WO2006098148A1 - 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法 - Google Patents

表示装置,液晶モニター,液晶テレビジョン受像機および表示方法 Download PDF

Info

Publication number
WO2006098148A1
WO2006098148A1 PCT/JP2006/303781 JP2006303781W WO2006098148A1 WO 2006098148 A1 WO2006098148 A1 WO 2006098148A1 JP 2006303781 W JP2006303781 W JP 2006303781W WO 2006098148 A1 WO2006098148 A1 WO 2006098148A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
display
frame
subframe
brightness
Prior art date
Application number
PCT/JP2006/303781
Other languages
English (en)
French (fr)
Inventor
Hidekazu Miyata
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/886,227 priority Critical patent/US7936325B2/en
Priority to JP2007508060A priority patent/JP4567052B2/ja
Publication of WO2006098148A1 publication Critical patent/WO2006098148A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2025Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having all the same time duration

Definitions

  • Display device liquid crystal monitor, liquid crystal television receiver and display method
  • the present invention relates to a display device that displays an image by dividing one frame into two sub-frames including first and second sub-frames.
  • CRTs cathode ray tubes
  • TN Transmission
  • Nematic type liquid crystal display panels (TN mode liquid crystal panels; TN panels) are becoming popular!
  • Patent Document 1 discloses a liquid crystal display device that switches the driving method of a TN panel depending on whether a displayed image is a moving image or a still image.
  • Patent Document 2 and Patent Document 3 there is a method in which one frame is divided and signal writing is performed multiple times on one pixel, and the signal writing voltage level is improved in combination.
  • liquid crystal display panels that require a wide viewing angle such as a TV (television receiver), such as IPS (In-Plane-Switching) mode and VA (Vertical Alignment) mode, which are not in TN mode, are available.
  • a wide viewing angle is achieved by using liquid crystal.
  • the contrast is 10 or more in the range of 170 ° up, down, left, and right, and there is no gradation inversion.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2001-296841 (Release Date; October 26, 2001)
  • Patent Document 2 JP-A-5-68221 (Issue Date; March 19, 1993)
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-23707 (Publication Date; January 25, 2002)
  • Non-Patent Document 1 New Color Science Handbook; Second Edition (The University of Tokyo Press; Publication Date; June 1998, 10th edition) )
  • the gradation characteristics change depending on the increase in the viewing angle.
  • the present invention has been made in view of the conventional problems as described above, and an object of the present invention is to provide a display device capable of suppressing the whitening phenomenon.
  • the display device of the present invention (the present display device)
  • a display unit that displays a luminance image based on the luminance gradation of the input display signal, and the frame luminance that is the sum of the luminances output from the display unit in one frame is not changed by dividing the frame.
  • a control unit that generates first and second display signals that are display signals of the first and second subframes and outputs the first and second display signals to the display unit,
  • this control unit makes a difference in the brightness output from both subframes, and this brightness difference is smaller than the sub maximum brightness, which is the maximum brightness that can be displayed in one subframe. It is the structure to do.
  • the display device displays an image using a display unit having a display screen (liquid crystal panel or the like).
  • the control unit drives the display unit by sub-frame display.
  • the sub-frame display means that one frame is divided into multiple (in this display device). Is a display method divided into two subframes (first and second subframes).
  • control unit outputs the display signal twice to the display unit in one frame period (the first display signal that is the display signal of the first subframe and the display of the second subframe). And a second display signal that is a signal).
  • control unit turns on all the gate lines of the display screen of the display unit once each in both subframe periods (turns on twice in one frame).
  • normal display normal hold display
  • all gate lines on the display screen are turned ON only once in one frame period.
  • the display unit (display screen) is designed to display an image having a luminance based on the luminance gradation of the display signal input by the control unit! RU
  • control unit generates the first display signal and the second display signal by dividing the frame so as not to change the total luminance (frame luminance) output from the screen into one frame. (Set the luminance gradation of these display signals)!
  • the display screen of the display unit can normally reduce the deviation (brightness deviation) between the actual luminance and the planned luminance with a large visual field luminance when the luminance of the image is brought to a minimum or a maximum.
  • the planned brightness is the brightness that should be output from the display screen (value corresponding to the brightness gradation of the display signal).
  • the actual luminance is the luminance that the screen power is actually output and is a value that changes according to the viewing angle.
  • the actual brightness and the planned brightness are equal at the front of the screen.
  • control unit is designed to make a difference between the luminances output from both subframes when the frame luminance is smaller than the maximum value (when the white display is not complete).
