WO2006109572A1 - 反応性エポキシカルボキシレート化合物及びそれを用いた活性エネルギー線硬化性樹脂組成物 - Google Patents

反応性エポキシカルボキシレート化合物及びそれを用いた活性エネルギー線硬化性樹脂組成物 Download PDF

Info

Publication number
WO2006109572A1
WO2006109572A1 PCT/JP2006/306471 JP2006306471W WO2006109572A1 WO 2006109572 A1 WO2006109572 A1 WO 2006109572A1 JP 2006306471 W JP2006306471 W JP 2006306471W WO 2006109572 A1 WO2006109572 A1 WO 2006109572A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reactive
active energy
curable resin
resin composition
Prior art date
Application number
PCT/JP2006/306471
Other languages
English (en)
French (fr)
Inventor
Toru Kurihashi
Ryutaro Tanaka
Katsuhiko Oshimi
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to JP2007512793A priority Critical patent/JP4986059B2/ja
Publication of WO2006109572A1 publication Critical patent/WO2006109572A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/064Polymers containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids

Definitions

  • the present invention relates to a reactive epoxy carboxylate compound having excellent transparency, a composition containing the same, and a cured product thereof. Furthermore, the present invention is excellent in transparency (transmission) of light including the ultraviolet region, and even when exposed to light for a long time, the transparency (transmission) decreases and discolors little! /, V, light resistance.
  • the present invention relates to a reactive polycarboxylic acid compound, a composition containing the same, and a cured product thereof.
  • reactive epoxycarboxylate compounds represented by, for example, epoxy acrylate and the like are compounds having excellent adhesion to a base material, high thermal stability, and dimensional stability of a cured product.
  • a base material high thermal stability
  • dimensional stability of a cured product has been widely used.
  • These are roughly classified into aliphatic reactive epoxy carboxylate compounds and aromatic reactive epoxy carboxylate compounds.
  • Aromatic epoxy carboxylate compounds represented by bisphenol type epoxy acrylate and novolak type epoxy acrylate have high thermal stability and provide toughened hardened materials. Therefore, coloring of the main body of the reactive epoxycarboxylate compound, yellowing of the cured product by light irradiation, and absorption of ultraviolet rays are observed. Therefore, it has been difficult to develop into applications (for example, optical materials) that require good characteristics in this respect.
  • aliphatic reactive epoxy carboxylate compounds represented by aliphatic epoxy acrylates are flexible, have excellent adhesion to metals, plastic films, etc., and are transparent and have no coloring. There are no problems caused by discoloration or absorption of ultraviolet rays. However, these are difficult to say that the cured product has excellent toughness.
  • a reactive polycarboxylic acid compound obtained by addition reaction of a polybasic acid anhydride to an epoxy atalate toy compound or the like has a high degree of adhesiveness to a substrate, high heat It has been widely used as a compound having excellent stability and dimensional stability.
  • resist materials used in electrical and electronic parts are widely used as a composite compound that has been rendered acidic with an alkaline aqueous solution by acid modification (Patent Documents 7 to 8).
  • reactive polycarboxylic acid compounds derived from aromatic epoxy resins represented by bisphenol type epoxy acrylate and novolak type epoxy acrylate have high thermal stability.
  • Power to provide a toughened cured product Reactive polycarboxylic acid
  • the compound itself is colored, and the cured product is yellowed by light irradiation and absorbs ultraviolet rays.For example, when the function of optical related materials is required, or the yellowing over time is avoided. Development for various uses was difficult.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-281725
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-10230
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-82062
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-73452
  • Patent Document 5 Japanese Patent No. 2952094
  • Patent Document 6 Japanese Patent Laid-Open No. 11-140144
  • Patent Document 7 Japanese Patent Publication No. 56-40329
  • Patent Document 8 Japanese Patent Publication No.57-45795
  • Patent Document 9 Japanese Patent No. 3190251
  • Patent Document 10 Japanese Patent No. 3072811
  • An object of the present invention is to provide a reactive epoxycarboxylate compound that gives a cured product that does not deteriorate even when irradiated with light and has an excellent balance of heat resistance, moisture resistance, and toughness. To do. Furthermore, an object of the present invention is to provide a reactive polycarboxylic acid compound that has a good balance of heat resistance, moisture resistance, and toughness, is excellent in light resistance, and does not turn yellow and gives a cured product. .
  • a hydrogenated epoxy resin (a) which is a nuclear hydride of an aromatic ring of an epoxy resin represented by: a compound having one or more polymerizable ethylenically unsaturated groups and one or more carboxyl groups in the molecule ( a reactive epoxycarboxylate compound (A) obtained by reacting with b),
  • Reactive compound other than (A) (B) is at least one selected from the group consisting of atalylates and vinyl compounds, and (4) Active energy ray-curable resin composition as described in
  • Reactive epoxycarboxylate obtained by reacting with compound (b)
  • Reactive polycarboxylic acid compound (C) obtained by reacting polybasic acid anhydride (c)
  • Active energy ray curing comprising the reactive polycarboxylic acid compound (C) and the reactive compound (D) other than (C) as described in (11) or (12) above Mold oil composition, (15)
  • the reactive energy compound other than (C) (D) is an attalylate, the active energy ray-curable resin composition according to the above item (14),
  • a cured product obtained by curing the active energy ray-curable resin composition containing the reactive epoxycarboxylate compound of the present invention is excellent only in heat resistance and moisture resistance. It has very high transparency and little deterioration due to light. Accordingly, it is suitable for molding materials such as lenses and light guide plates, hard coats for optical disks, films, liquid crystal displays, or film forming materials such as resist binders such as CCD color filters. Moreover, since it hardens
  • a cured product obtained by curing the composition containing the reactive polycarboxylic acid compound of the present invention has not only an excellent balance between heat resistance and moisture resistance, but also high transparency, and it depends on light. There is little deterioration. Therefore, it is particularly suitable as a film-forming material having excellent adhesion to a substrate, or a so-called resist material that develops by virtue of its solubility in alkaline water with carboxylic acid. More specifically, for film formation of resists for etching or solder resist, hard coatings for lenses, optical disks, films, liquid crystal displays, CCD power filters, photoconductive materials such as optical waveguides, etc. Suitable for material. BEST MODE FOR CARRYING OUT THE INVENTION
  • the hydrogenated epoxy resin (a) used as the starting material of the reactive epoxy carboxylate compound (A) of the present invention is an aromatic ring in the epoxy resin represented by the formula (1). Can be obtained by nuclear hydrogenation, but can be obtained by other methods as long as the aromatic ring is hydrogenated.
  • n represented by the general formula (1) can also calculate the number average molecular weight force determined by gel permeation chromatography (GPC). If the value of n is less than 1, the resin's advantages such as heat resistance, moisture resistance, and high mechanical strength, which are the advantages of this structure, are not fully exhibited. On the other hand, when the molecular weight is larger than 6, the molecular weight is too large, which is not preferable from the viewpoint of producing a resin such as viscosity.
  • the functional group R represented by the general formula (1) should be appropriately selected according to the intended use.
  • unsubstituted hydrogen atom, methyl group, ethyl group, propyl group, butyl group, vinyl group, etc. linear or branched saturated and unsaturated hydrocarbon groups having 1 to 4 carbon atoms , Halogen functional groups such as chloro group, bromo group, and iodine group.
  • Halogen functional groups such as chloro group, bromo group, and iodine group.
  • those in which all R are hydrogen atoms are preferred.
  • the bonding position in the glycidyl etherified aromatic ring represented by the general formula (1) is not particularly limited. However, for the convenience of the production method of this skeleton, the majority of cases are bound to the ortho-position or para-position with respect to the glycidyl ether group binding site.
  • the hydrogenated epoxy resin (a) used in the present invention is usually nuclear hydrogenated by contacting the epoxy resin of the general formula (1) with hydrogen gas in the presence of a hydrogenation catalyst.
  • a hydrogenation catalyst used as the hydrogenation catalyst used.
  • a catalyst containing a known platinum group element as an active component can be used.
  • platinum group elements ruthenium or rhodium is preferred.
  • a catalyst comprising an active component supported on a carbon-based support is preferable.
  • the carbon-based carrier include activated charcoal, graphite, and carbon black.
  • these catalysts those prepared by a known method such as an impregnation method can be used. Moreover, what is marketed as a catalyst for hydrogenation reaction can also be used as it is.
  • Examples of commercially available products include “5% ruthenium Z carbon catalyst” and “5% rhodium Z carbon catalyst” (both manufactured by Nychem Cat).
  • the amount of catalyst used is not particularly limited. However, since the reaction takes a long time if the amount of catalyst is small, it is usually 0.05 weight by weight ratio of ruthenium or rhodium to the epoxy resin of formula (1). % Or more is preferable. A range of 0.1 to 2% by weight is more preferable.
  • the hydrogenation reaction is usually carried out in a solvent.
  • Solvents that can be used include ether solvents, ester solvents, alcohol solvents, paraffin solvents, which are stable to hydrogenation and not toxic to the catalyst. Specifically, linear or cyclic ethers such as jetyl ether, isopropyl ether, methyl-butyl ether, ethylene glycol dimethyl ether, tetrahydrofuran, dioxane, dioxolane, esters such as ethyl acetate and butyl acetate, ethylene glycol Ether esters such as methyl ether acetate are preferably used. These solvents can be used alone or in combination of two or more.
  • the amount of solvent used is not particularly limited, but is usually in the range of 10 to LOOO% by weight, preferably 20 to 500% by weight based on the epoxy resin of formula (1).
  • the reaction conditions and pressure of the hydrogenation reaction are not particularly limited as long as the conditions for the hydrogenation reaction can be completed, but the practical reaction rate can be obtained.
  • the reaction temperature is usually in the range of 10 to 200 ° C, preferably 30 to 150 ° C, and the reaction pressure is usually in the range of 0.5 to 30 MPa, preferably 1.5 to 15 MPa.
  • reaction time until completion of the hydrogenation reaction varies depending on the amount of catalyst used and the above reaction conditions, but is usually 0.5 to 20 hours.
  • reaction mode of the hydrogenation reaction is not limited to the batch type, and a ruthenium or rhodium supported catalyst can be formed into an appropriate shape and packed in a fixed bed reactor to carry out the flow type.
  • the reaction solution after completion of the hydrogenation reaction is first separated from the catalyst by an appropriate means, and then the solvent is separated by a means such as ordinary distillation, so that the target hydrogenation process can be used as it is.
  • a rosin (a) can be obtained.
  • Hydrogenated hydrogenated epoxy resin (a) used in the present invention The conversion rate is usually 70 to 100%, preferably 80 to 95%. When the hydrogenation rate is low, light absorption or the like, which is a feature of the present invention, is impaired, and when the hydrogenation conditions are too strict to increase the hydrogenation rate, the epoxy value becomes high. In other words, the number of epoxy groups for carboxylation decreases, and the reactivity due to active energy rays decreases.
  • the hydrogenated epoxy resin (a) thus obtained can be reacted with a compound (b) having one or more polymerizable ethylenically unsaturated groups and one or more carboxyl groups in the molecule.
  • the (reactive epoxycarboxylate compound (A) of the present invention can be obtained by (Carboxylate Compound Step).
  • Carboxylic acid compound (b) having one or more polymerizable ethylenically unsaturated groups and one or more carboxyl groups in the molecule is used as an active energy ray to hydrogenated epoxy resin (a). It is made to react in order to give the reactivity to.
  • Specific examples include (meth) acrylic acids, crotonic acid, a cyananocinnamic acid, cinnamic acid, or a reaction product of a saturated or unsaturated dibasic acid and an unsaturated group-containing monoglycidyl compound.
  • acrylic acids include (meth) acrylic acid, j8-styrylacrylic acid, j8-furfurylacrylic acid, (meth) acrylic acid dimer, saturated or unsaturated dibasic acid anhydride and 1 Hemiesters, which are equimolar reactants with (meth) atarylate derivatives having one hydroxyl group in the molecule, equimolars of saturated or unsaturated dibasic acids with monoglycidyl (meth) atalylate derivatives
  • a monocarboxylic acid compound containing one carboxyl group in one molecule such as a half ester as a reactant, and a (meth) acrylate derivative having a plurality of hydroxyl groups in one molecule and a half ester as an equimolar reaction product
  • Carboxyl group in one molecule such as half esters, which are equimolar reaction products of glycidyl (meth) acrylate derivatives with saturated or unsaturated dibasic acids and e
  • (b) is a monocarboxylic acid. Even when carboxylic acid and polycarboxylic acid are used in combination, the molar amount of monocarboxylic acid is expressed in terms of the molar amount of polycarboxylic acid. It is preferred that the molar ratio value is 15 or more.
  • (meth) acrylic acid a reaction product of (meth) acrylic acid and ⁇ -force prolatatone, or cinnamic acid is used in terms of sensitivity when an active energy ray-curable resin composition is used. I can get lost.
  • the charging ratio of the hydrogenated epoxy resin (a) and the carboxylic acid compound (b) in the carboxylate solution process should be appropriately changed depending on the application. That is, when all epoxy groups are carboxylated, unreacted epoxy groups do not remain, so that the storage stability as a reactive carboxylate compound is high. In this case, only the reactivity due to the introduced double bond is used. Further, when the reactive polycarboxylic acid compound (C) is subsequently produced by the acid addition step described later, if an epoxy group remains, the polybasic acid to which the remaining epoxy group is added is added. Since it reacts with the carboxylic acid derived from it and gels during production, or the storage stability deteriorates, it is preferable to carry out the reaction in such a quantitative ratio that no epoxy group remains.
  • the carboxylic acid compound (b) is effective against the hydrogenated epoxy resin (a). If it is in this range where it is preferably ⁇ 120 equivalent%, it is possible to produce under relatively stable conditions. If the charged amount of the carboxylic acid compound (b) is larger than this, it is preferable because excess carboxylic acid compound (b) remains! /.
  • the epoxy group when intentionally left, it is preferably 20 to 90 equivalent% with respect to the carboxylic acid compound (b) strength hydrogen epoxy resin ( a ). When deviating from this range, the effect of composite curing is diminished. Of course, in this case, sufficient attention must be paid to gelation during the reaction and stability over time of the reactive epoxycarboxylate compound (A).
  • the carboxylate solution process can be performed without solvent or diluted with a solvent.
  • the solvent that can be used here is not particularly limited as long as it is inactive to the carboxylate reaction.
  • a solvent when a solvent is used in this step, it can be directly used for the next step with acid without removing the solvent, provided that it is inert to both reactions.
  • solvents that can be used include ketones such as acetone, ethylmethyl ketone, cyclohexanone, and isophorone, and aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and tetramethylbenzene.
  • ketones such as acetone, ethylmethyl ketone, cyclohexanone, and isophorone
  • aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and tetramethylbenzene.
  • Alkyl ethers such as jetyl ether, ethyl butyl ether, ethylene glycol dimethyl ether, ethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, triethylene glycol dimethyl ether, triethylene glycol dimethyl ether, triethylene glycol dimethyl ether, triethylene glycol dimethyl ether Daricol ethers such as tetrahydrofuran, cyclic ethers such as tetrahydrofuran, ethyl acetate, propyl acetate, butyl acetate, methyl acetate sorb acetate, ethyl acetate sorb acetate, butyl Mouth solv acetate, diethylene glycol monomethylenoate acetate, carbitol acetate, diethylene glycol monobutyl ether ester, triethylene glycol monoethyl ether acetate, propylene
  • a catalyst to accelerate the reaction.
  • the amount of the catalyst used is usually 0.1 to 10% by weight based on the reactants.
  • the reaction temperature at that time is 60 to 150 ° C., and the reaction time is preferably 5 to 60 hours.
  • Specific examples of the catalyst which can be used include, for example, triethylamine, benzyldimethylamine, triethylammomulide, benzyltrimethylammo-mubromide, benzyltrimethylammo-um iodide, triphenylphosphine, triphenylstibine, methyltriphenylstibin. , Chromium octoate, zirconium octoate and the like.
