部 10の制御下で、例えばトラッキングゲイン選別回路 32T (フォーカス ゲイン選別回路 32F)によって、例えば標準値より大きい値を保持する、即ち、異常 区間において所定の値を保持する利得が選別され、選別された利得に基づいたトラ ッキングゲイン信号 S32T (フォーカスゲイン信号 S32F)が出力される(ステップ S 10 6)。詳細には、この所定の値を保持する利得は、検出された偏芯加速度をパラメ一 タとした所定の式や所定のテーブルに基づ 、て、迅速且つ的確に選別されるように してもよい。この所定の式や所定のテーブルは、実験やシミュレーション等によって、 予め用意されるようにしてもょ 、。 [0136] 次に、制御部 10の制御下で、トラッキング駆動回路 33T (フォーカス駆動回路 33F )によって、上述したノヽィレベル区間において、所定の値を保持する利得が適用され た、ァクチユエータ駆動信号 S33T(S33F)が出力され、トラッキングァクチユエータ 5 5T (フォーカスァクチユエータ 55F)が駆動される(ステップ S 107)。
[0137] 次に、制御部 10の制御下で、適用された利得が最適であつたか否かが判定される
(ステップ S108)。詳細には、この判定は、適用された利得の下で記録されたデータ の再生品質に基づ 、て行われるようにしてもょ 、。
[0138] より詳細には、この再生品質として、ジッタ値を適用する場合、次のような判定基準 の一例が、本願発明者らによる研究によって判明している。即ち、平均的な再生品質 を示す標準的なジッタ値の許容範囲は、例えば約 8から 9パーセントに、検出誤差を 含めた範囲であることが判明している。また、 8パーセントより小さいジッタ値は、良好 な再生品質を示すことが判明している。更に、また、 9パーセントより比較的に大きい ジッタ値は、良好ではない再生品質を示すことが判明している。
[0139] また、判定基準の他の例においては、この再生品質として、再生 RFエンベロープを 適用する場合、この再生 RFエンベロープは、規定範囲に、 ± 15パーセントの誤差を 含む範囲内に収まる力否かに基づいて判定されてもよい。加えて、再生 RFェンベロ ープ、 11Tの変調度、又は 3Tの変調度を大きくする力否かに基づいて、判定されて もよい。尚、上述したジッタ特性や再生 RFエンベロープ (エンベロープ特性)が一定( フラット)である力否かに基づ 、て判定されてもょ 、。
[0140] 更に、より詳細には、本願発明者らによる研究によれば、基盤の厚さが変化すると 普通の対物レンズ 54において球面収差が発生して、光ディスクに照射されるレーザ 光のビームスポット径が大きくなることが判明している。このことに起因して、正確且つ 適切な位置において記録又は再生を行うことができず、 RF再生信号の大きさが、通 常の値より小さくなつたり、 RFエンベロープがフラットではなく凹凸となってしまう。こ のような、基盤 (ディスク)における部分的な厚さの変化や、基盤全体における厚さの 変化に対しては、(i)フォーカスサーボオフセットの補正にカ卩えて、又は、代えて、 (ii) 球面収差の補正を行うようにしてもよい。或いは、また後述される第 2実施例の一の 変形例(図 10等を参照)における方法で補正してもよい。 [0141] また、判定基準の他の例においては、他の再生品質である、 RF信号の変調度や データを再生したときの誤り個数をカウントすることで求められるエラーレートである PI エラーや、 RF信号自体のエラーレート等を小さくする力否かに基づいて、判定されて ちょい。
[0142] 更に、より詳細には、本願発明者らによる研究によれば、最適な利得と、密接な相 関関係があるのは、 RFエンベロープであることが判明している。また、後述される最 適な記録パワーと相関が大きいのは、ジッタ値や、ァシンメトリ値 (ゼロが一番良好)で あることが判明している。カロえて、また、デトラックに起因される偏芯加速度や、デフォ 一カスに起因される面振れ加速度と密接な相関関係があるのが PIエラーであること が判明している。
[0143] 再び、図 3に戻る。
[0144] ステップ S108の判定の結果、適用された利得が最適であった場合 (ステップ S 108
: Yes)、実際のデータの記録が行われる (ステップ S 109)。
[0145] 他方、ステップ S 108の判定の結果、適用された利得が最適でなかった場合 (ステツ プ S108 :No)、再度、制御部 10の制御下で、トラッキングゲイン選別回路 32T (フォ 一カスゲイン選別回路 32F)によって、異常区間において所定の値を保持する利得 が選別される (ステップ S 106)。
[0146] 更に、他方、ステップ S102の判定の結果、例えば許容範囲外の偏芯加速度(面振 れ加速度)等が検出されない場合 (ステップ S102 :No)、前述したように、実際のデ ータの記録が行われる(ステップ S 109)。
[0147] (1 - 2- 2)最適な記録パワーの選別を中心とした他の記録動作
以下、第 1実施例に係る最適な記録パワーの選別を中心とした他の記録動作の手 順について、図 5を参照して説明する。ここに、図 5は、本発明の記録装置の第 1実 施例に係る記録再生装置による最適な記録パワーの選別を中心とした他の記録動 作を示したフローチャートである。尚、図 5において、前述した図 3と同様の処理には
、同様のステップ番号を付し、それらの説明は適宜省略する。
[0148] 図 5に示されるように、前述したステップ S101の後、制御部 10の制御下で、面振れ 加速度検出回路 21によって、例えば許容範囲外の面振れ加速度が検出される力否 かが判定される (ステップ S201)。ここで、例えば許容範囲外の面振れ加速度が検出 された場合 (ステップ S201 : Yes)、制御部 10の制御下で、フォーカス処理における エラー信号、所謂、フォーカスエラー信号 (FE信号)に含まれる高周波成分の異常 値と異常区間とが検出される (ステップ S202)。より詳細には、光ピックアップ 50が、 例えばポテトチップ形状、即ち、記録面が波打っている領域において、フォーカス処 理を行うと、この許容範囲外の大きな面振れ加速度が検出される。尚、この記録面が 波打っている領域が発生するのは、一般に製造工程や保存工程に起因している。他 方、ステップ S201の判定の結果、例えば許容範囲外の面振れ加速度が検出されな い場合 (ステップ S 201 : No)、前述したように、実際のデータの記録が行われる (ステ ップ S 109)。
[0149] 続いて、前述したステップ S 104、及びステップ S 105を経て、制御部 10の制御下 で、例えばレーザ駆動回路 40によって、例えば標準値より大きい値を保持する、即 ち、異常区間において所定の値を保持する記録パワーが選別される (ステップ S203 )。詳細には、この所定の値を保持する記録パワーは、検出された偏芯加速度をパラ メータとした所定の式や所定のテーブルに基づ 、て、迅速且つ的確に選別されるよう にしてもよい。
[0150] 次に、制御部 10の制御下で、レーザ駆動回路 40によって、上述したノヽィレベル区 間において、所定の値を保持する記録パワーが適用された、レーザ駆動信号 S40が 出力され、ホログラムレーザ 51が駆動される (ステップ S204)。
[0151] 次に、制御部 10の制御下で、適用された記録パワーが最適であった力否かが判定 される (ステップ S205)。尚、この判定基準等については、前述したトラッキング処理 を中心とした一の記録動作と概ね同様であるようにしてもよい。
[0152] 以上より、本発明の記録装置の第 1実施例に係る記録再生装置によれば、例えば 許容範囲外の偏芯加速度や面振れ加速度が検出された異常区間において、再生 品質が最適になるように、利得、記録パワー、又はサーボオフセット等力 この異常区 間に対応して最適化される。
[0153] 従って、特性 (機械特性)を示す値が、許容範囲カゝら離れている異常区間が存在す るために、従来、データの高速な記録ができず、低速に記録されていた記録媒体に 対しても、記録装置が機能や能力として保持するより高速な記録速度に基づいて、 データを記録することが可能となる。言い換えると、記録装置の潜在的なパフォーマ ンスを最大限活用することが可能となる。
