WO2006098437A1 - ポリエーテルポリオール類の製造方法 - Google Patents

ポリエーテルポリオール類の製造方法 Download PDF

Info

Publication number
WO2006098437A1
WO2006098437A1 PCT/JP2006/305425 JP2006305425W WO2006098437A1 WO 2006098437 A1 WO2006098437 A1 WO 2006098437A1 JP 2006305425 W JP2006305425 W JP 2006305425W WO 2006098437 A1 WO2006098437 A1 WO 2006098437A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
polyether polyol
usually
reboiler
reactor
Prior art date
Application number
PCT/JP2006/305425
Other languages
English (en)
French (fr)
Inventor
Hiroshi Takeo
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to CN2006800013490A priority Critical patent/CN101080433B/zh
Publication of WO2006098437A1 publication Critical patent/WO2006098437A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen

Definitions

  • the present invention relates to a method for producing a polyether polyol. Specifically, the present invention relates to diesters of polyether polyols c to c in the presence of a transesterification catalyst.
  • Polyether polyols such as polyalkylene ether glycol are used as soft segments such as polyester resin and polyurethane resin. In addition, it is processed into industrial products such as rolls, shoe soles, and elastic fibers for clothing, and is widely used in daily life.
  • the polyalkylene ether glycol can be produced by, for example, ring-opening polymerization of a cyclic ether in the presence of an acid catalyst and a carboxylic anhydride such as acetic anhydride to obtain a dicarboxylic acid ester of the polyalkylene ether glycol, and A method is known in which the obtained diester is transesterified with an alkenol such as methanol in the presence of a transesterification catalyst such as an alkali (earth) metal compound (see Patent Document 1).
  • Polyalkylene ether glycol is used as a raw material for polyurethane resin and the like. For this reason, it is not preferable that impurities such as a transesterification catalyst remain in the polyalkylene ether glycol. Therefore, the produced polyalkylene ether glycol is usually subjected to a treatment for removing alkali metals contained therein. Examples of methods for removing alkali metals include alkali metal ions dissolved in the reaction solution by bringing the reaction solution after the transesterification reaction into contact with an acid ion exchange resin in the presence of water. There are known methods for adsorbing and removing (see Patent Documents 2 and 3).
  • the transesterification reaction is usually carried out in the presence of an alkanol, for example, an alkanol having 1 to 4 carbon atoms.
  • the alkanols contained in the produced polyalkylene ether glycol are distilled off. Distilled-off alcohols can be recovered and reused. preferable.
  • the present inventors recovered the alkanols contained in the produced polyalkylene polyol through the reaction of synthesizing the polyether polyol by an alcoholysis reaction between the polyether polyol diester and the alkanol. When it was reused, the reaction was difficult to cut off, and the reboiler capability of the reactor gradually declined, causing problems such as being unable to react in a stable state.
  • Patent Document 1 JP-A-57-158225
  • Patent Document 2 Japanese Patent Laid-Open No. 11-279275
  • Patent Document 3 US Patent No. 4985551
  • the present invention relates to an alkenol contained in a produced polyether polyol in a reaction of synthesizing a polyether polyol by an alcoholysis reaction between a polyether polyol diester and an alkenol.
  • a method for stably producing polyether polyols while recycling the wastewater is provided.
  • the present inventors have studied in more detail in view of the strong circumstances. As a result, in the reaction of synthesizing the polyether polyols by the alcoholysis reaction between the polyether polyol diesters and the alkanols, the alkanols contained in the produced polyalkylene ether glycol are recovered. When it is reused, it has been found that it is difficult to cut off the reaction when the catalyst concentration is low. In addition, when the alkanols contained in the generated polyalkylene ether glycol are recovered and reused, even if the catalyst concentration is high, if the reactor is equipped with a reboiler as a heating device, the capacity of the reboiler gradually increases.
  • the concentration of the alkali metal compound in the reaction solution is usually not so high as to be considered to precipitate.
  • the concentration of the alkali metal compound is increased by the amount of evaporation of the alkanol, resulting in the precipitation of a hydroxide having a relatively low solubility in the alkanol. I guessed that.
  • the low-concentration alkoxide is 100% reactive with water in the polyether polyol solution, and some of it appears to have changed to hydroxide.
  • Alkali metal hydroxides have long been known to be used as transesterification catalysts (for example, as described in JP-A-57-158225 and JP-A-2000-502390). It is surprising that the alkali metal hydroxide, which is the exchange catalyst, is actually a hindering factor for the stable transesterification reaction.
  • the present inventors have intensively studied to perform a stable transesterification reaction. As a result, by making the moisture contained in the alkenols returned to the reaction system below a specific amount, it is possible to suppress the formation of deposits in the reaction system, particularly on the reboiler surface.
  • the present invention has been completed by discovering that it is possible to stably produce sulfoxides.
  • the gist of the present invention is that a polyether polyol diester is subjected to an alcoholysis reaction with a C to C alcohol in the presence of an alkali metal alkoxide catalyst.
  • the alcohols contained in the produced polyether polyols are alcoholized.
  • the present invention resides in a method for producing a polyether polyol, characterized in that the water content (mass) in the strong alcohol is returned to the reaction system in a state of lOOppm or less.
  • FIG. 1 is a diagram showing an example of a method for producing a polyether polyol of the present invention. Explanation of symbols
  • a numerical range expressed using V and “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the polyether polyol diesters used in the present invention any conventionally known diesters can be used. High molecular weight of polyether polyol diesters! When the alkali metal compound such as the solution solution after the reaction is removed with an ion exchange resin, the differential pressure in the ion exchange resin tower increases. Also, the low molecular weight of polyetherpolyol diesters increases the molar concentration of ester groups to be reacted. . Therefore, the lower limit of the number average molecular weight of the diesters of the polyether polyol used in the present invention is preferably 200, more preferably 650, and most preferably 1800. 5000 is preferred. 3000 is more preferred. 2100 is most preferred.
  • polyalkylene ether glycol diesters are preferred because they are readily dissolved in the alcoholic alcohols and the effects of the present invention become immediately significant. More preferred is a dicarboxylic acid ester of polyalkylene ether glycol.
  • polyalkylene ether glycol dicarboxylic acid esters will be described as examples of the polyether polyol diesters.
  • the production method of the dicarboxylic acid ester of polyalkylene ether glycol may be any method as long as the dicarboxylic acid ester of polyalkylene ether glycol is produced.
  • the dicarboxylic acid esters of polyalkylene ether glycol can be obtained, for example, by ring-opening polymerization of a cyclic ether in the presence of a carboxylic acid, a carboxylic acid anhydride, and an acid catalyst.
  • the cyclic ether has a large number of carbon atoms in the ring, the polymerizability decreases.
  • the number of carbon atoms constituting the ring ether is usually 2 to: L0, preferably 2 to 6.
  • Specific examples of the cyclic ether include cyclic ethers such as tetrahydrofuran (THF), ethylene oxide, propylene oxide, oxetane, tetrahydropyran, oxepane, 1,4-dioxane, and derivatives thereof. Use one or a combination of two or more. When two or more cyclic ethers are combined, even if one of them is difficult to polymerize, it is preferable because polymerization proceeds easily.
  • Examples of these cyclic ether derivatives include those obtained by substituting the cyclic ether with an alkyl group, an aryl group, an acyl group, a nitrogen atom, or the like.
  • the alkyl group, aryl group, acyl group and the like may further have a substituent.
  • Examples of the alkyl group, aryl group, acyl group and the like further having a substituent include alkoxy group, aryloxy group, acyloxy group, aryl alkyl group, acyl alkyl group, alkoxyalkyl group, acyloxyalkyl group, And aryloxyalkyl groups, and those obtained by halogenating these substituents.
  • examples of cyclic ether derivatives include 3-methyl derivatives.
  • examples include chloro-tetrahydrofuran, 2-methyl-tetrahydrofuran, 3-methyloxetane, 3,3-dimethyloxetane, 3-chloromethyl-3-ethyloxetane, and 3,3-bismuth lomethyloxetane.
  • tetrahydrofuran is preferred because of its excellent physical properties when polymerized and immediately converted to polyurethane resin, etc.!
  • carboxylic acid an aliphatic or aromatic carboxylic acid is used. Carbon number of carboxylic acid is 2-12 normally, Preferably it is 2-8. Specific examples of the carboxylic acid include acetic acid, propionic acid, butyric acid, maleic acid, succinic acid, phthalic acid, benzoic acid and the like. Among these, acetic acid having a small molecular weight is preferably used because a small amount of acetic acid can achieve the effect of controlling the molecular weight.
  • carboxylic acid anhydride examples include anhydrides of the above carboxylic acids.
  • Carboxylic anhydride may react with a small amount of moisture in the reaction system and part of it may become carboxylic acid. Therefore, in order not to complicate the reaction system, it is preferable to use a carboxylic anhydride corresponding to the carboxylic acid used in the present invention. That is, it is particularly preferable to use acetic acid and acetic anhydride as the carboxylic acid and carboxylic acid anhydride used in the production of the diesters of polyalkylene ether glycol.
  • the concentration of the carboxylic acid anhydride in the raw material liquid varies depending on the molecular weight of the target polyether polyol and the type of the catalyst, but the lower limit is usually 0.1% by mass, preferably 0.5% by mass, The upper limit is usually 30% by mass, preferably 15% by mass.
  • the ratio (molar ratio) of carboxylic acid to carboxylic anhydride is usually 0-50.
  • a solid acid catalyst such as activated clay, zeolite, super strong acid ion exchange resin, or composite metal oxide is preferably used.
  • the catalyst concentration in the reaction solution is usually 0.1 to 20% by mass.
  • Any type of reactor may be used as a reactor for producing polyalkylene ether glycol diesters as long as polyalkylene ether glycol diesters can be produced.
  • a reactor for producing polyesters of polyalkylene ether glycol known systems such as a fixed bed and a suspension bed can be used.
  • the reaction temperature may be appropriately set, but the lower limit is usually 10 ° C, preferably 30 ° C, and the upper limit is usually 80 ° C, preferably 50 ° C. If the reaction temperature is above the lower limit, It is preferable because the response speed is fast. Further, when the reaction temperature is not more than the above upper limit, the cyclic ether is less likely to boil.
  • the reaction pressure may be appropriately selected within a range in which the reaction solution remains liquid!
  • the reaction pressure is usually normal pressure to 0.5 MPa, preferably normal pressure to 0.3 MPa.
  • the reaction can be performed under reduced pressure.
  • the reaction is usually carried out in an atmosphere that does not inhibit the reaction of the present invention, such as an inert gas such as nitrogen.
  • the residence time of the reaction liquid in the reactor is determined by the activity and concentration of the catalyst. In the case of continuous reaction, if the residence time of the reaction liquid in the reactor is short, the conversion rate is low, and if it is long, it approaches the equilibrium conversion rate and the apparent reaction rate decreases, so usually 0.5 to 15 hours. It is.
  • the polymerization reaction liquid contains unreacted raw materials in addition to the desired polyalkylene ether glycol diesters, this is usually distilled off.
  • the unreacted raw material is usually distilled under normal pressure or reduced pressure.
  • the distilled cyclic ether, carboxylic acid and rubonic acid anhydride may be purified and reused as necessary.
  • the polyalkylene ether glycol diesters used in the present invention are particularly preferably polytetramethylene ether glycol (PTMG) dicarbonate esters (PTME) obtained by ring-opening polymerization of THF! /, .