  • thermal polymerization inhibitors hydroquinone monomethyl ether, 2-methylhydroquinone, hydroquinone, diphenylpicrylhydrazyl, diphenylamine, 3, 5-di-tert
  • the reactive polycarboxylic acid compound (C) of the present invention is obtained by reacting the reactive epoxycarboxylate compound (A) with a polybasic acid anhydride (c) (acid addition step). Can be manufactured.
  • the acid addition step is performed for the purpose of introducing a carboxyl group via an ester bond by adding a polybasic acid anhydride to the hydroxyl group generated by the carboxylation reaction.
  • any compound having an acid anhydride structure in the molecule can be used. Specific examples thereof include alkali aqueous solution developability, heat resistance, hydrolysis. Succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydro phthalic anhydride, itaconic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, trimellitic anhydride Maleic anhydride is particularly preferred.
  • the reaction for adding the polybasic acid anhydride (c) can be carried out by adding the polybasic acid anhydride (c) to the reaction solution in the carboxylate solution step.
  • the amount added should be changed appropriately according to the application.
  • the reactive polycarboxylic acid compound (C) of the present invention is to be used as an alkali development type resist
  • the finally obtained reactive polycarboxylic acid compound ( It is preferable to charge a calculated value of C) with a solid content acid value (according to JIS K5601-2-1: 1999))) to 100 mg'KOHZg, more preferably 60 to 90 mg'KOHZg.
  • the solid content acid value is smaller than the above range, the alkaline aqueous solution developability of the photosensitive resin composition of the present invention is remarkably lowered, and in the worst case, there is a possibility that development cannot be performed.
  • Min When the acid value exceeds this value, the acid anhydride becomes excessive with respect to the reaction point, and unreacted polybasic acid anhydride remains. Alternatively, the developability becomes too high and patterning may not be possible.
  • the acid addition step it is preferable to use a catalyst to promote the reaction.
  • the amount of the catalyst used is the amount of the reactants, ie, the hydrogenated epoxy resin (a) and the carboxylic acid compound (
  • the amount of the reactive epoxycarboxylate compound (A) obtained from b) and the polybasic acid anhydride (c), optionally with solvent and other components, is usually 0.1 to : LO weight%.
  • the reaction temperature at that time is 60 to 150 ° C., and the reaction time is preferably 5 to 60 hours.
  • catalysts that can be used include triethylamine, benzyldimethylamine, triethylammo-um chloride, benzyltrimethylammo-mubromide, benzyltrimethylammo-mu-iodide, triphenylphosphine, triphenylstibine, methyltriphenyl-stibine, and chromium octoate. And zirconium octoate.
  • the acid addition step can be performed without a solvent or diluted with a solvent.
  • the solvent that can be used here is not particularly limited as long as it is inert to the acid addition reaction.
  • the carboxylate soot step it is inactive to both reactions, and it is directly into the next step acid addition reaction without removing the solvent. Can also be provided.
  • the same solvents as those used in the carboxylate reaction can be used.
  • thermal polymerization inhibitor and the like, it is preferable to use the same ones as exemplified in the carboxylate soot process.
  • the reaction in the acid addition step is terminated when the acid value of the reaction product is within a range of ⁇ 10% of the set acid value while appropriately sampling.
  • the first active energy ray-curable resin composition of the present invention is a resin composition containing the reactive epoxy power lpoxylate compound (A), preferably a reactive epoxycarboxyl.
  • This is a resin composition containing a reactive compound (B) other than (A) and (A).
  • the reactive compound (B) contained in the active energy ray-curable resin composition of the present invention Is a compound which shows reactivity by active energy rays, like the reactive epoxycarboxylate compound (A) of the present invention. These are preferably used to give physical properties before and after curing, depending on the purpose of use.
  • reactive compound (B) examples include so-called reactive monomers such as radical reaction type acrylates and vinyl compounds, cation reaction type epoxy compounds, And reactive oligomers.
  • Examples of the acrylates that can be used include monofunctional (meth) acrylates, polyfunctional (meth) acrylates, and hydrogenated epoxy resin (a) epoxy acrylates other than epoxy acrylates that also induce force. Examples include polyester acrylate, urethane acrylate and the like.
  • Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, polyethylene glycol (meth) acrylate. , Polyethylene glycol (meth) acrylate monomethyl ether, phenyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl ( (Meta) Atarirate.
  • Polyfunctional (meth) acrylates include butanediol di (meth) acrylate, hexane diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, nonanediol all (meth) acrylate, Glycol di (meth) acrylate, diethylene di (meth) acrylate, polyethylene glycol di (meth) acrylate, tris (meth) taroloyl oxyiso cyanurate, polypropylene glycol di (meth) acrylate, adipic acid ester Poxydi (meth) acrylate, bisphenol ethylene oxide di (meth) acrylate, hydrogenated bisphenol ethylene oxide (meth) acrylate, bisphenol di (meth) acrylate, neopentyl glycol hydroxypivalate ⁇ One power Di (meth) attalylate with a rataton, poly (meth) acrylate,
  • Examples of the bull compounds that can be used include bull ethers, styrenes, and other bull compounds.
  • the bull ethers include ethyl vinyl ether, propyl vinylenoatenole, hydroxyethinorevininoatenole, and ethylene glyconoresininoatele.
  • Examples of styrenes include styrene, methyl styrene, ethyl styrene, and hydroxy styrene.
  • Other bully compounds include triallyl isocyanurate, trimethallyl isocyanurate and the like.
  • the cationic reaction type epoxy compound is not particularly limited as long as it is generally a compound having an epoxy group.
  • glycidyl (meth) atalylate methyldaricidinolide ethere, ethyldaricidyl ether, butyldaricidyl ether, bisphenol
  • radical reaction type acrylates and vinyl compounds are preferred, and radical reaction type acrylates are more preferred.
  • the active energy ray-curable resin composition of the present invention is prepared by mixing the reactive epoxy carboxylate compound (A) of the present invention with a reactive compound (B) other than (A). Obtainable. At this time, other components may be appropriately selected according to the application.
  • the reactive epoxy strength ruboxylate compound (A) is usually 97 to 5 weights in the composition. / 0 , preferably 87 to 10% by weight
  • the reactive compound (B) other than (A) is usually 3 to 95% by weight, preferably 3 to 90% by weight. It may contain other ingredients as needed.
  • the active energy ray-curable resin composition of the present invention is easily cured by active energy rays.
  • the active energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X rays, gamma rays, and laser rays, and particle rays such as alpha rays, beta rays, and electron beams.
  • ultraviolet rays, laser beams, visible rays, or electron beams are preferable in view of suitable applications of the present invention.
  • the molding material refers to a material that is molded by putting an uncured composition into a mold and molding an object, and then causing a curing reaction with active energy rays, or an uncured material. It refers to a material used for applications in which the composition is irradiated with a focused light such as a laser to cause a curing reaction to be molded.
  • lens materials such as convex lenses, concave lenses, micro lenses, Fresnel lenses, and lenticular lenses
  • light guide materials used in liquid crystal display devices, sheets and films processed into plates, disks, etc.
  • nanoimprint material that performs fine molding by pressing a finely processed “mold” into an uncured composition
  • sealing material for protecting the element, particularly light emitting diodes, photoelectric conversion Examples
  • sealing materials such as elements.
  • the film-forming material is used for the purpose of coating the surface of a substrate.
  • Specific applications include gravure inks, flexographic inks, silk screen inks, offset inks and other ink materials, hard coats, top coats, overprint varnishes, clear coats and other coating materials, laminating, optical disk and other various adhesives, This includes adhesive materials such as adhesives, solder resists, etching resists, resists for color filters, resists for spacers, resists for micromachines, and the like.
  • Sarakuko is also used to form so-called dry films, in which a film-forming material is temporarily applied to a peelable substrate to form a film, which is then bonded to the originally intended substrate to form a film.
  • the method of forming the film is not particularly limited, but an intaglio printing method such as gravure, a relief printing method such as flexo, a stencil printing method such as silk screen, a lithographic printing method such as offset, a roll coater, a knife
  • intaglio printing method such as gravure
  • a relief printing method such as flexo
  • a stencil printing method such as silk screen
  • a lithographic printing method such as offset
  • a roll coater a knife
  • Various coating methods such as coater, die coater, curtain coater, and spin coater can be arbitrarily adopted.
  • the cured product of the active energy ray-curable resin composition of the present invention refers to a product obtained by irradiating and curing the active energy single-line curable resin composition of the present invention with an active energy beam.
  • the multilayer material of the present invention includes at least two or more layers obtained by forming a film on the substrate and curing the active energy ray-curable resin composition shown in the present invention. Refers to the material that is formed.
  • the optical material of the present invention refers to the present invention! / Used for the purpose of transmitting, refracting, scattering, or diffusing light by using a cured product of the active energy ray-curable resin composition shown in FIG.
  • the active energy ray-curable resin composition of the present invention can be added to the composition, usually up to 70% by weight.
  • Other components include photopolymerization initiators, other additives, coloring materials, and the like. Examples of other components that can be used are shown below.
  • the photopolymerization initiator is appropriately selected depending on the type of active energy ray used in the present invention, the application of the composition, and the processing form.
  • the radical photopolymerization initiator includes, for example, benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether; acetophenone, 2, 2-diethoxy-2- Phenolacetophenone, 2, 2-diethoxy-2-phenyl-phenacetophenone, 1,1-dichloroacetophenone, 2-hydroxy 2-methylphenylpropane 1-one, diethoxyacetophenone, 1-hydroxycyclohexylphene -Lketones, 2-Methyl-1 [4 (Methylthio) phenol] — 2-acetophenones such as 1-morpholinopropane 1-one; 2-Ethylanthraquinone, 2-tert-butylanthraquinone, 2-cloanthraquinone, 2- Anthraquinones such as amylanthraquinone; 2, 4 Jet
  • cationic photopolymerization initiators Lewis acid diazonium salts, Lewis acid monodonium salts, Lewis acid sulfo-um salts, Lewis acid phospho-um salts, and other halogens.
  • Examples of the diazoyuum salt of noreic acid include p-methoxypheninoresidium nitrofluorophosphonate, N, N jetylaminophenol di-umhexafluorophosphonate (Sanshin Kagaku Kogyo) Sanadeid SI-60LZSI-80LZSI-100L, etc.), and as the iodo-um salt of louis acid, diphenyl-ordinium hexafluorophosphonate, diphenyl-um hexafluoroantimonate
  • Examples of the sulfo acid salt of Lewis acid include triphenylsulfohexafluorophosphonate (such as Union Carbide, Cyracure UVI-6990), trisulfosulfohexafluoroantimonate. (For example, Cyracure UVI-6974, manufactured by Union Carbide Co., Ltd.) and the like, and phospho-um salt of louis acid is triphenium
  • halides include 2, 2, 2 trichloro [1-4,-(dimethylethyl) phenol] ethanone (AKZO, Trigonal PI, etc.), 2, 2-dichloro 1 4- (Phenoxyphenol) ethanone (Sandoz, Sandray 1000, etc.), a, a, ⁇ -tribromomethylphenylsulfone (Iron Chemical Co., BMPS, etc.) and the like.
  • Triazine initiators include 2, 4, 6 tris (trichloromethyl) monotriazine, 2, 4 trichloromethyl (4, 1 methoxyphenyl) 6 triazine (Panchim, Triazine A, etc.), 2, 4— Trichloromethyl mono (4,1 methoxystyryl) 6-triazine (Panchim, Tria zine PMS, etc.), 2, 4 Trichloromethyl mono (piprol) 6 Triazine (Panchim, Triazine PP, etc.), 2, 4 Trichloromethylolene (4, 1 methoxynaphthinole) 6 g Riazin (Panchim, Triazine B, etc.), 2— [2,1- (5 ”methylfuryl) ethylidene] — 4, 6 Bis (trichloromethyl) s Triazine (Sanwa Chemical, etc.), 2— (2 , -Furylethylidene) -4,6-bis
  • Examples of the baud rate initiator include NK-3876 and NK-3881 manufactured by Nippon Photosensitizer, and other photoacid generators include 9-phenolacridine, 2,2'bis (o-chloro). Mouth file) 1, 4, 4, 5, 5, 1 tetraphenyl 1, 2, biimidazole (Kurokin Kasei Co., Ltd., biimidazole, etc.), 2,2-azobis (2-aminominopropane) Dihydrochloride (Wako Pure Chemical Industries, V50, etc.), 2, 2azobis [2— (Imidazoline-2-yl) propane] Dihydrochloride (Wako Pure Chemical Industries, VA044, etc.), [Eter 5— 2— 4 — (Cyclopentadecyl) (1, 2, 3, 4, 5, 6, eta)-(methylethyl) -benzene] iron ( ⁇ ) hexafluorophosphonate (Ciba Geigy, Ir
  • an azo initiator such as azobisisobutyryl-tolyl, a peroxide radical initiator such as benzoyl peroxide, and the like may be used in combination.
  • a peroxide radical initiator such as benzoyl peroxide, and the like
  • both radical and cationic initiators may be used in combination.
  • One type of initiator can be used alone, or two or more types can be used in combination.
  • thermosetting catalyst such as melamine, talc, barium sulfate, calcium carbonate, magnesium carbonate, barium titanate, hydroxyaluminum hydroxide, acidic aluminum, silica
  • Use fillers such as clay, thixotropic agents such as Aerosil, lid mouth cyanine blue, phthalocyanine green, titanium oxide, silicone, fluorine-based repellent and antifoaming agents, polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, etc. I can do it.
  • coloring material for example, organic pigments such as phthalocyanine, azo, and quinacridone, and inorganic pigments such as titanium oxide, carbon black, bengara, zinc oxide, barium sulfate, and talc can be used. .
  • oxalates that are not reactive to active energy rays
  • epoxy resins other than (A) phenol resins, urethane resins, polyester resins, ketone formaldehyde resins, cresol resins, xylene resins, diallyl phthalate resins, styrene resins, guanamine resins
  • Natural and synthetic rubbers, acrylic resin, polyolefin resin, and modified products thereof can also be used. When using these, it is preferable to use them in the range of 0 to 40% by weight! /.
  • a volatile solvent may be added in the range of 0 to 40 wt%, preferably 0 to 20 wt% for the purpose of adjusting the viscosity.
  • Solvents that can be used should be appropriately selected according to the intended use. Essentially, the solvent shown in the present invention is used to provide fluidity before processing such as coating and molding, and is premised on volatilization after heating.
  • aromatic hydrocarbon solvents such as toluene, xylene and ethylbenzene, aliphatic hydrocarbon solvents such as hexane, octane and decane, and mixtures thereof, petroleum ether, white gasoline, solvent naphtha, etc. Is mentioned.
  • examples of the alcohol solvent include methanol, ethanol, propanol, butanol, ethylene glycolol, propylene glycol, butylene glycolol, diethylene glycol, glycerin and the like.
  • ester solvent examples include ethyl acetate, propyl acetate, butyl acetate, ethylene glycolenomonomethinoatenoreacetate, diethyleneglycomonomonomethinoatenore monoacetate, and diethyleneglycolenomonoethylenoatenore.
  • ester solvent examples include monoacetate, diethylene glycol monobutyl ether monoacetate, propylene glycol monomethyl methacrylate ether, butylene glycol monomethyl ether acetate.
  • ether solvents include jetyl ether, ethylbutyl ether, ethylenic glycolenomonomethinoatenore, ethylene glycolenomonoethylenoatenore, ethylencoglycolenomonopropenoatenore, Examples thereof include ethylene glycol nole monobutyl etherate, ethylene glycol monobutyl ether, butylene glycol monomethyl ether and the like.
  • a second active energy ray-curable resin composition of the present invention is a resin composition containing the reactive polycarboxylic acid compound (C), preferably a reactive polycarboxylic acid resin.
  • the reactive compound (D) contained in the active energy ray-curable resin composition of the present invention is an active energy ray as in the case of the reactive polycarboxylic acid compound (C) of the present invention. It is a compound that exhibits reactivity. These are preferably used to give physical properties before and after curing depending on the purpose of use.
  • Specific examples of the reactive compound (D) that can be used include radical reaction-type acrylates and vinyl compounds, cationic reaction-type epoxy compounds, and beryl ethers that are sensitive to both. Examples include compounds.
  • Examples of the acrylates that can be used include monofunctional (meth) acrylates, polyfunctional (meth) acrylates, hydrogenated epoxy resin (a) epoxy acrylates other than epoxy acrylates that also induce the force, Examples include polyester acrylate, urethane acrylate and the like.
  • Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, polyethylene glycol (meth) acrylate. , Polyethylene glycol (meth) acrylate monomethyl ether, phenyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl ( (Meta) Atarirate.
  • Examples of the polyfunctional (meth) acrylates include butanediol di (meth) acrylate, hexane diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, nonanediol all (meth) acrylate, Glycol di (meth) acrylate, diethylene di (meth) acrylate, polyethylene glycol di (meth) acrylate, tris (meth) taroloyl oxyiso cyanurate, polypropylene glycol di (meth) acrylate, adipic acid ester Poxydi (meth) acrylate, bisphenol ethylene oxide di (meth) acrylate, hydrogenated bisphenol ethylene oxide (meth) acrylate, bisphenol di (meth) acrylate, neopentyl glycol hydroxypivalate ⁇ One power Rataton with mosquito ⁇ di (meth) Atari rate, reactant dipenta
