WO2006098468A1 - 照明装置、照明方法、画像読取装置、画像読取方法、画像形成装置及び画像形成方法 - Google Patents

照明装置、照明方法、画像読取装置、画像読取方法、画像形成装置及び画像形成方法 Download PDF

Info

Publication number
WO2006098468A1
WO2006098468A1 PCT/JP2006/305504 JP2006305504W WO2006098468A1 WO 2006098468 A1 WO2006098468 A1 WO 2006098468A1 JP 2006305504 W JP2006305504 W JP 2006305504W WO 2006098468 A1 WO2006098468 A1 WO 2006098468A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination
lens
image
light source
Prior art date
Application number
PCT/JP2006/305504
Other languages
English (en)
French (fr)
Inventor
Satoshi Yamauchi
Fumihiro Nakashige
Original Assignee
Ricoh Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Company, Ltd. filed Critical Ricoh Company, Ltd.
Priority to US11/886,578 priority Critical patent/US8169672B2/en
Priority to CN2006800087615A priority patent/CN101142806B/zh
Priority to EP06729472A priority patent/EP1860864A4/en
Publication of WO2006098468A1 publication Critical patent/WO2006098468A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/52Details
    • G03B27/54Lamp housings; Illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/02865Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array using an array of light sources or a combination of such arrays, e.g. an LED bar
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02895Additional elements in the illumination means or cooperating with the illumination means, e.g. filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/1013Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components
    • H04N1/1017Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components the main-scanning components remaining positionally invariant with respect to one another in the sub-scanning direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/191Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a one-dimensional array, or a combination of one-dimensional arrays, or a substantially one-dimensional array, e.g. an array of staggered elements
    • H04N1/192Simultaneously or substantially simultaneously scanning picture elements on one main scanning line
    • H04N1/193Simultaneously or substantially simultaneously scanning picture elements on one main scanning line using electrically scanned linear arrays, e.g. linear CCD arrays