  • PTMG polytetramethylene ether glycol
  • PTME polytetramethylene ether glycol
  • the polyether polyols of the present invention are prepared by mixing diesters of polyether polyol and alk alcohols c to c and reacting them in the presence of a transesterification catalyst.
  • Methanol, ethanol and propanol are preferable because methanol is advantageous for the progress of the reaction. Methanol and ethanol which is more preferable are particularly preferable.
  • the lower limit of the mass ratio of the alkanols to the diesters of the polyether polyol in the raw material liquid is preferably 0.3, and more preferably, the upper limit is 3.0. It is preferable that there is 2.0. If the Al-Nol is above the above lower limit, the reaction solution will have an appropriate viscosity and the reaction will proceed smoothly. In addition, Al-Kinols are If it is less than the limit, it is easy to remove excess alcoholic alcohols with an appropriate scale of the apparatus.
  • an alkali metal alkoxide is used as the catalyst for the transesterification reaction.
  • the alkali metal alkoxide include sodium compounds such as sodium methoxide, sodium ethoxide, and sodium isopropoxide; potassium compounds such as potassium methoxide, potassium ethoxide, and potassium isopropoxide. . Of these, sodium compounds are preferred. Also, sodium methoxide is particularly preferable because the smaller molecular weight is less and less expensive.
  • the lower limit of the amount of alkali metal alkoxide used is usually 0.002% by mass, preferably 0.005% by mass, more preferably 0.01% by mass, and the upper limit is usually 0.1% with respect to the reaction mixture.
  • each raw material and catalyst are put in a tank, and the liquid in each tank is put into a mixing tank while controlling the flow rate using a pump. Examples include a method of feeding the solution and mixing the solution in a mixing tank so that the solution is uniform, and then subjecting it to a transesterification reaction.
  • the transesterification catalyst since a small amount of the transesterification catalyst is usually used in a solid state, it is preferable to provide it as an alcoholic alcohol solution of the transesterification catalyst. It is easy to use a methanol solution of sodium methoxide sold commercially as the trans-strengthening alcohol solution.
  • the concentration of the alcoholic alcohol solution of the ester exchange catalyst must be kept constant. It is preferable to use the transesterification catalyst in the reactor from a tank separate from the alcoholic alcohol solution.
  • the transesterification catalyst in the reactor from a tank separate from the alcoholic alcohol solution.
  • purifying and recovering the alkanols in the reaction solution by a method such as distillation they may be supplied directly from the distillation tower to the mixing tank without going through the raw material tank. In this case, the alkanols lost during the recovery of the alkanols such as the reaction solution are usually supplied from the raw material tank.
  • any type of reactor may be used as long as polyether polyols can be produced.
  • a plurality of reactors are combined. May be combined.
  • the reactor used for the transesterification reaction is preferably such that at least one reactor is equipped with a reboiler as a heating source.
  • a reactor for producing polyether polyols a batch reaction tank, a continuous stirring tank, a tubular reactor, a reactive distillation tower, and the like are known. Of these, a reactive distillation column equipped with a heating device at the bottom of the column is preferable because of its high efficiency. Accordingly, it is preferable that at least a part of the transesterification reaction is performed in a reactive distillation apparatus.
  • the transesterification reaction may be completed in a reactive distillation column after partially performing the transesterification reaction in a pre-stage reactor such as a tubular reactor or a continuous stirring tank before the reactive distillation.
  • a pre-stage reactor such as a tubular reactor or a continuous stirring tank before the reactive distillation.
  • the higher the conversion rate in the former reactor the lower the load on the reactive distillation column. Therefore, it is preferable to carry out the reaction so that the transesterification rate is 85% or more of the equilibrium conversion rate.
  • the pre-reactor the alkyl carboxylate by-produced here may or may not be removed by a known method such as distillation.
  • a tubular reactor is preferably used because the construction cost is low.
  • the lower limit of the pressure during the first stage reaction is usually 0.1 lMPa, preferably 0.5 MPa, and the upper limit is usually 5 MPa, preferably 3 MPa.
  • the lower limit of the temperature during the previous reaction is usually 40 ° C, preferably 110 ° C, and the upper limit is usually 250 ° C, preferably 180 ° C.
  • the lower limit of the residence time during the first stage reaction is usually 2 minutes, preferably 5 minutes, and the upper limit is usually 60 minutes, preferably 20 minutes.
  • the lower limit of the residence time during the first stage reaction is usually 0.5 hours, preferably 1 hour, and the upper limit is usually 15 hours, preferably 10 hours.
  • a known method such as a jacket, an internal coil, or a heat exchanger can be used.
  • a tubular reactor as the pre-stage reactor, it is convenient and convenient to use the reaction liquid heated to the reaction temperature with a heat exchanger in a reactor insulated with a heat insulating material.
  • a conventional column such as a packed column or a plate column equipped with a reflux apparatus at the top and a reboiler at the bottom can be used.
  • a column tower provided with a tray on the lower side (collection stage) of the feed supply stage.
  • Bubble trays, perforated plate trays, valve trays, etc. are used as tray types.
  • the bubble tray has a wide range of stable operation, but its structure is complicated, which tends to be expensive.
  • the perforated plate tray has a simple structure and a small pressure loss, but has disadvantages such as a narrow stable operation range. For this reason, a bubble tray having both advantages is particularly suitable as a tray format for the previous stage reaction.
  • the upper side (concentration stage) from the raw material supply stage of the reactive distillation column is a part where distillation separation of the by-produced alkyl carbonate and c-c alkanols is performed.
  • the number of stages in the concentration section is preferably 1 to 10
  • the number of stages in the recovery section is preferably 5 to 40.
  • a known method such as a forced circulation reboiler or a natural circulation reboiler using a thermosiphon is used.
  • a forced circulation reboiler or a natural circulation reboiler using a thermosiphon is used.
  • the viscosity of the reaction solution is increased by evaporation of the alkanols, so that the forced circulation reboiler is preferable.
  • the reaction pressure in the reactive distillation column may be selected as appropriate as long as the reaction solution remains liquid! A higher reaction pressure is preferable from the viewpoint that the reaction rate can be increased by increasing the reaction temperature and that the foaming of the reaction solution is suppressed. On the other hand, a lower reaction pressure is preferable in terms of the construction cost of the apparatus. In particular, when a pre-reactor is used, the reaction distillation column usually has a more complicated structure than the pre-reactor, so setting the reaction pressure lower in the reaction distilling column than the pre-reactor reduces the construction cost. Cheap.
  • the pressure in the reactive distillation column is usually normal pressure, preferably 0.2 MPa, more preferably 0.5 MPa, and the upper limit is usually 2. OMPa, preferably 1. OMPa. There should be.
  • the reaction temperature of a reactive distillation column suitably according to reaction pressure.
  • the lower limit of the tower bottom temperature is usually 60 ° C, preferably 100 ° C
  • the upper limit is usually 180 ° C, preferably 160 ° C.
  • the reaction temperature is at least the above lower limit because the reaction rate is high.
  • the reaction temperature is not more than the above upper limit, Since the pressure required to maintain the degree may be low, it is preferable in terms of construction cost control.
  • the reaction temperature can be adjusted by adjusting the flow rate of the heating medium that is the heating source of the reboiler or the temperature of the heating medium.
  • the reaction is usually performed in an atmosphere that does not inhibit the reaction of the present invention, such as an inert gas such as nitrogen.
  • an inert gas such as nitrogen.
  • the residence time of the reaction liquid in the reactor is determined by the activity and concentration of the catalyst.
  • the retention time of the reaction liquid in the reactor is usually 10 to 30 minutes because the reaction is fast.
  • the reflux ratio during the reaction varies depending on the raw material composition and the number of stages of the distillation column, but is usually 0.5 to 20 and preferably 1.0 to 10.0. If the reflux ratio is less than the above upper limit, the catalyst concentration of the liquid on the tray is high and the reaction rate is fast, so if the preferred reflux ratio is more than the above lower limit, the alkyl carboxylate is completely separated and the reaction is pushed. Easy to cut, preferred for.
  • distillation column a conventional column such as a packed column or a plate column equipped with a reflux device at the top and a heating device at the bottom can be used, but a packed column is preferable in terms of efficiency.
  • the distillate from the top of the column is fed to the middle stage of the distillation column to obtain an azeotrope of alkyl carboxylic acid and alkenols at the top of the column, and alkenols from the bottom of the column.
  • the purity of the alkenols recovered from the bottom of the column is usually 95% by mass or more.
  • the number of distillation towers is usually 5-30.
  • the heating device at the bottom of the distillation column is not particularly limited, and known devices such as a forced circulation reboiler and a natural circulation reboiler using a thermosiphon can be used.
  • the pressure at the time of distillation is not particularly limited, but is usually a normal pressure.
  • the column bottom temperature is usually a force that becomes the boiling point of the alkanols under a set pressure.
  • the purity of the alkanols only needs to be 95% or more, and therefore the column in the case of containing an alkyl carboxylate.
  • the bottom temperature has a boiling point corresponding to the mixed composition of the alkanols and the alkyl sulfonates.
  • the bottom temperature is the temperature in the bottom liquid.
  • the amount of heat medium in the reboiler is controlled so that the temperature between the raw material supply stage and the bottom of the tower is constant, or the reflux ratio is set to a desired value with the distillate constant. Good.
  • an atmosphere that does not react with the raw materials and products of the present invention such as an inert gas such as nitrogen is usually used.
  • the reflux ratio varies depending on the raw material composition and the number of stages of the distillation column, but is usually 0.5 to 20, preferably 1 to L0. Distillation yields an alkenol as the bottom liquid, which can be reused in the reaction by returning it to the raw material tank or raw material mixing tank.
  • the alcoholic alcohols recovered here are used only with the alcoholic alcohols or from the polyether polyols described later. It may be dehydrated along with the recovered alcohol. However, dehydration is not necessary if the water content in the alnool is less than lOOppm without dehydration.
  • distillation Since the bottoms from the bottom of the reactive distillation column that has undergone the transesterification reaction contain the alkyl polyols in addition to the desired polyester polyols, this is usually removed by a method such as distillation.
  • Distillation of alcoholic alcohols from a mixture of polyether polyols and alcoholic alcohols uses known methods such as batch evaporators, kettle reboilers, thin film evaporators, strippers, falling film evaporators, and flash evaporation. Can be done.
  • the batch evaporator, kettle reboiler and stripper take time to completely remove the alcoholic alcohols. Flash evaporation can't completely separate the alanols
  • the distillation of the alcoholic alcohols from the mixture of the polyether polyols and the alcoholic alcohols is preferably carried out by combining these methods to compensate for the disadvantages.
  • the alkenols obtained here can be reused in the transesterification reaction by returning them to the raw material tank or raw material mixing tank.