  • Examples of the bull compounds that can be used include bull ethers, styrenes, and other bull compounds.
  • the bull ethers include ethyl vinyl ether, propyl vinylenoatenole, hydroxyethinorevininoatenole, and ethylene glyconoresininoatele.
  • Examples of styrenes include styrene, methyl styrene, ethyl styrene and the like.
  • Other bully compounds include triallyl isocyanurate, trimethallyl isocyanurate and the like.
  • the cation-reactive epoxy compounds are not particularly limited as long as they are generally compounds having an epoxy group.
  • radical reaction type acrylates are most preferable.
  • carboxylic acid and epoxy group react with each other. It is necessary to make it a mixed type.
  • the reactive polycarboxylic acid compound (C) of the present invention may contain the above-mentioned reactive compound.
  • (D) can be mixed to obtain the active energy ray-curable resin composition of the present invention.
  • other components may be appropriately selected according to the application.
  • the active energy ray-curable resin composition of the present invention comprises 97 to 5% by weight, preferably 87 to: LO% by weight, of reactive polycarbonate compound (C) in the composition.
  • the reactive compound (0) contains 3 to 95% by weight, more preferably 3 to 90% by weight. Other components may be included as needed.
  • the active energy ray-curable resin composition of the present invention is easily cured by active energy rays.
  • the active energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X rays, gamma rays, and laser rays, and particle rays such as alpha rays, beta rays, and electron beams.
  • ultraviolet rays, laser beams, visible rays, or electron beams are preferable in view of suitable applications of the present invention.
  • the molding material refers to a material in which an uncured composition is put in a mold, or a mold is pressed to form an object, and then a curing reaction is caused by active energy rays to form, or the material is uncured. It is a material used for applications in which the composition is irradiated with a focused light such as a laser to cause a curing reaction.
  • Specific applications include lens materials such as convex lenses, concave lenses, microlenses, full-lens lenses, lenticular lenses, light guide materials used in liquid crystal display devices, sheets and films processed into plates, A so-called nanoimprint material that performs fine molding by pressing a “mold” that has been microfabricated into an uncured composition such as a disk, as well as a sealing material for protecting the element, particularly light-emitting diodes and photoelectric conversion elements Examples of suitable applications include sealing materials.
  • the film-forming material is used for the purpose of coating the surface of a substrate.
  • Specific applications include gravure inks, flexographic inks, silk screen inks, offset inks and other ink materials, hard coats, top coats, overprint varnishes, clear coats and other coating materials, laminating, optical disk and other various adhesives, Adhesive materials such as adhesives, solder resist, etching resist, color filter resist This corresponds to resist materials such as resists for spacers and resists for micromachines.
  • Sarakuko temporarily coats a film-forming material on a peelable substrate, turns it into a film, and then pastes it on the target substrate to form a film. Applicable to the material.
  • the introduction of the carboxyl group of the reactive polycarboxylic acid compound (C) increases the adhesion to the substrate, and therefore, it is used as an application for coating a plastic substrate or a metal substrate. Is preferred.
  • Sarako is also preferred to use it as a resist material composition, taking advantage of the unreacted reactive polycarboxylic acid compound (C) that is soluble in an aqueous alkali solution.
  • the resist material composition means that a film layer of the composition is formed on a substrate, and then an active energy ray such as ultraviolet rays is partially irradiated to irradiate the irradiated portion and unirradiated portion.
  • an active energy ray such as ultraviolet rays is partially irradiated to irradiate the irradiated portion and unirradiated portion.
  • This refers to an active energy ray-sensitive composition that draws using the physical differences in the part. Specifically, it is a composition used for the purpose of removing an irradiated part or an unirradiated part by some method, for example, by dissolving with an alkaline solution or the like and drawing.
  • the method of forming the film is not particularly limited, but an intaglio printing method such as gravure, a relief printing method such as flexo, a stencil printing method such as silk screen, a lithographic printing method such as offset, a roll coater, a knife
  • intaglio printing method such as gravure
  • a relief printing method such as flexo
  • a stencil printing method such as silk screen
  • a lithographic printing method such as offset
  • a roll coater a knife
  • coating methods such as coater, die coater, curtain coater, and spin coater can be arbitrarily adopted.
  • the cured product of the active energy ray-curable resin composition of the present invention refers to a product obtained by irradiating and curing the active energy single-line curable resin composition of the present invention with active energy rays.
  • the multilayer material of the present invention has at least two or more layers that can be obtained by film-forming and curing the active energy ray-curable resin composition shown in the present invention on a substrate. Refers to material.
  • the cured product of the present invention is used as an optical material, that is, a material intended to transmit, refract, scatter, or diffuse light, it is transparent and has little yellowing.
  • the photopolymerization initiator is appropriately selected depending on the type of active energy ray used in the present invention, the use of the composition, and the processing form.
  • radical photopolymerization initiators for example, benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether; acetophenone, 2, 2-diethoxy-2- Phenolacetophenone, 2, 2-diethoxy-2-phenyl-phenacetophenone, 1,1-dichloroacetophenone, 2-hydroxy 2-methylphenylpropane 1-one, diethoxyacetophenone, 1-hydroxycyclohexylphene -Luketones, 2-Methyl-1 [4 (Methylthio) phenol]-2-Mortholinopropane 1-one and other acetophenones; 2-Ethylanthraquinone, 2-t-Butylanthraquinone, 2-Chloroanthraquinone, 2- Anthraquinones such as amylanthraquinone; 2,
  • cationic photopolymerization initiators include Lewis acid diazonium salts, Lewis acid conjugated salts, Lewis acid sulfonium salts, Lewis acid phosphonium salts, and other halogens. Compounds, triazine-based initiators, borate-based initiators, and other photoacid generators.
  • the diazonium salt of noreic acid includes p-methoxypheninoresinazofluorophosphonate, N, N detyaminophenol diazo-hexafluorophosphonate (Sanshin Kagaku Kogyo) Sanadeid SI-60LZSI-80LZSI-100L, etc.), and as the iodo-um salt of Louisic acid, diphenyl-hexonium hexafluorophosphonate, diphenyl-um hexafluoroantimonate Lewis acid sulfone
  • the salt include trisulfol sulfo-hexafluorophosphonate (from Union Carbide, Cyracure UVI-6990, etc.), triphenylsulfo hexahexafluoroantimonate (from Union Carbide, Cyracure UVI-6974, etc.) ),
  • the phospho-um salt of Lewis acid include triphenyl
  • halides include 2, 2, 2 trichloro [1-4,-(dimethylethyl) phenol] -ethanone (AKZO, Trigonal PI, etc.), 2, 2-dichloro 1 —4— (Phenoxyphenyl) monoethanone (Sandoz, Sandray 1000, etc.), a, a, ⁇ -tribromomethylphenol sulfone (Iron Chemical Co., BMPS, etc.), etc.
  • Triazine initiators include 2, 4, 6 tris (trichloromethyl) monotriazine, 2, 4 trichloromethyl (4, 1 methoxyphenol) 6-triazine (Panchim, Triazine A, etc.), 2, 4 Trichloromethyl mono (4'-methoxystyryl) 6 Triazine (Panchim, Triazine PMS, etc.), 2, 4 Trichloromethyl mono (piprol) 6 Triazine (Pan chim, Triazine PP, etc.), 2, 4 Trichloromethylolene (4,1 methoxynaphthinole)-6 Triazine (Panchim, Triazine B, etc.), 2— [2,1 (5,1 methylfuryl) ethylidene] —4,6 bis (trichloromethyl) —S Triazine (manufactured by Sanwa Chemical Co., Ltd.), 2-(2, 1-furylethylidene) 4, 6 bis (trich
  • Examples of the baud rate photopolymerization initiators include NK-3876 and NK-388 1 manufactured by Nippon Senshoku Dye Co., Ltd., and other photoacid generators include 9-phenyllacridin, 2, 2'bis.
  • an azo initiator such as azobisisobutyryl-tolyl, a peroxide-based radical initiator that is sensitive to heat, such as benzoyl peroxide, and the like may be used in combination.
  • a peroxide-based radical initiator that is sensitive to heat such as benzoyl peroxide, and the like
  • both radical and cationic initiators may be used in combination.
  • One type of initiator can be used alone, or two or more types can be used in combination.
  • thermosetting catalysts such as melamine, talc, barium sulfate, calcium carbonate, magnesium carbonate, barium titanate, hydroxyaluminum hydroxide, acidic aluminum, silica, Use clay, thixotropic agents such as Aerosil, lid mouth cyanine blue, phthalocyanine green, titanium oxide, silicone, fluorine-based repellents and antifoaming agents, polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, etc. I can do it.
  • thermosetting catalysts such as melamine, talc, barium sulfate, calcium carbonate, magnesium carbonate, barium titanate, hydroxyaluminum hydroxide, acidic aluminum, silica
  • Use clay thixotropic agents such as Aerosil, lid mouth cyanine blue, phthalocyanine green, titanium oxide, silicone, fluorine-based repellents and antifoaming agents
  • polymerization inhibitors such as hydroquinone, hydroquinone mono
  • pigment materials include organic pigments such as phthalocyanine-based, azo-based, and quinacridone-based materials, inorganic pigments such as titanium oxide, carbon black, bengara, zinc oxide, barium sulfate, and talc; And extender pigments can be used.
  • organic pigments such as phthalocyanine-based, azo-based, and quinacridone-based materials
  • inorganic pigments such as titanium oxide, carbon black, bengara, zinc oxide, barium sulfate, and talc
  • extender pigments can be used.
  • resins having no reactivity to active energy rays such as other epoxy resins, phenol resins, urethane resins, polyester resins, ketone formaldehyde resins Fats, cresol resins, xylene resins, diallyl phthalate resins, styrene resins, guanamine resins, natural and synthetic rubbers, acrylic resins, polyolefin resins, and modified products thereof can also be used. These are preferably used in the range of up to 40% by weight.
  • a volatile solvent may be added within a range of 40 wt%, more preferably 20 wt%.
  • Epoxy equivalent Measured by the method described in JIS—K7236: 2001.
  • phenol / biphenol-novolak-type epoxy resin (trade name; NC-3000, manufactured by Nippon Kayaku Co., Ltd .; epoxy equivalent: 276gZeq) 50 parts, tetrahydrofuran 50 parts, ruthenium Z carbon catalyst 6 parts (ENy Chem Cat Made by the company; ruthenium loading 5 wt%, water-containing product), the inside of the autoclave was purged with nitrogen, and then purged with hydrogen. Then, the contents were reacted for 12 hours at a hydrogen pressure of 8 MPa and a reaction temperature of 110 ° C. while stirring.
  • the resin solution was partially taken out for a life test, and then the reaction solution was poured into 2 liters of hexane to precipitate and purify the resin, and dried under reduced pressure to take out the resin.
  • Example 2-1 and Comparative Examples 2-1 and 2-2 Preparation and evaluation of active energy ray-curable resin composition (electron-ray-curable coating) Composition)
  • Example 11 or Comparative Example 11 20 g of the reactive epoxycarboxylate compound (A) synthesized above and 10 g of tripropylene glycol ditalylate, which is a radical reaction type reactive compound (B), were dissolved by heating. A coating composition was prepared.
  • the cured coating film was irradiated with light for 1000 hours using a carbon arc weather meter, and a light resistance test was conducted. Thereafter, the light transmittance at 500 nm was measured, and the transmittance ratio after the light resistance test Z was determined.
  • Example 1-1 20 g of the reactive epoxycarboxylate compound (A) synthesized in the above and 10 g of limonene dioxide, which is a cation-reactive reactive compound (B), were dissolved by heating. Add “Irgacure 184" as an initiator to lg, 2, 2, 1bis (o black mouth), 4, 4,, 5, 5, tetrafluoro 1,2 biimidazole 0.5g and dissolve well. Thus, a molding material was obtained.
  • the prepared material is poured into a mold coated with a mold release agent, sealed with quartz glass coated with the mold release agent in the same manner, and the upper force is 3000 mjZcm with a metal nitride lamp. Irradiated at a dose of 2 . Thereafter, the cured molded product was taken out, a test piece having a thickness of 0.5 mm and 40 mm ⁇ 15 mm was prepared, and its Young's modulus was measured.
  • Example 3-1 Example 1-1-7 2 O M Pa
  • Example 3-2 Example 1-2 8 0 0 O M Pa
  • Example 3-3 Sub-row 1-3 9 5 O MP a
  • Example 3-4 Example 1-4 3 8 O MP a
  • Polyhydrophthalic anhydride as polybasic acid anhydride (c) was added to the reaction solution obtained in 1) Add propylene glycol monomethyl ether monoacetate (abbreviated as THPA) in the amount shown in Table 4 and 70 wt% solids as a solvent, and heat to 100 ° C for additional reaction.
  • THPA propylene glycol monomethyl ether monoacetate
  • the reaction was terminated without acid addition only by carrying out the carboxylate reaction using 192 g of the hydrogenated epoxy resin (a) prepared in Synthesis Example 1 in the same manner as in Example 4-1. After completion of the reaction, the solid content was measured and found to be 70% by weight.
  • Example 4 1 4 36 g. 0) 36 g (50) 49
  • Example 4 5 36 g o. 0) 20 g (30) 30
  • Examples 4 to 4 5 or Comparative Examples 4 2 and 4 3 Reactive polysynthesized rubonic acid compound (C) 20 g, dipentaerythritol hexaacrylate as reactive compound (D) 10 g, UV reaction As a mold initiator, 1.5 g of “Irgacure 184” was dissolved by heating to prepare an alkali development resist composition.
  • this was coated on a quartz glass plate with a hand applicator so that the film thickness at the time of drying was 20 microns, and the solvent was dried in an electric oven at 80 ° C for 30 minutes.
  • a multilayer material was obtained by irradiating and curing ultraviolet rays with an irradiation dose of lOOOmi using an ultraviolet vertical exposure apparatus (Oak Seisakusho) equipped with a high-pressure mercury lamp.
  • an ultraviolet vertical exposure apparatus (Oak Seisakusho) equipped with a high-pressure mercury lamp.
  • a multilayer material was obtained that was similarly vertically exposed and turned.
  • the entire surface exposed without being covered with a mask pattern was measured for light transmittance at 500 nm, and then subjected to a light resistance test for 1000 hours using a pheedometer, and a light resistance test was performed. After the light resistance test, the light transmittance at 500 nm was measured again, and the transmittance after the light resistance test was conducted. The ratio of the transmittance before Z was measured, and the light resistance is shown in Table 5.
  • Example 5-2 Example 4-2-9 2 6 0 seconds
  • Example 5 _ 3 Example 4-3 0.9 6 30 seconds
  • Comparative Example 5-1 Comparative Example 4-2 2 0.2 4 3 seconds
  • Comparative Example 5-2 Comparative Example 4-3 0.94 Development not possible
  • the cured product of the active energy ray-curable resin composition of the present invention is hydrogenated.
  • Comparative Example 5-1 which used an epoxy resin that was not used, a significant improvement in light resistance was observed.
  • no yellowing was observed after the light resistance test.
  • Comparative Examples 5-1 to 5-2 yellowing was observed after the light resistance test. It was.
  • the cured product of Comparative Example 5-2 using a reactive epoxycarboxylate compound was not developable, and the cured product of the present invention showed good developability and was relatively good. Acrylic acid addition amount and acid addition amount exhibiting resist suitability were shown.
  • Example 6 and Comparative Example 6— 1 to 6—2 Hardness measurement of cured product (electron beam curable coating composition)
  • a multilayer material was obtained by irradiating and curing an electron beam with an acceleration voltage of 100 kV and an irradiation dose of lOOkGy using an electron beam irradiation device (EZ CURE manufactured by Iwasaki Electric Co., Ltd.). Further, the hardness of the cured film was measured by a pencil hardness test method (JIS K5600: 1999). In addition, the adhesion to the substrate was evaluated by a cross-cut cello tape (registered trademark) peel test (JIS K5600-5-6: 1999).
  • Example 6 Difficult example 4 1 5 3 0 4 H 1 0 0/1 0 0 0 Ratio 6—1 Specific paste 4—1 3 1 H 1 0 0/1 0 0 Ratio shelf 6—2 1: ⁇ 4-3 0. 5 4 H 2 0/2 0 0
  • the active energy ray-curable resin composition containing the reactive epoxycarboxylate compound (A) of the present invention provides a cured product that does not deteriorate even when irradiated with light and has high toughness.
  • it can be used for applications as a molding material and a film-forming material because it is mainly transparent and has good light resistance.
  • it can be suitably used for applications such as optical parts such as lenses, paints, films, and resists.
  • the reactive polycarboxylic acid compound (C) of the present invention is a reactive polycarboxylic acid compound that does not deteriorate even when irradiated with light and can be alkali-developed.
  • it can be used particularly as a resist that can be developed with an alkali, because it is mainly transparent and has good light resistance.
  • it can be suitably used as a molding material and a film-forming material as applications that make use of this characteristic, specifically, optical parts such as lenses, paints, and films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