[0154] 以上の結果、例えば光ディスク等の記録媒体の一個体の記録面における特性のば らつき、又は記録媒体の個体毎の特性のばらつきの影響をより小さくして、データを より高速に記録することが可能となる。
[0155] 更に、カロえて、例えば光ディスク等の記録媒体を製造する品質管理も従来通りで、 複雑にはならな 、と 、う利点を有する。
[0156] (1 3)記録装置の第 1実施例の変形例における基本構成
次に、本発明の記録装置の第 1実施例の変形例に係る記録再生装置 ITa (記録再 生装置 lFa)の基本構成について、図 6、及び図 7を参照して説明する。ここに、図 6 は、記録再生装置 ITaの基本構成を概念的に示すブロック図である。図 7は、記録 再生装置 lFaの基本構成を概念的に示すブロック図である。
[0157] 図 6、及び図 7に示されるように、記録再生装置 ITaは、特に、トラッキング処理にお けるレンズ位置センサ 56Tを備える。また、記録再生装置 lFaは、フォーカス処理に おけるレンズ位置センサ 56Fを備えている。それ以外の構成要素、及び動作原理に ついては、前述した第 1実施例と概ね同様であるので説明は省略する。
[0158] 詳細には、(i)レンズ位置センサ 56T(56F)力もの出力信号の値と、(ii)トラツキン グエラー信号又はフォーカスエラー信号の値と、の差の大きさに基づいて、対物レン ズ 54が、トラッキング処理やフォーカス処理を的確に行っていない異常位置(異常区 間)、即ち、正確にトラックに追随していない異常位置 (異常区間)を特定することが 可能である。尚、このレンズ位置センサ 56T(56F)においては、例えば減算器等の 当該差を演算する演算回路が含むように構成されていてもよい。
[0159] 更に、レンズ位置センサ 56T(56F)の出力信号に基づくことにカ卩えて、又は、代え て、トラッキングァクチユエータ 55Tやフォーカスァクチユエータ 55Fを流れる電流量 を監視 (モニタ)することによって、異常位置 (異常区間)を特定するようにしてもよ!、。 より詳細には、対物レンズ 54における、例えば半径方向における傾斜角度は、ァクチ ユエータを流れる電流量と、駆動感度値との積によって一義的に決定することが可能 である。
[0160] 更に、レンズの位置、或いは電流量を監視することのみで異常位置を特定するよう にしても良い。
[0161] (2)記録装置の第 2実施例
次に、本発明の記録装置の第 2実施例に係る記録再生装置 2について、図 8から図 11を参照して説明する。
[0162] (2— 1)基本構成
先ず、本発明の記録装置の第 2実施例に係る記録再生装置 2Tの基本構成につい て、図 8を参照して説明する。ここに、図 8は、本発明の記録装置の第 2実施例に係る 記録再生装置 2Tの基本構成を概念的に示すブロック図である。
[0163] 図 8に示されるように、第 2実施例に係る記録再生装置 2Tは、特に、トラッキングゲ イン選別回路 32Tとして、ローパスフィルタ LPF、ハイパスフィルタ HPF、最適ゲイン 調整回路 32Ta、及び、最適ゲイン調整回路 32Tbを備えて構成されてもよい。尚、 それ以外の構成要素、及び動作原理については、前述した第 1実施例と概ね同様で あるので説明は省略する。
[0164] 図 8に示されるように、トラッキングエラー信号 S31Tが、ローパスフィルタ LPFと、ハ ィパスフィルタ HPFとを、夫々通過する。
[0165] ローパスフィルタ LPFを通過したトラッキングエラー信号に含まれる低周波成分に 対応される区間(領域)、即ち、偏芯加速度が小さい区間においては、制御部 10の 制御下で、最適ゲイン調整回路 32Taによって、通常のトラッキングサーボのためのト ラッキングゲイン信号 S32Tが、トラッキング駆動回路 33Tに出力される。他方、ハイ パスフィルタ HPFを通過したトラッキングエラー信号に含まれる高周波成分に対応さ れる区間(領域)においては、制御部 10の制御下で、最適ゲイン調整回路 32Tbによ つて、この区間における最適な利得に基づいてトラッキングサーボを行うためのトラッ キングゲイン信号 S32T力 トラッキング駆動回路 33Tに出力される。特に、制御部 1 0の制御下で、例えばスィッチイング回路によって、ローパスフィルタ LPFを介した、ト ラッキングゲイン信号 S32Tが選択されてもよいし、ノ、ィパスフィルタ HPFを介した、ト ラッキングゲイン信号 S32Tが選択されてもょ ヽ。 [0166] (2— 2)記録装置の第 2実施例の一の変形例における基本構成
次に、本発明の記録装置の第 2実施例の一の変形例に係る記録再生装置 2Fの基 本構成について、図 9を参照して説明する。ここに、図 9は、本発明の記録装置の第 2実施例の一の変形例に係る記録再生装置 2Fの基本構成を概念的に示すブロック 図である。
[0167] 図 9に示されるように、第 2実施例の一の変形例に係る記録再生装置 2Fは、特に、 フォーカスゲイン選別回路 32Fとして、ローパスフィルタ LPF、ハイパスフィルタ HPF 、最適ゲイン調整回路 32Fa、及び、最適ゲイン調整回路 32Fbを備えて構成されて もよい。尚、それ以外の構成要素、及び動作原理については、前述した第 1実施例と 概ね同様であるので説明は省略する。
[0168] 図 9に示されるように、フォーカスエラー信号 S31Fが、ローパスフィルタ LPFと、ノヽ ィパスフィルタ HPFとを、夫々通過する。
[0169] ローパスフィルタ LPFを通過したフォーカスエラー信号に含まれる低周波成分に対 応される区間(領域)、即ち、面振れ加速度が小さい区間においては、制御部 10の 制御下で、最適ゲイン調整回路 32Faによって、通常のフォーカスサーボのためのフ オーカスゲイン信号 S32Fが、フォーカス駆動回路 33Fに出力される。加えて、この区 間においては、通常の OPC (Optimum Power Control)で決定された記録パワーに 基づくパワー制御が行われる。他方、ハイパスフィルタ HPFを通過したフォーカスェ ラー信号に含まれる高周波成分に対応される区間 (領域)、即ち、面振れ加速度が大 きい区間においては、制御部 10の制御下で、最適ゲイン調整回路 32Fbによって、 この区間における最適な利得に基づいてフォーカスサーボを行うためのフォーカスゲ イン信号 S32F力 フォーカス駆動回路 33Fに出力される。特に、制御部 10の制御 下で、例えばスィッチイング回路によって、ローパスフィルタ LPFを介した、フォーカス ゲイン信号 S32Fが選択されてもよいし、ハイパスフィルタ HPFを介した、フォーカス ゲイン信号 S32Fが選択されてもよい。加えて、又は、代えて、この区間においては、 例えば OPC (Optimum Power Control)で決定された記録パワーより大きい記録パヮ 一が出力されるようにパワー制御が行われるようにしてもよ!、。
[0170] (2— 3)記録装置の第 2実施例の他の変形例における基本構成 次に、本発明の記録装置の第 2実施例の他の変形例に係る記録再生装置 2Ta (記 録再生装置 2Fa)の基本構成について、図 10、及び図 11を参照して説明する。ここ に、図 10は、記録再生装置 2Taの基本構成を概念的に示すブロック図である。図 11 は、記録再生装置 2Faの基本構成を概念的に示すブロック図である。尚、この第 2実 施例の他の変形例は、第 1実施例に係る他の変形例としても適用可能であるようにし てもよい。
[0171] 図 10に示されるように、第 2実施例の他の変形例に係る記録再生装置 2Taは、特 に、図 8の記録再生装置 2Tに対して高速偏向素子 57Tと、素子駆動回路 59Tとを、 更に備えて構成されているようにしてもよい。それ以外の構成要素、及び動作原理に ついては、前述した第 2実施例と概ね同様であるので説明は省略する。尚、トラツキン グ駆動回路 33Tには、ローパスフィルタ LPFを介した、トラッキングゲイン信号 S32T aが入力される。また、素子駆動回路 59Tには、ハイパスフィルタ HPFを介した、トラッ キングゲイン信号 S32Tbが入力される。