Definitions

  • Illumination device illumination method
  • image reading device image reading method
  • image forming device image forming method
  • the present invention relates to an illuminating device and an illuminating method, an image reading device and an image reading method, and an image forming device and an image forming method.
  • Patent Document 1 discloses an image reading apparatus that can reduce flare by using a light source far from the vicinity of the document surface without using a reflector.
  • the disclosed image reading apparatus has the following problems (1) to (4).
  • Patent Document 2 discloses an image reading apparatus in which cost reduction is achieved by eliminating a reflector, but the image reading apparatus disclosed in Patent Document 2 is similarly disclosed. It has the following problems (1) to (4).
  • Patent Document 3 the image sensor and the light sources arranged on the upper and lower sides of the image sensor share the imaging optical system of the image sensor, and the light emitted from the light source is installed in the vicinity of the document surface.
  • An image reading apparatus that illuminates the reading position on the document surface using the mirror is disclosed.
  • the image reading apparatus disclosed in Patent Document 3 has the following problems (1) and (4). Have
  • Patent Document 4 discloses an image reading device in which an image pickup device and a light source use a half mirror to share an imaging optical system and read and illuminate the same position on a document surface.
  • the image reading device disclosed in Patent Document 4 has the following problem (5).
  • the read value changes depending on the gloss of the original. (At least, the angle of these optical axes with respect to the normal of the document surface is not specified.)
  • the light source is far away from the surface of the document, a powerful light source or a condenser such as a lens is required to obtain the required amount of illumination on the document surface, which increases costs. It becomes a factor. Also, the power required for the light source increases.
  • Patent Document 5 discloses an illumination device for a projector.
  • the illumination device disclosed in Patent Document 5 basically irradiates a surface, and makes the line efficient. A method for well irradiating is not disclosed. Further, Patent Document 5 does not disclose a method of applying the illumination device to the image reading device.
  • FIGS. 1A and 1B are a schematic view of a general image reading apparatus and a cross-sectional view of the image reading apparatus in the sub-scanning direction, respectively.
  • the original (107) is placed on the contact glass (108), and the light from the lamp (109) and the light from the lamp (109) are reflected.
  • the reflected light of the reflected (110) force is applied to the imaging area (111) of the document (107).
  • the reflected light is reflected by the turning mirror (113) in the first traveling body (103), and the folding mirror A (112a) and the folding mirror B (112b) in the second traveling body (104).
  • An image is formed on the one-dimensional image sensor (101) by the image lens (102).
  • the one-dimensional imaging device (101) acquires a one-dimensional image of the line-shaped imaging region (111).
  • the direction in which this one-dimensional image is acquired in the one-dimensional image sensor (101) is called the main runner direction.
  • the imaging position of the imaging lens (102) with respect to the contact glass (108) surface is maintained on the one-dimensional imaging device (101) surface, while the optical contact glass (108) surface has a linear shape. It travels in a direction perpendicular to the imaging area (111) and parallel to the contact glass (108). In this way, the image of the original (107) placed on the contact glass (108) is sequentially read out by the one-dimensional image sensor (101) and acquired in two dimensions.
  • the direction in which the first traveling body (103) and the second traveling body (104) travel is referred to as a sub-scanning direction.
  • a one-dimensional CCD is used as an image sensor, and the imaging lens (102) reduces an image on the surface of the contact glass (108), and the reduced image is converted into a one-dimensional image sensor ( 101) Image on top.
  • the moving distance of the second traveling body (104) is The distance from the imaging region (111) to the imaging lens (102) or the one-dimensional imaging device (101) is half the moving distance of the first traveling body (103). 2 Constant regardless of the position of the traveling body (104).
  • the image resolution of a scanner is represented by DPI (dot Zinch), and the image resolution of a scanner mounted on a digital PPC is often 400 to 600 DPI.
  • force Lars Canon uses three CCDs that are sensitive to the R (red), G (green), and B (blue) light spectra, and these CCD forces share the same optical path length to the document.
  • a three-line CCD in which three-line CCDs for (red), G (green), and B (blue) are arranged in the sub-scanning direction may be used as the image sensor.
  • the distance between the pixel columns is about 4 to 8 dots in the main scanning area of the CCD pixel, and the pixel columns are not necessarily integrated.
  • the reading position of the document corresponding to each of the RGB CCD pixels differs in the sub-scanning direction. It is necessary to irradiate the reading position corresponding to the color.
  • FIG. 2 is a schematic diagram of another type of image reading apparatus.
  • the reduction optical system includes an image sensor (201) and an imaging lens (202), and the image sensor (201) or the imaging lens ( A document (204) is placed on a document table (203) without using an optical system such as a mirror between the document (202) and the document (204), and an image of the document (204) is read.
  • the present invention can also be applied to such an image reading apparatus.
  • the image reading apparatus shown in FIG. 2 when a one-dimensional CCD is used as the image sensor (201), the document (204) on the document table (203) is scanned in one direction or the imaging lens (202) and the image sensor By moving the unit (201) in one direction, a two-dimensional image of the document (204) can be read.
  • a component having the largest power consumption is an illumination lamp.
  • the charge storage time of the CCD becomes shorter.
  • a high-intensity illumination lamp is required, increasing the power consumption of the scanner.
  • the light source has been changed from a halogen lamp to a xenon lamp and further to an LED.
  • FIG. 3 is a diagram for explaining the relationship between the illumination area and the reading area in the image reading apparatus.
  • the relationship between the illumination area (305) and the reading area (302) of the scanner (300) as the image reading apparatus is currently read by the CCD on the original (301) surface.
  • the illumination area (305) by the illumination light (304) from the light source (303) is much wider than the reading area (302).
  • the illumination width necessary for reading the image of the original (301) is 42.3 zm, but actually, the illumination is about 20 mm wide. Therefore, the energy efficiency of simple light obtained by comparing their widths is only about 0.5%. In other words, the remaining 99.5% of light is wasted energy.
  • Components that greatly affect the cost of a scanner as an image reading device include CCD and imaging lens. Components that conform to these include an illumination lamp and its accessories. In particular, a xenon lamp or the like requires a high voltage, so a pack of packs is necessary. In addition, a flexible power line is also required to provide a ramp for the first traveling body.
  • a scanner as an image reading device has a built-in illumination device, and a general scanner reads a document image in a line and runs a line for reading a document image.
  • a general scanner reads a document image in a line and runs a line for reading a document image.
  • a two-dimensional image of the original is read (this kind of reading is called line-sequential image reading.
  • scanning in the reading line direction is called main scanning, and the original surface is perpendicular to the main scanning.
  • Scanning in the direction parallel to is called sub-scanning). At that time, flare may occur.
  • FIG. 4 is a diagram for explaining the illumination state in the image reading apparatus and the flare generated in the image reading apparatus.
  • the light source (fluorescent tube) (401) force illumination light (402) force directly or via the reflector (404) (403).
  • the light applied to the document surface (403) is reflected from the document surface (403), passes through the opening (406) of the light source (401), and reaches the fluorescent screen (407) of the light source (401).
  • the light that has reached the phosphor screen (407) is reflected by the phosphor screen (407) and becomes re-illuminated light (405) that illuminates the document surface (403) again, and flare occurs (illumination device power document
  • the illumination light that reaches the surface is the primary illumination light, and the light that is reflected off the document surface and illuminates the document surface again is the secondary illumination light).
  • the image signal read by the scanner changes due to the difference in the document density around the document reading area.
  • the reason for this change is the sum of the primary illumination light and the secondary illumination light because when the primary illumination light is reflected from the original surface force, the amount of reflected light changes depending on the density of the original image.
  • the illumination light quantity changes depending on the document density.
  • flare occurs remarkably in an image portion having a rapidly changing density in an original.
  • FIG. 5 is a diagram illustrating an example of an image read by the image reading apparatus in which flare has occurred.
  • the boundary portion (502) sandwiched between the black patterns (501) is read as a larger area than the white pattern (503). Since the density of the white pattern of the original image is uniform, the quality of the scanned image at the boundary (502) is clearly low (ideally, the boundary (502) and the white pattern (503). ) Should have the same brightness). This is because when the boundary part (502) that is the area between the black patterns (501) is read by the scanner, both sides of the boundary part (502) are black, so secondary illumination This is because the light intensity is relatively reduced as compared with the case of reading the white pattern.
  • a scanner reads an area having a low reflectance in a document as a dark image, and reads an area having a high reflectance in a document as a bright image.
  • the white part in the text becomes relatively dark in the scanned image, resulting in a decrease in the contrast of the image and the reading of the text. It can be difficult.
  • the secondary illumination light basically re-illuminates the document surface in the vicinity of the position where the illumination light is reflected, causing a sudden density change (such as the boundary of a black and white pattern). This is because the change in the amount of secondary illumination light is large in the provided part.
  • the optical components are painted black or the layout of the optical components is adjusted appropriately so that the secondary illumination light reflected from the document surface does not illuminate the document again. Yes.
  • flare has been an issue with read image quality because re-illumination with secondary illumination cannot be completely eliminated.
  • the area around the characters suddenly darkened, and smudges occurred in copy images, etc., resulting in a drastic reduction in image quality.
  • FIG. 6 is a diagram for explaining a shadow generated when an image is read from a book document.
  • the book original (601) is placed on the contact glass (602) and the image of the book original (601) is read, the central part of the book original (601) is shown in FIG. (603) floats above the surface of the contact glass (602).
  • the illumination light (605) does not reach the reading position (604) corresponding to the pixel of the image sensor, and the read image The problem of darkening occurs.
  • the image reading apparatus by appropriately designing the configuration and arrangement of the illumination system that illuminates the document surface with the light emitted from the light source, the light utilization rate can be improved and energy saving can be achieved. , Achieving a high image quality by reducing the thickness and size of the image reading device, reducing the cost of the image reading device, reducing flare and preventing shadows on the book, and It is desirable to reduce the illuminance unevenness of the surface.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-253213
  • Patent Document 2 JP 2000-250146 A
  • Patent Document 3 Japanese Patent Laid-Open No. 10-190990
  • Patent Document 4 Japanese Patent Laid-Open No. 9-51405
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-280094
  • An object of the present invention is to provide an illuminating device and an illuminating method, an image reading device and an image reading method, and an image forming apparatus and an image forming method with improved light utilization.
  • reflected light from a document illuminated by a light source is imaged on an image sensor by an imaging lens, and an image of the document is read one-dimensionally and scanned.
  • An image reading apparatus for reading a two-dimensional image comprising: an illumination lens having at least a plurality of lenses; and a means for superimposing a plurality of light beams.
  • the light bundle emitted from the light source is divided into a plurality of parts.
  • An image reading apparatus characterized in that the plurality of divided light beams are superimposed on the original surface.
  • reflected light from a document illuminated by a light source is imaged on an image sensor by an imaging lens, and the image of the document is read one-dimensionally and scanned.
  • the image reading method for reading a two-dimensional image the light beam emitted from the light source is divided into a plurality of light beams, and the divided light beams are superimposed on the document surface.
  • a third aspect of the present invention is an image forming apparatus including the image reading apparatus according to the first aspect of the present invention.
  • a plurality of light fluxes are acquired from the light emitted from the light source in at least one plane, Including at least one luminous flux illumination element for illuminating the object with the plurality of luminous fluxes
  • the lighting device is characterized.
  • an illumination method for illuminating a target with light emitted from a light source a plurality of light fluxes are acquired from the light emitted from the light source in at least one plane, An illumination method comprising illuminating the object with the plurality of light beams.
  • an image reading apparatus that illuminates light emitted from a light source on a document provided with an image, acquires light reflected from the document, and reads the image.
  • An image reading apparatus including an illumination device according to a fourth aspect of the invention.
  • a seventh aspect of the present invention is an image reading method for illuminating a document provided with an image with light emitted from a light source, acquiring the light reflected from the document, and reading the image.
  • An image reading method comprising illuminating light emitted from a light source onto a document provided with an image using an illumination method according to a fifth aspect of the invention.
  • An eighth aspect of the present invention is the sixth aspect of the present invention, in an image forming apparatus that reads an image of a document including an image and forms the image of the document on a medium on which the image is formed.
  • An image forming apparatus including an image reading apparatus.
  • an image forming method for reading an image of a document provided with an image and forming the image of the document on a medium on which the image is formed An image forming method characterized in that an image of a document having an image is read using a certain image reading method.
  • an illuminating device and an illuminating method it is possible to provide an illuminating device and an illuminating method, an image reading device and an image reading method, and an image forming apparatus and an image forming method with improved light utilization.
  • FIGS. 1A and 1B are a schematic view of a general image reading apparatus and a cross-sectional view of the image reading apparatus in the sub-scanning direction, respectively.
  • FIG. 2 is a schematic view of another type of image reading apparatus.
  • FIG. 3 is a diagram illustrating a relationship between an illumination area and a reading area in the image reading apparatus.
  • FIG. 4 is a diagram for explaining the state of illumination in the image reading apparatus and flare generated in the image reading apparatus.
  • FIG. 5 is a diagram illustrating an example of an image read by an image reading device in which flare has occurred.
  • FIG. 6 is a diagram for explaining a shadow generated when an image is read from a book document.
  • FIG. 7 A diagram for explaining the basic concept of the illumination system in Embodiment 1 of the image reading apparatus according to the present invention, (a) is a top view of the illumination system, and (b) is a front view of the illumination system.
  • FIG. 7 A diagram for explaining the basic concept of the illumination system in Embodiment 1 of the image reading apparatus according to the present invention, (a) is a top view of the illumination system, and (b) is a front view of the illumination system.
  • FIG. 8A is a diagram showing the form of a cylinder lens array.
  • FIG. 8B is a diagram showing an example of a cylinder lens.
  • FIG. 8C is a diagram showing another example of a cylinder lens.
  • FIG. 9A is a diagram showing an example in which the number of cylinder lenses in Example 1 is one less than the number of LEDs of the light source.
  • FIG. 9B is a diagram showing an example in which the number of cylinder lenses in Example 1 is one greater than the number of LEDs of the light source.
  • FIG. 10 It is a diagram for explaining the illumination distribution on the illumination target surface in Example 1, (a) is a diagram showing an example in which the number of cylinder lenses matches the number of LEDs of the light source, and (b) (C) shows an example in which the number of cylinder lenses is one less than the number of LEDs in the light source, and (c) shows an example in which the number of cylinder lenses is one more than the number of LEDs in the light source.
  • a diagram illustrating a more practical illumination system using three-color LEDs in Example 1 (a) is a top view of the illumination system, and (b) is a diagram of the illumination system. It is a front view, (c) is a side view of the illumination system.
  • a diagram illustrating a first example of an illumination system in Embodiment 2 of the image reading apparatus according to the present invention (a) is a top view of the first example of the illumination system, and (b) is a diagram It is a front view of the 1st example of an illumination system.
  • a diagram illustrating a second example of the illumination system in the embodiment 2 of the image reading apparatus according to the present invention (a) is a top view of the second example of the illumination system, and (b) is a diagram It is a front view of the 2nd example of an illumination system.
  • Example 14 It is a diagram illustrating an illumination system using three-color LEDs in Example 2, (a) is a top view of the illumination system, and (b) is a front view of the illumination system. , (C) its lighting It is a side view of a system.
  • FIG. 15 It is a diagram for explaining an illumination system in Embodiment 3 of the image reading apparatus according to the present invention, (a) is a top view of the illumination system, and (b) is a parabolic mirror used as a light source. It is a front view of an illumination system, (c) is a front view of an illumination system using an ellipsoidal mirror as a light source.
  • Fig. 16 is a diagram for explaining the capture of the radiation vector of the luminous flux emitted from the linear luminous body and the radiation vector of the luminous flux by the lens, and (a) shows the radiation vector of the luminous flux emitted uniformly from the luminous body. It is a figure which shows intensity distribution, (b) is a figure which shows intensity distribution of the radiation vector of the light beam emitted more by the optical axis direction of a light-emitting body, (c) is a radiation vector taken in with an illumination lens. (D) is a figure explaining the radiation vector taken in with a condensing lens.
  • FIG. 17 is a diagram illustrating a fluorescent tube as a light source in Embodiment 4 of the image reading apparatus according to the present invention.
  • a diagram illustrating a first illumination system in Embodiment 4 of the image reading apparatus according to the present invention (a) is a top view of the first illumination system, and (b) is a diagram illustrating the first illumination system. It is a front view of an illumination system, (c) is a figure which shows the emitted light intensity distribution of the fluorescent tube as a light source.
  • a diagram illustrating a second illumination system in Embodiment 4 of the image reading apparatus according to the present invention (a) is a top view of the second illumination system, and (b) is a diagram illustrating the second illumination system. It is a front view of an illumination system.
  • a diagram for explaining a first example of an illumination system in Embodiment 5 of an image reading apparatus according to the present invention wherein (a) is a top view of the first example of the illumination system, and (b) It is a front view of the 1st example of an illumination system.
  • FIG. 22 is a diagram for explaining an example of an illumination system in Embodiment 6 of the image reading apparatus according to the present invention, (a) is a top view of an example of the illumination system, and (b) is a diagram of the illumination system. It is a front view of an example.
  • FIG. 23 A diagram illustrating a first illumination system in an image reading apparatus according to Embodiment 7 of the present invention, wherein (a) is a top view of the first illumination system, and (b) is a diagram illustrating the first illumination system. It is a front view of an illumination system.
  • 24 A diagram illustrating a second illumination system in the image reading apparatus according to the seventh embodiment of the present invention.
  • (A) is a top view of the second illumination system
  • (b) is a front view of the second illumination system.
  • 25A] is a diagram for explaining a light source having a plurality of LEDs arranged in a straight line and a reflecting mirror that converts light emitted from the LEDs into parallel light, and (a) is a side view of the light source.
  • B is a top view of the light beam g.
  • FIG. 25B is a diagram for explaining the arrangement of LED pellets with respect to the rotating parabolic mirror and the radiation vector of the luminous flux emitted from the LED pellets.
  • FIG. 26 A diagram illustrating a light source having a plurality of LEDs arranged two-dimensionally and a reflecting mirror that converts light emitted from the LEDs into parallel light, and (a) is a side view of the light source. (B) is a top view of the light beam g, and (c) is a front view of the light beam.
  • FIG. 27 is a top view of an image reading apparatus of Example 9 using an integrated illumination system and reading system.
  • FIG. 28 is a front view of an image reading apparatus of Example 9 using an integrated illumination system and reading system.
  • FIG. 29 is a diagram illustrating the image reading device shown in FIGS. 27 and 28 corresponding to the image reading device shown in FIGS. 1 (a) and 1 (b).
  • FIG. 30 is a diagram for explaining the occurrence of flare in the image reading apparatus.
  • FIG. 31 is a diagram showing an example of an image reading apparatus using a turning mirror in which a peripheral portion of an area that reflects reading light is bent.
  • FIG. 32 A diagram illustrating an example of an illumination system with higher light utilization according to the present invention, (a) is a top view of the first or second illumination system in Example 11, (b) ) Is a front view of the first illumination system in Example 11, and (c) is a front view of the second illumination system in Example 11.
  • FIG. 32 A diagram illustrating an example of an illumination system with higher light utilization according to the present invention, (a) is a top view of the first or second illumination system in Example 11, (b) ) Is a front view of the first illumination system in Example 11, and (c) is a front view of the second illumination system in Example 11.
  • FIG. 33 is a diagram illustrating an example of an illumination system having a focusing lens and using a peripheral portion of an integrated lens, (a) is a top view of the example of the illumination system, and (b) is a diagram of the illumination system. It is a front view of the example of an illumination system.
  • FIG. 34 is a diagram showing the shape of a cylinder lens that can be used in the illumination system according to the present invention.
  • FIG. 35 Image reading apparatus using an integrated illumination system including a focusing lens and a reading system. It is a figure explaining the example of.
  • FIG. 36 is a diagram for explaining an example of an image reading apparatus that has a parabolic mirror as a light beam focusing element and uses an illumination system and a reading system that use a peripheral portion of an integrated lens.
  • FIG. 37 is a diagram showing the shape of a parabolic mirror that can be used as a beam focusing element.
  • FIG. 38 is a diagram for explaining an example of an image reading apparatus using a reading system and an illumination system having a parabolic mirror as a light beam focusing element and a correction lens and using a peripheral portion of an integrated lens.
  • FIG. 39A is a diagram illustrating an example of an image reading device in which an illumination device is disposed on the upper side of an imaging lens.
  • FIG. 39B is a diagram for explaining an example of the image reading device in which the illumination device is arranged below the imaging lens.
  • FIG. 40A is a diagram showing an example in which the upper folding mirror is divided into two folding mirrors, the reading optical axis is arranged on the lower side, and the illumination optical axis is arranged on the upper side.
  • FIG. 40B is a diagram showing an example in which the lower folding mirror is divided into two folding mirrors, the reading optical axis is arranged on the lower side, and the illumination optical axis is arranged on the upper side.
  • FIG. 40C is a diagram showing an example in which the lower folding mirror is divided into two folding mirrors, the reading optical axis is arranged on the upper side, and the illumination optical axis is arranged on the lower side.
  • FIG. 40D is a diagram showing an example in which the upper and lower folding mirrors are each divided into two folding mirrors, the reading optical axis is arranged inside, and the illumination optical axis is arranged outside.
  • FIG. 41 is a diagram illustrating an example of an image reading apparatus that can reduce dust attached to the image reading apparatus or flare caused by dust.
  • FIG. 42 Illustrating an example of an image reading apparatus that can reduce flare caused by diverging light that diverges illumination system power.
  • FIG. 43 A diagram illustrating an example of an illumination system including a focusing lens and a relay lens according to the present invention.
  • FIG. 44 A diagram illustrating a first example of an illumination system including a focusing lens and a sub-illumination lens according to the present invention.
  • FIG. 44 A diagram illustrating a third example of an illumination system including a focusing lens and a sub-illumination lens according to the present invention.
  • FIG. 45A is a diagram illustrating a first example of an illumination system including a focusing lens, a sub-illumination lens, and a sub-condensing lens according to the present invention.
  • FIG. 45B is a diagram illustrating a second example of an illumination system including a focusing lens, a sub-illumination lens, and a sub-condensing lens according to the present invention.
  • FIG. 45C is a diagram illustrating a third example of an illumination system including a focusing lens, a sub-illumination lens, and a sub-condensing lens according to the present invention.
  • FIG. 46A is a diagram illustrating a first example of an illumination system including a focusing lens, a sub-illumination lens array, and a sub-condensing lens array according to the present invention.
  • FIG. 46B is a diagram illustrating a second example of an illumination system including a focusing lens, a sub-illumination lens array, and a sub-condensing lens array according to the present invention.
  • FIG. 47 is a diagram illustrating an example of an image reading apparatus using a parabolic mirror as a light beam focusing element.
  • FIG. 48 is a diagram for explaining an example of an image reading apparatus using an ellipsoidal mirror as a light beam focusing element.
  • FIG. 49 is a diagram for explaining an example of an illumination device having a reflection surface on the inner surface.
  • FIG. 50 is a diagram showing an example of the relative radiant intensity distribution of the light beam emitted from the LED and reflected by the rotary parabolic mirror.
  • FIG. 51 is a diagram for explaining the illuminance distribution in the imaging region in the sub-scanning direction of the image reading device, and (a) illustrates the illuminance distribution in the imaging region in the sub-scanning direction of the conventional image reading device.
  • (B) is a diagram for explaining the illuminance distribution in the imaging region in the sub-scanning direction of the image reading apparatus according to the present invention.
  • FIG. 52 is a diagram illustrating a first example of an image reading apparatus using an illumination system including a prism according to the present invention.
  • FIG. 53 is a diagram illustrating a second example of an image reading apparatus using an illumination system including a prism according to the present invention.
  • FIG. 54 is a diagram for explaining a third example of an image reading apparatus using an illumination system including a prism according to the present invention.
  • FIG. 56 A diagram illustrating an example of an illumination system having a lens in which a plurality of lens functions are integrated, (a) is a top view of the illumination system, and (b) is a front view of the illumination system.
  • FIG. 56 A diagram illustrating an example of an illumination system having a lens in which a plurality of lens functions are integrated, (a) is a top view of the illumination system, and (b) is a front view of the illumination system.
  • Fig. 57 is a diagram illustrating the brightness characteristics of an image captured by the imaging lens of the reading system.
  • FIG. 58 is a diagram illustrating a preferable illuminance distribution in the main running direction of the image reading apparatus.
  • It is a diagram illustrating an example of an illumination system that does not include a condenser lens according to the present invention.
  • FIG. 60 A diagram illustrating an example of an illumination system that does not include an integrated lens according to the present invention, (a) is a top view of an illumination system that does not include an integrated lens, and (b) includes an integrated lens.
  • FIG. 60 A diagram illustrating an example of an illumination system that does not include an integrated lens according to the present invention, (a) is a top view of an illumination system that does not include an integrated lens, and (b) includes an integrated lens.
  • FIG. 61A is a diagram for explaining an example of an illumination system that uses a cylinder lens array composed of an odd number of cylinder lenses for one light source.
  • FIG. 61 (a) shows the intensity distribution of the luminous flux emitted from the light source.
  • (B) is a figure explaining the illumination intensity distribution in an illumination object surface.
  • FIG. 61B is a diagram for explaining an example of an illumination system that uses a cylinder lens array composed of an even number of cylinder lenses for one light source.
  • FIG. 61 (a) shows the intensity distribution of the luminous flux emitted from the light source.
  • (B) is a figure explaining the illumination intensity distribution in an illumination object surface. Explanation of symbols
  • reflected light from a document illuminated by a light source is imaged on an image sensor by an imaging lens, and the image of the document is read one-dimensionally.
  • An image reading apparatus that reads a two-dimensional image by scanning, and includes an illumination lens having at least a plurality of lenses and means for superimposing a plurality of light beams, and divides a light beam emitted from the light source into a plurality of light beams. The plurality of divided light beams are superimposed on the original surface.
  • the light beam emitted from the light source is divided into a plurality of light by the illumination lens, and the plurality of divided light beams are superimposed on the document surface by the means for superimposing the plurality of light beams. Therefore, even if any light source such as LED, LD, filament, fluorescent lamp, discharge lamp, etc. is used, the light emitted from the light source can be used effectively. In particular, the illumination efficiency can be increased and the illuminance distribution can be made uniform. As a result, input power can be reduced.
  • any light source such as LED, LD, filament, fluorescent lamp, discharge lamp, etc.
  • a condensing lens having the same number of lenses as the illumination lens is inserted between the light source and the illumination lens.
  • the light beam emitted from the light source is divided into a plurality of light beams and efficiently given to the illumination lens.
  • the light beam emitted from the light source is divided and condensed in the main scanning direction by the condensing lens, and all the light beam cut out to the individual lens (cylinder lens) of the illumination lens is transmitted.
  • the illumination lens is arranged so as to divide a light beam emitted from the light source into a plurality of parts in the main scanning direction. No division was made in the direction perpendicular to the scanning direction.
  • the light source includes a plurality of light sources, and the number of light sources in the direction in which the light beam is divided and the number of light beams to be divided. Were considered inconsistent.
  • the illuminance is averaged by the overlap of the divided light beams, and illumination with extremely small illuminance unevenness is possible.
  • the document surface can be uniformly irradiated with almost no illuminance unevenness.
  • the light source includes a plurality of light sources, and a plurality of light sources are arranged in a direction in which the light beams are divided, and the light beams are separated. In the direction orthogonal to the direction of splitting, a light source was further arranged so as to complement the distribution of light flux of the plurality of light sources.
  • the document surface can be uniformly irradiated with almost no illuminance unevenness.
  • the light source includes a plurality of light sources, and the light beams from the respective light sources are made substantially parallel light, and then The light beam is divided into a plurality of parts by the illumination lens.
  • an LED is used as the light source.
  • an integrated lens is used as means for superimposing the plurality of light beams on the document surface.
  • filaments are linearly arranged as the light source.
  • the light source is a non-uniform light source with partial unevenness in light emission distribution, such as a linear light source such as a filament and a planar light source such as a fluorescent lamp, It is possible to irradiate the original surface uniformly with almost no unevenness. Therefore, various light sources can be used, and the price of the light source can be reduced.
  • a belt-like light emitter is preferably used as the light source.
  • the light source is a non-uniform light source with partial unevenness in the light emission distribution, such as a linear light source such as a filament and a planar light source such as a fluorescent lamp, It is possible to irradiate the original surface uniformly with almost no unevenness. Therefore, various light sources can be used, and the price of the light source can be reduced.
  • a discharge lamp is used as the light source.
  • the center of the illumination target surface (contact glass) in the main scanning direction and the center of the illumination apparatus are mismatched.
  • the illuminating device can be disposed adjacent to (arranged with) the imaging lens that does not overlap the imaging lens for reading an image, and the illuminating device is the entire image reading device. It does not affect the thickness. In other words, since the configuration of the conventional illumination device is unnecessary, the entire image reading device can be made thin.
  • the main optical axis of the (imaging system) and the main optical axis of the illumination device are arranged in parallel on a plane parallel to the surface to be illuminated.
  • the illumination device can be disposed in the image reading device main body together with the imaging lens and the imaging device constituting the imaging system, and needs to be installed on the traveling body (first traveling body). Therefore, it is not necessary to place the illumination device close to the document surface. It can be installed near the image sensor.
  • the illuminating device can be placed in the vicinity of an imaging lens or an imaging element that constitutes an imaging system that does not need to be placed in the immediate vicinity of the document surface, the illuminating device in the height direction of the image reading device can be placed. Therefore, the size of the image reading apparatus can be reduced.
  • Illumination light from the light source is incident obliquely on (contact glass).
  • the reflected light from the surface of the contact glass or the reflected light from the glossy document surface enters the imaging lens and causes halation to obtain a low quality read image.
  • the specularly reflected light component on the document surface is diffusely reflected in the illumination light that illuminates the document surface that does not enter the imaging lens. Only the components are incident on the image sensor. As a result, it is possible to accurately read the image density of the document without being affected by the gloss fluctuation of the document surface.
  • the illuminating device can be placed in the vicinity of the imaging lens or the imaging element that constitutes the imaging system that does not need to be placed in the immediate vicinity of the document surface, the illuminating device in the height direction of the image reading device can be arranged. Therefore, the size of the image reading apparatus can be reduced.
  • an illuminating device is disposed in the vicinity of the imaging lens constituting the imaging system.
  • the illuminating device can be placed in the vicinity of the imaging lens or the imaging device that constitutes the imaging system that does not need to be placed in the immediate vicinity of the document surface. As a result, it is possible to reduce the thickness of the image reading apparatus.
  • the illumination light irradiated on the document surface is not re-reflected, and flare can be almost eliminated.
  • the illumination light that illuminates the imaging region by the light source and the image light that is reflected from the imaging region are the same reflecting surface. Wrap by.
  • the first traveling body is provided with at least one folded reflection surface
  • the second traveling body is provided with at least two folded reflections.
  • the illumination light that illuminates the imaging area and the image light reflected from the imaging area are folded back by the same reflecting surface.
  • reflected light from a document illuminated by a light source is imaged on an image sensor by an imaging lens, and the image of the document is read one-dimensionally.
  • An image reading method for reading a two-dimensional image by striking, dividing a light flux emitted from the light source into a plurality of light beams, and superimposing the divided light beams on the document surface.
  • the light beam emitted from the light source can be divided into a plurality of light beams, and the divided light beams can be superimposed on the document surface. Even if any light source such as a filament, a fluorescent lamp, or a discharge lamp is used, the light emitted from the light source can be used effectively. In particular, the illumination efficiency can be increased and the illuminance distribution can be made uniform. As a result, input power can be reduced.
  • the third embodiment of the present invention is an image forming apparatus equipped with the image reading apparatus according to the first embodiment of the present invention.
  • the light beam emitted from the light source is divided into a plurality of light beams, and the light beams used in the image reading device are superposed on the document surface. It is possible to improve the rate (energy saving), reduce the thickness or size of the image reading device, reduce the cost of the image reading device, and reduce illuminance unevenness on the illumination target surface.
  • a fourth embodiment of the present invention is an illumination device that illuminates a target with light emitted from a light source, and a plurality of lights from the light emitted from the light source in at least one plane. It includes at least one luminous flux illumination element that obtains a bundle and illuminates the object with the plurality of luminous fluxes.
  • the illumination device preferably further includes at least one light beam superimposing element that superimposes the plurality of light beams on the object in at least one plane.
  • the illumination device preferably further includes at least one light beam focusing element for focusing the plurality of light beams on the object in at least one plane.
  • the plurality of light beams are superimposed on the object in the first surface, and the second surface is different from the first surface. It further includes at least one optical element that focuses the plurality of light beams on the object in a plane.
  • the at least one surface includes a first surface and a second surface different from the first surface
  • Said at least One luminous flux illuminating element is a first luminous flux illuminating element that obtains a plurality of first luminous fluxes and illuminates the target with the plurality of first luminous fluxes in the first plane.
  • a second light flux illuminating element that acquires a plurality of second light fluxes from light emitted from a light source in the second plane and illuminates the target with the plurality of second light fluxes.
  • At least one of the light flux concentrating elements is a portion that does not focus at least part of the light reflected from the object. Have.
  • the illumination device preferably has at least one light beam splitting element that splits the light emitted from the light source into the plurality of light beams in at least one plane. Further included.
  • the distance between the light beam dividing element and the light beam illuminating element is a focal length of the light beam dividing element and the light beam illuminating element. Longer than the focal length.
  • the at least one surface includes a first surface and a second surface different from the first surface
  • the at least one light beam splitting element includes a first light beam splitting element that splits light emitted from the light source in the first plane into a plurality of first light fluxes, and the second beam splitting element in the second plane. It further includes a second light beam splitting element that splits the light emitted from the light source into a plurality of second light beams.
  • the light source includes a first light source that emits light having a wavelength included in a first wavelength region, and a second light source.
  • a second light source that emits light having a wavelength included in the wavelength region, wherein the first light source and the second light source are in the first wavelength region of the object in at least one plane.
  • the illuminance peak position of the light having the wavelength included in the light is different from the illuminance peak position of the light having the wavelength included in the second wavelength region in the object.
  • the illumination device according to the fourth embodiment of the present invention preferably has a wavelength dispersion that disperses the light emitted from the light source with respect to the wavelength of the light in at least one plane. A device is further included. (32) The illumination device according to the fourth embodiment of the present invention preferably further includes a reflector that reflects at least part of the light emitted from the light source.
  • the illumination device is preferably an absorber that absorbs at least a part of the light emitted from the light source or at least a part of the light emitted from the light source. It further includes a scatterer that partially scatters.
  • a fifth embodiment of the present invention is an illumination method for illuminating an object with light emitted from a light source, and a plurality of lights from the light emitted from the light source in at least one plane. Obtaining a bundle and illuminating the object with the plurality of luminous fluxes.
  • the illumination method according to the fifth embodiment of the present invention preferably further includes superimposing the plurality of light beams on the object in at least one plane.
  • the illumination method according to the fifth embodiment of the present invention preferably further includes focusing the plurality of light beams on the object in at least one plane.
  • the plurality of light beams are superimposed on the object in the first plane, and the second plane is different from the first plane.
  • the method further includes focusing the plurality of light beams on the object in a plane.
  • a plurality of light fluxes are obtained from light emitted from a light source, and the plurality of light fluxes are obtained.
  • Illuminating the object includes obtaining a plurality of first light fluxes from light emitted from a light source in a first plane, illuminating the object with the plurality of first light fluxes, and Obtaining a plurality of second light fluxes from light emitted from a light source in a second surface different from the first surface and illuminating the object with the second light fluxes.
  • the illumination method according to the fifth embodiment of the present invention preferably further includes splitting the light emitted from the light source into the plurality of light beams in at least one plane.
  • the light emitted from the light source is divided into the plurality of light beams in the at least one plane. Splitting the light emitted from the light source in a first surface into a plurality of first light fluxes, and a plurality of light emitted from the light source in a second surface different from the first surface. Second of And further splitting the light flux.
  • the light source includes light having a wavelength included in the first wavelength region and a wavelength included in the second wavelength region.
  • the wavelength at which the peak position of the illuminance of light having a wavelength included in the first wavelength region in the target is included in the second wavelength region in the target in at least one plane.
  • the emission is different from the peak position of the illuminance of light.
  • the light emitted from the light source is dispersed with respect to the wavelength of the light in at least one plane.
  • the light emitted from the light source is dispersed with respect to the wavelength of the light in at least one plane.
  • an image reading apparatus that illuminates light emitted from a light source on a document provided with an image, acquires the light reflected from the document, and reads the image
  • the illumination device according to the fourth embodiment of the present invention is included.
  • the image reading apparatus preferably further includes a zoom optical element for enlarging or reducing the image read for the object.
  • the image reading apparatus preferably has an imaging optical system that forms an image of the object and a reflecting surface that reflects the light emitted from the light source.
  • the reflective optical element is further provided, and the reflective surface of the reflective optical element is arranged such that the reflective surface is not imaged by the imaging optical system.
  • the optical axis of the imaging optical system that forms an image of the target image and the light emitted from the light source are used as the pair.
  • the optical axis of the illumination system that illuminates the elephant matches only in the object.
  • the illumination method according to the fifth embodiment of the present invention is used to illuminate light emitted from a light source on a document provided with an image.
  • the image reading method according to the seventh embodiment of the present invention preferably further includes enlarging or reducing the image read by the object.
  • An eighth embodiment of the present invention is an image forming apparatus that reads an image of a document provided with an image and forms the image of the document on a medium on which the image is formed.
  • a ninth embodiment of the present invention is an image forming method for reading an image of a document provided with an image and forming the image of the document on a medium on which the image is formed.
  • the seventh image reading method is used to read an image of a document provided with an image.
  • any (such as LED, LD, filament, fluorescent lamp and discharge lamp) Even with this light source, the illumination efficiency can be improved and the input power of the lighting device can be reduced.
  • the illumination efficiency can be further improved.
  • FIG. 7 is a view for explaining the basic concept of the illumination system in Embodiment 1 of the image reading apparatus according to the present invention.
  • FIG. 7 (a) is a top view of the illumination system
  • FIG. 7 (b) is a front view of the illumination system.
  • FIG. 8 can be used for an illumination system in an image reading apparatus according to the present invention. It is a figure explaining the form of a condensing lens and an illumination lens.
  • FIG. 8A is a diagram showing the form of a cylinder lens array
  • FIG. 8B is a diagram showing an example of a cylinder lens
  • linearly arranged LEDs (light emitting diodes) are used as the light source (la).
  • a lens hood made of transparent resin is provided at the tip of each LED so that the light emitted from each LED is output as almost parallel light.
  • the focal length f3 of the lens made of this transparent resin is the distance from the tip of the lens feed to the LED position.
  • the condensing lens (3a) is a cylinder lens array having a form as shown in FIG. 8A in which cylinder lenses as shown in FIG. 8B are arranged.
  • the cylinder lens constituting the cylinder lens array of the condenser lens (3a) may be a cylinder lens as shown in FIG. 8C.
  • the distance c is the distance between the condenser lens (3a) and the illumination lens (5a). In the plane shown in FIG.
  • the condenser lens (3a) divides the luminous flux emitted from the light source (la) and divides it into the individual cylinder lenses of the illumination lens (5a). It is a lens that condenses the split luminous flux so that all the luminous flux transmitted through it is transmitted.
  • the illumination lens (5a) is a lens for illuminating the document surface that is the illumination target surface (9a) in the plane shown in Fig. 7 (a). It consists of a cylinder lens array.
  • the distance a is the distance between the integrated lens (7a) and the illumination target surface
  • the distance b is the distance between the illumination lens (5a) and the integrated lens (7a).
  • members of the same standard can be used for both the condenser lens (3a) and the illumination lens (5a).
  • the integrated lens (7a) is a normal lens that is axisymmetric about the optical axis, and the luminous flux divided by the condenser lens (3a) and irradiated by the illumination lens (5a) This is a lens for superimposing in (9a).
  • the optical axis (referred to as secondary optical axis) of each light beam divided by the condenser lens (3a) and irradiated by the illumination lens (5a) is the integrated lens (7a) on the illumination target surface (9a). Coincides with the optical axis (referred to as the main optical axis). Then, the light beam divided by the condenser lens (3a) and irradiated by the illumination lens (5a) can be superimposed on the illumination target surface (9a) (in FIG. Only the light beam passing through the three pairs of cylinders is shown.)
  • each cylinder lens in the cylinder lens array of the condenser lens (3a) is ml
  • the irradiation width on the surface to be illuminated (9a) in the plane shown in Fig. 7 (a) is mO.
  • the illumination target surface (9a) is superposed with the force S illuminated with intense illuminance unevenness, and the whole light flux from the cylinder lens array.
  • the illumination distribution on the illumination target surface (9a) is flattened.
  • FIG. 9A is a diagram showing an example in which the number of cylinder lenses in Example 1 is smaller by one than the number of LEDs of light sources
  • FIG. 9B is the number of cylinder lenses in Example 1 LEDs of light sources. It is a figure which shows an example one more than the number of.
  • FIG. 10 is a diagram illustrating the illumination distribution on the illumination target surface in the first embodiment.
  • FIG. 10 (a) is a diagram showing an example in which the number of cylinder lenses matches the number of LEDs of the light source.
  • Figure 10 (b) is a diagram showing an example in which the number of cylinder lenses is one less than the number of LEDs in the light source. More specifically, the illumination system includes five LEDs and four cylinder lenses.
  • FIG. 10 (c) is a diagram showing an example in which the number of cylinder lenses is one more than the number of LEDs of the light source. More specifically, the illumination includes 5 LEDs and 6 cylinder lenses. An example of the system is shown. [0142] In the illumination system shown in Fig. 7, the number of LEDs arranged at equal intervals as the light source (la) in the plane shown in Fig. 7 (a) is the same as the condenser lens (3a) and the illumination. It matches the number of cylinder lenses of the lens (5a), and the optical axis of the LED matches the optical axes of the condensing lens (3a) and the cylinder lens of the illumination lens (5a).
  • the cylinder lens array of the condenser lens (3a) and the illumination lens (5a) is composed of the same cylinder lens. Therefore, the distribution of the luminous flux emitted from the individual LEDs simply overlaps, and the illumination distribution on the surface to be illuminated is proportional to the luminous flux distribution of the individual LEDs, as shown in Fig. 10 (a). It becomes.
  • the number of LEDs of the light source coincide with the number of cylinder lenses.
  • the number of LEDs as the light source is different from the number of cylinder lenses by one, so that the illuminance distribution can be made uniform and the light utilization rate can be optimized.
  • the illuminance distribution on the illumination target surface illuminated by the illumination system configured as shown in FIGS. 9A and 9B is as shown in FIGS. 10 (b) and 10 (c), respectively. is there.
  • the illuminance distribution on the illumination target surface is a superposition of the illuminance distributions by the individual divided light beams on the illumination target surface, and is made uniform.
  • the curves indicated by 3bl to 3b4 are illuminated by the light beams divided by the respective condensing lens (3b) and illumination lens (5b) shown in FIG. 9A. It represents the illuminance distribution on the surface to be illuminated.
  • FIG. 10 (b) the curves indicated by 3bl to 3b4 are illuminated by the light beams divided by the respective condensing lens (3b) and illumination lens (5b) shown in FIG. 9A. It represents the illuminance distribution on the surface to be illuminated.
  • the curves indicated by 3cl to 3c6 indicate the illumination target illuminated by the light beams divided by the respective condensing lens (3c) and illumination lens (5c) shown in FIG. 9B. Represents the illuminance distribution on the surface.
  • the illumination system is configured so that the number of LEDs of the light source (lb, lc) is different from the number of condenser lenses (3b, 3c) and illumination lenses (5b, 5c) cylinder lenses.
  • the number of LEDs of the light source (lb, lc) is different from the number of condenser lenses (3b, 3c) and illumination lenses (5b, 5c) cylinder lenses.
  • the illuminance unevenness can also be reduced by adjusting the width ml of each cylinder lens of the condenser lens (3a) and the illumination lens (5a).
  • the ratio (magnification) of the illumination width mO on the illumination symmetry plane to the cylinder lens width ml It varies depending on the type of Linda lens. Therefore, it is necessary to adjust the focal length of the cylinder lens of the illumination lens (5a) in order to make the illumination width constant on the illumination target surface illuminated with the light beam passing through each cylinder lens.
  • the width of the cylinder lens array is ( 0. 7): (0. 8): (0. 95): (1. 15): Divide by the ratio of (1. 4).
  • the magnification required for a cylinder lens with a minimum width of 0.7 is twice the magnification required for a cylinder lens with a maximum width of 1.4.
  • the distance must be designed to be 1Z2 which is the focal length of a cylinder lens with a minimum width of 1.4. In this way, illumination with very little illuminance unevenness can be achieved without reducing the efficiency of light.
  • the number of LEDs as the light source (la) is one.
  • the luminous flux emitted from the LED is converted into a nearly collimated luminous flux by a lens made of transparent resin provided at the tip of the LED, and then output.
  • the light flux emitted from the LED of the light source (la) is efficiently collected in a straight line on the illumination target surface (9a), and high-quality illumination with less unevenness in illuminance can be performed.
  • the integrated lens (7a) only needs to be present in the portion through which the light beam passes, and therefore does not need to be a circular lens. Therefore, as shown in Fig. 7 (b), it is unnecessary in the integrated lens (7a). By cutting this part, the thickness of the illumination system can be made very small.
  • FIG. 11 is a diagram for explaining a more practical illumination system using three-color LEDs in Example 1, (a) is a top view of the illumination system, and (b) is It is a front view of the illumination system, (c) is a side view of the illumination system.
  • the light source (Id) includes a plurality of columns of a plurality of LEDs (light emitting diodes) arranged linearly.
  • the light source (Id) consists of one row of red (R) LEDs, two rows of blue (B) LEDs, and one row of LEDs. Includes multiple green (G) LEDs.
  • the number of blue (B) LEDs with relatively low luminous efficiency is larger than the number of red (R) LEDs or green (G) LEDs. The difference between the illuminance of the illumination light B) and the illuminance of the red (R) or green (G) illumination light can be reduced.
  • Fig. 11 (a) In the plane shown in Fig. 11 (a), six cylinder lenses in the collecting lens (3d) and illumination lens (5d) correspond to 5.5 LEDs in the light source (Id). To do. In the plane shown in Fig. 11 (b), four LED forces are arranged. The action of the illumination system shown in Fig. 11 (b) is the same as that of the illumination system shown in Fig. 7 (b). It is the same.
  • the power of arranging a plurality of LED rows in a houndstooth pattern ⁇ The arrangement of a plurality of LED rows is not limited to a houndstooth pattern. However, if a plurality of LED rows are arranged in a staggered pattern, the illumination distribution on the illumination target surface (9d) can be made more uniform.
  • Fig. 11 shows an example of an illumination system for obtaining a high-quality color image.
  • the light source (Id) may be a white LED. Only the red (R) LED, the green (G) LED, or the blue color can be used. (B) A single color LED such as LED only, or two of them may be used.
  • the illumination lens divides the light beam emitted from the light source into a plurality of light beams, and the plurality of light beams divided by the integrated lens are converted into the document surface.
  • any light source such as LEDs, LDs, filaments, fluorescent lamps and discharge lamps can be used to emit from the light source Light can be used effectively.
  • this illuminating device not only has high illumination efficiency, but also can make the illuminance distribution uniform and reduce input power.
  • FIG. 12 is a diagram for explaining a first example of an illumination system in Embodiment 2 of the image reading apparatus according to the present invention.
  • FIG. 12 (a) is a top view of the first example of the illumination system
  • FIG. 12 (b) is a front view of the first example of the illumination system.
  • FIG. 13 is a view for explaining a second example of the illumination system in the embodiment 2 of the image reading apparatus according to the present invention.
  • FIG. 13 (a) is a top view of the second example of the illumination system
  • FIG. 13 (b) is a front view of the second example of the illumination system.
  • each LED has a flat leading edge. Provide the provided hood.
  • FIGS. 12 (a) and 12 (b) the individual cylinder lenses of the cylinder lens array as shown in FIG. 8A are orthogonal to the cylinder lenses as shown in FIG. 8B.
  • a condensing lens (3e) to which a cylinder lens array and a cylinder lens as shown in FIG. 8B are cemented is used.
  • the focal lengths of the illumination lens (5e) and the integrated lens (7e) are the same as those described in FIG.
  • the light beam emitted from the LED of the light source (le) reaches the collecting lens (3e) as divergent light, and the condensing lens (3e) causes the illumination lens (3e). Focused to the position 5e). Otherwise, the illumination system of FIG. 12 is the same as the illumination system shown in FIG. In other words, the condenser lens (3e) in FIG. 12 has both the function of the LED hood lens and the function of the condenser lens (3a) in the light source (la) in FIG.
  • the condenser lens (3f) is a cylinder lens array as shown in Fig. 8A, and the integrated lens (7f) has two lenses as shown in Fig. 8B. It is a lens in which two cylinder lenses are cemented so that the cylinder lenses are orthogonal to each other.
  • the illumination lens (5f) is the same as that shown in FIG.
  • the action of the illumination system in the plane shown in FIG. 13 (a) is the same as the action of the illumination system in the plane shown in FIG. 12 (a).
  • the light beam diverging from the LED of the light source (1 f) passes through the condenser lens (3f) and the illumination lens (5f), and is converged by the integrated lens (7f). The light beam is focused and focused on the illumination target surface (9f).
  • FIG. 14 is a diagram illustrating an illumination system that uses three-color LEDs in Example 2, and (a) (B) is a front view of the illumination system, and (c) is a side view of the illumination system.
  • the light source (lg) has a hood with a flat tip on each LED, and a plurality of LEDs (light emitting diodes) arranged linearly.
  • the illumination system has a configuration similar to that shown in FIGS. 12 (a) and (b), and the condenser lens (3g) has two cylinders shown in FIG. 8A orthogonal to each other. This is a lens with a lens array.
  • the illumination system in FIG. 14 is the same as the illumination system shown in FIG. In the plane shown in Fig. 14 (a), other points that can be obtained by focusing the divergent light emitted from each LED by the condenser lens (3g) to the position of the illumination lens (5g)
  • the illumination system in FIG. 14 is the same as the illumination system shown in FIG.
  • LEDs for the condenser lens (3g) and the light source (lg) are used. Insert a cylinder lens array between the two. Match the number of cylinder lenses that make up the cylinder lens array with the number of LEDs, and match the optical axes of the individual cylinder lenses that make up the cylinder lens array with the optical axes of the individual LEDs of the light source (lg). Let As a result, the luminous flux emitted from the LED can be converted into a parallel luminous flux using the cylinder lens array. Then, as shown in FIG.
  • FIG. 10 Illuminance distribution as shown in b) or (c) can be obtained.
  • the power LED that has explained the illumination system that uses an LED (light emitting diode) array as a light source
  • An illumination system having a similar configuration replaced with an LD (laser diode) has the same effect.
  • the emission angle of the light emitting diode is about several tens of degrees, but since the emission angle of the laser diode is about several degrees, an appropriate design is required for the laser diode.
  • Example 3
  • An illumination system such as an illumination apparatus in Embodiment 3 of the image reading apparatus according to the present invention will be described with reference to FIGS.
  • FIG. 15 is a diagram for explaining an illumination system in Embodiment 3 of the image reading apparatus according to the present invention.
  • Fig. 15 (a) is a top view of the illumination system
  • Fig. 15 (b) is a front view of the illumination system using a parabolic mirror as the light source
  • Fig. 15 (c) is a light source.
  • FIG. 3 is a front view of an illumination system using an ellipsoidal mirror.
  • Embodiments 1 and 2 an illumination system using an LED array or the like as a light source has been described.
  • Embodiment 3 an illumination system using a linear light emitter as a light source will be described.
  • a filament lamp is used as the light source (lh), and a double coil filament is partially used in order to improve the luminous efficiency of the light source ( The force that improves the luminous efficiency of the light source by using a double coil If the double coil part is long, the double coil part hangs down due to gravity, so between multiple short double coils Insert the support member into the
  • the filament of the filament lamp may be not only a double coil but also a nichrome wire stretched linearly or a coil stretched linearly.
  • a reflector for directing the light beam in the direction of the illumination target surface (9h) is used.
  • the reflector is preferably a parabolic mirror or an ellipsoidal mirror that focuses on the position of a linear light emitter in order to effectively collect light in the direction of the illumination target surface (9h).
  • Fig. 16 is a diagram for explaining the capture of the radiation vector of the light beam emitted from the linear light emitter and the radiation vector of the light flux by the lens, and (a) is emitted uniformly from the light emitter.
  • (B) is a diagram showing the intensity distribution of the radiation vector of the luminous flux emitted more in the optical axis direction of the light emitter, and (c) is the illumination distribution of the radiation vector of the luminous flux.
  • lens (D) is a figure explaining the radiation vector taken in with a condensing lens.
  • the light source (lh) including a linear light emitter emits light in almost all directions from all portions of the linear light emitter, It is difficult to make the light emitted from the linear illuminant in the plane shown in Fig. 15 (a) (in the main running direction) into parallel light.
  • the intensity of the light flux emitted from a certain part of the linear illuminant is uniform, it is shown in Fig. 15 (a).
  • the illumination effect by the illumination system does not change much.
  • the center of the filament of the light emitter is placed at the position of the condenser lens in the illumination system shown in FIG.
  • the cylinder lens constituting the condenser lens (3h) is separated by the focal length of the cylinder lens constituting the luminescent power condenser lens (3h). Place the illumination lens (5h) at a position away from the condenser lens (3h) by the opposite focal length of the cylinder lens that constitutes the condenser lens (3h).
  • the illumination system can capture a relatively high intensity radiation vector of the illuminant in the optical axis direction, and an illumination system that does not include a condenser lens as shown in FIG.
  • the light capture angle ( ⁇ ) from the light emitter can be increased. Therefore, the light from the light emitter can be guided to the irradiation target surface more effectively.
  • the center of the linear illuminant is placed on the center of the ellipsoidal mirror (2h') in the plane shown in Fig. 15 (c). Place it at one focal point and place the second focal point of the ellipsoidal mirror (2h ') on the illumination target surface (9h').
  • the focal length of the illumination lens (5h ′) and the focal length of the integrated lens (7h ′) are infinite. That is, both the illumination lens (5h ′) and the integrated lens (7h ′) are regarded as parallel plates.
  • the illumination lens (5h ′) is a cylinder lens array as shown in FIG. 8A, and the integrated lens (7h,).
  • a non-uniform light source having a partially uneven light emission distribution such as a linear light source such as a filament. Even if it is used, it is possible to uniformly illuminate the surface to be irradiated, such as the original surface, which causes almost no illuminance unevenness. Therefore, various light sources can be used, and the price of the light source can be reduced.
  • FIG. 17 is a view for explaining a fluorescent tube as a light source in Embodiment 4 of the image reading apparatus according to the present invention.
  • FIG. 18 is a diagram for explaining a first illumination system in Embodiment 4 of the image reading apparatus according to the present invention.
  • Fig. 18 (a) is a top view of the first illumination system
  • Fig. 18 (b) is a front view of the first illumination system
  • Fig. 18 (c) is a fluorescence as a light source. It is a figure which shows the emitted light intensity distribution of a pipe
  • FIG. 19 is a view for explaining a second illumination system in Embodiment 4 of the image reading apparatus according to the present invention.
  • FIG. 19 is a view for explaining a second illumination system in Embodiment 4 of the image reading apparatus according to the present invention.
  • FIG. 19 is a view for explaining a second illumination system in Embodiment 4 of the image reading apparatus according to the present invention.
  • FIG. 19 is
  • FIG. 19 (a) is a top view of the second illumination system
  • FIG. 19 (b) is a front view of the second illumination system.
  • a strip-shaped light emitter specifically, a light emitter that emits surface light such as a fluorescent lamp
  • the fluorescent agent (16) is applied to the inner surface of the glass tube (14) (the fluorescent tube as the opening).
  • Part of the glass is not coated with a fluorescent material, and a reflection film (17) is formed on the outer wall of the glass tube (14) except for the opening (15) (when a thick layer of fluorescent material is applied)
  • a reflective film is not necessary, and the light emission principle of the fluorescent tube (li) is the same as that of a general fluorescent lamp, and the description thereof is omitted).
  • the luminous flux emitted from the fluorescent agent (16) is reflected directly by the force emitted directly from the opening (15) or, if not, the reflection film (17) several times. Released from the opening (15).
  • fluorescent tube electrode portions 18 are provided at both ends of the fluorescent tube (li).
  • the light emitting surface of the fluorescent tube (li) emits light in almost all directions as shown in Fig. 16 (a) or (b), and is emitted from the light emitting surface of the fluorescent tube in the main running direction. It is difficult to make light into parallel light.
  • Fig. 16 (a) when the intensity of the light beam emitted from the light emitting surface of the fluorescent tube is uniform, the condensing lens is omitted as shown in Fig. 15 (a).
  • the illumination effect by the illumination system including the fluorescent tube does not change much. In the plane shown in Fig.
  • a condensing lens (3 ⁇ 4) is provided between the light source and the illumination lens () in order to improve the illumination efficiency of the illumination system. It is preferable to insert.
  • a non-uniform light source including a planar light source such as a fluorescent lamp and having a partially uneven light emission distribution is used. Even in this case, it is possible to uniformly irradiate the surface to be irradiated, such as the original surface, with almost no illuminance unevenness. Therefore, various light sources can be used, and the cost of the light source can be reduced.
  • FIG. 20 is a view for explaining a first example of an illumination system in Embodiment 5 of the image reading apparatus according to the present invention.
  • FIG. 20 (a) is a top view of the first example of the illumination system
  • FIG. 20 (b) is a front view of the first example of the illumination system.
  • FIG. 21 shows an image reading apparatus according to the present invention.
  • 12 is a diagram illustrating a second example of the illumination system in Example 5.
  • FIG. 21 (a) is a top view of the second example of the illumination system
  • FIG. 21 (b) is a front view of the second example of the illumination system.
  • Example 5 shows an illumination system that uses a discharge lamp (arc lamp) such as a mercury lamp, a xenon lamp, and a metal halide lamp as a light source (lk).
  • a discharge lamp arc lamp
  • a mercury lamp such as a mercury lamp
  • a xenon lamp such as a mercury lamp
  • a metal halide lamp such as a light source (lk).
  • a rotating parabolic mirror (2k) is used as a reflector.
  • the light beam is emitted as parallel light from the entire surface of the rotating parabolic mirror (2k).
  • the light beam is divided by the condenser lens (3k), the illumination lens (5k), and the integrated lens (7k), and the divided light beam is integrated again, so that the illumination target surface (9k ) Can be illuminated uniformly and with high efficiency.
  • the focal lengths of the condenser lens (3k), the illumination lens (5k), and the integrated lens (7k) may be set similarly to the case shown in FIG.
  • the front of the rotary parabolic mirror (2k) is covered with a cover (4k).
  • the front surface of the spheroid mirror (2m) is covered with a cover (4m).
  • the illumination system shown in Figs. 20 and 21 is premised on the use of a discharge lamp as a light source. Since the arc length of the arc lamp is lmm to 2 mm, the arc lamp can emit light from a very small area, and an illumination system with high illumination efficiency can be obtained. However, if the illumination efficiency of the illumination system is allowed to be slightly low, a filament lamp or a halogen lamp having a small filament of about several millimeters may be used as the light source. The illumination efficiency of an illumination system using such a lamp is the same as that of an illumination system using a discharge lamp. Although it is lower than the rate, it is much higher than the lighting efficiency of the conventional lighting device.
  • an LED may be used as the light source instead of the discharge lamp.
  • a rotating parabolic mirror is used as a reflector
  • a rotating ellipsoidal mirror is used at the focal point of the rotating parabolic mirror (not shown).
  • place the light emitting surface of the LED pellet at the position of the first focal point of the spheroid mirror).
  • the entire lighting device can be reduced in size. The amount of light emitted from the LED is proportional to the area of the pellet.
  • the light emission amount of the LED increases in proportion to the square of the length of one side of the pellet, and becomes 4 times or 9 times, respectively.
  • the collimating performance of a rotating paraboloid mirror as shown in Fig. 20 is roughly proportional to the length of one side of the LED pellet when the F value of the paraboloid is constant.
  • the focusing ability of the spheroid mirror as shown in FIG. 21 is roughly proportional to the length of one side of the LED pellet if the ellipticity of the ellipsoid is constant.
  • the diameter of the rotating paraboloid described above is 7.2 mm and 24 mm, and the ratio of the diameters of their paraboloids matches the ratio of the length of one side of the LED pellet, which is about 3.3 times, but is obtained with their illumination system.
  • the amount of light produced is about 11 times.
  • FIG. 22 is a view for explaining an example of an illumination system in Embodiment 6 of the image reading apparatus according to the present invention.
  • FIG. 22 (a) is a top view of an example of the illumination system
  • FIG. 22 (b) is a front view of the example of the illumination system.
  • Example 6 is an example in which the centers of the light source (In), the condenser lens (3n), and the illumination lens (5n) are shifted from the center of the illumination target surface.
  • the illumination device in the example is composed of a light source (In), a condenser lens (3n), an illumination lens (5n), and an integrated lens (7n). ) Shifts the center of the light source (in), condenser lens (3n), and illumination lens (5n) from the center of the illumination target surface.
  • the center of the integrated lens (7n) is made to coincide with the center of the illumination target surface (9n). That is, the part off the center of the integrated lens (9n) is used for illumination. You can cut the part of the integrated lens where the light beam emitted from the light source does not pass.
  • the illumination system As shown in FIGS. 22 (a) and (b), when the illumination system is incorporated into an image reading device described in detail later, the illumination system is used for reading an image. It can be placed adjacent to the imaging lens. By adopting such an arrangement of the illumination system and the image reading apparatus, an increase in the thickness of the entire image reading apparatus is suppressed. In other words, according to the arrangement shown in the sixth embodiment, since the configuration of the illumination device by the conventional illumination method is unnecessary, the thickness of the entire image reading device can be reduced.
  • FIG. 23 is a diagram illustrating a first illumination system in Embodiment 7 of the image reading apparatus according to the present invention.
  • FIG. 23 (a) is a top view of the first illumination system
  • FIG. 23 (b) is a front view of the first illumination system.
  • FIG. 24 is a view for explaining a second illumination system in Embodiment 7 of the image reading apparatus according to the present invention.
  • FIG. 24 (a) is a top view of the second illumination system
  • FIG. 24 (b) is a front view of the second illumination system.
  • the integrated lens (7) is disposed in the immediate vicinity of the illumination lens (5), but each of the divided lenses (3) or the illumination lens (5) divided by the condenser lens (3). If the optical axis (sub-optical axis) of the luminous flux can be made to coincide with the center of the illumination target surface (9), the integrated lens (7) can be placed between the illumination target surface (9) and the illumination lens (5). You may arrange in the place.
  • the integrated lens (7p), the illumination target surface (9p) and the illumination lens It can be placed in the middle of (5p).
  • the light flux having a width of ml divided by the condenser lens (3p) is expanded to a light flux having a width of mO ′ at the position of the integrated lens (7p).
  • the integrated lens (7p) irradiates the illumination target surface (9p) with a light beam having a constant width of mO ′ as parallel light.
  • the secondary optical axis of the light beam divided by each cylinder lens constituting the condensing lens (3p) has a force S that extends in parallel up to the integrated lens (7p), and this integrated lens (7p) It is made to coincide with the center of the surface (9p).
  • each cylinder lens constituting the condenser lens (3p) corresponds to the width of mO on the illumination target surface (9p) and is divided by each cylinder lens constituting the condenser lens (3p).
  • the luminous flux is superimposed on the illumination target surface (9p) to illuminate the illumination target surface (9p).
  • the integrated lens (7q) may be disposed between the light source (lq) and the condenser lens (light beam splitting lens) (3q).
  • the integrated lens may be disposed between the condenser lens and the illumination lens. That is, the optical axis (sub optical axis) of each light beam divided by the collecting lens (light beam dividing lens) coincides with the optical axis of the illumination lens, and the sub optical axis of these light beams is the integrated lens.
  • the illumination system can be configured to match on the illumination target surface.
  • FIG. 25 shows an illumination system such as the illumination device in Embodiment 8 of the image reading apparatus according to the present invention.
  • FIG. 25A shows multiple LEDs arranged in a straight line and the light emitted from the LEDs as parallel light. It is a figure explaining the light source which has a reflective mirror converted into.
  • FIG. 25A (a) is a side view of the light source
  • FIG. 25A (b) is a top view of the light source.
  • FIG. 25B is a diagram for explaining the arrangement of the LED pellet with respect to the rotating parabolic mirror and the radiation vector of the luminous flux emitted from the LED pellet.
  • FIG. 26 is a diagram for explaining a light source having a plurality of LEDs arranged two-dimensionally and a reflecting mirror that converts light emitted from the LEDs into parallel light.
  • FIG. 26 (a) is a side view of the light source
  • FIG. 26 (b) is a top view of the light source
  • FIG. 26 (c) is a front view of the light source.
  • Example 1 the light emitted from the light emitting surface of the LED is converted into parallel light using a lens, whereas in Example 8, the following description is given. As described above, the light emitted from the light emitting surface of the LED is converted into parallel light using a reflecting mirror.