反応性エポキシカルボキシレートイ匕合物及びそれを用いた活性エネルギ 一線硬化性樹脂組成物
技術分野
[0001] 本発明は、透明性に優れた反応性エポキシカルボキシレートイ匕合物及びそれを含 有する組成物並びにその硬化物に関する。さらに本発明は、紫外線領域を含む光の 透明性 (透過性)に優れ、長時間の光線暴露においても透明性 (透過性)の低下及 び変色が少な!/、、 V、わゆる耐光性の高 、反応性ポリカルボン酸化合物及びそれを含 有する組成物並びにその硬化物に関する。
背景技術
[0002] 従来から、例えばエポキシアタリレート等に代表される反応性エポキシカルボキシレ ート化合物は、硬化物の硬さゃ基材への密着性、高い熱安定性、寸法安定性に優 れる化合物として広く用いられてきた。これらは大きく脂肪族系反応性エポキシカル ボキシレートイ匕合物と芳香族系反応性エポキシカルボキシレートイ匕合物とに分類され る。
[0003] ビスフエノール型エポキシアタリレート及びノボラック型エポキシアタリレートに代表さ れる芳香族系エポキシカルボキシレートイ匕合物は、高い熱安定性を有し、強靭な硬 化物を提供するが、芳香族であるがゆえに、反応性エポキシカルボキシレートイ匕合物 本体の着色、また硬化物の光照射による黄変色、及び紫外線の吸収が見られる。従 つて、このような面での良好な特性が求められる用途 (例えば、光学関連材料)への 展開は困難であった。
[0004] また、脂肪族系エポキシアタリレートに代表される脂肪族反応性エポキシカルボキ シレート化合物は、柔軟で、金属、プラスチックフィルム等への密着性に優れ、また透 明で着色もなぐ光による黄変色もなぐまた紫外線が吸収されることによる不具合も ない。しかし、これらは、硬化物の強靭性に優れているとは言い難力つた。
[0005] また、これらの中間をなすものとして従来、水素添加ビスフエノール型エポキシアタリ レート等も用いられてきたが、これらはエポキシ榭脂骨格の強靭性が不足しており、さ らなる強靭な硬化物を与える榭脂骨格を持った反応性ィ匕合物が求められていた。具 体的には、発光素子の封止材等の用途展開も行われているが、必ずしも満足できる 機能を有するものではな力つた。
[0006] 具体的に例示をすれば、飽和環状構造を有するエポキシアタリレートを用いて光学 レンズ用榭脂組成物を得る試みが開示されている (特許文献 1参照)。しかしながら、 ここで開示されて 、る一般的なエポキシアタリレートイ匕合物では、レンズの強度を満 足させることは出来な力つた。
[0007] さらには、エポキシアタリレートを用いて凹凸パターンを形成させる方法が開示され ている(特許文献 2参照)。し力しながらここにおいて用いられる一般的なエポキシァ タリレートでは、高い強度に対する要求を満たすことは出来ない。
[0008] このほかにも、水素添加芳香族エポキシ榭脂をもちいて、素子の封止材料とする方 法が開示されている (特許文献 3、 4参照)。しかしこれらは硬化時間が長いという欠 点がめった。
[0009] また、後記一般式(1)で表される特定骨格を有するフ ノールイ匕合物力も誘導され るエポキシ化合物が、耐熱性、耐湿性、高い機械的強度を発揮することは公知であ る(特許文献 5参照)。さらに、それらの反応性カルボキシレート化合物及びその用途 に関する技術も公知である (特許文献 6参照)。しかしながら、化合物中の芳香環が 水素添加されていないこれらの技術においては、芳香環による光の吸収により、紫外 線の吸収や経時的な黄変色が見られる。また、該文献にはその水素添加物及びそ のエポキシアタリレート等に関する技術は開示されていない。
[0010] また、例えばエポキシアタリレートイ匕合物等に多塩基酸無水物を付加反応させて得 られる反応性ポリカルボン酸化合物は、硬化物の硬さゃ基材への密着性、高い熱安 定性、寸法安定性に優れる化合物として広く用いられてきた。特に電気、電子部品 用途におけるレジスト材料においては、酸変性することで、アルカリ水溶液による現 像性を付与させたィ匕合物として広く一般的に用いられている (特許文献 7〜8)。
[0011] これらのうち、ビスフエノール型エポキシアタリレート及びノボラック型エポキシアタリ レートに代表される芳香族系エポキシ榭脂から誘導される反応性ポリカルボン酸ィ匕合 物は、高い熱安定性を有し、強靭な硬化物を提供する力 反応性ポリカルボン酸ィ匕 合物自身が着色し、また硬化物は光照射により黄変し、紫外線の吸収が見られるた め、例えば光学関連材料的な機能を求められる場合や、経時的な黄変色が忌避さ れるような用途への展開は困難であった。
[0012] また、レジスト材料として解像性、感度等の特性を改良することを目的に、従来、水 素添加ビスフエノール型エポキシアタリレート等力 誘導される反応性ポリカルボン酸 化合物等も用いられてきた (特許文献 9〜10)。しかしながらこれらはエポキシ榭脂骨 格の強靭性が不足しており、さらなる強靭な硬化物を与える榭脂骨格を持った反応 性ィ匕合物が求められていた。
特許文献 1 :特開 2000— 281725号公報
特許文献 2 :特開 2005— 10230号公報
特許文献 3:特開 2003— 82062号公報
特許文献 4:特開 2003 - 73452号公報
特許文献 5:特許第 2952094号公報
特許文献 6:特開平 11― 140144号公報
特許文献 7:特公昭 56— 40329号公報
特許文献 8:特公昭 57— 45795号公報
特許文献 9:特許第 3190251号公報
特許文献 10:特許第 3072811号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明は、光の照射によっても劣化がなぐかつ耐熱性、耐湿性、強靭性のバラン スに優れた硬化物を与える反応性エポキシカルボキシレートイ匕合物を提供することを 目的とする。さらに、本発明は、耐熱性、耐湿性、強靭性のバランスに優れ、かつ耐 光性にも優れ、黄変しな 、硬化物を与える反応性ポリカルボン酸化合物を提供する ことを目的とする。
課題を解決するための手段
[0014] 本発明者らは前記課題を解決すベぐ鋭意研究を行った結果、特定の骨格を有す るエポキシ榭脂から誘導される反応性エポキシカルボキシレートイ匕合物及び反応性 ポリカルボン酸ィ匕合物が上記の特性のバランスに優れることを見出して、本発明に到 達した。
[0015] 即ち、本発明は、
(1)一般式 (1)
[0016] [化 1]
Figure imgf000006_0001
(式中、 は相互に同一でも異なっていてもよぐ水素原子、ハロゲン原子または炭 素数 1〜4のアルキル基を表し、 mは 1〜4の整数を、また nは平均値で 1〜6の正数 をそれぞれ表す。 )
で表されるエポキシ榭脂の芳香環の核水素化物である水素化エポキシ榭脂 (a)と、 分子中に一個以上の重合可能なエチレン性不飽和基及び一個以上のカルボキシル 基を有する化合物 (b)とを反応させて得られる反応性エポキシカルボキシレートイ匕合 物 (A)、
(2) Rが全て水素原子である前項(1)に記載の反応性エポキシカルボキシレートイ匕 合物 (A)、
(3)前項(1)又は(2)に記載の反応性エポキシカルボキシレートイ匕合物 (A)を含有 することを特徴とする活性エネルギー線硬化型榭脂組成物、
(4)前項(1)又は(2)に記載の反応性エポキシカルボキシレートイ匕合物 (A)及び (A )以外の反応性化合物 (B)を含有することを特徴とする活性エネルギー線硬化型榭 脂組成物、
(5) (A)以外の反応性ィ匕合物 (B)が、アタリレート類及びビニルイ匕合物類力もなる群 カゝら選ばれる 1種以上であることを特徴とする前項 (4)に記載の活性エネルギー線硬 化型榭脂組成物、
(6)成形用材料である前項(3)な 、し (5)の 、ずれか一項に記載の活性エネルギー 線硬化型榭脂組成物、 (7)皮膜形成用材料である前項(3)な 、し (5)の 、ずれか一項に記載の活性エネル ギ一線硬化型榭脂組成物、
(8)前項(3)な 、し (7)の 、ずれか一項に記載の活性エネルギー線硬化型榭脂組 成物の硬化物、
(9)前項 (8)に記載の硬化物の層を有する多層材料、
(10)前項 (8)に記載の硬化物力 なる光学材料、
(11)一般式 (1)
[化 2]
Figure imgf000007_0001
(式中、 は相互に同一でも異なっていてもよぐ水素原子、ハロゲン原子または炭 素数 1〜4のアルキル基を表し、 mは 1〜4の整数を、また nは平均値で 1〜6の正数 をそれぞれ表す。 )
で表されるエポキシ榭脂の芳香環を核水素化して得られる水素化エポキシ榭脂 (a) と、分子中に一個以上の重合可能なエチレン性不飽和基及び一個以上のカルボキ シル基を有する化合物 (b)とを反応させて得られる反応性エポキシカルボキシレート 化合物 (A)に、多塩基酸無水物(c)を反応させて得られる反応性ポリカルボン酸ィ匕 合物 (C)、
(12) Rが全て水素原子である前項(11)に記載の反応性ポリカルボン酸ィ匕合物(C)
( 13)前項( 11)又は( 12)に記載の反応性ポリカルボン酸ィ匕合物(C)を含有すること を特徴とする活性エネルギー線硬化型榭脂組成物、
( 14)前項( 11)又は( 12)に記載の反応性ポリカルボン酸ィヒ合物(C)及び (C)以外 の反応性化合物 (D)を含有することを特徴とする活性エネルギー線硬化型榭脂組成 物、 (15) (C)以外の反応性ィ匕合物 (D)が、アタリレート類であることを特徴とする前項(1 4)に記載の活性エネルギー線硬化型榭脂組成物、
(16)成形用材料である前項( 13)ないし( 15)の 、ずれか一項に記載の活性エネル ギ一線硬化型榭脂組成物、
( 17)皮膜形成用材料である前項( 13)ないし( 16)の 、ずれか一項に記載の活性ェ ネルギ一線硬化型榭脂組成物、
(18)レジスト材料組成物である前項( 13)ないし( 17)の 、ずれか一項に記載の活性 エネルギー線硬化型榭脂組成物、
( 19)前項( 13)又は( 18)の 、ずれか一項に記載の活性エネルギー線硬化型榭脂 組成物の硬化物、
(20)前項( 19)に記載の硬化物の層を有する多層材料、
に関する。
発明の効果
[0018] 本発明の反応性エポキシカルボキシレートイ匕合物を含有する活性エネルギー線硬 化型榭脂組成物を硬化させた硬化物は、耐熱性、耐湿性のノ ランスに優れているだ けではなぐ高い透明性を有し、光による劣化が少ない。このことから、レンズ、導光 板等の成形材料、光学ディスク用のハードコート、フィルム、液晶ディスプレー若しく は CCD用カラーフィルタ等のレジスト用バインダー等の皮膜形成用材料に好適であ る。また、活性エネルギー線によって速やかに硬化するために、高い生産性を発揮さ せることが出来る。
[0019] さらに、本発明の反応性ポリカルボン酸化合物を含む組成物を硬化させた硬化物 は、耐熱性、耐湿性のバランスに優れているだけではなぐ高い透明性を有し、光に よる劣化が少ない。このことから、特に基材への密着性が優れた皮膜形成用材料、ま たカルボン酸によりアルカリ水可溶性を生力して現像させる、いわゆるレジスト用の素 材としても好適である。さらに具体的には、エッチング用またはソルダーレジスト用材 料、レンズ、光学ディスク用のハードコート、フィルム、液晶ディスプレーや CCD用力 ラーフィルタ等のレジスト用バインダー、光導波路等の光伝導材料等の皮膜形成用 材料に好適である。 発明を実施するための最良の形態
[0020] 本発明の反応性エポキシカルボキシレートイ匕合物 (A)の出発物質となる水素化工 ポキシ榭脂(a)は、前記式(1)で表されるエポキシ榭脂において、その芳香環を、核 水素化することによって得られるが、芳香環が水素化されたものであれば、他の方法 で得られるものでも使用出来る。
[0021] 一般式(1)で表されるエポキシ榭脂は、特許文献 5に記載の方法に準じて得ること ができる。また、市販品(商品名: NC— 3000、式(1)における Rが全て水素原子で あり、 n= l . 8である榭脂、日本ィ匕薬株式会社製)を入手することも可能である。
[0022] 一般式(1)に表される nの値は、ゲル透過クロマトグラフィー(GPC)により求められ る数平均分子量力も算出することができる。 nの値が 1より小さい場合には、本構造の 優位点である樹脂の耐熱性、耐湿性、高い機械的強度等の特性が充分に発揮され ない。また 6より大きい場合には、分子量が大きすぎ、粘度等、榭脂製造上の観点か ら好適ではない。
[0023] 一般式(1)に表される官能基 Rは、使用される用途に応じて適宜選択されるべきも のである。例えば、無置換基である水素原子、メチル基、ェチル基、プロピル基、ブ チル基、ビニル基等、炭素数が 1〜4までの直鎖、または分岐状の飽和、及び不飽和 炭化水素基、クロル基、ブロム基、ョード基等のハロゲン系官能基等が示される。これ らのうち、本発明においては Rが全て水素原子であるものが好ましい。
[0024] 一般式(1)で表されるグリシジルエーテルィ匕された芳香環における好ま 、結合位 置は、特に限定されない。しかしながら、本骨格の製造法上の都合から、グリシジル エーテル基の結合部位に対して、オルト位若しくはパラ位に結合して ヽる場合が大 半を占める。
[0025] 本発明で使用される水素化エポキシ榭脂 (a)は、通常、水素添加触媒の存在下に 前記一般式(1)のエポキシ榭脂と水素ガスとを接触させて核水素化することにより得 られる。使用される水素添加触媒は、公知の白金族元素を活性成分とする触媒を使 用することができる。白金族元素の中ではルテニウムまたはロジウムが好ましい。特に 、炭素系担体に活性成分を担持して成る触媒が好ましい。炭素系担体としては、活 性炭、グラフアイト、カーボンブラック等が挙げられる。 [0026] これらの触媒は含浸法などの公知の方法で調製したものを使用することができる。 また、水素化反応用触媒として市販されているものをそのまま使用することもできる。 市販品としては、例えば「5%ルテニウム Zカーボン触媒」、「5%ロジウム Zカーボン 触媒」(いずれもェヌィーケムキャット社製)等が挙げられる。触媒の使用量は特に限 定されないが、触媒量が少ないと反応に長時間を要することになるため、通常は式( 1)のエポキシ榭脂に対しルテニウムまたはロジウムの重量比で 0. 05重量%以上が 好ましぐ 0. 1〜2重量%の範囲がさらに好ましい。
[0027] 水素化反応は通常溶媒中で行う。使用できる溶媒としては、水素化に対して安定 で触媒に対し毒性のないエーテル系溶媒、エステル系溶媒、アルコール系溶媒、パ ラフィン系溶媒などが挙げられる。具体的には、ジェチルエーテル、イソプロピルエー テル、メチルー t ブチルエーテル、エチレングリコールジメチルエーテル、テトラヒド 口フラン、ジォキサン、ジォキソラン等の鎖状または環状のエーテル類、酢酸ェチル、 酢酸ブチル等のエステル類、エチレングリコールメチルエーテルアセテート等のエー テルエステル類等が好適に使用される。これらの溶媒は、単独であるいは 2種以上を 使用することも出来る。溶媒の使用量は特に限定されないが、通常は式(1)のェポキ シ榭脂に対して溶媒が 10〜: LOOO重量%、好ましくは 20〜500重量%の範囲である
[0028] 水素化反応の条件も一般的な条件でよぐ水素化反応の反応温度および反応圧 力は水素化反応が完結できる条件であれば特に限定されないが、実用的な反応速 度が得られる条件として、反応温度が通常 10〜200°C、好ましくは 30〜150°Cの範 囲であり、反応圧力が通常 0. 5〜30MPa、好ましくは 1. 5〜15MPaの範囲である。
[0029] 水素化反応が終了するまでの反応時間は、触媒の使用量や上記の反応条件によ つても異なるが、通常は 0. 5〜20時間である。また、水素化反応の反応形式はバッ チ式に限定されるものではなぐルテニウムまたはロジウム担持触媒を適当な形状に 成型して固定床反応器に充填して流通式で行うこともできる。
[0030] 水素化反応が終了した後の反応液は、まず、適当な手段により触媒を分離し、次い で通常の蒸留等の手段により溶媒を分離すればそのまま目的物とする水素化工ポキ シ榭脂 (a)を得ることができる。本発明で用いられる水素化エポキシ榭脂 (a)の水素 化率は通常 70〜100%、好ましくは 80〜95%である。水素化率が低い場合には、 本発明の特徴である光吸収等が損なわれ、また水素化率を高めるために水素化条 件を厳しくし過ぎると、エポキシ価が高くなつてしまう。即ち、カルボキシレート化する ためのエポキシ基が減少してしま 、、活性エネルギー線による反応性が低下してしま
[0031] こうして得られた水素化エポキシ榭脂 (a)に、分子中に 1個以上の重合可能なェチ レン性不飽和基及び一個以上のカルボキシル基を有する化合物 (b)を反応させるこ と(カルボキシレートイ匕工程)によって、本発明の反応性エポキシカルボキシレートイ匕 合物 (A)を得ることができる。
[0032] カルボキシレートイ匕工程について詳細に説明する。
[0033] 分子中に 1個以上の重合可能なエチレン性不飽和基及び一個以上のカルボキシ ル基を有するカルボン酸ィ匕合物 (b)は、水素化エポキシ榭脂(a)に活性エネルギー 線への反応性を付与させるために反応させるものである。具体的には、例えば (メタ) アクリル酸類やクロトン酸、 a シァノ桂皮酸、桂皮酸、或いは飽和または不飽和二 塩基酸と不飽和基含有モノグリシジル化合物との反応物が挙げられる。上記にぉ 、 てアクリル酸類としては、例えば (メタ)アクリル酸、 j8—スチリルアクリル酸、 j8—フル フリルアクリル酸、(メタ)アクリル酸二量体、飽和または不飽和二塩基酸無水物と 1分 子中に 1個の水酸基を有する (メタ)アタリレート誘導体との当モル反応物である半ェ ステル類、飽和または不飽和二塩基酸とモノグリシジル (メタ)アタリレート誘導体類と の当モル反応物である半エステル類等の一分子中にカルボキシル基を 1個含むモノ カルボン酸化合物、さらに一分子中に複数の水酸基を有する (メタ)アタリレート誘導 体と当モル反応物である半エステル類、飽和または不飽和二塩基酸と複数のェポキ シ基を有するグリシジル (メタ)アタリレート誘導体類との当モル反応物である半エステ ル類等の一分子中にカルボキシル基を複数有するポリカルボン酸ィヒ合物等が挙げら れる。
[0034] これらのうち、水素化エポキシ榭脂(a)とカルボン酸ィ匕合物 (b)との反応の安定性を 考慮すると、(b)はモノカルボン酸であることが好ましぐモノカルボン酸とポリカルボ ン酸を併用する場合でも、モノカルボン酸のモル量 Zポリカルボン酸のモル量で表さ れるモル比の値が 15以上であることが好まし 、。
[0035] 更に好ましくは、活性エネルギー線硬化型榭脂組成物としたときの感度の点で (メタ )アクリル酸、(メタ)アクリル酸と ε—力プロラタトンとの反応生成物または桂皮酸が挙 げられる。
[0036] カルボキシレートイ匕工程における水素化エポキシ榭脂(a)とカルボン酸ィ匕合物 (b) との仕込み割合は、用途に応じて適宜変更されるべきものである。即ち、全てのェポ キシ基をカルボキシレートイ匕した場合は、未反応のエポキシ基が残存しないために、 反応性カルボキシレートイ匕合物としての保存安定性は高い。この場合は、導入した二 重結合による反応性のみを利用することになる。また、引き続いて後記の酸付加工程 により反応性ポリカルボン酸ィ匕合物(C)を製造する場合には、エポキシ基が残存して いると、残存するエポキシ基が付加させた多塩基酸に由来するカルボン酸と反応して 製造時にゲルィ匕したり、もしくは保存安定性が悪ィ匕したりするので、エポキシ基が残 存しな 、ような量比で反応させるのが好ま 、。