  • the luminance displayed in one of the subframes is minimized or maximized as compared with the case where the same luminance is output from both subframes (usually equivalent to hold display). You can get closer.
  • sub maximum luminance is half the maximum value of the frame luminance when the subframe period is 1: 1.
  • the relationship between gradation and luminance in the display unit is in accordance with the response characteristic ( ⁇ value), and is the same in each subframe.
  • ⁇ value response characteristic
  • the degree of increase in brightness with respect to increase in gradation is low in luminance gradation! Is small, and it is large when the luminance gradation is high.
  • the rate of increase in luminance with respect to an increase in gradation greatly changes, and an inflection point (singular point) occurs in the gradation-intensity curve (details will be described later [Best Mode for Implementing the Invention] (Refer to [Form of]).
  • the luminance difference between both subframes is smaller than the sub maximum luminance that is the maximum luminance that can be displayed in one subframe. It is set to be.
  • the luminance of both subframes increases (the luminance with a high rate of increase and the luminance with a low rate of increase increase). Therefore, it is possible to suppress an inflection point that occurs near the sub maximum luminance (switching gradation).
  • the control unit when the frame luminance is equal to or lower than a predetermined threshold, displays one sub-frame in black while adjusting the luminance of the other sub-frame to display the sub-frame. Preferably it is done.
  • the difference in luminance output from both subframes is made smaller than the sub maximum luminance.
  • This threshold value is smaller than the sub maximum brightness.
  • the inflection point suppression effect can be improved as the threshold value is reduced and separated from the luminance (sub maximum luminance) corresponding to the switching gradation.
  • the threshold is made too small, the effect of improving white-out by subframe display when the frame luminance is low is reduced.
  • the threshold value is set to a luminance range corresponding to a luminance gradation of 50% or more and not more than 98% of the luminance gradation corresponding to the sub maximum luminance.
  • the threshold value is set within this range, the inflection point suppressing effect can be satisfactorily exhibited while maintaining the whitening improvement effect.
  • the luminance difference between both sub-frames is 98% or less of the luminance gradation corresponding to the sub maximum luminance and the luminance corresponding to 50% or more luminance gradation, similar to the threshold value. It is preferable to set the range.
  • a liquid crystal motor used in a personal computer or the like can be configured by combining the present display device having a display unit such as a liquid crystal panel cover and an image signal input unit (signal input unit). Is possible.
  • the image signal input unit is for transmitting an image signal input from the outside to the control unit.
  • control unit of the display device generates a display signal based on the image signal transmitted from the image signal input unit and outputs the display signal to the display unit.
  • a liquid crystal television receiver can be configured by combining the present display device including a display unit having a liquid crystal panel power and a tuner unit.
  • the tuner unit is for selecting a channel of the television broadcast signal and transmitting the television image signal of the selected channel to the control unit.
  • control unit of the display device generates a display signal based on the television image signal transmitted to the tuner unit and outputs the display signal to the display unit.
  • the image display method of the present invention is a display method for displaying an image by dividing one frame into two subframes having the first and second subframe forces.
  • the first and second display signals that are the display signals of the first and second subframes are generated and output to the display unit so that the frame luminance, which is the sum of the luminances output from the display unit, is not changed by dividing the frame. If the frame brightness is smaller than the maximum value, the output process makes a difference in the brightness output from both subframes, and this brightness difference is the maximum that can be displayed in one subframe. This is a method that is set to be smaller than the sub maximum luminance that is the luminance.
  • This display method is the display method used in the above-described display device. Obedience Therefore, according to the present display method, the luminance deviation can be suppressed to a smaller value than in the case of performing the normal hold display, so that the viewing angle characteristics can be improved. For this reason, the white floating phenomenon can be satisfactorily suppressed. It is also possible to improve the display quality of moving images.
  • the display device of the present invention is a display device that displays an image by dividing one frame into two sub-frames having first and second subframe forces.
  • a display unit that displays an image of luminance based on the luminance gradation of the input display signal, and a frame luminance that is the sum of the luminances output from the display unit in one frame is not changed by dividing the frame.
  • a control unit that generates first and second display signals, which are display signals of the first and second subframes, and outputs the first and second display signals to the display unit, and the control unit has a frame brightness smaller than the maximum value. In this configuration, the luminance output from both subframes is made different, and the luminance difference is made smaller than the sub maximum luminance that is the maximum luminance that can be displayed in one subframe.
  • control unit is designed to make a difference between the luminances output from both subframes when the frame luminance is smaller than the maximum value (when the white display is not complete).