[0172] 従って、制御部 10、及び素子駆動回路 59Tの制御下で、高速偏向素子 57Tによ つて、より周波数の大きな高周波成分に対応することが可能となる。具体的には、高 速偏向素子 57Tによって、トラッキングァクチユエータ 55T等の性能に依存される、 駆動周波数より大きな高周波成分や、大きな偏芯加速度に対応して、より高速にレ 一ザ光の偏向方向を変化させることが可能となる。より詳細には、高速偏向素子 57T の一具体例としては、 AOD (音響光学ディフレタター: Audio Optical Defector)を挙 げることができる。この AODの原理においては、例えば二酸化テルルや、 LiNb03等 の特殊な結晶中で、超音波を発生させ、その結晶中の回折格子の間隔を高速で On 又は Offされることによって、レーザ光の偏向方向が変化される。尚、この原理はレー ザプリンターや高速 Faxにお 、て一般に用いられて 、る。
[0173] 他方、図 11に示されるように、第 2実施例の他の変形例に係る記録再生装置 2Fa は、特に、図 9の記録再生装置 2Fに対して高速屈折率変更素子 57Fと、素子駆動 回路 59Fとを、更に備えて構成されているようにしてもよい。尚、フォーカス駆動回路 33Fには、ローパスフィルタ LPFを介した、フォーカスゲイン信号 S32Faが入力され る。また、素子駆動回路 59Fには、ハイパスフィルタ HPFを介した、フォーカスゲイン 信号 S32Fbが入力される。
[0174] この高速屈折率変更素子 57Fによって、フォーカスァクチユエータ 55F等の性能に 依存される、駆動周波数より大きな高周波成分や、大きな面振れ加速度に対応して、 より高速にレーザ光に対する屈折率を変化させることが可能となる。より詳細には、高 速屈折率変更素子 57Fの構成材料の一具体例として、例えば Piezo Actuators等の 電気光学効果を利用した材料や液晶等の材料を挙げることができる。また、この高速 屈折率変更素子 57Fには、高速に屈折率が変化する光学部材が含まれる。この光 学部材において、当該光学部材中を通過する発散光の屈折角度が、高速に変化さ れる。このため、光ディスクの面振れ、即ち、光ディスクにおける微小な基盤の厚みの 変動に対して、対物レンズに入射される光束の角度を高精度に変化させることが可 能となる。従って、基盤の厚みが変動する部分、即ち、面振れ加速度の大きい部分 においても、球面収差等の収差の発生を抑制し、適切に焦点を合わせることができる ので、より正確なフォーカス処理(フォーカス自動制御、フォーカスサーボ)を実現す ることが可能となる。更に、この高速屈折率変更素子 57Fとして、例えば Blu-rayシス テムの光学系で用いられて ヽるビームエキスパンダを採用するようにしてもょ ヽ。この ビームエキスパンダによって、対物レンズ 54に入射する光束が発散したり、集光した りすることで、逆方向の球面収差が発生し、実際の基盤の厚みの変動に起因される 球面収差の影響を小さくさせることが可能である。
[0175] 尚、上述した (i)第 2実施例の他の変形例に係る記録再生装置 2Taに有される高速 偏向素子 57T、及び上述した (ii)第 2実施例の他の変形例に係る記録再生装置 2F bに有される高速屈折率変更素子 57Fの両方を備えるようにしてもょ 、。
[0176] (3)記録装置の第 3実施例
次に、本発明の記録装置の第 3実施例に係る記録再生装置 3について、図 12から 図 17を参照して説明する。
[0177] (3— 1)基本構成
先ず、本発明の記録装置の第 3実施例に係る記録再生装置 3の基本構成につい て、図 12及び図 14を参照して説明する。ここに、図 12は、本発明の記録装置の第 3 実施例に係る記録再生装置 3Tの基本構成を概念的に示すブロック図である。図 13 は、本発明の記録装置の第 3実施例に係る記録再生装置 3Fの他の基本構成を概念 的に示すブロック図である。図 14は、本発明の記録装置の第 3実施例に係る記録再 生装置 3T (記録再生装置 3F)によって、光ディスクに照射されたメインビーム、及び サブビームの態様を概念的に示す平面図である。尚、図 14におけるメインビーム及 び二つのサブビームが記録層上で形成するスポットを図示しているが、図 14におけ るレーザ光のスポットの直径等の外観はあくまでも例示であり、実際のスポットの直径 等の大きさを忠実には示して 、な 、。
[0178] 図 12、及び図 13に示されるように、第 3実施例に係る記録再生装置 3T (記録再生 装置 3F)は、特に、先行ビーム検出回路 91、及び後行ビーム検出回路 92を備えて 構成されているようにしてもよい。それ以外の構成要素、及び動作原理については、 前述した第 2実施例と概ね同様であるので説明は省略する。
[0179] 詳細には、 3ビームトラッキング処理では、図 14に示されるように、先行ビーム、メイ ンビーム、及び後行ビームの 3つのレーザ光力も構成されている。より詳細には、記 録面にレーザ光 LBが集光されている場合、即ち、記録層にデータが記録されている 場合、メインビームは、現在データを記録しているグルーブトラック GT上にスポットを 形成する。また、メインビームが形成するスポットとトラックピッチ Tpの半分の距離だけ ずれた位置に (具体的には、データを記録中のグルーブトラック GTに隣接する二つ のランドトラック LT上に)、二つのサブビームがスポットを形成している。データは記録 層の内周側力も外周側に向力つて記録されるため、ここでは、図 14中メインビームが 形成するスポットの右上に (即ち、外周側に)スポットを形成するサブビームを先行ビ ームと称し、図 14中メインビームが形成するスポットの左下に(即ち、内周側に)スポ ットを形成するサブビームを後行ビームと称する。また、図 14においては、既にデー タが記録された記録部分を網掛け模様にて示している。即ち、先行ビームが形成す るスポットの両端部分に位置するグルーブトラック GTにはデータは記録されて 、な ヽ 。他方、後行ビームが形成するスポットの両端部分に位置するグルーブトラック GTに はデータが記録されて 、る。
[0180] このとき、メインビームが形成するスポットの中心がグルーブトラック GTの略中心か らずれて ヽな 、場合 (即ち、図 14中実線のスポットで示すようにトラッキングズレが発 生していない場合)には、先行ビーム及び後行ビームの夫々が形成するスポットの中 心は、ランドトラック LTの略中心に形成される。このため、 2分割された受光部 D1及 び D2の夫々において受光される先行ビームの反射光の光量等は略同一であり、ま た 2分割された受光部 D1及び D2の夫々において受光される後行ビームの反射光の 光量等は略同一である。即ち、先行ビームが形成するスポットの右側部分及び左側 部分の夫々の反射光の光量等は相等しぐ後行ビームが形成するスポットの右側部 分及び左側部分の夫々の反射光の光量等は相等 、。
[0181] 他方、メインビームが形成するスポットの中心がグルーブトラック GTの略中心から例 えば右側にずれた場合 (即ち、図 14中鎖線のスポットで示すようにトラッキングズレが 発生している場合)には、先行ビーム及び後行ビームの夫々が形成するスポットの中 心は、ランドトラック LTの略中心力 右側にずれた位置に形成される。このため、 2分 割された受光部 D1及び D2の夫々にお 、て受光される先行ビームの反射光の光量 等は相異なり、また 2分割された受光部 D1及び D2の夫々において受光される後行 ビームの反射光の光量等は相異なる。即ち、先行ビームが形成するスポットの右側 部分及び左側部分の夫々の反射光の光量等は相異なり、後行ビームが形成するス ポットの右側部分及び左側部分の夫々の反射光の光量等は相異なる。係る光量等 の相違を反映して生成されるトラッキングサーボ制御信号 S31Tに基づ 、て、これら が相等しくなるようなトラッキング処理が行なわれる。
[0182] (3— 2)動作原理
次に、図 15から図 17を参照して、本発明の記録装置の第 3実施例に係る記録再生 装置における動作原理について説明する。
[0183] (3— 2— 1)記録動作、及び制御動作を含む全体動作
先ず、第 3実施例に係る、記録動作、及び制御動作を含む全体動作の手順につい て図 15を参照して説明する。ここに、図 15は、本発明の記録装置の第 3実施例に係 る記録再生装置による記録動作、及び制御動作を含む全体動作を示したフローチヤ ートである。