[0037] 一方、意図してカルボン酸ィ匕合物の仕込み量を減量して未反応のエポキシ基を残 存させることにより、導入した不飽和結合による反応性と、残存するエポキシ基による 反応、例えば光力チオン触媒による重合反応や熱重合反応を複合的に利用すること も可能である。しかし、この場合は反応性カルボキシレートイ匕合物の保存、及び製造 条件の検討により注意を払うべきである。
[0038] エポキシ基を残存させな 、反応性エポキシカルボキシレートイ匕合物 (A)を製造する 場合には、カルボン酸ィ匕合物 (b)力 水素化エポキシ榭脂(a)に対し 90〜120当量 %であることが好ましぐこの範囲であれば比較的安定な条件での製造が可能である 。これよりもカルボン酸ィ匕合物(b)の仕込み量が多い場合には、過剰のカルボン酸ィ匕 合物 (b)が残存してしまうために好ましくな!/、。
[0039] また、エポキシ基を意図して残留させる場合には、カルボン酸ィ匕合物 (b)力 水素 ィ匕エポキシ榭脂(a)に対し 20〜90当量%であることが好ましい。この範囲を逸脱す る場合には、複合硬化の効果が薄くなる。もちろんこの場合は、反応中のゲル化や、 反応性エポキシカルボキシレート化合物 (A)の経時安定性に対して十分な注意が必 要である。 [0040] カルボキシレートイ匕工程は、無溶剤で、または溶剤で希釈して、行うことが出来る。 ここで用いることが出来る溶剤としては、カルボキシレートイ匕反応に対して不活性な溶 剤であれば特に限定はない。また、本工程で溶剤を用いて製造した場合には、その 両反応に不活性であることを条件に、溶剤を除くことなく直接に次工程である酸付カロ 工程に供することもできる。
[0041] 使用し得る溶媒として具体的には、例えば、アセトン、ェチルメチルケトン、シクロへ キサノン、イソホロン等のケトン類、ベンゼン、トルエン、ェチルベンゼン、キシレン、テ トラメチルベンゼン等の芳香族炭化水素類、ジェチルエーテル、ェチルブチルエー テル等のアルキルエーテル類、エチレングリコールジメチルエーテル、エチレングリコ 一ルジェチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリ コールジェチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリ コールジェチルエーテル等のダリコールエーテル類、テトラヒドロフラン等の環状エー テル類、酢酸ェチル、酢酸プロピル、酢酸ブチル、メチルセ口ソルブアセテート、ェチ ルセ口ソルブアセテート、ブチルセ口ソルブアセテート、ジエチレングリコールモノメチ ノレエーテノレアセテート、カルビトールアセテート、ジエチレングリコールモノブチルェ 一テルアセテート、トリエチレングリコールモノェチルエーテルアセテート、プロピレン グリコーノレモノメチノレエーテノレアセテート、ブチレングリコーノレモノメチノレエーテノレア セテート、グルタル酸ジアルキル、コハク酸ジアルキル、アジピン酸ジアルキル等のェ ステル類、 y—プチ口ラタトン等の環状エステル類、へキサン、オクタン、デカン等の 脂肪族系炭化水素溶剤、及びそれらの混合物である石油エーテル、ホワイトガソリン 、ソルベントナフサ、水添石油ナフサ、等が挙げられ、更には後記する反応性化合物 (B)等の単独または混合有機溶媒中で行うことができる。
[0042] 反応時には、反応を促進させるために触媒を使用することが好ましぐ該触媒の使 用量は、反応物に対して通常 0. 1〜10重量%である。その際の反応温度は 60〜15 0°Cであり、また反応時間は、好ましくは 5〜60時間である。使用しうる触媒の具体例 としては、例えばトリェチルァミン、ベンジルジメチルァミン、トリェチルアンモ-ゥムク 口ライド、ベンジルトリメチルアンモ -ゥムブロマイド、ベンジルトリメチルアンモ -ゥム アイオダイド、トリフエ-ルホスフィン、トリフエ-ルスチビン、メチルトリフエ-ルスチビン 、オクタン酸クロム、オクタン酸ジルコニウム等が挙げられる。
[0043] また、熱重合禁止剤として、ハイドロキノンモノメチルエーテル、 2 メチルハイドロキ ノン、ハイドロキノン、ジフエ二ルピクリルヒドラジル、ジフエニルァミン、 3, 5—ジ一 tert
-ブチル 4—ヒドロキシトルエン等を使用するのが好まし 、。
[0044] 本反応は、適宜サンプリングしながら、サンプルの酸価 (JIS K5601— 2— 1 : 199
9準拠)が lmgKOHZg以下、好ましくは 0. 5mgKOHZg以下となった時点を終点 とする。
[0045] 本発明の反応性ポリカルボン酸ィ匕合物(C)は、上記反応性エポキシカルボキシレ ート化合物 (A)に多塩基酸無水物 (c)を反応させること (酸付加工程)によって製造 することができる。
[0046] 酸付加工程にっ 、て詳細に説明する。
酸付加工程は、カルボキシレート化反応により生じた水酸基に多塩基酸無水物が付 加反応し、エステル結合を介してカルボキシル基を導入させることを目的として行な われる。
[0047] 多塩基酸無水物(c)としては、分子中に酸無水物構造を有する化合物であれば全 て用いることができるが、具体例としては、アルカリ水溶液現像性、耐熱性、加水分解 耐性等に優れた無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、へキサヒドロ 無水フタル酸、無水ィタコン酸、 3—メチルテトラヒドロ無水フタル酸、 4ーメチルへキ サヒドロ無水フタル酸、無水トリメリット酸または無水マレイン酸が特に好ま 、。
[0048] 多塩基酸無水物(c)を付加させる反応は、前記カルボキシレートイ匕工程における反 応液に多塩基酸無水物(c)を加えることにより行うことができる。添加量は用途に応じ て適宜変更されるべきものである。
[0049] し力しながら、本発明の反応性ポリカルボン酸ィ匕合物(C)をアルカリ現像型のレジ ストとして用いようとする場合は、最終的に得られる反応性ポリカルボン酸化合物(C) の固形分酸価 (JIS K5601— 2— 1 : 1999準拠)カ^)〜 100mg'KOHZg、より好 ましくは 60〜90mg'KOHZg、となる計算値を仕込むことが好ましい。このときの固 形分酸価が上記範囲よりも小さい場合、本発明の感光性榭脂組成物のアルカリ水溶 液現像性が著しく低下し、最悪の場合、現像できなくなるおそれがあり、また、固形分 酸価がこれを越える場合、酸無水物が反応点に対して過剰となり、未反応の多塩基 酸無水物が残存する。もしくは現像性が高くなりすぎて、パターニングができなくなる おそれがある。
[0050] 酸付加工程では、反応を促進させるために触媒を使用することが好ましぐ該触媒 の使用量は、反応物、即ち水素化エポキシ榭脂(a)及びカルボン酸ィ匕合物 (b)から 得られた反応性エポキシカルボキシレートイ匕合物 (A)、及び多塩基酸無水物(c)、場 合により溶剤その他をカ卩えた反応物の総量に対して通常 0. 1〜: LO重量%である。そ の際の反応温度は 60〜150°Cであり、また反応時間は、好ましくは 5〜60時間であ る。使用しうる触媒の具体例としては、トリェチルァミン、ベンジルジメチルァミン、トリ ェチルアンモ -ゥムクロライド、ベンジルトリメチルアンモ -ゥムブロマイド、ベンジルト リメチルアンモ -ゥムアイオダイド、トリフエ-ルホスフィン、トリフエ-ルスチビン、メチ ルトリフエ-ルスチビン、オクタン酸クロム、オクタン酸ジルコニウム等が挙げられる。
[0051] 酸付加工程は、無溶剤で、または溶剤で希釈して、行うことが出来る。ここで用いる ことが出来る溶剤としては、酸付加反応に対して不活性な溶剤であれば特に限定は ない。また、前工程であるカルボキシレートイ匕工程で溶剤を用いて製造した場合には 、その両反応に不活性であることを条件に、溶剤を除くことなく直接に次工程である 酸付加反応に供することもできる。
[0052] 酸付加工程で使用することのできる溶剤は前記カルボキシレートイ匕反応にぉ 、て 用いられるものと同じのものを使用することができる。
[0053] また、熱重合禁止剤等は、前記カルボキシレートイ匕工程における例示と同様のもの を使用することが好ましい。
[0054] 酸付加工程の反応は、適宜サンプリングしながら、反応物の酸価が、設定した酸価 の ± 10%の範囲になった点をもって終点とする。
[0055] 本発明の第 1の活性エネルギー線硬化型榭脂組成物は、上記反応性エポキシ力 ルポキシレートイ匕合物 (A)を含有する榭脂組成物であり、好ましくは、反応性ェポキ シカルボキシレートイ匕合物 (A)及び (A)以外の反応性化合物(B)を含有する榭脂組 成物である。
[0056] 上記本発明の活性エネルギー線硬化型榭脂組成物に含まれる反応性化合物(B) とは、本発明の反応性エポキシカルボキシレートイ匕合物 (A)と同様、活性エネルギー 線により反応性を示す化合物である。これらは使用目的に応じて硬化前、硬化後の 物性を付与させるために使用することが好まし 、。
[0057] 使用しうる反応性化合物(B)の具体例としては、ラジカル反応型のアタリレート類及 びビニル化合物類、カチオン反応型のエポキシィ匕合物類等の 、わゆる反応性モノマ 一、反応性オリゴマー類が挙げられる。
[0058] 使用しうるアタリレート類としては、単官能 (メタ)アタリレート類、多官能 (メタ)アタリレ ート、水素化エポキシ榭脂(a)力も誘導されるエポキシアタリレート以外のエポキシァ タリレート、ポリエステルアタリレート、ウレタンアタリレート等が挙げられる。
[0059] 単官能 (メタ)アタリレート類としては、メチル (メタ)アタリレート、ェチル (メタ)アタリレ ート、ブチル (メタ)アタリレート、ラウリル (メタ)アタリレート、ポリエチレングリコール (メ タ)アタリレート、ポリエチレングリコール (メタ)アタリレートモノメチルエーテル、フエ- ルェチル (メタ)アタリレート、イソボル-ル (メタ)アタリレート、シクロへキシル (メタ)ァ タリレート、ベンジル (メタ)アタリレート、テトラヒドロフルフリル (メタ)アタリレート等が挙 げられる。
[0060] 多官能 (メタ)アタリレート類としては、ブタンジオールジ (メタ)アタリレート、へキサン ジオールジ (メタ)アタリレート、ネオペンチルグリコールジ (メタ)アタリレート、ノナンジ オールジ (メタ)アタリレート、グリコールジ (メタ)アタリレート、ジエチレンジ (メタ)アタリ レート、ポリエチレングリコールジ (メタ)アタリレート、トリス (メタ)アタリロイルォキシェ チルイソシァヌレート、ポリプロピレングリコールジ (メタ)アタリレート、アジピン酸ェポ キシジ (メタ)アタリレート、ビスフエノールエチレンオキサイドジ (メタ)アタリレート、水 素化ビスフエノールエチレンオキサイド(メタ)アタリレート、ビスフエノールジ(メタ)ァク リレート、ヒドロキシピバリン酸ネオペンチルグリコールの ε一力プロラタトン付カ卩物の ジ (メタ)アタリレート、ジペンタエリスリトールと ε—力プロラタトンの反応物のポリ(メタ) アタリレート、ジペンタエリスリトールポリ(メタ)アタリレート、トリメチロールプロパントリ( メタ)アタリレート、トリェチロールプロパントリ(メタ)アタリレート、及びそのエチレンォ キサイド付加物、ペンタエリスリトールトリ(メタ)アタリレート、及びそのエチレンォキサ イド付加物、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリスリトールへキ サ (メタ)アタリレート、およびそのエチレンオキサイド付加物等が挙げられる。
[0061] 使用しうるビュル化合物類としてはビュルエーテル類、スチレン類、その他ビュル化 合物が挙げられる。ビュルエーテル類としては、ェチルビ-ルエーテル、プロピルビ ニノレエーテノレ、ヒドロキシェチノレビニノレエーテノレ、エチレングリコーノレジビニノレエーテ ル等が挙げられる。スチレン類としては、スチレン、メチルスチレン、ェチルスチレン、 ヒドロキシスチレン等が挙げられる。その他ビュルィ匕合物としてはトリアリルイソイシァ ヌレート、トリメタァリルイソシァヌレート等が挙げられる。
[0062] また、カチオン反応型のエポキシィ匕合物としては、一般的にエポキシ基を有するィ匕 合物であれば特に限定はない。例えば、グリシジル (メタ)アタリレート、メチルダリシジ ノレエーテノレ、ェチルダリシジルエーテル、ブチルダリシジルエーテル、ビスフエノーノレ
A ジグリシジノレエーテノレ、 3, 4 エポキシシクロへキシノレメチノレー 3, 4—エポキシ シクロへキサン力ノレボキシレート(ユニオン 'カーバイド社製「サイラキュア UVR -611 0」等)、 3, 4 エポキシシクロへキシノレエチノレー 3, 4 エポキシシクロへキサン力ノレ ボキシレート、ビュルシクロへキセンジォキシド(ユニオン 'カーバイド社製「ERL— 42 06」等)、リモネンジォキシド (ダイセルィ匕学工業社製「セロキサイド 3000」等)、ァリル シクロへキセンジォキシド、 3, 4 エポキシー4ーメチルシクロへキシルー 2 プロピ レンォキシド、 2- (3, 4 エポキシシクロへキシル 5, 5—スピロ一 3, 4 エポキシ )シクロへキサン m ジォキサン、ビス(3, 4—エポキシシクロへキシノレ)アジペート (ユニオン.カーバイド社製「サイラキュア UVR— 6128」等)、ビス(3, 4 エポキシシ クロへキシルメチル)アジペート、ビス(3, 4—エポキシシクロへキシル)エーテル、ビ ス(3, 4—エポキシシクロへキシルメチル)エーテル、ビス(3, 4—エポキシシクロへキ シル)ジェチルシロキサン等が挙げられる。
[0063] これらのうち、反応性化合物(B)としては、ラジカル反応型であるアタリレート類及び ビニル化合物類が好ましぐ更に好ましくはラジカル反応型であるアタリレート類が挙 げられる。
[0064] 本発明の反応性エポキシカルボキシレートイ匕合物 (A)と、(A)以外の反応性化合 物 (B)とを混合して本発明の活性エネルギー線硬化型榭脂組成物を得ることができ る。このとき、用途に応じて適宜その他の成分をカ卩えてもよい。 [0065] 本発明の活性エネルギー線硬化型榭脂組成物は、組成物中に反応性エポキシ力 ルボキシレートイ匕合物(A)を通常 97〜5重量。 /0、好ましくは 87〜10重量%、 (A)以 外の反応性化合物(B)を通常 3〜95重量%、好ましくは 3〜90重量%を含む。必要 に応じてその他の成分を含んで 、てもよ 、。
[0066] 本発明の活性エネルギー線硬化型榭脂組成物は活性エネルギー線によって容易 に硬化する。ここで活性エネルギー線の具体例としては、紫外線、可視光線、赤外線 、 X線、ガンマ線、レーザー光線等の電磁波、アルファ線、ベータ線、電子線等の粒 子線等が挙げられる。本発明の好適な用途を考慮すれば、これらのうち、紫外線、レ 一ザ一光線、可視光線、または電子線が好ましい。
[0067] 本発明にお ヽて成形用材料とは、未硬化の組成物を型に ヽれて物体を成形したの ち、活性エネルギー線により硬化反応を起こさせて成形させるもの、もしくは未硬化の 組成物にレーザー等の焦点光などを照射し、硬化反応を起こさせて成形させる用途 に用いられる材料を指す。
[0068] 具体的な用途としては、凸レンズ、凹レンズ、マイクロレンズ、フレネルレンズ、レン チキユラ一レンズ等のレンズ材料、液晶表示装置等に用いられる導光材料、板状に 加工したシートやフィルム、ディスク等、未硬化の組成物に微細加工された「型」を押 し当てて微細な成形を行う、いわゆるナノインプリント用材料、さらには素子を保護す るための封止材、特に発光ダイオード、光電変換素子等の封止材料等が挙げられる
[0069] 本発明において皮膜形成用材料とは、基材表面を被覆することを目的として利用さ れるものである。具体的な用途としては、グラビアインキ、フレキソインキ、シルクスクリ ーンインキ、オフセットインキ等のインキ材料、ハードコート、トップコート、オーバープ リントニス、クリャコート等の塗工材料、ラミネート用、光ディスク用他各種接着剤、粘 着剤等の接着材料、ソルダーレジスト、エッチングレジスト、カラーフィルタ用レジスト 、スぺーサー用レジスト、マイクロマシン用レジスト等のレジスト材料等がこれに該当 する。さら〖こは、皮膜形成用材料を一時的に剥離性基材に塗工してフィルム化した 後、本来目的とする基材に貼合し皮膜を形成させる、いわゆるドライフィルムも皮膜形 成用材料に該当する。 [0070] 皮膜を形成させる方法としては特に制限はないが、グラビア等の凹版印刷方式、フ レキソ等の凸版印刷方式、シルクスクリーン等の孔版印刷方式、オフセット等の平版 印刷方式、ロールコーター、ナイフコーター、ダイコーター、カーテンコーター、スピン コーター等の各種塗工方式が任意に採用できる。
[0071] 本発明の活性エネルギー線硬化型榭脂組成物の硬化物とは、本発明の活性エネ ルギ一線硬化型榭脂組成物に活性エネルギー線を照射し硬化させたものを指す。
[0072] 本発明の多層材料とは、本発明にお ヽて示される活性エネルギー線硬化型榭脂 組成物を基材上に皮膜形成及び硬化させて得られる、少なくとも二層以上の層をも つてなる材料を指す。
[0073] 本発明の光学材料とは、本発明にお!/ヽて示される活性エネルギー線硬化型榭脂 組成物の硬化物を用いて、光を透過させる、屈折させる、散乱させる、あるいは拡散 させることを目的として用いられるものである。
[0074] この他、本発明の活性エネルギー線硬化型榭脂組成物を各種用途に適合させる 目的で、組成物中に通常 70重量%を上限にその他の成分を加えることもできる。そ の他の成分としては光重合開始剤、その他の添加剤、着色材料等が挙げられる。下 記に使用しうるその他の成分を例示する。
[0075] 光重合開始剤は、本発明にお ヽて用いられる活性エネルギー線の種類、組成物の 用途や加工形態によって適宜選択される。
[0076] 例えばラジカル型光重合開始剤としては、例えばべンゾイン、ベンゾインメチルエー テル、ベンゾインェチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチ ルエーテル等のベンゾイン類;ァセトフエノン、 2, 2—ジエトキシ— 2—フエ-ルァセト フエノン、 2, 2—ジエトキシー2—フエ-ルァセトフエノン、 1, 1ージクロロアセトフエノ ン、 2—ヒドロキシ 2—メチルフエニルプロパン 1 オン、ジエトキシァセトフエノン 、 1ーヒドロキシシクロへキシルフエ-ルケトン、 2—メチルー 1 [4 (メチルチオ)フ ェ -ル]— 2—モルホリノプロパン一 1 オン等のァセトフエノン類; 2 -ェチルアントラ キノン、 2— tert—ブチルアントラキノン、 2—クロ口アントラキノン、 2—アミルアントラキ ノン等のアントラキノン類; 2, 4 ジェチルチオキサントン、 2 イソプロピルチオキサ ントン、 2—クロ口チォキサントン等のチォキサントン類;ァセトフエノンジメチルケター ル、ベンジルジメチルケタール等のケタール類;ベンゾフエノン、 4—ベンゾィル—4, ーメチルジフエ-ルサルファイド、 4, 4' ビスメチルァミノべンゾフエノン等のベンゾ フエノン類; 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、ビス(2, 4 , 6 -トリメチルベンゾィル)フエ-ルホスフィンオキサイド等のホスフィンオキサイド類 等が挙げられる。
[0077] また、カチオン系光重合開始剤としては、ルイス酸のジァゾニゥム塩、ルイス酸のョ 一ドニゥム塩、ルイス酸のスルホ -ゥム塩、ルイス酸のホスホ-ゥム塩、その他のハロ ゲン化物、トリアジン系開始剤、ボーレート系開始剤、及びその他の光酸発生剤等が 挙げられる。