  • the luminance displayed in one of the subframes is minimized or maximized as compared with the case where the same luminance is output from both subframes (usually equivalent to hold display). You can get closer.
  • the luminance difference between both subframes is set to be smaller than the sub maximum luminance that is the maximum luminance that can be displayed in one subframe.
  • the luminance of both subframes increases as the gradation increases (the increase rate is high, the luminance and the increase rate are low! Both increase.) Therefore, it is possible to suppress inflection points that occur in the vicinity of the sub maximum luminance (switching gradation).
  • FIG. 1 is a block diagram showing a configuration of a display device according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the display brightness (relationship between planned brightness and actual brightness) output from the liquid crystal panel in the case of normal hold display.
  • FIG. 3 is a graph showing display luminance (relation between planned luminance and actual luminance) output from the liquid crystal panel when subframe display is performed in the display device shown in FIG.
  • FIG. 4 (a) and (c) are explanatory diagrams showing image signals inputted to the frame memory of the display device shown in FIG.
  • FIG. 5 is an explanatory diagram showing the ON timing of the gate line regarding the front display signal and the rear display signal when the frame is divided into 3: 1 in the display device shown in FIG.
  • FIG. 6 is a graph showing the luminance graph shown in FIG. 3 converted to lightness.
  • FIG. 7 is a graph showing the relationship between planned brightness and actual brightness when the frame is divided into 3: 1 in the display device shown in FIG.
  • FIG. 8 is an explanatory diagram showing a display device in which the configuration of the display device shown in FIG. 1 is partially changed.
  • FIG. 9 is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period.
  • FIG. 9B is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
  • FIG. 10 (a) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 10 (b) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 10 (c) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 11 is a graph showing display luminance (relationship between planned luminance and actual luminance) output from a liquid crystal panel when subframe display is performed using liquid crystal with a slow response speed.
  • FIG. 12 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance force Lmax is 3Z4 and 1Z4.
  • ⁇ 13 (a)] is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
  • 13 (b)] is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period.
  • FIG. 14 (a) is an explanatory diagram showing four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (b) is an explanatory diagram showing the four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (c) is an explanatory diagram showing the four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (d) is an explanatory diagram showing four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG.15 Graph showing the result of dividing the frame into three equal subframes (dashed line and solid line) and the result of normal hold display (dashed line and solid line). .
  • FIG. 16 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
  • FIG. 17 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each subframe.
  • Fig.18 Relationship between signal gradation (%; luminance gradation of display signal) output to display unit and actual luminance gradation (%) corresponding to each signal gradation in sub-frames without adjusting luminance It is a graph which shows (viewing angle gradation characteristic (actual measurement)).
  • FIG. 19 is a graph showing a gradation-luminance curve formed by normalized luminance and signal gradation for a liquid crystal panel.
  • FIG. 20 is an explanatory diagram showing a gray scale displayed by the liquid crystal panel.
  • FIG. 21 is a graph showing a gradation-luminance curve having an inflection point for a liquid crystal panel.
  • FIG. 22 is an explanatory diagram showing a gray scale having an inflection point displayed by the liquid crystal panel.
  • FIG. 23] (a) and (f) are explanatory diagrams showing subframe display using two subframes.
  • FIG. 24 (a) to (f) are explanatory diagrams showing displays when sub-frame display using two sub-frames is controlled so that the luminance difference between both sub-frames is suppressed within a predetermined range. .
  • FIG. 25 is a graph showing a gradation-luminance curve without an inflection point for a liquid crystal panel.
  • FIG. 26 is an explanatory diagram showing a grayscale with inflection points eliminated, which is displayed by the liquid crystal panel.
  • a liquid crystal display device (this display device) according to the present embodiment has a vertical alignment (VA) mode liquid crystal panel divided into a plurality of domains.
  • the display device functions as a liquid crystal monitor that displays an externally input image signal on a liquid crystal panel.
  • FIG. 1 is a block diagram showing an internal configuration of the display device. As shown in FIG. 1, this display device includes a frame memory (F. M.) 11, a front LUT 12, a rear LUT 13, a display unit 14, and a control unit 15.
  • F. M. frame memory
  • F. M. front LUT
  • rear LUT 13 a display unit 14
  • control unit 15 a control unit
  • the frame memory (image signal input unit) 11 stores an image signal (R GB signal) input from an external signal source for one frame.
  • LUT (look-up table) 12 and after The stage LUT 13 is a correspondence table (conversion table) between an image signal input from the outside and a display signal output to the display unit 14.