[0184] 図 15に示されるように、先ず、制御部 10の制御下で、光ピックアップ 50によって、 3 ビームトラッキング処理による記録が開始される (ステップ S301)。 [0185] 次に、制御部 10の制御下で、光ピックアップ 50によって、実際に、データの記録が 行われる(ステップ S301c)。
[0186] 次に、制御部 10の制御下で、記録を終了する力否かが判定される (ステップ S305
) oここで、記録を終了しない場合 (ステップ S305 :No)、ステップ S301cに戻り、デ ータの記録が継続される。
[0187] 他方、ステップ S305の判定の結果、記録を終了する場合 (ステップ S305 : Yes)、 一連の記録動作は終了される。
[0188] 上述した記録動作と同時に、又は相前後して、トラッキング処理、又はフォーカス処 理を含む制御動作が行われる。このトラッキング処理、又はフォーカス処理を含む制 御動作については、後述の図 16、及び図 17において説明される。
[0189] (3- 2- 2)トラッキング処理を中心とした一の制御動作
次に、第 3実施例に係る、トラッキング処理を中心とした一の制御動作の手順につ いて図 16を参照して説明する。ここに、図 16は、本発明の記録装置の第 3実施例に 係る記録再生装置によるトラッキング処理を中心とした一の制御動作を示したフロー チャートである。
[0190] 先ず、制御部 10の制御下で、 3ビームトラッキング処理における先行ビームによつ て、例えば設定範囲外のトラッキングエラー信号 (TE信号)が検出される力否力が判 定される (ステップ S302)。ここで、例えば設定範囲外のトラッキングエラー信号が検 出された場合、即ち、トラッキングエラー信号が、設定範囲内にない場合 (ステップ S3 02 : No)、前述したように、制御部 10の制御下で、トラッキングエラー信号 (TE信号) に含まれる高周波成分の異常値と、当該異常値が検出される異常区間 (異常領域) とが検出される (ステップ S103)。他方、トラッキングエラー信号が、設定範囲内にあ る場合 (ステップ S302 : Yes)、再度、前述したように、トラッキングエラー信号が検出 されるか否かが判定される(ステップ S302)。
[0191] 次に、前述したように、制御部 10の制御下で、先行ビームにおいて、高周波成分の 異常値が検出された、光ディスク上の異常位置や異常区間が特定される (ステップ S 104)。
[0192] 次に、この特定された異常位置において、メインビームによる記録が行われる時間 が予測される (ステップ S 104c)。
[0193] 次に、前述したように、制御部 10の制御下で、この異常位置や異常区間を、記録 動作において規定可能なウィンドコンパレータ信号が作成される (ステップ S105)。
[0194] 次に、制御部 10の制御下で、最適ゲイン調整回路 32Tbによって、先行ビームが 検出した異常区間において所定の値を保持する利得に調整される (ステップ S303)
[0195] 次に、制御部 10の制御下で、実際の記録を行うメインビームによって、この調整さ れた利得が適用されたトラッキング処理が行われる (ステップ S304)。そして、前述し たステップ S302に戻る。尚、制御部 10の制御下で、上述したステップ S304等と同 時に、又は、相前後して、後行ビームによって、記録された情報の再生品質を示す値 を測定し、測定された値に基づいて、上述したように調整された利得が適切であるか 否かを判定して、仮に適切でない場合、利得を負帰還制御(フィードバック制御)する ようにしてもよい。
[0196] (3— 2— 3)フォーカス処理を中心とした他の制御動作
次に、第 3実施例に係る、フォーカス処理を中心とした他の制御動作の手順につい て、図 17を参照して説明する。ここに、図 17は、本発明の記録装置の第 3実施例に 係る記録再生装置によるフォーカス処理を中心とした他の制御動作を示したフロー チャートである。尚、図 17において、前述した図 16と同様の処理には、同様のステツ プ番号を付し、それらの説明は適宜省略する。
[0197] 図 17に示されるように、光ピックアップ 50によって、 3ビームトラッキング処理による 記録が開始された後、制御部 10の制御下で、 3ビームトラッキング処理における先行 ビームによって、例えば設定範囲外のフォーカスエラー信号 (FE信号)が検出される か否かが判定される (ステップ S302a)。例えば設定範囲外のフォーカスエラー信号 が検出された場合、即ち、フォーカスエラー信号が、設定範囲内にない場合 (ステツ プ S302a :No)、前述したステップ S 103からステップ S 105までの処理が行われる。 他方、フォーカスエラー信号力 設定範囲内にある場合 (ステップ S302a : Yes)、再 度、前述したように、フォーカスエラー信号が検出される力否かが判定される (ステツ プ S302a)。 [0198] 次に、制御部 10の制御下で、レーザ駆動回路 40によって、先行ビームが検出した 異常区間において所定の値を保持する記録パワーに調整される (ステップ S303a)。
[0199] 次に、制御部 10の制御下で、実際の記録を行うメインビームによって、この調整さ れた記録パワーが適用され、ホログラムレーザ 51が駆動される (ステップ S304a)。そ して、前述したステップ S302aに戻る。
[0200] 以上の結果、 3ビームトラッキング処理における先行ビームを積極的に利用すること で、実際に記録をしているメインビームより、光ディスクの一回転に相当する時間だけ 早ぐ面振れ加速度、又は偏芯加速度の異常値や異常区間を検出することが可能と なる。従って、メインビームにおいて、最適な利得が適用されたトラッキングサーボ (フ オーカスサーボ)に基づいた記録を行うことが可能となると共に、リアルタイムで最適 にされた記録パワーでデータの記録を行うことが可能となる。
[0201] (4)記録装置の第 4実施例
次に、本発明の記録装置の第 4実施例に係る記録再生装置 4について、図 18を参 照して説明する。尚、第 4実施例に係る構成要素については、前述した第 1から第 3 実施例と概ね同様であるので説明は省略する。
[0202] (4 1)動作原理
先ず、本発明の記録装置の第 4実施例に係る記録再生装置 4の動作原理につい て、図 18を参照して説明する。ここに、図 18は、本発明の記録装置の第 4実施例に 係る記録再生装置 4によるリアルタイムの記録動作を示したフローチャートである。尚 、図 18において、前述した第 1から第 3実施例における処理と同様の処理には、同様 のステップ番号を付し、それらの説明は適宜省略する。
[0203] 図 18に示されるように、先ず、制御部 10の制御下で、例えばメインビームにおける トラッキングエラー信号が、トラッキングサーボを安定的に行うための上限値と下限値 とによって示された許容範囲外の異常値をとるか否かが判定される (ステップ S401) 。ここで、例えばトラッキングエラー信号が、異常値をとると判定された場合 (ステップ S401 :No)、前述したステップ S104からステップ S107の各処理が行われる。他方、 例えばトラッキングエラー信号が、設定範囲内であり、異常値をとらない場合 (ステツ プ S401 :Yes)、前述したように、記録を終了するか否かが判定される(ステップ S30 5) 0
[0204] (5)記録装置の第 5実施例
次に、本発明の記録装置の第 5実施例に係る記録再生装置 5について、図 19を参 照して説明する。尚、第 5実施例に係る構成要素については、前述した第 1から第 3 実施例と概ね同様であるので説明は省略する。
[0205] (5— 1)動作原理
先ず、本発明の記録装置の第 5実施例に係る記録再生装置 5の動作原理につい て、図 19を参照して説明する。ここに、図 19は、本発明の記録装置の第 5実施例に 係る記録再生装置 5によるリアルタイムの記録動作を示したフローチャートである。尚
、図 19において、前述した第 1から第 4実施例における処理と同様の処理には、同様 のステップ番号を付し、それらの説明は適宜省略する。