  • the reflecting mirror that is easy to manufacture is a spherical mirror, and when the radius of the spherical mirror is r, the LED light-emitting portion is placed at a position of r / 2 from the center of the spherical surface, thereby being almost parallel. Power to get light S.
  • parabolic mirrors (2r, 2s) as shown in FIGS. 25A and B and FIG.
  • a plurality of parabolic mirrors (2r) are arranged linearly, and the light emitting surface of the LED pellet (21) is perpendicular to the optical axis of the LED. Yes, placed at the focal point of parabolic mirror (2 r).
  • the main body of the parabolic mirror (2r) is made of a transparent resin (for example, acrylic resin), and aluminum is deposited on the parabolic surface of the parabolic surface (2r) to obtain a total reflecting mirror of the parabolic surface. It is done. In this way, high-quality parallel light can be obtained.
  • a transparent resin for example, acrylic resin
  • the amount of light emitted in the direction perpendicular to the light emitting surface of the LED pellet (21) is the highest. After being reflected by the rotating parabolic mirror, it is blocked by the LED pellet (21) itself, the electrical conductor (20), and the lead wire (22). As a result, the output from the light source decreases and the illumination efficiency of the illumination system decreases.
  • the light source shown in Figs. 26 (a), (b) and (c) eliminates the above-mentioned drawbacks of the simple light source having LEDs arranged in a straight line, and the utilization factor of the luminous flux emitted from the light source. Is to improve. That is, the efficiency of integrating the light emitted from the light source by juxtaposing multiple LED rows Has improved.
  • Embodiment 9 relating to an image reading apparatus according to the present invention will be described with reference to FIGS. 27, 28, and 29.
  • FIG. 27 An image reading apparatus according to the present invention.
  • FIG. 27 is a top view of the image reading apparatus according to the ninth embodiment using an integrated illumination system and reading system.
  • FIG. 28 is a front view of the image reading apparatus according to the ninth embodiment that uses an integrated illumination system and reading system.
  • the first and second traveling bodies are omitted.
  • the surface of the original (25) and the contact glass (26) are developed 90 degrees.
  • a mirror provided on the first traveling body is shown. 27 and 28 illustrate reading in the main scanning direction.
  • the reading of the image on the original surface can be improved by simply applying the concept of the illumination system in the embodiments:! To 8 to the image reading apparatus.
  • the image reading apparatus places a document (25) as shown in FIG. Contact glass (26), imaging lens (28) as imaging means for imaging image (27) on imaging element (27), and bus (main optical axis) of imaging lens (28) And a lighting device (30) arranged in parallel with each other.
  • the illumination device (30) includes at least a light source (31), an illumination lens (32) that illuminates the surface of the document (25), and an integrated lens (33) that superimposes illumination light on the document surface.
  • the illuminating device (30) is arranged in a portion off the center of the integrated lens (9n).
  • the light source (31), the condenser lens, the illumination lens (32), and the integrated lens (33) can be placed beside the imaging lens as a unit (referred to as an illumination device).
  • the imaging lens (28) and imaging device (27) constituting the imaging system, and the illumination device (30) constituting the illumination system are fixed to the image reading apparatus main body having a fixed contact glass (26). Installed in the part.
  • the illumination light emitted from the light source (31) is illuminated along the main scanning direction of the document (25) surface by the illumination lens (32) and the integrated lens (33) (this The lighting system uses the method described in Fig. 22).
  • the light emitted from the light source (31) is superimposed on the surface of the document (25) by the integrated lens (33).
  • the layout of the imaging lens (28) and the like is determined so that the image of the place illuminated by the superimposed light on the surface of the document (25) is read by the image sensor (27).
  • the imaging lens (28) is installed so that the bus (main optical axis) of the imaging lens (28) passes through the center of the document (25) surface. Then, the image sensor (27) is arranged so that the center of the image sensor (27) coincides with the generatrix of the imaging lens (28). In this case, the image can be formed on the image pickup device (27) with the least distortion of the image by the imaging lens (28). Further, the main optical axis of the integrated lens (33) completely coincides with the bus (main optical axis) of the imaging lens (28). When the bus of the imaging lens (28) is shifted, the bus of the imaging lens (28) does not coincide with the main optical axis of the integrated lens (33) and becomes parallel.
  • the second illumination device (30 ') (shown by a two-dot chain line rectangle in Fig. 27) is connected to the imaging lens ( It may be arranged at a position symmetrical to the first illumination device (30) around the main optical axis of 33).
  • the roles of the first lighting device and the second lighting device may be shared with respect to the color of the illumination light.
  • the first illuminator provides R (red) and G (green) illumination
  • the second illuminator provides B (blue) illumination.
  • the color distribution and combination are not particularly limited.
  • the imaging system (imaging system) having the imaging lens (28) is arranged at the center of the surface of the document (25), but the illumination system having the illumination device (30). May be replaced with an imaging system so that the illumination device (30) is arranged at the center of the surface of the document (25).
  • the imaging system and illumination system can be placed on both sides of a line passing through the center of the original (25) plane (the bus line in Fig. 27: the main optical axis).
  • the surface of the document (25) provided with the surface reflected light or gloss of the contact glass (26).
  • the reflected light enters the imaging lens (28) and causes halation, resulting in a low quality read image.
  • the reading optical axis (37) of the imaging lens (36) for the imaging device (35) and the illumination optical axis (38) of the integrated lens (43) of the illuminating device (40) The document surface (45) is reached via the folding mirror (44).
  • the reading optical axis (37) completely coincides with the illumination optical axis (38).
  • the optical axis (47) extending to the document surface (45) does not coincide with the normal (46) of the document surface (45), and is constant with respect to the normal (46) of the document surface (45). Have an angle.
  • the angle of the optical axis (47) extending to the document surface (45) with respect to the normal (46) of the document surface (45) can be set.
  • the angles of the reading optical axis and the illumination optical axis with respect to the document surface are set by changing the angle of the folding mirror disposed on the first traveling body. Can do.
  • FIG. 29 is a diagram for explaining the image reading device shown in FIGS. 27 and 28 corresponding to the image reading device shown in FIGS. 1 (a) and 1 (b).
  • the symbols shown in FIGS. 1 (a) and (b) correspond to the symbols shown in FIGS. 27 and 28.
  • the illumination optical axis (38) of the illumination device (40) has an imaging lens ( 102 (36)) and the reading optical axis (37) of the one-dimensional image sensor (101 (35)).
  • the light beam emitted from the light source (41) of the illumination device (40) passes through the integrated lens (43) and is provided with two folding mirrors (112a, 112b) provided on the second traveling body (104). Is reflected by the turning mirror (113 (44)) provided on the first traveling body (103) to illuminate the original (107 (45)) on the contact glass (108). At that time, in each of the two folding mirrors (112a, 112b) on the second traveling body (104), the light is bent at a right angle, so that the light flux from the light source is opposite to the direction incident on the second traveling body. Reflected in the direction of.
  • the luminous flux reflected by the two folding mirrors (112a, 112b) is folded at an angle slightly larger than a right angle by the turning mirror (113) provided on the first traveling body (103).
  • Incident light is incident at a slight angle with respect to the direction perpendicular to the contact glass (108) and the original (107 (45)) surface. Therefore, the directly reflected light (48) reflected on each surface of the contact glass (108) and the original (107 (45)) travels in the opposite direction to the incident light (47), and is reflected on the deflecting mirror (113). Dont return.
  • the surface of the original (107 (45)) is generally a paper surface, most of the incident light (47) is scattered and reflected. And incident light (47) and (front view
  • the component (vector) of light reflected on the overlapping busbars (above) becomes image light and turns mirrors (
  • the image light is further bent at right angles by the two folding mirrors (112a, 112b) on the second traveling body (104), the image light from the surface of the original (107 (45)) is The light is reflected in the direction opposite to the direction of incidence on the body and imaged on the one-dimensional imaging device (101 (35)) through the imaging lens (102 (36)).
  • the illumination light from the illumination device (40) illuminates the linear imaging area (111) on the contact glass (108), and the original (107 (45)) in the imaging area (111)
  • An image of the surface is formed on the one-dimensional image sensor (101 (35)).
  • the formed image light is photoelectrically converted by the image sensor (101 (35)), and one-dimensional (main travel direction) image information can be obtained as an electrical signal.
  • the first traveling body (103) and the second traveling body (104) receive the driving force from the motor (105) through the drive transmission means (106). 1st traveling body (
  • the imaging position of the imaging lens (102 (36)) relative to the contact glass (108) surface is maintained on the surface of the one-dimensional imaging device (101 (35)), while the optical contact glass (108) surface.
  • the image of the original (107 (45)) placed on the contact glass (108) is sequentially read out by the one-dimensional imaging device (101 (35)) and acquired in two dimensions.
  • the ratio of the traveling speeds of the first traveling body (103) and the second traveling body (104) is set to 2: 1, the moving distance of the second traveling body (104) is the first traveling body (104).
  • the distance to the imaging region (111) force imaging lens (102 (36)) or one-dimensional imaging device (101 (35)) is half the moving distance of (103). And it is constant regardless of the position of the second traveling body (104). In this way, the image of the original (107 (45)) placed on the contact glass (108) is converted into a one-dimensional image sensor (101 (35)
  • the first traveling body (103) and the second traveling body (104) are caused to travel in the auxiliary traveling direction while sequentially obtaining one-dimensional image information, so that the first traveling body (103) and Second traveling body (
  • two-dimensional image information can be acquired.
  • the folding mirrors (112a, 112b) and the deflecting mirror (113) are used as plate-like reflectors. Forces shown For any of these mirrors, other reflective surfaces such as total internal reflection of the prism may be used. In particular, if the folding mirrors (112a, 112b) on the second traveling body are replaced with prisms, the accuracy of the reflecting surface can be easily improved, and the assembly of the second traveling body is facilitated.
  • the image reading apparatus has the following effects.
  • the illumination device can be placed in the vicinity of the imaging lens and the imaging element that constitute the imaging system without having to be placed on the first traveling body, the illumination device is used in the height direction of the image reading device. As a result, it is possible to reduce the thickness of the image reading apparatus.
  • the regular reflection light component on the document surface is the diffuse reflection component of the illumination light that illuminates the document surface that does not enter the imaging lens. Only the light is incident on the image sensor. As a result, it is possible to accurately read the image density of the original without being affected by the fluctuation of the gloss of the original.
  • an image reading apparatus can be easily incorporated into an image forming apparatus such as a copying machine as in the case of incorporating a conventional image reading apparatus into a copying machine.
  • the optical axis of the illumination light and the read optical axis coincide with each other, and both the illumination light and the image light are Reflected by the deflecting mirror and the two folding mirrors.
  • FIG. 30 is a diagram for explaining the occurrence of flare in the image reading apparatus.
  • the mirror surfaces of the turning mirror (113) and the lower folding mirror (112b) are directed upward. For this reason, the mirror surface of the turning mirror (113) and the lower folding mirror (112b) Dust or dust (51) adheres easily.
  • Dust or dust (51) adheres to these mirror surfaces
  • the illumination light is reflected by these mirror surfaces, the illumination light is irregularly reflected by the dust or dust (51) attached to these mirror surfaces.
  • This flare light directly enters the imaging lens (102), overlaps with the image light from the original surface, and is detected on the one-dimensional image sensor (101) (eg, CCD). .
  • the resulting image may have a black floating phenomenon power.
  • the light beam emitted from the LED in the light source is emitted from the focal position of the collimating lens attached to the LED.
  • the luminous flux generally reaches the imaging area on the illumination target surface, but the actual LED has a certain volume, and the light flux emitted from a position other than the position of the collimating lens focal point is the focal point of the collimating lens. More than the luminous flux emitted from the position.
  • many luminous fluxes of the illumination light that are divergent from the illuminating device other than the luminous flux emitted as parallel light from the illuminating device are dispersed in the vicinity of the imaging region that is desired to be illuminated.
  • the utilization rate of the illumination light is reduced.
  • the light source is the focal length of the integrated lens with respect to the focal length f3 of the collimating lens attached to the LED. Projected at an enlarged ratio f0 / f3.
  • Example 10 an image reading apparatus having a higher light utilization rate that can more easily reduce the illuminance unevenness on the irradiation target surface will be described with reference to FIG.
  • FIG. 31 is a diagram illustrating an example of an image reading apparatus using a turning mirror in which a peripheral portion of an area that reflects reading light is bent.
  • reading light image light on the original surface
  • the deflecting mirror (113) (47) Bend the area around the area that reflects the light.
  • a turning mirror having a size several times larger than the area for reflecting the reading light is used.
  • the deflecting mirror (113) divides the light beam emitted from the LED having a certain volume and emitted from the illumination device (40) by bending the optical axis of the light beam. The image can be collected in the reading area (111) on the original surface (107). More specifically, the deflecting mirror (113) shown in FIG.
  • the deflecting mirror (113) is bent in the sub-scanning direction (72) in consideration of the width of the reading area (111) on the original surface (107) (about 3 mm in an actual color reading device). Increasing the number of lamps (for example, 2 to 6 parts) improves the utilization rate of the illumination light emitted from the illuminating device, generally in proportion to the number of bent parts of the deflecting mirror (113). be able to.
  • Example 11 describes an illumination system with higher light utilization with reference to FIG.
  • FIG. 32 is a diagram illustrating an example of an illumination system with higher light utilization according to the present invention.
  • FIG. 32 (a) is a top view of the first or second illumination system in Example 11
  • FIG. 32 (b) is a front view of the first illumination system in Example 11.
  • FIG. 32 (c) is a front view of the second illumination system in the embodiment 11.
  • the first or second illumination system shown in Fig. 32 includes a plurality of light sources (1) including a LED and a reflector that converts divergent light emitted from the LEDs into parallel light, and a light flux emitted from the light source.
  • the condensing lens (3) to divide, the illumination lens (5) to illuminate the divided luminous flux on the surface to be illuminated (9), and within the plane shown in Fig. 32 (a) (in the main scanning direction of the image reader ( 71))
  • the integrated lens (7) that superimposes the divided luminous flux on the illumination target surface (9), and in the plane shown in FIG. 32 (b) or FIG. 32 (c) (sub-scanning of the image reader)
  • It has a focusing lens (8) that focuses the split luminous flux on the illumination target surface (9).
  • the first or second illumination system shown in FIG. 32 is compared with the illumination system shown in FIG.
  • the condenser lens (3) and the illumination lens (5) are common, but instead of the normal lens shown in FIG. Is used.
  • a cylinder lens arranged in a direction orthogonal to the cylinder lens for the integrated lens (7) is used as a focusing lens (8) in the vicinity of the illumination target surface.
  • the focal length of the cylinder lens constituting the integrated lens (7) is the same as the focal length of the integrated lens shown in FIG.
  • the focal length of the cylinder lens constituting 8) is a ′.
  • a is the distance from the integrated lens (7) to the illumination target surface (9) (imaging region), and a 'is the distance from the focusing lens 8 to the illumination target surface (9) (imaging region) It is.
  • the integrated lens (7) is, for example, a cylinder lens having a shape as shown in FIG. 8B
  • the focusing lens (8) is, for example, a cylinder lens having a shape as shown in FIG. 8C.
  • the reflector that converts the divergent light emitted from the LED into parallel light is a rotating paraboloid whose focal point is the LED position, and the focal length of the rotating paraboloid is LED It is the distance from the force to the tip of the reflector.
  • the luminous flux emitted by the LED force is converted into parallel light by a rotating parabolic mirror, and used as a condenser lens.
  • the divided light flux passes through the integrated lens (7) and the focusing lens (8), but is superimposed on the illumination target surface (9) by the cylinder lens as the integrated lens (7).
  • the focusing lens (8) can be regarded as a plane parallel plate in the plane shown in FIG. 32 (a).
  • the luminous flux emitted from the LED is converted into parallel light by a rotating parabolic mirror and can be regarded as a parallel plane plate.
  • the light passes through the lens (3), the illumination lens (5), and the integrated lens (7) as parallel light, and is focused on the illumination target surface by the cylinder lens as the focusing lens (8).
  • b is the distance between the illumination lens (5) and the integrated lens (7)
  • c is the condenser lens ( It is the distance between 3) and the illumination lens (5).
  • the image of the light source LED is the focal length of the cylinder lens as the focusing lens (8) with respect to the focal length of the rotating paraboloid of the light source (1). Is projected onto the illumination target surface (9).
  • the focal length a ′ of the cylinder lens as the collecting lens (8) can be about 1/10 of the focal length of the integrated lens of the illumination system shown in FIG.
  • the magnification of the LED image in the system can be kept to one tenth of the magnification of the LED image in the illumination system shown in Fig. 7. That is, the illumination system shown in FIG. 32 focuses about 10 times as much light as the illumination system shown in FIG. 7 on the irradiation target surface (9) in the plane shown in FIG. 32 (b) or (c). Is possible.
  • the light source (1) may have one light source row arranged as shown in FIG. 32 (b). Also good.
  • the number of LEDs in the light source (1) (four in the first illumination system shown in Figs. 32 (a) and (b), and in the second illumination system shown in Figs. 32 (a) and (c) Is not particularly limited.
  • the LED emission color can be white LED only, and it can also include red (R), green (G), and blue (B) LEDs. When color balance is taken into consideration, the number of red (R) LEDs, green (G) LEDs, and blue (B) LEDs in the light source (1) should be equal or low. The power of the LED with the color is higher than the LED with the color with high brightness.
  • the number of light sources (1) and the condenser lenses (3) (and / or the illumination lens 5 may be 4: 5) may be increased.
  • the illuminance distribution of the light on the illumination target surface can be made uniform more easily.
  • the ratio of the number of cylinder lenses constituting the condenser lens (3) and / or the illumination lens (5) to the light source (1) may be 2 or more.
  • the illumination system shown in Fig. 32 has a light source (1) and a condenser lens (3) in the plane shown in Fig. 32 (a) (in the main scanning direction (71) of the image reading device). And the illumination lens (5) are arranged symmetrically about the optical axis of the integrated lens (7) (the main optical axis (61) of the illumination optical axis).
  • FIG. 33 illustrates an example of an illumination system having a focusing lens and using the periphery of an integrated lens It is a figure to do.
  • FIG. 33 (a) is a top view of an example of the illumination system
  • FIG. 33 (b) is a front view of the example of the illumination system.
  • the light source (1), the condenser lens (3), and the illumination lens (5) are removed from the plane shown in FIG. 33 (a) except for the central portion of the integrated lens (7). It is placed around the integrated lens (7).
  • FIG. 34 is a diagram showing the shape of a cylinder lens that can be used in the illumination system according to the present invention.
  • a cylindrical lens as an integrated lens (7) that can be used in an illumination system having a focusing lens (8) and using the peripheral portion of the integrated lens (7) is shown in FIG.
  • the reading system (imaging system, imaging system) in the image reading apparatus can be arranged in the central portion of the integrated lens. That is, the illumination system can be arranged (or juxtaposed) around the reading system in the image reading apparatus. In this way, by using an illumination system as shown in FIG. 33, it is possible to integrate the illumination system and the reading system.
  • FIG. 35 is a diagram for explaining an example of an image reading apparatus using an integrated illumination system including a focusing lens and a reading system.
  • the image reading apparatus shown in FIG. 35 includes an illumination device 40 as shown in FIG.
  • the illumination system in the image reading apparatus shown in FIG. 35 includes an illumination device (40) including a light source (1), a condensing lens (3), an illumination lens (5) and an integrated lens (7), and a focusing lens (8).
  • the focusing lens (8) is arranged on the original surface (107) side of the turning mirror (113) which may be arranged on the lighting device side of the turning mirror (113). May be.
  • the reading optical axis (37) of the reading system and the illumination optical axis (38) of the illumination system overlap with each other in the 1S main scanning direction (71).
  • the focusing lens (8) is a simple cylinder lens
  • the image of the original (107) surface is enlarged or reduced by the focusing lens (8), and the enlarged or reduced image is converted into a one-dimensional image sensor ( 101). Therefore, the part of the focusing lens (8) through which the image light incident on the imaging lens (reading) passes should not have the function of the focusing lens (8).
  • that portion of the focusing lens (8) is formed on a plane parallel plate (a flat portion is formed on the focusing lens (8)). Or that part of the focusing lens (8) can be cut out (resulting in two focusing lenses without the central part of the lens).
  • FIG. 36 is a diagram for explaining an example of an image reading apparatus using an illumination system and a reading system having a parabolic mirror as a light beam focusing element and using the peripheral portion of the integrated lens.
  • FIG. 37 is a diagram showing the shape of a parabolic mirror that can be used as a beam focusing element.
  • the parabolic mirror (8 ′) is a parabolic mirror as shown in FIG.
  • the parabolic mirror (8 ′) In addition to the function as an element, it also functions as a turning mirror (113). As a result, the deflecting mirror (113) can be removed, and the number of parts of the image reading device can be reduced.
  • the reading optical axis (37) of the reading system and the illumination optical axis (38) of the illumination system overlap in the main scanning direction (71).
  • the parabolic mirror (8 ′) is a simple parabolic mirror
  • the image of the original (107) surface is enlarged or reduced by the parabolic mirror (8 ′), and enlarged or reduced.
  • the image is read by the one-dimensional image sensor (101).
  • the part of the parabolic mirror (8 ') that reflects the image light incident on the imaging lens (reading) should not have the function of the parabolic mirror (8').
  • FIG. 38 is a diagram for explaining an example of an image reading apparatus that includes a parabolic mirror as a light beam focusing element and a correction lens and uses an illumination system using a peripheral portion of the integrated lens and a reading system.
  • a plane mirror is not formed on the force parabolic mirror (8 ′) using the parabolic mirror (8 ′) as the light beam focusing element.
  • the image in the imaging region (111) can be normally formed on the one-dimensional imaging device (CCD).
  • the correction lens (8 ) is arranged only in the reading system and not in the illumination system.
  • a flat portion is provided on the convex cylinder lens as the focusing lens (8) corresponding to the reading system, or one of the convex cylinder lenses as the focusing lens (8).
  • FIGS. 39A and 39B and FIGS. In order to prevent the beam focusing element from enlarging or reducing the image in the imaging region (111), the reading optical axis and the illumination optical axis are separated in the direction perpendicular to the main scanning direction (71) of the image reading device. To do.
  • FIG. 39A is a diagram illustrating an example of an image reading device in which an illumination device is disposed above an imaging lens.
  • FIG. 39B is a diagram for explaining an example of an image reading device in which the illumination device is arranged below the imaging lens.
  • the reading optical axis (37) and the illumination optical axis (38) are separated in parallel with each other in the direction orthogonal to the main scanning direction (71) of the image reading device,
  • the two folding mirrors (112a) and (112b) are folded back in parallel with each other.
  • Each of the return mirrors (112a) and (112b) has an area capable of reflecting both illumination light and reading light separated in parallel with each other.
  • the reading optical axis (37) is folded by the turning mirror (113) and intersects the imaging area (111) on the surface of the original (107).
  • a parabolic mirror (8 ') as a light beam focusing element is placed in the vicinity of the turning mirror. Note that the focal point of the parabolic mirror (8 ′) is located in the imaging region (111). In other words, the reading optical axis (37) and the illumination optical axis (38) are made to coincide at a certain position of the imaging region (111).
  • the illumination optical axis (38) is positioned above the reading optical axis (37).
  • the illumination optical axis (38) is positioned below the reading optical axis (37).
  • the parabolic mirror (8 ′) is arranged below the deflecting mirror (113), and the illumination light is parabolic mirror (8 ′) arranged below the deflecting mirror (113). )
  • the parabolic mirror (8 ′) may be arranged on the front side of the turning mirror (113) (i), or may be arranged on the rear side of the turning mirror (113) (ii).
  • the illumination optical axis (38) and the reading optical axis (37) force before being folded by the folding mirror (112b)
  • the illumination optical axis (38) is located below the reading optical axis (37).
  • the illumination optical axis (38) and the reading optical axis (37) are folded back by the folding mirror (112a)
  • the illumination optical axis (38) is positioned above the reading optical axis (37).
  • the parabolic mirror (8 ′) is arranged above the deflecting mirror (11 3), and the illumination light is parabolic mirror (8 ′) arranged above the deflecting mirror (113).
  • the parabolic mirror (8 ′) may be disposed on the front side of the deflecting mirror (113) (i), or may be disposed on the rear side of the deflecting mirror (113) (ii).
  • FIGS. 39A and 39B the two parabolic mirrors (8 ') are placed on the front side of the turning mirror (113).
  • each parabolic mirror (8 ′) can be irradiated with illumination light emitted from the illumination device (40).
  • the parabolic mirror (8 ') arranged on the front side of the deflecting mirror (113) is used by cutting the upper half or the lower half of the illumination optical axis (38). By doing so, the light reflected from the parabolic mirror arranged on the front side illuminates the imaging region (111) from the front side of the deflecting mirror (113).
  • the release located on the front side The light beam in the upper half or lower half of the illumination optical axis (38) that was not reflected by the object mirror is reflected from the parabolic mirror (8 ') located behind the deflecting mirror (113).
  • the imaging region (111) is illuminated from the rear side of the turning mirror (113).
  • the two folding mirrors (112a) and (112b) are shared by the reading system and the illumination system.
  • FIGS. 40A to 40D are diagrams illustrating various modes related to separation of the reading optical axis and the illumination optical axis. 40A to 40D, at least one of the two folding mirrors (112a) and (112b) shown in FIG. 39A or FIG. 39B is divided into two folding mirrors.
  • FIG. 40A is a diagram showing an example in which the upper folding mirror is divided into two folding mirrors, the reading optical axis is arranged on the lower side, and the illumination optical axis is arranged on the upper side.
  • the upper folding mirror (112a) is divided into two folding mirrors (112a) and (112c) and read light in FIG. 40A.
  • the axis (37) is disposed on the lower side, and the illumination optical axis (38) is disposed on the upper side.
  • FIG. 40B is a diagram showing an example in which the lower folding mirror is divided into two folding mirrors, the reading optical axis is arranged on the lower side, and the illumination optical axis is arranged on the upper side. That is, in the image reading apparatus shown in FIGS. 39A and 39B, the lower folding mirror (112b) is divided into two folding mirrors (112b) and (112c) and read in FIG. 40B.
  • the optical axis (37) is arranged on the lower side and the illumination optical axis (38) is arranged on the upper side.
  • FIG. 40C is a diagram showing an example in which the lower folding mirror is divided into two folding mirrors, the reading optical axis is arranged on the upper side, and the illumination optical axis is arranged on the lower side. That is, in the image reading apparatus shown in FIGS. 39A and 39B, the lower folding mirror (112b) is divided into two folding mirrors (112b) and (112c) and read in FIG. 40B.
  • the optical axis (37) is arranged on the upper side, and the illumination optical axis (38) is arranged on the lower side.
  • FIG. 40D is a diagram showing an example in which the upper and lower folding mirrors are each divided into two folding mirrors, the reading optical axis is arranged inside, and the illumination optical axis is arranged outside. That is, in the image reading apparatus shown in FIGS. 39A and 39B, the upper folding mirror In FIG. 40D, (112a) and the lower folding mirror (112b) are divided into four folding mirrors (112a), (112b), (112c), and (112d), and in FIG. 39A and FIG. 39B, The arrangement of the reading optical axis (37) and the illumination optical axis (38) is exchanged.
  • the reading optical axis (37) and the illumination light are divided. It is possible to freely select the arrangement of the axis (38) and thus the arrangement of the reading and illumination systems.
  • the reading optical axis (37) and the illuminating device (40) of the reading system are in contact with or separated from each other. If the illumination optical axis (38) is separated, the configuration of the illumination system shown in FIG. 32 can be used instead of the configuration of the illumination system shown in FIG.
  • Example 13 an image reading apparatus capable of reducing dust or flare caused by dust adhering to the image reading apparatus will be described with reference to FIG.
  • FIG. 41 is a diagram for explaining an example of an image reading apparatus capable of reducing dust attached to the image reading apparatus or flare caused by the dust.
  • dust and / or dust 51 enters the image reading device while the image reading device is used for many years, and the dust and Z or dust (51) It adheres to various places in the device.
  • the illumination light is reflected by a mirror surface of a mirror in the image reading apparatus, generally, most of the illumination light is reflected by the mirror surface, and a small remaining portion of the illumination light is absorbed by the mirror.
  • dust and Z or dust (51) adheres to the mirror surface of the mirror, the illumination light is irregularly reflected in all directions by the dust and Z or dust attached to the mirror surface of the mirror.
  • Dust and dust are reflected on a mirror surface such as a turning mirror (113), a folding mirror (112a, 112b, etc.) and a parabolic mirror (8 ') as a beam focusing element in the image reading apparatus.
  • Dust (51) may adhere.
  • scattered light (52) scattered in a direction other than the direction of the illumination target surface is generated, and the scattered light (52 ) Is partially incident on the imaging lens (102). There is a flare.
  • the image reading apparatus is sealed so as to prevent dust and / or dust from entering.
  • a member having a mirror surface including a surface having a normal line extending in a direction smaller than 90 ° with respect to the vertical direction for example, the first traveling body (103) and the second traveling body) (104) Force that can be considered to seal the part that does not pass light
  • the mirror is arranged so that the normal force S of the mirror surface of the mirror extends in a direction at an angle of 90 ° or more with respect to the vertical direction.
  • light scattered by the mirror surface of the mirror having a normal extending in a direction smaller than 90 ° with respect to the vertical direction does not enter the imaging lens (102) (the one-dimensional imaging device (101)).
  • a mirror is arranged or a light shielding member such as a light shielding plate (53) is provided so that no image is formed. In this way, flare caused by dust or dust adhering to the image reading apparatus can be reduced.
  • the folding mirror that reflects the illumination light upward extends in a direction at an angle of 90 ° or more with respect to the vertical direction.
  • the folding mirror (112d) is arranged so as not to enter the imaging lens (102), or the light shielding plate (53) is provided on the folding mirror (112d).
  • the parabolic mirror (8 ') is arranged so that the normal of the mirror surface of the parabolic mirror (8') as the beam focusing element extends in an angle direction of 90 ° or more with respect to the vertical direction.
  • the reflecting mirror (112e) plane mirror
  • the folding mirror (112e) is used as the parabolic mirror (8') and Install so that it is covered by the turning mirror (113). In this case, adhesion of dust and / or dust (51) on the mirror surface of the parabolic mirror (8 ′) can be prevented or reduced.
  • Example 14 describes an image reading apparatus that can reduce flare caused by diverging light that diverges illumination system power, with reference to FIGS. 42 and 43.
  • FIG. 14
  • FIG. 42 is a diagram illustrating an example of an image reading apparatus that can reduce flare caused by diverging light that diverges illumination system power.
  • the light source of the illuminating device in the image reading apparatus may be a light source having a lens that converts the light emitted from the LED into parallel light at the tip of the LED and the LED, and the LED is focused on the position of the LED. It may be a light source having a rotating parabolic mirror. For these light sources, the light emitted from the LED is ideally a force emitted from the light source as a parallel light flux. Exists. Therefore, as shown in FIG. 42, the light beam diverging from the light source is emitted as the light beam diverging from the illumination device (40). In the plane shown in FIG.
  • the light emitted as the luminous flux diverging from the illumination device (40) is reflected by the two folding mirrors (112b) and (112c) of the reading system in the second traveling body (104).
  • Light force incident on one side and reflected by one of the two folding mirrors (112b) and (112c) When reflected again by the other folding mirror, the reflected light returns to the lighting device (40) side.
  • the imaging lens (102) existing near the illuminating device (40) flare occurs, causing whitening of the read image.
  • flare occurs, causing whitening of the read image.
  • the light beam diverging from the illuminating device 40 is reflected in the second traveling body (104).
  • a light shielding plate (40) and / or at least one of the two folding mirrors (112b) and (112c) is shielded so that it does not enter the two folding mirrors (112b) and (112c) of the reading system.
  • 51) may be provided and / or the shift (interval) between the optical axis of the imaging lens (102) and the optical axis of the illumination device (40) may be increased.
  • FIG. 43 illustrates an example of an illumination system including a focusing lens and a relay lens according to the present invention.
  • a relay lens (6) is added to the illumination system as shown in FIG. 32 or FIG.
  • the relay lens (6) is a cylinder lens having a function as a lens in the plane shown in FIG. 43 (and acting as a plane parallel plate in a plane perpendicular to the plane shown in FIG. 43).
  • the focal length of the relay lens (6) is f shown in FIG. 43
  • the focal length of the focusing lens (8) is l / (l / e + l / a ′).
  • the focal length f of the relay lens (6) is preferably about half the distance between the integrated lens (7) and the focusing lens (8). Note that e is the distance from the focal point of the relay lens (6) to the focusing lens (9).
  • the relay lens (6) can be placed anywhere in the illumination system after the light source 1 in the illumination device, including the light source (1), condenser lens (3), illumination lens (5), and integrated lens (7). It is provided. By providing the relay lens (6) in the lighting device, the divergence of the light flux emitted from the lighting device can be slightly reduced.
  • Example 15 shows an illumination system according to the present invention that can suppress the divergence of the emitted luminous flux and improve the light utilization rate, with reference to FIGS. 44A, 44B, and 44C. explain.
  • FIG. 44A is a view for explaining a first example of an illumination system including a focusing lens and a sub illumination lens according to the present invention.
  • FIG. 44B is a diagram for explaining a second example of an illumination system including a focusing lens and a sub-illumination lens according to the present invention.
  • FIG. 44C is a view for explaining a third example of an illumination system including a focusing lens and a sub-illumination lens according to the present invention.
  • the illumination system shown in Fig. 44A has the same configuration as that of the illumination system shown in Fig. 32 or 33, and a secondary illumination lens (5 ') on the rear side of the illumination lens (5) that is a cylinder lens array. ).
  • the auxiliary illumination lens (5 ′) is a cylinder lens that is orthogonal to the cylinder lens that constitutes the cylinder lens array of the illumination lens (5). That is, the sub-illumination lens (5 ′) has the function of a lens in the plane shown in FIG. 44A (in the sub-scanning direction (72) of the image reading apparatus), and in the plane perpendicular to the plane shown in FIG.
  • the focal length of the secondary illumination lens (5 ') is l / (l / g + l / h), and the focal length of the cylinder lens of the focusing lens (8) is l / (l / g + l / a') It is.
  • h is The distance from the exit window of the rotating paraboloid mirror of the light source (1) to the secondary illumination lens (5 ')
  • g is the distance from the secondary illumination lens (5') to the focusing lens (8)
  • M "/ m ' g at the position of the focusing lens (8) of the exit window (with size m') of the rotating parabolic mirror of the light source (1).
  • the light utilization rate of the illumination system as shown in FIG. 44A is shown in FIG. 32, FIG. 33, or FIG. 43 when the size of the focusing lens (8) is constant. It was confirmed that the light utilization rate of the system increased by about 50%.
  • the focal length of the secondary illumination lens (5 ′) of the illumination system shown in FIG. 44A may be changed to the focal length of the secondary illumination lens (5 ′) of the illumination system shown in FIG. 44B or 44C.
  • the focal length of the secondary illumination lens (5 ′) shown in FIG. 44B is l / (l / (a ′ + g) + l / h), and the secondary illumination lens (5 ′) shown in FIG.
  • the focal length is h.
  • the peripheral portion of the focusing lens (8 ′) may be cut out and only the central portion of the focusing lens (8) may be used.
  • the illumination system shown in FIG. 44B uses a light beam that becomes narrower at the position of the focusing lens (8).
  • the light utilization rate is higher than the light utilization rate of the illumination system shown in Figure 44A, which uses a light beam that spreads more at the position of the focusing lens (8).
  • the image of the light source (1) does not form an image at the position of the focusing lens (8), and the luminous flux focusing lens (m '(l + g / h) width ( The position of 8) has been reached.
  • the focal length of the ⁇ IJ illumination lens (5 ') must be between lZ (lZg + lZh) and h or less. By making it within the range, the light efficiency of the illumination system including the illumination lens (5 ′) can be reduced without including the secondary illumination lens (5 ′). It was discovered that it can be significantly improved compared to the light system.
  • the focal length of the focusing lens (8) is a ′, the light utilization rate of the illumination system is slightly reduced, but is essentially good. In other words, by making the focal length of the focusing lens (8) within the range of 1 / (1 / g + l / a ') to a' Can do.
  • Example 16 shows another illumination system according to the present invention that can suppress the divergence of the luminous flux emitted by the illumination device and improve the light utilization rate, as shown in FIGS. 45A, 45B, and 45 C. And explain.
  • FIG. 45A is a diagram illustrating a first example of an illumination system including a focusing lens, a sub-illumination lens, and a sub-condensing lens according to the present invention.
  • FIG. 45B is a diagram illustrating a second example of an illumination system including a focusing lens, a sub-illumination lens, and a sub-condensing lens according to the present invention.
  • FIG. 45C is a diagram for explaining a third example of the illumination system including the focusing lens, the sub-illumination lens, and the sub-condensing lens according to the present invention.
  • the illumination system shown in FIG. 45A has a configuration similar to that of the illumination system shown in FIG. 44A, and a sub-condensing lens (3 ′) behind the exit window of the paraboloid of the light source (1).
  • the sub condensing lens (3 ′) is a cylinder lens that is orthogonal to the cylinder lenses that constitute the cylinder lens array of the condensing lens (3). That is, the secondary condenser lens (3 ′) has a lens function within the plane shown in FIG. 45A (with respect to the secondary scanning direction (72) of the image reading apparatus), and is a plane perpendicular to the plane shown in FIG.
  • the focal length of the secondary condenser lens (3 ′) is h, and h is the distance from the secondary condenser lens (3 ′) to the secondary illumination lens (5 ′).
  • the parallel light beam emitted from the light source (1) is focused on the sub-illuminating lens (5 ′).
  • the relationship between the sub illumination lens (5 ′) and the focusing lens (8) is the same as those in FIG. 44A.
  • the light beam diverging from the rotating paraboloid mirror of the light source (1) can also be used for the illumination of the illumination target surface (9).
  • the rate is expected to be several percent higher than the light utilization of the lighting system shown in Figure 44A.
  • the illumination system shown in FIG. 45B and the illumination system shown in FIG. 45C are the same as those in FIG. 44B, respectively, in the illumination system shown in FIG. 44B and the illumination system shown in FIG. 44C.
  • Condensing lens (3 ') is the same as those in FIG. 44B, respectively, in the illumination system shown in FIG. 44B and the illumination system shown in FIG. 44C.
  • Example 17 describes another illumination system according to the present invention that can suppress the divergence of the emitted luminous flux and improve the light utilization rate, with reference to FIGS. 46A and 46B. .
  • FIG. 46A is a diagram for explaining a first example of an illumination system including a focusing lens, a sub-illumination lens array, and a sub-condensing lens array according to the present invention.
  • FIG. 46B is a diagram illustrating a second example of an illumination system including a focusing lens, a sub-illumination lens array, and a sub-condensing lens array according to the present invention.
  • the sub condenser lens (3 'in the illumination system shown in Fig. 45A) is used.
  • the cylinder lens and the secondary light lens array (as the secondary condenser lens (3 ′) in the illumination system shown in FIG. 45A) are replaced. 3 ") and the sub-illumination lens array (5"), which is a cylinder lens array.
  • the focal length of the cylinder lens constituting the sub-condensing lens array (3 ") in Fig. 46A is shown in Fig. 45A.
  • the focal length of the cylinder lens constituting the secondary illumination lens array (5 ") in Fig. 46A is the same as the focal length of the secondary condenser lens (3 ') shown in Fig. 46A.
  • the illumination system shown in Fig. 46A corresponds to the illumination system shown in Fig. 45A.
  • An illumination system corresponding to the illumination system shown in Fig. 45B and 45C can also be configured, provided that the light utilization rate of the illumination system having the configuration shown in Fig. 46A is as shown in Fig. 45A. It was not possible to confirm that the light utilization rate was higher than that of the cylinder M. In the description of FIGS. "And M 'have been described as being imaged, but in reality, those images are not formed.
  • a relay lens (6) which is a cylinder lens, is added to the illumination system shown in FIG. 46A, as in FIG.
  • the optical axes (sub optical axes (62)) of a plurality of light beams divided by the collecting lens array (3 ") and the illumination lens array (5") are regarded as light beams.
  • the light utilization rate of the illumination system shown in Fig. 46B is almost the same as the light utilization rate of the illumination system shown in Fig. 46A.
  • the divergence of the emitted illumination light is slightly reduced compared to the illumination system shown in Fig. 46A. be able to.
  • the illumination system using only the focusing lens has been described as the light beam focusing element.
  • a parabolic mirror or an ellipsoidal mirror can be used as the light beam focusing element instead of the focusing lens.
  • a parabolic mirror or an elliptical mirror is used instead of the focusing lens. The surface mirror can be handled more easily.
  • Example 18 an image reading apparatus using a mirror as a light beam focusing element will be described with reference to FIGS. 47 and 48.
  • FIG. 47 An image reading apparatus using a mirror as a light beam focusing element will be described with reference to FIGS. 47 and 48.
  • FIG. 47 is a diagram illustrating an example of an image reading apparatus using a parabolic mirror as a light beam focusing element.
  • the illumination optical axis when the plane mirror is not used is used.
  • (38b) is arranged below the reading optical axis (37).
  • the optical axis of the illumination device (40) is aligned with the imaging lens ( 102) from the optical axis.
  • the parabolic mirror (8 ') has a parabolic mirror and a plane mirror that have a focal point (F) in the linear imaging region (111).
  • the range of use (8′a) of the parabolic mirror that includes the intersection with the illumination optical axis (38b) when not used and receives the light beam emitted from the illumination device (40) is cut out.
  • the deflecting mirror (113) of the reading system has a width for receiving all the effective image light incident on the imaging lens and a width for providing an intensity for supporting the deflecting mirror (113) itself.
  • the light reflected from the imaging region (111) is arranged so as to be directed at a right angle.
  • the range of use of the parabolic mirror (8'a) is that the illumination light beam avoids the turning mirror (113), and is relatively close to the illumination target surface (9) on the contact glass (108). It is determined to be incident at an angle.
  • the illumination light beam reflected by the parabolic mirror (8 ') in the range of use of the parabolic mirror (8'a) is efficiently focused on the imaging area (111), that is, the imaging area (111 ) Efficiently.
  • the specularly reflected light is reflected in the specularly reflected light range 49 shown in FIG. Therefore, the specularly reflected light is not reflected by the deflecting mirror (113) and does not enter the imaging lens (102) of the reading system.
  • the illumination light when using the plane mirror is used.
  • the optical axis of the illuminating device (40) is aligned with the imaging lens (102 of the reading system) so that the axis (38a) is arranged above the reading optical axis (37). ) From the optical axis.
  • the parabolic mirror (8 ') the intersection of the parabolic mirror having the focal point (F) in the linear imaging region (111) and the illumination optical axis (38b) when the plane mirror is not used.
  • the parabolic mirror (8 ′) is a surface object so that the parabolic mirror (8 ′) is a surface object when the plane mirror is not used with respect to the mirror surface of the plane mirror (55). Placed.
  • the illumination optical axis when using the plane mirror is bent by both the parabolic mirror (8 ′) and the plane mirror (55) and reaches the imaging region (111).
  • the mirror surface of the plane mirror (55) is covered with a parabolic mirror (8 ′).
  • the mirror surface of the parabolic mirror (8 ′) can be directed downward without shortening the focal length of the parabolic mirror (8 ′).
  • the size of the first traveling body (103) including the parabolic mirror (8 ') is reduced. There is no increase.
  • the dust and / or dust (51) is prevented from adhering to the parabolic mirror (8 '), and the dust and / or scattered light (52) adhering to the plane mirror (55) is imaged. Since it is possible to prevent the light from entering the lens (102), flare can be reduced.
  • FIG. 48 is a diagram illustrating an example of an image reading apparatus using an ellipsoidal mirror as a light beam focusing element.
  • an image reading apparatus using an ellipsoidal mirror as a light beam focusing element includes a focusing lens (8) in an illumination system including a focusing lens (8) and a relay lens (6) as shown in FIGS. 43 and 46B. It is obtained by replacing it with an ellipsoidal mirror (8 "'), that is, the first focal point of the ellipsoidal mirror (8"') at the focal position of the relay lens (6) as shown in Fig. 43 and Fig. 46B.
  • an image reading apparatus using a surface mirror includes a focusing lens (8). It can be obtained by replacing it with an ellipsoidal mirror (8 '"). That is, as shown in FIGS.
  • the first focal point F1 of the ellipsoidal mirror (8 ′ ′′) is positioned at the position of the sub-illumination lens (5 ′) and the illumination target surface (9 )
  • the second focal point F2 of the ellipsoidal mirror (8 ′ ′′) is positioned at the position of the linear imaging region (111).
  • an ellipsoidal mirror (8 ′ ′′) and a deflecting mirror (113) are arranged.
  • the plane mirror (55) is not used, but as shown in FIG. In addition, the plane mirror (55) can be used together with the ellipsoidal mirror (8 "').
  • Example 19 describes another illumination system according to the present invention that can suppress the divergence of a light beam emitted from an illumination device and improve the light utilization rate, with reference to FIGS. 49 and 50. .
  • FIG. 49 is a diagram illustrating an example of a lighting device having a reflection surface on the inner surface.
  • the illuminating device shown in FIG. 49 has a rotating paraboloidal mirror that has a focal point at the position of the LED and the LED and reflects the light emitted from the LED to output it as a substantially parallel light beam (which is emitted from the focal point of the parabolic mirror).
  • a condenser lens (3) which is a cylinder lens array
  • an illumination lens (5) which is a cylinder lens array
  • an integrated lens (5) which is a cylinder lens.
  • the illuminating device shown in FIG. 49 outputs a parallel light beam emitted from the light source (1) as a parallel light beam in the plane shown in FIG.
  • the LED of the light source (1) actually has a certain area or volume, the luminous flux emitted from the position of the LED out of focus of the paraboloidal plane is parallel. It is output as a divergent light beam.
  • FIG. 50 is a diagram showing an example of the relative radiant intensity distribution of the light beam emitted from the LED and reflected by the rotary parabolic mirror.
  • the horizontal axis represents the radiation angle (°) of the light beam emitted from the LED and reflected by the rotating parabolic mirror
  • the vertical axis is emitted from the LED and reflected by the rotating parabolic mirror.
  • the relative radiant intensity distribution of the light beam emitted from the LED force and reflected by the rotating parabolic mirror also depends on the size of the LED and the F value of the rotating parabolic mirror. It has a distribution as shown in For the light source (1) shown in FIG.
  • the relative radiant intensity of light output from the light source (1) at a radiation angle of ⁇ 5 ° is about 50% of the relative radiant intensity of perfectly parallel light.
  • the luminous flux that can be received by the focusing lens (8) is such that the radiation angle from the light source (1) is in the range of 0 ° ⁇ 1 to 2 °. Therefore, in order to use a luminous flux with a radiation angle outside the range of 0 ° ⁇ 1–2 °, the inner wall of the lighting device (9) is made a reflecting surface (56) like the mirror surface of the reflecting plate.
  • the luminous flux divergence from the illumination device (9) is reflected by, for example, the two folding mirrors (112a) and (112b), and a part of the reflected light is reflected.
  • a flare that enters the imaging lens (102) of the reading system may occur.
  • the lighting device as shown in FIG. 49 if one of the inner walls of the lighting device is a non-reflective surface such as a light absorbing plate (instead of the reflective surface), A part of the light emitted from the light source (1) is absorbed by the non-reflecting surface, and the flare light source is emitted from the lighting device.
  • the amount of divergent light that is a cause can be reduced.
  • the upper reflecting surface (56) is left as it is and the lower reflecting surface (56) is replaced with an absorbing surface, the light beam b is emitted, but the light beam is absorbed and is not emitted from the lighting device. As a result, the effect of improving the light utilization rate in the lighting device described above is halved.
  • the illumination device shown in FIG. 49 includes a condensing lens (3 '), a sub-condensing lens (3'), a sub-illuminating lens (5 '), or a relay lens (6).
  • a lighting device including the illumination lens (5 ′) or the relay lens (6) is expected to have the same effect.
  • Example 20 a color image reading apparatus capable of improving the light utilization rate by using a prism will be described with reference to FIGS. 51 to 54.
  • FIG. 51 is a diagram for explaining the illuminance distribution in the imaging region in the sub-scanning direction of the image reading apparatus.
  • FIG. 51 (a) is a diagram for explaining the concept of the illuminance distribution in the imaging region in the sub-scanning direction when the illumination form described so far is incorporated in the image reading apparatus as it is.
  • FIG. 7B is a diagram illustrating the illuminance distribution in the imaging region in the sub-scanning direction of the image reading apparatus according to the present invention.
  • 51 (a) and 51 (b) the horizontal axis represents the relative position in the imaging region in the auxiliary scanning direction of the image reading apparatus, and the vertical axis represents the auxiliary scanning of the image reading apparatus. Represents the relative illuminance at that position in the imaging area in the direction.
  • FIG. 52 is a diagram for explaining a first example of an image reading apparatus using an illumination system including a prism according to the present invention.
  • the illuminance distribution in the imaging region in the sub-scanning direction of the conventional image reading apparatus is a distribution having the maximum illuminance at the intersection of the imaging region and the illumination optical axis, as shown in Fig. 51 (a).
  • the one-dimensional imaging device has one line CCD arranged in three lines in the auxiliary running direction.
  • any one of red (R), green (G), and blue (B) color filters is provided in front of each one-line CCD.
  • the interval between 1-line CCDs is set, for example, by 4 to 8 pixels on the imaging area.
  • the illuminance distribution in the imaging area in the sub-scanning direction of the image reading device is reflected in the amount of light from the imaging area incident on the 1-line CCD corresponding to each color, and the 1-line CC corresponding to each color
  • the amount of light incident on D is proportional to the illuminance at the position in the imaging area corresponding to a 1-line CCD for R, G, or B as shown in Fig. 51 (a).
  • the illuminance at the position in the imaging region corresponding to the 1-line CCD for R or B is relatively lower than the illuminance at the position in the imaging region corresponding to the 1-line CCD for G.
  • the difference in the amount of light between the 1-line CCD for R, G, and B caused by the illuminance distribution in the imaging area generally changes the amplification factor when the signal from the 1-line CCD is electrically processed.
  • each color at the position in the imaging region corresponding to the 1-line CCD for each color is displayed. It is desirable that the relative intensity of the illumination light is maximum.
  • the parabolic mirror (8 ′) and the prism (57) are dispersed by the dispersion effect of the prism (57).
  • Illumination light reflected by a mirror such as an ellipsoidal mirror (8 "') can be dispersed with respect to its wavelength, and the imaging region (111) is irradiated with illumination light dispersed with respect to that wavelength.
  • the illumination light having different wavelengths that is, the combination of the prism (57) and the mirrors such as the parabolic mirror (8 ′) and the ellipsoidal mirror (8 ′ ′′), that is,
  • the illumination light having different colors can be focused at different positions in the imaging region (111), and the illumination light having different colors has the maximum illuminance at different positions in the imaging region (111).
  • R, G, and B illumination light has R, G, and B respectively according to the prism so that it has an approximate maximum illuminance at a position in the imaging region corresponding to the one-line CCD for R, G, and B, respectively.
  • G and B illumination light can be dispersed. That is, as shown in FIG. 51 (b), the relative intensity of the illumination light of each color at the position in the imaging region corresponding to the one-line CCD for each color can be approximately maximized.
  • FIG. 53 is a view for explaining a second example of an image reading apparatus using an illumination system including a prism according to the present invention.
  • a combination of a prism (57) having a mirror surface (57 ′) and a mirror such as a parabolic mirror (8 ′) and an ellipsoidal mirror (8 ′ ′′) is used for color image reading. 53.
  • the illumination light reflected by a mirror such as a parabolic mirror (8 ′) and an ellipsoidal mirror (8 ′ ′′) It enters the prism (57) with 8 ').
  • the illumination light incident on the prism (57) with the mirror surface (8 ') The illumination light is dispersed with respect to the wavelength due to the dispersion effect of the light, and the illumination light dispersed with respect to the wavelength is reflected by the mirror surface (57 ′) of the prism (57) to the imaging region (111).
  • illumination light with different wavelengths that is, illumination light with different colors can be focused at different positions in the imaging region (111), and illumination light with different colors
  • the maximum illuminance is given at different positions in the imaging area (111). As shown in FIG.
  • the prism (57 ′) having the mirror surface (57 ′) for obtaining the required dispersion in the case of using the reflection of the illumination light in the prism (57) having the mirror surface (57 ′) is used.
  • the prism (57) shown in FIGS. 52 and 53 is arranged in the vicinity of the imaging region (111). Therefore, the length of the prism (57) in the main runner direction is almost equal to the length of the imaging area (111) in the main runner direction.
  • FIG. 54 is a view for explaining a third example of an image reading apparatus using an illumination system including a prism according to the present invention.
  • the prism (57) when the prism (57) is arranged in the illumination device or in the vicinity of the exit of the illumination device, the size of the prism in the main scanning direction of the image reading device can be made relatively small.
  • the image reading apparatus is provided with a light beam focusing element such as a focusing lens (8), the illumination light is dispersed by the prism (refraction of the prism) in consideration of the focusing of the illumination light of each color in the light beam focusing element. Rate and apex angle) is required.
  • Example 21 a color image reading apparatus capable of improving the light utilization rate will be described with reference to FIGS. 55 and 56.
  • FIG. 55 and 56 a color image reading apparatus capable of improving the light utilization rate
  • FIG. 55 is a diagram for explaining an example of a color illumination system capable of improving the light utilization rate according to the present invention.
  • Fig. 55 (a) is a top view of the color illumination system
  • Fig. 55 (b) is a front view of the color illumination system
  • Fig. 55 (c) is a side view of the color illumination system.
  • the light source (1) of the color illumination system emits light from a plurality of LEDs and LEDs. It includes a plurality of rotating parabolic mirrors that reflect the emitted light and output it as parallel light. Each LED is located at the focal point of the corresponding parabolic mirror.
  • LEDs with the same emission color are arranged in the direction corresponding to the main scanning direction (71) of the image reader.
  • LEDs of different emission colors are used, for example, red (R) LED, green (G) as shown in FIG.
  • Three color LED, such as LED of blue and blue (B), are arranged.
  • the color illumination system lighting device is connected to the LED of each color in the auxiliary running direction (72) in addition to the light source (1).
  • Sub-condensing lens (3 '), condenser lens (3), illumination lens (5), integrated lens (7), sub-illumination lens (5') Has an integrated lens (7 ').
  • the color illumination system is used for focusing the luminous flux divided by the secondary condenser lens (3 ') on the illumination target surface (9) in the secondary running direction (72).
  • the condenser lens (3), the illumination lens (5) and The integrated lens (7) acts and the color illumination system has the same function as the illumination system shown in FIGS.
  • the focal length is the distance h from the secondary condenser lens (3 ') force to the secondary illumination lens (5').
  • the sub illumination lens (5 ′) is the same as the cylinder lens array of the sub condenser lens (3 ′) (in terms of the shape and number of cylinder lenses).
  • the focal length of the sub-integrating lens (7 ') is the distance g to the sub-integrating lens (7') force focusing lens (8), and the focusing distance of the focusing lens (8) is 1 / (1 / ( b '+ g) + 1 / a'), where a is the distance from the focusing lens (8) to the illumination target surface (9), and b 'is the secondary illumination lens (5' ) Force Distance to the sub-integrated lens (7 ').
  • the combined focal length of the focal length h of the cylinder lens constituting the secondary illumination lens (5 ′) and the focal length g of the secondary integrated lens (7 ′) is the secondary illumination lens (5 ′) of the illumination system shown in FIG. 55, and the action of the focusing lens (8) in the color illumination system shown in FIG. 55 is the same as that of the focusing lens in the illumination system shown in FIG. 45A.
  • the light utilization rate of the color illumination system for LED is similar to that of the illumination system in Figure 45A. However, in the color illumination system shown in FIG.
  • the optical axes of the optical systems for different colors are shifted in the auxiliary scanning direction.
  • the relative intensity of the illumination light of each color can be approximately maximized at different positions on the target surface (9). For example, as shown in FIG. 51 (b), the relative intensity of the illumination light of each color at the position in the imaging region corresponding to the one-line CCD for each color can be approximately maximized. As a result, it is possible to improve the light utilization rate of the color illumination system for all the different colors.
  • the color illumination system shown in FIG. 55 corresponds to the illumination system shown in FIG. 45A, but a color illumination system corresponding to the illumination system shown in FIG. 45B or 45C can also be designed. Furthermore, a color illumination system that does not use the sub-condensing lens (3 ′) can be designed as in the illumination system configuration shown in FIGS. Again, the light utilization of the designed color illumination system for each color LED is similar to the light utilization of the corresponding illumination system in Figure 44, and the color illumination system for the different colors as a whole. The light utilization rate can be improved.
  • the cylinder lens array of the sub-condensing lens (3 ′) and the sub-illuminating lens (5 ′) in the illumination system shown in FIG. 55 is the sub-condensing lens (3 ′) in the illumination system shown in FIG.
  • it has a different effect from the cylinder lens array of the auxiliary illumination lens (5 ′). That is, in the illumination system shown in FIG. 46, the cylinder lens array of the sub condenser lens (3 ′) and the sub illumination lens (5 ′) is configured so as to divide the luminous flux emitted from the light source of one color.
  • a cylinder lens array composed of three cylinder lenses corresponds to a light source of three colors so that one cylinder lens corresponds to a light source of one color.
  • a cylinder lens array of the sub-condensing lens (3 ′) and the sub-illuminating lens (5 ′) is formed.
  • the secondary focusing lens (3 ') forces the distance from the secondary lighting lens (5') to the secondary lighting lens (5 ') to the focusing lens.
  • the ratio g / h of the distance g up to is small. Therefore, the condenser lens (3), the illumination lens (5), and the integrated lens (7) used in the main scanning direction (71) are connected to each other between the sub condenser lens (3 ') and the sub illumination lens (5'). Sandwiched between them.
  • the condenser lens (3), the illumination lens (5), and the integrated lens (7) are not necessarily sandwiched between the secondary condenser lens (3 ') and the secondary illumination lens (5'). There is no need to be
  • FIG. 56 is a diagram for explaining an example of an illumination system having a lens in which a plurality of lens functions are integrated.
  • Fig. 56 (a) is a top view of the illumination system
  • Fig. 56 (b) is a front view of the illumination system.
  • the condenser lens (3) and the sub condenser lens (3 ′) as shown in FIG. 55 are integrated.
  • the illumination lens (5) and the secondary illumination lens (5 ′) are separate cylinder lens arrays, but the illumination lens (5) and the secondary illumination lens (5 ′) may be integrated.
  • individual cylinder lenses (arrays) adjacent to each other can be integrated in the illumination system.
  • an optical element having a shape in which individual cylinder lenses (arrays) are integrated can be obtained using plastic molding.
  • Example 22 an illumination system for improving the illuminance distribution in the main running direction of the image reading apparatus will be described with reference to FIG. 57 and FIG.
  • FIG. 57 is a diagram for explaining the brightness characteristics of an image formed by the imaging lens of the reading system.
  • FIG. 58 is a view for explaining a preferable illuminance distribution in the main running direction of the image reading apparatus.
  • the horizontal axis is the angle ⁇ with respect to the optical axis of the imaging lens
  • the vertical axis is the relative brightness of the image at the angle ⁇ or in the imaging area formed by the imaging lens of the reading system. It represents a preferred relative illuminance (relative intensity).
  • the brightness of the image in the direction of the optical axis of the imaging lens or the illuminance in the imaging area is 1.
  • (I) in Fig. 58 represents the distribution of relative brightness of the image with respect to the angle ⁇ .
  • the linear imaging region (111) in the main scanning direction (71) is arranged perpendicular to the optical axis of the imaging lens (102)
  • the brightness of the image in the imaging region (111) formed by the imaging lens (102) in the main scanning direction (71) generally depends on the characteristics of the imaging lens of the reading system. It decreases as the angle ⁇ from the optical axis direction of (102) increases or according to the directional force from the intersection of the imaging region (111) and the optical axis of the imaging lens (102) to the periphery.
  • the configuration of the illumination system and the image reading apparatus that make the illuminance distribution in the imaging region, that is, the illumination target surface uniform and improve the light utilization rate has been described.
  • the illuminance distribution in the imaging region of the image reading apparatus it is preferable to consider the characteristics of the imaging lens.
  • the focal length of the cylinder lens constituting the condenser lens (3) is set to c, and the focal length of the cylinder lens constituting the illumination lens (5) is set to 1 / (1 / ( By setting a + b) + l / c), the illuminance distribution on the illumination target surface (9) was made uniform. For this reason, the portion affected by the cylindrical aberration (corresponding to the spherical aberration of the spherical lens) of the cylinder lens constituting the condenser lens (3) and the illumination lens (5) with respect to the illumination light has been discarded. The light utilization rate of the lighting system was reduced.
  • the light beam near the optical axis (sub optical axis) of the condenser lens (3) is not significantly affected by the cylindrical aberration of the cylinder lens constituting the condenser lens (3), and the illumination lens It converges on the center of (5), passes through the illumination lens (5), and is evenly irradiated into the illumination target surface (9).
  • the light beam passing through the peripheral portion of the collecting lens (3) is affected by the cylindrical aberration of the cylinder lens constituting the collecting lens (3), and is converged before the illumination lens (5). It is out of the illumination range.
  • the magnification rate of the illumination light beam is several tens of times and is large. I have to.
  • the light beam that passes through the peripheral portion of the condenser lens (3) and is affected by the large cylindrical aberration generated by the cylinder lens constituting the condenser lens (3) is also illuminated by the illumination lens (5).
  • the distribution can be obtained on the illumination target surface (9) (imaging area (11 1)).
  • the distance between the condenser lens (3) and the illumination lens (5) is set to a few percent to a dozen percent of the focal length of the condenser lens (3) and the illumination lens (5).
  • the light beam passing through the peripheral part of the condenser lens (3) can also reach the peripheral part of the illumination target area, and the illuminance in the peripheral part of the illumination target surface (9) It is higher than the illuminance at the center of 9) and has a distribution close to the characteristic of approximately 1 / cos 4 ⁇ .
  • the overall illuminance on the illumination target surface (9) was also improved, and an improvement in illumination efficiency of about 50% was observed compared to the case where the illuminance distribution was made uniform.
  • FIG. 59 is a diagram illustrating an example of an illumination system that does not include a condenser lens according to the present invention.
  • the illumination system in the embodiment described above includes a condenser lens (3).
  • the illumination system force condensing lens (3) can be used. It may be removed. As shown in Fig.
  • the luminous flux emitted from the light source (1) is also illuminated by the illumination lens (5) composed of a plurality of lenses ( The light beam that illuminates 9) and passes through a plurality of lenses included in the illumination lens (5) can be superimposed on the illumination target surface (9) by the integrated lens (7).
  • the plurality of lenses constituting the illumination lens (5) acquire a plurality of light fluxes from the light flux emitted from the light source (1), and the plurality of light fluxes partially on the irradiation target surface (9). It has the effect
  • FIG. 60 is a diagram illustrating an example of an illumination system that does not include an integrated lens according to the present invention.
  • FIG. 60 (a) is a top view of the illumination system that does not include the integrated lens
  • FIG. 60 (b) is a front view of the illumination system that does not include the integrated lens.
  • the light beam emitted from the light source (1) is divided into a plurality of light beams by the condenser lens (3).
  • the divided light beams are irradiated onto the irradiation target surface (9) by the illumination lens (5) and partially overlap on the irradiation target surface (9).
  • the focusing lens (8) has the same action as the plane parallel plate in the plane shown in FIG. 60 (a).
  • the light beam having the size m of the cylinder lens constituting the condenser lens (3) and the illumination lens (5) is M on the irradiation target surface (9). Is expanded to the luminous flux.
  • a plurality of light beams irradiated onto the illumination target surface (9) by the plurality of cylinder lenses constituting the illumination lens (5) are collected on the illumination target surface (9) by the condenser lens (3) and the illumination lens ( 5)
  • the cylinder lens is shifted by the size m and overlaps.
  • the range on the illumination target surface (9) where all of the plurality of light beams applied to the illumination target surface (9) by the plurality of cylinder lenses constituting the illumination lens (5) overlap is illuminated uniformly, and the image It can be a reading target area in the reading device.
  • the reading target area is M-m X (the number of cylinder lenses is 1). Therefore, when the number of cylinder lenses constituting the condenser lens (3) and the illumination lens (5) is small, the reading target area is widened.
  • the size m of the cylinder lens constituting the condenser lens (3) and the illumination lens (5) is about lmm to several mm. Therefore, when the integrated lens is not used, the reading target area is reduced only by a unit of about 1 mm to several mm.
  • the light beam emitted from the light source (1) is converted into a parallel light beam as a condensing lens (3) and an illumination lens (5).
  • the condensing lens (3) and the illumination lens (5) have the same action as the plane-parallel plate in the plane shown in FIG. 60 (b).
  • FIG. 61A is a diagram illustrating an example of an illumination system that uses a cylinder lens array including an odd number of cylinder lenses with respect to one light source.
  • FIG. 61A (a) is a diagram showing the intensity distribution of the light beam emitted from the light source
  • FIG. 61A (b) is a diagram for explaining the illuminance distribution on the illumination target surface.
  • a light beam is emitted from a light source having a diameter D (for example, an LED + collimating lens or mirror) with an intensity distribution as shown in FIG. 61A (a).
  • the luminous flux emitted with the intensity distribution shown in Fig. 61 A (a) passes through the three cylinder lens forces having widths ml, m2, and m3, and the condensing lens (3) and illumination lens (5). To do.
  • the light passing through the cylinder lens ml has an illuminance distribution represented by ml ′ on the illumination target surface (9) as shown in FIG. 61A (b).
  • light passing through the cylinder lens m2 has an illuminance distribution represented by m2 ′ by the illumination target surface (9), and light passing through the cylinder lens m3 is m3 by the illumination target surface (9). It has an illuminance distribution represented by '.
  • the entire light that has passed through the cylinder lenses ml, m2, and m3 is an illuminance distribution that is superimposed on the illumination target surface (9) by the illuminance distribution represented by ml ', m2', and m3 '. Illuminated and a uniform illuminance distribution is obtained over the area to be read M on the illumination target surface (9).
  • FIG. 61B is a diagram illustrating an example of an illumination system that uses a cylinder lens array having an even number of cylinder lens forces for one light source.
  • FIG. 61B (a) is a diagram illustrating the intensity distribution of the light beam emitted from the light source
  • FIG. 61B (b) is a diagram illustrating the illuminance distribution on the illumination target surface.
  • a light beam is emitted from a light source having a diameter D (for example, an LED + collimating lens or a mirror) with an intensity distribution as shown in FIG. 61B (a).
  • the luminous flux emitted with the intensity distribution as shown in Fig. 61 B (a) passes through the condenser lens (3) and the illumination lens (5), which consist of four cylinder lenses with widths ml, m2, m3, and m4. To do.
  • the light passing through the cylinder lens ml has an illuminance distribution represented by ml ′ on the illumination target surface (9) as shown in FIG. 61B (b).
  • light that has passed through the cylinder lens m2 has an illuminance distribution represented by m2 'on the illumination target surface (9), and light that has passed through the cylinder lens m3 is due to m3' on the illumination target surface (9). It has the illuminance distribution expressed and passes through the cylinder lens m4.
  • the light has an illuminance distribution represented by m4 ′ on the illumination target surface (9).
  • the entire light that has passed through the cylinder lenses ml, m2, m3, and m4 is superimposed on the illumination target surface (9) by superimposing the illuminance distributions represented by ml ', m2', m3 ', and m4'. Illumination is performed with the illuminance distribution, and a uniform illuminance distribution is obtained in the range of the reading target area M on the illumination target surface (9).
  • the light beam focusing element is a reflecting mirror such as a focusing lens or a parabolic mirror and an ellipsoidal mirror.
  • a part of other lenses can be replaced with a reflecting mirror. wear.
  • the integrated lens (7) may be a parabolic mirror (in this case, it is necessary to insert a plane mirror that reverses the entire illumination device).
  • a light source other than an LED may be used.
  • the illumination system and the reading system may be provided on a single traveling body.
  • the document can be scanned using the single traveling body and the image of the document can be read.
  • the illumination device, the imaging lens, the one-dimensional reading device, etc. are on a single traveling body, the mass increases compared to the method using two traveling bodies. Although difficult, it is advantageous in that respect because the source of flare is reduced.
  • the present invention can be applied to an image reading apparatus and an image reading method that are included in an image forming apparatus such as a digital PPC and include a reduction optical system that includes a solid-state imaging device, an imaging lens, and an illumination device. it can.
  • the image reading apparatus according to the present invention is also applied to a film scanner, a book original scanner, and the like that read an image from the upper side of the original table. You can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Heads (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)