  • the present display device displays subframes! /.
  • the subframe display is a method of displaying one frame divided into a plurality of subframes.
  • the present display device performs display using two subframes having the same size (period) at twice the frequency based on the image signal for one frame input in one frame period. Designed.
  • the front LUT 12 is a correspondence table for display signals (previous display signals) output in the previous subframe (previous subframe).
  • the rear stage LUT 13 is a correspondence table for display signals (rear stage display signals) output in the rear stage subframe (rear subframe).
  • the display unit 14 includes a liquid crystal panel 21, a gate driver 22, and a source driver 23, and performs image display based on an input display signal.
  • the liquid crystal panel 21 is a VA mode active matrix (TFT) liquid crystal panel.
  • the control unit 15 is a central part of the display device that controls all operations in the display device.
  • the control unit 15 also generates a display signal for the image signal power accumulated in the frame memory 11 using the preceding LUT 12 and the latter LUT 13 and outputs the display signal to the display unit 14.
  • control unit 15 stores in the frame memory 11 an image signal transmitted at a normal output frequency (normal clock; for example, 25 MHz). Then, the control unit 15 outputs the image signal from the frame memory 11 twice with a clock having a frequency twice that of the normal clock (double clock; 50 MHz).
  • normal clock for example, 25 MHz
  • double clock twice that of the normal clock
  • control unit 15 generates a front display signal using the front LUT 12 based on the image signal output for the first time.
  • a rear display signal is generated using the rear LUT 13 based on the image signal output for the second time.
  • the display unit 14 can generate one frame based on two display signals that are sequentially input. Different images are displayed once during each period (in both subframe periods, the LCD panel
  • the luminance gradation (signal gradation) of the display signal is in the range from 0 to 255.
  • L is the signal gradation (frame gradation) when displaying an image in one frame (when displaying an image with normal hold display)
  • Lmax is the maximum luminance gradation (255)
  • T is the display luminance.
  • is the correction value (usually 2.2).
  • the display brightness T output from the liquid crystal panel 21 in this case is shown as a graph in FIG.
  • This graph shows the luminance that should be output on the horizontal axis (scheduled luminance; a value corresponding to the signal gradation, equivalent to the display luminance T above), and the actual output luminance (actual luminance) on the vertical axis.
  • the above two luminances are equal on the front surface (viewing angle 0 °) of the liquid crystal panel 21.
  • the viewing angle is set to 60 degrees, the actual brightness becomes brighter with halftone brightness due to the change in the gradation ⁇ characteristics.
  • control unit 15 In this display device, the control unit 15 is
  • control unit 15 is designed to divide the frame equally into two subframes and display the luminance up to half of the maximum luminance by one subframe. .
  • the control unit 15 sets the previous sub-frame to the minimum luminance (black), and the subsequent Tone expression is performed by adjusting only the display luminance of the sub-frame (tone expression is performed using only the subsequent sub-frame).
  • the integrated luminance in one frame is (minimum luminance + luminance of subsequent subframe) Z2 luminance.
  • the control unit 15 sets the rear subframe to the maximum luminance (white) and adjusts the display luminance of the previous subframe to adjust the level. Make a representation.
  • the integrated luminance in one frame is the luminance of Z2 (luminance of the previous subframe + maximum luminance).
  • the signal gradation setting is performed by the control unit 15 shown in FIG.
  • the control unit 15 calculates in advance the frame gradation corresponding to the above-described threshold luminance (TmaxZ2) using the above equation (1).
  • the control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11.
  • L is equal to or less than Lt
  • the control unit 15 sets the luminance gradation (F) of the preceding display signal to the minimum (0) by the preceding LUT 12.
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
  • the number of pixels of the liquid crystal panel 21 is a X b.
  • control unit 15 accumulates the previous stage display signal of the pixel (a number) of the first gate line with respect to the source driver 23 with a double clock.
  • control unit 15 turns on the first gate line by the gate driver 22 and writes the previous stage display signal to the pixels of this gate line. Thereafter, the control unit 15 similarly turns on the second to b-th gate lines with a double clock while changing the preceding display signal accumulated in the source driver 23. As a result, the previous stage display signal can be written to all the pixels in a half period of 1 frame (1Z2 frame period).
  • control unit 15 performs the same operation, and writes the post-stage display signal to the pixels of all the gate lines in the remaining 1Z2 frame period. As a result, the front display signal and the rear display signal are written to each pixel at an equal time (1Z2 frame period).