[0206] 図 19に示されるように、先ず、前述したように、制御部 10の制御下で、例えばトラッ キングエラー信号が、トラッキングサーボを安定的に行うための上限値と下限値とによ つて示された許容範囲外の異常値をとると判定された場合 (ステップ S401: No)、制 御部 10の制御下で、トラッキングエラー信号の異常値が検出され、例えばメモリ等の 記憶手段によって、記憶される(ステップ S501)。
[0207] 次に、前述したステップ S104、及びステップ S 105の各処理が行われる。
[0208] 次に、制御部 10の制御下で、例えばトラッキングゲイン選別回路 32Tによって、記 憶されたトラッキングエラー信号の異常値に基づ 、て、異常区間にお 、て所定の値 を保持する利得が選別される (ステップ S502)。
[0209] 詳細には、この所定の値を保持する利得は、記憶されたトラッキングエラー信号を ノ ラメータとした所定の式や所定のテーブルに基づ 、て、迅速且つ的確に選別され るようにしてもよい。この所定の式や所定のテーブルは、実験やシミュレーション等に よって、予め用意されるようにしてもよい。
[0210] 次に、前述したステップ S 107の処理が行われる。
[0211] (6)記録装置の第 6実施例
次に、本発明の記録装置の第 6実施例に係る記録再生装置 6について、図 20を参 照して説明する。尚、第 6実施例に係る構成要素については、前述した第 1から第 3 実施例と概ね同様であるので説明は省略する。
[0212] (6— 1)動作原理
先ず、本発明の記録装置の第 6実施例に係る記録再生装置 6の動作原理につい て、図 20を参照して説明する。ここに、図 20は、本発明の記録装置の第 6実施例に 係る記録再生装置 6によるリアルタイムの記録動作を示したフローチャートである。尚 、図 20において、前述した第 1から第 5実施例における処理と同様の処理には、同様 のステップ番号を付し、それらの説明は適宜省略する。
[0213] 図 20に示されるように、前述したステップ S101において、光ピックアップ 50から照 射されるレーザ光により、データの記録が開始された後、制御部 10の制御下で、変 数「t」に「0」が、代入される (ステップ S601)。
[0214] 次に、前述したステップ S401における、例えば 1トラック毎において、トラッキングェ ラー信号の異常が発生している力否かの判定の結果、トラッキングエラー信号が、異 常値をとると判定された場合 (ステップ S401 : No)、前述したように、制御部 10の制 御下で、異常値が検出された、光ディスク上の異常位置や異常区間が特定される (ス テツプ S104)。特に、トラッキングエラー信号の異常が、概ね同 Cf立置 (基準位置から の回転角度)にお 、て発生することが確認されるようにしてもょ 、。
[0215] 次に、制御部 10の制御下で、変数「t」が「1」だけ増加 (インクリメント)される (ステツ プ S602)。従って、トラッキングエラー信号の異常が連続して発生するトラックの数を カウントすることが可能となる。
[0216] 次に、制御部 10の制御下で、変数「t」が所定数「n」と等しいか否かが判定される ( ステップ S603)。ここで、変数「t」が所定数「n」と等しい場合 (ステップ S603 :Yes)、 前述したステップ S 105からステップ S 107の各処理が行われる。ここに、本実施例に 係る所定数「n」とは、本発明に係る「異常」の性質等に基づいて、例えば、実験的、 経験的又は理論的若しくはシミュレーション等に基づいて、決定されてもよい。
[0217] 言い換えると、このステップ S603において、変数「t」が所定数「n」と等しいか否か の判定が行われることで、トラッキングエラー信号の異常が「n」トラックに跨って連続し て発生している力否かを判定することが可能となる。そして、「n」トラックに跨って連続 して発生して 、る場合は、利得を最適な値になるようにする。 [0218] カロえて、本実施例においては、例えば外周側のトラックへ移動するにつれて基準位 置からの回転角度が徐々に変化する等のトラッキングエラー信号の異常が発生する 位置に予測可能な傾向がある場合、この傾向を反映するように、利得を最適な値に する位置、即ち、前述したウィンドコンパレータ信号に含まれるハイレベル区間をトラ ックが移動するにつれて、徐々にシフトするようにしてもよい。
[0219] この結果、例えばノイズ等の影響による突発的なトラッキングエラー信号の異常に は対応しないで、例えば光ディスク上の所定の位置 (基準位置からの回転角度)にお いて周期的に発生するトラッキングエラー信号の異常に対応することが可能となる。 よって、データをより高速且つ効率的に記録することが可能となる。
[0220] (7)記録装置の第 7実施例
次に、本発明の記録装置の第 7実施例に係る記録再生装置 7について、図 21を参 照して説明する。尚、第 7実施例に係る構成要素については、前述した第 1から第 3 実施例と概ね同様であるので説明は省略する。
[0221] (7— 1)動作原理
先ず、本発明の記録装置の第 7実施例に係る記録再生装置 7の動作原理につい て、図 21を参照して説明する。ここに、図 21は、本発明の記録装置の第 7実施例に 係る記録再生装置 7によるリアルタイム処理の記録動作を示したフローチャートである 。尚、図 21において、前述した第 1から第 6実施例における処理と同様の処理には、 同様のステップ番号を付し、それらの説明は適宜省略する。
[0222] 図 21に示されるように、前述したステップ S401の判定の結果、トラッキングエラー 信号が、異常値をとると判定された場合 (ステップ S401 :No)、制御部 10の制御下 で、記録がー且中断される (ステップ S701)。
[0223] 次に、制御部 10の制御下で、記録予定の領域を、再生パワーを保持するレーザ光 が照射される (ステップ S702)。
[0224] 更に、前述したステップ S401と同様のステップ S401aの判定の結果、例えばトラッ キングエラー信号が、設定範囲内になぐ異常値をとると判定された場合 (ステップ S 401a:No)、制御部 10の制御下で、前述したステップ S 104からステップ S 107の各 処理が行われ、利得が最適な値になるように変化される。尚、ステップ S 104におい ては、前述した第 6実施例のように「n」トラックに跨って連続して発生して 、る異常位 置を特定するようにしてもよい。また、このステップ S401aは、省略してもよい。
[0225] 次に、制御部 10の制御下で、記録が再開される (ステップ S703)。
[0226] 他方、前述したステップ S401aの判定の結果、例えばトラッキングエラー信号が、 設定範囲内にあり、異常値をとらないと判定された場合 (ステップ S401a : Yes)、前 述したように、制御部 10の制御下で、記録が再開される (ステップ S 703)。
[0227] (8)記録装置の第 8実施例
次に、本発明の記録装置の第 8実施例に係る記録再生装置 8について、図 22を参 照して説明する。尚、第 8実施例に係る構成要素については、前述した第 1から第 3 実施例と概ね同様であるので説明は省略する。
[0228] (8— 1)動作原理
先ず、本発明の記録装置の第 8実施例に係る記録再生装置 8の動作原理につい て、図 22を参照して説明する。ここに、図 22は、本発明の記録装置の第 8実施例に 係る記録再生装置 8によるリアルタイム処理の記録動作を示したフローチャートである 。尚、図 22において、前述した第 1から第 7実施例における処理と同様の処理には、 同様のステップ番号を付し、それらの説明は適宜省略する。
[0229] 図 22に示されるように、前述したステップ S101において、光ピックアップ 50から照 射されるレーザ光により、データの記録が開始された後、制御部 10の制御下で、変 数「f」に「0」が、代入される (ステップ S801)。
[0230] 次に、前述したステップ S401の判定の結果、トラッキングエラー信号力 異常値を とると判定された場合 (ステップ S401: No)、制御部 10の制御下で、変数「f」が「0」と 等し 、か否かが判定される(ステップ S802)。ここで、「f」が「0」に等し 、場合 (ステツ プ S802 : Yes)、制御部 10の制御下で、変数「f」に「1」が、代入される(ステップ S80