  • Al-Nol is reused in the reaction, if Al-Nol contains moisture, precipitates may form in the reboiler, reducing the reboiler's ability.
  • the water content in the strong alcohols is usually 10 Oppm or less, preferably 80 ppm or less, more preferably 50 ppm or less, and particularly preferably 30 ppm or less. Therefore, a dehydration treatment is performed as necessary in order to keep the water content in the reusable alcohols to be below the above upper limit.
  • the bottoms from the bottom of the reactive distillation column that has undergone the transesterification reaction contain an ester exchange catalyst, this is usually removed. If the ester exchange catalyst remains in the polyether polyols, when the polyether polyols are subjected to a urethane reaction, the alkali metal has the effect of causing gelling, so usually 1 ppm or less, preferably 0.5 ppm or less. It is good to be.
  • the transesterification catalyst can be removed by various known methods.
  • the transesterification catalyst for example, a treatment with an H-type strong acid ion-exchange resin is performed in the presence of water, and the transesterification catalyst is adsorbed on the ion-exchange resin (see JP 2000-336164 A). ), And a method of neutralizing with an acid such as phosphoric acid and filtering is known.
  • the lower limit of the water concentration is usually 0.1% by mass, preferably 1% by mass, and the upper limit is 10% by mass, preferably 5% by mass. .
  • the water concentration is not more than the above upper limit, it is preferable from the viewpoint of high adsorption efficiency that it is not less than the above lower limit at which turbidity of the reaction solution and two-phase separation hardly occur.
  • the alkanols after removal of the alkali metal contain a large amount of water.
  • the alkenols usually contain 0.1 to: LO mass% of water.
  • the moisture contained in the resulting alkenols is returned to the reaction system in a state of usually not more than lOOppm, preferably not more than 5 Oppm. It is possible to stably produce polyether polyols by suppressing the formation of precipitates.
  • demineralized water that has passed through H-type strongly acidic ion exchange resin and strong basic ion exchange resin to remove ionic impurities has a preferred electrical conductivity of 50 s / cm or less. More preferred are those having an electric conductivity of 10 s / cm or less, and particularly preferred are those having an electric conductivity of 5 s / cm or less.
  • Such a method for producing desalted water is described in, for example, “Mitsubishi Engineering and Technical Service Series ⁇ Diaion ⁇ Application”.
  • the removal of water in the alkanols obtained from the bottoms of the reactive distillation column that has undergone the transesterification reaction can be carried out in the form of a mixture of polyether polyols and alkanols. It may be carried out after taking out the alkanols from the mixed liquid of the polyether polyols and the alkanols. However, if polyether polyols are contained, the viscosity of the liquid increases and hinders dehydration, so moisture removal can be achieved from a mixture of polyether polyols and alkanols. It is preferable to carry out after removing the alkanols.
  • the water removal method a known method using a dehydrating agent such as distillation or molecular sieve can be used, but it is easy to separate by distillation.
  • a dehydrating agent such as distillation or molecular sieve
  • the distillation column for distilling off the water a force packed column that can use a conventional one such as a packed column or a plate column equipped with a heating device or a reflux device is preferable because of its high efficiency.
  • the number of stages depends on the reflux ratio.
  • the concentration stage is usually 5 to 30 stages, preferably 10 to 20 stages, and the recovery stage is usually 3 to 20 stages, preferably 5 to 10 stages. There should be.
  • the heating device at the bottom of this distillation column is not particularly limited, and known devices can be used.
  • a pressure is not specifically limited, Usually, it implements by a normal pressure.
  • the heating of the tower bottom can be adjusted by adjusting the flow rate of the heating medium that is the heating source of the reboiler, etc., so that the temperature between the raw material supply stage and the tower bottom is constant, or the distillation amount is constant. Therefore, the amount of the reboiler heat medium may be controlled so that the reflux ratio becomes a desired value.
  • an atmosphere that does not react with the raw material or product of the present invention such as an inert gas such as nitrogen is usually used.
  • the reflux ratio varies depending on the raw material composition and the number of stages of the distillation column. Force is usually 0.5 to 20, preferably 1 to L0. As a result of this distillation, alcoholic alcohols are obtained as the liquid at the bottom of the tower and as the liquid at the top of the tower.
  • the water content in the alkanols as the top liquid is 10 ppm or less, preferably 80 ppm or less, more preferably 50 ppm or less, and particularly preferably 30 ppm or less.
  • the concentration of alcohols in the bottom of the column may not be sufficiently removed, and the concentration may be several hundred to several hundred ppm. In this case, if necessary, water and alcohol can be separated in a separate distillation tower, or the water can be treated with activated sludge.
  • the water content in the raw strength alcohols is preferably 10 ppm or less, more preferably 50 ppm or less.
  • the lower limit of the moisture content in the re-used Al-Kinols is better, but the lower limit is usually better.
  • the absolute water content of the transesterification reaction solution is preferably 50 ppm or less, more preferably 25 ppm or less.
  • the lower limit of the water content in the alkanols to be reused is as low as possible, but usually the lower limit of the water content in the raw material alkanols and the water content in the transesterification reaction solution is the detection limit.
  • the reason why the reboiler's ability declines due to the formation of precipitates in the reboiler when water is contained in the reusable Al-Nol is as follows. In other words, if water is contained in the reused strength alcohols, the alkali metal compound is converted to an alkali metal hydroxide, so that the catalytic activity is reduced and precipitates are generated in the reboiler. At the same time, it is estimated that the reboiler's ability decreases.
  • the moisture concentration is measured by using a digital trace moisture measuring device “CA-06 type” manufactured by Mitsubishi Chemical Corporation as a moisture meter, “AQUAMICRON AS” manufactured by Mitsubishi Chemical Corporation as a generation liquid for coulometric titration, It can be obtained by using “AQUAMICRON CS” manufactured by Mitsubishi Chemical Co., Ltd. as the catholyte for quantitative titration, and determining the water content in samples 1 to 1.5 g by coulometric titration and dividing this by the mass of the sample. .
  • Acid carrier (Fuji Silysia Chemical Co., Ltd., “Carrier Tat Q-15”, average particle size 200 m) as a carrier, 5 parts by mass, and as a raw metal compound, zirconium oxide (ZrO) was replaced.
  • the extracted reaction solution was supplied to the flash drum through a cartridge filter installed outside the reactor.
  • the flash drum was controlled at a pressure of 50 kPa.
  • a part of the effluent after flushing is supplied to the heat exchanger through a pump. And heated and returned to the flash drum for circulation.
  • the remaining liquid from the pump is supplied to another heat exchanger ⁇ at a flow rate that keeps the liquid level of the flash drum constant, and further heated, and then charged near the top of the packed tower packed with regular packing. More heated nitrogen was bubbled through.
  • the nitrogen charge was set at 100 parts by volume Zhr.
  • both tetrahydrofuran and acetic anhydride were PTME (PTMG diacetate) with a detection limit of 20 ppm or less.
  • the raw material tank 1 was filled with PTME prepared as described above, the raw material tank 2 with methanol containing 200 ppm of water, and the raw material tank 3 with a 25 mass% sodium methoxide methanol solution.
  • the molecular weight of PTME was 1815 as a result of calculating the molecular weight of the final PTMG and taking into account the difference in the molecular weight of the end groups.
  • the liquid in the raw material tank 2 was supplied together with the distillate of the kettle-type reboiler 9 at 310 parts by mass Zhr in the middle stage of the distillation tower 10 having 25 stages, equipped with a reflux apparatus at the top of the tower and a reboiler at the bottom.
  • the distillation column 10 was operated by adjusting the flow rate of the heating medium, which is the reboiler heating source, so that the return ratio was 2.6 at normal pressure. Water was obtained as the bottom liquid. Moreover, methanol was obtained as a tower top liquid. This tower top liquid is 700 parts by mass Zhr, the distillation liquid of distillation column 7 described later is 260 parts by mass Zhr, the liquid in raw material tank 1 is 1250 parts by mass Zhr, and the liquid in raw material tank 3 is 1.2. The liquid was fed to the mixing tank 4 using a pump at a mass part of Zhr.
  • the distillation column 6 was operated by adjusting the flow rate of the heating medium as the reboiler heating source so that the pressure was 0.85 MPa, the reflux ratio was 1.9, and the bottom temperature was 143 ° C.
  • the temperature of the heating medium supplied to the reboiler was 255 ° C.
  • a mixture of methanol and methyl acetate was obtained as the top liquid.
  • a mixed liquid of PTMG (80 parts by mass) and methanol (20 parts by mass) was obtained as a tower bottom liquid.
  • the compositional power of the charged sodium methoxide in the distillation column 6 is 190 ppm.
  • the top liquid of the distillation tower 6 (mixed liquid of methanol and methyl acetate) was supplied to the middle stage of the 20-stage distillation tower 7 equipped with a reflux device at the top and a reboiler at the bottom.
  • the distillation column 7 was operated by adjusting the flow rate of the heating medium as a reboiler heating source so that the reflux ratio was 2.0 at normal pressure, and the temperature at the intermediate point between the raw material supply stage and the column bottom was 63 ° C.
  • An azeotropic composition of methanol and methyl acetate was obtained as the top liquid.
  • methanol was obtained as a tower bottom liquid.
  • This bottom liquid (methanol) was supplied to the mixing tank 4 at 260 parts by mass Zhr and reused in the reaction.
  • demineralized water 1% by mass was added to the bottom liquid of the distillation column 6 (mixed solution of PTMG and methanol).
  • This demineralized water is obtained by passing water through a H-type strongly acidic ion exchange resin and a strongly basic ion exchange resin to remove ionic impurities, and is ionized so that the electric conductivity is 5 s / cm or less. Sex impurity concentration was controlled.
  • a method for producing desalted water in this way is described in, for example, “Mitsubishi Engineering Science Service Series' Diaion Sakai Application”.
  • the bottom liquid of the distillation column 6 to which the demineralized water was added was introduced into a column 8 packed with H-type strongly acidic cation exchange resin (“Diaion PK216LH (registered trademark)” manufactured by Mitsubishi Chemical Corporation). The sodium was removed to 0.5 ppm or less. This liquid was supplied to the kettle-type reboiler 9 and operated so that the liquid temperature was 104 ° C. Methanol obtained as a distillate was supplied to the middle stage of the distillation column 10 as described above.
  • the supply amount from the raw material tank 2 to the distillation tower 10 was set to 440 parts by mass Zhr. 220 parts by mass Zhr of the top liquid of the distillation column 10 was returned to the raw material tank 2. 170 parts by mass Zhr of the bottoms from the distillation column 7 was supplied to the mixing tank 4.
  • the reflux ratio of the distillation column 7 was 1.4.
  • the temperature at the intermediate point between the raw material supply stage of distillation column 7 and the bottom of the column was controlled at 60 ° C.
  • the reflux ratio of the reactive distillation column 6 was 3.4.
  • the flow rate of the heating medium supplied to the reboiler installed at the lower part of the distillation column 6 was gradually increased. Since the temperature of the heat medium to be supplied (255 ° C) was approached, the operation of the distillation column 6 could no longer be maintained.
  • the method for producing the polyether polyols of the present invention is a stable production method in which the formation of deposits on the inner wall of the reactor is suppressed, and is extremely important for stable production on a chemical industrial scale. It is valid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