[0078] ノレイス酸のジァゾユウム塩としては、 p—メトキシフエニノレジァゾニゥムフロロホスホネ ート、 N, N ジェチルァミノフエ-ルジァゾ -ゥムへキサフロロホスホネート(三新化 学工業社製、サンエイド SI— 60LZSI— 80LZSI— 100Lなど)等が挙げられ、ルイ ス酸のョード -ゥム塩としては、ジフエ-ルョードニゥムへキサフロロホスホネート、ジフ ェ-ルョード -ゥムへキサフロロアンチモネート等が挙げられ、ルイス酸のスルホ-ゥ ム塩としては、トリフエ-ルスルホ -ゥムへキサフロロホスホネート(Union Carbide 社製、 Cyracure UVI— 6990など)、トリフエ-ルスルホ -ゥムへキサフロロアンチ モネート(Union Carbide社製、 Cyracure UVI— 6974など)等が挙げられ、ルイ ス酸のホスホ-ゥム塩としては、トリフエ-ルホスホ -ゥムへキサフロロアンチモネート 等が挙げられる。
[0079] その他のハロゲン化物としては、 2, 2, 2 トリクロ口一 [1—4, - (ジメチルェチル) フエ-ル]エタノン(AKZO社製、 Trigonal PIなど)、 2, 2—ジクロロ一 1—4— (フエ ノキシフエ-ル)エタノン(Sandoz社製、 Sandray 1000など)、 a , a , α—トリブロ モメチルフエ-ルスルホン (製鉄化学社製、 BMPSなど)等が挙げられる。トリアジン 系開始剤としては、 2, 4, 6 トリス(トリクロロメチル)一トリァジン、 2, 4 トリクロロメチ ルー(4,一メトキシフエ-ル) 6 トリァジン(Panchim社製、 Triazine Aなど)、 2 , 4—トリクロロメチル一(4,一メトキシスチリル) 6—トリァジン(Panchim社製、 Tria zine PMSなど)、 2, 4 トリクロロメチル一(ピプロ-ル) 6 トリアジン(Panchim 社製、 Triazine PPなど)、 2, 4 トリクロロメチノレー(4,一メトキシナフチノレ) 6 ト リアジン(Panchim社製、 Triazine Bなど)、 2— [2,一 (5" メチルフリル)ェチリデ ン]— 4, 6 ビス(トリクロロメチル) s トリァジン(三和ケミカル社製など)、 2— (2, —フリルェチリデン)—4, 6—ビス(トリクロロメチル)—s トリァジン(三和ケミカル社 製)等が挙げられる。
[0080] ボーレート系開始剤としては、 日本感光色素製 NK— 3876及び NK— 3881等が 挙げられ、その他の光酸発生剤等としては、 9 フエ-ルァクリジン、 2, 2' ビス(o —クロ口フエ-ル)一 4, 4,, 5, 5,一テトラフエ-ル一 1, 2 ビイミダゾール(黒金化 成社製、ビイミダゾールなど)、 2, 2—ァゾビス(2—ァミノ一プロパン) ジヒドロクロリド (和光純薬社製、 V50など)、 2, 2 ァゾビス [2— (イミダソリン— 2—ィル)プロパン] ジヒドロクロリド(和光純薬社製、 VA044など)、 [ィーター 5— 2— 4— (シクロペンタデ シル)(1, 2, 3, 4, 5, 6,ィータ) - (メチルェチル)—ベンゼン]鉄(Π)へキサフロロ ホスホネート(Ciba Geigy社製、 Irgacure 261など)、ビス(y5 シクロペンタジ ェ -ル)ビス [2, 6 - ジフルオロー 3— (1H ピリ一 1—ィル)フエ-ル]チタニウム( Ciba Geigy社製、 CGI— 784など)等が挙げられる。
[0081] この他、ァゾビスイソブチ口-トリル等のァゾ系開始剤、過酸化ベンゾィル等の過酸 化物系ラジカル型開始剤等を併せて用いてもよい。また、ラジカル系とカチオン系の 双方の開始剤を併せて用いてもよい。開始剤は、 1種類を単独で用いることもできる し、 2種類以上を併せて用いることもできる。
[0082] その他の添加剤としては、例えばメラミン等の熱硬化触媒、タルク、硫酸バリウム、 炭酸カルシウム、炭酸マグネシウム、チタン酸バリウム、水酸ィ匕アルミニウム、酸ィ匕ァ ルミ-ゥム、シリカ、クレー等の充填剤、ァエロジル等のチキソトロピー付与剤、フタ口 シァニンブルー、フタロシアニングリーン、酸化チタン、シリコーン、フッ素系のレペリ ング剤や消泡剤、ハイドロキノン、ハイドロキノンモノメチルエーテル等の重合禁止剤 等を使用することが出来る。
[0083] また、着色材料としては例えば、フタロシアニン系、ァゾ系、キナクリドン系等の有機 顔料、酸化チタン、カーボンブラック、ベンガラ、酸化亜鉛、硫酸バリウム、タルク等の 無機顔料を使用することができる。
[0084] この他に活性エネルギー線に反応性を示さな 、榭脂類 ( 、わゆるイナートポリマー) 、たとえば (A)以外のエポキシ榭脂、フエノール榭脂、ウレタン榭脂、ポリエステル榭 脂、ケトンホルムアルデヒド榭脂、クレゾール榭脂、キシレン榭脂、ジァリルフタレート 榭脂、スチレン榭脂、グアナミン榭脂、天然及び合成ゴム、アクリル榭脂、ポリオレフィ ン榭脂、及びこれらの変性物を用いることもできる。これらを用いる場合は、 0〜40重 量%までの範囲にお!、て用いることが好まし!/、。
[0085] また使用目的に応じて、粘度を調整する目的で、 0〜40重量%、好ましくは 0〜20 重量%の範囲において揮発性溶剤を添加することも出来る。使用できる溶剤は特に 限定はなぐ用途、に応じて適宜選択されるべきものである。本質的に本発明で示さ れる溶剤とは、塗工、成形等の加工前の流動性を与えるために用いられるもので、加 ェ後に揮発させることを前提とするものである。
[0086] 例えばトルエン、キシレン、ェチルベンゼン等の芳香族系炭化水素溶剤、へキサン 、オクタン、デカン等の脂肪族系炭化水素溶剤、及びそれらの混合物である石油ェ 一テル、ホワイトガソリン、ソルベントナフサ等が挙げられる。
[0087] また、アルコール系溶剤としては、メタノール、エタノール、プロパノール、ブタノー ル、エチレングリコーノレ、プロピレングリコール、ブチレングリコーノレ、ジエチレングリコ ール、グリセリン等が挙げられる。
[0088] また、エステル系溶剤としては、酢酸ェチル、酢酸プロピル、酢酸ブチル、エチレン グリコーノレモノメチノレエーテノレアセテート、ジエチレングリコーノレモノメチノレエーテノレ モノアセテート、ジエチレングリコーノレモノェチノレエーテノレモノアセテート、ジエチレン グリコールモノブチルエーテルモノアセテート、プロピレングリコーノレモノメチノレエーテ ルアセテート、ブチレングリコールモノメチルエーテルアセテート等が挙げられる。
[0089] また、エーテル系溶剤としては、ジェチルエーテル、ェチルブチルエーテル、ェチ レングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、ェチレ ングリコーノレモノプロピノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、ジェチ レングリコールモノブチルエーテル、ブチレングリコールモノメチルエーテル等が挙げ られる。
[0090] また、ケトン系溶剤としては、アセトン、メチルェチルケトン、イソホロン等が挙げられ る。 [0091] 本発明の第 2の活性エネルギー線硬化型榭脂組成物は、上記反応性ポリカルボン 酸化合物(C)を含有する榭脂組成物であり、好ましくは、反応性ポリカルボン酸ィ匕合 物 (C)及び (C)以外の反応性化合物 (D)を含有する榭脂組成物である。
[0092] 上記本発明の活性エネルギー線硬化型榭脂組成物に含まれる反応性化合物(D) とは、本発明の反応性ポリカルボン酸ィ匕合物(C)と同様、活性エネルギー線により反 応性を示す化合物である。これらは使用目的に応じて硬化前、硬化後の物性を付与 させるために使用することが好ま 、。
[0093] 使用しうる反応性化合物(D)の具体例としては、ラジカル反応型のアタリレート類及 びビニル化合物類、カチオン反応型のエポキシィ匕合物類、その双方に感応するビ- ルエーテルィ匕合物類等が挙げられる。
[0094] 使用しうるアタリレート類としては、単官能 (メタ)アタリレート類、多官能 (メタ)アタリレ ート、水素化エポキシ榭脂(a)力も誘導されるエポキシアタリレート以外のエポキシァ タリレート、ポリエステルアタリレート、ウレタンアタリレート等が挙げられる。
[0095] 単官能 (メタ)アタリレート類としては、メチル (メタ)アタリレート、ェチル (メタ)アタリレ ート、ブチル (メタ)アタリレート、ラウリル (メタ)アタリレート、ポリエチレングリコール (メ タ)アタリレート、ポリエチレングリコール (メタ)アタリレートモノメチルエーテル、フエ- ルェチル (メタ)アタリレート、イソボル-ル (メタ)アタリレート、シクロへキシル (メタ)ァ タリレート、ベンジル (メタ)アタリレート、テトラヒドロフルフリル (メタ)アタリレート等が挙 げられる。
[0096] 多官能 (メタ)アタリレート類としては、ブタンジオールジ (メタ)アタリレート、へキサン ジオールジ (メタ)アタリレート、ネオペンチルグリコールジ (メタ)アタリレート、ノナンジ オールジ (メタ)アタリレート、グリコールジ (メタ)アタリレート、ジエチレンジ (メタ)アタリ レート、ポリエチレングリコールジ (メタ)アタリレート、トリス (メタ)アタリロイルォキシェ チルイソシァヌレート、ポリプロピレングリコールジ (メタ)アタリレート、アジピン酸ェポ キシジ (メタ)アタリレート、ビスフエノールエチレンオキサイドジ (メタ)アタリレート、水 素化ビスフエノールエチレンオキサイド(メタ)アタリレート、ビスフエノールジ(メタ)ァク リレート、ヒドロキシピバリン酸ネオペンチルグリコールの ε一力プロラタトン付カ卩物の ジ (メタ)アタリレート、ジペンタエリスリトールと ε—力プロラタトンの反応物のポリ(メタ) アタリレート、ジペンタエリスリトールポリ(メタ)アタリレート、トリメチロールプロパントリ( メタ)アタリレート、トリェチロールプロパントリ(メタ)アタリレート、及びそのエチレンォ キサイド付加物、ペンタエリスリトールトリ(メタ)アタリレート、及びそのエチレンォキサ イド付加物、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリスリトールへキ サ (メタ)アタリレート、およびそのエチレンオキサイド付加物等が挙げられる。
[0097] 使用しうるビュル化合物類としてはビュルエーテル類、スチレン類、その他ビュル化 合物が挙げられる。ビュルエーテル類としては、ェチルビ-ルエーテル、プロピルビ ニノレエーテノレ、ヒドロキシェチノレビニノレエーテノレ、エチレングリコーノレジビニノレエーテ ル等が挙げられる。スチレン類としては、スチレン、メチルスチレン、ェチルスチレン等 が挙げられる。その他ビュルィ匕合物としてはトリアリルイソイシァヌレート、トリメタァリル イソシァヌレート等が挙げられる。
[0098] また、カチオン反応型のエポキシィ匕合物類としては、一般的にエポキシ基を有する 化合物であれば特に限定はない。例えば、グリシジル (メタ)アタリレート、メチルダリシ ジルエーテル、ェチルダリシジルエーテル、ブチルダリシジルエーテル、ビスフエノー ノレ A ジグリシジノレエーテノレ、 3, 4 エポキシシクロへキシノレメチノレー 3, 4—ェポキ シシクロへキサン力ノレボキシレート(ユニオン 'カーバイド社製「サイラキュア UVR— 6 110」等)、 3, 4 エポキシシクロへキシノレエチノレー 3, 4 エポキシシクロへキサン力 ルボキシレート、ビュルシクロへキセンジォキシド(ユニオン 'カーバイド社製「ERL - 4206」等)、リモネンジォキシド (ダイセルィ匕学工業社製「セロキサイド 3000」等)、ァ リルシクロへキセンジォキシド、 3, 4 エポキシー4ーメチルシクロへキシルー 2 プ ロピレンォキシド、 2- (3, 4 エポキシシクロへキシル 5, 5—スピロ一 3, 4 ェポ キシ)シクロへキサン m ジォキサン、ビス(3, 4—エポキシシクロへキシノレ)アジべ ート(ユニオン.カーバイド社製「サイラキュア UVR— 6128」等)、ビス(3, 4 ェポキ シシクロへキシルメチル)アジペート、ビス(3, 4—エポキシシクロへキシル)エーテル 、ビス(3, 4—エポキシシクロへキシルメチル)エーテル、ビス(3, 4—エポキシシクロ へキシル)ジェチルシロキサン等が挙げられる。
[0099] これらのうち、反応性化合物(D)としては、ラジカル反応型であるアタリレート類が最 も好ましい。カチオン型の場合、カルボン酸とエポキシ基とが反応してしまうため 2液 混合型にする必要が生じる。
[0100] 本発明の反応性ポリカルボン酸ィ匕合物(C)に、必要に応じて前記の反応性化合物
(D)を混合して本発明の活性エネルギー線硬化型榭脂組成物を得ることができる。 このとき、用途に応じて適宜その他の成分をカ卩えてもよい。
[0101] 本発明の活性エネルギー線硬化型榭脂組成物は、組成物中に反応性ポリカルボ ン酸ィ匕合物(C) 97〜5重量%、好ましくは 87〜: LO重量%、その他の反応性化合物( 0) 3〜95重量%、さらに好ましくは 3〜90重量%を含む。必要に応じてその他の成 分を含んでいてよい。
[0102] 本発明の活性エネルギー線硬化型榭脂組成物は活性エネルギー線によって容易 に硬化する。ここで活性エネルギー線の具体例としては、紫外線、可視光線、赤外線 、 X線、ガンマ線、レーザー光線等の電磁波、アルファ線、ベータ線、電子線等の粒 子線等が挙げられる。本発明の好適な用途を考慮すれば、これらのうち、紫外線、レ 一ザ一光線、可視光線、または電子線が好ましい。
[0103] 本発明において成形用材料とは、未硬化の組成物を型にいれ、もしくは型を押し付 け物体を成形したのち、活性エネルギー線により硬化反応を起こさせ成形させるもの 、もしくは未硬化の組成物にレーザー等の焦点光などを照射し、硬化反応を起こさせ 成形させる用途に用いられる材料を指す。
[0104] 具体的な用途としては、凸レンズ、凹レンズ、マイクロレンズ、フルネルレンズ、レン チキユラ一レンズ等のレンズ材料、液晶表示装置等に用いられる導光材料、板状に 加工したシートやフィルム、ディスク等、未硬化の組成物に微細加工された「型」を押 し当て微細な成形を行う、いわゆるナノインプリント材料、さらには素子を保護するた めの封止材、特に発光ダイオード、光電変換素子等の封止材料等が好適な用途とし て挙げられる。
[0105] 本発明において皮膜形成用材料とは、基材表面を被覆することを目的として利用さ れるものである。具体的な用途としては、グラビアインキ、フレキソインキ、シルクスクリ ーンインキ、オフセットインキ等のインキ材料、ハードコート、トップコート、オーバープ リントニス、クリャコート等の塗工材料、ラミネート用、光ディスク用他各種接着剤、粘 着剤等の接着材料、ソルダーレジスト、エッチングレジスト、カラーフィルタ用レジスト 、スぺーサー用レジスト、マイクロマシン用レジスト等のレジスト材料等これに該当する 。さら〖こは、皮膜形成用材料を一時的に剥離性基材に塗工し、フィルム化した後、本 来目的とする基材に貼合し皮膜を形成させる、いわゆるドライフィルムも皮膜形成用 材料に該当する。
[0106] これらのうち、反応性ポリカルボン酸化合物(C)のカルボキシル基の導入によって、 基材への密着性が高まるため、プラスチック基材、若しくは金属基材を被覆するため の用途として用いることが好まし 、。
[0107] さら〖こは、未反応の反応性ポリカルボン酸化合物(C)力 アルカリ水溶液に可溶性 となる特徴を生カゝして、レジスト材料組成物として用いることも好まし 、。
[0108] 本発明にお ヽてレジスト材料組成物とは、基材上に該組成物の皮膜層を形成させ 、その後、紫外線等の活性エネルギー線を部分的に照射し、照射部、未照射部の物 性的な差異を利用して描画しょうとする活性エネルギー線感応型の組成物を指す。 具体的には、照射部、または未照射部を何らかの方法、例えばアルカリ溶液等で溶 解させるなどして除去し、描画を行うことを目的として用いられる組成物である。
[0109] 皮膜を形成させる方法としては特に制限はないが、グラビア等の凹版印刷方式、フ レキソ等の凸版印刷方式、シルクスクリーン等の孔版印刷方式、オフセット等の平版 印刷方式、ロールコーター、ナイフコーター、ダイコーター、カーテンコーター、スピン コーター等の各種塗工方式が任意に採用できる。
[0110] 本発明の活性エネルギー線硬化型榭脂組成物の硬化物とは、本発明の活性エネ ルギ一線硬化型榭脂組成物に活性エネルギー線を照射し硬化させたものを指す。
[0111] 本発明の多層材料とは、本発明にお ヽて示される活性エネルギー線硬化型榭脂 組成物を基材上に皮膜形成 '硬化させ得られる、少なくとも二層以上の層をもってな る材料を指す。
[0112] 本発明の硬化物を、光学材料、即ち、光を透過させる、屈折させる、散乱させる、あ るいは拡散させることを目的とする材料として用いることは、透明で黄変色が少ないと
Vヽぅ特徴を生かす上で好適な用途である。
[0113] この他、本発明の活性エネルギー線硬化型榭脂組成物を各種用途に適合させる 目的で、通常 70重量%を上限にその他の成分を加えることもできる。その他の成分と しては光重合開始剤、その他の添加剤、着色材料等が挙げられる。下記に使用しう るその他の成分を例示する。
[0114] 光重合開始剤は、本発明にお ヽて用いられる活性エネルギー線の種類、組成物の 用途や加工形態によって適宜選択される。
[0115] 例えばラジカル型光重合開始剤としては、例えばべンゾイン、ベンゾインメチルエー テル、ベンゾインェチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチ ルエーテル等のベンゾイン類;ァセトフエノン、 2, 2—ジエトキシ— 2—フエ-ルァセト フエノン、 2, 2—ジエトキシー2—フエ-ルァセトフエノン、 1, 1ージクロロアセトフエノ ン、 2—ヒドロキシ 2—メチルフエニルプロパン 1 オン、ジエトキシァセトフエノン 、 1ーヒドロキシシクロへキシルフエ-ルケトン、 2—メチルー 1 [4 (メチルチオ)フ ェ -ル]— 2—モルホリノプロパン一 1 オン等のァセトフエノン類; 2 -ェチルアントラ キノン、 2—t—ブチルアントラキノン、 2—クロ口アントラキノン、 2—アミルアントラキノ ン等のアントラキノン類; 2, 4 ジェチルチオキサントン、 2 イソプロピルチォキサン トン、 2—クロ口チォキサントン等のチォキサントン類;ァセトフエノンジメチルケタール 、ベンジルジメチルケタール等のケタール類;ベンゾフエノン、 4—ベンゾィル—4, - メチルジフエ-ルサルファイド、 4, 4'—ビスメチルァミノべンゾフエノン等のベンゾフエ ノン類; 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、ビス(2, 4, 6 -トリメチルベンゾィル)フエ-ルホスフィンオキサイド等のホスフィンオキサイド類等の 公知一般のラジカル型光反応開始剤が挙げられる。
[0116] また、カチオン系光重合開始剤としては、ルイス酸のジァゾニゥム塩、ルイス酸のョ 一ドニゥム塩、ルイス酸のスルホ -ゥム塩、ルイス酸のホスホ-ゥム塩、その他のハロ ゲン化物、トリアジン系開始剤、ボーレート系開始剤、及びその他の光酸発生剤等が 挙げられる。
[0117] ノレイス酸のジァゾニゥム塩としては、 p—メトキシフエニノレジァゾニゥムフロロホスホネ ート、 N, N ジェチルァミノフエ-ルジァゾ -ゥムへキサフロロホスホネート(三新化 学工業社製、サンエイド SI— 60LZSI— 80LZSI— 100Lなど)等が挙げられ、ルイ ス酸のョード -ゥム塩としては、ジフエ-ルョードニゥムへキサフロロホスホネート、ジフ ェ-ルョード -ゥムへキサフロロアンチモネート等が挙げられ、ルイス酸のスルホ-ゥ ム塩としては、トリフエ-ルスルホ -ゥムへキサフロロホスホネート(Union Carbide 社製、 Cyracure UVI— 6990など)、トリフエ-ルスルホ -ゥムへキサフロロアンチ モネート(Union Carbide社製、 Cyracure UVI— 6974など)等が挙げられ、ルイ ス酸のホスホ-ゥム塩としては、トリフエ-ルホスホ -ゥムへキサフロロアンチモネート 等が挙げられる。