3)。
[0231] 次に、制御部 10の制御下で、ステップ S401で検出されたトラッキングエラー信号 力 例えばメモリ等の記憶手段によって、変数「TE1」として記憶される (ステップ S80
4)。
[0232] 次に、制御部 10の制御下で、前述したステップ S 104力もステップ S 107の各処理 が行われ、利得が最適な値になるように変化される。
[0233] 他方、ステップ S802の判定の結果、「f」が「0」に等しくない場合、即ち、「f」が「1」 に等しい場合 (ステップ S802 : No)、ステップ S401で検出されたトラッキングエラー 信号が、例えばメモリ等の記憶手段によって、変数「TE2」として記憶される (ステップ S805)。具体的には、「f」が「1」であるので、前段階における最適力 充分ではない ことが判明される。
[0234] 次に、制御部 10の制御下で、変数「TE1」の値力 変数「TE2」の値より大きいか否 か判定される(ステップ S806)。ここで、変数「TE1」の値力 変数「TE2」の値より大 きい場合 (ステップ S806 :Yes)、トラッキングエラー信号の異常値が減少しているの で、制御部 10の制御下で、利得の大きさを、直前に最適な値を決定した増減方向と 同一方向に、所定量だけ変化させる (ステップ S807)。
[0235] 次に、制御部 10の制御下で、変数「TE1」に、変数「TE2」の値が代入される (ステ ップ S808)。従って、今回の比較の結果、より小さいと判定された異常値と、次回の 検出される異常値とが比較されるので、検出される時間方向ではなぐトラッキングェ ラー信号の値に基づいた、より高精度な異常値の増減の判定を実現することが可能 となる。
[0236] 他方、ステップ S806の判定の結果、変数「TE1」の値力 変数「TE2」の値より大き くない、即ち、小さい場合 (ステップ S806 :No)、トラッキングエラー信号の異常値が 増加しているので、制御部 10の制御下で、利得の大きさを、直前に最適な値を決定 した増減方向と逆方向に、所定量だけ変化させる (ステップ S809)。
[0237] 他方、前述したステップ S401の判定の結果、トラッキングエラー信号力 異常値を とると判定されない場合 (ステップ S401 : Yes)、制御部 10の制御下で、変数「f」に「0 」力 代入される(ステップ S801a)。
[0238] この結果、利得が最適な値がとって 、るか否かを、トラッキングエラー信号の異常値 の増減方向の傾きに基づ 、て、高精度且つ迅速に監視 (モニタ)することが可能とな る。
[0239] (9)記録装置の第 9実施例
次に、本発明の記録装置の第 9実施例に係る記録再生装置 9について、図 23を参 照して説明する。尚、第 9実施例に係る構成要素については、前述した第 1から第 3 実施例と概ね同様であるので説明は省略する。
[0240] (9 1)動作原理
先ず、本発明の記録装置の第 9実施例に係る記録再生装置 9の動作原理につい て、図 23を参照して説明する。ここに、図 23は、本発明の記録装置の第 9実施例に 係る記録再生装置 9によるリアルタイム処理の記録動作を示したフローチャートである 。尚、図 23において、前述した第 1から第 8実施例における処理と同様の処理には、 同様のステップ番号を付し、それらの説明は適宜省略する。
[0241] 図 23に示されるように、前述したステップ S401の判定の結果、トラッキングエラー 信号が、異常値をとると判定された場合 (ステップ S401 :No)、制御部 10の制御下 で、前述したステップ S 104、及びステップ S 105の各処理が行われる。
[0242] 次に、制御部 10の制御下で、例えばトラッキングゲイン選別回路 32Tによって、異 常区間において、トラッキングエラー信号の異常値にァクチユエータが追随しないよう にする、即ち、トラッキング処理を行わない (オフにする)ための、所定の値を保持する 利得が選別される (ステップ S901)。尚、この所定の値を保持する利得は、所定の式 や所定のテーブルに基づ 、て、迅速且つ的確に選別されるようにしてもょ 、。
[0243] 詳細には、トラッキングエラー信号の異常値にァクチユエータが追随しない区間、即 ち、トラッキング処理を行わない (オフにする)区間の最大値、所謂、最大オフ可能角 度「Atr」は、次式(10)によって決定されるようにしてもよ!、。
[0244] Atr= <Tp/{ (Rl-Rs) /180} > X (1/m) - -- (10)
但し、 Atr: 最大オフ可能角度 (度)
Tp : 卜ラックピッチ(m)
R1: 対象トラックの最大半径位置 (m)
Rs : 対象トラックの最小半径位置 (m)。
[0245] より詳細には、本願発明者らによる研究によれば、光ディスクでの偏芯の影響で 1ト ラック中の半径位置は、例えば基準位置力 の角度によって異なることが判明してい る。具体的には、対象トラックにおける、最大の半径位置の差は、(Rl— Rs)であり、こ の差は、最大半径位置「R1」から最小半径位置「Rs」へ半周(180度)だけ回転するこ とによって生じる。従って、式(10)における、 { (Rl— Rs) Zl80}は、 1度だけ回転し た場合のトラックの半径方向の移動量を示す。よって、式(10)における、 <TpZ{ (R 1— Rs) Zl80} >は、半径方向に 1トラック分移動してしまう角度を示す。このことは、 トラッキング処理をして ヽな 、場合、この角度だけ回転すると半径方向に各種ァクチ ユエータが 1トラック分だけずれてしまうことを意味している。尚、実際には、各種ァク チユエータの半径位置は変わらず、偏芯の影響でトラックの半径位置が 1トラック分だ けずれることを付記しておく。上述した具体例は、 1トラックだけずれる場合について 説明したが、記録層における記録特性 (記録膜特性)等を考慮して許容範囲を 1トラ ックの定数「lZm」までとすることが望ましい。また、定数「m」は「10」程度が好ましい 。しかしながら、「m」がより大きいほど最大オフ可能角度「Atr」が短縮されるため、ト ラッキング処理は安定することも判明して 、る。
[0246] 再び、図 23に戻る。
[0247] 次に、制御部 10の制御下で、トラッキング駆動回路 33Tによって、上述した異常区 間にお 、て、トラッキングエラー信号の異常値にァクチユエータが追随しな 、ようにす る、即ち、トラッキング処理を行わない (オフにする)ための所定の値を保持する利得 が適用された、ァクチユエータ駆動信号 S33Tが出力され、トラッキングァクチユエ一 タ 55Tが駆動される (ステップ S902)。より具体的には、各種ァクチユエータは、オフ にされる前の位置が維持される。
[0248] 上述した第 4実施例力も第 9実施例においては、 (i)トラッキングエラー信号に基づ いて記録動作を行っている力 このトラッキングエラー信号に加えて、又は、代えて、 (ii)フォーカスエラー信号や、例えば OPCで決定されたパワー制御に基づいて、記 録動作を行ってもよい。
[0249] 上述した実施例では、記録装置の一具体例として、例えば、 DVD— Rレコーダー 又は DVD+Rレコーダ一等の追記用の記録再生装置について説明した力 本発明 は、例えば、 DVD—RWレコーダー又は DVD+RWレコーダ一等の書き換え用の 記録再生装置に適用可能である。更に、ブルーレーザーを記録再生に用いる大容 量記録用の記録再生装置にも適用可能である。
[0250] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴う記録装置及び方法、再生装置及び方法、記録再生装置及び方法、 並びに、記録又は再生制御用のコンピュータプログラムもまた本発明の技術的範囲 に含まれるものである。
産業上の利用可能性
本発明に係る記録装置及び方法、再生装置及び方法、記録再生装置及び方法、 並びにコンピュータプログラムは、例えば DVD、 CD (Compact Disc)等の記録媒体 にデータを記録再生するための DVDレコーダや DVDプレーヤ等の記録再生装置 に利用可能である。また、例えば民生用或いは業務用の各種コンピュータ機器に搭 載される又は各種コンピュータ機器に接続可能な情報記録再生装置等にも利用可 能である。