  ポリエーテルポリオールのジエステル類をポリエーテルポリオール類に転化する際、反応器内壁への付着物生成を抑制し、安定したポリエーテルポリオール類の製造方法を提供する。   アルカリ金属のアルコキシド触媒の存在下で、ポリエーテルポリオールのジエステル類をC1~C4のアルカノール類とのアルコリシス反応によりポリエーテルポリオール類に転化するポリエーテルポリオール類の製造方法において、生成されたポリエーテルポリオール類に含まれるC1~C4のアルカノール類をアルカノール類中の水分量が100ppm以下の状態で反応系内へ戻すことを特徴とするポリエーテルポリオール類の製造方法。

Description

明 細 書
ポリエーテルポリオール類の製造方法
技術分野
[0001] 本発明は、ポリエーテルポリオール類の製造方法に関する。本発明は、詳しくは、 エステル交換触媒の存在下で、ポリエーテルポリオールのジエステル類を c〜cの
1 4 アル力ノール類とのアルコリシス反応によりポリエーテルポリオール類に転ィ匕する反 応に関する。
背景技術
[0002] ポリアルキレンエーテルグリコール等のポリエーテルポリオール類は、ポリエステル 榭脂、及びポリウレタン榭脂等のソフトセグメントとして用いられている。また、これは、 ロール等の工業製品、靴底、及び衣料用弾性繊維等に加工されて、広く生活に利用 されている。ポリアルキレンエーテルグリコールの製造方法としては、例えば、酸触媒 及び無水酢酸のようなカルボン酸無水物の存在下で、環状エーテルを開環重合させ 、ポリアルキレンエーテルグリコールのジカルボン酸エステルを得て、そして、この得 られたジエステルを、アルカリ (土類)金属化合物等のエステル交換触媒の存在下で、 メタノールなどのアル力ノール類とエステル交換する方法が知られている (特許文献 1 参照)。
[0003] ポリアルキレンエーテルグリコールは、ポリウレタン榭脂等の原料に用いられる。この ため、ポリアルキレンエーテルグリコール中にエステル交換触媒等の不純物が残留 することは好ましくない。そこで、通常、生成したポリアルキレンエーテルグリコールに 対して、これに含まれるアルカリ金属等を除去する処理を施す。アルカリ金属等の除 去方法としては、例えば、エステル交換反応後の反応液を、水の存在下で酸性ィォ ン交換樹脂と接触させることにより、反応液中に溶解しているアルカリ金属イオン等を 吸着除去する方法などが知られて 、る (特許文献 2、 3参照)。
[0004] エステル交換反応は、通常、アル力ノール類、例えば、炭素数 1〜4のアル力ノール 類の存在下で行う。生成したポリアルキレンエーテルグリコール中に含まれるアルカノ ール類は、留去させる。留去させたアル力ノール類は、回収して、再使用することが 好ましい。しかしながら、本発明者らが、ポリエーテルポリオールのジエステル類とァ ルカノール類とのアルコリシス反応によりポリエーテルポリオール類を合成する反応に ぉ 、て、生成したポリアルキレンポリオールに含まれるアル力ノール類を回収して再 使用したところ、反応の押切が困難になる、反応器に備えられたリボイラーの能力が 次第に低下して、安定した状態で反応できなくなる等の現象が生じてしまった。 特許文献 1 :特開昭 57- 158225号公報
特許文献 2:特開平 11-279275号公報
特許文献 3 :米国特許第 4985551号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、ポリエーテルポリオールのジエステル類とアル力ノール類とをアルコリシ ス反応することにより、ポリエーテルポリオール類を合成する反応において、生成した ポリエーテルポリオール類に含まれるアル力ノール類をリサイクルしつつ、ポリエーテ ルポリオール類を安定的に生産する方法を提供する。
課題を解決するための手段
[0006] 本発明者らは、力かる事情に鑑み更に詳細に検討を行った。その結果、ポリエーテ ルポリオールのジエステル類とアル力ノール類とのアルコリシス反応によりポリエーテ ルポリオール類を合成する反応にぉ 、て、生成したポリアルキレンエーテルグリコー ル中に含まれるアル力ノール類を回収して再利用すると、触媒濃度が薄い場合に、 反応の押切が困難になることが判明した。また、生成したポリアルキレンエーテルダリ コール中に含まれるアル力ノール類を回収して再利用すると、触媒濃度が高い場合 でも、反応器が加熱装置としてリボイラーを備えていると、リボイラーの能力が次第に 低下し、反応を安定した状態で維持できなくなった。この加熱装置の能力低下は、ァ ルコリシス反応において、リボイラーでアル力ノール類を蒸発させる場合に特に顕著 であった。そして、この能力の低下したリボイラーについて、触媒及びポリエーテルポ リオールのジエステル類の供給を止め、リボイラーをアル力ノール類で洗浄すると、高 濃度のアルカリが溶出した。更に、本発明者らは、これらの現象がリサイクルするアル 力ノール類中に水分が含まれているときに起きることを見出した。これらのことから、本 発明者らは、反応液中に水が含まれていると、アルカリ金属のアルコキシドが水と反 応してアルカリ金属の水酸ィ匕物となり、これがリボイラー表面に堆積すると推定した。 ここで、反応液中のアルカリ金属化合物の濃度は、通常、析出すると考えられている ほどに高濃度ではない。し力しながら、リボイラーではアル力ノール類を蒸発させてい る分、アルカリ金属化合物の濃度が高くなり、アル力ノール類への溶解度が比較的低 い水酸ィ匕物が析出してしまうのではないかと推定した。但し、ポリエーテルポリオール 溶液中で、低濃度のアルコキシドが水と 100%反応しているかどうかは不明であり、 その一部が水酸ィ匕物に変化しているものと思われる。
アルカリ金属の水酸ィ匕物がエステル交換触媒として用いられることは古くから知ら れている(例えば特開昭 57— 158225号公報及び特開 2000— 502390号公報に 記載されている。 ) oエステル交換触媒であるアルカリ金属の水酸ィ匕物が、実は、安 定したエステル交換反応の阻害要因となっていることは、非常に意外なことである。
[0007] 本発明者らは、安定したエステル交換反応を行うベぐ鋭意検討した。この結果、反 応系内に戻すアル力ノール類に含まれる水分を特定量以下とすることにより、反応系 内、特にリボイラー表面への堆積物の生成を抑制することができ、ポリエーテルポリオ 一ル類を安定的に製造出来ることを見出し、本発明を完成させた。
[0008] 即ち、本発明の要旨は、アルカリ金属のアルコキシド触媒の存在下で、ポリエーテ ルポリオールのジエステル類を C〜Cのアル力ノール類とのアルコリシス反応により
1 4
ポリエーテルポリオール類に転ィ匕するポリエーテルポリオール類の製造方法におい て、生成されたポリエーテルポリオール類に含まれる c ール類をアル
1〜cのアル力ノ
4
力ノール類中の水分量 (質量)が lOOppm以下の状態で反応系内へ戻すことを特徴 とするポリエーテルポリオール類の製造方法に存する。
発明の効果
[0009] ポリエーテルポリオールのジエステル類をポリエーテルポリオール類に転化する際 、アル力ノール類をリサイクルしても、反応器内壁への付着物生成が抑制され、ポリエ 一テルポリオール類を安定して製造できる方法を提供する。
図面の簡単な説明
[0010] [図 1]本発明のポリエーテルポリオール類の製造方法の一例を示す図である。 符号の説明
1 原料タンク 1
2 原料タンク 2
3 原料タンク 3
4 混合槽 4
5 管型反応器 5
6 蒸留塔 6
7 蒸留塔 7
8 イオン交換榭脂充填塔
9 リボイラー 9
10 蒸留塔 10
11 PTME
12 ナトリウムメトキシドのメタノール溶液
13 メタノーノレ
14 PTMG
15 水
16 酢酸メチル Zメタノール
発明を実施するための最良の形態
以下に、本発明の重合方法及び重合装置の実施の形態を詳細に説明する。以下 に記載する構成要件の説明は、本発明の代表的な実施態様に基づ!ヽてなされて 、 るが、本発明はそのような実施態様に限定されるものではない。なお、本明細書にお V、て「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値およ び上限値として含む範囲を意味する。
本発明に用いられるポリエーテルポリオールのジエステル類としては、従来公知の 任意のものを使用できる。ポリエーテルポリオールのジエステル類の分子量が大き!/、 と、粘度が高くなり、反応後の溶液カゝらアルカリ金属化合物をイオン交換樹脂で除く 場合におけるイオン交換榭脂塔での差圧が大きくなる。また、ポリエーテルポリオ一 ルのジエステル類の分子量が小さ 、と、反応すべきエステル基のモル濃度が増える 。そこで、本発明に用いられるポリエーテルポリオールのジエステル類の数平均分子 量は、下限が 200であることが好ましぐ 650であることが更に好ましぐ 1800である ことが最も好ましぐ上限が 5000であることが好ましぐ 3000であることが更に好まし ぐ 2100であることが最も好ましい。また、本発明に用いられるポリエーテルポリオ一 ルのジエステル類としては、アル力ノール類に溶解しやすぐ本発明の効果が顕著と なること力ら、ポリアルキレンエーテルグリコールのジエステル類が好ましぐポリアル キレンエーテルグリコールのジカルボン酸エステルが更に好ましい。以下、ポリエーテ ルポリオールのジエステル類として、ポリアルキレンエーテルグリコールのジカルボン 酸エステル類を例に説明する。
ポリアルキレンエーテルグリコールのジカルボン酸エステル類の製造方法は、ポリア ルキレンエーテルグリコールのジカルボン酸エステル類が製造されれば、任意のどの 方法でもよい。ポリアルキレンエーテルグリコールのジカルボン酸エステル類は、例え ば、カルボン酸、カルボン酸無水物及び酸触媒の存在下で、環状エーテルを開環重 合して得られる。
環状エーテルは、これを構成する環の炭素数が多いと重合性が低下する。環状ェ 一テルを構成する環の構成炭素数は、通常、 2〜: L0であり、 2〜6であるのが好まし い。環状エーテルは、具体的には、テトラヒドロフラン (THF)、エチレンオキサイド、プ ロピレンオキサイド、ォキセタン、テトラヒドロピラン、ォキセパン、 1, 4-ジォキサン等 の環状エーテル、及び、これら並びにこれらの誘導体力 選ばれた一つないしは二 つ以上の組み合わせで用いる。二つ以上の環状エーテルを組み合わせた場合、片 方が重合しにくいものであっても、重合が進みやすいので好ましい。これらの環状ェ 一テルの誘導体としては、前記環状エーテルをアルキル基、ァリール基、ァシル基及 びノヽロゲン原子などで置換したものなどが挙げられる。ここでアルキル基、ァリール基 、ァシル基などは、更に置換基を有していてもよい。アルキル基、ァリール基、ァシル 基などが更に置換基を有している例としては、アルコキシ基、ァリールォキシ基、ァシ ルォキシ基、ァリールアルキル基、ァシルアルキル基、アルコキシアルキル基、ァシ ルォキシアルキル基、ァリールォキシアルキル基、及びこれらの置換基をハロゲン化 したものなどが挙げられる。環状エーテルの誘導体としては、更に具体的には、 3-メ チルーテトラヒドロフラン、 2—メチルーテトラヒドロフラン、 3—メチルォキセタン、 3、 3 ージメチルォキセタン、 3—クロロメチルー 3—ェチルォキセタン、 3, 3—ビスク口ロメ チルォキセタンなどが挙げられる。これらの中でも、重合しやすぐポリウレタン榭脂な どにしたときの物性が優れて 、ることから、テトラヒドロフランが好まし!/、。