  • Fig. 3 shows the result (broken line and solid line) of the subframe display in which the preceding display signal and the subsequent display signal are divided into the front and rear subframes and output (the broken line and the solid line). It is a graph shown together with a chain line and a solid line.
  • the deviation between the actual luminance at a large viewing angle and the planned luminance is minimum (0) when the display luminance is minimum or maximum.
  • the liquid crystal panel 21 that is the largest in the halftone (near the threshold luminance) is used.
  • a subframe that divides one frame into subframes Display is in progress. Further, the period of the two subframes is set to be equal, and in the case of low luminance, the previous subframe is displayed in black and the display is performed using only the rear subframe within a range in which the integrated luminance in one frame is not changed. Therefore, since the deviation in the previous subframe is minimized, as shown by the broken line in FIG. 3, the total deviation in both subframes can be reduced to about half.
  • the display is performed by adjusting the luminance of only the previous subframe in the range in which the integrated luminance in one frame is not changed and white in the subsequent subframe. For this reason, in this case as well, the shift of the subsequent subframe is minimized, so that the total shift of both subframes can be reduced to about half as shown by the broken line in FIG.
  • the overall shift can be reduced by about half compared to a configuration in which normal hold display is performed (a configuration in which an image is displayed in one frame without using a subframe). It is possible. For this reason, it is possible to suppress the phenomenon that a halftone image becomes bright and floats white as shown in FIG.
  • the white-floating phenomenon which is a problem in this display device, has a characteristic as shown in Fig. 2 when the viewing angle is large. It is a phenomenon that looks white.
  • an image captured by a camera is a signal based on luminance.
  • the image is converted into a display signal using ⁇ shown in equation (1) (that is, the luminance signal is multiplied by ( ⁇ ⁇ ) and divided equally. To add gradation).
  • shown in equation (1)
  • an image displayed by a display device such as a liquid crystal panel has a display luminance represented by equation (1).
  • y is the y value of tristimulus values in the xyz color system of an arbitrary color
  • yn is the y value of standard diffuse reflection surface light
  • yn 100.
  • FIG. 6 is a graph showing the luminance graph shown in FIG. 3 converted to lightness.
  • This graph shows “lightness that should be output (scheduled lightness; value corresponding to signal tone, equivalent to lightness M above)” on the horizontal axis, and “lightness actually output (actual lightness). ) ”.
  • the above two brightness values are equal on the front surface of the liquid crystal panel 21 (viewing angle 0 °).
  • ⁇ in this equation is about 2.5.
  • the subframe used for display when the luminance is low (the subframe that is maintained at the maximum luminance when the luminance is high) is set to a short period. Will be.
  • the control unit 15 sets the previous subframe to the minimum luminance (black ) And gradation expression by adjusting only the display luminance of the subsequent sub-frame (representing gradation using only the subsequent sub-frame).
  • the integral luminance in one frame is “(minimum luminance + luminance of subsequent subframe) / 4”.
  • the control unit 15 sets the subsequent subframe to the maximum luminance (white), and adjusts the display luminance of the previous subframe to perform gradation expression.
  • the integrated luminance in one frame is “(the luminance of the previous subframe + the maximum luminance) Z4”.
  • the signal gradation setting of the display signals (the front display signal and the rear display signal) for obtaining such display luminance will be specifically described. Also in this case, the signal gradation (and output operation described later) is set so as to satisfy the conditions (a) and (b) described above.
  • control unit 15 preliminarily calculates a frame gradation corresponding to the above-described threshold luminance (TmaxZ4) using the above-described equation (1).
  • the control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11.
  • L is equal to or less than Lt
  • the control unit 15 sets the luminance gradation (F) of the preceding display signal to the minimum (0) using the preceding LUT 12.
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
  • Fig. 4 (a) is an image signal input to the frame memory 11, (b) is an image signal output from the frame memory 11 to the preceding LUT 12 in the case of 3: 1 division, and ( c)
  • FIG. 6 is an explanatory view showing an image signal output to the latter LUT 13 in the same manner.
  • FIG. 5 is an explanatory diagram showing the gate line ON timing related to the front display signal and the rear display signal in the same case of 3: 1 division.
  • the control unit 15 writes the first stage display signal of the first frame to the pixels of each gate line with a normal clock. Then, after the 3Z4 frame period, writing of the subsequent display signal is started. From this time, the front display signal and the rear table The indication signal is written alternately with the double clock.
  • the ratio of the front subframe and the rear subframe is 3: 1. It becomes possible.