[0118] その他のハロゲン化物としては、 2, 2, 2 トリクロ口一 [1—4, - (ジメチルェチル) フエ-ル]—エタノン(AKZO社製、 Trigonal PIなど)、 2, 2—ジクロロ一 1—4— (フ エノキシフエ-ル)一エタノン(Sandoz社製、 Sandray 1000など)、 a , a , α—トリ ブロモメチルフエ-ルスルホン (製鉄化学社製、 BMPSなど)等が挙げられる。トリア ジン系開始剤としては、 2, 4, 6 トリス(トリクロロメチル)一トリァジン、 2, 4 トリクロ ロメチルー(4,一メトキシフエ-ル) 6—トリアジン(Panchim社製、 Triazine Aな ど)、 2, 4 トリクロロメチル一 (4'—メトキシスチリル) 6 トリァジン(Panchim社製 、 Triazine PMSなど)、 2, 4 トリクロロメチル一(ピプロ-ル) 6 トリアジン(Pan chim社製、 Triazine PPなど)、 2, 4 トリクロロメチノレー(4,一メトキシナフチノレ) - 6 トリアジン(Panchim社製、 Triazine Bなど)、 2— [2,一(5,,一メチルフリル)ェ チリデン]—4, 6 ビス(トリクロロメチル)—s トリァジン (三和ケミカル社製など)、 2 - (2,一フリルェチリデン) 4, 6 ビス(トリクロロメチル) s トリァジン(三和ケミカ ル社製)等が挙げられる。
[0119] ボーレート系光重合開始剤としては、 日本感光色素製 NK— 3876及び NK— 388 1等が挙げられ、その他の光酸発生剤等としては、 9 フエ二ルァクリジン、 2, 2' ビ ス(o クロ口フエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルー 1, 2 ビイミダゾール(黒金 化成社製、ビイミダゾールなど)、 2, 2—ァゾビス(2—ァミノ一プロパン)ジヒドロクロリ ド (和光純薬社製、 V50など)、 2, 2 ァゾビス [2— (イミダゾリン— 2—ィル)プロパン ]ジヒドロクロリド(和光純薬社製、 VA044など)、 [ィーター 5— 2— 4— (シクロペンタ デシル) (1, 2, 3, 4, 5, 6,ィータ) - (メチルェチル)—ベンゼン]鉄(Π)へキサフ口 口ホスホネート(Ciba Geigy社製、 Irgacure 261など、ビス(y5 シクロペンタジェ -ル)ビス [2, 6 ジフルォロ一 3— (1H ピリ一 1—ィル)フエ-ル]チタニウム(Ciba Geigy社製、 CGI— 784など)等が挙げられる。 [0120] この他、ァゾビスイソブチ口-トリル等のァゾ系開始剤、過酸化ベンゾィル等の熱に 感応する過酸ィ匕物系ラジカル型開始剤等を併せて用いてもよい。また、ラジカル系と カチオン系の双方の開始剤を併せて用いてもよい。開始剤は、 1種類を単独で用い ることもできるし、 2種類以上を併せて用いることもできる。
[0121] その他の添加剤としては、例えばメラミン等の熱硬化触媒、タルク、硫酸バリウム、 炭酸カルシウム、炭酸マグネシウム、チタン酸バリウム、水酸ィ匕アルミニウム、酸ィ匕ァ ルミ-ゥム、シリカ、クレー等の充填剤、ァエロジル等のチキソトロピー付与剤、フタ口 シァニンブルー、フタロシアニングリーン、酸化チタン、シリコーン、フッ素系のレペリ ング剤や消泡剤、ハイドロキノン、ハイドロキノンモノメチルエーテル等の重合禁止剤 等を使用することが出来る。
[0122] また、顔料材料としては例えば、フタロシアニン系、ァゾ系、キナクリドン系等の有機 顔料、酸化チタン、カーボンブラック、ベンガラ、酸化亜鉛、硫酸バリウム、タルク等の 無機顔料、公知一般の着色、及び体質顔料等を使用することができる。
[0123] この他に活性エネルギー線に反応性を示さな 、榭脂類 ( 、わゆるイナートポリマー) 、たとえばその他のエポキシ榭脂、フエノール榭脂、ウレタン榭 S旨、ポリエステル榭脂 、ケトンホルムアルデヒド榭脂、クレゾール榭脂、キシレン榭脂、ジァリルフタレート榭 脂、スチレン榭脂、グアナミン榭脂、天然及び合成ゴム、アクリル榭脂、ポリオレフイン 榭脂、及びこれらの変性物を用いることもできる。これらは 40重量%までの範囲にお いて用いることが好ましい。
[0124] また使用目的に応じて、粘度を調整する目的で、 40重量%、さらに好ましくは 20重 量%までの範囲において揮発性溶剤を添加することも出来る。
実施例
[0125] 以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限 定されるものではない。また、実施例中、特に断りがない限り、部は重量部を示す。な お、実施例中の各物性値は以下の方法で測定した。
( 1)エポキシ当量: JIS— K7236: 2001に記載の方法で測定。
(2)核水素化率:分光光度計で測定。
[0126] 分光光度計: UV- 2500PC (島津製作所製)。 合成例 1:水素化エポキシ榭脂 (a)の合成
オートクレーブに、フエノール'ビフエ-ルノボラック型のエポキシ榭脂(商品名; NC - 3000、 日本ィ匕薬社製;エポキシ当量 276gZeq) 50部、テトラヒドロフラン 50部、 ルテニウム Zカーボン触媒 6部(ェヌィーケムキャット社製;ルテニウム担持量 5重量 %、含水品)を仕込み、オートクレープ内を窒素置換した後、水素で置換した。その 後、内容物を攪拌しながら水素圧 8MPa、反応温度 110°Cで 12時間反応させた。反 応終了後、反応液にテトラヒドロフラン 50部を加えた後、ろ紙を用いて吸引ろ過し、ろ 液をさらにロータリーエバポレーターにより減圧乾燥し、不揮発分として透明な本発 明の水素化エポキシ榭脂 (a)を得た。得られた水素化エポキシ榭脂 (a)のエポキシ 当量は 388gZeqであった。また、核水素化率は 89%であった。
比較合成例 1:水素化エポキシ榭脂の合成
合成例 1と同様の方法によってフエノール'ビフエ-ルノボラック型のエポキシ榭脂 の替わりに、クレゾ一ルノボラック榭脂(日本ィ匕薬製、 EOCN— 104S)を用いて水素 添加を行った。得られたクレゾ一ルノボラック型水素化エポキシ榭脂のエポキシ当量 は 295gZeq、核水素化率は 86%であった。
実施例 1 1〜 1 4及び比較例 1 1
合成例 1で調製した水素化エポキシ榭脂 (a) 192g、分子中に一個以上の重合可 能なエチレン性不飽和基と一個以上のカルボキシル基を併せ持つ化合物 (b)として アクリル酸(略称 AA、 Mw= 72)を表 1中の記載量、触媒としてトリフエニルホスフィン 1. 5g、溶剤としてプロピレングリコールモノメチルエーテルモノアセテート 200gをカロ え、 100°Cで 24時間反応させた。
[0127] 反応終了後、一部ライフ試験用に榭脂溶液を採り抜いた後に 2リットルのへキサン 中に反応液を注ぎ込んで榭脂を沈殿精製し、減圧乾燥して榭脂を取り出した。
[0128] 比較例 1 1においては、合成例 1において原料として用いた水素添加反応前のェ ポキシ榭脂(商品名; NC— 3000、 日本化薬株式会社製) 132gを (a)の替わりに用 いる以外は実施例と同様に反応及び精製を行った。
[0129] ライフ試験は、反応終了後に採り抜いた榭脂溶液を、ガラス瓶中に入れ、 40°Cの環 境試験槽に入れ、ゲルイ匕までの時間を測定した。 [0130] [表 1] 表 l : 、性エポキシカルボキシレート化^ (A)の合成
謹例 # A A量(モル比) ライフ
鐘列 1 - 1 36g (1. 0) 120日以上 難例 1 - 2 29g (0. 8) 90Π
雄例 1― 3 18g (0. 5) 30B
難例 1 - 4 3. 6g (0. 1) 10H
t國 1一 1 36g (1. 0) 120日以上 実施例 2— 1及び比較例 2— 1及び 2— 2:活性エネルギー線硬化型榭脂組成物の調 製と評価 (電子線硬化型コーティング組成物)
実施例 1 1または比較例 1 1にお 、て合成した反応性エポキシカルボキシレー ト化合物 (A) 20g、ラジカル反応型の反応性化合物(B)であるトリプロピレングリコー ルジアタリレート 10gを加熱溶解し、コーチイング組成物を調製した。
[0131] さらにこれを、膜厚 20ミクロンになるようハンドアプリケータによって石英ガラス板上 に塗工し、電子線照射装置 (岩崎電機製、 EZCure)によって加速電圧 lOOkV, 照 射線量 lOOkGyの電子線を照射し、硬化させて多層材料を得た。続いて、硬化後の 塗膜の硬度を JIS K5600: 1999 (鉛筆硬度試験)によって測定した。
[0132] さらに硬化塗膜をカーボンアークウエザーメータによって 1000時間の光照射を行 い、耐光性試験を実施した。その後 500nmにおける光の透過性を測定し、耐光性試 験実施後の透過率 Z実施前の透過率の比を求めた。
[0133] さらに、比較例 2— 2として、水素添加ビスフエノール Aエポキシジアタリレート(略称
BADA)を (A)の代替として用い、同様の比較を行った。
[0134] [表 2]
表 2 コ' —ティング糸滅硬化物の硬度と耐光' ft
実施例 # (Λ) 耐光性
実施例 2 ―! 実施例 1 - 1 4H 0. 95
比較例 2 - 1 職例 1 1 4H 0. 45
比較例 2 -2 BADA F 0. 88 実施例 3— 1〜3— 4及び比較例 3— 1:複合硬化型榭脂組成物の調製と評価 (紫外 線硬化型成形用組成物)
実施例 1— 1にお 、て合成した反応性エポキシカルボキシレートイ匕合物 (A) 20g、 カチオン反応型の反応性化合物(B)であるリモネンジォキシド 10gを加熱溶解し、さ らに開始剤として「ィルガキュア 184」を lg、 2, 2,一ビス(o クロ口フエ-ル)一 4, 4, , 5, 5,ーテトラフエ-ルー 1, 2 ビイミダゾール 0. 5gを加え、よく溶解させて成形用 材料を得た。
[0135] 離型剤を塗工した型に調製した材料を流し込み、その上から離型剤を同様に塗工 した石英ガラスで封をし、さらにその上力もメタルノヽライドランプにより紫外線を 3000 mjZcm2の照射量にて照射した。その後、硬化した成形物を取り出し、厚み 0. 5mm 、 40mm X 15mmの試験片を調製し、そのヤング率を測定した。
[0136] さらに比較例 3— 1として、水素添加ビスフエノール Aエポキシジアタリレート(略称 B ADA)を (A)の代替として用い、同様の比較を行った。
[0137] [表 3] 表 3 成形用材:^ 硬化物のャング率
実删 # (A)
実施例 3 - 1 実施例 1― 1 7 2 O M P a
実施例 3 - 2 実施例 1 - 2 8 0 O M P a
実施例 3 - 3 細列 1― 3 9 5 O MP a
実施例 3— 4 実施例 1― 4 3 8 O MP a
比較例 3—1 Β Λ Β Λ 2 4 O MP a 実施例 4—1〜4 5
1)カルボキシレートイ匕反応工程
合成例 1で調製した水素化エポキシ榭脂 (a) 192g、分子中に一個以上の重合可 能なエチレン性不飽和基と一個以上のカルボキシル基を併せ持つ化合物 (b)として アクリル酸(Mw= 72)を表 4に記載の量、触媒としてトリフエ-ルホスフィン 1. 5g、溶 剤としてプロピレングリコールモノメチルエーテルモノアセテート 100gをカ卩え、 100°C で 24時間反応させた。
2)酸付加反応工程
1)において得られた反応液に多塩基酸無水物(c)として、テトラヒドロ無水フタル酸 (略称 THPA)を表 4に記載の量、及び溶剤として固形分が 70重量%となるようにプ ロピレングリコールモノメチルエーテルモノアセテートを添カ卩し、 100°Cに加熱して付 加反応させ、本発明の反応性ポリカルボン酸ィ匕合物(C)溶液を得た。
比較例 4 1
1)カルボキシレートイ匕反応工程
比較合成例 1で調製したクレゾ一ルノボラック型水素化エポキシ榭脂 148gを実施 例 4ー 1と同様の方法によってカルボキシレートイ匕させた。
2)酸付加反応工程
1)において調製した反応液を実施例 4— 1と同様の方法によってクレゾールノボラ ック型の反応性ポリカルボン酸ィ匕合物を得た。
比較例 4 2
合成例 1にお 、て原料として用 、た水素添加反応前のエポキシ榭脂 132gを水素 化エポキシ榭脂(a)の替わりに用いて実施例 4— 1と同様に反応を行った。
比較例 4 3
合成例 1で調製した水素化エポキシ榭脂 (a) 192gを実施例 4— 1と同様の方法で カルボキシレートイ匕反応を実施しただけで、酸付加させることなく反応を終了させた。 反応終了後、固形分を測定したところ 70重量%であった。
[表 4] 表 4 : 芯性エポキシカルボキシレート化合物 (A) の合成
雄例 # 化合物 (b) m 多塩 «無水物 (c> 固形分隨而
(モル比) (設定麵 (実測) *
実施例 4— 1. 36 g (1. 0) 71 g (100) 101
実施例 4一 2 29 g (0. 8) 52 g (70) 72
雄例 4一 3 36 g (1. 0) 53 g (70) 71
実施例 4一 4 36 g . 0) 36 g (50) 49
実施例 4— 5 36 g o . 0) 20 g (30) 30
比較例 4— 1 36 g (1. 0) 20 g (30) 31
比較例 4— 2 36 g (1. 0) 53 g (70) 30
比較例 4一 3 36 g (1- 0) Og (0) 0. 5
*) 固形^ ^ffi (実測) の単位: mg - KOH/g 実施例 5— 1〜5— 5及び比較例 5— 1〜5— 2:活性エネルギー線硬化型榭脂組成 物の調製と評価 (アルカリ現像型レジスト組成物)
実施例 4 1〜4 5または比較例 4 2及び 4 3にお 、て合成した反応性ポリ力 ルボン酸化合物(C) 20g、反応性化合物(D)としてジペンタエリスリトールへキサァク リレート 10g、紫外線反応型開始剤として「ィルガキュア 184」 1. 5gを加熱溶解し、ァ ルカリ現像型レジスト組成物を調製した。
[0139] さらにこれを、乾燥時の膜厚 20ミクロンになるようにハンドアプリケータによって石英 ガラス板上に塗工し、 80°Cで 30分間、電気オーブンにて溶剤乾燥を実施した。乾燥 後、高圧水銀ランプを具備した紫外線垂直露光装置 (オーク製作所製)によって照射 線量 lOOOmiの紫外線を照射、硬化させて多層材料を得た。また、同様にして乾燥 終了後の塗工物の上力 マスクパターンを覆いかぶせた後、同様に垂直露光し、 ターニングした多層材料を得た。
[0140] さらにマスクパターンで覆わず、全面露光したものは、 500nmにおける光の透過性 を測定した後、フエドメータによって 1000時間の光照射を行い、耐光性試験を実施 した。耐光性試験後、再度 500nmにおける光の透過性を測定し、耐光性試験実施 後の透過率 Z実施前の透過率の比を求め、耐光性として表 5に示した。
[0141] また、マスクパターンで覆って露光させたものは、 1重量0 /0炭酸ナトリウム水溶液を スプレーにより吹き掛け、未露光部を溶解、現像させた。現像が完了するまでの時間 (秒)を現像性として表 5に示した。
[0142] [表 5] 表 5 レジス卜糸 I1J ^硬化物の耐光性と現像†生
実施例 # 化合物 (C) 耐光性 現像性
実脑 5― 1 実施例 4— 1 0 . 9 5 2 0秒
実施例 5— 2 実施例 4— 2 0 . 9 2 6 0秒
実施例 5 _ 3 実施例 4— 3 0 . 9 6 3 0秒
細列 5— 4 実施例 4— 4 0. 9 3 6 5秒
実施例 5 - 5 灾棚 4— 5 0. 9 3 1 3 5秒
比較例 5― 1 比較例 4— 2 0 . 2 1 4 3秒
比較例 5― 2 比較例 4— 3 0 . 9 4 現像不可 本発明の活性エネルギー線硬化型榭脂組成物の硬化物においては水素添加され ていないエポキシ榭脂を用いた比較例 5— 1の硬化物に比較して、耐光性の大幅な 向上が見られた。また、実施例 5— 1〜5— 5では耐光性試験後の黄変は認められな かったが、比較例5— 1〜5— 2にぉぃては耐光性試験後、黄変が認められた。また、 反応性エポキシカルボキシレートイ匕合物を用いた比較例 5— 2の硬化物が現像不可 であるのに比較して、本発明の硬化物は良好な現像性を示し、比較的良好なレジス ト適性を発揮するアクリル酸付加量及び酸付加量が示された。
実施例 6及び比較例 6— 1〜6— 2:硬化物の硬度測定 (電子線硬化型塗料組成物) 実施例 4 5並びに比較例 4 1及び 4 3で調製した反応性ポリカルボン酸ィ匕合 物 15gとトリプロピレングリコールジアタリレート 10gを混合し、塗料組成物を得た。こ の塗料組成物をノヽンドアプリケータによって乾燥後の膜圧が 20 ± 2ミクロンとなるよう に、ワイヤーバーコ一ターの番手を適宜調整しながら、 TFS板 (クロム酸処理鋼板) に塗工し、 80°Cで 30分間、乾燥させた。
[0143] 乾燥後、電子線照射装置 (岩崎電気製 EZ CURE)によって加速電圧 100kV、照 射線量 lOOkGyの電子線を照射、硬化させて多層材料を得た。さらに、硬化皮膜の 硬度を、鉛筆硬度試験法 (JIS K5600 : 1999)によって測定した。また、基材への 密着性をクロスカットセロテープ (登録商標)剥離試験 (JIS K5600- 5 - 6: 1999) により評価した。
[0144] [表 6] 表 6:硬化物の搬赚
難例 # 化^) (A) 固形 価
(実測) *
霞例 6 難例 4一 5 3 0 4 H 1 0 0/ 1 0 0 比割 6—1 比糊 4—1 3 1 H 1 0 0/ 1 0 0 比棚 6— 2 1:瞧4 - 3 0 . 5 4 H 2 0/2 0 0
氺)固形^ ffi (実測)の単位: mg · K O H/g 以上の結果より、本発明の反応性エポキシカルボキシレートイ匕合物 (A)を用いた活 性エネルギー線硬化型榭脂組成物を硬化することで従来の素材にはな ヽ、耐光性 の高い、また強靭な硬化物を提供できることが明らかである。
[0145] また、本発明の反応性ポリカルボン酸ィ匕合物(C)を用いることで、従来の素材には ない、耐光性の高ぐまた密着性が良好で、比較的強靭な硬化物を得ることが出来、 またアルカリ現像可能な材料を提供できることが明らかである。
産業上の利用の可能性
[0146] 本発明の反応性エポキシカルボキシレートイ匕合物 (A)を含有する活性エネルギー 線硬化型榭脂組成物は、光の照射によっても劣化がなぐかつ強靭性の高い硬化物 を与える。本発明においては、主に透明である点と、耐光性が良好であるという点か ら、成形材料、皮膜形成用材料としての用途に使用することができる。具体的には、 レンズ等の光学部品、塗料、フィルム、レジスト等の用途に好適に利用することが出 来る。
[0147] そのほかにも、強靭な硬化物を得ることができることから、柔軟性と強靭性を併せ持 つ硬化物にもなりうる可能性を有している。
[0148] また、本発明の反応性ポリカルボン酸ィ匕合物(C)は、光の照射によっても劣化がな ぐかつアルカリ現像可能な反応性ポリカルボン酸ィ匕合物である。本発明においては 、主に透明である点と、耐光性が良好であるという点から、特にアルカリ現像可能なレ ジストとしての用途に使用することができる。さらには、この特性を生かす用途として成 形材料、皮膜形成用材料として、具体的には、レンズ等の光学部品、塗料、フィルム 等の用途に好適に利用することが出来る。