カルボン酸としては、脂肪族または芳香族カルボン酸を用いる。カルボン酸の炭素 数は、通常 2〜12、好ましくは 2〜8である。カルボン酸としては、具体的には、例え ば、酢酸、プロピオン酸、酪酸、マレイン酸、コハク酸、フタル酸、安息香酸等が挙げ られる。これらの中でも、分子量の小さい酢酸が少量で分子量制御の効果が得られ るので好適に用いられる。
カルボン酸無水物としては、上記カルボン酸の無水物などが挙げられる。カルボン 酸無水物は、反応系内の微量水分と反応して、その一部がカルボン酸になる可能性 がある。そこで、反応系を複雑にしないために、本発明に用いるカルボン酸に対応す るカルボン酸無水物を用いることが好ましい。すなわち、ポリアルキレンエーテルダリ コールのジエステル類の製造に用いるカルボン酸とカルボン酸無水物としては、酢酸 と無水酢酸を用いることが特に好まし 、。
原料液中のカルボン酸無水物の濃度は、 目的とするポリエーテルポリオールの分 子量や触媒の種類により異なるが、下限が、通常 0. 1質量%、好ましくは 0. 5質量% であり、上限が通常 30質量%、好ましくは 15質量%である。カルボン酸のカルボン酸 無水物に対する比率 (モル比)は、通常 0〜50である。
酸触媒は、重合後の分離除去が容易なことから、活性白土、ゼォライト、超強酸性 イオン交換榭脂、複合金属酸化物等の固体酸触媒が好適に用いられる。反応液中 の触媒濃度は、例えば、懸濁床で反応を行う場合、通常、 0. 1〜20質量%とする。 ポリアルキレンエーテルグリコールのジエステル類の製造に用いる反応器は、ポリア ルキレンエーテルグリコールのジエステル類を製造できれば、任意のどのような形式 の反応器を用いても良 ヽ。ポリアルキレンエーテルグリコールのジエステル類を製造 する反応器としては、例えば、固定床や懸濁床などの公知の方式が使用できる。 反応温度は、適宜設定すればよいが、下限が、通常 10°C、好ましくは 30°Cであり、 上限が、通常 80°C、好ましくは 50°Cである。反応温度が上記下限以上であると、反 応速度が速いため好ましい。また、反応温度が上記上限以下であると、環状エーテ ルが沸騰しにく 、ので好ま 、。
[0015] 反応圧力は、反応液が液状を保つ範囲で適宜選択すればよ!、。反応圧力は、通 常、常圧〜 0. 5MPa、好ましくは常圧〜 0. 3MPaである。圧力が高いとより高い温 度でも液状を保つことができるが、建設費が高騰するうえ、温度が高いほど平衡転ィ匕 率が低下する。なお、反応は、減圧下でも行える。反応は、通常、窒素等の不活性ガ スなどの本発明の反応を阻害しない雰囲気下で行う。反応を連続的に行う場合の反 応器内における反応液の滞留時間は、触媒の活性及び濃度等により決められる。連 続反応の場合の反応器内における反応液の滞留時間は、短いと転化率が低くなり、 長いと平衡転ィ匕率に近づき見かけの反応速度が低下するので、通常 0. 5〜15時間 である。
[0016] 重合反応液には、 目的とするポリアルキレンエーテルグリコールのジエステル類の 他に、未反応原料が含有されているので、通常、これを留去させる。未反応原料の留 去は、通常、常圧又は減圧下で行う。留去された環状エーテル、カルボン酸及び力 ルボン酸無水物は、必要に応じて精製して再利用してもよい。
本発明にお 、て用いるポリアルキレンエーテルグリコールのジエステル類としては、 THFを開環重合して得たポリテトラメチレンエーテルグリコール (PTMG)のジカルボ ン酸エステル類 (PTME)が特に好まし!/、。
本発明のポリエーテルポリオール類は、ポリエーテルポリオールのジエステル類と、 c〜cのアル力ノール類とを混合し、エステル交換触媒の存在下に反応させること
1 4
により得られる。
c〜cのアル力ノール類としては、分子量が小さいほど同一質量でもモル数が多く
1 4
、反応の進行に有利なことから、メタノール、エタノール及びプロパノールが好ましぐ メタノール及びエタノールが更に好ましぐメタノールが特に好ましい。原料液中のポ リエーテルポリオールのジエステル類に対するアル力ノール類の質量比は、下限が 0 . 3であることが好ましぐ 0. 6であることが更に好ましぐ上限が 3. 0であることが好ま しぐ 2. 0であることが更に好ましい。アル力ノール類が上記下限以上であると、反応 溶液が適度な粘度となり反応が円滑に進みやすい。また、アル力ノール類が上記上 限以下であると、装置規模を適度なものとしゃすぐ過剰なアル力ノール類の除去が 容易である。
[0017] エステル交換反応の触媒としては、アルカリ金属のアルコシキドが用いられる。アル カリ金属のアルコシキドとしては、具体的には、ナトリウムメトキシド、ナトリウムエトキシ ド、ナトリウムイソプロボキシド等のナトリウム化合物;カリウムメトキシド、カリウムェトキ シド、カリウムイソプロボキシド等のカリウム化合物等が挙げられる。これらのうち、ナト リウム化合物が好ましい。また、分子量が小さい方が少量で安価なこと等から、特に、 ナトリウムメトキシドが好ましい。アルカリ金属アルコキシドの使用量は、反応液に対し て、下限が、通常 0. 002質量%、好ましくは 0. 005質量%、更に好ましくは 0. 01質 量%、上限が、通常、 0. 1質量%、好ましくは 0. 03質量%、更に好ましくは 0. 02質 量%である。アルカリ金属アルコキシドの使用量力 上記下限以上であると、反応速 度の点で好ましぐ上記上限以下であると、残存触媒の除去が容易な点で好ましい。 各原料及び触媒の反応器への供給方法としては、具体的には、例えば、各原料及 び触媒をタンクに入れ、各タンク中の液をポンプを使用して流速を制御しつつ混合槽 に送液し、混合槽内で液が均一になるように混合してから、エステル交換反応に供す る方法などが挙げられる。ここで、エステル交換触媒は、通常、固体の状態のものを 少量用いるため、エステル交換触媒のアル力ノール類溶液として供するのが好まし ヽ 。エステル交換触媒のアル力ノール類溶液としては、巿販のナトリウムメトキシドのメタ ノール溶液を用いるのが簡便である。
エステル交換反応後の反応液に含まれるアル力ノール類を再使用する場合、エス テル交換触媒のアル力ノール類溶液の濃度を一定に保つ必要があることから、再使 用するアル力ノール類は、エステル交換触媒のアル力ノール類溶液とは別のタンクか ら反応器に供することが好まし 、。反応液中のアル力ノール類を蒸留などの方法で 精製して回収する場合は、原料タンクを経由せずに蒸留塔から直接混合槽に供給し ても良い。この場合、通常、反応液力ゝらのアル力ノール類の回収時にロスした分のァ ルカノール類を原料タンクから供給する。
[0018] エステル交換反応に用いる反応器の形式は、ポリエーテルポリオール類を製造で きれば、任意のどのような形式の反応器を用いても良ぐまた、複数の反応器を組み 合わせても良い。エステル交換反応に用いる反応器は、少なくとも一つの反応器が 加熱源としてリボイラーを備えて 、るのが好ま U、。ポリエーテルポリオール類を製造 する反応器としては、具体的には、バッチ反応槽ゃ連続攪拌槽、管型反応器、反応 蒸留塔などが知られている。これらのうち、塔底に加熱装置を備えた反応蒸留塔が、 効率が良いので好ましい。従って、エステル交換反応は、その少なくとも一部を反応 蒸留器で行うのが好ましい。
また、反応蒸留前に、管型反応器や連続攪拌槽などの前段反応器でエステル交換 反応を部分的に実施した後、反応蒸留塔でエステル交換を完結させても良い。前段 反応器を用いる場合、前段反応器における転化率が高いほど反応蒸留塔の負荷が 低下するので、エステル交換率が平衡転ィ匕率の 85%以上となるように反応させておく のが好ましい。前段反応器を用いる場合、ここで副生するカルボン酸アルキルを蒸留 などの公知の方法で除去しても良いし、除去しなくても良い。前段反応器としては、 建設費が安いことから、管型反応器が好適に用いられる。前段反応器で反応を行う 場合、圧力が高いほど温度を上げて反応速度を速くすることが出来るが、圧力が高 いほど反応器の建設費が高くなる。前段反応時の圧力は、下限が、通常 0. lMPa、 好ましくは 0. 5MPaであり、上限が、通常 5MPa、好ましくは 3MPaであるのが良い。 前段反応時の温度は、下限が、通常 40°C、好ましくは 110°Cであり、上限が、通常 2 50°C、好ましくは 180°Cであるのが良い。前段反応時の滞留時間は、管型反応器の 場合、下限が、通常 2分、好ましくは 5分、上限が、通常 60分、好ましくは 20分である のが良い。前段反応時の滞留時間は、連続攪拌槽の場合は、下限が、通常 0. 5時 間、好ましくは 1時間、上限が、通常 15時間、好ましくは 10時間であるのが良い。ま た、前段反応時の加熱は、ジャケットや内部コイル、熱交換器など公知の方法を使用 することが出来る。前段反応器として管型反応器を用いる場合は、熱交換器で反応 温度まで加熱した反応液を、保温材で断熱した反応器に供するのが簡便で好ま ヽ 反応器として反応蒸留塔を用いる場合の反応蒸留塔は、塔頂に還流装置、塔底に リボイラーを備えた充填塔や棚段塔などの常用のものを用いることができる。エステル 交換反応を進行させるのに充分な反応時間を確保する見地から、反応蒸留塔の原 料供給段より下側(回収段)には、トレィを備えた段塔を用いるのが好ましい。トレイの 形式としては泡鐘トレイ、多孔板トレイ、バルブトレイ等が用いられる。泡鐘トレイは、 安定操作範囲は広いが、構造が複雑なためにコスト高となりやすい。多孔板トレイは 、構造が単純で圧力損失が小さいが、安定操作範囲が狭い等の欠点を有する。この ため、前段反応時のトレイの形式としては、双方の利点を有するバブルトレイが特に 好適である。反応蒸留塔の原料供給段より上側 (濃縮段)は、主に、副生したカルボ ン酸アルキルと c〜cのアル力ノール類との蒸留分離が行われる部分であるので、
1 4
通常の蒸留設備であればよぐ必ずしも段塔でなくても、充填塔であってもよい。蒸留 塔の理論段数は多い方が反応の押切が容易になるが、建設費が高騰するので、濃 縮部の段数は 1〜10段、回収部の段数は 5〜40段が好ましい。
反応蒸留塔の塔底にある加熱装置としては、具体的には、強制循環型リボイラーや サーモサイホンによる自然循環型リボイラーなど公知の方法が用いられる。このうち、 リボイラー内では、アル力ノール類が蒸発することにより反応液の粘度が高くなるので 、強制循環型リボイラーが好ましい。