Claims

請求の範囲
[1] ディスク状の記録媒体に対してレーザ光を照射することでデータの記録を行う記録 手段と、
前記記録に際して、トラッキング制御、及びフォーカス制御のうち少なくとも一方の 制御を行う駆動手段と、
前記少なくとも一方の制御におけるエラー信号に基づ 、て、前記駆動手段を自動 制御するサーボ手段と、
前記少なくとも一方の制御におけるエラー信号に含まれる高周波成分に基づいて 、前記記録媒体の特性が良好でない領域を特定する特定手段と、
前記特定された領域にぉ 、て、 (i)前記自動制御における制御条件を変化させるよ うに前記サーボ手段を制御することに加えて、又は、代えて (ii)前記レーザ光の記録 条件を変化させるように前記記録手段を制御する制御手段と
を備えることを特徴とする記録装置。
[2] 前記特定手段は、前記特性として、前記記録媒体の回転動作における、偏芯加速 度、面振れ加速度、及び反り加速度のうちの少なくとも一つに基づいて、前記領域を 特定することを特徴とする請求の範囲第 1項に記載の記録装置。
[3] 前記特定手段は、前記偏芯加速度を検出する偏芯加速度検出手段、前記面振れ 加速度を検出する面振れ加速度検出手段、及び、前記反り加速度を検出する反り加 速度検出手段のうちの少なくとも一つを含むことを特徴とする請求の範囲第 1項に記 載の記録装置。
[4] 前記特定手段は、前記高周波成分の値と、所定閾値との比較に基づ!、て、前記領 域を特定することを特徴とする請求の範囲第 1項に記載の記録装置。
[5] 前記記録媒体においては、前記データを記録するための同心円状の又はスパイラ ル状の記録トラックが形成されており、
前記特定手段は、前記記録トラックにおいて周期的に発生する、前記高周波成分 に基づ!/、て、前記領域を特定することを特徴とする請求の範囲第 1項に記載の記録 装置。
[6] 前記制御手段は、(i)前記制御条件として、前記自動制御における利得 (ゲイン: G ain)を標準値より大きくさせるように前記サーボ手段を制御することに加えて、又は、 代えて (ii)前記記録条件として、前記レーザ光の記録パワーを標準値より大きくさせ るように前記記録手段を制御することを特徴とする請求の範囲第 1項に記載の記録 装置。
[7] 前記特定された領域における、前記エラー信号の大きさを取得する取得手段を更 に備え、
前記制御手段は、前記取得されたエラー信号の大きさを示す値をパラメータとした 、前記自動制御における利得の大きさの最適値を示すテーブルに基づいて、前記サ ーボ手段を制御することを特徴とする請求の範囲第 1項に記載の記録装置。
[8] 前記特定された領域における、前記エラー信号の大きさを取得する取得手段を更 に備え、
前記制御手段は、前記取得されたエラー信号の大きさを示す値をパラメータとした 、前記レーザ光の記録パワーの大きさの最適値を示すテーブルに基づいて、前記記 録手段を制御することを特徴とする請求の範囲第 1項に記載の記録装置。
[9] 前記制御手段は、 (i)前記エラー信号の大きさを示す値が増加する際には、前記 自動制御における利得の大きさを一の方向に変化させ、(ii)前記エラー信号の大き さを示す値が減少する際には、前記利得の大きさを他の方向に変化させるように前 記サーボ手段を制御することを特徴とする請求の範囲第 1項に記載の記録装置。
[10] 前記制御手段は、(i)前記エラー信号の大きさを示す値が増加する際には、前記レ 一ザ光の記録パワーの大きさを一の方向に変化させ、(ii)前記エラー信号の大きさ を示す値が減少する際には、前記記録パワーの大きさを他の方向に変化させるよう に前記記録手段を制御することを特徴とする請求の範囲第 1項に記載の記録装置。
[11] 前記制御手段は、前記特定された領域の位置を示す位置情報に基づいて、前記 サーボ手段、及び前記記録手段のうちの少なくとも一つを制御することを特徴とする 請求の範囲第 1項に記載の記録装置。
[12] 前記制御手段は、前記位置情報としてのウィンドコンパレータ信号に含まれるハイ レベルな値を示す区間又は期間において、前記サーボ手段、及び前記記録手段の うちの少なくとも一つを制御することを特徴とする請求の範囲第 11項に記載の記録 装置。
[13] 前記制御手段は、更に、試用的に、前記データの記録を行うように、前記サーボ手 段、及び前記記録手段を制御することを特徴とする請求の範囲第 1項に記載の記録 装置。
[14] 前記制御手段は、前記特定された領域を含む記録領域において、(i)前記記録を 中断させ、(ii)前記制御条件、及び前記記録条件のうち少なくとも一つを変化させ、 ( iii)前記記録を再開させるように、前記サーボ手段、及び前記記録手段を制御するこ とを特徴とする請求の範囲第 1項に記載の記録装置。
[15] 前記制御手段は、前記制御条件、及び前記記録条件のうち少なくとも一つを変化 させたか否かを示す識別情報に基づいて、前記サーボ手段、及び前記記録手段を 制御することを特徴とする請求の範囲第 1項に記載の記録装置。
[16] 前記制御手段は、前記特定された領域にお!、て、前記自動制御を作動させな 、よ うに前記サーボ手段を制御することを特徴とする請求の範囲第 1項に記載の記録装 置。
[17] 前記制御手段は、所定の関係を示す式、又はテーブルに基づ!/、て、前記自動制 御を作動させないように前記サーボ手段を制御することを特徴とする請求の範囲第 1 6項に記載の記録装置。
[18] 前記記録手段は、前記レーザ光を回折させる回折手段を含み、
前記回折手段は、(i)前記データの記録、前記データの再生、前記トラッキング制 御、及び、前記フォーカス制御のうち少なくとも一つの処理を行うために用いられるメ インビーム、並びに(ii)前記少なくとも一つの処理を行うために用いられる、少なくとも 2つのサブビームを生成し、
前記記録手段は、前記メインビーム、及び前記サブビームのうち少なくとも一つに 含まれるレーザ光を照射することで前記データの記録を行い、
前記制御手段は、前記高周波成分に基づいて、前記記録手段を制御することを特 徴とする請求の範囲第 1項に記載の記録装置。
[19] 前記レーザ光の偏向方向を変化させる偏向素子、及び、レーザ光の屈折率を変化 させる屈折率変更素子のうち少なくとも一方を更に備え、 前記制御手段は、更に、前記特定された領域において、レーザ光の偏向方向を高 速に変化させるように前記偏向素子を制御する、又は、レーザ光の屈折率を高速に 変化させるように前記屈折率変更素子を制御することを特徴とする請求の範囲第 1項 に記載の記録装置。
[20] ディスク状の記録媒体に対してレーザ光を照射することでデータの再生を行う再生 手段と、
前記再生に際して、トラッキング制御、及びフォーカス制御のうち少なくとも一方の 制御を行う駆動手段と、
前記少なくとも一方の制御におけるエラー信号に基づ 、て、前記駆動手段を自動 制御するサーボ手段と、
前記少なくとも一方の制御におけるエラー信号に含まれる高周波成分に基づいて 、前記記録媒体の特性が良好でない領域を特定する特定手段と、
前記特定された領域にぉ 、て、 (i)前記自動制御における制御条件を変化させるよ うに前記サーボ手段を制御することに加えて、又は、代えて (ii)前記レーザ光の再生 条件を変化させるように前記再生手段を制御する制御手段と
を備えることを特徴とする再生装置。
[21] ディスク状の記録媒体に対してレーザ光を照射することでデータの記録又は再生を 行う記録再生手段と、
前記記録又は再生に際して、トラッキング制御、及びフォーカス制御のうち少なくと も一方の制御を行う駆動手段と、
前記少なくとも一方の制御におけるエラー信号に基づ 、て、前記駆動手段を自動 制御するサーボ手段と、
前記少なくとも一方の制御におけるエラー信号に含まれる高周波成分に基づいて 、前記記録媒体の特性が良好でない領域を特定する特定手段と、
前記特定された領域にぉ 、て、 (i)前記自動制御における制御条件を変化させるよ うに前記サーボ手段を制御することに加えて、又は、代えて (ii)前記レーザ光の記録 条件又は再生条件を変化させるように前記記録再生手段を制御する制御手段と を備えることを特徴とする記録再生装置。
[22] (i)ディスク状の記録媒体に対してレーザ光を照射することでデータの記録を行う記 録手段、及び (ii)前記記録に際して、トラッキング制御、及びフォーカス制御のうち少 なくとも一方の制御を行う駆動手段を備える記録装置における記録方法であって、 前記少なくとも一方の制御におけるエラー信号に基づ 、て、前記駆動手段を自動 制御するサーボ工程と、
前記少なくとも一方の制御におけるエラー信号に含まれる高周波成分に基づいて 、前記記録媒体の特性が良好でな!、領域を特定する特定工程と、
前記特定された領域にお!、て、 (i)前記自動制御における制御条件 (ゲイン:利得) を変化させるように前記サーボ工程を制御することに加えて、又は、代えて (ii)前記 レーザ光の記録条件を変化させるように前記記録手段を制御する制御工程と を備えることを特徴とする記録方法。
[23] (i)ディスク状の記録媒体に対してレーザ光を照射することでデータの再生を行う再 生手段、及び (ii)前記再生に際して、トラッキング制御、及びフォーカス制御のうち少 なくとも一方の制御を行う駆動手段を備える再生装置における再生方法であって、 前記少なくとも一方の制御におけるエラー信号に基づ 、て、前記駆動手段を自動 制御するサーボ工程と、
前記少なくとも一方の制御におけるエラー信号に含まれる高周波成分に基づいて 、前記記録媒体の特性が良好でな!、領域を特定する特定工程と、
前記特定された領域にお!、て、 (i)前記自動制御における制御条件 (ゲイン:利得) を変化させるように前記サーボ工程を制御することに加えて、又は、代えて (ii)前記 レーザ光の再生条件を変化させるように前記再生手段を制御する制御工程と を備えることを特徴とする再生方法。
[24] (i)ディスク状の記録媒体に対してレーザ光を照射することでデータの記録又は再 生を行う記録再生手段、及び (ii)前記記録又は再生に際して、トラッキング制御、及 びフォーカス制御のうち少なくとも一方の制御を行う駆動手段を備える記録再生装置 における記録再生方法であって、
前記少なくとも一方の制御におけるエラー信号に基づ 、て、前記駆動手段を自動 制御するサーボ工程と、 前記少なくとも一方の制御におけるエラー信号に含まれる高周波成分に基づいて 、前記記録媒体の特性が良好でな!、領域を特定する特定工程と、
前記特定された領域にお!、て、 (i)前記自動制御における制御条件 (ゲイン:利得) を変化させるように前記サーボ工程を制御することに加えて、又は、代えて (ii)前記 レーザ光の記録条件又は再生条件を変化させるように前記記録再生手段を制御す る制御工程と
を備えることを特徴とする記録再生方法。
[25] 請求の範囲第 1項に記載の記録装置に備えられたコンピュータを制御する記録制 御用のコンピュータプログラムであって、該コンピュータを、前記記録手段、前記駆動 手段、前記サーボ手段、前記特定手段、及び、前記制御手段のうち少なくとも一部と して機能させることを特徴とするコンピュータプログラム。
[26] 請求の範囲第 20項に記載の再生装置に備えられたコンピュータを制御する再生 制御用のコンピュータプログラムであって、該コンピュータを、前記再生手段、前記駆 動手段、前記サーボ手段、前記特定手段、及び、前記制御手段のうち少なくとも一 部として機能させることを特徴とするコンピュータプログラム。
[27] 請求の範囲第 21項に記載の記録再生装置に備えられたコンピュータを制御する 記録再生制御用のコンピュータプログラムであって、該コンピュータを、前記記録再 生手段、前記駆動手段、前記サーボ手段、前記特定手段、及び、前記制御手段のう ち少なくとも一部として機能させることを特徴とするコンピュータプログラム。
PCT/JP2006/307350 2005-04-08 2006-04-06 記録装置及び方法、再生装置及び方法、記録再生装置及び方法、並びにコンピュータプログラム WO2006109684A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007512948A JPWO2006109684A1 (ja) 2005-04-08 2006-04-06 記録装置及び方法、再生装置及び方法、記録再生装置及び方法、並びにコンピュータプログラム
US11/918,052 US7859965B2 (en) 2005-04-08 2006-04-06 Recording device and method, reproducing device and method, recording/reproducing device and method, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-112547 2005-04-08
JP2005112547 2005-04-08