Claims

請求の範囲
[1] 一般式 (1)
[化 3]
Figure imgf000037_0001
(式中、 Rは相互に同一でも異なっていてもよぐ水素原子、ハロゲン原子または炭 素数 1〜4のアルキル基を表し、 mは 1〜4の整数を、また nは平均値で 1〜6の正数 をそれぞれ表す。 )
で表されるエポキシ榭脂の芳香環の核水素化物である水素化エポキシ榭脂 (a)と、 分子中に一個以上の重合可能なエチレン性不飽和基及び一個以上のカルボキシル 基を有する化合物 (b)とを反応させて得られる反応性エポキシカルボキシレートイ匕合 物 (A)。
[2] Rが全て水素原子である請求項 1に記載の反応性エポキシカルボキシレートイヒ合物
(A)。
[3] 請求項 1又は 2に記載の反応性エポキシカルボキシレートイ匕合物 (A)を含有すること を特徴とする活性エネルギー線硬化型榭脂組成物。
[4] 請求項 1又は 2に記載の反応性エポキシカルボキシレートイ匕合物 (A)及び (A)以外 の反応性化合物(B)を含有することを特徴とする活性エネルギー線硬化型榭脂組成 物。
[5] (A)以外の反応性化合物 (B)が、アタリレート類及びビニルイ匕合物類力もなる群から 選ばれる 1種以上であることを特徴とする請求項 4に記載の活性エネルギー線硬化 型榭脂組成物。
[6] 成形用材料である請求項 3な 、し請求項 5の 、ずれか一項に記載の活性エネルギ 一線硬化型榭脂組成物。
[7] 皮膜形成用材料である請求項 3な 、し請求項 5の 、ずれか一項に記載の活性エネ ルギ一線硬化型榭脂組成物。
[8] 請求項 3な 、し請求項 7の 、ずれか一項に記載の活性エネルギー線硬化型榭脂組 成物の硬化物。
[9] 請求項 8に記載の硬化物の層を有する多層材料。
[10] 請求項 8に記載の硬化物からなる光学材料。
[11] 一般式 (1)
[化 4]
Figure imgf000038_0001
(式中、 Rは相互に同一でも異なっていてもよぐ水素原子、ハロゲン原子または炭 素数 1〜4のアルキル基を表し、 mは 1〜4の整数を、また nは平均値で 1〜6の正数 をそれぞれ表す。 )
で表されるエポキシ榭脂の芳香環を核水素化して得られる水素化エポキシ榭脂 (a) と、分子中に一個以上の重合可能なエチレン性不飽和基及び一個以上のカルボキ シル基を有する化合物 (b)とを反応させて得られる反応性エポキシカルボキシレート 化合物 (A)に、多塩基酸無水物(c)を反応させて得られる反応性ポリカルボン酸ィ匕 合物 (C)。
[12] Rが全て水素原子である請求項 11に記載の反応性ポリカルボン酸ィ匕合物(C)。
[13] 請求項 11又は請求項 12に記載の反応性ポリカルボン酸ィ匕合物(C)を含有すること を特徴とする活性エネルギー線硬化型榭脂組成物。
[14] 請求項 11又は請求項 12に記載の反応性ポリカルボン酸ィ匕合物(C)及び (C)以外 の反応性化合物 (D)を含有することを特徴とする活性エネルギー線硬化型榭脂組成 物。
[15] (C)以外の反応性化合物(D)が、アタリレート類であることを特徴とする請求項 14に 記載の活性エネルギー線硬化型榭脂組成物。
[16] 成形用材料である請求項 13な 、し請求項 15の 、ずれか一項に記載の活性エネル ギ一線硬化型榭脂組成物。
[17] 皮膜形成用材料である請求項 13な 、し請求項 16の 、ずれか一項に記載の活性ェ ネルギ一線硬化型榭脂組成物。
[18] レジスト材料組成物である請求項 13な 、し請求項 17の 、ずれか一項に記載の活性 エネルギー線硬化型榭脂組成物。
[19] 請求項 13又は請求項 18の 、ずれか一項に記載の活性エネルギー線硬化型榭脂組 成物の硬化物。
[20] 請求項 19に記載の硬化物の層を有する多層材料。
PCT/JP2006/306471 2005-04-07 2006-03-29 反応性エポキシカルボキシレート化合物及びそれを用いた活性エネルギー線硬化性樹脂組成物 WO2006109572A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007512793A JP4986059B2 (ja) 2005-04-07 2006-03-29 反応性エポキシカルボキシレート化合物及びそれを用いた活性エネルギー線硬化性樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005110540 2005-04-07
JP2005-110540 2005-04-07
JP2005123303 2005-04-21
JP2005-123303 2005-04-21

Publications (1)

Publication Number Publication Date
WO2006109572A1 true WO2006109572A1 (ja) 2006-10-19

Family

ID=37086854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306471 WO2006109572A1 (ja) 2005-04-07 2006-03-29 反応性エポキシカルボキシレート化合物及びそれを用いた活性エネルギー線硬化性樹脂組成物

Country Status (3)

Country Link
JP (1) JP4986059B2 (ja)
TW (1) TW200702351A (ja)
WO (1) WO2006109572A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087943A1 (ja) * 2007-01-16 2008-07-24 Nippon Kayaku Kabushiki Kaisha カルボキシレート樹脂及びそれを含有する樹脂組成物
JP2008179796A (ja) * 2006-12-26 2008-08-07 Mitsui Chemicals Inc (メタ)アクリロイル基およびグリシジル基を有する化合物、および当該化合物を含む重合性組成物
JP2008238416A (ja) * 2007-03-24 2008-10-09 Daicel Chem Ind Ltd ナノインプリント用樹脂組成物
JP2008266608A (ja) * 2007-03-24 2008-11-06 Daicel Chem Ind Ltd ナノインプリント用硬化性樹脂組成物
WO2009123276A1 (ja) * 2008-04-04 2009-10-08 日本化薬株式会社 保護基を有するエポキシ化合物及びこれを含有する硬化性樹脂組成物
JP2011064863A (ja) * 2009-09-16 2011-03-31 Goo Chemical Co Ltd 感光性樹脂組成物、ソルダーレジスト用組成物及びプリント配線板
KR20120022640A (ko) 2010-08-20 2012-03-12 가부시키가이샤 다무라 세이사쿠쇼 알칼리 가용성 투명 수지 조성물
WO2012111186A1 (ja) * 2011-02-15 2012-08-23 株式会社プリンテック 透明樹脂基板
JP2012226040A (ja) * 2011-04-18 2012-11-15 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2014067063A (ja) * 2013-12-17 2014-04-17 Goo Chemical Co Ltd 感光性樹脂組成物、ソルダーレジスト用組成物及びプリント配線板
JP2015165331A (ja) * 2015-05-29 2015-09-17 互応化学工業株式会社 感光性樹脂組成物、ソルダーレジスト用組成物及びプリント配線板
CN110366704A (zh) * 2017-03-30 2019-10-22 日本瑞翁株式会社 放射线敏感性树脂组合物和电子部件
JP2021138794A (ja) * 2020-03-02 2021-09-16 日鉄ケミカル&マテリアル株式会社 水素化化合物およびその製造方法、重合性不飽和基含有アルカリ可溶性樹脂、それを含む感光性樹脂組成物、それを硬化してなる硬化物、その硬化物を構成成分として含むタッチパネルおよびカラーフィルター

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224609B (zh) * 2007-08-21 2016-03-09 日本化药株式会社 反应性环氧羧酸酯化合物、反应性多元羧酸化合物、活性能量射线固化型树脂组合物及物品
TWI476253B (zh) * 2011-01-12 2015-03-11 Prior Company Ltd 雙固化型塗料、硬塗層以及硬塗層的形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140144A (ja) * 1997-11-04 1999-05-25 Nippon Kayaku Co Ltd 樹脂組成物及びその硬化物
JPH11189631A (ja) * 1997-12-26 1999-07-13 Nippon Kayaku Co Ltd 樹脂組成物、その硬化物及びプリント配線板
JP2002220425A (ja) * 2001-01-25 2002-08-09 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2003321636A (ja) * 2002-04-30 2003-11-14 Dainippon Ink & Chem Inc 活性エネルギー線硬化型フレキソインキ用樹脂組成物
JP2004359734A (ja) * 2003-06-03 2004-12-24 Tamura Kaken Co Ltd 紫外線硬化型アルカリ可溶性樹脂、ソルダーレジスト用組成物およびプリント配線板
JP2005062449A (ja) * 2003-08-12 2005-03-10 Kyocera Chemical Corp 感光性樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623499B2 (ja) * 2004-12-17 2011-02-02 日本化薬株式会社 水素化エポキシ樹脂
TWI384006B (zh) * 2005-03-15 2013-02-01 Nippon Kayaku Kk 環氧樹脂、環氧樹脂組成物、使用該等之預浸物及積層板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140144A (ja) * 1997-11-04 1999-05-25 Nippon Kayaku Co Ltd 樹脂組成物及びその硬化物
JPH11189631A (ja) * 1997-12-26 1999-07-13 Nippon Kayaku Co Ltd 樹脂組成物、その硬化物及びプリント配線板
JP2002220425A (ja) * 2001-01-25 2002-08-09 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2003321636A (ja) * 2002-04-30 2003-11-14 Dainippon Ink & Chem Inc 活性エネルギー線硬化型フレキソインキ用樹脂組成物
JP2004359734A (ja) * 2003-06-03 2004-12-24 Tamura Kaken Co Ltd 紫外線硬化型アルカリ可溶性樹脂、ソルダーレジスト用組成物およびプリント配線板
JP2005062449A (ja) * 2003-08-12 2005-03-10 Kyocera Chemical Corp 感光性樹脂組成物

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179796A (ja) * 2006-12-26 2008-08-07 Mitsui Chemicals Inc (メタ)アクリロイル基およびグリシジル基を有する化合物、および当該化合物を含む重合性組成物
WO2008087943A1 (ja) * 2007-01-16 2008-07-24 Nippon Kayaku Kabushiki Kaisha カルボキシレート樹脂及びそれを含有する樹脂組成物
JP2008238416A (ja) * 2007-03-24 2008-10-09 Daicel Chem Ind Ltd ナノインプリント用樹脂組成物
JP2008266608A (ja) * 2007-03-24 2008-11-06 Daicel Chem Ind Ltd ナノインプリント用硬化性樹脂組成物
WO2009123276A1 (ja) * 2008-04-04 2009-10-08 日本化薬株式会社 保護基を有するエポキシ化合物及びこれを含有する硬化性樹脂組成物
JP2011064863A (ja) * 2009-09-16 2011-03-31 Goo Chemical Co Ltd 感光性樹脂組成物、ソルダーレジスト用組成物及びプリント配線板
KR20120022640A (ko) 2010-08-20 2012-03-12 가부시키가이샤 다무라 세이사쿠쇼 알칼리 가용성 투명 수지 조성물
WO2012111186A1 (ja) * 2011-02-15 2012-08-23 株式会社プリンテック 透明樹脂基板
JP2012226040A (ja) * 2011-04-18 2012-11-15 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP2014067063A (ja) * 2013-12-17 2014-04-17 Goo Chemical Co Ltd 感光性樹脂組成物、ソルダーレジスト用組成物及びプリント配線板
JP2015165331A (ja) * 2015-05-29 2015-09-17 互応化学工業株式会社 感光性樹脂組成物、ソルダーレジスト用組成物及びプリント配線板
CN110366704A (zh) * 2017-03-30 2019-10-22 日本瑞翁株式会社 放射线敏感性树脂组合物和电子部件
CN110366704B (zh) * 2017-03-30 2023-01-13 日本瑞翁株式会社 放射线敏感性树脂组合物和电子部件
JP2021138794A (ja) * 2020-03-02 2021-09-16 日鉄ケミカル&マテリアル株式会社 水素化化合物およびその製造方法、重合性不飽和基含有アルカリ可溶性樹脂、それを含む感光性樹脂組成物、それを硬化してなる硬化物、その硬化物を構成成分として含むタッチパネルおよびカラーフィルター
JP7478553B2 (ja) 2020-03-02 2024-05-07 日鉄ケミカル&マテリアル株式会社 水素化化合物およびその製造方法、重合性不飽和基含有アルカリ可溶性樹脂、それを含む感光性樹脂組成物、それを硬化してなる硬化物、その硬化物を構成成分として含むタッチパネルおよびカラーフィルター

Also Published As

Publication number Publication date
JP4986059B2 (ja) 2012-07-25
TW200702351A (en) 2007-01-16
JPWO2006109572A1 (ja) 2008-10-30

Similar Documents

Publication Publication Date Title
WO2006109572A1 (ja) 反応性エポキシカルボキシレート化合物及びそれを用いた活性エネルギー線硬化性樹脂組成物
TWI468430B (zh) A reactive carboxylic acid ester compound, an active energy ray-hardening resin composition using the same, and a use thereof
JP6576161B2 (ja) 新規反応性エポキシカルボキシレート化合物、その誘導体、それを含有する樹脂組成物及びその硬化物
JP6075772B2 (ja) 樹脂組成物及びその硬化物
JP7462709B2 (ja) 反応性ポリカルボン酸化合物、それを用いた活性エネルギー線硬化型樹脂組成物、その硬化物及びその用途
WO2010140527A1 (ja) 反応性ウレタン化合物、それを含む活性エネルギー線硬化型樹脂組成物、及びその用途
WO2008004630A1 (fr) Composition durcissable par rayons énergétiques actifs pour des utilisations optiques, et résine à indice de réfraction élevé
JP2019001998A (ja) 反応性ポリカルボン酸化合物、それを用いた活性エネルギー線硬化型樹脂組成物、その硬化物及びその用途
JP5641554B2 (ja) 活性エネルギー線硬化型光学用組成物及び高屈折率樹脂
JP5604106B2 (ja) 反応性カルボキシレート化合物、それを用いた硬化型樹脂組成物、およびその用途
JP6556735B2 (ja) 反応性ポリエステル化合物、それを用いた活性エネルギー線硬化型樹脂組成物
TWI576363B (zh) 新穎環氧羧酸酯化合物、其衍生物、含有其的活性能量線硬化型樹脂組成物及其硬化物
JP7419246B2 (ja) 反応性ポリカルボン酸樹脂混合物、それを用いた活性エネルギー線硬化型樹脂組成物およびその硬化物、並びに反応性エポキシカルボキシレート樹脂混合物
JP2018188622A (ja) 反応性ポリカルボン酸化合物、それを用いた活性エネルギー線硬化型樹脂組成物、その硬化物及びその用途
WO2013172009A1 (ja) 反応性ポリエステル化合物及び活性エネルギー線硬化型樹脂組成物
JP2009227848A (ja) 塩素含有量の少ないエポキシカルボキシレート化合物、その誘導体、それを含有する活性エネルギー線硬化型樹脂組成物およびその硬化物
JP6685813B2 (ja) エポキシ樹脂、反応性カルボキシレート化合物、それを用いた硬化型樹脂組成物、及びその用途
JP2009249607A (ja) 感光性樹脂組成物及びその硬化物
TWI726131B (zh) 環氧羧酸酯化合物、多元羧酸化合物、含有該等之能量線硬化型樹脂組成物、及該樹脂組成物之硬化物
JP2009275167A (ja) 反応性カルボキシレート化合物、それを用いた活性エネルギー線硬化型樹脂組成物、およびその用途
TWI699381B (zh) 環氧樹脂、反應性羧酸酯化合物、使用該化合物之硬化型樹脂組成物及其用途
JP2016148874A (ja) 反応性カルボキシレート化合物、それを用いた活性エネルギー線硬化型樹脂組成物、およびその用途
JP5382846B2 (ja) 感光性化合物、それを含む組成物及びその硬化物
JP2016169326A (ja) カルボキシル基含有反応性化合物、それを用いた硬化型樹脂組成物、およびその用途。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512793

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730419

Country of ref document: EP

Kind code of ref document: A1