反応蒸留塔の反応圧力は、反応液が液状を保つ範囲で適宜選択すればよ!、。反 応圧力は、反応温度を上げて反応速度を速く出来る点、及び、反応液の発泡の抑制 の点からは、高い方が好ましい。一方、装置の建設費の点では、反応圧力が低い方 が好ましい。特に、前段反応器を用いる場合、通常、反応蒸留塔は前段反応器よりも 複雑な構造であるため、反応圧力は前段反応器よりも反応蒸留塔で低めに設定した 方が建設費を低減しやすい。また、反応蒸留塔の圧力を前段反応器よりも低く設定 すると、前段反応器で副生したカルボン酸アルキルを、反応蒸留塔に供給するときに フラッシュ蒸発させられる点でも好ましい。反応蒸留塔の反応圧力は、具体的には、 下限が、通常、常圧、好ましくは 0. 2MPa、更に好ましくは 0. 5MPaであり、上限が、 通常 2. OMPa、好ましくは 1. OMPaであるのが良い。
反応蒸留塔の反応温度は、反応圧力に応じて、適宜設定すればよい。反応温度は 、具体的には、例えば、塔底温度の下限が、通常 60°C、好ましくは 100°Cであり、上 限力 通常 180°C、好ましくは 160°Cであるのが良い。反応温度が上記下限以上で あると、反応速度が速いため好ましい。また、反応温度が上記上限以下であると、温 度を維持するのに必要な圧力が低くてもよいので、建設費抑制の点で好ましい。反 応温度は、リボイラーの加熱源である熱媒の流量調整又は熱媒の温度等により調整 できる。
反応は、通常、窒素等の不活性ガスなどの本発明の反応を阻害しない雰囲気下で 行う。反応を連続的に行う場合の反応器内における反応液の滞留時間は、触媒の活 性及び濃度等により決められる。連続反応の場合の反応器内における反応液の滞 留時間は、反応が速いため、通常 10〜30分である。
反応時の還流比は、原料組成や蒸留塔の段数によって変化するが、通常 0. 5〜2 0、好ましくは 1. 0-10. 0が良い。還流比が上記上限以下であると、トレイ上の液の 触媒濃度が高いため反応速度が速いため好ましぐ還流比が上記下限以上であると 、カルボン酸アルキルを完全に分離して反応を押切りやす 、ため好ま 、。
反応蒸留塔で、ポリエーテルポリオール類とアル力ノール類とのエステル交換反応 を行うと、反応蒸留塔の塔頂力 アル力ノール類とカルボン酸アルキルが留出し、塔 底力 ポリエーテルポリオール類とアル力ノール類が缶出する。
塔頂力もの留出液に含まれるアル力ノール類は、回収して、再使用するのが好まし い。塔頂液からのアル力ノール類の回収は、例えば、蒸留等により行うことができる。 蒸留塔としては、塔頂に還流装置、塔底に加熱装置を備えた充填塔や棚段塔など 常用のものを用いることができるが、効率の点で充填塔が好ましい。通常、塔頂から の留出液を蒸留塔の中段に供給し、塔頂力 カルボン酸アルキルとアル力ノール類 との共沸物を、塔底からアル力ノール類を得る。上述の反応蒸留塔を使用する場合、 塔底から回収するアル力ノール類の純度は、通常、 95質量%以上であればよい。蒸 留塔の段数は、通常、 5〜30段である。蒸留塔の塔底にある加熱装置は、特に限定 されず、公知のものが使用できる力 例えば、強制循環型リボイラーやサーモサイホ ンによる自然循環型リボイラーなどの公知の装置が用いられる。蒸留時の圧力は、特 に限定されないが、通常は常圧とする。塔底温度は、通常、設定した圧力下でのァ ルカノール類の沸点となる力 本発明では、アル力ノール類の純度は 95%以上であ ればよいので、カルボン酸アルキルを含む場合の塔底温度は、アル力ノール類と力 ルボン酸アルキルとの混合組成に応じた沸点となる。塔底温度は、塔底液中のカル ボン酸アルキルの濃度が数十質量%以上である場合、リボイラーの加熱源である熱 媒の流量調整等により調整できるが、カルボン酸アルキルの濃度が低くなると、塔底 温度はアル力ノール類の沸点に近くなり、温度変化が小さくなる。この場合、原料供 給段と塔底の中間の温度が一定となるように、又は、留出量を一定にして還流比が 所望の値となるように、リボイラーの熱媒量を制御すればよい。蒸留時の雰囲気は、 通常、窒素等の不活性ガスなどの本発明の原料、生成物と反応しない雰囲気を用い る。還流比は、原料組成や蒸留塔の段数によって変化するが、通常 0. 5〜20、好ま しくは 1〜: L0が良い。蒸留により、塔底液として、アル力ノール類が得られるので、こ れを原料タンクまたは原料混合槽等に戻すことにより、反応に再使用できる。
アル力ノール類を反応に再使用する場合、アル力ノール類中に水分が含まれて ヽ ると、リボイラー内に析出物が生じて、リボイラーの能力が低下する場合があるため、 再使用するアル力ノール類中の水分は、通常、 lOOppm以下、好ましくは 50ppm以 下であるのが良い。そこで、再使用するアル力ノール類中の水分を上記上限以下と するために、必要に応じて脱水処理を施す。再使用するアル力ノール類中の水分の 下限は、特に無ぐ低ければ低いほどよい。再使用するアル力ノール類中の水分を上 記上限以下とするために、ここで回収したアル力ノール類を、このアル力ノール類の みで、又は、これと後述のポリエーテルポリオール類から回収するアル力ノール類とと もに、脱水しても良い。し力しながら、脱水処理を施さずともアル力ノール類中の水分 が lOOppm以下であれば、脱水処理は不要である。
エステル交換反応を行った反応蒸留塔の塔底からの缶出液は、 目的とするポリェ 一テルポリオール類の他に、アル力ノール類が含有しているので、通常、これを蒸留 などの方法により留去させる。ポリエーテルポリオール類とアル力ノール類との混合液 からのアル力ノール類の蒸留は、回分蒸発機やケトルリボイラー、薄膜蒸発機、ストリ ッパー、流下膜蒸発機、フラッシュ蒸発など公知の方法を用いて行うことができる。こ こで、回分蒸発機、ケトルリボイラー及びストリッパーは、完全にアル力ノール類を除 去するのに時間が掛かる。フラッシュ蒸発は、完全にアル力ノール類を分離できない
。流下膜蒸発機は、アル力ノール類の濃度低下に伴う粘度増加により、完全にアル 力ノール類を分離するのが困難である。また、薄膜蒸発機は、建設費が高い。従って 、ポリエーテルポリオール類とアル力ノール類との混合液からのアル力ノール類の蒸 留は、これらの方法を組み合わせ、その欠点を補うようにして行うのが好ましい。その ような例としては、例えば、特開 2001— 59020号公報に記載の蒸発機とストリッパー とを組み合わせた方法が挙げられる。
ここで得られたアル力ノール類は、原料タンクまたは原料混合槽に戻すことにより、 エステル交換反応に再使用できる。アル力ノール類を反応に再使用する場合にアル 力ノール類中に水分が含まれていると、リボイラー内に析出物が生じて、リボイラーの 能力が低下する場合があるため、再使用するアル力ノール類中の水分は、通常、 10 Oppm以下、好ましくは 80ppm以下、更に好ましくは 50ppm以下、特に好ましくは 30 ppm以下であるのが良い。そこで、再使用するアル力ノール類中の水分を上記上限 以下とするために、必要に応じて脱水処理を施す。特に、後述のエステル交換触媒 の除去処理を行ったために、アル力ノール類中に多量の水が含まれている場合、ァ ルカノール類に脱水処理を施すことは重要である。アル力ノール類中の水分を除去 する方法は、蒸留や脱水剤などの公知の方法が使用できる。これらの方法のうち、連 続実施できることから蒸留が好ましい。再使用するアル力ノール類中の水分の下限は 、特に無ぐ低ければ低いほどよいが、通常、検出限界とする。
また、エステル交換反応を行った反応蒸留塔の塔底からの缶出液は、エステル交 換触媒を含むので、通常、これを除去する。ポリエーテルポリオール類にエステル交 換触媒が残留していると、ポリエーテルポリオール類をウレタン反応させる時に、アル カリ金属がゲルィ匕を起こす作用があることから、通常 lppm以下、好ましくは 0. 5ppm 以下にするのが良い。エステル交換触媒の除去は、様々な公知の方法等により行う ことができる。エステル交換触媒の除去法としては、例えば、水の存在下で H型強酸 性イオン交換榭脂による処理を施し、イオン交換樹脂にエステル交換触媒を吸着さ せる方法 (特開 2000— 336164号公報参照)、燐酸などの酸で中和して濾過する方 法などが知られている。残留エステル交換触媒をイオン交換樹脂に吸着させる場合 、水分濃度の下限が、通常 0. 1質量%、好ましくは 1質量%であり、上限が 10質量% 、好ましくは 5質量%であるのが良い。水分濃度が上記上限以下であると、反応液の 濁りや 2相分離が生じにくぐ上記下限以上であると吸着効率が高い点で好ましい。 イオン交換樹脂でアルカリ金属を除去した場合、及び、燐酸などのような水を含む酸 でアルカリ金属を中和した場合などには、このアルカリ金属除去後のアル力ノール類 は多量の水を含む。例えば、塔底からの缶出液を水存在下でイオン交換榭脂処理し た場合、アル力ノール類は、通常、 0. 1〜: LO質量%の水分を含む。本発明の方法で は、ここで得られるアル力ノール類に含まれる水分を通常 lOOppm以下、好ましくは 5 Oppm以下の状態で反応系内に戻すことにより、反応系内、特に、リボイラー表面へ の析出物の生成を抑制して、ポリエーテルポリオール類を安定的に製造できる。なお 、本発明の方法で、水を用いる場合、脱塩水を用いるのが好ましい。脱塩水は、 H型 強酸性イオン交換榭脂及び強塩基性イオン交換榭脂に通液して、イオン性不純物を 除去したものが好ましぐ電気伝導度が 50 s/ cm以下であるものが更に好ましぐ 電気伝導度が 10 s/ cm以下であるものが更に好ましぐ電気伝導度が 5 s/ cm 以下であるものが特に好ましい。このような脱塩水の製造方法は、例えば、「三菱ィ匕 学テク-カルサービスシリーズ ·ダイヤイオン Π応用編」に記載されて 、る。
エステル交換反応を行った反応蒸留塔の塔底からの缶出液から得られるアルカノ ール類中の水分の除去は、ポリエーテルポリオール類とアル力ノール類との混合液 の状態で行っても良 、し、ポリエーテルポリオール類とアル力ノール類との混合液か らァルカノール類を取り出した後に行っても良い。し力しながら、ポリエーテルポリオ ール類が含まれていると、液の粘度が増大して脱水の妨げとなるので、水分除去は、 ポリエーテルポリオール類とアル力ノール類との混合液からアル力ノール類を取り出 した後に実施するのが好ましい。水分除去法としては、蒸留やモレキュラーシーブな どの脱水剤を用いる公知の方法が使用できるが、蒸留分離するのが簡便である。水 分を留去する蒸留塔としては、加熱装置や還流装置を備えた充填塔や棚段塔など の常用のものを用いることができる力 充填塔が、効率が良いので好ましい。充填塔 を用いる場合のその段数は、還流比にもよる力 濃縮段が通常 5〜30段、好ましくは 10〜20段であり、回収段が通常 3〜20段、好ましくは 5〜10段であるのが良い。こ の蒸留塔の塔底にある加熱装置は、特に限定されず、公知のものが使用できる。具 体的には、強制循環型リボイラーやサーモサイホンによる自然循環型リボイラーなど 公知の方法が用いられる。圧力は、特に限定されないが、通常は常圧で実施する。 塔底の加熱は、リボイラーの加熱源である熱媒の流量調整等により調整することがで き、原料供給段と塔底の中間の温度が一定となるように、又は、留出量を一定として おいて還流比が所望の値となるように、リボイラーの熱媒量を制御すればよい。蒸留 時の雰囲気は、通常、窒素等の不活性ガスなどのように本発明の原料又は生成物と 反応しない雰囲気を用いる。還流比は、原料組成や蒸留塔の段数によって変化する 力 通常 0. 5〜20、好ましくは 1〜: L0が良い。この蒸留により、塔底液として水力 塔 頂液としてアル力ノール類が各々得られる。