  • the total display luminance (integral sum) in these two sub-frames becomes the integrated luminance in one frame. Note that the data stored in the frame memory 11 is output to the source driver 23 in accordance with the gate timing.
  • FIG. 7 is a graph showing the relationship between the planned brightness and the actual brightness when the frame is divided into 3: 1. As shown in Fig. 7, in this configuration, the frame can be divided at the point where the difference between the planned brightness and the actual brightness is the largest. Therefore, compared to the results shown in Fig. 6, the difference between the planned brightness and the actual brightness when the viewing angle is 60 degrees is much smaller.
  • the front subframe in the case of low luminance (low brightness) up to “TmaxZ4”, the front subframe is displayed in black and only the rear subframe is used within a range in which the integrated luminance in one frame is not changed. Is displayed. Therefore, since the deviation in the previous subframe (the difference between the actual brightness and the planned brightness) is minimized, the total deviation in both subframes can be reduced by about half as shown by the broken line in FIG. it can.
  • the display is performed by adjusting the luminance of only the previous subframe, with the subsequent subframe being displayed in white within the range in which the integrated luminance in one frame is not changed. Therefore, in this case as well, the shift of the subsequent subframe is minimized, so that the total shift of both subframes can be reduced to about half as shown by the broken line in FIG.
  • the previous stage display signal of the first frame is written to the pixels of each gate line with a normal clock. This is because the timing for writing the subsequent display signal has not been reached.
  • the display start time force may be displayed with a double clock by using a dummy rear stage display signal.
  • the former display signal and the latter display signal of signal gradation 0 may be output alternately.
  • the control unit 15 outputs the previous sub-frame with the minimum luminance when outputting the luminance up to lZ (n + 1) (threshold luminance; Tmax / (n + 1)) of the maximum luminance in one frame (when the luminance is low).
  • lZ (n + 1) threshold luminance; Tmax / (n + 1)
  • gradation expression is performed by adjusting only the display luminance of the subsequent subframe (tone expression is performed using only the subsequent subframe).
  • the integrated luminance in one frame is (minimum luminance + luminance of subsequent subframe) Z (n + 1).
  • the control unit 15 sets the rear subframe to the maximum luminance (white) and displays the previous subframe. Adjust the brightness to express the gradation.
  • the integral luminance in one frame is “(luminance of the previous subframe + maximum luminance) / (n + 1)”.
  • the signal gradation setting of display signals (previous display signal and subsequent display signal) for obtaining such display luminance will be specifically described. Also in this case, the signal gradation (and output operation described later) is set so as to satisfy the conditions (a) and (b) described above.
  • control unit 15 preliminarily calculates the frame gradation corresponding to the above threshold luminance (TmaxZ (n + 1)) using the above-described equation (1).
  • the control unit 15 displays the image signal output from the frame memory 11 when displaying the image.
  • the frame gradation L is obtained based on the number.
  • the control unit 15 sets the luminance gradation (F) of the preceding display signal to the minimum (0) using the preceding LUT 12.
  • the control unit 15 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
  • the display signal output operation in the operation when the frame is divided into 3: 1, the display signal of the previous stage is output with the double clock after the nZ (n + l) frame period of the first frame. It is sufficient to design so that and the subsequent display signal are output alternately.
  • the structure for equally dividing the frame is as follows. That is, one frame is divided into “l + n” subframe periods. Then, with a clock that is “l + n” times the normal clock, the preceding display signal is output in one subframe period, and the subsequent display signal is continuously output in the subsequent n subframe periods.
  • n 2 or more
  • the clock needs to be very fast, which increases the device cost. Therefore, when n is 2 or more, it is preferable to alternately output the preceding display signal and the succeeding display signal as described above. In this case, by adjusting the output timing of the rear display signal, the ratio between the previous subframe and the rear subframe can be made n: l. Can be maintained twice.
  • control unit 15 converts the image signal into a display signal using the front-stage LUT 12 and the rear-stage LUT 13.
  • a plurality of front-stage LUTs 12 and rear-stage LUTs 13 included in the display device may be provided.
  • FIG. 8 shows the configuration shown in FIG. 1 with three front-stage LUTs 12a and 12c instead of the front-stage LUT 12, three rear-stage LUTs 13a to 13c instead of the rear-stage LUT 13, and a temperature
  • the configuration includes a sensor 16.
  • the liquid crystal panel 21 changes its response characteristics and gradation luminance characteristics depending on the environmental temperature (the temperature (temperature) of the environment in which the display unit 14 is placed). For this reason, the optimum display signal corresponding to the image signal also changes according to the environmental temperature.