Abstract

 光源により照明した原稿からの反射光を結像レンズにより撮像素子に結像させ、原稿の画像を一次元に読み取り、これを走査することによって2次元の画像を読み取る画像読取装置は、少なくとも複数のレンズを有する照明レンズと、複数の光束を重畳させる手段とを備えて成り、光源から発する光束を複数に分割し、この分割された複数の光束を原稿面上に重畳させる。光源により照明した原稿からの反射光を結像レンズにより撮像素子に結像させ、原稿の画像を一次元に読み取り、これを走査することによって2次元の画像を読み取る画像読取方法は、光源から発する光束を複数に分割し、この分割された複数の光束を上記原稿面上に重畳させる。画像形成装置には、上記の画像読取装置を搭載した。

Description

明 細 書
照明装置、照明方法、画像読取装置、画像読取方法、画像形成装置及 び画像形成方法
技術分野
[0001] 本発明は、照明装置及び照明方法、画像読取装置及び画像読取方法、並びに画 像形成装置及び画像形成方法に関する。
背景技術
[0002] リフレクタを用いずに原稿面の近傍から離れた光源を用いることによって、低コスト、 フレアの低減による高画質読み取り、又は画像読み取り装置の小型化を達成するこ とができる、画像読取装置が、特許文献 1〜4に開示されている。
[0003] 特許文献 1には、リフレクタを用いずに原稿面の近傍から離れた光源を用いること によって、フレアを低減することができる画像読取装置が、開示されているが、特許文 献 1に開示される画像読取装置は、以下の問題点(1)〜(4)を有する。
[0004] 特許文献 2には、リフレクタを排除することによって、そのコストダウンが達成された 画像読取装置が、開示されているが、特許文献 2に開示される画像読取装置は、同 様に、以下の問題点(1)〜(4)を有する。
[0005] 特許文献 3には、撮像素子及び撮像素子の上下側に配置された光源が、撮像素 子の結像光学系を共用し、光源から放出された光を、原稿面の近傍に設置されたミ ラーを用いて、原稿面の読取位置に照明する画像読取装置が、開示されているが、 特許文献 3に開示される画像読取装置は、以下の問題点(1)及び (4)を有する。
[0006] 特許文献 4には、撮像素子及び光源が、ハーフミラーを用いて、結像光学系を共用 し、原稿面の同一の位置を読み取る及び照明する画像読取装置が、開示されている 、特許文献 4に開示される画像読取装置は、以下の問題点(5)を有する。
[0007] ここで、上記の問題点(1)〜(5)とは、以下のようなものである。
[0008] (1)読取用の光軸及び照明用の光軸が、ほぼ同一であり原稿面に対して垂直であ るため、原稿の光沢によって、読み取り値が変化してしまう。 (少なくとも、原稿面の法 線に対するこれらの光軸の角度は、規定されていない。 ) (2)光源が、原稿面力 遠く離れているため、原稿面での必要な照明光量を得るた めには、強力な光源又はレンズなどのような集光器が、必要となり、コストアップの要 因となる。また、光源に必要な電力も増加する。
[0009] (3)光源を結像レンズの下などに配置すると、画像読取装置の高さ方向の寸法を 増加させることになり、リフレクタ等の排除による画像読取装置の小型化を無効にして しまう。
[0010] (4)照明用の光軸が、読取用の光軸に完全には一致しないので、原稿に生じる浮 き部分及びブック原稿の中央部における浮き部分などの読み取りにおいて、照明光 が不足する。
[0011] 特に、特許文献 1及び特許文献 2に開示される画像読取装置においては、第一及 び第二のキャリッジを走行させることによって、二次元の原稿画像を読み取る際、第 一及び第二のキャリッジのミラーの配置力 原稿の走査に従って、継続的に変化する ので、原稿面に到達する照明光の位置が変動する。その結果、読取画像の明るさが 変動し、高品位な画像読み取りを行うことができない。
[0012] (5)ハーフミラーの使用は、画像読取装置のコストアップにつながる。また、光源か ら放出された照明光が、ハーフミラーで反射されるとき、及び、原稿面から反射された 光が、ハーフミラーを透過するとき、光量が、 1/2倍に減少する。その結果、光源か ら放出された光の 1/4倍である有効照明光量しか最終的に得られず、光源のエネ ルギーロスは、増加する。さらに、ハーフミラーからレンズ方向に射出された照明光が 、不可避的に、レンズ表面で反射して撮像素子に入射するため、フレアが、常時、発 生する。その結果、画像読み取りについて十分な SN比を得ることが困難である。
[0013] 上述したように、特許文献:!〜 4に開示される画像読取装置においては、光源から 放出される光量の利用率が、著しく低い。
[0014] また、特許文献 5には、プロジェクタ用の照明装置が開示されているが、特許文献 5 に開示される照明装置は、基本的には面を照射するものであって、ラインを効率よく 照射するための方法は、開示されていない。また、特許文献 5には、画像読取装置へ のその照明装置の適用方法についても開示されていない。
[0015] ここで、一般的な画像読取装置の例を、図 1〜図 4を参照して、説明する。 [0016] 図 1 (a)及び (b)は、それぞれ、一般的な画像読取装置の概略図及びその副走査 方向における画像読取装置の断面図である。
[0017] 画像読取装置(100)におレ、ては、原稿(107)は、コンタクトガラス(108)上に置か れ、ランプ(109)からの光及び該ランプ(109)力、らの光を受けたリフレクタ(110)力 の反射光が、原稿(107)の撮像領域(111)に照射される。その反射光が、第 1走行 体(103)内の変向ミラー(113)、第 2走行体(104)内の折り返しミラー A (112a)及 び折返しミラー B (112b)で反射されて、結像レンズ(102)によって 1次元撮像素子( 101)に結像させられる。このようにして、上記 1次元撮像素子(101)は、ライン状の 撮像領域(111)の 1次元的な画像を取得する。 1次元撮像素子(101)においてこの 1次元的な画像を取得する方向を主走查方向と呼ぶ。
[0018] また、この画像読取装置(100)では、上記第 1走行体(103)及び上記第 2走行体(
104)が、モータ(105)による駆動力を、駆動伝達手段(106)を通じて受け、第 1走 行体(103)は、第 2走行体(104)の速度の 2倍である速度で走行する。その結果、コ ンタクトガラス(108)面に対する結像レンズ(102)の結像位置が、 1次元撮像素子(1 01)面に維持されつつ、光力 コンタクトガラス(108)面において、ライン状の撮像領 域(111)と垂直な方向に且つコンタクトガラス(108)と平行に、走行する。このように して、コンタクトガラス(108)上に置かれた原稿(107)の画像を、 1次元撮像素子(1 01)にて順次読み出して、 2次元に取得する。なお、上記第 1走行体(103)及び上 記第 2走行体(104)が走行する方向を、副走査方向と呼ぶ。
[0019] 通常、撮像素子として 1次元 CCDが用いられ、結像レンズ(102)は、コンタクトガラ ス(108)の面上の画像を縮小して、その縮小された画像を 1次元撮像素子(101)上 に結像する。
[0020] また、上記第 1走行体(103)及び上記第 2走行体(104)の走行速度の比は、 2 : 1 に設定されるので、第 2走行体(104)の移動距離は、第 1走行体(103)の移動距離 の半分であり、撮像領域( 111 )から結像レンズ( 102 )又は 1次元撮像素子( 101 )ま での距離は、第 1走行体(103)及び第 2走行体(104)の位置によらず、一定である。
[0021] 通常、スキャナの画像解像度は、 DPI (ドット Zinch)で表され、デジタル PPCに搭 載されるスキャナの画像解像度は、しばしば、 400〜600DPIである。一方、力ラース キヤナでは、 R (赤色)、 G (緑色)及び B (青色)の光のスペクトルに感度を有する三個 の CCDを用いており、それらの CCD力も原稿までの光路長を共通にしている。しか しな力 Sら、(赤色)、 G (緑色)及び B (青色)用の 3ラインの CCDを副走査方向に配置 した 3ライン CCDを撮像素子として用いることもある。この場合、各画素列の間の距離 は、 CCD画素の主走查読取領域の 4〜8ドット程度であり、各画素列は、必ずしも一 体化されてない。よって、 3ライン CCDを上記画像読取装置の撮像素子として用いた 場合、 RGBの CCD画素のそれぞれに対応する原稿の読取位置は、副走查方向で 異なるため、原稿を照明する光を、それぞれの色に対応する読取位置に照射する必 要がある。
[0022] 図 2は、別のタイプの画像読取装置の概略図である。
[0023] 図 2に示されている別のタイプの画像読取装置では、縮小光学系が、撮像素子(20 1)と結像レンズ(202)を含み、撮像素子(201)又は結像レンズ (202)と原稿(204) との間にミラーのような光学系を用いることなぐ原稿台(203)上に原稿(204)が置 かれ、その原稿(204)の画像が読み取られる。このような画像読取装置にも本発明 を適用することができる。図 2に示す画像読取装置において、撮像素子(201)として 1次元 CCDを用いた場合、原稿台(203)上の原稿(204)を一方向に走査する又は 結像レンズ (202)及び撮像素子(201)のユニットを一方向に走行させることによって 、原稿(204)の 2次元画像を読み取ることができる。このような画像読取装置におい ては、照明光として自然光 (室内光)を用いること、又は、原稿台(203)上を均一に照 明する光源を設置することが、一般的である。ただし、自然光を用いた場合、 自然光 の光量が、不安定であり、原稿(204)における自然光の照度もしばしば低いため、原 稿(204)の画像を、高画質で読み取ることができなレ、こともある。
[0024] 次に、一般的な画像読取装置における問題点(1)〜(5)を説明する。
[0025] (1)画像読取装置における省エネルギーについて
画像読取装置としてのスキャナにおいて、最も大きい消費電力を備えた構成要素 は、照明ランプである。特に、画像読取速度が、増加するほど、 CCDの電荷蓄積時 間が、短くなる。その結果、高輝度の照明ランプが必要になり、スキャナの消費電力 力 大きくなる。 [0026] 従来、より高い発光効率を備えたランプを得るために、光源を、ハロゲンランプから キセノンランプへ、さらに LEDへ替えてきた。
[0027] 図 3は、画像読取装置における照明領域と読取領域との間の関係を説明する図で ある。図 3において、画像読取装置としてのスキャナ(300)の照明領域(305)及び読 取領域(302)の関係を示すように、現状では、原稿(301)面上での CCDによって読 み取られる読取領域(302)に対して、光源(303)からの照明光(304)による照明領 域(305)は、はるかに広い。例えば、 600dpiのスキャナにおいては、原稿(301)の 画像の読み取りに必要な照明の幅は、 42. 3 z mであるのに対して、実際には、 20 mm程度の幅を照明している。よって、それらの幅を比較することによって得られる単 純な光のエネルギー効率は、 0. 5%程度しかない。すなわち、残りの約 99. 5%の光 は、無駄なエネルギーということになる。
[0028] (2)画像読取装置の小型化 (薄型化)について
画像読取装置としてのスキャナの小型化については、スキャナの厚さを減少する努 力がなされてきた。縮小光学系において、第 1走行体及び第 2走行体を有するスキヤ ナでは、特に、第 1走行体に含まれるランプ及びリフレクタが、第 1走行体のレイアウト についての最も問題となる制約条件であり、スキャナの薄型化を阻害してきた。特に、 スキャナを含むデジタル PPC (普通紙コピア)においては、内蔵されたプリンタのサイ ズ力 大きいと、スキャナの原稿面の高さ力 増加し、身長の低い人にとっては、原稿 を置く操作などが、面倒になるという問題も発生する。
[0029] (3)画像読取装置の低コストィヒについて
画像読取装置としてのスキャナのコストに大きく影響する構成要素として、 CCD及 び結像レンズが、挙げられる力 これらに準じる構成要素として、照明ランプ及びその 付随品が、挙げられる。特に、キセノンランプなどは、高電圧を必要とするため、パヮ 一パックが、必要である。また、第 1走行体にランプを設けるため、フレキシブルな電 源ラインも必要である。
[0030] (4)フレアについて
画像読取装置としてのスキャナには、照明装置が内蔵されており、一般的なスキヤ ナでは、原稿の画像をライン状に読み取り、且つ、原稿の画像を読み取るラインを走 查することによって、原稿の 2次元の画像を読み取つている(このような読み取りを、線 順次画像読み取りという。特に、読み取りライン方向の走査を、主走査と呼び、該主 走査に垂直で原稿面に平行な方向の走査を副走査と呼ぶ)。その際、フレアが発生 することがある。
[0031] 図 4は、画像読取装置における照明の状態及びその画像読取装置において発生 するフレアを説明する図である。
[0032] 光源 (401)として蛍光管を用いた画像読取装置 (400)において、光源 (蛍光管) ( 401)力 の照明光(402)力 直接又はリフレクタ(404)を経由して、原稿面(403) に照射される。原稿面 (403)に照射された光は、原稿面 (403)から反射され、光源( 401)の開口部(406)を通って光源 (401)の蛍光面 (407)に到達する。次に、蛍光 面 (407)に到達した光は、蛍光面 (407)で反射され、再度原稿面 (403)を照明する 再照明光 (405)になり、フレアが発生する(照明装置力 原稿面に到達する照明光 を 1次照明光とする。また、原稿面で反射して再度原稿面を照明する光を 2次照明光 とする)。
[0033] このようなフレアが発生すると、均一な濃度の画像を有する原稿の画像を読み取つ ても、原稿の読取領域の周辺における原稿濃度の差によって、スキャナによって読み 取られる画像信号が変化する。この変化が発生する理由は、 1次照明光が、原稿面 力 反射される際に、原稿の画像の濃度によって反射光量が、変化するため、 1次照 明光と 2次照明光の合計である照明光量が原稿濃度によって変化してしまうことであ る。特に、フレアは、原稿において急激に変化する濃度を備えた画像の部分で顕著 に発生する。
[0034] 図 5は、フレアが発生した画像読取装置で読み取られた画像の例を示す図である。
図 5においては、黒パターン(501)の間に挟まれた境界部分(502)が、白パターン( 503)と比べて、より喑ぃ領域として、読み取られている。原稿の画像の白パターンの 濃度は、均一であるため、境界部分(502)についての読取画像の品質は、明らかに 低いものである(理想的には、境界部分(502)と白パターン(503)は、同じ明るさを 有するはずである)。これは、黒パターン(501)の間における領域である境界部分(5 02)をスキャナによって読み取る際、境界部分(502)の両側が、黒いため、 2次照明 光力 白パターンの読み取りの場合と比較して、相対的に減少するためである。
[0035] 一般に、スキャナは、原稿における低い反射率を備えた領域を、暗い画像として読 み取り、原稿における高い反射率を備えた領域を、明るい画像として読み取る。すな わち、黒文字画像を備えた原稿を読み取るとき、その文字内の白い部分が、読み取 り画像においては、比較的暗くなり、結果的に、画像のコントラストが低下して、文字 の読み取りが困難になることもある。これは、 2次照明光が、基本的には、照明光が反 射された位置の周辺における原稿面を再照明しており、(白黒パターンの境界部など のような)急激な濃度変化を備えた部分で 2次照明光の光量の変化が大きいためで ある。
[0036] よって、スキャナの設計段階においては、原稿面で反射した 2次照明光が、再度原 稿を照明しないように、光学部品を黒色に塗装したり、光学部品のレイアウトを適宜 調整している。し力、しながら、 2次照明光による再照明を完全には除去することはでき ないため、フレアは、読取画像品質についての課題となっていた。特に、文字の周辺 の部分が、急激に暗くなり、コピー画像などで地汚れが発生して、画像品質が極端に 低下することがあった。
[0037] (5)ブック原稿影について
図 6は、ブック原稿から画像を読み取る場合に発生する影を説明する図である。図 6に示すように、ブック原稿(601)をコンタクトガラス(602)上に置いて、ブック原稿(6 01)の画像を読み取る場合、図 6に示すように、ブック原稿(601)の中央部分(603) 、コンタクトガラス(602)の面より上に浮いてしまう。このようなブック原稿(601)を、 通常の照明光学系を備えた画像読取装置によって読み取ると、撮像素子の画素に 対応する読取位置(604)に照明光(605)が到達せず、読取画像が暗くなるという問 題が生じる。
[0038] よって、画像読取装置について、光源から放出された光で原稿面を照明する照明 系の構成及び配置を適切に設計することによって、光の利用率を向上させて省エネ ルギーを達成すること、画像読取装置を薄型化して小型化すること、画像読取装置を 低コスト化すること、フレアを低減すること及びブック原稿の影を防止することによって 高画質化を達成すること、並びに、照明対象面の照度むらを低減することが、望まれ る。
特許文献 1 :特開 2000— 253213号公報
特許文献 2:特開 2000— 250146号公報
特許文献 3:特開平 10— 190990号公報
特許文献 4 :特開平 9一 51405号公報
特許文献 5:特開 2003— 280094号公報
発明の開示
発明が解決しょうとする課題
[0039] 本発明の目的は、光の利用率を向上させた、照明装置及び照明方法、画像読取 装置及び画像読取方法、並びに画像形成装置及び画像形成方法を提供することで ある。
課題を解決するための手段
[0040] 本発明の第一の態様は、光源により照明した原稿からの反射光を結像レンズにより 撮像素子に結像させ、該原稿の画像を一次元に読み取り、これを走査することによつ て 2次元の画像を読み取る画像読取装置であって、少なくとも複数のレンズを有する 照明レンズと、複数の光束を重畳させる手段とを備えて成り、上記光源から発する光 束を複数に分割し、この分割された複数の光束を上記原稿面上に重畳させることを 特徴とする画像読取装置である。
[0041] 本発明の第二の態様は、光源により照明した原稿からの反射光を結像レンズにより 撮像素子に結像させ、該原稿の画像を一次元に読み取り、これを走査することによつ て 2次元の画像を読み取る画像読取方法において、上記光源から発する光束を複数 に分割し、この分割された複数の光束を上記原稿面上に重畳させることを特徴とする 画像読取方法である。
[0042] 本発明の第三の態様は、本発明の第一の態様である画像読取装置を搭載したこと を特徴とする画像形成装置である。
[0043] 本発明の第四の態様は、光源から放出された光を対象に照明する照明装置にお いて、少なくとも一つの面内において、光源から放出された光から複数の光束を取得 し、該複数の光束を該対象に照明する少なくとも一つの光束照明素子を含むことを 特徴とする照明装置である。
[0044] 本発明の第五の態様は、光源から放出された光を対象に照明する照明方法にお いて、少なくとも一つの面内において、光源から放出された光から複数の光束を取得 し、該複数の光束を該対象に照明することを含むことを特徴とする照明方法である。
[0045] 本発明の第六の態様は、画像を備えた原稿に光源から放出された光を照明し、該 原稿から反射された光を取得して該画像を読み取る画像読取装置において、本発 明の第四の態様である照明装置を含むことを特徴とする画像読取装置である。
[0046] 本発明の第七の態様は、画像を備えた原稿に光源から放出された光を照明し、該 原稿から反射された光を取得して該画像を読み取る画像読取方法において、本発 明の第五の態様である照明方法を用いて、画像を備えた原稿に光源から放出された 光を照明することを特徴とする画像読取方法である。
[0047] 本発明の第八の態様は、画像を備えた原稿の画像を読み取り、画像が形成される 媒体に、該原稿の画像を形成する画像形成装置において、本発明の第六の態様で ある画像読取装置を含むことを特徴とする画像形成装置である。
[0048] 本発明の第九の態様は、画像を備えた原稿の画像を読み取り、画像が形成される 媒体に、該原稿の画像を形成する画像形成方法において、本発明の第七の態様で ある画像読取方法を用いて、画像を備えた原稿の画像を読み取ることを特徴とする 画像形成方法である。
発明の効果
[0049] 本発明によれば、光の利用率を向上させた、照明装置及び照明方法、画像読取装 置及び画像読取方法、並びに画像形成装置及び画像形成方法を提供することがで きる。
図面の簡単な説明
[0050] [図 1] (a)及び (b)は、それぞれ、一般的な画像読取装置の概略図及びその副走査 方向における画像読取装置の断面図である。
[図 2]別のタイプの画像読取装置の概略図である。
[図 3]画像読取装置における照明領域と読取領域との間の関係を説明する図である [図 4]画像読取装置における照明の状態及びその画像読取装置において発生する フレアを説明する図である。
園 5]フレアが発生した画像読取装置で読み取られた画像の例を示す図である。 園 6]ブック原稿から画像を読み取る場合に発生する影を説明する図である。
園 7]本発明による画像読取装置の実施例 1における照明系の基本的概念を説明す る図であり、 (a)は、照明系の上面図であり、(b)は、照明系の正面図である。
園 8A]シリンダレンズアレイの形態を示す図である。
[図 8B]シリンダレンズの一例を示す図である。
[図 8C]シリンダレンズの別の例を示す図である。
[図 9A]実施例 1においてシリンダレンズの数力 光源の LEDの数よりも一つだけ少な い例を示す図である。
[図 9B]実施例 1においてシリンダレンズの数力 光源の LEDの数よりも一つだけ多い 例を示す図である。
園 10]実施例 1における照明対象面での照明分布を説明する図であり、(a)は、シリ ンダレンズの数が、光源の LEDの数に一致する例を示す図であり、(b)は、シリンダ レンズの数が、光源の LEDの数よりも一つだけ少ない例を示す図であり、(c)は、シリ ンダレンズの数が、光源の LEDの数よりも一つだけ多い例を示す図である。
園 11]実施例 1において三色の LEDを用いる、より実用的な照明系を説明する図で あり、(a)は、その照明系の上面図であり、(b)は、その照明系の正面図であり、(c)は 、その照明系の側面図である。
園 12]本発明による画像読取装置の実施例 2における照明系の第一の例を説明する 図であり、(a)は、照明系の第一の例の上面図であり、(b)は、照明系の第一の例の 正面図である。
園 13]本発明による画像読取装置の実施例 2における照明系の第二の例を説明する 図であり、(a)は、照明系の第二の例の上面図であり、(b)は、照明系の第二の例の 正面図である。
園 14]実施例 2において三色の LEDを用いる、照明系を説明する図であり、 (a)は、 その照明系の上面図であり、(b)は、その照明系の正面図であり、(c)は、その照明 系の側面図である。
園 15]本発明による画像読取装置の実施例 3における照明系を説明する図であり、 ( a)は、照明系の上面図であり、 (b)は、光源に放物面鏡を用いた照明系の正面図で あり、(c)は、光源に楕円面鏡を用いた照明系の正面図である。
園 16]直線状の発光体から放出される光束の放射ベクトル及びレンズによる光束の 放射ベクトルの取り込みを説明する図であり、(a)は、発光体から均等に放出される 光束の放射ベクトルの強度分布を示す図であり、(b)は、発光体の光軸方向により多 く放出される光束の放射ベクトルの強度分布を示す図であり、(c)は、照明レンズで 取り込まれる放射ベクトルを説明する図であり、(d)は、集光レンズで取り込むまれる 放射ベクトルを説明する図である。
園 17]本発明による画像読取装置の実施例 4における光源としての蛍光管を説明す る図である。
園 18]本発明による画像読取装置の実施例 4における第一の照明系を説明する図で あり、(a)は、第一の照明系の上面図であり、(b)は、第一の照明系の正面図であり、 (c)は、光源としての蛍光管の発光強度分布を示す図である。
園 19]本発明による画像読取装置の実施例 4における第二の照明系を説明する図で あり、(a)は、第二の照明系の上面図であり、(b)は、第二の照明系の正面図である。 園 20]本発明による画像読取装置の実施例 5における照明系の第一の例を説明する 図であり、(a)は、照明系の第一の例の上面図であり、(b)は、照明系の第一の例の 正面図である。
園 21]本発明による画像読取装置の実施例 5における照明系の第二の例を説明する 図であり、(a)は、照明系の第二の例の上面図であり、(b)は、照明系の第二の例の 正面図である。
[図 22]本発明による画像読取装置の実施例 6における照明系の例を説明する図であ り、(a)は、照明系の例の上面図であり、(b)は、照明系の例の正面図である。
園 23]本発明による画像読取装置の実施例 7における第一の照明系を説明する図で あり、(a)は、第一の照明系の上面図であり、(b)は、第一の照明系の正面図である。 園 24]本発明による画像読取装置の実施例 7における第二の照明系を説明する図で あり、(a)は、第二の照明系の上面図であり、(b)は、第二の照明系の正面図である。 園 25A]直線状に配置された複数の LED及び LEDから発散された光を平行光に変 換する反射鏡を有する光源を説明する図であり、(a)は、その光源の側面図であり、 ( b)は、その光 ¾gの上面図である。
[図 25B]回転放物面鏡に対する LEDペレットの配置及び LEDペレットから放出される 光束の放射ベクトルを説明する図である。
園 26]二次元的に配置された複数の LED及び LEDから発散された光を平行光に変 換する反射鏡を有する光源を説明する図であり、(a)は、その光源の側面図であり、 ( b)は、その光 ¾gの上面図であり、(c)は、その光 の正面図である。
[図 27]—体化された照明系及び読取系を用いる、実施例 9の画像読取装置の上面 図である。
[図 28]—体化された照明系及び読取系を用いる、実施例 9の画像読取装置の正面 図である。
[図 29]図 1 (a)及び (b)に示す画像読取装置に対応する、図 27及び図 28に示した画 像読取装置を説明する図である。
園 30]画像読取装置におけるフレアの発生を説明する図である。
園 31]読取用の光を反射するエリアの周辺部分が折り曲げられた変向ミラーを用いる 画像読取装置の例を示す図である。
園 32]本発明による、より高い光利用を備えた照明系の例を説明する図であり、 (a) は、実施例 11における第一又は第二の照明系の上面図であり、(b)は、実施例 11に おける第一の照明系の正面図であり、(c)は、実施例 11における第二の照明系の正 面図である。
[図 33]集束レンズを有し且つ統合レンズの周辺部分を用いる照明系の例を説明する 図であり、(a)は、その照明系の例の上面図であり、(b)は、その照明系の例の正面 図である。
園 34]本発明による照明系に用いることができるシリンダレンズの形状を示す図であ る。
[図 35]—体化された、集束レンズを含む照明系及び読取系を用いる画像読取装置 の例を説明する図である。
[図 36]光束集束素子としての放物面鏡を有し且つ統合レンズの周辺部分を用いる照 明系及び読取系を用いる画像読み取り装置の例を説明する図である。
園 37]光束集束素子として用いることができる放物面鏡の形状を示す図である。
[図 38]光束集束素子としての放物面鏡及び補正レンズを有し且つ統合レンズの周辺 部分を用いる照明系並びに読取系を用いる画像読み取り装置の例を説明する図で ある。
[図 39A]照明装置を結像レンズの上側に配置した画像読取装置の例を説明する図で ある。
[図 39B]照明装置を結像レンズの下側に配置した画像読取装置の例を説明する図で ある。
園 40A]上側の折り返しミラーを二つの折り返しミラーに分割すると共に読取光軸を下 側に配置し照明光軸を上側に配置する例を示す図である。
園 40B]下側の折り返しミラーを二つの折り返しミラーに分割すると共に読取光軸を下 側に配置し照明光軸を上側に配置する例を示す図である。
園 40C]下側の折り返しミラーを二つの折り返しミラーに分割すると共に読取光軸を上 側に配置し照明光軸を下側に配置する例を示す図である。
園 40D]上側及び下側の折り返しミラーをそれぞれ二つの折り返しミラーに分割する と共に読取光軸を内側に配置し照明光軸を外側に配置する例を示す図である。 園 41]画像読取装置内に付着した塵又は埃によるフレアを低減することができる画像 読取装置の例を説明する図である。
園 42]照明系力 発散する発散光によって生じるフレアを低減することができる画像 読取装置の例を説明する図である。
園 43]本発明による集束レンズ及びリレーレンズを含む照明系の例を説明する図で ある。
園 44A]本発明による集束レンズ及び副照明レンズを含む照明系の第一の例を説明 する図である。
園 44B]本発明による集束レンズ及び副照明レンズを含む照明系の第二の例を説明 する図である。
園 44C]本発明による集束レンズ及び副照明レンズを含む照明系の第三の例を説明 する図である。
[図 45A]本発明による集束レンズ、副照明レンズ及び副集光レンズを含む照明系の 第一の例を説明する図である。
園 45B]本発明による集束レンズ、副照明レンズ及び副集光レンズを含む照明系の 第二の例を説明する図である。
園 45C]本発明による集束レンズ、副照明レンズ及び副集光レンズを含む照明系の 第三の例を説明する図である。
[図 46A]本発明による集束レンズ、副照明レンズアレイ及び副集光レンズアレイを含 む照明系の第一の例を説明する図である。
園 46B]本発明による集束レンズ、副照明レンズアレイ及び副集光レンズアレイを含 む照明系の第二の例を説明する図である。
[図 47]光束集束素子として放物面鏡を用いる画像読取装置の例を説明する図である
[図 48]光束集束素子として楕円面鏡を用いる画像読取装置の例を説明する図である 園 49]内面に反射面を有する照明装置の例を説明する図である。
園 50]LEDから放出されると共に回転放物面鏡で反射される光束の相対放射強度 分布の例を示す図である。
[図 51]画像読取装置の副走査方向における撮像領域での照度分布を説明する図で あり、(a)は、従来の像読取装置の副走査方向における撮像領域での照度分布を説 明する図であり、 (b)は、本発明による像読取装置の副走査方向における撮像領域 での照度分布を説明する図である。
園 52]本発明によるプリズムを含む照明系を用いる画像読取装置の第一の例を説明 する図である。
園 53]本発明によるプリズムを含む照明系を用いる画像読取装置の第二の例を説明 する図である。 園 54]本発明によるプリズムを含む照明系を用いる画像読取装置の第三の例を説明 する図である。
園 55]本発明による光利用率を向上させることができるカラー照明系の例を説明する 図であり、(a)は、カラー照明系の上面図であり、(b)は、カラー照明系の正面図であ り、(c)は、カラー照明系の光源の図である。
園 56]複数のレンズ機能を一体化したレンズを有する照明系の例を説明する図であ り、(a)は、その照明系の上面図であり、(b)は、その照明系の正面図である。
園 57]読取系の結像レンズによって撮像された像の明るさの特性を説明する図であ る。
園 58]画像読取装置の主走查方向における好適な照度分布を説明する図である。 園 59]本発明による、集光レンズを含まない照明系の例を説明する図である。
園 60]本発明による、統合レンズを含まない照明系の例を説明する図であり、(a)は、 統合レンズを含まない照明系の上面図であり、(b)は、統合レンズを含まない照明系 の正面図である。
[図 61A]—つの光源に対して奇数個のシリンダレンズからなるシリンダレンズアレイを 用いる照明系の例を説明する図であり、(a)は、光源のから放出される光束の強度分 布を表す図であり、(b)は、照明対象面における照度分布を説明する図である。
[図 61B]—つの光源に対して偶数個のシリンダレンズからなるシリンダレンズアレイを 用いる照明系の例を説明する図であり、(a)は、光源のから放出される光束の強度分 布を表す図であり、(b)は、照明対象面における照度分布を説明する図である。 符号の説明
(図:!〜 29)
la〜: Is 光源
2h, 2k, 2r, 2s 放物面鏡
2h', 2m 楕円面鏡
3a〜3s 集光レンズ
4k, 4m カバー
5a〜5q 照明レンズ 7a〜7k, 7n~7q 統合レンズ
9a, 9c!〜 9h, 9h', 9k〜9q 照明対象面 14 ガラス管
15 開口部
16 蛍光剤
17 反射膜
18 電極部
20 電気導線
21 LEDペレット
25 原稿
26 コンタクトガラス
27, 35 撮像素子
28, 36 結像レンズ
30, 30', 40 照明装置
31, 41 光源
32, 42 照明レンズ
33, 43 統合レンズ
37 読取光軸
38 照明光軸
44 折り返しミラー
45 原稿面
46 法線
47 光軸
48 正反射光軸
(図 30〜63)
1 光源
3 集光レンズ
3' 副集光レンズ " 副集光レンズアレイ
照明レンズ
' 副照明レンズ
" 副照明レンズアレイ
リレ一レンズ
統合レンズ
' 副統合レンズ
集束レンズ
' 放物面鏡
'a 放物面鏡の使用範囲
" ネ甫正レンズ
"' 楕円面鏡
照明対象面
7 読取光軸
8 照明光軸
8a 平面鏡を用いる場合の照明光軸8b 平面鏡を用いない場合の照明光軸8c プリズムを用いる場合の照明光軸8d プリズムを用いない場合の照明光軸0 照明装置
8 正反射光軸
9 正反射光の範囲
1 塵及び Z又は埃
2 散乱光
3 遮光板
4 発散光
5 平面鏡
6 反射面 57 プリズム
57' 鏡面
60 読取対象領域
61 主光軸
62 副光軸
71 主走查方向
72 副走查方向
発明を実施するための最良の形態
[0052] 次に、本発明の実施の形態を図面と共に説明する。
[0053] (1)本発明の第一の実施形態は、光源により照明した原稿からの反射光を結像レ ンズにより撮像素子に結像させ、該原稿の画像を一次元に読み取り、これを走査する ことによって 2次元の画像を読み取る画像読取装置であって、少なくとも複数のレンズ を有する照明レンズと、複数の光束を重畳させる手段とを備えて成り、上記光源から 発する光束を複数に分割し、この分割された複数の光束を上記原稿面上に重畳させ る。
[0054] 本発明の第一の実施形態によれば、照明レンズにより光源から発する光束を複数 に分割し、複数の光束を重畳させる手段によって上記分割された複数の光束を原稿 面上に重畳させることができるので、例えば LED、 LD、フィラメント、蛍光灯、放電灯 などのような、いずれの光源を用いても、光源から発する光を有効に利用することが できる。特に、照明効率を高くすることができ、照度分布を均一化することができる。 その結果、投入電力を少なくすることが可能となる。
[0055] (2)本発明の第一の実施形態による画像読取装置において、好ましくは、上記照 明レンズと同数のレンズを有する集光レンズを、上記光源と照明レンズとの間に揷入 して成り、上記光源から発する光束を複数に分割して上記照明レンズに効率よく与え る。
[0056] この場合には、光源から発する光束を集光レンズにより主走査方向に分割して集光 させ、照明レンズの個別のレンズ (シリンダレンズ)に対して切り出した光束を全部透 過させるようにしている。 [0057] (3)本発明の第一の実施形態による画像読取装置において、好ましくは、上記照 明レンズは、上記光源から発する光束を主走査方向に複数分割するように配置して 成り、主走査方向に直交する方向には分割しなレ、ようにした。
[0058] (4)本発明の第一の実施形態による画像読取装置において、好ましくは、上記光 源が複数の光源から成り、光束を分割する方向での光源の数と、光束を分割する数 とを不一致とした。
[0059] 光源の数と光束を分割する数とを不一致にすることにより、それぞれの分割された 光束の重なりによって照度が平均化され、極めて少ない照度むらの照明が可能とな る。この場合には、光源として、 LEDや LDのような点光源に近い複数個の光源を用 レ、ても、照度むらを殆ど生ずることなぐ原稿面を均一に照射することができる。
[0060] (5)本発明の第一の実施形態による画像読取装置において、好ましくは、上記光 源が複数の光源から成り、光束を分割する方向に複数の光源を配置し、該光束を分 割する方向に直交する方向には、上記複数の光源の光束の分布を補完するように更 に光源を配置した。
[0061] この場合には、光源として、 LEDや LDのような点光源に近い複数個の光源を用い ても、照度むらを殆ど生ずることなぐ原稿面を均一に照射することができる。
[0062] (6)本発明の第一の実施形態による画像読取装置において、好ましくは、上記光 源が複数の光源から成り、上記それぞれの光源からの光束を略平行光とした後、上 記照明レンズにより光束を複数に分割する。
この場合には、光源として、 LEDや LDのような点光源に近い複数個の光源を用い ても、照度むらを殆ど生ずることなぐ原稿面を均一に照射することができる。
[0063] (7)本発明の第一の実施形態による画像読取装置において、好ましくは、上記光 源に LEDを用いた。
[0064] この場合には、光源として、 LEDのような点光源に近い複数個の光源を用いても、 照度むらを殆ど生ずることなぐ原稿面を均一に照射することができる。
[0065] (8)本発明の第一の実施形態による画像読取装置において、好ましくは、上記複 数の光束を原稿面上に重畳させる手段として、統合レンズを用いた。
[0066] (9)本発明の第一の実施形態による画像読取装置において、好ましくは、上記複 数の光束を原稿面上に重畳させる手段として、楕円面鏡を用いた。
[0067] (10)本発明の第一の実施形態による画像読取装置において、好ましくは、上記光 源としてフィラメントを線状に配置した。
[0068] この場合には、光源が、フィラメントのような線状光源及び蛍光灯のような面状光源 のような、発光分布に部分的にむらがある不均一な光源であっても、照度むらを殆ど 生じることなぐ原稿面を均一に照射することができる。よって、種々の光源を用いるこ とができ、光源の低価格化が可能である。
[0069] (11)本発明の第一の実施形態による画像読取装置において、好ましくは、上記光 源として帯状の発光体を用いた。
[0070] この場合には、光源が、フィラメントのような線状光源及び蛍光灯のような面状光源 のような、発光分布に部分的にむらがある不均一な光源であっても、照度むらを殆ど 生じることなぐ原稿面を均一に照射することができる。よって、種々の光源を用いるこ とができ、光源の低価格化が可能である。
[0071] (12)本発明の第一の実施形態による画像読取装置において、好ましくは、上記光 源として放電灯を用いた。
[0072] (13)本発明の第一の実施形態による画像読取装置において、好ましくは、主走査 方向における照明対象面(コンタクトガラス)の中心と照明装置の中心を不一致とした
[0073] この場合には、照明装置を、画像を読み取るための結像レンズと重なることなぐ結 像レンズに隣接して配置する(並置する)ことができ、照明装置は、画像読取装置の 全体の厚さに影響を与えることはない。言い換えると、従来の照明装置の構成が不 要であるので、画像読取装置の全体を薄くすることができる。
[0074] (14)本発明の第一の実施形態による画像読取装置において、好ましくは、結像系
(撮像系)の主光軸と照明装置の主光軸を、照明対象面と平行な面上において平行 に配置した。
[0075] この場合には、照明装置を、結像系を構成する結像レンズや撮像素子と共に画像 読取装置本体に配設することができ、走行体 (第 1走行体)上に設置する必要がない ので、上記照明装置を原稿面の直近に置く必要がなぐ結像系を構成する結像レン ズゃ撮像素子の付近に設置することができる。
[0076] また、照明装置を原稿面の直近に置く必要がなぐ結像系を構成する結像レンズや 撮像素子の付近に置くことができるので、画像読取装置の高さ方向における照明装 置のための寸法が必要なくなり、結果として、画像読取装置の薄型化を達成すること ができる。
[0077] さらに、照明装置 (光源)を第 1走行体上に設置する必要がなぐ画像読取装置本 体の固定した部分に設置することができるので、フレキシブルな電源ラインが不要と なり、信頼性の向上及び低コストィヒを実現することができる。
[0078] カロえて、原稿面の付近に反射性の部材を置く必要がないので、原稿面に照射され た照明光が再反射されることがなくなり、フレアを殆ど除去することができる。
[0079] また、原稿面に対して鉛直に近レ、方向から光を照射することができるので、ブック原 稿の中央部の影を殆ど除去することができる。
[0080] (15)本発明の第一の実施形態による画像読取装置において、好ましくは、原稿面
(コンタクトガラス)に対して上記光源からの照明光を斜めに入射させるようにした。
[0081] 原稿面を垂直に照明すると、コンタクトガラスの表面反射光や光沢のある原稿の面 からの反射光が、結像レンズに入り、ハレーションを起して、低い質の読取画像が、 得られること力 Sある。これに対して、原稿面に対して照明光を斜めに入射させると、原 稿面での正反射光成分が、結像レンズに入射することがなぐ原稿面を照らす照明 光のうち、拡散反射成分のみを撮像素子に入射させることになる。その結果、原稿面 の光沢の変動の影響を受けることなぐ原稿の画像濃度を正確に読み取ることが可 能となる。
[0082] また、照明装置を原稿面の直近に置く必要がなぐ結像系を構成する結像レンズや 撮像素子の付近に置くことができるので、画像読取装置の高さ方向における照明装 置のための寸法が必要なくなり、結果として、画像読取装置の薄型化を達成すること ができる。
[0083] さらに、照明装置 (光源)を第 1走行体上に設置する必要がなぐ画像読取装置本 体の固定した部分に設置することができるので、フレキシブルな電源ラインが不要と なり、信頼性の向上及び低コストィヒを実現することができる。 [0084] カロえて、原稿面の付近に反射性の部材を置く必要がないので、原稿面に照射され た照明光が再反射されることがなくなり、フレアを殆ど除去することができる。
[0085] また、原稿面に対して鉛直に近レ、方向から光を照射することができるので、ブック原 稿の中央部の影を殆ど除去することができる。
[0086] (16)本発明の第一の実施形態による画像読取装置において、好ましくは、上記結 像系を構成する結像レンズの近傍に照明装置を配置した。
[0087] この場合には、照明装置を原稿面の直近に置く必要がなぐ結像系を構成する結 像レンズや撮像素子の付近に置くことができるので、画像読取装置の高さ方向にお ける照明装置のための寸法が必要なくなり、結果として、画像読取装置の薄型化を 達成すること力 Sできる。
[0088] また、照明装置 (光源)を第 1走行体上に設置する必要がなぐ画像読取装置本体 の固定した部分に設置することができるので、フレキシブルな電源ラインが不要となり 、信頼性の向上及び低コストィヒを実現することができる。
[0089] さらに、原稿面の付近に反射性の部材を置く必要がないので、原稿面に照射され た照明光が再反射されることがなくなり、フレアを殆ど除去することができる。
[0090] カロえて、原稿面に対して鉛直に近い方向から光を照射することができるので、ブック 原稿の中央部の影を殆ど除去することができる。
[0091] (17)本発明の第一の実施形態による画像読取装置において、好ましくは、上記光 源により撮像領域を照明する照明光と該撮像領域から反射する画像光とを、同一の 反射面によって折り返す。
[0092] (18)本発明の第一の実施形態による画像読取装置において、好ましくは、第 1走 行体に少なくとも一つの折り返し反射面を備え、第 2走行体に少なくとも二つの折り返 し反射面を備えて成り、上記撮像領域を照明する照明光と該撮像領域から反射する 画像光とを、同一の上記反射面によって折り返す。
[0093] (19)本発明の第二の実施形態は、光源により照明した原稿からの反射光を結像レ ンズにより撮像素子に結像させ、該原稿の画像を一次元に読み取り、これを走查する ことによって 2次元の画像を読み取る画像読取方法であって、上記光源から発する光 束を複数に分割し、この分割された複数の光束を上記原稿面上に重畳させる。 [0094] 本発明の第二の実施形態によれば、光源から発する光束を複数に分割し、この分 割された複数の光束を原稿面上に重畳させることができるので、例えば LED、 LD、 フィラメント、蛍光灯、放電灯などのような、いずれの光源を用いても、光源から発する 光を有効に利用することができる。特に、照明効率を高くすることができ、照度分布を 均一化することができる。その結果、投入電力を少なくすることが可能となる。
[0095] (20)本発明の第三の実施形態は、本発明の第一の実施形態である画像読取装置 を搭載した画像形成装置である。
[0096] 上述したように、画像読取装置において、光源から発する光束を複数に分割し、こ の分割された複数の光束を原稿面上に重畳させることによって、画像読取装置にお ける光の利用率の向上 (省エネルギー化)、画像読取装置の薄型化又は小型化、画 像読取装置の低コスト化、及び、照明対象面における照度むらの低減を実現すること が可能となる。
[0097] (21)本発明の第四の実施形態は、光源から放出された光を対象に照明する照明 装置であって、少なくとも一つの面内において、光源から放出された光から複数の光 束を取得し、該複数の光束を該対象に照明する少なくとも一つの光束照明素子を含 む。
[0098] (22)本発明の第四の実施形態による照明装置は、好ましくは、少なくとも一つの面 内において、前記複数の光束を前記対象において重畳させる少なくとも一つの光束 重畳素子をさらに含む。
[0099] (23)本発明の第四の実施形態による照明装置は、好ましくは、少なくとも一つの面 内において、前記複数の光束を前記対象において集束させる少なくとも一つの光束 集束素子をさらに含む。
[0100] (24)本発明の第四の実施形態による照明装置は、好ましくは、第一の面内におい て前記複数の光束を前記対象において重畳させると共に該第一の面と異なる第二 の面内において前記複数の光束を前記対象において集束させる少なくとも一つの光 学素子をさらに含む。
[0101] (25)本発明の第四の実施形態による照明装置において、好ましくは、前記少なくと も一つの面は、第一の面及び該第一の面と異なる第二の面を含み、前記少なくとも 一つの光束照明素子は、該第一の面内で光源力 放出された光力 複数の第一の 光束を取得し、該複数の第一の光束を前記対象に照明する第一の光束照明素子、 及び、該第二の面内で光源から放出された光から複数の第二の光束を取得し、該複 数の第二の光束を前記対象に照明する第二の光束照明素子を含む。
[0102] (26)本発明の第四の実施形態による照明装置において、好ましくは、前記光束集 束素子の少なくとも一つは、前記対象から反射される光の少なくとも一部を集束させ ない部分を有する。
[0103] (27)本発明の第四の実施形態による照明装置は、好ましくは、少なくとも一つの面 内において、前記光源から放出された光を前記複数の光束に分割する少なくとも一 つの光束分割素子をさらに含む。
[0104] (28)本発明の第四の実施形態による照明装置において、好ましくは、前記光束分 割素子及び前記光束照明素子の間の間隔は、前記光束分割素子の焦点距離及び 前記光束照明素子の焦点距離よりも長い。
[0105] (29)本発明の第四の実施形態による照明装置において、好ましくは、前記少なくと も一つの面は、第一の面及び該第一の面と異なる第二の面を含み、前記少なくとも 一つの光束分割素子は、該第一の面内で前記光源から放出された光を複数の第一 の光束に分割する第一の光束分割素子、及び、該第二の面内で前記光源から放出 された光を複数の第二の光束に分割する第二の光束分割素子をさらに含む。