本発明の方法では、この塔頂液であるアル力ノール類中の水分を lOOppm以下、 好ましくは 80ppm以下、更に好ましくは 50ppm以下、特に好ましくは 30ppm以下に することが重要である。一方、蒸留塔の段数や還流比によっては、また、塔底液中の アル力ノール類が充分に除去されずに、その濃度が数 100〜数 lOOOppmになる場 合もある。この場合、必要に応じて別の蒸留塔で水とアル力ノール類を分離する、水 を活性汚泥で処理する等しても良 ヽ。
上述のようにしてアル力ノール類を再使用する場合、原料アル力ノール類中の水分 は、 lOOppm以下であるのが好ましぐ 50ppm以下であるのが更に好ましい。再使用 するアル力ノール類中の水分の下限は、特に無ぐ低ければ低いほど良いが、通常、 原料アル力ノール類中の水分及びエステル交換反応液中の水分の下限は、検出限 界とする。また、エステル交換反応液中の水分濃度は、絶対量としては、 50ppm以 下であるのが好ましぐ 25ppm以下であるのが更に好ましい。再使用するアルカノー ル類中の水分の下限は、特に無ぐ低ければ低いほど良いが、通常、原料アルカノ ール類中の水分及びエステル交換反応液中の水分の下限は、検出限界とする。 再使用するアル力ノール類中に水が含まれていると、リボイラー内に析出物が生じ て、リボイラーの能力が低下する理由は、以下のように推定される。すなわち、再使用 するアル力ノール類中に水分が含まれて 、ると、アルカリ金属化合物がアルカリ金属 の水酸ィ匕物に変わるために触媒活性が低下すると共に、リボイラー内に析出物が生 じて、リボイラーの能力が低下すると推定される。
水分濃度は、水分計として三菱化学株式会社製デジタル微量水分測定装置「CA —06形」を、電量滴定用発生液として三菱化学株式会社製「アクアミクロン AS」、電 量滴定用陰極液として三菱ィ匕学製「アクアミクロン CS」を、各々用い、試料 1〜1. 5g 中の水分を電量滴定により求め、これを試料の質量で割ることにより求めることができ る。
実施例
以下に実施例及び比較例を挙げて本発明の特徴を更に具体的に説明する。以下 の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を 逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体 例により限定的に解釈されるべきものではない。なお、参考例 1を除き用いた反応器 、タンク、配管は全て窒素置換して力 用い、エアーが入らないように必要に応じて 窒素シールした。
(触媒の合成)
担体として酸ィ匕ケィ素(富士シリシァ化学株式会社社製、「キャリアタト Q— 15」、平 均粒径 200 m) 5質量部に、原料金属化合物として、酸ィ匕ジルコニウム (ZrO )換
2 算で 15質量%相当の硝酸ジルコニル (ZrO (NO ) )水溶液 6· 5質量部をカ卩えた。
3 2
これを良く攪拌した後、 100°Cで乾燥させた。これを冷却し、塩基性化合物として、 1 2質量%の炭酸水素アンモニゥム水溶液を 13. 4質量部加えて攪拌した。これを水洗 して過剰の炭酸水素アンモニゥム及び生成した硝酸アンモニゥムを除去した上で、 乾燥器にて乾燥した。得られた乾燥固体をロータリーキルンで焼成して、ジルコユウ ムを含む酸化物を得た。
(PTMEの合成)
攪拌装置を備えた容量 60容量部の反応器に、無水酢酸 5質量%、酢酸 0. 2質量 %を含むテトラヒドロフランを 60容量部投入して、攪拌した。これに、上記の方法で合 成した触媒を 2520質量部投入した。ジャケットに冷媒を流すことにより、反応器内の 温度を 35°Cに保った。これに、無水酢酸 5質量%、酢酸 0. 2質量%を含むテトラヒド 口フランを 10容量部 Zhr供給し、液面が一定となるように、反応器内に設置したフィ ルターを通して反応液を抜き出した。抜き出した反応液は、反応器外に設置したカー トリッジフィルターを通してフラッシュドラムに供給した。フラッシュドラムは、圧力 50kP aで制御した。フラッシュ後の缶出液は、ポンプを通してその一部を熱交換器に供給 して加熱し、フラッシュドラムに戻し循環させた。ポンプの残りの液をフラッシュドラム の液面が一定となる流量で別の熱交^^に供給して更に加熱してから、規則充填物 を充填した充填塔の塔頂付近に仕込み、塔下部より加熱した窒素を通気した。窒素 仕込量は、 100容量部 Zhrに設定した。抜き出された塔缶出液をガスクロマトグラフ ィ一で分析した結果、テトラヒドロフラン、無水酢酸とも、検出下限である 20ppm以下 である PTME (PTMGのジ酢酸エステル)であった。
(実施例 1)
原料タンク 1に上記の方法で調製した PTMEを、原料タンク 2に 200ppmの水を含 んだメタノールを、原料タンク 3に 25質量%ナトリウムメトキシドのメタノール溶液を、各 々、入れた。 PTMEの分子量は、最終的に得られた PTMGの分子量カゝら末端基の 分子量の違いを考慮して計算した結果 1815であった。原料タンク 2の液を、塔頂に 還流装置、塔底にリボイラーを備えた、段数が 25段の蒸留塔 10の中段に 310質量 部 Zhrで、ケトル型リボイラー 9の留出液と共に供給した。蒸留塔 10は、常圧で、還 流比が 2. 6となるようにリボイラーの加熱源である熱媒の流量を調整して運転した。 塔底液として、水を得た。また、塔頂液としてメタノールを得た。この塔頂液を 700質 量部 Zhrで、後述の蒸留塔 7の缶出液を 260質量部 Zhrで、原料タンク 1の液を 12 50質量部 Zhrで、原料タンク 3の液を 1. 2質量部 Zhrで、各々、ポンプを使用して、 混合槽 4に送液した。混合槽 4で各液を均一に混合した後、熱交換器で 160°Cに加 熱して管型反応器 5へ、 1. 9MPaで送液して、エステル交換反応 (滞留時間 10分間) を実施した。管型反応器 5からの吐出液は、エステル交換率 95%であった。管型反 応器 5からの吐出液を、塔底にオイルを加熱源とする強制循環型リボイラーを備え、 塔頂に精留塔および還流器を備え、塔内に段数が 40段の多孔板を有する蒸留塔 6 の最上段の多孔板に供給した。蒸留塔 6は、圧力 0. 85MPa、還流比 1. 9、塔底温 度 143°Cとなるようにリボイラーの加熱源である熱媒の流量を調整して運転した。リボ イラ一に供給する熱媒の温度は、 255°Cであった。塔頂液として、メタノールと酢酸メ チルの混合物を得た。また、塔底液として PTMG (80質量部)とメタノール(20質量 部)との混合液を得た。蒸留塔 6における仕込み組成力 計算したナトリウムメトキシド の濃度は 190ppmである。 [0028] 蒸留塔 6の塔頂液 (メタノールと酢酸メチルとの混合液)を、塔頂に還流装置を備え 、塔底にリボイラーを備えた、 20段の蒸留塔 7の中段に供給した。蒸留塔 7は、常圧 で還流比 2. 0、原料供給段と塔底の中間地点の温度が 63°Cとなるようにリボイラー の加熱源である熱媒の流量を調整して運転した。塔頂液としてメタノールと酢酸メチ ルとの共沸組成物を得た。また、塔底液として、メタノールを得た。この塔底液 (メタノ ール)を混合槽 4に 260質量部 Zhrで供給し、反応に再使用した。
[0029] 蒸留塔 6の塔底液 (PTMGとメタノールとの混合溶液)に、脱塩水を 1質量%添加し た。この脱塩水は、水を H型強酸性イオン交換樹脂と強塩基性イオン交換樹脂に通 液してイオン性不純物を除去したもので、電気伝導度が 5 s/ cm以下となるようにィ オン性不純物濃度が管理されていた。このように脱塩水を製造する方法は、例えば「 三菱ィ匕学テク-カルサービスシリーズ 'ダイヤイオン Π応用編」に記載されている。この 脱塩水を添加した蒸留塔 6の塔底液を、 H型の強酸性陽イオン交換榭脂 (三菱化学 株式会社製「ダイヤイオン PK216LH (登録商標)」)を充填した塔 8に導入して、ナトリ ゥムを 0. 5ppm以下まで除去した。この液を、ケトル型リボイラー 9に供給し、液温が 1 04°Cとなるように運転した。留出液として得たメタノールを、前述の通り、蒸留塔 10の 中段に供給した。
[0030] 以上の状態で定常運転を実施し、運転中の或る 168時間について、蒸留塔 10の 塔頂液の水分を測定し、蒸留塔 6のリボイラーの加熱源である熱媒 (オイル)のリボイ ラー出口温度を測定した。結果を表 1に示す。
[0031] [表 1]
(表 1 ) 反応時間 蒸留塔 1 0塔頂液の水分 熱媒の出口温度
0 h r 1 2 p p m 2 0 9 °C
2 4 h r 1 2 p p m 2 1 1 °C
4 8 h r 2 1 1 °C
7 2 h r 1 0 p p m 2 1 2。C
9 6 h r 1 0 p p m 2 1 3 °C
1 2 0 h r 2 1 3 °C
1 6 8 h r 1 0 p p m 2 1 5 °C
[0032] (比較例 1) 運転条件を以下のようにした以外は、実施例 1と同様に反応を実施した。
原料タンク 2から蒸留塔 10への供給量を 440質量部 Zhrとした。蒸留塔 10の塔頂 液のうち 220質量部 Zhrを原料タンク 2に戻した。蒸留塔 7の缶出液 170質量部 Z hrを混合槽 4へ供給した。蒸留塔 7の還流比を 1. 4とした。蒸留塔 7の原料供給段と 塔底の中間地点の温度を 60°Cに制御した。反応蒸留塔 6の還流比を 3. 4とした。 この結果、蒸留塔 10の塔頂液の水分量、及び、蒸留塔 6のリボイラーの加熱源であ る熱媒のリボイラー出口温度は、表 2の様に推移した。なお、蒸留塔 6の運転を維持 するために、蒸留塔 6の下部に設置したリボイラーに供給する熱媒の流量を徐々に 増加させたが、リボイラー出口の熱媒温度が次第に上昇してリボイラーに供給する熱 媒温度(255°C)に近づいたため、これ以上蒸留塔 6の運転を維持することが出来な くなつた。
[0033] [表 2]
(表 2 )
反応時間 蒸留塔 1 0塔頂液の水分 熱媒の出口温度
0 h r 2 2 2 V,
2 4 h r 2 2 5。C
4 8 h r 2 2 9 °C
7 2 h r 2 1 p m 2 2 9 °C
9 6 h r 3 1 p m 2 3 3 °C
1 2 0 h r 2 4 1。C
1 6 8 h r 0 4 p p m 2 4 4。C
[0034] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更および変形が可能であることは、当業者にとって明らかである。 なお、本出願は、 2005年 3月 17日付けで出願された日本特許出願 (特願 2005— 77955)に基づいており、その全体が引用により援用される。
産業上の利用可能性
[0035] 本発明のポリエーテルポリオール類の製造方法は、反応器内壁への付着物生成が 抑制された、安定した製造方法であり、化学工業的規模での安定生産に於いて、極 めて有効である。