  • the preceding LUTs 12a to 12c are the preceding LUTs suitable for use in different temperature ranges.
  • the rear LUTs 13a to 13c are also rear LUTs suitable for use in different temperature ranges.
  • the temperature sensor 16 measures the ambient temperature of the display device and transmits the measurement result to the control unit 15.
  • control unit 15 is designed to switch the LUT to be used based on the environmental temperature information transmitted from the temperature sensor 16. Therefore, in this configuration, a more appropriate display signal can be transmitted to the liquid crystal panel 21 with respect to the image signal. Therefore, it is possible to display an image with a more faithful luminance in the entire assumed temperature range (for example, a range of 0 ° C to 65 ° C).
  • the liquid crystal panel 21 is preferably driven by alternating current. This is because by using AC driving, the charge polarity of the pixel (the direction of the voltage between the pixel electrodes (voltage between the electrodes) sandwiching the liquid crystal) can be changed for each frame.
  • the present display device it is preferable to reverse the polarity of the voltage between the electrodes at a frame period (period of one frame time width).
  • the polarity of the voltage between electrodes is There are two ways to rotate. One method is to apply a voltage of the same polarity for one frame. In another method, the voltage between the electrodes is reversed between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are driven with the same polarity. It is.
  • Figure 9 (a) shows the relationship between the voltage polarity (polarity of the voltage between electrodes) and the frame period when the former method is used.
  • Figure 9 (b) shows the relationship between voltage polarity and frame period when the latter method is used.
  • the liquid crystal panel 21 is driven by sub-frame display, thereby suppressing whitening.
  • the response speed of the liquid crystal the speed at which the voltage applied to the liquid crystal (interelectrode voltage) becomes equal to the applied voltage
  • the effect of such subframe display may be diminished.
  • one liquid crystal state corresponds to a certain luminance gradation. Therefore, the response characteristics of the liquid crystal do not depend on the luminance gradation of the display signal.
  • the response speed of the liquid crystal in the liquid crystal panel 21 is designed so as to satisfy the following (c) and (d): Is preferred.
  • control unit 15 is preferably designed so that the response speed of the liquid crystal can be monitored. If it is determined that the response speed of the liquid crystal becomes slow due to a change in the environmental temperature or the like, and the above (c) and (d) are not satisfied, the control unit 15 interrupts the sub-frame display, and the liquid crystal panel 21 May be set to be driven by normal hold display.
  • the display device functions as a liquid crystal monitor.
  • this display device function as a liquid crystal television receiver (liquid crystal television).
  • liquid crystal television can be realized by providing the display device with a tuner section.
  • This tuner unit is for selecting a channel of a television broadcast signal and transmitting a television image signal of the selected channel to the control unit 15 via the frame memory 11.
  • the control unit 15 generates a display signal based on the television image signal.
  • the front subframe is black and the rear subframe is low in the case of low luminance. It is assumed that gradation expression is performed using only the program. However, even if the subframe contexts are exchanged (if the luminance is low, the subsequent subframe is black and the gradation is expressed using only the previous subframe), the same display is obtained. can get.
  • the luminance gradation (signal gradation) of the display signal (the preceding display signal and the succeeding display signal) is set using equation (1).
  • the actual panel has brightness even in the case of black display (gradation 0), and the response speed of the liquid crystal is finite. Therefore, these factors must be taken into account when setting the signal gradation. Is preferred.
  • an actual image is displayed on the liquid crystal panel 21, the relationship between the signal gradation and the display luminance is measured, and the LUT (output table) is determined so as to meet the equation (1) based on the actual measurement result. Is preferred.
  • a shown in the formula (6a) is assumed to be in the range of 2-3.
  • This range is not strictly derived, but is a range that is considered to be almost appropriate for human visual sense.
  • y 2.2 is set according to the input signal gradation (luminance gradation of the display signal).
  • a voltage signal is output to each pixel (liquid crystal) so that the display brightness obtained using equation (1) can be obtained.
  • Such a source driver 23 outputs the voltage signal used in the normal hold display as it is in each subframe according to the input signal gradation even when performing the subframe display. It becomes.
  • the source driver 23 is designed to output a voltage signal converted into divided luminance. That is, it is preferable that the source driver 23 is set so as to finely adjust the voltage (interelectrode voltage) applied to the liquid crystal according to the signal gradation. For this reason, it is preferable to design the source driver 23 for sub-frame display so that the fine adjustment described above can be performed.
  • the liquid crystal panel 21 is a VA panel!