[0106] (30)本発明の第四の実施形態による照明装置において、好ましくは、前記光源は 、第一の波長領域に含まれる波長を備えた光を放出する第一の光源及び第二の波 長領域に含まれる波長を備えた光を放出する第二の光源を含み、前記第一の光源 及び前記第二の光源は、少なくとも一つの面内において、前記対象における前記第 一の波長領域に含まれる波長を備えた光の照度のピーク位置が、前記対象における 前記第二の波長領域に含まれる波長を備えた光の照度のピーク位置と異なるように 、配置される。
[0107] (31)本発明の第四の実施形態による照明装置は、好ましくは、少なくとも一つの面 内において、前記光源から放出された光を、該光の波長に対して分散させる波長分 散素子をさらに含む。 [0108] (32)本発明の第四の実施形態による照明装置は、好ましくは、前記光源から放出 された光の少なくとも一部を反射させる反射体をさらに含む。
[0109] (33)本発明の第四の実施形態による照明装置は、好ましくは、前記光源から放出 された光の少なくとも一部を吸収する吸収体又は前記光源から放出された光の少な くとも一部を散乱させる散乱体をさらに含む。
[0110] (34)本発明の第五の実施形態は、光源から放出された光を対象に照明する照明 方法であって、少なくとも一つの面内において、光源から放出された光から複数の光 束を取得し、該複数の光束を該対象に照明することを含む。
[0111] (35)本発明の第五の実施形態による照明方法は、好ましくは、少なくとも一つの面 内において、前記複数の光束を前記対象において重畳させることをさらに含む。
[0112] (36)本発明の第五の実施形態による照明方法は、好ましくは、少なくとも一つの面 内において、前記複数の光束を前記対象において集束させることをさらに含む。
[0113] (37)本発明の第五の実施形態による照明方法は、好ましくは、第一の面内におい て前記複数の光束を前記対象において重畳させると共に該第一の面と異なる第二 の面内において前記複数の光束を前記対象において集束させることをさらに含む。
[0114] (38)本発明の第五の実施形態による照明方法は、好ましくは、前記少なくとも一つ の面内において、光源から放出された光から複数の光束を取得し、該複数の光束を 該対象に照明することは、第一の面内で光源から放出された光から複数の第一の光 束を取得し、該複数の第一の光束を前記対象に照明すること、及び、該第一の面と 異なる第二の面内で光源から放出された光から複数の第二の光束を取得し、該複数 の第二の光束を前記対象に照明することを含む。
[0115] (39)本発明の第五の実施形態による照明方法は、好ましくは、少なくとも一つの面 内において、前記光源から放出された光を前記複数の光束に分割することをさらに 含む。
[0116] (40)本発明の第五の実施形態による照明方法において、好ましくは、前記少なくと も一つの面内において、前記光源から放出された光を前記複数の光束に分割するこ とは、第一の面内で前記光源から放出された光を複数の第一の光束に分割すること 、及び、該第一の面と異なる第二の面内で前記光源から放出された光を複数の第二 の光束に分割することをさらに含む。
[0117] (41)本発明の第五の実施形態による照明方法は、好ましくは、前記光源が、第一 の波長領域に含まれる波長を備えた光及び第二の波長領域に含まれる波長を備え た光を、少なくとも一つの面内において、前記対象における前記第一の波長領域に 含まれる波長を備えた光の照度のピーク位置が、前記対象における前記第二の波 長領域に含まれる波長を備えた光の照度のピーク位置と異なるように、放出すること を含む。
[0118] (42)本発明の第五の実施形態による照明方法は、好ましくは、少なくとも一つの面 内において、前記光源から放出された光を、該光の波長に対して分散させることをさ らに含む。
[0119] (43)本発明の第六の実施形態は、画像を備えた原稿に光源から放出された光を 照明し、該原稿から反射された光を取得して該画像を読み取る画像読取装置であつ て、本発明の第四の実施形態である照明装置を含む。
[0120] (44)本発明の第六の実施形態による画像読取装置において、好ましくは、前記対 象について読み取られた画像を拡大又は縮小する変倍光学素子をさらに含む。
[0121] (45)本発明の第六の実施形態による画像読取装置は、好ましくは、前記対象の画 像を結像させる結像光学系及び前記光源から放出された光を反射させる反射面を 備えた反射光学素子をさらに含み、該反射光学素子の該反射面は、該反射面が、 該結像光学系によって結像されなレ、ように配置される。
[0122] (46)本発明の第六の実施形態による画像読取装置において、好ましくは、前記対 象の画像を結像させる結像光学系の光軸及び前記光源から放出された光を前記対 象に照明する照明系の光軸は、前記対象においてのみ一致する。
[0123] (47)本発明の第七の実施形態は、画像を備えた原稿に光源から放出された光を 照明し、該原稿から反射された光を取得して該画像を読み取る画像読取方法であつ て、本発明の第五の実施形態である照明方法を用いて、画像を備えた原稿に光源 力 放出された光を照明する。
[0124] (48)本発明の第七の実施形態による画像読取方法は、好ましくは、前記対象につ レ、て読み取られた画像を拡大又は縮小することをさらに含む。 [0125] (49)本発明の第八の実施形態は、画像を備えた原稿の画像を読み取り、画像が 形成される媒体に、該原稿の画像を形成する画像形成装置であって、本発明の第六 の実施形態である画像読取装置を含む。
[0126] (50)本発明の第九の実施形態は、画像を備えた原稿の画像を読み取り、画像が 形成される媒体に、該原稿の画像を形成する画像形成方法であって、本発明の第七 の画像読取方法を用いて、画像を備えた原稿の画像を読み取る。
[0127] 上記(21)、(34)、(43)、(47)、(49)、(50)の構成については、 (LED、 LD、フィ ラメント、蛍光灯及び放電灯のような)いずれの光源を用いても、照明の効率が、改善 され、照明装置の投入電力を減少させることができる。
[0128] 上記(30)、(31)、(41)、(42)の構成については、単色光源のような光源を用いる 場合には、照明の効率が、さらに改善され、照明装置の投入電力をさらに減少させる こと力 Sできる。
[0129] 上記 (46)の構成については、原稿面の正反射光を結像レンズに入射させず、原 稿面に対して比較的鉛直に光を照射するため、ブック原稿の中央部の影をほとんど 除くことができる。
[0130] 上記(26)、(44)、(48)の構成については、照明の効率が改善され、画像を読み 取ること力 S改善される。
[0131] 上記 (45)の構成については、画像読取装置を長期にわたった使用しても、良好な 質の画像を読み取ることができる。
[0132] 上記(22)〜(25)、 (27)〜(29)、 (32)〜(33)、(35)〜(40)の構成については
、照明の効率をさらに向上させることができる。
実施例 1
[0133] [実施例 1]
本発明による画像読取装置の実施例 1における照明装置のような照明系を、図 7〜 図 11を参照しながら説明する。
[0134] 図 7は、本発明による画像読取装置の実施例 1における照明系の基本的概念を説 明する図である。ここで、図 7 (a)は、照明系の上面図であり、図 7 (b)は、照明系の正 面図である。図 8は、本発明による画像読取装置における照明系に用いることができ る集光レンズ及び照明レンズの形態を説明する図である。図 8Aは、シリンダレンズァ レイの形態を示す図であり、図 8Bは、シリンダレンズの一例を示す図であり、図 8Cは
Figure imgf000030_0001
[0135] 実施例 1の照明系では、図 7 (a)に示されているように、光源(la)として直線的に並 ベた LED (発光ダイオード)を用いる。個々の LEDから放射される光束をほぼ平行光 として出力するように、個々の LEDの先端には、透明樹脂で作られたレンズのフード が設けられている。この透明樹脂で作られたレンズの焦点距離 f 3は、このレンズのフ ードの先端から LEDの位置までの距離である。
[0136] 集光レンズ(3a)は、図 8Bに示すようなシリンダレンズが並べられた、図 8Aに示すよ うな形態を有するシリンダレンズアレイである。集光レンズ(3a)のシリンダレンズアレイ を構成するシリンダレンズは、図 8Cに示されるようなシリンダレンズであってもよレ、。ま た、集光レンズ(3a)シリンダレンズアレイを構成するシリンダレンズの焦点距離 flは、 図 1における距離 cである (f l = cを満たす)。なお、距離 cは、集光レンズ (3a)と照明 レンズ(5a)との間の距離である。集光レンズ(3a)は、図 7 (a)に示す面内においては 、光源(la)から放出された光束を、分割し、照明レンズ(5a)の個別のシリンダレンズ に対して、分割された光束の全部を透過させるように、分割された光束を集光させる レンズである。
[0137] 照明レンズ(5a)は、図 7 (a)に示す面内において、照明対象面(9a)である原稿面 を照明するためのレンズであり、集光レンズ (3a)と同様に、シリンダレンズアレイで構 成される。ここで、照明レンズ(5a)のシリンダレンズアレイを構成するシリンダレンズの 焦点距離 f2は、図 7に示す距離 a、 b及び cを用いて、概略、 f2 = l/ (l/ (a + b) + 1/c)によって表される。ここで、距離 aは、統合レンズ(7a)と照明対象面との間の距 離であり、距離 bは、照明レンズ(5a)と統合レンズ(7a)との間の距離である。なお、 照明レンズ (5a)の設計上、 f l =f2を満足させることもできる。このとき、集光レンズ (3 a)及び照明レンズ(5a)の両方には、同じ規格の部材を用いることができる。
[0138] 統合レンズ(7a)は、光軸のまわりに軸対称である通常のレンズであり、集光レンズ( 3a)により分割され且つ照明レンズ(5a)によって照射された光束を、照明対象面(9a )において重畳させるためのレンズである。ここで、統合レンズ(7a)の焦点距離 fOは 、図 7に示す aに等しい(fO = a)。このとき、集光レンズ(3a)により分割され且つ照明 レンズ (5a)によって照射された個々の光束の光軸(副光軸と称する)は、照明対象面 (9a)において、統合レンズ (7a)の光軸(主光軸と称する)と一致する。そして、集光 レンズ (3a)により分割され且つ照明レンズ (5a)によって照射された光束を、照明対 象面(9a)上で重畳することができる(図 7では、簡単のために、シリンダアレイ中の三 対のシリンダを通過する光束のみ表している)。
[0139] なお、照明レンズ(5a)による像の倍率などを説明する場合、本来は、照明レンズ (5 a)の焦点距離 f 2及び統合レンズ(7a)の焦点距離 fOの合成焦点距離を用いるべき である。し力 ながら、実施例 1の照明系においては、 f2《f0が成り立つので、簡単 のために、 b = 0とし、統合レンズ(7a)の焦点距離 fOを無視する。
[0140] 集光レンズ(3a)のシリンダレンズアレイにおける個々のシリンダレンズの幅が mlで あり、図 7 (a)に示す面内における照明対象面(9a)での照射幅が mOであるとすれば 、 ml/mO = c/aの関係が成立する(実際には、この関係を決めて後、 fO及び flを 決定する)。照明系をこのように構成すると、集光レンズ(3a)の個別のシリンダレンズ のサイズ mlの像が、照明対象面(9a)上で mOの大きさに投影され、 mlの大きさの 範囲を通過した光束の全部が、照明対象面(9a)に届く。そして、この個々のシリンダ レンズからの個々の光束による照明については、照明対象面(9a)は、激しい照度む らを伴って照明される力 S、シリンダレンズアレイからの光束の全体を重畳することによ つて得られる、照明対象面(9a)における照明分布は、平坦になる。
[0141] 図 9Aは、実施例 1においてシリンダレンズの数力 光源の LEDの数よりも一つだけ 少ない例を示す図であり、図 9Bは、実施例 1においてシリンダレンズの数力 光源の LEDの数よりも一つだけ多い例を示す図である。図 10は、実施例 1における照明対 象面での照明分布を説明する図である。図 10 (a)は、シリンダレンズの数が、光源の LEDの数に一致する例を示す図である。図 10 (b)は、シリンダレンズの数力 光源の LEDの数よりも一つだけ少ない例を示す図であり、より具体的には、 5個の LED及び 4個のシリンダレンズを含む照明系の例を示す。図 10 (c)は、シリンダレンズの数が、 光源の LEDの数よりも一つだけ多い例を示す図であり、より具体的には、 5個の LED 及び 6個のシリンダレンズを含む照明系の例を示す。 [0142] 図 7に示されている照明系では、図 7 (a)に示す面内において、光源(la)としての 等間隔で並べられた LEDの数は、集光レンズ(3a)及び照明レンズ(5a)のシリンダレ ンズの数と一致し、且つ、 LEDの光軸を集光レンズ(3a)及び照明レンズ(5a)のシリ ンダレンズの光軸と一致させてある。また、集光レンズ(3a)及び照明レンズ(5a)のシ リンダレンズアレイは、同一のシリンダレンズで構成されている。よって、個別の LED から放出される光束の分布が、単純に重なり合い、照明対象面での照明分布は、個 別の LEDの光束分布に比例して、図 10 (a)に示すような照度分布となる。
[0143] 照明対象面での照度分布をさらに均一化するためには、光源の LEDの数をシリン ダレンズの数と一致させないこと力 好ましレ、。特に、 LEDの数が少ない場合には、 光源の LEDの数力 シリンダレンズの数と一つだけ異なると、照度分布の均一化及 び光の利用率を、最良なものにすることができる。
[0144] 例えば、図 9A及び 9Bに示すように構成された照明系によって照明された照明対 象面での照度分布は、それぞれ、図 10 (b)及び(c)に示すような照度分布である。こ のように、照明対象面での照度分布は、照明対象面での個々の分割された光束によ る照度分布の重ね合わせであり、均一化される。なお、図 10 (b)において、 3bl〜3b 4によって示される曲線は、図 9Aに示す集光レンズ(3b)及び照明レンズ(5b)のそ れぞれのシリンダレンズによって分割された光束によって照明される照明対象面での 照度分布を表す。また、図 10 (c)において、 3cl〜3c6によって示される曲線は、図 9Bに示す集光レンズ(3c)及び照明レンズ(5c)のそれぞれのシリンダレンズによって 分割された光束によって照明される照明対象面での照度分布を表す。
[0145] このように、照明系を、光源(lb, lc)の LEDの数力 集光レンズ(3b, 3c)及び照 明レンズ(5b, 5c)シリンダレンズの数と異なるように、構成することによって、照明の 効率を低下させることなぐ極めて照度むらの少ない照明が可能となる(照度むらを数 %にすることも可能となる)。
[0146] なお、図 7において、照度むらを、集光レンズ(3a)及び照明レンズ(5a)のそれぞれ のシリンダレンズの幅 mlを調整することによつても、低減することができる。この場合 には、照明系が、互いに異なる幅 mlを有する複数種類のシリンダレンズを有するの で、シリンダレンズの幅 mlに対する照明対称面での照明幅 mOの比(拡大率)は、シ リンダレンズの種類によって変動する。よって、それぞれのシリンダレンズを通過する 光束で照明された照明対象面での照明幅を一定にするために、照明レンズ (5a)の シリンダレンズの焦点距離を調整する必要がある。例えば、集光レンズ(3a)及び照 明レンズ(5a)の各シリンダレンズアレイの全体幅が 5であり、各シリンダレンズアレイ のシリンダレンズの数が 5であるとき、シリンダレンズアレイの幅を(0. 7): (0. 8): (0. 95): (1. 15): (1. 4)の比率で分割する。このとき、最小幅 0. 7のシリンダレンズに 要求される拡大率は、最大幅 1. 4のシリンダレンズに要求される拡大率の二倍である ので、最小幅 0. 7のシリンダレンズの焦点距離は、最小幅 1. 4のシリンダレンズの焦 点距離の 1Z2に設計する必要がある。このようにして、明の効率を低下させることな ぐ極めて照度むらの少ない照明が可能となる。
[0147] 画像読取装置の主走查方向についての照明の概念を、図 7 (a)に示す照明系の上 面図に基づいて説明してきたが、次に、その主走查方向に垂直な画像読取装置の 副走査方向における照明の概念を、図 7 (b)に示す照明系の正面図に基づいて説 明する。より具体的には、画像読取装置の主走査方向における照度むらを低減する と共に、画像読取装置の副走査方向において照明対象面を効率的に照明する概念 を説明する。
[0148] 図 7 (b)に示す面内では、光源(la)としての LEDの数は、 1個である。 LEDから放 出される光束は、 LEDの先端に設けられた透明樹脂で作られたレンズにより、ほぼ 平行光束に変換されて、出力される。図 7 (b)に示す面内では、集光レンズ (3a)及び 照明レンズ(5a)は、主光軸に直角である平行平板とみなされる。よって、ほぼ平行光 束に変換された光束は、集光レンズ(3a)及び照明レンズ(5a)によってほとんど影響 されずに、平行光束として、集光レンズ (3a)及び照明レンズ(5a)を通過する。また、 統合レンズ(7a)の焦点距離 f0は、 f0 = aを満たすので、統合レンズ(7a)は、光束を 照明対象面(9a)に集束させる。
[0149] このように、光源(la)の LEDから放出された光束は、効率良く照明対象面(9a)上 に直線状に集められ、照度むらの少ない高品質の照明を行うことができる。なお、統 合レンズ(7a)は、光束が通過する部分についてのみ存在すればよいので、円形のレ ンズである必要はない。よって、図 7 (b)に示すように、統合レンズ(7a)における不要 な部分をカットすることによって、照明系の厚さを非常に小さくすることができる。
[0150] 図 11は、実施例 1において三色の LEDを用いる、より実用的な照明系を説明する 図であり、(a)は、その照明系の上面図であり、(b)は、その照明系の正面図であり、 ( c)は、その照明系の側面図である。
[0151] 図 11 (a)〜(c)に示すように、光源(Id)は、直線的に並べた複数の LED (発光ダイ オード)の複数の列を含む。また、図 11 (b)及び(c)に示すように、光源(Id)は、 1列 の赤色(R)の複数の LED、 2列の青色(B)の複数の LED、及び 1列の緑色(G)の複 数の LEDを含む。ここで、比較的低い発光効率を備えた青色(B)の LEDの数は、赤 色(R)の LED又は緑色(G)の LEDの数よりも多レ、ため、照明対象面における青色( B)の照明光の照度と赤色 (R)又は緑色 (G)の照明光の照度との差を低減させること ができる。
[0152] 図 11 (a)に示す面内においては、光源(Id)における 5. 5個の LEDに対して、集 光レンズ(3d)及び照明レンズ(5d)における 6個のシリンダレンズが対応する。図 11 ( b)に示す面内においては、 4個の LED力 配置されている力 図 11 (b)に示すような 照明系の作用は、図 7 (b)に示した照明系の作用と同様である。
[0153] 図 11においては、複数の LEDの列を、千鳥格子のパターンに配置している力 \複 数の LEDの列の配置は、千鳥格子のパターンに限定されなレ、。し力しながら、複数 の LEDの列を、千鳥格子のパターンに配置すると、照明対象面(9d)における照明 分布をより均一化することができる。
[0154] 図 11には、質の良いカラー画像を得るための照明系の例を示したが、照明の目的 によっては、光源(Id)に白色 LED (現状の市販品においては、青色のスぺタトノレの 強度が高ぐ緑色のスペクトルの強度、赤色のスペクトルの強度力 順次低くなつてい る)のみを用いてもよぐ赤色(R)の LEDのみ、緑色(G)の LEDのみ、又は青色(B) の LEDのみのような単色の LED、又はそれらのうち二色の LEDを用いてもよレ、。
[0155] 以上説明したように、実施例 1の画像読取装置における照明装置によれば、照明レ ンズによって、光源から発する光束を複数に分割し、統合レンズによって分割された 複数の光束を原稿面上に重畳させることができるので、例えば LED、 LD、フイラメン ト、蛍光灯、及び放電灯のようなどのようないずれの光源を用いても、光源から発する 光を有効に利用することができる。そして、この照明装置は、高い照明効率を有する のみならず、照度分布を均一化することができ、投入電力を少なくすることができる。 実施例 2
[0156] [実施例 2]
本発明による画像読取装置の実施例 2における照明装置のような照明系を、図 12 〜図 14を参照しながら説明する。
[0157] 図 12は、本発明による画像読取装置の実施例 2における照明系の第一の例を説 明する図である。ここで、図 12 (a)は、照明系の第一の例の上面図であり、図 12 (b) は、照明系の第一の例の正面図である。図 13は、本発明による画像読取装置の実 施例 2における照明系の第二の例を説明する図である。ここで、図 13 (a)は、照明系 の第二の例の上面図であり、図 13 (b)は、照明系の第二の例の正面図である。
[0158] 実施例 1では、個々の LEDの先端に設けられたレンズによって個々の LED力 放 射される光束をほぼ平行光としている力 実施例 2では、個々の LEDに、フラットな先 端を備えたフードを設ける。
[0159] 図 12 (a)及び(b)においては、図 8Aに示すようなシリンダレンズアレイの個々のシリ ンダレンズが、図 8Bに示すようなシリンダレンズと直交するように、図 8Aに示すような シリンダレンズアレイ及び図 8Bに示すようなシリンダレンズが接合された集光レンズ( 3e)を用いている。ここで、図 8Aに示すようなシリンダレンズアレイを構成する個々の シリンダレンズの焦点距離 flを fl = l/ (l/d+ 1/c)に設計し、図 8Bに示すような シリンダレンズの焦点距離 f 1 'を f 1 ' = dに設計する。照明レンズ(5e)及び統合レンズ (7e)の焦点距離は、図 7において説明したものと同じである。
[0160] 図 12 (a)に示すように、光源(le)の LEDから放射される光束は、発散光として集 光レンズ(3e)に到達し、この集光レンズ(3e)によって照明レンズ(5e)の位置に集束 させられる。それ以外は、図 12の照明系は、図 7に示す照明系と同様である。言い換 えれば、図 12における集光レンズ(3e)は、図 7における光源(la)における LED用 のフードレンズの機能及び集光レンズ(3a)の機能の両方を有する。
[0161] 図 12 (b)に示す面内においては、集光レンズ(3e)のシリンダレンズの焦点距離 fl' 力 fl' = dを満たすので、光源(le)の LEDから発散する光束は、集光レンズ(3e) により平行光にされる。その他の点については、図 12の照明系は、図 7に示す照明 系と同様である。
[0162] 図 13 (a)及び(b)においては、集光レンズ(3f)は、図 8Aに示すようなシリンダレン ズアレイであり、統合レンズ(7f)は、図 8Bに示すような二つのシリンダレンズが互い に直交するように、二つのシリンダレンズが接合されたレンズである。図 13 (a)に示す 面内においては、集光レンズ (3f)の焦点距離 flは、図 12 (a)に示す照明系の第一 の例の場合と同様であり、 fl = lZ(lZd+ lZc)を満たす。図 13 (b)に示す面内に おいては、集光レンズ(3f)の焦点距離 fl'は、 fl' =∞を満たす、即ち、図 7に示す例 と同様に、平板である。照明レンズ(5f)は、図 7に示すものと同様である。統合レンズ (直交シリンダレンズ)(7f)の焦点距離 fOは、図 13 (a)に示す面内においては、 f0 = aを満たす。また、図 13 (b)に示す面内においては、統合レンズ(直交シリンダレンズ ) (7f)の焦点距離 fO'は、 fO' = lZ(lZ(d + c + b) + lZa)を満たす。このように、互 いに直交する二つの方向についての各々のシリンダレンズの焦点距離力 設定する
[0163] その結果、図 13 (a)に示す面内における照明系の作用は、図 12 (a)に示す面内に おける照明系の作用と同様である。一方、図 13 (b)に示す面内においては、光源(1 f)の LEDから発散する光束は、集光レンズ (3f)及び照明レンズ (5f)を通過し、統合 レンズ (7f)によって収束光束にされ、照明対象面(9f)に集束させられる。
[0164] 図 12に示す例と図 13に示す例との間の照明系の中間的な概念として、図 12 (b) に示す集光レンズ(3e)の焦点距離 fl'及び図 13 (b)に示す統合レンズ (7e)の焦点 距離 fO'の代わりに、照明レンズ(5e, 5f)に焦点距離 fl'及び fO'の一方を与えてもよ レ、。すなわち、照明レンズ(5e, 5f)の焦点距離 f2'が、 f2' = d + cを満たすと共に照 明系のその他の部材を、図 7に示すものと同じにする。この場合にも、図 12及び 13に 示す照明系と同様の照明系を得ることができる。
[0165] このように、実施例 2のいずれの照明系も、図 7に示した照明系と同様に、光源の L EDから射出された光束を効率的に照明対象面上に直線状に集めることができ、照 度むらの少ない高品質の照明を提供することができる。
[0166] 図 14は、実施例 2において三色の LEDを用いる、照明系を説明する図であり、(a) は、その照明系の上面図であり、 (b)は、その照明系の正面図であり、(c)は、その照 明系の側面図である。
[0167] 図 14 (a)〜(c)に示すように、光源(lg)が、個々の LEDにフラットな先端を備えた フードを有すると共に直線的に並べた複数の LED (発光ダイオード)の複数の列を含 む場合には、その照明系は、図 12 (a)及び (b)に類似する構成を有し、集光レンズ( 3g)は、互いに直交する図 8Aに示す二つのシリンダレンズアレイが接合されたレンズ である。
[0168] ここでは、光源(lg)の複数の LEDを、光源(lg)の縦方向及び横方向の両方にお いて整列させている。図 14 (a)及び (b)に示すように、集光レンズ(3g)は、互いに直 交する図 8Aに示す二つのシリンダレンズアレイが接合されたレンズである。図 14 (b) に示す面内においては、集光レンズ(3g)の個々のシリンダレンズの焦点距離 fl'は、 fl ' = dを満たすので、個々の LEDから発散される光束は、集光レンズ(3g)で平行光 束に変換される。その他の点については、図 14の照明系は、図 11に示す照明系と 同様である。図 14 (a)に示す面内においては、個々の LEDから放出される発散光を 、集光レンズ(3g)によって、照明レンズ(5g)の位置に集束させればよぐその他の点 については、図 14の照明系は、図 11に示す照明系と同様である。
[0169] この場合、光源(lg)の LEDの光軸を、集光レンズ(3g)の光軸と一致させる必要が あるので、照明対象面(9g)上での照度分布は、図 10 (a)に示すような分布となる。
[0170] 照明対象面(9g)上での照度分布を、図 10 (b)又は(c)に示すように、均一化する ためには、集光レンズ(3g)と光源(lg)の LEDアレイとの間にシリンダレンズアレイを 挿入する。そのシリンダレンズアレイを構成するシリンダレンズの数を、 LEDの数と一 致させると共にそのシリンダレンズアレイを構成する個々のシリンダレンズの光軸を、 光源(lg)の個々の LEDの光軸と一致させる。これにより、 LEDから放出される光束 を、シリンダレンズアレイを用いて、平行光束に変換することができる。そして、図 9A 又は図 9Bに示すように、集光レンズ(3g)のシリンダレンズの数力 LEDの数と一致 しないような構成を採用することによって、照明対象面(9g)上で図 10 (b)又は(c)に 示すような照度分布を得ることができる。
[0171] 光源として LED (発光ダイオード)アレイを用いる照明系を説明してきた力 LEDを LD (レーザダイオード)に置き換えた同様の構成を有する照明系も、同様の効果を 有する。ただし、発光ダイオードの放射角は、数十度程度であるが、レーザダイォー ドの放射角は、数度程度であるので、レーザダイオードに適切な設計を必要とする。 実施例 3
[0172] [実施例 3]
本発明による画像読取装置の実施例 3における照明装置のような照明系を、図 15 及び 16を参照しながら説明する。
[0173] 図 15は、本発明による画像読取装置の実施例 3における照明系を説明する図であ る。ここで、図 15 (a)は、照明系の上面図であり、図 15 (b)は、光源に放物面鏡を用 いた照明系の正面図であり、図 15 (c)は、光源に楕円面鏡を用いた照明系の正面図 である。
[0174] 実施例 1及び実施例 2では、光源として LEDアレイ等を用いる照明系を説明してき たが、実施例 3では、光源として線状の発光体を用いた照明系を説明する。
[0175] 図 15 (a)に示す照明系においては、光源(lh)としてフィラメントランプを用いており 、光源の発光効率を向上させるために、二重コイルのフィラメントを部分的に用いて いる(光源の発光効率を、二重コイルを用いて向上させている力 二重コイルの部分 が、長い場合には、二重コイルの部分が、重力によって垂れ下がる。よって、複数の 短い二重コイルの間に支持部材を揷入する)。フィラメントランプのフィラメントは、二 重コイルのみならず、直線状に張られたニクロム線又は直線状に張られたコイルであ つてもよい。
[0176] この場合には、直線状の発光体を中心に 360° の方向に光束が放出されるので、 照明対象面(9h)の方向へ光束を向けるためのリフレクタを用いる。リフレクタは、照 明対象面(9h)の方向へ効果的に集光するために、好ましくは、直線状の発光体の 位置を焦点とする放物面鏡又は楕円面鏡である。
[0177] 図 16は、直線状の発光体から放出される光束の放射ベクトル及びレンズによる光 束の放射ベクトルの取り込みを説明する図であり、(a)は、発光体から均等に放出さ れる光束の放射ベクトルの強度分布を示す図であり、(b)は、発光体の光軸方向によ り多く放出される光束の放射ベクトルの強度分布を示す図であり、(c)は、照明レンズ で取り込まれる放射ベクトルを説明する図であり、(d)は、集光レンズで取り込むまれ る放射べクトノレを説明する図である。
[0178] 図 16 (a)及び (b)に示すように、直線状の発光体を含む光源(lh)は、直線状の発 光体における全ての部分からほぼ全方向に光を放出し、図 15 (a)に示す面内で(主 走查方向について)直線状の発光体から放出される光を平行光にすることは、困難 である。特に、図 16 (a)に示すように、直線状の発光体のある部分から放出される光 束の強度(放射ベクトルの大きさ)が均一である場合には、図 15 (a)に示すように、集 光レンズを省略しても、照明系による照明の効果は、あまり変化しない。
[0179] 図 15 (a)に示す面内では、照明レンズ(5h)を構成するシリンダレンズの焦点距離 f 2は、 f 2 = 1/ (1/ (b + a) + (lZc) )を満足する。すなわち、図 7に示す照明系に おける集光レンズの位置に、発光体のフィラメントの中心を置く。統合レンズ(7h)は、 図 8Bに示すような互いに直交する二つのシリンダレンズが接合したレンズであっても よいが、それら二つのシリンダレンズの焦点距離 fOは、それぞれ、 fO = aを満たす。
[0180] また、直線状の発光体におけるある部分から放出される光束の強度分布が、図 16 ( b)に示すように、光軸の方向において、他の方向よりも高い強度を有する場合、又は 、照明レンズ (5h)の焦点距離の設定に依存して、照明レンズ (5h)を発光体の近傍 に置けない場合には、照明系の照明効率を向上させるためには、光源(lh)と照明レ ンズ(5h)との間に集光レンズ (3h)を挿入することが好ましレ、。
[0181] 具体的には、図 16 (d)に示すように、集光レンズ(3h)を構成するシリンダレンズを、 発光体力 集光レンズ (3h)を構成するシリンダレンズの焦点距離だけ離れた位置に 置き、集光レンズ (3h)から集光レンズ (3h)を構成するシリンダレンズの反対の焦点 距離だけ離れた位置に照明レンズ(5h)を配置する。この場合には、照明系が、光軸 方向における発光体の相対的に高い強度の放射ベクトルを取り込むことができ、また 、図 16 (c)に示すように集光レンズを含まない照明系と比較して、発光体からの光の 取り込み角( Θ )を大きくすることができる。よって、発光体からの光をより効果的に照 射対象面へ導くことができる。
[0182] リフレクタとして、放物面鏡(2h)を用いる場合には、図 15 (b)に示す面内では、発 光体から放出された光の大部分は、平行光として出力され、照明レンズ (5h)を平行 光として通過し、統合レンズ(7h)によって照明対象面(9h)上に集束される。このよう に、リフレクタに放物面鏡(2h)を用いる場合には、統合レンズ(7h)は、図 7に示す統 合レンズ(7a)と同様に、主光軸を中心とする通常の軸対称のレンズであってもよレ、。
[0183] また、リフレクタとして、楕円面鏡(2h')を用いる場合には、図 15 (c)に示す面内で は、直線状の発光体の中心を楕円面鏡(2h')の第 1焦点に置き、楕円面鏡(2h')の 第 2焦点を照明対象面(9h')に置く。そして、図 15 (c)に示す面内では、照明レンズ ( 5h')の焦点距離及び統合レンズ (7h')の焦点距離は、無限大である。すなわち、照 明レンズ (5h')及び統合レンズ (7h')の両方が、平行板とみなされる。この場合、照 明レンズ(5h')は、図 8Aに示すようなシリンダレンズアレイであり、統合レンズ(7h,)
[0184] このようにして、図 15 (a)に示す面内で(主走查方向について)、照明対象面(9h) における照度むらを低減することができる。
[0185] 以上説明したように、実施例 3の画像読取装置の照明装置によれば、フィラメントの ような線状の光源のように、その発光分布に部分的にむらを有する不均一な光源を 用いても、照度むらをほとんど生じることなぐ原稿面のような照射対象面を均一に照 射すること力 Sできる。よって、種々の光源を用いることができ、光源の低価格化が可能 となる。
実施例 4
[0186] [実施例 4]
本発明による画像読取装置の実施例 4における照明装置のような照明系を、図 17 〜 19を参照しながら説明する。
[0187] 図 17は、本発明による画像読取装置の実施例 4における光源としての蛍光管を説 明する図である。図 18は、本発明による画像読取装置の実施例 4における第一の照 明系を説明する図である。ここで、図 18 (a)は、第一の照明系の上面図であり、図 18 (b)は、第一の照明系の正面図であり、図 18 (c)は、光源としての蛍光管の発光強度 分布を示す図である。図 19は、本発明による画像読取装置の実施例 4における第二 の照明系を説明する図である。ここで、図 19 (a)は、第二の照明系の上面図であり、 図 19 (b)は、第二の照明系の正面図である。 [0188] 実施例 4の照明系においては、光源として帯状の発光体 (具体的には、蛍光灯のよ うな面発光をする発光体)を用いる。発光体としての蛍光管(li)においては、図 17及 び図 18 (b)に示すように、ガラス管(14)の内面に蛍光剤(16)を塗布し(開口部とし ての蛍光管の一部には、蛍光材を塗布しない)、開口部(15)を除くガラス管(14)の 外壁には、反射膜(17)が形成される(蛍光剤の厚い層が塗布される場合には、反射 膜は、不要である。また、蛍光管(li)の発光原理は、一般の蛍光灯のものと同じであ るので、その説明を省略する)。そして、蛍光剤(16)から放出された光束は、直接開 口部(15)から放出される力、、又は、そうでなければ、反射膜(17)で数回反射し、そ の後、開口部(15)から放出される。なお、図 17に示すように、蛍光管(li)の両端に 、蛍光管の電極部 18が設けられている。
[0189] 上記蛍光管(li)の発光面は、図 16 (a)又は (b)に示すように、ほぼ全方向に発光 し、主走查方向について、蛍光管の発光面から放出される光を平行光にすることは、 困難である。特に、図 16 (a)に示すように、蛍光管の発光面から放出される光束の強 度が均一である場合には、図 15 (a)に示すように、集光レンズを省略しても、蛍光管 を含む照明系による照明の効果は、あまり変化しない。図 18 (a)に示す面内では、照 明レンズ (5i)を構成するシリンダレンズの焦点距離 f2は、図 15に示す照明レンズ (5 h)と同様に、 f2 = 1/ (1/ (b + a) + (1/c) )を満足する。また、図 18 (b)に示す面 内で、照明レンズ(5i)を構成するシリンダレンズの焦点距離力 cに等しいとき、統合 レンズ (7i)の焦点距離は、 aに等しくなる。統合レンズ(7i)としては、通常のレンズを 用いることが可能である。
[0190] また、蛍光管(li)の発光面から放出される光束の強度分布が、図 16 (b)に示すよう に、光軸の方向において、他の方向よりも高い強度を有する場合には、照明系の照 明効率を向上させるためには、図 19 (a)及び (b)に示すように、蛍光管(lj)と照明レ ンズ( )との間に集光レンズ (¾)を揷入することが好ましレ、。
[0191] 図 19 (a)に示す面内では、集光レンズ(¾)を構成する個々のシリンダレンズの焦点 距離 flは、図 19 (a)に示す距離 cに一致する(即ち、 fl = cを満たす)。照明レンズ (5 j)を構成する個々のシリンダレンズの焦点距離 f 2は、概略、 f2 = lZ(lZ(a + b) + ( 1/c) )に設定される。図 19 (b)に示す面内では、集光レンズ(¾)の焦点距離 fl 'は 、 f l ' = dを満たし、照明レンズ(5j)の焦点距離 f2'は、 f2' =∞を満たす。これにより、 統合レンズ(7j)の焦点距離 fOは、 fO = aを満たし、統合レンズ(7j)には、通常のレン ズを用いることができる。
[0192] 図 15 (a)に示されているように、光源が、フィラメントのような発光体であっても、光 源から放出される光束の強度分布が、図 16 (b)に示すように、光軸の方向において 、他の方向よりも高い強度を有する場合には、照明系の照明効率を向上させるため には、光源と照明レンズ( )との間に集光レンズ (¾)を揷入することが好ましい。
[0193] このように、原理的に主走查方向に一様に発光する光源を用いても、実際は様々 な原因から、発光むらが生じる。図 15 (a)に示すように、フィラメントの形状を部分的 に変更する場合のみならず、蛍光管に蛍光剤を均一に塗布することは、困難である ため、図 18 (c)に示すように、蛍光管の電極部付近では、発光強度が、変動している 。このような不均一に発光する光源を用いても、主走查方向について、光束を分割し て、分割された光束を照明対象面において重畳させることによって、照明対象面を均 一に照明することができる。よって、発光むらに対する配慮無しに製造されたランプを 使うことができるため、照明系の低コスト化が可能となる。また、フィラメントの付近まで 使用することができるので、小型化が可能となる。
[0194] 以上説明したように、実施例 4の画像読取装置の照明装置によれば、蛍光灯のよう な面状光源を含む、その発光分布に部分的にむらを有する不均一な光源を用いて も、照度むらをほとんど生じることなぐ原稿面のような照射対象面を均一に照射する こと力 Sできる。よって、種々の光源を用いることができ、光源の低価格化が可能となる 実施例 5
[0195] [実施例 5]
本発明による画像読取装置の実施例 5における照明装置のような照明系を、図 20 及び 21を参照しながら説明する。
[0196] 図 20は、本発明による画像読取装置の実施例 5における照明系の第一の例を説 明する図である。ここで、図 20 (a)は、照明系の第一の例の上面図であり、図 20 (b) は、照明系の第一の例の正面図である。図 21は、本発明による画像読取装置の実 施例 5における照明系の第二の例を説明する図である。ここで、図 21 (a)は、照明系 の第二の例の上面図であり、図 21 (b)は、照明系の第二の例の正面図である。
[0197] 実施例 5は、光源(lk)として、水銀灯、キセノンランプ及びメタルハライドランプのよ うな放電灯 (アーク灯)を用レ、る照明系を示す。
[0198] 図 20に示す照明系においては、リフレクタとして回転放物面鏡(2k)を用いている。
光源(lk)のアーク灯の発光部分を、放物面の焦点位置に置くことにより、光束は、回 転放物面鏡(2k)の全面から平行光として放出される。図 20に示す照明系において 、集光レンズ(3k)、照明レンズ (5k)、及び統合レンズ(7k)によって、光束を分割し、 分割された光束を再度統合することによって、照明対象面(9k)を均一に且つ高い効 率で照明することができる。集光レンズ(3k)、照明レンズ (5k)、及び統合レンズ(7k )の各焦点距離は、図 7に示す場合と同様に設定すればよい。なお、回転放物面鏡( 2k)の前面は、カバー(4k)で覆われてレ、る。
[0199] また、図 21に示す照明系においては、リフレクタとして回転楕円面鏡(2m)を用い ている。光源(lm)のアーク灯の発光部分を、回転楕円面鏡(2m)の第 1焦点に置き 、回転楕円面鏡(2m)の第 2焦点の位置に照明対象面(9m)の中心を置くとき、統合 レンズを省略することができる。集光レンズ(3m)及び照明レンズ(5m)の焦点距離は 、 c《aなので、図 7に示す場合と同様に設定すればよい(具体的には、 f l = c、 f2 = l/ ( (l/c) + (l/a) )である)。ただし、照明系の照明効率を向上させるためには、 図 21に示すように、集光レンズ(3m)を構成するシリンダレンズの大きさ力 照明レン ズ(5m)を構成するシリンダレンズの大きさに比例することが必要である(具体的には 、ml/m2 = (c + a) /aである)。なお、回転楕円面鏡(2m)の前面は、カバー(4m )で覆われている。
[0200] 図 20及び 21に示す照明系は、光源に放電灯を使用することを前提としている。ァ ーク灯のアーク長は、 lmm〜2mmであるので、アーク灯は、非常に小さい領域から 光を放出することができ、高い照明効率を備えた照明系を得ることができる。しかしな がら、仮に照明系の照明効率が、若干低いことが許容されるとすれば、光源にフイラ メントランプ又は数 mm程度の小さいフィラメントを有するハロゲンランプを用いてもよ レ、。このようなランプを用いる照明系の照明効率は、放電灯を用いる照明系の照明効 率よりも低いが、従来の照明装置の照明効率よりも格段に高い。
[0201] また、図 20及び図 21に示す実施例 5において、その光源として、放電灯に替えて、 LEDを用いることもできる。 LEDの配置については、図 25Bに示すように、リフレクタ として、回転放物面鏡を用いる場合には、回転放物面鏡の焦点の位置に(図示して いないが、回転楕円面鏡を用いる場合には、回転楕円面鏡の第 1焦点の位置に) L EDペレットの発光面を置く。この場合には、比較的大きい LEDペレットを用いても、 照明装置全体の小型化が可能となる。 LEDの発光量は、ペレットの面積に比例する 。よって、ペレットの一辺が、 2倍、 3倍になると、 LEDの発光量は、ペレットの一辺の 長さの二乗に比例して増加し、それぞれ、 4倍、 9倍になる。一方、図 20に示すような 回転放物面鏡の平行光化の性能は、その放物面の F値が一定である場合には、概 略、 LEDペレットの一辺の長さに比例する。また、図 21に示すような回転楕円面鏡の 集光の能力は、その楕円面の楕円率が、一定であるならば、概略、 LEDペレットの一 辺の長さに比例する。例えば、リフレクタとして回転放物面鏡を用いる場合には、一 辺が 0. 3mmの LEDペレット及び F= l . 8の回転放物面鏡の組み合わせを用いる場 合における、得られる平行光の平行度及び照明効率は、一辺が 1. 0mmの LEDぺ レット及び F = 6の回転放物面鏡の組み合わせを用いる場合におけるものと同じであ る。図 20 (b)において Dとして表される、回転放物面の焦点における回転放物面鏡 の直径は、 F値の 4倍であるので、先に述べた回転放物面の直径は、それぞれ、 7. 2 mm及び 24mmであり、それらの回転放物面の直径の比は、 LEDペレットの一辺の 長さの比と一致し、約 3. 3倍であるが、それらの照明系で得られる光量は、約 11倍で ある。
実施例 6
[0202] [実施例 6]
本発明による画像読取装置の実施例 6における照明装置のような照明系を、図 22 を参照しながら説明する。
[0203] 図 22は、本発明による画像読取装置の実施例 6における照明系の例を説明する図 である。ここで、図 22 (a)は、照明系の例の上面図であり、図 22 (b)は、照明系の例 の正面図である。 [0204] 実施例 6は、光源(In)、集光レンズ (3n)及び照明レンズ(5n)の中心を照明対象 面の中心からシフトさせた例である。
[0205] 図 15に示すように、実施例における照明装置は、光源(In)、集光レンズ (3n)、照 明レンズ(5n)、及び統合レンズ(7n)で構成され、統合レンズ(7n)の主光軸は、光 源( in)、集光レンズ(3n)及び照明レンズ(5n)の中心を照明対象面の中心からシフ トしている。また、統合レンズ(7n)の中心は、照明対象面(9n)の中心と一致させてあ る。すなわち、統合レンズ (9n)の中心から外れた部分を照明に使用する。なお、統 合レンズにおける光源から発する光束が通過しない部分を、カットしてもよレ、。
[0206] 照明系を、図 22 (a)及び (b)に示すように構成することにより、照明系を後に詳述す る画像読取装置に組み込む場合に、照明系を、画像を読み取るための結像レンズに 隣接させて配置する(並置する)ことができる。このような照明系及び画像読取装置の 配置を採用することによって、画像読取装置全体の厚さの増加が抑制される。言い 換えれば、実施例 6に示すような配置によれば、従来の照明方法による照明装置の 構成が不要であるので、画像読取装置全体の厚さを減少させることができる。
実施例 7
[0207] [実施例 7]
本発明による画像読取装置の実施例 7における照明装置のような照明系を、図 23 及び 24を参照しながら説明する。
[0208] 図 23は、本発明による画像読取装置の実施例 7における第一の照明系を説明する 図である。ここで、図 23 (a)は、第一の照明系の上面図であり、図 23 (b)は、第一の 照明系の正面図である。図 24は、本発明による画像読取装置の実施例 7における第 二の照明系を説明する図である。ここで、図 24 (a)は、第二の照明系の上面図であり 、図 24 (b)は、第二の照明系の正面図である。
[0209] 実施例:!〜 6においては、統合レンズ(7)を照明レンズ(5)の直近に配置しているが 、集光レンズ(3)又は照明レンズ(5)により分割されたそれぞれの光束の光軸(副光 軸)を、照明対象面(9)の中心に一致させることができれば、統合レンズ(7)は、照明 対象面(9)と照明レンズ(5)との間におけるいずれの場所に配置してもよい。
[0210] 例えば、図 23に示すように、統合レンズ(7p)を、照明対象面(9p)及び照明レンズ (5p)の中間に置くこともできる。ここで、集光レンズ(3p)の焦点距離 flは、 fl = cを 満たし、照明レンズ(5p)の焦点距離 f2は、 f2 = l/ ( (l/b) + (1/c) )を満たし、統 合レンズ(7p)の焦点距離 fOは、 fO = a=bを満たす。