Claims

請求の範囲
[1] アルカリ金属のアルコキシド触媒の存在下で、ポリエーテルポリオールのジエステ ル類を c〜 ノール類とのアルコリシス反応によりポリエーテルポリオール
1 cのアル力
4
類に転ィ匕するポリエーテルポリオール類の製造方法にぉ 、て、生成されたポリエー テルポリオール類に含まれる c〜
1 cのアル力ノール類をアル力ノール類中の水分量 4
力 S lOOppm以下の状態で反応系内へ戻すことを特徴とするポリエーテルポリオール 類の製造方法。
[2] 請求項 1に記載の製造方法において、生成されたポリエーテルポリオール類に含ま れる C〜Cのアル力ノール類を分取して力 該ァルカノール類に含まれる水分量を 1
1 4
OOppm以下とすることを特徴とするポリエーテルポリオール類の製造方法。
[3] 前記アルコリシス反応を、加熱源としてリボイラーを有している反応器で行うことを特 徴とする請求項 1又は 2の何れかに記載の製造方法。
[4] 前記アルコリシス反応の少なくとも一部を反応蒸留にて行うことを特徴とする請求項
1乃至 3の何れかに記載の製造方法。
[5] 前記ポリエーテルポリオール類がポリテトラメチレンエーテルグリコールであることを 特徴とする請求項 1乃至 4の何れかに記載の製造方法。
PCT/JP2006/305425 2005-03-17 2006-03-17 ポリエーテルポリオール類の製造方法 WO2006098437A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800013490A CN101080433B (zh) 2005-03-17 2006-03-17 聚醚多元醇化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-077955 2005-03-17
JP2005077955 2005-03-17

Publications (1)

Publication Number Publication Date
WO2006098437A1 true WO2006098437A1 (ja) 2006-09-21

Family

ID=36991781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305425 WO2006098437A1 (ja) 2005-03-17 2006-03-17 ポリエーテルポリオール類の製造方法

Country Status (2)

Country Link
CN (1) CN101080433B (ja)
WO (1) WO2006098437A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191987A1 (en) * 2012-06-22 2013-12-27 Invista Technologies S.A R.L. Improved alkanolysis process and method for separating catalyst from product mixture and apparatus therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679725B (zh) * 2020-12-28 2023-05-26 江苏美思德化学股份有限公司 一种低分子聚醚乙酰化的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461109A (en) * 1977-10-22 1979-05-17 Japan Synthetic Rubber Co Ltd Preparation of 1,4-butanediol and/or 1,4-butenediol
JPH0920823A (ja) * 1995-07-06 1997-01-21 Mitsubishi Chem Corp ポリ(テトラメチレンエ−テル)グリコ−ルの製造法
JPH11158263A (ja) * 1997-09-25 1999-06-15 Basf Ag 気泡破壊し得るエステル交換反応カスケードによるポリテトラヒドロフランの連続的製造方法
JPH11292963A (ja) * 1998-04-09 1999-10-26 Mitsubishi Chemical Corp ポリテトラメチレンエーテルグリコールの製造法
JP2000502390A (ja) * 1995-12-14 2000-02-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ポリエーテルポリオールエステルの反応蒸留によるアルカノリシス
JP2001059020A (ja) * 1999-08-24 2001-03-06 Mitsubishi Chemicals Corp ポリテトラメチレンエーテルグリコールの製造方法
JP2001081181A (ja) * 1999-09-13 2001-03-27 Mitsubishi Chemicals Corp ポリテトラメチレンエーテルグリコールの製造方法
JP2002302546A (ja) * 2001-04-06 2002-10-18 Mitsubishi Chemicals Corp ポリテトラメチレンエーテルグリコールの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230892A (en) * 1979-07-20 1980-10-28 E. I. Du Pont De Nemours And Company Alcoholysis process for preparing poly-(tetramethylene ether) glycol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461109A (en) * 1977-10-22 1979-05-17 Japan Synthetic Rubber Co Ltd Preparation of 1,4-butanediol and/or 1,4-butenediol
JPH0920823A (ja) * 1995-07-06 1997-01-21 Mitsubishi Chem Corp ポリ(テトラメチレンエ−テル)グリコ−ルの製造法
JP2000502390A (ja) * 1995-12-14 2000-02-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー ポリエーテルポリオールエステルの反応蒸留によるアルカノリシス
JPH11158263A (ja) * 1997-09-25 1999-06-15 Basf Ag 気泡破壊し得るエステル交換反応カスケードによるポリテトラヒドロフランの連続的製造方法
JPH11292963A (ja) * 1998-04-09 1999-10-26 Mitsubishi Chemical Corp ポリテトラメチレンエーテルグリコールの製造法
JP2001059020A (ja) * 1999-08-24 2001-03-06 Mitsubishi Chemicals Corp ポリテトラメチレンエーテルグリコールの製造方法
JP2001081181A (ja) * 1999-09-13 2001-03-27 Mitsubishi Chemicals Corp ポリテトラメチレンエーテルグリコールの製造方法
JP2002302546A (ja) * 2001-04-06 2002-10-18 Mitsubishi Chemicals Corp ポリテトラメチレンエーテルグリコールの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191987A1 (en) * 2012-06-22 2013-12-27 Invista Technologies S.A R.L. Improved alkanolysis process and method for separating catalyst from product mixture and apparatus therefor

Also Published As

Publication number Publication date
CN101080433B (zh) 2012-06-27
CN101080433A (zh) 2007-11-28

Similar Documents

Publication Publication Date Title
JP6244807B2 (ja) テトラヒドロフランの製造方法
WO2006098437A1 (ja) ポリエーテルポリオール類の製造方法
JP3901219B2 (ja) ポリテトラメチレンエーテルの二酢酸エステルを回収するための改良された方法
KR20140117590A (ko) 개선된 가알칸올분해 프로세스
JP2003508458A (ja) グルタルアルデヒドの連続的な製造方法
JP5040130B2 (ja) ポリエーテルポリオール類の製造方法
JP6191213B2 (ja) テトラヒドロフラン含有物の精製方法
JP3849360B2 (ja) ポリテトラメチレンエーテルグリコールの製造方法
JP3837966B2 (ja) ポリテトラメチレンエーテルグリコールの製造方法
JP3931421B2 (ja) ポリテトラメチレンエーテルグリコールの製造方法
JP4368026B2 (ja) 粗製無水酢酸の精製法及び無水酢酸を用いたポリオキシテトラメチレングリコールの製造法
JP3788020B2 (ja) ポリテトラメチレンエーテルグリコールの製造方法
JP3852543B2 (ja) ポリテトラメチレンエーテルグリコールの製造方法
JP4465078B2 (ja) ポリオキシテトラメチレングリコールの製造方法
WO2013005750A1 (ja) テトラヒドロフランの製造方法
US5567838A (en) Transesterification reaction of alkoxylated bisphenol-a and methyl methacrylate
JP3903513B2 (ja) ジアセトキシブテンの製造方法
JP2001011173A (ja) ポリテトラメチレンエーテルグリコールの製造方法
JP2022119021A (ja) ポリアルキレンエーテルグリコールの製造方法
JP2002302546A (ja) ポリテトラメチレンエーテルグリコールの製造方法
JP2000336164A (ja) ポリテトラメチレンエーテルグリコールの製造方法
JP6601006B2 (ja) テトラヒドロフラン化合物の製造方法
JP2012153667A (ja) ポリアルキレンエーテルグリコールの製造方法並びに無水酢酸の精製方法
JPH11292963A (ja) ポリテトラメチレンエーテルグリコールの製造法
JPH10168007A (ja) 高純度ベンジルアルコールの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680001349.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729414

Country of ref document: EP

Kind code of ref document: A1