Publications (1)

Publication Number Publication Date
WO2006109684A1 true WO2006109684A1 (ja) 2006-10-19

Family

ID=37086959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307350 WO2006109684A1 (ja) 2005-04-08 2006-04-06 記録装置及び方法、再生装置及び方法、記録再生装置及び方法、並びにコンピュータプログラム

Country Status (3)

Country Link
US (1) US7859965B2 (ja)
JP (1) JPWO2006109684A1 (ja)
WO (1) WO2006109684A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010050A (ko) * 2006-07-25 2008-01-30 삼성전자주식회사 광 디스크 드라이브 및 그 제어 방법
US7668058B2 (en) * 2006-10-04 2010-02-23 Delphi Technologies, Inc. Method and system for evaluating CD player response to vibration during playback of a CD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048489A (ja) * 1998-07-30 2000-02-18 Sony Corp 光ディスク装置、超解像光ディスク装置及びdwdd光ディスク装置
JP2000149264A (ja) * 1998-11-16 2000-05-30 Sharp Corp 光ディスク装置
JP2004062945A (ja) * 2002-07-25 2004-02-26 Yamaha Corp 光ディスク記録再生装置、及び光ディスク記録再生方法
JP2005063491A (ja) * 2003-08-13 2005-03-10 Teac Corp 光ディスク装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189842A (ja) * 1982-04-30 1983-11-05 Toshiba Corp 光学式デジタルデイスクプレ−ヤ装置
JPH10320809A (ja) * 1997-05-16 1998-12-04 Sony Corp ディスクドライブ装置
US6768705B2 (en) * 1998-07-17 2004-07-27 Fujitsu Limited Optical disk drive including a positioner and means for compensating for an eccentricity of an optical disk
KR100622194B1 (ko) * 2000-01-12 2006-09-07 엘지전자 주식회사 광디스크의 편심량 측정장치 및 측정방법
JP4031623B2 (ja) 2001-06-15 2008-01-09 株式会社リコー 光ディスク記録方法、情報処理方法、光ディスク装置及び情報処理装置
JP2003067951A (ja) * 2001-08-30 2003-03-07 Toshiba Corp 光ディスク装置及び光ディスク装置の制御方法
JP2003312146A (ja) 2002-04-25 2003-11-06 Mitsubishi Chemicals Corp 光学記録媒体
JP2004347753A (ja) * 2003-05-21 2004-12-09 Matsushita Electric Ind Co Ltd 形状可変ミラー素子及び形状可変ミラー素子の製造方法並びに形状可変ミラーユニット並びに光ピックアップ
KR100546349B1 (ko) * 2003-07-23 2006-01-26 삼성전자주식회사 광 디스크 서보 시스템에서 디스크 편심 보상 장치 및 그방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048489A (ja) * 1998-07-30 2000-02-18 Sony Corp 光ディスク装置、超解像光ディスク装置及びdwdd光ディスク装置
JP2000149264A (ja) * 1998-11-16 2000-05-30 Sharp Corp 光ディスク装置
JP2004062945A (ja) * 2002-07-25 2004-02-26 Yamaha Corp 光ディスク記録再生装置、及び光ディスク記録再生方法
JP2005063491A (ja) * 2003-08-13 2005-03-10 Teac Corp 光ディスク装置

Also Published As

Publication number Publication date
JPWO2006109684A1 (ja) 2008-11-13
US20090067307A1 (en) 2009-03-12
US7859965B2 (en) 2010-12-28

Similar Documents

Publication Publication Date Title
JP3769666B2 (ja) 収差補正方法および光ディスク装置
JP4420920B2 (ja) 光記録媒体駆動装置、フォーカスオン方法
JP4527591B2 (ja) 情報記録再生方法及び情報記録再生装置
US7031233B2 (en) Optical recording/reproduction device and focal point control method
JP4171378B2 (ja) 記録用光ディスクの球面収差補正方法,光ディスク記録再生方法及び光ディスク装置
JP2000011388A (ja) 光情報記録再生装置および光情報記録再生方法
JP2012243363A (ja) 再生方法、再生装置
WO2006109684A1 (ja) 記録装置及び方法、再生装置及び方法、記録再生装置及び方法、並びにコンピュータプログラム
JP2005310331A (ja) 光ピックアップ装置の組立方法及び光ピックアップ装置
JP4345002B2 (ja) 光ピックアップ装置の組立方法及び光ピックアップ装置
JP4264653B2 (ja) 光ディスク装置、フォーカスバイアス及び球面収差補正値調整方法
US7852726B2 (en) Recording apparatus and recording medium, and computer program
JP2007141284A (ja) 光ピックアップ
US20080089193A1 (en) Apparatus and method for controlling focus jump between recording layers in high-density multi-layer disk
JP2011258251A (ja) 光ピックアップ及び光ディスク装置
JP2004318957A (ja) 記録及び/又は再生装置、光学ヘッド、トラック誤差信号検出方法
JP2006509320A (ja) 長円形のスポットプロフィールを使用して追記型の光記録担体に情報を記録するための装置及び方法
JP2010044828A (ja) 光ディスク装置及びフォーカス調整方法
JP2003173549A (ja) 光ディスク装置及びフォーカスオフセット調整方法
JP4356017B2 (ja) 光学ヘッド装置及び光学式記録媒体を用いた情報処理装置
JP2009295244A (ja) 光学素子、光ピックアップおよび光情報処理装置
JP2003022538A (ja) 光記録媒体の初期化装置および初期化方法
JP5169582B2 (ja) 光ピックアップ及びこれを用いた光ディスク装置
KR100681613B1 (ko) 홀로그래픽 롬의 기준광 서보를 이용한 트랙 서보 제어방법 및 그 장치
JP2008097664A (ja) 回折格子の回転調整方法及び装置並びにコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512948

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11918052

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06731298

Country of ref document: EP

Kind code of ref document: A1