このとき、集光レンズ(3p)によって分割された mlの幅を備えた光束は、統合レンズ( 7p)の位置で mO'の幅を備えた光束に拡大される。そして、統合レンズ(7p)は、 mO' の一定の幅を備えた光束を、平行光として、照明対象面(9p)に照射する。ここで、集 光レンズ (3p)を構成する各シリンダレンズで分割された光束の副光軸は、統合レン ズ(7p)までは平行に延びる力 S、この統合レンズ(7p)によって、照明対象面(9p)の 中心に一致させられる。その結果、集光レンズ (3p)を構成する各シリンダレンズの幅 mlが、照明対象面(9p)における mOの幅に対応し、集光レンズ (3p)を構成する各 シリンダレンズによって分割された光束は、照明対象面(9p)において重畳されて、照 明対象面(9p)を照射する。
[0211] さらに、図 24に示すように、統合レンズ (7q)を、光源(lq)と集光レンズ (光束分割 レンズ)(3q)との間に配置してもよい。ここで、統合レンズ(7q)の焦点距離 fOは、 fO = a + b + cを満たし、集光レンズ(3q)の焦点距離 flは、 fl =bを満たし、照明レンズ (5q)の焦点距離 f 2は、 f 2 = 1/ ( (1/a) + (l/b) )を満たす。集光レンズ (3q)を構 成するシリンダレンズの大きさと照明レンズ(5q)を構成するシリンダレンズの大きさの 比が、 ml/m2= (a + b) /aを満たすとき、図 7に示す照明系の性能と同等の性能 を得ること力 Sできる。
[0212] また、統合レンズを集光レンズと照明レンズとの間に配置してもよい。すなわち、集 光レンズ (光束分割レンズ)によって分割されたそれぞれの光束の光軸(副光軸)が、 照明レンズの光軸と一致するように、且つ、それら光束の副光軸が、統合レンズによ つて、照明対象面上において一致するように、照明系を構成することができる。
実施例 8
[0213] [実施例 8]
本発明による画像読取装置の実施例 8における照明装置のような照明系を、図 25
A及び 25B並びに図 26を参照しながら説明する。
[0214] 図 25Aは、直線状に配置された複数の LED及び LEDから発散された光を平行光 に変換する反射鏡を有する光源を説明する図である。ここで、図 25A (a)は、その光 源の側面図であり、図 25A (b)は、その光源の上面図である。図 25Bは、回転放物 面鏡に対する LEDペレットの配置及び LEDペレットから放出される光束の放射べタト ルを説明する図である。
[0215] 図 26は、二次元的に配置された複数の LED及び LEDから発散された光を平行光 に変換する反射鏡を有する光源を説明する図である。ここで、図 26 (a)は、その光源 の側面図であり、図 26 (b)は、その光源の上面図であり、図 26 (c)は、その光源の正 面図である。
[0216] 上記実施例 1、 2、 6及び 7においては、 LEDの発光面から放射される光を、レンズ を用いて、平行光とするのに対して、実施例 8においては、以下に説明するように、 L EDの発光面から放射される光を、反射鏡を用いて、平行光にする。
[0217] 製造することが容易である反射鏡は、球面鏡であり、球面鏡の半径が、 rであるとき 、 LEDの発光部を、球面の中心から r/2の位置に置くことによって、ほぼ平行光を 得ること力 Sできる。し力 ながら、図 25A及び B並びに図 26に示すように、放物面鏡( 2r, 2s)を用いることが、最良の方法である。
[0218] 図 25A及び Bに示す光源においては、複数の放物面鏡(2r) 、直線的に配置さ れ、 LEDのペレット(21)の発光面は、 LEDの光軸に対して垂直であり、放物面鏡(2 r)の焦点に置かれる。放物面鏡(2r)の本体は、透明樹脂(例えば、アクリル樹脂)で 形成され、放物面(2r)の放物面にアルミを蒸着することによって、放物面の全反射 鏡が得られる。このようにして、品質の高い平行光を得ることができる。しかしながら、 図 25Aのような単純な光源の構成においては、図 25Bに示すように、 LEDのペレット (21)の発光面に鉛直な方向に放出された光束の光量が、最も高いが、その光束は 、回転放物面鏡で反射された後、 LEDのペレット(21)自体、電気導線(20)、及びリ ード線(22)によって遮られてしまう。その結果、光源からの出力が低下して、照明系 の照明の効率が低下する。
[0219] 図 26 (a)、 (b)及び(c)に示す光源は、直線状に配置された LEDを有する上述した 単純な光源の欠点を除去し、光源から放出された光束の利用率を向上させるもので ある。すなわち、複数個の LEDの列を並置して、光源から放出された光の集積効率 を向上させている。
[0220] 図 26 (a)、 (b)及び(c)に示す光源において、透明樹脂材料で作られた放物面の 本体にアルミニウムを蒸着することによって得られる鏡面を備えた、反射鏡としての放 物面鏡(2s)、及び放物面鏡(2s)の焦点の位置に置かれた LEDのペレット(21)は、 図 25A及び Bに示す光源におけるものとのと同じである。しかしながら、図 25A及び Bに示す光源とは異なり、 LEDのペレット(21)の発光面を、放物面鏡(2s)の光軸に 対して ±45° だけ傾斜させ、 LEDのペレット(21)の発光面から放出される光を、二 つの方向に分けている。このような光源においては、 LEDのペレット(21)の発光面 に対して垂直な方向に放出されて放物面鏡から反射される高い強度の光が、 LED のペレット(21)自体、電気導線(20)及びリード線(22)によってあまり遮られず、 LE Dのペレット(21)自体、電気導線(20)及びリード線(22)によってあまり遮られ得るの は、 LEDのペレット(21)の発光面に対して斜めの方向に放出されて放物面鏡から反 射される比較的低い強度の光である。よって、光源の出力低下及び照明系の照明効 率の低下を減少させることができる。また、複数の LEDの列を並べるときは、図 26 (a )及び (b)に示すように、放物面鏡のずれたハニカム構造を採用することができるの で、光源の面積の利用率も向上させることができる。
実施例 9
[0221] [実施例 9]
本発明による画像読取装置に関する実施例 9を、図 27、図 28、及び図 29を参照し ながら説明する。
[0222] 図 27は、一体化された照明系及び読取系を用いる、実施例 9の画像読取装置の 上面図である。また、図 28は、一体化された照明系及び読取系を用いる、実施例 9 の画像読取装置の正面図である。なお、図 27及び図 28においては、第 1および第 2 走行体を省略している。また、図 27においては、折り返しミラー及び変向ミラーを省 略しているので、原稿(25)面とコンタクトガラス(26)を 90度展開して示す。なお、図 28においては、第 1走行体に設けられたミラーが示されている。図 27及び図 28は、 主走査方向の読み取りを説明する。
[0223] 実施例:!〜 8においては、主に照明系(照明装置)を説明してきたが、実施例 9にお いては、以上説明した照明系及び結像系が一体化された画像読取装置を説明する
。実施例 9においては、実施例:!〜 8における照明系の概念を、単純に画像読取装 置に適用するだけでなぐ原稿面の画像の読み取りもまた改善される。
[0224] 例えば、図 7に示される照明系を図 1 (a)及び (b)に示す画像読取装置に組み込む 場合は、図 27に示すように、画像読取装置は、原稿(25)を置くコンタクトガラス(26) 、原稿(25)面の画像を撮像素子(27)に結像させる結像手段としての結像レンズ (2 8)、及び結像レンズ (28)の母線 (主光軸)と平行に配置された照明装置(30)を有 する。照明装置(30)は、少なくとも、光源(31)、原稿(25)面を照明する照明レンズ ( 32)、及び、照明光を原稿面に重畳させる統合レンズ (33)を含む。照明装置(30) は、統合レンズ(9n)の中心から外れた部分に配置される。この場合には、光源(31) 、集光レンズ、照明レンズ (32)、統合レンズ (33)を、(照明装置を称する)ユニットと して結像レンズの横に置くことができる。上記結像系を構成する結像レンズ (28)及び 撮像素子(27)、並びに、照明系を構成する照明装置(30)は、固定されたコンタクト ガラス(26)を有する画像読取装置本体の固定部分に設置される。
[0225] 光源(31)から照射された照明光は、照明レンズ(32)及び統合レンズ(33)によつ て、原稿(25)面の主走査方向に沿って照明することになる(この照明系には、図 22 で説明した方法を用いている)。
[0226] また、光源(31)から照射された光が、統合レンズ(33)によって、原稿(25)の面上 において重畳される。一方、原稿(25)面におけるその重畳された光で照明される場 所の画像を、撮像素子(27)によって読み取るように、結像レンズ(28)などのレイァゥ トを決定する。
[0227] 図 27に示す画像読取装置においては、結像レンズ(28)を、結像レンズ(28)の母 線 (主光軸)が、原稿(25)面の中央を通過するように設置し、撮像素子(27)を、撮 像素子(27)の中心が、結像レンズ(28)の母線に一致するように配置する。この場合 には、結像レンズ (28)による画像の歪みが最も少ない状態で、画像を撮像素子(27 )上に結像させることができる。また、統合レンズ(33)の主光軸は、結像レンズ (28) の母線(主光軸)に完全に一致する。結像レンズ(28)の母線をシフトさせると、結像 レンズ(28)の母線は、統合レンズ(33)の主光軸と一致せずに平行となる。 [0228] ここで、例えば、照明の光量を 2倍にする必要がある場合は、(図 27に二点鎖線の 矩形で示した)第 2の照明装置(30')を、結像レンズ (33)の主光軸を中心にして、第 1の照明装置(30)と対称な位置に配置すればよい。もちろん、第 1の照明装置と第 2 の照明装置の役割を、照明光の色について分担してもよい。例えば、第 1の照明装 置は、 R (赤)及び G (緑)の照明を提供し、第 2の照明装置は、 B (青)の照明を提供 する。また、色の分配及び組み合わせは、特に限定されない。
[0229] なお、図 27においては、結像レンズ(28)を有する結像系(撮像系)が、原稿(25) 面の中央に配置されているが、照明装置(30)を有する照明系を、照明装置(30)が 原稿(25)面の中央に配置されるように、結像系と入れ替えてもよい。また、結像系及 び照明系を、原稿(25)面の中央を通る線(図 27中の母線:主光軸)の両側に配置す ることちでさる。
[0230] 図 18に示すような画像読取装置においては、原稿面に対して垂直な方向で原稿 面を照明すると、コンタクトガラス(26)の表面反射光又は光沢を備えた原稿(25)面 からの反射光が、結像レンズ(28)に入り、ハレーションを起し、その結果、低い質の 読取画像が得られることがある。
[0231] ここで、このような問題を解決する画像読取装置を、図 28を参照しながら説明する。
図 28に示す画像読取装置においては、撮像素子(35)用の結像レンズ (36)の読取 光軸(37)及び照明装置 (40)の統合レンズ (43)の照明光軸(38) 、折り返しミラー (44)などを経て、原稿面 (45)に到達している。ここで、上述したように、読取光軸(3 7)は、照明光軸(38)と完全に一致している。一方、原稿面 (45)へ延びる光軸 (47) は、原稿面(45)の法線(46)と一致させずに、原稿面(45)の法線(46)に対して一 定の角度を有する。
[0232] 光軸 (47)に沿った照明光は、原稿面 (45)に到達して反射される際、反射光の正 反射成分は、正反射光軸 (48)の方向に反射される。この正反射光軸 (48)の方向は 、読取光軸である光軸 (47)の方向と異なるため、撮像素子(35)には、原稿面 (45) で反射された光の正反射光成分が入射しない。すなわち、原稿面 (45)に到達した 照明光のうち拡散反射成分のみが、撮像素子(35)に入射することになる。よって、 撮像素子における画像の読み取りは、原稿面 (45)の光沢の変動に影響されないこ とになる。 (正反射光成分が、撮像素子(35)に入射すると、原稿の光沢度によって撮 像素子(35)に入射する光量が変動することになり、原稿の画像濃度の正確な読み 取りが、困難になる。)
また、原稿面 (45)へ延びる光軸 (47) 原稿面 (45)の法線 (46)と一定の角度を 有するように、例えば、折り返しミラー(44)の傾斜角度を調整することによって、原稿 面 (45)の法線 (46)に対する原稿面 (45)へ延びる光軸 (47)の角度を設定すること ができる。例えば、 2つの走行体を用いる画像読取装置においては、第 1走行体に設 置されている折り返しミラーの角度を変更することによって、原稿面に対する読取光 軸及び照明光軸の角度を設定することができる。
[0233] 図 29は、図 1 (a)及び (b)に示す画像読取装置に対応する、図 27及び図 28に示し た画像読取装置を説明する図である。図 29において、図 1 (a)及び (b)に示す符号 を、図 27及び図 28に示す符号と対応させている。
[0234] 本発明による照明装置を用いる画像読取装置(100)においては、画像読取装置( 100)を正面から見たとき、照明装置 (40)の照明光軸(38)は、結像レンズ(102 (36 ) )及び 1次元撮像素子(101 (35) )の読取光軸(37)と一致している。
[0235] 照明装置 (40)の光源 (41)から放出された光束は、統合レンズ (43)を通過し、第 2 走行体(104)上に設けられた二つの折り返しミラー(112a, 112b)で折り返されて、 第 1走行体(103)に設けられた変向ミラー(113 (44) )で反射されて、コンタクトガラ ス(108)上の原稿(107 (45) )を照明する。その際、第 2走行体(104)上の二つの 折り返しミラー(112a, 112b)の各々において、光は、直角に折り曲げられるので、 光源からの光束は、第 2走行体へ入射する方向と反対の方向に反射される。二つの 折り返しミラー(112a, 112b)によって反射された光束は、第 1走行体(103)に設け られた変向ミラー(113)によって、直角よりもわずかに大きい角度で折り返されるので 、その光束は、コンタクトガラス(108)及び原稿(107 (45) )面に垂直な方向に対して わずかに傾斜した角度で入射する。そのため、コンタクトガラス(108)及び原稿(107 (45) )の各面で反射された直接反射光 (48)は、入射光 (47)とは反対に進行し、変 向ミラー (113)には戻らない。一方、原稿 (107 (45) )面は、一般的には、紙面であ るため、入射光 (47)の大部分は、散乱反射される。そして、入射光 (47)と(正面図 上で)重なる母線上に反射された光の成分 (ベクトル)は、画像光となって変向ミラー(
113)に向けられ、第 2走行体(104)上の折り返しミラー(112a, 112b)へ向けられる 。画像光は、さらに第 2走行体(104)上の二つの折り返しミラー(112a, 112b)によ つて、直角に折り曲げられるので、原稿(107 (45) )面からの画像光は、第 2走行体 へ入射する方向と反対の方向に反射され、結像レンズ(102 (36) )を通じて 1次元撮 像素子(101 (35) )に結像される。
[0236] 言い換えると、照明装置 (40)からの照明光が、コンタクトガラス(108)上のライン状 の撮像領域(111)を照明し、撮像領域(1 11)における原稿(107 (45) )面の画像が 、 1次元撮像素子(101 (35) )上に結像させられる。結像させられた画像光は、撮像 素子(101 (35) )によって光電変換され、電気信号として 1次元(主走查方向)の画像 情報を得ることができる。
[0237] また、この画像読取装置(100)では、第 1走行体(103)及び上記第 2走行体(104 )が、モータ(105)による駆動力を、駆動伝達手段(106)を通じて受け、第 1走行体(
103)は、第 2走行体(104)の速度の 2倍である速度で走行する。その結果、コンタク トガラス(108)面に対する結像レンズ(102 (36) )の結像位置が、 1次元撮像素子(1 01 (35) )面に維持されつつ、光力 コンタクトガラス(108)面において、ライン状の撮 像領域(111)と垂直な方向に且つコンタクトガラス(108)と平行に、走行する。このよ うにして、コンタクトガラス(108)上に置かれた原稿(107 (45) )の画像を、 1次元撮 像素子(101 (35) )にて順次読み出して、 2次元に取得する。また、第 1走行体(103 )及び上記第 2走行体(104)の走行速度の比は、 2 : 1に設定されるので、第 2走行体 (104)の移動距離は、第 1走行体(103)の移動距離の半分であり、撮像領域(111) 力 結像レンズ(102 (36) )又は 1次元撮像素子(101 (35) )までの距離は、第 1走 行体(103)及び第 2走行体(104)の位置によらず、一定である。このように、コンタク トガラス(108)上に置かれた原稿(107 (45) )の画像を、 1次元撮像素子(101 (35)
)に結像させて、逐次 1次元画像情報を得ながら、第 1走行体(103)及び第 2走行体 (104)を、副走查方向において走行させるので、第 1走行体(103)及び第 2走行体(
104)の走行完了後には、 2次元の画像情報を取得することができる。
[0238] なお、折り返しミラー(112a, 112b)及び変向ミラー(113)を、板状の反射板として 図示している力 これらのミラーのいずれについても、プリズムの全反射のような他の 反射面を用いてもよい。特に、第 2走行体上の折り返しミラー(112a, 112b)を、プリ ズムで置き換えると、反射面の精度を容易に向上させることができ、第 2走行体の組 み立ても容易になる。
[0239] 以上説明したように、実施例 9の画像読取装置は、次のような効果を有する。
[0240] 照明装置を第 1走行体上に置く必要がなぐ結像系を構成する結像レンズ及び撮 像素子の付近に置くことができるので、画像読取装置の高さ方向における照明装置 のための寸法が必要なくなり、結果として、画像読取装置の薄型化を達成することが できる。
[0241] また、照明装置 (光源)を第 1走行体上に設置する必要がなぐ画像読取装置本体 の固定した部分に設置することができるので、フレキシブルな電源ラインが不要となり 、信頼性の向上及び低コストィヒを実現することができる。
[0242] カロえて、原稿面の付近に反射性の部材を置く必要がないので、原稿面に照射され た照明光が再反射されることがなくなり、フレアを殆ど除去することができる。
[0243] さらに、原稿面に対して照明光を斜めに入射させると、原稿面での正反射光成分が 、結像レンズに入射することがなぐ原稿面を照らす照明光のうち、拡散反射成分の みを撮像素子に入射させることになる。その結果、原稿面の光沢の変動の影響を受 けることなぐ原稿の画像濃度を正確に読み取ることが可能となる。
[0244] また、原稿面に対して鉛直に近レ、方向から光を照射することができるので、ブック原 稿の中央部の影を殆ど除去することができる。
[0245] なお、このような画像読取装置を複写機のような画像形成装置に組み込むことは、 従来の画像読取装置を複写機に組み込む場合と同様に容易に行うことができる。
[0246] ところで、図 29に示す画像読取装置においては、副走查方向(72)において、照明 光の光軸及び読取光軸は、互いに対して一致し、照明光及び画像光の両方が、変 向ミラー及び二つの折り返しミラーで反射される。
[0247] 図 30は、画像読取装置におけるフレアの発生を説明する図である。図 30に示すよ うに、変向ミラー(113)及び下側の折り返しミラー(112b)の鏡面は、上側に向けられ ている。このため、変向ミラー(113)及び下側の折り返しミラー(112b)の鏡面には、 塵又は埃(51)が容易に付着する。そして、これらの鏡面に塵又は埃(51)が付着す ると、照明光が、これらの鏡面で反射されるとき、照明光は、それら鏡面に付着した塵 又は埃(51)によって乱反射されて、フレア光(52)を生じる。このフレア光は、直接、 結像レンズ(102)に入射し、原稿面からの画像光に重なり合レ、、一次元撮像素子(1 01) (例えば、 CCD)上で検出されることになる。その結果、得られた画像に白みがか 力、るという黒浮き現象力 発生することがある。
[0248] また、光源に LEDを用いる上述した照明系を画像読取装置に組み込むと、光源に おける LEDから放出された光束の中で、 LEDに取り付けられた平行化レンズの焦点 位置から放出された光束は、概略、照明対象面における撮像領域に届くが、実際の LEDは、ある体積を有し、平行化レンズの焦点の位置以外の位置から放出される光 束は、平行化レンズの焦点の位置から放出される光束よりも多い。すなわち、照明装 置から平行光として放出される光束以外の照明装置から発散する光束も多ぐ照明 光の多くの光束が、照明されることが望まれる撮像領域の付近に分散してしまうので 、照明光の利用率は、低下してしまう。また、ある体積を有する光源を、平行化レンズ の焦点付近に配置すると、照明対象面における撮像領域において、その光源は、 L EDに取り付けられた平行化レンズの焦点距離 f3に対する統合レンズの焦点距離 f0 の比 f0/f3の割合で拡大されて投射される。このことは主走査方向の面では 100倍 を超えた拡大率で照明するので f0/f3の割合を十分超えており問題とならないが、 副走査方向の面では f0/f3の割合を大きく上回った拡大率となってしまう。すなわち 、照明対象面において、副走査方向の面では統合レンズで光束を絞ろうとしても絞り きれず、撮像領域(111)に照射される光束が減少してしまう。
実施例 10
[0249] [実施例 10]
実施例 10は、照射対象面における照度むらをより容易に低減することがきる、より 高い光利用率を備えた画像読取装置を、図 31を参照して説明する。
[0250] 図 31は、読取用の光を反射するエリアの周辺部分が折り曲げられた変向ミラーを 用いる画像読取装置の例を示す図である。
[0251] 図 31に示すように、変向ミラー(113)における読取用の光 (原稿面の画像光)(47) を反射するエリアの周辺部分を折り曲げる。 (なお、従来の画像読取装置においては 、変向ミラーの機械的強度を維持するために、読取用の光を反射する面積の数倍の 寸法を有する変向ミラーを用いていた。)このような変向ミラー(113)は、図 31に示す ように、ある体積を有する LEDから放出され且つ照明装置 (40)から発散して射出さ れた光束を、その光束の光軸を折り曲げることによって、原稿面(107)における読取 領域(111)に集めることができる。より具体的には、図 31に示す変向ミラー(113)は 、照明装置 (40)から平行に射出された光束及び照明装置 (40)から発散して射出さ れた光束を原稿面(107)における読取領域(111)に集めることができ、照明光の利 用率を 3倍程度まで高めることが可能となる。なお、副走查方向(72)において、原稿 面(107)における読取領域(111)の幅(実際のカラー読取装置では、 3mm程度)を 考慮して、変向ミラー(113)の折り曲げた部分の数を増加させる(例えば、 2〜6個の 部分)と、おおむね変向ミラー(113)の折り曲げた部分の数に比例して、照明装置か ら放出される照明光の利用率を向上させることができる。
実施例 11
[0252] [実施例 11]
実施例 11は、より高い光利用を備えた照明系を、図 32を参照して説明する。
[0253] 図 32は、本発明による、より高い光利用を備えた照明系の例を説明する図である。
ここで、図 32 (a)は、実施例 11における第一又は第二の照明系の上面図であり、図 32 (b)は、実施例 11における第一の照明系の正面図であり、図 32 (c)は、実施例 1 1における第二の照明系の正面図である。
[0254] 図 32に示す第一又は第二の照明系は、 LED及び LEDから放出される発散光を平 行光に変換するリフレクタを含む複数の光源(1)、光源から放出される光束を分割す る集光レンズ (3)、分割された光束を照明対象面(9)に照明する照明レンズ (5)、図 32 (a)に示す面内で(画像読取装置の主走查方向(71)について)分割された光束 を照明対象面(9)上で重畳させる統合レンズ(7)、並びに、図 32 (b)又は図 32 (c) に示す面内で (画像読取装置の副走査方向(72)について)分割された光束を照明 対象面(9)上に集束させる集束レンズ (8)を有する。
[0255] 図 32に示す第一又は第二の照明系を、図 7に示す照明系と比較すると、図 32に示 す第一又は第二の照明系においては、集光レンズ(3)及び照明レンズ(5)は共通で あるが、統合レンズ(7)として、図 7に示す通常のレンズに代えて、シリンダレンズを用 いている。また、図 32に示す第一又は第二の照明系においては、統合レンズ (7)用 のシリンダレンズと直交する方向に配置されたシリンダレンズを、集束レンズ (8)として 、照明対象面の付近に配置する。図 32に示す第一又は第二の照明系において、統 合レンズ (7)を構成するシリンダレンズの焦点距離は、図 7に示す統合レンズの焦点 距離と同じである aであり、集束レンズ (8)を構成するシリンダレンズの焦点距離は、 a' である。ここで、 aは、統合レンズ (7)から照明対象面(9) (撮像領域)までの距離であ り、 a'は、集束レンズ 8から照明対象面(9) (撮像領域)までの距離である。統合レンズ (7)は、例えば、図 8Bに示すような形状を有するシリンダレンズであり、集束レンズ (8 )は、例えば、図 8Cに示すような形状を有するシリンダレンズである。 (なお、図 32に おいて、 LEDから放出される発散光を平行光に変換するリフレクタは、 LEDの位置 が焦点である回転放物面であり、その回転放物面の焦点距離は、 LED力らリフレクタ の先端までの距離である。 )
図 32に示す第一又は第二の照明系においては、図 32 (a)に示す面内では、 LED 力 放出された光束は、回転放物面鏡によって平行光に変換され、集光レンズとして のシリンダレンズアレイ(3)によって複数の光束に分割され、照明レンズとしてのシリ ンダレンズアレイ(5)によって照明対象面(9)上に照明される。そして、分割された光 束は、統合レンズ(7)及び集束レンズ (8)を通過するが、統合レンズ(7)としてのシリ ンダレンズによって、照明対象面(9)上で重畳される。なお、集束レンズ (8)は、図 32 (a)に示す面内では、平行平面板とみなすことができる。
[0256] 一方、図 32 (b)又は(c)に示す面内では、 LEDから放出された光束は、回転放物 面鏡によって平行光に変換され、平行平面板とみなすことができる集光レンズ (3)、 照明レンズ(5)及び統合レンズ(7)を平行光として通過し、集束レンズ (8)としてのシ リンダレンズによって照明対象面上に集束する。
[0257] 図 32に示す第一又は第二の照明系においては、光源 LEDの像は、図 32 (a)に示 す面内では、 MZm= (a + b) Zcの比で、照明対象面(9)上に拡大されることになる 。なお、 bは、照明レンズ(5)と統合レンズ(7)との間の距離であり、 cは、集光レンズ( 3)と照明レンズ(5)との間の距離である。図 32 (b)又は図 32 (c)に示す面内では、 光源 LEDの像は、光源(1)の回転放物面の焦点距離に対する集束レンズ (8)として のシリンダレンズの焦点距離 a'の比で、照明対象面(9)上に投射される。ここで、集 束レンズ (8)としてのシリンダレンズの焦点距離 a'は、図 7に示す照明系の統合レン ズの焦点距離の 1/10程度にすることができるので、図 32に示す照明系における L EDの像の拡大率は、図 7に示す照明系における LEDの像の拡大率の十分の一に 押さえることができる。すなわち、図 32に示す照明系は、図 32 (b)又は(c)に示す面 内で、図 7に示す照明系に対して 10倍程の光を照射対象面(9)に集束させることが できる。
[0258] 光源(1)は、図 32 (b)に示すように、一つの光源の列を配置してもよぐ図 32 (c)に 示すように、複数の光源の列を配置してもよい。光源(1)における LEDの数(図 32 (a )、(b)で示す第一の照明系においては 4個、図 32 (a)、 (c)で示す第二の照明系に おいては 12個として示している)は、特に限定されない。また、 LEDの発光色は白色 LEDのみでもよレ、し、赤色(R)の LED、緑色(G)の LED、及び青色(B)の LEDを含 でもよレ、。カラーバランスを考慮した場合、光源(1)における赤色 (R)の LEDの数、 緑色(G)の LEDの数、及び青色(B)の LEDの数は、等しくてもよぐ低い発光輝度 を備えた色の LED力 高レ、輝度を備えた色の LEDよりも多くてもょレ、。
[0259] また、図 32 (a)において、光源(1)の数と集光レンズ(3) (及び/又は照明レンズ 5 は、 4 : 5)を、増加させてもよい。この場合には、照明対象面における光の照度分布を 、より容易に均一にすることができる。例えば、光源(1)に対する集光レンズ (3)及び /又は照明レンズ(5)を構成するシリンダレンズの数の比を、 2以上にしてもよレ、。詳 細は後述するが、このようにすると LEDの数が少ないときは照明対象面おける光の 照度分布の均一化に有利である。
[0260] また、図 32に示す照明系は、図 32 (a)に示す面内で(画像読取装置の主走查方 向(71)について)、光源(1)、集光レンズ(3)、及び照明レンズ(5)を、統合レンズ(7 )の光軸(照明光軸の主光軸(61) )を中心に対称的に配置している。
[0261] 図 33は、集束レンズを有し且つ統合レンズの周辺部分を用いる照明系の例を説明 する図である。ここで、図 33 (a)は、その照明系の例の上面図であり、図 33 (b)は、そ の照明系の例の正面図である。図 33に示す照明系においては、図 33 (a)に示す面 内で、光源(1)、集光レンズ(3)、及び照明レンズ(5)を、統合レンズ(7)の中央部分 を除ぐ統合レンズ(7)の周辺部分に配置する。
[0262] 図 34は、本発明による照明系に用いることができるシリンダレンズの形状を示す図 である。図 33に示すような、集束レンズ (8)を有し且つ統合レンズ(7)の周辺部分を 用いる照明系に用いることができる統合レンズ(7)としてのシリンダレンズは、図 34に
Figure imgf000058_0001
[0263] 図 33に示すような照明系については、画像読取装置における読取系(撮像系、結 像系)を、統合レンズの中央部分に配置することができる。すなわち、画像読取装置 における読取系の周囲に照明系を配置する(又は並置する)ことができる。このように して、図 33に示すような照明系を用いることによって、照明系及び読取系を一体化す ること力 Sできる。
[0264] 図 35は、一体化された、集束レンズを含む照明系及び読取系を用いる画像読取装 置の例を説明する図である。図 35に示す画像読取装置は、図 33に示すような照明 装置 40を含む。図 35に示す画像読取装置における照明系は、光源(1)、集光レン ズ(3)、照明レンズ(5)及び統合レンズ(7)を含む照明装置 (40)並びに集束レンズ ( 8)を含む。なお、集束レンズ (8)を、図 35に示すように、変向ミラー(113)の照明装 置側に配置してもよぐ変向ミラー(113)の原稿面(107)側に配置してもよい。図 35 に示す画像読取装置においては、読取系の読取光軸(37)と照明系の照明光軸(3 8) 1S 主走査方向(71)について、重なっている。このため、集束レンズ (8) 単純 なシリンダーレンズであると、原稿(107)面の画像が、集束レンズ(8)によって拡大又 は縮小され、拡大又は縮小された画像が、 1次元撮像素子(101)によって読み取ら れる。このため、集束レンズ (8)における、結像レンズ (読み取り)に入射する画像光 が通過する部分は、集束レンズ (8)の作用を持つべきではなレ、。集束レンズ (8)にお ける、結像レンズ (読み取り)に入射する画像光が通過する部分について、集束レン ズ (8)からその部分のレンズの作用を除くためには、図 35に示すように、集束レンズ( 8)におけるその部分を、平行平面板に形成する (集束レンズ (8)に平坦部を形成す る)か、又は、集束レンズ (8)のその部分を、切り取ればよい(結果として、レンズの中 央部分を有さない二つの集束レンズが得られる。)。
[0265] また、集束レンズ (8)に代えて、原稿(107)面の撮像領域(111)に焦点を有する他 の光束集束素子を用いることもできる。
[0266] 図 36は、光束集束素子としての放物面鏡を有し且つ統合レンズの周辺部分を用い る照明系及び読取系を用いる画像読み取り装置の例を説明する図である。図 37は、 光束集束素子として用いることができる放物面鏡の形状を示す図である。
[0267] 図 36に示すように、図 35に示す画像読取装置において、集束レンズ (8)に代えて 、原稿(107)面の撮像領域(111)又は照明対象面(9)に焦点を有する放物面鏡 (8' )を用いてもよレ、。ここで、放物面鏡(8')は、図 37に示すような放物面鏡である。この ように、原稿(107)面の撮像領域(111)又は照明対象面(9)に焦点を有する放物面 鏡(8')を用いると、放物面鏡(8')は、光束集束素子としての作用に加えて、変向ミラ 一(113)の作用も有する。その結果、変向ミラー(113)を取り除くことができ、画像読 取装置の部品の数を減少させることができる。また、図 36に示す画像読取装置にお いても、読取系の読取光軸(37)と照明系の照明光軸(38)が、主走査方向(71)に ついて、重なっている。このため、放物面鏡(8')が、単純な放物面鏡であると、原稿( 107)面の画像が、放物面鏡(8')によって拡大又は縮小され、拡大又は縮小された 画像が、 1次元撮像素子(101)によって読み取られる。このため、放物面鏡(8')にお ける、結像レンズ (読み取り)に入射する画像光が反射する部分は、放物面鏡(8')の 作用を持つべきではない。放物面鏡(8')における、結像レンズ (読み取り)に入射す る画像光が反射する部分について、放物面鏡(8')からその部分の集光作用を除くた めには、図 36に示すように、放物面鏡(8')におけるその部分を、平面鏡に形成する( 放物面鏡 (8')に変向ミラー部を形成する)。
[0268] 図 38は、光束集束素子としての放物面鏡及び補正レンズを有し且つ統合レンズの 周辺部分を用いる照明系並びに読取系を用いる画像読み取り装置の例を説明する 図である。図 38に示す画像読取装置においては、光束集束素子としての放物面鏡( 8')を用いている力 放物面鏡(8')に平面鏡を形成していなレ、。図 38に示す画像読 取装置は、放物面鏡(8')によって拡大又は縮小された画像を、逆に、縮小又は拡大 する補正レンズ (8")を有する。すなわち、撮像領域(111)からの画像光は、放物面 鏡 (8') (焦点距離 =a')によって、平行光にされるので、逆の符号の焦点距離(= 1 / (1/a+ l/a') )を有する凹シリンダレンズを、補正レンズ (8")として、読取系の 結像レンズの直前に配置する。これにより、撮像領域(111)における画像を、正常に 、一次元撮像装置(CCD)上に結像させることができる。なお、補正レンズ (8")は、 読取系にのみ配置され、照明系には配置されない。
[0269] なお、図 35に示すような画像読取装置において、読取系に対応する、集束レンズ( 8)としての凸シリンダレンズに平坦部を設ける又は集束レンズ(8)としての凸シリンダ レンズの一部を切り取ることなぐ集束レンズ (8)及び補正レンズ (8")を用いてもよい 。すなわち、撮像領域(111)からの画像光は、集束レンズ (8) (焦点距離 = a')によつ て、平行光にされるので、逆の符号の焦点距離( = lZ(lZa+ lZa'))を有する凹 シリンダレンズを、補正レンズ (8")として、読取系の結像レンズの直前に配置する。こ れにより、撮像領域(111)における画像を、正常に、一次元撮像装置(CCD)上に結 像させることができる。なお、補正レンズ (8")は、読取系にのみ配置され、照明系に は配置されない。
実施例 12
[0270] [実施例 12]
実施例 12は、撮像領域(111)における画像が光束集束素子によって拡大又は縮 小されない画像読取装置の例を、図 39A及び B並びに図 40A〜Dを参照して、説明 する。光束集束素子が撮像領域(111)における画像を拡大又は縮小することを防止 するためには、画像読取装置の主走查方向(71)と直交する方向において、読取光 軸及び照明光軸を分離する。
[0271] 図 39Aは、照明装置を結像レンズの上側に配置した画像読取装置の例を説明す る図である。図 39Bは、照明装置を結像レンズの下側に配置した画像読取装置の例 を説明する図である。
[0272] 図 39A及び図 39Bに示すように、読取光軸(37)及び照明光軸(38)は、画像読取 装置の主走査方向(71)と直交する方向において、互いに平行に分離され、二つの 折り返しミラー(112a)及び(112b)で互いに平行に折り返される。ここで、二つの折り 返しミラー(112a)及び(112b)の各々は、互いに平行に分離された照明光及び読 取光の両方を反射させることができるような面積を有する。読取光軸(37)は、変向ミ ラー(113)によって折り返され、原稿(107)面の撮像領域(111)に交差する。照明 光軸いついては、変向ミラーの近傍に、光束集束素子としての放物面鏡(8')を置く。 なお、この放物面鏡(8')の焦点は、撮像領域(111)に位置させる。言い換えれば、 読取光軸(37)及び照明光軸(38)を、撮像領域(111)のある位置で一致させる。
[0273] 図 39Aに示すように、照明装置 (40)を結像レンズの上側に配置すると、照明光軸(
38)及び読取光軸(37)が、折り返しミラー(112b)によって折り返される前には、照 明光軸(38)は、読取光軸(37)の上側に位置する。一方、照明光軸(38)及び読取 光軸(37)が、折り返しミラー(112a)によって折り返された後には、照明光軸(38)は 、読取光軸(37)の下側に位置する。その結果、放物面鏡(8')は、変向ミラー(113) の下側に配置され、照明光は、変向ミラー(113)より下側に配置された放物面鏡(8' )から撮像領域(111)に向かって反射される。なお、放物面鏡(8')は、変向ミラー(1 13)より前側に配置してもよく(i)、変向ミラー(113)より後側に配置してもよい(ii)。
[0274] 図 39Bに示すように、照明装置 (40)を結像レンズの下側に配置すると、照明光 軸(38)及び読取光軸(37)力 折り返しミラー (112b)によって折り返される前には、 照明光軸(38)は、読取光軸(37)の下側に位置する。一方、照明光軸(38)及び読 取光軸(37)が、折り返しミラー(112a)によって折り返された後には、照明光軸(38) は、読取光軸(37)の上側に位置する。その結果、放物面鏡(8')は、変向ミラー(11 3)の上側に配置され、照明光は、変向ミラー(113)より上側に配置された放物面鏡( 8')から撮像領域(111)に向かって反射される。なお、放物面鏡(8')は、変向ミラー( 113)より前側に配置してもよく(i)、変向ミラー(113)より後側に配置してもよい(ii)。
[0275] なお、図 39A及び 39Bにおいて、二つの放物面鏡(8')を変向ミラー(113)の前側
(i)及び後側 (ii)に配置し、それぞれの放物面鏡 (8')に、照明装置 (40)から放出さ れる照明光を照射できるようにすることもできる。この場合には、変向ミラー(113)の 前側に配置された放物面鏡 (8')は照明光軸(38)の上半分ないしは下半分をカット して用いる。そうすることにより、前側に配置された放物面鏡から反射された光は、変 向ミラー(113)の前側から撮像領域(111)を照明する。また、前側に配置された放 物面鏡で反射されなかった照明光軸(38)の上半分か下半分のどちらかの光束は変 向ミラー(113)の後側に配置された放物面鏡(8')から反射され、変向ミラー(113) の後側から撮像領域(111)を照明する。このように、変向ミラー(113)の前側及び後 側から撮像領域(111)を照明することによって、ブック原稿を読み取る際に、ブック原 稿の画像の中央に陰及び/又は黒線が生じることを低減することができる。
[0276] 図 39A及び図 39Bに示す画像読取装置においては、二つの折り返しミラー(112a )及び(112b)を読取系及び照明系で共用している。
[0277] 図 40A〜Dは、読取光軸及び照明光軸の分離に関する様々な様式を説明する図 である。図 40A〜Dにおいては、図 39A又は図 39Bに示す二つの折り返しミラー(1 12a)及び(112b)の少なくとも一方を、二つの折り返しミラーに分割する。
[0278] 図 40Aは、上側の折り返しミラーを二つの折り返しミラーに分割すると共に読取光 軸を下側に配置し照明光軸を上側に配置する例を示す図である。すなわち、図 39A 及び図 39Bに示す画像読取装置において、上側の折り返しミラー(112a)を、図 40 Aにおレ、ては、二つの折り返しミラー(112a)及び(112c)に分割すると共に読取光 軸(37)を下側に配置し照明光軸(38)を上側に配置する。
[0279] 図 40Bは、下側の折り返しミラーを二つの折り返しミラーに分割すると共に読取光 軸を下側に配置し照明光軸を上側に配置する例を示す図である。すなわち、図 39A 及び図 39Bに示す画像読取装置において、下側の折り返しミラー(112b)を、図 40 Bにおレ、ては、二つの折り返しミラー(112b)及び(112c)に分割すると共に読取光 軸(37)を下側に配置し照明光軸(38)を上側に配置する。
[0280] 図 40Cは、下側の折り返しミラーを二つの折り返しミラーに分割すると共に読取光 軸を上側に配置し照明光軸を下側に配置する例を示す図である。すなわち、図 39A 及び図 39Bに示す画像読取装置において、下側の折り返しミラー(112b)を、図 40 Bにおレ、ては、二つの折り返しミラー(112b)及び(112c)に分割すると共に読取光 軸(37)を上側に配置し照明光軸(38)を下側に配置する。
[0281] 図 40Dは、上側及び下側の折り返しミラーをそれぞれ二つの折り返しミラーに分割 すると共に読取光軸を内側に配置し照明光軸を外側に配置する例を示す図である。 すなわち、図 39A及び図 39Bに示す画像読取装置において、上側の折り返しミラー (112a)及び下側の折り返しミラー(112b)を、図 40Dにおいては、四つの折り返しミ ラー(112a)、 (112b) , (112c)及び(112d)に分割すると共に、図 39A及び図 39B における読取光軸(37)及び照明光軸(38)の配置を交換する。
[0282] このように、図 39A及び図 39Bに示す画像読取装置において、二つの折り返しミラ 一(112a)及び(112b)の少なくとも一方を分割することによって、読取光軸(37)及 び照明光軸(38)の配置を、したがって、読取系及び照明系の配置を、 自由に選択 すること力 Sできる。
[0283] そして、画像読取装置の主走查方向(71)に直交する方向において、読取系の鏡 筒及び照明装置 (40)が互いに接触する又は分離するように、読取光軸(37)及び照 明光軸(38)を分離すれば、図 33に示す照明系の構成ではなぐ図 32に示す照明 系の構成を用いることができる。
実施例 13
[0284] [実施例 13]
実施例 13は、画像読取装置内に付着した塵又は埃によるフレアを低減することが できる画像読取装置を、図 41を参照して、説明する。
[0285] 図 41は、画像読取装置内に付着した塵又は埃によるフレアを低減することができる 画像読取装置の例を説明する図である。
[0286] 図 41に示すように、画像読取装置を長年の間使用する間に、画像読取装置内に 塵及び/又は埃 51が侵入し、その塵及び Z又は埃 (51)は、画像読取装置内の様 々な場所に付着する。照明光が、画像読取装置内のミラーの鏡面で反射するとき、 一般には、照明光の大部分が、その鏡面で反射され、照明光のわずかな残りの部分 が、ミラーによって吸収される。し力 ながら、塵及び Z又は埃(51)が、ミラーの鏡面 に付着すると、照明光は、ミラーの鏡面に付着した塵及び Z又は埃によって、あらゆ る方向に乱反射される。具体的には、画像読取装置における変向ミラー(113)、折り 返しミラー(112a、 112bなど)、及び光束集束素子としての放物面鏡(8')のようなミラ 一の鏡面に塵及び/又は埃(51)が付着し得る。そして、塵及び/又は埃(51)が付 着した鏡面に、照明光が入射すると、照明対象面の方向以外の方向に散乱する散 乱光(52)が、発生し、その散乱光(52)の一部分が、結像レンズ(102)に入射するこ とがある(フレアの発生)。
[0287] このような結像レンズへの、塵及び/又は埃 51によって発生する散乱光の入射を 低減するために、塵及び/又は埃の侵入を防止するように、画像読取装置を密閉す ること、及び、鉛直方向に対して 90° よりも小さい角度の方向に延びる法線を備えた 面を含む鏡面を有する部材を密閉する(例えば、第 1走行体(103)及び第 2走行体( 104)の光が通過しない部分を密閉する)ことが考えられる力 これらの方法は、あまり 現実的ではない。
[0288] そこで、ミラーの鏡面の法線力 S、鉛直方向に対して 90° 以上の角度の方向に延び るように、ミラーを配置する。また、鉛直方向に対して 90° よりも小さい角度の方向に 延びる法線を備えたミラーの鏡面によって散乱される光が、結像レンズ(102)に入射 しない( 1次元撮像素子(101)に結像しなレ、)ように、ミラーを配置する又は遮光板( 5 3)のような遮光部材を設ける。このようにして、画像読取装置内に付着した塵又は埃 によるフレアを低減することができる。
[0289] 具体的には、図 41に示すように、照明光を反射する折り返しミラーのうち、照明光を 上側に反射する折り返しミラーを、鉛直方向に対して 90° 以上の角度の方向に延び る法線を備えた鏡面を有する折り返しミラー(112c)及び鉛直方向に対して 90° より も小さい角度の方向に延びる法線を備えた鏡面を有する(112d)に分割し、折り返し ミラー(112d)から散乱される光力 結像レンズ(102)に入射しないように、折り返しミ ラー(112d)を配置するか、又は、折り返しミラー (112d)に遮光板(53)を設ける。ま た、光束集束素子としての放物面鏡(8')の鏡面の法線が、鉛直方向に対して 90° 以上の角度の方向に延びるように、放物面鏡(8')を配置し、放物面鏡(8')によって 反射された光を撮像領域(111)へ反射する折り返しミラー(112e) (平面鏡)を、折り 返しミラー(112e)が放物面鏡(8')及び変向ミラー (113)によって覆われるように、設 ける。この場合には、放物面鏡(8')の鏡面における塵及び/又は埃(51)の付着を 防止又は低減することができる。また、仮に折り返しミラー(1 12e)の鏡面に塵及び Z 又は埃(51)が付着し、塵及び/又は埃(51)による散乱光(52)が発生したとしても 、その散乱光は、変向ミラー(113)によって遮断され、結像レンズ(102)に入射しな レ、。 実施例 14
[0290] [実施例 14]
実施例 14は、照明系力 発散する発散光によって生じるフレアを低減することがで きる画像読取装置を、図 42及び図 43を参照して、説明する。
[0291] 図 42は、照明系力 発散する発散光によって生じるフレアを低減することができる 画像読取装置の例を説明する図である。
[0292] 画像読取装置における照明装置の光源は、 LED及び LEDの先端に LEDから放 出された光を平行光に変換するレンズを有する光源であってもよぐ LED及び LED の位置に焦点を有する回転放物面鏡を有する光源であってもよい。これらの光源に ついては、 LEDから放出された光は、理想的には、平行光束として光源から射出さ れる力 LEDは、点光源ではなぐある体積を有する光源であるため、光源から発散 する光束も存在する。よって、図 42に示すように、光源から発散する光束は、照明装 置 (40)からも発散する光束として射出される。そして、図 42に示す面内で、照明装 置 (40)力 発散する光束として射出された光が、第 2走行体(104)における読取系 の二つの折り返しミラー(112b)及び(112c)の一方に入射し、二つの折り返しミラー (112b)及び(112c)の一方によって反射された光力 他方の折り返しミラーによって 再度反射されると、その反射された光は、照明装置 (40)側へ戻ることがある。そして 、照明装置 (40)側に戻る光の一部が、照明装置 (40)付近に存在する結像レンズ (1 02)に入射すると、フレアを発生し、読取画像の白浮きの原因になることがある。
[0293] このような照明装置 (40)から発散する光束に起因するフレアを低減するためには、 図 42に示すように、照明装置 40から発散する光束が、第 2走行体(104)における読 取系の二つの折り返しミラー(112b)及び(112c)に入射しなレ、ように、照明装置 (40 )及び/又は二つの折り返しミラー(112b)及び(112c)の少なくとも一方に遮光板( 51)を設けてもよぐ及び/又は、結像レンズ(102)の光軸と照明装置 (40)の光軸と の間のシフト(間隔)を、増加させてもよい。
[0294] また、照明装置 40から発散する光束に起因するフレアを低減するためには、照明 装置 (40)から発散する光束の発散角を減少させることが、好ましレ、。
[0295] 図 43は、本発明による集束レンズ及びリレーレンズを含む照明系の例を説明する 図である。図 43に示す照明系においては、図 32又は図 33に示すような照明系にリ レーレンズ(6)を加えている。リレーレンズ(6)は、図 43に示す面内でレンズとしての 作用を有する(と共に図 43に示す面と垂直な面内では平行平面板として作用する) シリンダレンズである。ここで、リレーレンズ(6)の焦点距離は、図 43に示す fであり、 集束レンズ (8)の焦点距離は、 l/ (l/e + l/a')である。リレーレンズ (6)の焦点距 離 fは、おおよそ、統合レンズ(7)と集束レンズ (8)との間の距離の半分であることが 好ましレ、。なお、 eは、リレーレンズ(6)の焦点から集束レンズ(9)までの距離である。 リレーレンズ (6)は、照明系において、光源(1)、集光レンズ(3)、照明レンズ(5)及 び統合レンズ (7)を含む照明装置内における光源 1より後の任意の場所に設けられ る。リレーレンズ (6)を照明装置内に設けることによって、照明装置から放出される光 束の発散度を若干低下させることができる。
実施例 15
[0296] [実施例 15]
実施例 15は、本発明による、照明装置力 放出される光束の発散度を抑制すると 共に光利用率を向上させることができる照明系を、図 44A、図 44B、及び図 44Cを 参照して、説明する。
[0297] 図 44Aは、本発明による集束レンズ及び副照明レンズを含む照明系の第一の例を 説明する図である。図 44Bは、本発明による集束レンズ及び副照明レンズを含む照 明系の第二の例を説明する図である。図 44Cは、本発明による集束レンズ及び副照 明レンズを含む照明系の第三の例を説明する図である。
[0298] 図 44Aに示す照明系は、図 32又は図 33に示す照明系と同様の構成に加えて、シ リンダレンズアレイである照明レンズ (5)の後側に、副照明レンズ(5')を有する。副照 明レンズ(5')は、照明レンズ(5)のシリンダレンズアレイを構成するシリンダレンズと直 交するシリンダレンズである。すなわち、副照明レンズ(5')は、図 44Aに示す面内で (画像読取装置の副走査方向(72)について)、レンズの作用を有し、図 44Aに示す 面と垂直な面内で(画像読取装置の主走査方向(71)について)、平行平面板と同様 の作用を有する。副照明レンズ (5')の焦点距離は、 l/ (l/g + l/h)であり、集束 レンズ(8)のシリンダレンズの焦点距離は、 l/ (l/g+ l/a')である。ここで、 hは、 光源(1)の回転放物面鏡の出射窓から副照明レンズ (5')までの距離であり、 gは、副 照明レンズ (5')から集束レンズ (8)までの距離であり、 a'は、集束レンズ (8)から照明 対象面(9)までの距離である。図 44Aに示す照明系においては、光源(1)の回転放 物面鏡の(大きさ m'を備えた)出射窓の像力 集束レンズ (8)の位置に、 M"/m' = g/hの比で投射され、集束レンズ (8)の位置に投射された大きさ M"の像が、さらに 、照明対象面(9)上に M'/M" = a'/gの比で投射される。し力、しながら、実際には 、集束レンズ (8)の大きさを M"まで増加させることが、困難である場合もあるので、図 44Aに破線で示すように、集束レンズ(8')の周辺部を切り取り、集束レンズ (8)の中 央部のみを用いることもできる。なお、シミュレーション及び実験の結果、図 44Aに示 すような照明系の光利用率は、集束レンズ (8)の大きさを一定としたとき、図 32、図 3 3、又は図 43に示す照明系の光利用率よりも 50%程度増加することを確認した。
[0299] 図 44Aに示す照明系の副照明レンズ(5')の焦点距離を、図 44B又は図 44Cに示 す照明系の副照明レンズ(5')の焦点距離に変更してもよい。ここで、図 44Bに示す 副照明レンズ (5')の焦点距離は、 l/ (l/ (a' +g) + l/h)であり、図 44Cに示す 副照明レンズ(5')の焦点距離は、 hである。ただし、図 44B又は図 44Cに示す照明 系においても、集束レンズ (8')の周辺部を切り取り、集束レンズ (8)の中央部のみを 用いてもよい。図 44A、図 44B、及び図 44Cに示す照明系において、集束レンズ(8 )の大きさが一定である場合には、集束レンズ (8)の位置でより狭まる光束を用いる図 44Bに示す照明系の光利用率は、集束レンズ(8)の位置でより広がる光束を用いる 図 44Aに示す照明系の光利用率よりも高レ、。また、図 44Cに示す照明系においては 、光源(1)の像が、集束レンズ (8)の位置で結像せずに、 m' (l +g/h)の幅の光束 力 集束レンズ (8)の位置に到達している。図 44Cに示す照明系において、集束レン ズ(8)の周辺部を(図 44A及び図 44Bに示す集束レンズ (8)と同じ大きさに)切り取る と、集束レンズ (8)によって集束される光量力 図 44A〜Cに示す照明系において、 最も低く、図 44Cに示す照明系の光利用率も一番悪レ、。
[0300] よって、集束レンズ (8)の光軸付近の部分(中央部分)のみを用いる場合には、畐 IJ 照明レンズ (5')の焦点距離を、 lZ (lZg + lZh)以上 h以下の範囲内にすることに よって、照明レンズ(5')を含む照明系の光効率を、副照明レンズ(5')を含まない照 明系と比較して、大幅に向上させることができることを発見した。また、図 44Cに示す ように、集束レンズ (8)の焦点距離が、 a'である場合、照明系の光利用率は、若干低 下するが、本質的には良好である。言い換えれば、集束レンズ (8)の焦点距離を、 1 / (1/g + l/a')以上 a'以下の範囲内にすることによって、照明系の光利用率を同 様に向上させることができる。
実施例 16
[0301] [実施例 16]
実施例 16は、本発明による、照明装置力 放出される光束の発散度を抑制すると 共に光利用率を向上させることができる別の照明系を、図 45A、図 45B、及び図 45 Cを参照して、説明する。
[0302] 図 45Aは、本発明による集束レンズ、副照明レンズ及び副集光レンズを含む照明 系の第一の例を説明する図である。図 45Bは、本発明による集束レンズ、副照明レン ズ及び副集光レンズを含む照明系の第二の例を説明する図である。図 45Cは、本発 明による集束レンズ、副照明レンズ及び副集光レンズを含む照明系の第三の例を説 明する図である。
[0303] 図 45Aに示す照明系は、図 44Aに示す照明系と同様の構成に加えて、光源(1)の 回転放物面の出射窓の後側に、副集光レンズ(3')を有する。副集光レンズ(3')は、 集光レンズ (3)のシリンダレンズアレイを構成するシリンダレンズと直交するシリンダレ ンズである。すなわち、副集光レンズ(3')は、図 45Aに示す面内で(画像読取装置 の副走查方向(72)について)、レンズの作用を有し、図 45Aに示す面と垂直な面内 で (画像読取装置の主走査方向(71)について)、平行平面板と同様の作用を有する 。副集光レンズ(3')の焦点距離は、 hであり、 hは、副集光レンズ(3')から副照明レン ズ(5')までの距離である。この場合には、光源(1)から放出された平行光束が、副照 明レンズ (5')の位置に集束する。なお、副照明レンズ(5')及び集束レンズ (8)の関 係は、図 44Aにおけるそれらの関係と同様である。図 45Aに示す照明系においては 、光源(1)の回転放物面鏡から発散する光束も若干照明対象面(9)の照明に利用 することができるため、図 45Aに示す照明系の光利用率は、図 44Aに示す照明系の 光利用率に対してさらに数%高いものとすることが期待される。 [0304] 図 45Bに示す照明系及び図 45Cに示す照明系は、それぞれ、図 44Bに示す照明 系及び図 44Cに示す照明系において、図 44Aに対する図 45Aの関係と同様に、さ らに副集光レンズ (3')を有する。
実施例 17
[0305] [実施例 17]
実施例 17は、本発明による、照明装置力 放出される光束の発散度を抑制すると 共に光利用率を向上させることができる別の照明系を、図 46A及び図 46Bを参照し て、説明する。
[0306] 図 46Aは、本発明による集束レンズ、副照明レンズアレイ及び副集光レンズアレイ を含む照明系の第一の例を説明する図である。図 46Bは、本発明による集束レンズ 、副照明レンズアレイ及び副集光レンズアレイを含む照明系の第二の例を説明する 図である。
[0307] 図 46Aに示す照明系においては、図 45Aに示す照明系における副集光レンズ(3'
副照明レンズアレイ(5")に置き換えている。すなわち、図 46Aに示す照明系におい ては、図 45Aに示す照明系における副集光レンズ(3')としてのシリンダレンズ及び副 光レンズアレイ(3")及びシリンダレンズアレイである副照明レンズアレイ(5")に分割 してレ、る。図 46Aにおける副集光レンズアレイ(3")を構成するシリンダレンズの焦点 距離は、図 45Aに示す副集光レンズ(3')の焦点距離と同じであり、図 46Aにおける 副照明レンズアレイ(5")を構成するシリンダレンズの焦点距離は、図 45Aに示す副 照明レンズ (5')の焦点距離と同じである。図 46Aに示す照明系においては、集光レ ンズアレイ(3")を構成する大きさ m' (図 45Aに示す m'をシリンダレンズアレイにおけ るシリンダレンズの数で除する)のシリンダレンズの像力 g/hの比で、集束レンズ(8 )の位置に投射され、集束レンズ (8)の位置に投射された大きさ M" (図 45Aに示す M"をシリンダレンズアレイにおけるシリンダレンズの数で除する)の像力 \さらに、照 明対象面(9)上に、 a'/gの比で投射される。ここで、集束レンズ (8)の位置では、シ リンダレンズアレイにおけるシリンダレンズの数の大きさ M"の像力 シリンダレンズァ レイにおけるシリンダレンズのピッチで、互いに重なり合う。図 46Aに示す照明系は、 図 45Aに示す照明系に対応している力 図 45B及び図 45Cに示す照明系に対応す る照明系も構成することができる。ただし、図 46Aに示すような構成を備えた照明系 の光利用率が、図 45Aに示すような照明系の光利用率よりも高いことを、確認するこ とができなかった。なお、図 44、 45、 46の説明においては、拡大率の説明の便宜上 、大きさ m'のシリンダレンズが、像 M"及び M'として結像しているように説明をしてき たが、実際には、それらの像は形成されない。
[0308] 図 46Bに示す照明系においては、図 46Aに示す照明系に、図 43と同様に、シリン ダレンズであるリレーレンズ(6)を加えている。図 46Bに示す照明系においては、集 光レンズアレイ(3")及び照明レンズアレイ(5")によって分割された複数の光束の光 軸(副光軸(62) )を、光束とみなしている。図 46Bに示す照明系の光利用率は、図 4 6Aに示す照明系の光利用率とほぼ同じである力 図 46Aに示す照明系よりも、放出 される照明光の発散度を若干減少させることができる。
[0309] 以上においては、光束集束素子として、集束レンズのみを利用する照明系のみを 説明してきた。し力 ながら、光束集束素子として、集束レンズに代えて、放物面鏡又 は楕円面鏡を用いることができ、画像読取装置用の照明系においては、集束レンズ よりも放物面鏡又は楕円面鏡をより簡便に扱うことができる。
実施例 18
[0310] [実施例 18]
実施例 18は、光束集束素子としてミラーを用いる画像読取装置を、図 47及び図 48 を参照して、説明する。
[0311] 図 47は、光束集束素子として放物面鏡を用いる画像読取装置の例を説明する図 である。図 47に示すように、放物面鏡(8')で反射された照明光を撮像領域(111)に 反射する平面鏡(55)を用いない場合には、平面鏡を用いない場合の照明光軸(38 b)は、読取光軸(37)の下側に配置されるように、例えば図 39 (ii)のように、照明装 置 (40)の光軸が、読取系の結像レンズ(102)の光軸からシフトされる。放物面鏡(8' )につレ、ては、ライン状の撮像領域(111)に焦点(F)を有する放物面鏡と平面鏡を 用いない場合の照明光軸(38b)との交線を含み且つ照明装置 (40)から放出された 光束を受光する、放物面鏡の使用範囲(8'a)が、切り出される。読取系の変向ミラー (113)は、結像レンズに入射する有効な画像光の全てを受光するための幅及び変 向ミラー(113)それ自体を支持する強度を提供するための幅を有し、撮像領域(111 )から反射された光を直角方向に方向付けるように配置される。放物面鏡の使用範囲 (8'a)は、照明光の光束が、変向ミラー(113)を回避し、コンタクトガラス(108)上の 照明対象面(9)に、比較的直角に近い角度で入射するように、決定される。放物面 鏡の使用範囲(8'a)における放物面鏡(8')で反射された照明光の光束は、撮像領 域(111)に効率良く集束される、すなわち、撮像領域(111)を効率良く照明する。照 明光の光束が、原稿(107)面又はコンタクトガラス(108)の表面などで反射されると き、その正反射光は、図 47に示される正反射光の範囲 49に反射される。よって、そ の正反射光は、変向ミラー(113)へ反射されず、読取系の結像レンズ(102)に入射 することもない。
一方、放物面鏡 (8')で反射された照明光を撮像領域(111)に反射する平面鏡(5 5)を用いる場合には、図 47に示すように、平面鏡を用いる場合の照明光軸(38a)は 、読取光軸(37)の上側に配置されるように、例えば図 41又は図 42のように、照明装 置 (40)の光軸が、読取系の結像レンズ(102)の光軸からシフトされる。放物面鏡(8' )につレ、ては、ライン状の撮像領域(111)に焦点(F)を有する放物面鏡と平面鏡を 用いない場合の照明光軸(38b)との交線を含み且つ照明装置 (40)から放出された 光束を受光する、放物面鏡の使用範囲(8'a)が、切り出される。そして、平面鏡(55) を、平面鏡(55)が、放物面鏡の使用範囲(8'a)における放物面鏡(8')から反射され ると共に放物面鏡の焦点(F)に集束する光束を横切るように、配置する。また、放物 面鏡(8')は、放物面鏡(8')が、平面鏡(55)の鏡面に対して、平面鏡を用いない場 合の放物面鏡と面対象となるように、配置される。このようにして、平面鏡を用いる場 合の照明光軸は、放物面鏡 (8')及び平面鏡(55)の両方で折り曲げられ、撮像領域 (111)に到達する。なお、平面鏡(55)の鏡面は、放物面鏡(8')によって覆われる。 その結果、放物面鏡 (8')の焦点距離を短くすることなく放物面鏡 (8')の鏡面を下側 に向けることができる。これにより、放物面鏡(8')を含む第 1走行体(103)の大きさを 増加させることがない。また、放物面鏡(8')に対する塵及び/又は埃(51)の付着を 防止すると共に平面鏡(55)に付着した塵及び/又は埃(51)からの散乱光(52)が 結像レンズ(102)に入射することを防止することができるため、フレアを低減すること ができる。
[0313] 図 48は、光束集束素子として楕円面鏡を用いる画像読取装置の例を説明する図 である。 光束集束素子として楕円面鏡を用いる画像読取装置は、例えば、図 43及 び図 46Bに示すような、集束レンズ(8)及びリレーレンズ(6)を含む照明系において 、集束レンズ (8)を楕円面鏡(8"')に置き換えることによって、得られる。すなわち、図 43及び図 46Bに示すような、リレーレンズ (6)の焦点の位置に楕円面鏡(8"')の第 一焦点 F1を位置させると共に照明対象面(9)、例えば、ライン状の撮像領域(111) の位置に楕円面鏡 (8"')の第二焦点 F2を位置させる。また、光束集束素子として楕 円面鏡を用いる画像読取装置は、例えば、図 44A〜C及び図 45A〜Cに示すような 、集束レンズ (8)及び副照明レンズ (5')を含む照明系において、集束レンズ (8)を楕 円面鏡(8'")に置き換えることによって、得られる。すなわち、図 44A〜C及び図 45 A〜Cに示すような、副照明レンズ (5')の位置に楕円面鏡 (8'")の第一焦点 F1を位 置させると共に照明対象面(9)、例えば、ライン状の撮像領域(111)の位置に楕円 面鏡(8'")の第二焦点 F2を位置させる。そして、図 47に示すように、楕円面鏡(8'") 及び変向ミラー(113)を配置する。また、図 48においては、平面鏡(55)を用いてい ないが、図 47に示すように、平面鏡(55)を楕円面鏡(8"')と共に用いることができる 実施例 19
[0314] [実施例 19]
実施例 19は、本発明による、照明装置から放出される光束の発散度を抑制すると 共に光利用率を向上させることができる別の照明系を、図 49及び図 50を参照して、 説明する。
[0315] 図 49は、内面に反射面を有する照明装置の例を説明する図である。図 49に示す 照明装置は、 LED及び LEDの位置に焦点を有すると共に LEDから放出される光を 反射して概略平行光束として出力する回転放物面鏡 (放物面鏡の焦点から放出され る光束は、平行光束として出力される)を有する光源(1)、シリンダレンズアレイである 集光レンズ(3)、シリンダレンズアレイである照明レンズ(5)、及びシリンダレンズであ る統合レンズ(7)を含む。図 49に示す照明装置は、図 49に示す面内では、光源(1) から放出される平行光束を、平行光束として出力する。
[0316] し力、しながら、光源(1)の LEDは、実際には、ある面積又は体積を有するので、回 転放物面の焦点から外れた LEDの位置から放出される光束は、平行光束ではなぐ 発散する光束として出力される。
[0317] 図 50は、 LEDから放出されると共に回転放物面鏡で反射される光束の相対放射 強度分布の例を示す図である。図 50において、横軸は、 LEDから放出されると共に 回転放物面鏡で反射される光束の放射角度 (° )を表し、縦軸は、 LEDから放出さ れると共に回転放物面鏡で反射される光束の相対放射強度(%)を表す。 LED力ら 放出されると共に回転放物面鏡で反射される光束の相対放射強度分布は、 LEDの 大きさ及び回転放物面鏡の F値にも依存するが、現実には、例えば図 50に示すよう な分布を有する。図 50に示す光源(1)については、 ± 5° の放射角度で光源(1)か ら出力される光の相対放射強度は、完全な平行光の相対放射強度の約 50%である 。上述した実施例では、集束レンズ (8)で受光することができる光束は、光源(1)から の放射角度が、 0° ± 1〜2° の範囲にあるような光束である。そこで、 0° ± 1〜2° の範囲外の放射角度の光束を利用するために、照明装置(9)の内壁を、反射板の 鏡面のような反射面(56)にする。これにより、図 49に示す光源(1)から発散する光 束 (a、 b、 c)のうち、統合レンズ (7)の幅 dの範囲外に出力される光束 (b及び c)を、照 明装置(9)の内壁における反射面(56)によって反射させ、集束レンズ (8)へ入射さ せることによって、照明系の光利用率を、 10%程度向上させることが期待される。
[0318] また、図 42に示すような画像読取装置において、照明装置(9)から発散する光束 力 例えば、二つの折り返しミラー(112a)及び(112b)で反射され、その反射光の一 部が、読取系の結像レンズ(102)へ入射するというフレアが発生することがある。この ようなフレアを低減又は防止するために、図 49に示すような照明装置において、照明 装置の内壁の一方を、(反射面に代えて)光吸収板のような無反射の面にすると、光 源(1)から発散する光の一部が、無反射面で吸収され、照明装置からフレア光の原 因となる発散光の量を低減することができる。図 49において上側の反射面(56)をそ のままとし、下側の反射面(56)を吸収面に代えると光線 bは放射されるが、光線は吸 収さて照明装置からは放射されない。その結果、先に述べた照明装置における光の 利用率の向上効果は半減する。
[0319] なお、図 49に示す照明装置は、副集光レンズ(3')、副照明レンズ (5')、又はリレー レンズ (6)を含んでもよぐ集光レンズ(3')、副照明レンズ(5')、又はリレーレンズ(6) を含む照明装置でも、同様の効果を有することが、期待される。
実施例 20
[0320] [実施例 20]
実施例 20は、プリズムを使用して、光利用率を向上させることができるカラー画像 読取装置を、図 51〜図 54を参照して、説明する。
[0321] 図 51は、画像読取装置の副走査方向における撮像領域での照度分布を説明する 図である。ここで、図 51 (a)は、今まで説明してきた照明形をそのまま画像読取装置 へ組み込んだ場合の副走査方向における撮像領域での照度分布の概念を説明す る図であり、図 51 (b)は、本発明による画像読取装置の副走査方向における撮像領 域での照度分布を説明する図である。図 51 (a)及び図 51 (b)において、横軸は、画 像読取装置の副走查方向における撮像領域での相対的な位置を表し、縦軸は、画 像読取装置の副走查方向における撮像領域でのその位置における相対照度を表す 。図 52は、本発明によるプリズムを含む照明系を用いる画像読取装置の第一の例を 説明する図である。
[0322] 従来の画像読取装置の副走査方向における撮像領域での照度分布は、図 51 (a) に示すように、撮像領域と照明光軸との交点で最大の照度を有する分布である。一 方、カラー画像読取装置においては、一次元撮像素子は、副走查方向に 1ライン CC Dを 3ライン分並べてある。また、各々の 1ライン CCDの前面には、赤色(R)、緑色(G )、青色(B)のカラーフィルターのいずれかが設けられている。また、 1ライン CCD間 の間隔は、例えば、撮像領域上での 4〜8画素分あけて設定される。その結果、各色 に対応する 1ライン CCDに入射する、撮像領域からの光量には、画像読取装置の副 走査方向における撮像領域での照度分布が反映され、各色に対応する 1ライン CC Dに入射する光量は、図 51 (a)に示すような、 R、 G又は B用の 1ライン CCDに対応 する、撮像領域における位置の照度に比例する。図 51 (a)においては、 R又は B用 の 1ライン CCDに対応する撮像領域における位置の照度は、 G用の 1ライン CCDに 対応する撮像領域における位置の照度よりも相対的に低い。撮像領域における照度 分布によって生じる、 R、 G及び B用の 1ライン CCDの間における光量の差は、一般 的には、 1ライン CCDからの信号を電気的に処理する際の増幅率を変えることによつ て、補正できるが、画像読取装置における光利用率の向上の観点からは、図 51 (b) に示すように、各色用の 1ライン CCDに対応する撮像領域における位置での各色の 照明光の相対強度が、最大であることが望ましい。
[0323] 例えば、図 52に示すように、画像読取装置における照明光の光路中にプリズム(5 7)を揷入すると、プリズム(57)の分散効果によって、放物面鏡(8')及び楕円面鏡(8 "')のようなミラーによって反射された照明光を、その波長に対して分散させることが でき、その波長に対して分散された照明光を、撮像領域(111)に照射することができ る。このように、プリズム(57)並びに放物面鏡(8')及び楕円面鏡(8'")のようなミラー の組み合わせによって、互いに異なる波長を備えた照明光、すなわち、互いに異な る色を備えた照明光を、撮像領域(111)における異なる位置に集束させることができ 、互いに異なる色を備えた照明光は、撮像領域(111)における異なる位置で最大の 照度を与える。このように、 R、 G及び Bの照明光が、それぞれ、 R、 G及び B用の 1ライ ン CCDに対応する撮像領域における位置で、概略最大の照度を有するように、プリ ズムによって R、 G及び Bの照明光を分散させることができる。すなわち、図 51 (b)に 示すように、各色用の 1ライン CCDに対応する撮像領域における位置での各色の照 明光の相対強度を、概略最大にすることができる。
[0324] 図 53は、本発明によるプリズムを含む照明系を用いる画像読取装置の第二の例を 説明する図である。図 53に示すように、鏡面(57')を備えたプリズム(57)、並びに、 放物面鏡(8')及び楕円面鏡(8'")のようなミラーの組み合わせを、カラー画像読取 装置に用いることもできる。図 53に示すような画像読取装置においては、放物面鏡( 8')及び楕円面鏡(8'")のようなミラーで反射された照明光は、鏡面(8')を備えたプリ ズム(57)に入射する。鏡面(8')を備えたプリズム (57)に入射した照明光は、プリズ ムの分散効果によって、その波長に対して分散されると共に、その波長に対して分散 された照明光は、プリズム (57)の鏡面(57')によって撮像領域(111)に反射される。 このように、互いに異なる波長を備えた照明光、すなわち、互いに異なる色を備えた 照明光を、撮像領域(111)における異なる位置に集束させることができ、互いに異な る色を備えた照明光は、撮像領域(111)における異なる位置で最大の照度を与える 。図 53に示すように、鏡面(57')を備えたプリズム(57)における照明光の反射を用 レ、る場合における、必要な分散を得るための鏡面(57')を備えたプリズム(57)の頂 角は、図 52に示すようなプリズム(57)を通じて照明光の透過を用いる場合における プリズム (57)の頂角の半分である。
[0325] なお、図 52及び 53に示すプリズム(57)は、撮像領域(111)の近傍に配置されて いる。よって、主走查方向おけるプリズム(57)の長さは、主走查方向における撮像領 域(111)の長さとほぼ同等である。
[0326] 図 54は、本発明によるプリズムを含む照明系を用いる画像読取装置の第三の例を 説明する図である。図 54に示すように、プリズム(57)を、照明装置内に又は照明装 置の出口付近に配置すると、画像読取装置の主走査方向におけるプリズムの大きさ を、比較的小さくすることができる。ただし、画像読取装置に、集束レンズ (8)のような 光束集束素子を設ける場合には、光束集束素子における各色の照明光の集束を考 慮して、プリズムによる照明光の分散 (プリズムの屈折率及び頂角)を決定することが 要求される。
実施例 21
[0327] [実施例 21]
実施例 21は、光利用率を向上させることができるカラー画像読取装置を、図 55及 び図 56を参照して、説明する。
[0328] 図 55は、本発明による光利用率を向上させることができるカラー照明系の例を説明 する図である。ここで、図 55 (a)は、カラー照明系の上面図であり、図 55 (b)は、カラ 一照明系の正面図であり、図 55 (c)は、カラー照明系の側面から見た光源の図であ る。
[0329] 図 55 (c)に示すように、カラー照明系の光源(1)は、複数の LED及び LEDから放 出された光を反射すると共に平行光として出力する複数の回転放物面鏡を含む。な お、各々の LEDは、対応する回転放物面鏡の焦点に位置する。カラー照明系の光 源(1)における複数の LEDについては、画像読取装置の主走査方向(71)に対応 する方向に、同一の発光色の LEDを配置する。一方、画像読取装置の副走查方向( 72)に対応する方向には、互いに異なる発光色の LEDを、例えば、図 55 (c)に示す ように赤色(R)の LED、緑色(G)の LED及び青色(B)の LEDのような三色の LED を、配置する。
[0330] また、図 55 (a)及び図 55 (b)に示すように、カラー照明系の照明装置は、光源(1) に加えて、副走查方向(72)について、各色の LEDに対応するシリンダレンズで構成 されるシリンダレンズアレイの副集光レンズ (3')、集光レンズ(3)、照明レンズ(5)、統 合レンズ (7)、副照明レンズ(5')及び副統合レンズ(7')を有する。さらに、カラー照 明系は、カラー照明装置に加えて、副走查方向(72)について、副集光レンズ (3')に よって分割された光束を照明対象面(9)に集束させるための、集束レンズ (8)、放物 面鏡 (8')及び楕円面鏡 (8"')のような光束集束素子を含む。
[0331] 図 55 (a)に示すように、図 55 (a)に示す面内で(主走査方向(71)につレ、て)、集光 レンズ (3)、照明レンズ(5)及び統合レンズ (7)が作用し、カラー照明系は、図 32及 び図 33に示す照明系と同様の機能を有する。
[0332] 図 55 (b)に示すように、図 55 (b)に示す面内で(副走査方向(72)について)、副集 光レンズ (3')のシリンダレンズアレイを構成するシリンダレンズの焦点距離は、副集光 レンズ(3')力 副照明レンズ(5')までの距離 hであり、副集光レンズ(3')のシリンダレ ンズアレイを構成するシリンダレンズは、光源 1の各色の LED及び回転放物面に対 応する。また、副照明レンズ (5')も、副集光レンズ (3')のシリンダレンズアレイと(シリ ンダレンズの形状及び数について)同一である。また、副統合レンズ(7')の焦点距離 は、副統合レンズ(7')力 集束レンズ(8)までの距離 gであり、集束レンズ (8)の焦点 距離は、 1/ (1/ (b' + g) + 1/a')であり、ここで、 a,は、集束レンズ (8)から照明対 象面(9)までの距離であり、 b'は、副照明レンズ(5')力 副統合レンズ(7')までの距 離である。このように構成すると集束レンズ 8の中心で B、 G、 R各色の光軸が交わり、 照明対象面(9)では Pの間隔を置いて R、 G、 Bの焦点位置をずらせる。その位置関 係は光源側で上から B、 G、 Rと配置すると、照明対象面上では R、 G、 Bと反転する。 なお、副照明レンズ (5')を構成するシリンダレンズの焦点距離 h及び副統合レンズ (7 ')の焦点距離 gの合成焦点距離は、図 45Aに示す照明系の副照明レンズ (5')の焦 点距離と一致し、図 55に示すカラー照明系における集束レンズ (8)の作用も、図 45 Aに示す照明系の集束レンズの作用と同じであるので、図 55における個々の色の L EDに対するカラー照明系の光利用率は、図 45Aにおける照明系の光利用率と同様 である。し力 ながら、図 55に示すカラー照明系においては、 R、 G、 Bの光学系のよ うな、互いに異なる色に対する光学系の光軸を、副走查方向において、シフトさせて あるので、照明対象面(9)上における互いに異なる位置で、各色の照明光の相対強 度を、概略最大にすることができる。例えば、図 51 (b)に示すように、各色用の 1ライ ン CCDに対応する撮像領域における位置での各色の照明光の相対強度を、概略最 大にすることができる。その結果、互いに異なる色の全体に対するカラー照明系の光 利用率を向上させることができる。
[0333] なお、図 55に示すカラー照明系は、図 45Aに示す照明系に対応するが、図 45B 又は図 45Cに示す照明系に対応するカラー照明系も設計することができる。さらに、 図 44A〜Cに示す照明系の構成のように、副集光レンズ(3')を用いないカラー照明 系を設計することもできる。この場合にも、個々の色の LEDに対する設計されたカラ 一照明系の光利用率は、図 44における対応する照明系の光利用率と同様であり、 互いに異なる色の全体に対するカラー照明系の光利用率を向上させることができる。
[0334] なお、図 55に示す照明系における副集光レンズ(3')及び副照明レンズ(5')のシリ ンダレンズアレイは、図 46に示す照明系における副集光レンズ(3')及び副照明レン ズ(5')のシリンダレンズアレイと異なる作用を有する。すなわち、図 46に示す照明系 においては、一色の光源から放出される光束を分割するように、副集光レンズ(3')及 び副照明レンズ (5')のシリンダレンズアレイを構成するのに対して、図 55に示す照明 系においては、一色の光源に一つのシリンダレンズが対応するように、三色の光源に 対して三個のシリンダレンズからなるシリンダレンズアレイが対応するように、副集光レ ンズ( 3' )及び副照明レンズ( 5 ' )のシリンダレンズアレイを構成する。
[0335] 図 55に示すカラー照明系の照明効率を向上させるためには、副走查方向(72)に ついて、集束レンズ (8)の位置で照明光が広がり過ぎないように、副集光レンズ(3') 力 副照明レンズ (5')までの距離 hに対する副照明レンズ (5')から集束レンズ (8)ま での距離 gの比 g/hが、小さいことが好ましい。よって、主走査方向(71)において作 用する集光レンズ(3)、照明レンズ (5)及び統合レンズ(7)は、副集光レンズ (3')と 副照明レンズ (5')との間に挟まれる。し力、しながら、集光レンズ(3)、照明レンズ(5) 及び統合レンズ (7)は、必ずしも、副集光レンズ(3')と副照明レンズ(5')との間に挟 まれる必要はない。
[0336] 図 56は、複数のレンズ機能を一体化したレンズを有する照明系の例を説明する図 である。図 56 (a)は、その照明系の上面図であり、図 56 (b)は、その照明系の正面図 である。
[0337] 図 56に示す照明系においては、図 55に示すような集光レンズ(3)及び副集光レン ズ(3')が一体化されている。図 56においては、照明レンズ(5)及び副照明レンズ(5' )は、別個のシリンダレンズアレイであるが、照明レンズ(5)及び副照明レンズ(5')を 一体化することもできる。このように、照明系において、互いに隣接する個別のシリン ダレンズ (アレイ)を一体化することができる。具体的には、個別のシリンダレンズ (ァレ ィ)を一体化した形状を有する光学素子を、プラスチック成形を用いて得ることができ る。
実施例 22
[0338] [実施例 22]
実施例 22は、画像読取装置の主走查方向における照度分布を改善する照明系を 、図 57及び図 58を参照して、説明する。
[0339] 図 57は、読取系の結像レンズによって結像された像の明るさの特性を説明する図 である。図 58は、画像読取装置の主走查方向における好適な照度分布を説明する 図である。図 58において、横軸は、結像レンズの光軸に対する角度 Θであり、縦軸 は、読取系の結像レンズによって結像された、角度 Θにおける像の相対的な明るさ 又は撮像領域における好ましい相対的な照度(相対強度)を表す。なお、結像レンズ の光軸の方向における像の明るさ又は撮像領域における照度を 1とする。また、図 58 における(i)は、角度 Θに対する像の相対的な明るさの分布を表し、図 58における(ii )は、角度 Θに対する好適な照度分布を表す。
[0340] 図 57に示すように、主走査方向(71)におけるライン状の撮像領域(111)が、結像 レンズ(102)の光軸に対して垂直に配置されていると、読取系の結像レンズ(102) によって結像された、主走查方向(71)における撮像領域(111)における像の明るさ は、一般的には、読取系の結像レンズの特性によって、結像レンズ(102)の光軸方 向からの角度 Θが増加するに従って、又は、撮像領域(111)と結像レンズ(102)の 光軸との交点から周辺に向力 に従って、低下する。
[0341] 図 58の(i)に示すように、主走查方向(71)におけるライン状の撮像領域(111)に 対して垂直に配置された結像レンズ(102)によって結像される像の明るさは、結像レ ンズ(102)の光軸方向からの角度 Θが増加するに従って減少してしまレ、、図 58の(i )に示すように、結像レンズ(102)の光軸方向における明るさの cos4 Θ倍となる。
[0342] 上述した画像読取装置においては、撮像領域、すなわち、照明対象面での照度分 布を均一にすると共に光利用率の向上させる照明系及び画像読取装置の構成を説 明してきたが、画像読取装置における撮像領域における照度分布については、結像 レンズの特性を考慮すすることが好ましい。
[0343] 上述した照明系においては、集光レンズ(3)を構成するシリンダレンズの焦点距離 を cに設定し、照明レンズ (5)を構成するシリンダレンズの焦点距離を 1/ (1/ (a + b ) + l/c)に設定することによって、照明対象面(9)における照度分布を均一化した 。そのために、照明光に対する、集光レンズ (3)及び照明レンズ (5)を構成するシリン ダレンズの円筒収差 (球面レンズの球面収差に対応する)の影響を受ける部分は捨 てていたので、上述した照明系の光利用率を落としていた。
[0344] より詳しくは、集光レンズ(3)の光軸(副光軸)付近の光束は、集光レンズ(3)を構 成するシリンダレンズの円筒収差の影響をあまり受けず、照明レンズ(5)の中心部に 集束し、照明レンズ (5)を通過し、照明対象面(9)内に均一に照射される。一方、集 光レンズ (3)の周辺部分を通過する光束は、集光レンズ(3)を構成するシリンダレン ズの円筒収差の影響を受け、照明レンズ (5)の手前で集束してしまい、照明対象範 囲から外れてしまう。また、このような照明系を画像読取装置で用いる場合には、照 明光束の拡大率が、数十倍であり大きいため、大きい円筒収差の大きな部分も使用 せざるを得ない。そこで、集光レンズ(3)の周辺部分を通過すると共に集光レンズ(3 )を構成するシリンダレンズによって発生した大きい円筒収差の影響を受けた光束も 、照明レンズ(5)によって照明対象面(9)の周辺部分に取り込んで照射することによ つて、結像レンズ(102)の cos4 Θ特性とは逆である、図 58の(ii)に示す l/cos4 eの 特性を有する照度分布を、照明対象面(9) (撮像領域(11 1) )で得ることが可能であ る。
[0345] 具体的には、集光レンズ(3)と照明レンズ(5)との間の間隔を、集光レンズ(3)及び 照明レンズ (5)の焦点距離の数%から十数%だけ離す。この場合には、集光レンズ( 3)の周辺部分を通過する光束も、照明対象領域の周辺部分に到達することができ、 照明対象面(9)における周辺部分における照度が、照明対象面(9)の中心部分に おける照度よりも高くなり、概略 1/cos4 Θの特性に近い分布を有する。また、シミュ レーシヨンの結果、照明対象面(9)における全体の照度も向上し、照度分布を均一 にする場合と比較して、約 50%の照明効率の向上が認められた。
実施例 23
[0346] [実施例 23]
実施例 23は、集光レンズを含まない照明系の例を、図 59を参照して、説明する。 図 59は、本発明による、集光レンズを含まない照明系の例を説明する図である。前 述の実施例における照明系は、集光レンズ (3)を含む。し力 ながら、図 59に示すよ うに、照明の効率が、低下しても、照明系に含まれる部品点数を減少させることが望 まれる場合には、照明系力 集光レンズ(3)を除去してもよい。図 59に示すように、 集光レンズ (3)を含まない照明系においてもまた、光源(1)から放出される光束を、 複数のレンズで構成される照明レンズ (5)によって照明対象面(9)に照明し、照明レ ンズ(5)に含まれる複数のレンズを通過する光束を、統合レンズ(7)によって、照明 対象面(9)上で重畳させることができる。ここで、照明レンズ(5)を構成する複数のレ ンズは、光源(1)から放出される光束から複数の光束を取得し、それら複数の光束が 照射対象面(9)上で部分的に重なり合うように、それら複数の光束を照射対象面(9) 上に照射する作用を有する。
実施例 24 [0347] [実施例 24]
実施例 24は、統合レンズを含まない照明系の例を、図 60及び 61を参照して、説明 する。図 60は、本発明による、統合レンズを含まない照明系の例を説明する図である 。ここで、図 60 (a)は、統合レンズを含まない照明系の上面図であり、図 60 (b)は、統 合レンズを含まない照明系の正面図である。
[0348] 図 60 (a)に示すように、図 60 (a)に示す面内では、光源(1)から放出された光束を 、集光レンズ(3)によって複数の光束に分割する。それら分割された光束は、照明レ ンズ (5)によって、照射対象面(9)に照射され、照射対象面(9)上で部分的に重なり 合う。なお、集束レンズ (8)は、図 60 (a)に示す面内では、平行平面板と同様の作用 を有する。
[0349] 図 60 (a)に示すように、集光レンズ(3)及び照明レンズ(5)を構成するシリンダレン ズの大きさ mの光束が、照射対象面(9)上で大きさ Mの光束に拡大される。また、照 明レンズ (5)を構成する複数のシリンダレンズによって照明対象面(9)に照射された 複数の光束は、照明対象面(9)上で、集光レンズ (3)及び照明レンズ (5)を構成する シリンダレンズの大きさ mだけシフトして、重なり合う。そして、照明レンズ(5)を構成す る複数のシリンダレンズによって照明対象面(9)に照射された複数の光束の全てが 重なり合う照明対象面(9)上の範囲は、均一に照明され、画像読取装置における読 取対象領域とすることができる。図 60に示す照明系においては、読取対象領域は、 M-m X (シリンダレンズの数 1)である。従って、集光レンズ(3)及び照明レンズ( 5)を構成するシリンダレンズの数が小さいとき、読取対象領域は、広くなる。また、実 際には、集光レンズ(3)及び照明レンズ (5)を構成するシリンダレンズの大きさ mは、 lmmから数 mm程度である。よって、統合レンズを用いない場合、読取対象領域は、 lmmから数 mm程度の単位でしか減少しない。
[0350] 図 60 (b)に示すように、図 60 (b)に示す面内では、光源(1)から放出された光束は 、平行光束として、集光レンズ(3)及び照明レンズ(5)を通過し、集束レンズ (8)によ つて、照射対象面(9)上に集束させられる。ここで、集光レンズ (3)及び照明レンズ( 5)は、図 60 (b)に示す面内では、平行平面板と同様の作用を有する。
[0351] さらに、この実施例でも実施例 23と同様に集光レンズ (3)を除去しても光利用効率 が少し悪くはなるが本発明の本質を外すものではない。
[0352] 図 61Aは、一つの光源に対して奇数個のシリンダレンズからなるシリンダレンズァレ ィを用いる照明系の例を説明する図である。ここで、図 61A (a)は、光源のから放出 される光束の強度分布を表す図であり、図 61A (b)は、照明対象面における照度分 布を説明する図である。
[0353] 図 60に示すような照明系において、直径 Dを備えた光源(例えば、 LED +コリメ一 トレンズ又はミラー)から、図 61 A (a)に示すような強度分布で光束を放出する。図 61 A (a)に示すような強度分布で放出された光束は、幅 ml、 m2、 m3を有する三個の シリンダレンズ力、らなる集光レンズ(3)及び照明レンズ(5)を通過する。シリンダレンズ mlを通過した光は、図 61A(b)に示すように、照明対象面(9)で ml'によって表され る照度分布を有する。同様に、シリンダレンズ m2を通過した光は、照明対象面(9)に よって m2'によって表される照度分布を有し、シリンダレンズ m3を通過した光は、照 明対象面(9)によって m3'によって表される照度分布を有する。その結果、シリンダレ ンズ ml、 m2、 m3を通過した光の全体は、照明対象面(9)上に、 ml'、 m2'、 m3'に よって表される照度分布の重ね合わせの照度分布で、照明され、照明対象面(9)上 におレ、ては、読取対象領域 Mの範囲で均一な照度分布が得られる。
[0354] 図 61Bは、一つの光源に対して偶数個のシリンダレンズ力 なるシリンダレンズァレ ィを用いる照明系の例を説明する図である。ここで、図 61B (a)は、光源のから放出さ れる光束の強度分布を表す図であり、図 61B (b)は、照明対象面における照度分布 を説明する図である。
[0355] 図 60に示すような照明系において、直径 Dを備えた光源(例えば、 LED +コリメ一 トレンズ又はミラー)から、図 61B (a)に示すような強度分布で光束を放出する。図 61 B (a)に示すような強度分布で放出された光束は、幅 ml、 m2、 m3、 m4を有する四 個のシリンダレンズからなる集光レンズ(3)及び照明レンズ(5)を通過する。シリンダ レンズ mlを通過した光は、図 61B (b)に示すように、照明対象面(9)で ml'によって 表される照度分布を有する。同様に、シリンダレンズ m2を通過した光は、照明対象 面(9)で m2'によって表される照度分布を有し、シリンダレンズ m3を通過した光は、 照明対象面(9)で m3'によって表される照度分布を有し、シリンダレンズ m4を通過し た光は、照明対象面(9)で m4'によって表される照度分布を有する。その結果、シリ ンダレンズ ml、 m2、 m3、 m4を通過した光の全体は、照明対象面(9)上に、 ml'、 m2'、 m3'、 m4'によって表される照度分布の重ね合わせの照度分布で、照明され、 照明対象面(9)上においては、読取対象領域 Mの範囲で均一な照度分布が得られ る。
[0356] なお、上述した実施例において、光束集束素子は、集束レンズ又は放物面鏡及び 楕円面鏡のような反射鏡であるが、他のレンズの一部を反射鏡に置き換えることがで きる。例えば、統合レンズ(7)は、放物面鏡であってもよい(この場合には、照明装置 の全体を逆向きにするカ 又は、さらに一枚の平面鏡を揷入する必要がある)。
[0357] また、光源としては、 LED以外の光源を用いてもよい。
[0358] さらに、照明系及び読取系を単一の走行体に設けてもよぐこの場合には、単一の 走行体を用いて原稿を走査し、原稿の画像を読み取ることができる。この場合は、照 明装置、結像レンズ、一次元読取装置などが単一の走行体に乗るので二つの走行 体を用いる方法に比べると、質量が増大してしまうので高速に移動させるのが難しく なるが、フレアの発生源が減るのでその点では有利となる。
[0359] 以上、本発明の実施の形態及び実施例を具体的に説明してきたが、本発明は、こ れらの実施の形態及び実施例に限定されるものではなぐこれら本発明の実施の形 態及び実施例を、本発明の主旨及び範囲を逸脱することなぐ変更又は変形するこ とができる。
[0360] この出願は、 2005年 3月 18日に出願された日本出願の特願 2005— 080772号 に基づく優先権及び 2006年 3月 17日に出願された日本出願の特願 2006— 0757 11号に基づく優先権の利益を主張するものであり、これらの出願の内容の全体は、 ここに参照によって組み込まれる。
産業上の利用可能性
[0361] 本発明を、デジタル PPCのような画像形成装置に含まれ、且つ、固体撮像素子、 結像レンズ及び照明装置を有する縮小光学系を含む画像読取装置及び画像読取 方法に適用することができる。本発明による画像読取装置を、原稿台の上側から画 像を読み取る、フィルムスキャナ及びブック原稿用のスキャナなどにもまた適用するこ とができる。

Claims

請求の範囲
[1] 光源により照明した原稿からの反射光を結像レンズにより撮像素子に結像させ、該 原稿の画像を一次元に読み取り、これを走查することによって 2次元の画像を読み取 る画像読取装置であって、
少なくとも複数のレンズを有する照明レンズと、
複数の光束を重畳させる手段とを備えて成り、
上記光源から発する光束を複数に分割し、この分割された複数の光束を上記原稿 面上に重畳させることを特徴とする画像読取装置。
[2] 上記光源が複数の光源から成り、
光束を分割する方向での光源の数と、光束を分割する数とを不一致としたことを特 徴とする請求項 1に記載の画像読取装置。
[3] 上記光源が複数の光源から成り、
光束を分割する方向に複数の光源を配置し、該光束を分割する方向に直交する方 向には、上記複数の光源の光束の分布を補完するように更に光源を配置したことを 特徴とする請求項 1に記載の画像読取装置。
[4] 上記光源が複数の光源から成り、
上記それぞれの光源からの光束を略平行光とした後、上記照明レンズにより光束を 複数に分割することを特徴とする請求項 1に記載の画像読取装置。
[5] 上記光源に LEDを用いたことを特徴とする請求項 1に記載の画像読取装置。
[6] 上記複数の光束を原稿面上に重畳させる手段として、統合レンズを用いたことを特 徴とする請求項 1に記載の画像読取装置。
[7] 上記光源により撮像領域を照明する照明光と該撮像領域から反射する画像光とを 、同一の反射面によって折り返すことを特徴とする請求項 1に記載の画像読取装置。
[8] 光源により照明した原稿からの反射光を結像レンズにより撮像素子に結像させ、該 原稿の画像を一次元に読み取り、これを走査することによって 2次元の画像を読み取 る画像読取方法において、
上記光源から発する光束を複数に分割し、この分割された複数の光束を上記原稿 面上に重畳させることを特徴とする画像読取方法。 請求項 1に記載の画像読取装置を搭載したことを特徴とする画像形成装置。
光源から放出された光を対象に照明する照明装置において、
少なくとも一つの面内において、光源から放出された光から複数の光束を取得し、 該複数の光束を該対象に照明する少なくとも一つの光束照明素子を含むことを特徴 とする照明装置。
少なくとも一つの面内において、前記複数の光束を前記対象において集束させる 少なくとも一つの光束集束素子をさらに含むことを特徴とする請求項 10に記載の照 明装置。
第一の面内において前記複数の光束を前記対象において重畳させると共に該第 一の面と異なる第二の面内において前記複数の光束を前記対象において集束させ る少なくとも一つの光学素子をさらに含むことを特徴とする請求項 10に記載の照明 装置。
前記少なくとも一つの面は、第一の面及び該第一の面と異なる第二の面を含み、 前記少なくとも一つの光束照明素子は、該第一の面内で光源から放出された光か ら複数の第一の光束を取得し、該複数の第一の光束を前記対象に照明する第一の 光束照明素子、及び、該第二の面内で光源から放出された光から複数の第二の光 束を取得し、該複数の第二の光束を前記対象に照明する第二の光束照明素子を含 むことを特徴とする請求項 10に記載の照明装置。
少なくとも一つの面内において、前記光源から放出された光を前記複数の光束に 分割する少なくとも一つの光束分割素子をさらに含むことを特徴とする請求項 10に 記載の照明装置。
前記光束分割素子及び前記光束照明素子の間の間隔は、前記光束分割素子の 焦点距離及び前記光束照明素子の焦点距離よりも長いことを特徴とする請求項 14 に記載の照明装置。
前記光源は、第一の波長領域に含まれる波長を備えた光を放出する第一の光源 及び第二の波長領域に含まれる波長を備えた光を放出する第二の光源を含み、 前記第一の光源及び前記第二の光源は、少なくとも一つの面内において、前記対 象における前記第一の波長領域に含まれる波長を備えた光の照度のピーク位置が、 前記対象における前記第二の波長領域に含まれる波長を備えた光の照度のピーク 位置と異なるように、配置されることを特徴とする請求項 10に記載の照明装置。
[17] 少なくとも一つの面内において、前記光源から放出された光を、該光の波長に対し て分散させる波長分散素子をさらに含むことを特徴とする請求項 10に記載の照明装 置。
[18] 光源から放出された光を対象に照明する照明方法において、
少なくとも一つの面内において、光源から放出された光から複数の光束を取得し、 該複数の光束を該対象に照明することを含むことを特徴とする照明方法。
[19] 画像を備えた原稿に光源力 放出された光を照明し、該原稿から反射された光を 取得して該画像を読み取る画像読取装置にぉレ、て、
請求項 10に記載の照明装置を含むことを特徴とする画像読取装置。
PCT/JP2006/305504 2005-03-18 2006-03-20 照明装置、照明方法、画像読取装置、画像読取方法、画像形成装置及び画像形成方法 WO2006098468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/886,578 US8169672B2 (en) 2005-03-18 2006-03-20 Image scanning device and illuminating device that divide a light beam from a light source into multiple light beams and direct the multiple light beams to a target
CN2006800087615A CN101142806B (zh) 2005-03-18 2006-03-20 照明装置、照明方法、图像读取装置、图像读取方法、图像形成装置及图像形成方法
EP06729472A EP1860864A4 (en) 2005-03-18 2006-03-20 LIGHTING DEVICE AND METHOD, IMAGE READING DEVICE AND METHOD, IMAGE FORMING DEVICE AND METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-080772 2005-03-18
JP2005080772 2005-03-18
JP2006-075711 2006-03-17
JP2006075711A JP4843344B2 (ja) 2005-03-18 2006-03-17 照明装置及び画像読取装置

Publications (1)

Publication Number Publication Date
WO2006098468A1 true WO2006098468A1 (ja) 2006-09-21

Family

ID=36991812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305504 WO2006098468A1 (ja) 2005-03-18 2006-03-20 照明装置、照明方法、画像読取装置、画像読取方法、画像形成装置及び画像形成方法

Country Status (6)

Country Link
US (1) US8169672B2 (ja)
EP (1) EP1860864A4 (ja)
JP (1) JP4843344B2 (ja)
CN (1) CN101142806B (ja)
TW (1) TW200736659A (ja)
WO (1) WO2006098468A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890169B2 (ja) * 2006-09-15 2012-03-07 株式会社リコー 照明装置
JP5101864B2 (ja) * 2006-11-06 2012-12-19 株式会社リコー 画像読取装置、及び画像形成装置
JP5027494B2 (ja) * 2006-12-20 2012-09-19 株式会社リコー 画像読取装置、画像形成装置、及び、画像読取装置の調整方法
JP2009060517A (ja) * 2007-09-03 2009-03-19 Ricoh Co Ltd 画像読取装置
US8253993B2 (en) * 2008-02-20 2012-08-28 Xerox Corporation Dual mirror illumination system for book copier
JP4766066B2 (ja) * 2008-03-14 2011-09-07 コニカミノルタビジネステクノロジーズ株式会社 画像読み取り装置および光源
KR101282258B1 (ko) * 2008-09-25 2013-07-10 삼성전자주식회사 스캐너, 이의 화상보정방법 및 이 스캐너를 채용한 화상형성장치
TWI395462B (zh) * 2009-02-24 2013-05-01 Avision Inc 裝訂文件掃描裝置
US20100220370A1 (en) * 2009-02-27 2010-09-02 Kabushiki Kaisha Toshiba Image reading apparatus and image forming apparatus
IT1397417B1 (it) * 2010-01-12 2013-01-10 Colagrande Dispositivo di illuminazione per la scansione digitale di immagini con configurazioni variabili delle angolazioni della luce.
US9137414B2 (en) 2010-03-19 2015-09-15 Pathway Innovations & Technologies, Inc. Document camera based multifunction scanner-copier-printer-fax with an automatic paper feeder
JP5548017B2 (ja) * 2010-04-21 2014-07-16 株式会社Pfu 画像読取装置
JP5528910B2 (ja) * 2010-06-02 2014-06-25 株式会社Pfu オーバーヘッド型画像読取装置
US9551914B2 (en) 2011-03-07 2017-01-24 Microsoft Technology Licensing, Llc Illuminator with refractive optical element
TWI427242B (zh) * 2011-03-10 2014-02-21 Lite On Electronics Guangzhou 線性光源、導光體及光學掃描模組
WO2012127552A1 (ja) * 2011-03-23 2012-09-27 パナソニック株式会社 画像処理装置、撮像装置及び画像処理方法
CN103891262A (zh) 2011-10-25 2014-06-25 三菱电机株式会社 照明单元以及使用该照明单元的图像读取装置
JP2014003086A (ja) * 2012-06-15 2014-01-09 Ushio Inc 光照射装置、露光装置
CN202759511U (zh) * 2012-07-24 2013-02-27 旭丽电子(广州)有限公司 影像扫描装置
TWI459122B (zh) 2013-01-17 2014-11-01 Delta Electronics Inc 光學系統
JP5956407B2 (ja) * 2013-10-29 2016-07-27 キヤノンファインテック株式会社 画像読取装置、画像形成装置
JP5841587B2 (ja) * 2013-12-25 2016-01-13 株式会社Pfu 撮像システム
US9485380B2 (en) * 2014-06-25 2016-11-01 Fuji Xerox Co., Ltd. Image reading apparatus, image forming apparatus and computer readable medium storing program
US9798126B2 (en) * 2015-08-25 2017-10-24 Rockwell Automation Technologies, Inc. Modular illuminator for extremely wide field of view
EP3165872B1 (en) 2015-11-04 2020-04-15 Hexagon Technology Center GmbH Compensation of light intensity across a line of light providing improved measuring quality
US10436953B2 (en) 2017-12-01 2019-10-08 Rockwell Automation Technologies Inc. Arched collimating lens forming a disk-like illumination
US10609266B2 (en) 2018-08-21 2020-03-31 Rockwell Automation Technologies, Inc. Camera for wide field of view with an arbitrary aspect ratio
US11868029B2 (en) * 2019-04-18 2024-01-09 Sony Group Corporation Interchangeable lens, information processing apparatus, information processing method, and program
TWI728883B (zh) * 2020-07-29 2021-05-21 華洋精機股份有限公司 照明設備
US11893668B2 (en) 2021-03-31 2024-02-06 Leica Camera Ag Imaging system and method for generating a final digital image via applying a profile to image information
EP4246223A1 (en) * 2022-03-16 2023-09-20 Ricoh Company, Ltd. Lighting device and image-capturing system
US11683433B1 (en) * 2022-08-31 2023-06-20 Toshiba Tec Kabushiki Kaisha Image reading apparatus
CN115629076A (zh) * 2022-09-27 2023-01-20 威海华菱光电股份有限公司 一种阵列式图像检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253565A (ja) * 1985-09-03 1987-03-09 Mitsubishi Electric Corp カラ−画像読取装置
EP0395156A1 (en) 1989-04-28 1990-10-31 Koninklijke Philips Electronics N.V. Optical illumination system and projection apparatus comprising such a system
JPH0951405A (ja) 1995-08-04 1997-02-18 Canon Inc 画像読取装置
JPH09247364A (ja) * 1996-03-13 1997-09-19 Pfu Ltd カラースキャナ装置
JPH10190990A (ja) 1996-12-27 1998-07-21 Canon Inc 画像読取装置
JP2000250146A (ja) * 1999-03-02 2000-09-14 Toshiba Corp 画像読取装置
JP2003280094A (ja) 2002-03-22 2003-10-02 Ricoh Co Ltd 照明装置
US6714323B1 (en) 1999-06-02 2004-03-30 Rohm Co., Ltd. Image reading apparatus and light conductor used for the same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437158A (en) * 1987-07-31 1989-02-07 Sharp Kk Light emitting element array
US5235349A (en) * 1989-11-07 1993-08-10 Canon Kabushiki Kaisha Optical scanner having variable power function and system using the same
JP2856990B2 (ja) * 1992-09-11 1999-02-10 大日本スクリーン製造株式会社 画像読取装置
JPH07140381A (ja) * 1993-11-18 1995-06-02 Sony Corp コマ収差補正方法
DE69731630T2 (de) * 1996-05-31 2005-12-01 Discovision Associates, Irvine System zur einstellung der punktgrösse in einem optischen aufzeichnungssystem
JP2998646B2 (ja) * 1996-07-29 2000-01-11 日本電気株式会社 受光演算素子
US6466372B1 (en) * 1997-05-16 2002-10-15 G. Michael Morris Systems for projecting images from diffractive phase plates
TW342969U (en) * 1997-08-11 1998-10-11 Mustek Systems Inc Multi-images optics apparatus for mono photo-electric transferring module
JP2000134413A (ja) * 1998-08-19 2000-05-12 Rohm Co Ltd イメージセンサユニットおよびこれを備えたイメージスキャナ
JP2000253213A (ja) 1999-03-02 2000-09-14 Toshiba Corp 画像読取装置
US6307661B1 (en) * 1999-04-16 2001-10-23 Canon Kabushiki Kaisha Color imaging reading apparatus
US6876471B1 (en) * 1999-06-08 2005-04-05 Fuji Photo Film Co., Ltd. Image reading device
US7164810B2 (en) * 2001-11-21 2007-01-16 Metrologic Instruments, Inc. Planar light illumination and linear imaging (PLILIM) device with image-based velocity detection and aspect ratio compensation
JP4059623B2 (ja) * 2000-12-15 2008-03-12 株式会社リコー 照明装置、及び均一照明装置
JP2002237076A (ja) * 2001-02-06 2002-08-23 Pioneer Electronic Corp 収差補正装置
JP4341332B2 (ja) * 2002-07-31 2009-10-07 旭硝子株式会社 光ヘッド装置
US7129503B2 (en) * 2002-10-09 2006-10-31 Hewlett-Packard Development Company, L.P. Determining emitter beam size for data storage medium
JP2004252411A (ja) 2003-01-27 2004-09-09 Ricoh Co Ltd 画像読み取り装置及びこれに使用する円筒状ランプ
JP2004235861A (ja) 2003-01-29 2004-08-19 Ricoh Co Ltd 画像読取装置及び画像形成装置
JP2005055881A (ja) * 2003-07-22 2005-03-03 Fuji Photo Film Co Ltd 描画方法および描画装置
TWI249945B (en) * 2003-10-24 2006-02-21 Primax Electronics Ltd A scanning module and scanning method
JP2005204272A (ja) 2003-12-15 2005-07-28 Ricoh Co Ltd 画像読取装置及び画像形成装置
JP2006025403A (ja) 2004-06-08 2006-01-26 Ricoh Co Ltd 画像読取装置及び画像形成装置
US7894105B2 (en) * 2005-01-18 2011-02-22 Canon Kabushiki Kaisha Image reading unit and image reader
JP5735211B2 (ja) * 2006-05-31 2015-06-17 インディアナ・ユニバーシティ・リサーチ・アンド・テクノロジー・コーポレーション 簡単な光学系と多重散乱光結像機能とを備えたレーザー走査デジタルカメラ
JP2008072398A (ja) * 2006-09-13 2008-03-27 Ricoh Co Ltd 原稿照明装置、画像読み取り装置、カラー原稿読み取り装置及び画像形成装置
US7710639B2 (en) * 2006-12-12 2010-05-04 Northrop Grumman Space & Mission Systems Corporation System and method for uniform illumination of a target area
JP2008251134A (ja) * 2007-03-30 2008-10-16 Sony Corp 光ディスク装置、情報記録方法及び情報再生方法
WO2009104249A1 (ja) * 2008-02-19 2009-08-27 キヤノン・コンポーネンツ株式会社 イメージセンサユニットとその製造方法、及び画像読取装置
JP4741017B2 (ja) * 2008-09-22 2011-08-03 三菱電機株式会社 光源ユニット、及び画像表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253565A (ja) * 1985-09-03 1987-03-09 Mitsubishi Electric Corp カラ−画像読取装置
EP0395156A1 (en) 1989-04-28 1990-10-31 Koninklijke Philips Electronics N.V. Optical illumination system and projection apparatus comprising such a system
JPH0951405A (ja) 1995-08-04 1997-02-18 Canon Inc 画像読取装置
JPH09247364A (ja) * 1996-03-13 1997-09-19 Pfu Ltd カラースキャナ装置
JPH10190990A (ja) 1996-12-27 1998-07-21 Canon Inc 画像読取装置
JP2000250146A (ja) * 1999-03-02 2000-09-14 Toshiba Corp 画像読取装置
US6714323B1 (en) 1999-06-02 2004-03-30 Rohm Co., Ltd. Image reading apparatus and light conductor used for the same
JP2003280094A (ja) 2002-03-22 2003-10-02 Ricoh Co Ltd 照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1860864A4 *

Also Published As

Publication number Publication date
JP2006295914A (ja) 2006-10-26
US8169672B2 (en) 2012-05-01
EP1860864A1 (en) 2007-11-28
US20080316548A1 (en) 2008-12-25
CN101142806A (zh) 2008-03-12
TWI298802B (ja) 2008-07-11
JP4843344B2 (ja) 2011-12-21
CN101142806B (zh) 2012-11-28
EP1860864A4 (en) 2009-04-29
TW200736659A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
WO2006098468A1 (ja) 照明装置、照明方法、画像読取装置、画像読取方法、画像形成装置及び画像形成方法
JP4417700B2 (ja) 照明装置
JP4274766B2 (ja) 照明装置及びその照明装置を使用した画像投影装置
US8253989B2 (en) Optical reader, image reader and image forming device
US20050195452A1 (en) Document lighting device, image reader, color document reader, and image forming device
JP3847927B2 (ja) 発光管及びそれを用いた光源装置
JP2006042016A (ja) 原稿照明装置及びそれを有する画像読取装置
JP4896183B2 (ja) 原稿照明装置、及び画像読取装置
WO2004034141A1 (ja) 照明装置および照明方法
JP5298939B2 (ja) 原稿照明ユニット、並びにそれを用いた画像読取装置及び画像形成装置
JP4890169B2 (ja) 照明装置
JP4423095B2 (ja) 原稿照明装置、画像読み取り装置、カラー原稿読み取り装置、および画像形成装置
JPH10241437A (ja) 光源装置、照明系及び画像投射装置
US7434944B2 (en) Image projection apparatus
JP2652092B2 (ja) 照明装置
JPH11283422A (ja) 光源装置
JP2008172302A (ja) 光源ユニット、読取ユニット、画像読取装置、画像形成装置
JP2005086391A (ja) 照明系ならびにそれを用いた画像読取装置
JP2005251583A (ja) 照明装置、光変調装置、画像表示装置、及びスキャナ装置
JP4496947B2 (ja) ライン照明用直管式光源灯
JP2001516895A (ja) 写真プリンターにおいて用いるための光学システム
JP2009122301A (ja) 読取用照明部品,原稿照明装置,画像読取装置および画像形成装置ならびに画像送信装置
JPH09214678A (ja) 画像読取装置
JP2004228014A (ja) 集光照明装置及び画像表示装置
JP2001007990A (ja) 画像読取装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008761.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006729472

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729472

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11886578

Country of ref document: US