  • the present invention is not limited to this, and even when a liquid crystal panel of a mode other than the VA mode is used, the whiteout phenomenon can be suppressed by the sub-frame display of the present display device.
  • the sub-frame display of this display device is a liquid crystal panel in which the planned brightness (scheduled brightness) and actual brightness (actual brightness) deviate when the viewing angle is increased. It is possible to suppress the white floating phenomenon for liquid crystal panels in changing modes.
  • the sub-frame display of the present display device is effective for a liquid crystal panel having such a characteristic that the display luminance increases as the viewing angle is increased.
  • the liquid crystal panel 21 in the present display device may be NB (Normally Black) or NW (Normally White).
  • the present invention it is preferable to divide the frame into 1: 3 to 1: 7.
  • the present invention is not limited to this, and the display device may be designed to divide the frame within the range of l: n or n: l (n is a natural number of 1 or more)!
  • the signal gradation of the display signal (the front display signal and the rear display signal) is set using the above-described equation (10).
  • the threshold luminance gradation Lt is a frame gradation of this luminance.
  • Lt may be a little more complicated, and the threshold luminance Tt may not be expressed by a simple equation. Therefore, it may be difficult to express Lt with Lmax. In such a case, to obtain Lt, it is preferable to use the result of measuring the luminance of the liquid crystal panel. In other words, when the sub-frame on one side has the maximum luminance and the luminance of the other sub-frame has the minimum luminance, the luminance emitted from the liquid crystal panel is measured and the luminance is defined as Tt. Then, the gradation Lt of spillage is determined by the following formula.
  • Lt obtained using Equation (10) is an ideal value, and is preferably used as a guideline.
  • FIG. 12 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance power Lmax is 3Z4 and 1Z4.
  • the voltage value applied to the liquid crystal (voltage value applied between pixel electrodes; absolute value) differs between sub-frames.
  • the polarity of the liquid crystal voltage at the frame period there are two ways to invert the polarity of the liquid crystal voltage with the frame period.
  • One method is to apply a voltage of the same polarity for one frame.
  • the other method is a method in which the liquid crystal voltage is reversed in polarity between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are in the same polarity. is there.
  • Figure 13 (a) shows the voltage polarity (the polarity of the liquid crystal voltage) and the voltage when the former method is used. It is a graph which shows the relationship between a frame period and a liquid crystal voltage. On the other hand, Fig. 13 (b) is a similar graph when the latter method is used.
  • FIGS. 14 (a) to 14 (d) are explanatory diagrams showing the four pixels in the liquid crystal panel 21 and the polarity of the liquid crystal voltage of each pixel. As described above, regarding the voltage applied to one pixel, it is preferable to reverse the polarity in the frame period. In this case, the polarity of the liquid crystal voltage of each pixel changes as shown in FIG. 14 (a) to FIG. 14 (d) in each frame period.
  • the sum of the liquid crystal voltages applied to all the pixels of the liquid crystal panel 21 is preferably set to OV.
  • Such control can be realized, for example, by changing the voltage polarity between adjacent pixels as shown in FIGS. 14 (a) to 14 (d).
  • the ratio (frame division ratio) between the previous subframe period and the subsequent subframe period it is preferable to set the ratio (frame division ratio) between the previous subframe period and the subsequent subframe period to 3: 1 to 7: 1.
  • the present invention is not limited to this, and the frame division ratio may be set to 1: 1 or 2: 1.
  • n 1
  • the division ratio may be n: l (n is a real number of 1 or more (more preferably, a real number greater than 1)). For example, by setting this division ratio to 1.5: 1, viewing angle characteristics can be improved as compared to 1: 1. In addition, it becomes easier to use a liquid crystal material with a slow response speed as compared with the case of 2: 1.
  • the front subframe When displaying low-brightness (low brightness) images up to 1 / (TmaxZ (n + l)) j, the front subframe should be displayed in black and only the back subframe should be used for display. Is preferred. Further, when displaying an image with a high luminance (high brightness) equal to or higher than “TmaxZ (n + 1)”, it is preferable to display the rear subframe with white and adjust only the luminance of the previous subframe. This ensures that one subframe is always in a state where there is no difference between the actual luminance and the planned luminance. Therefore, the viewing angle characteristics of the display device can be improved.
  • the sub-frame display of the display device is a display performed by dividing the frame into two sub-frames.
  • the present invention is not limited to this, and the display device may be designed to perform subframe display in which a frame is divided into three or more subframes.
  • Fig. 15 shows the results of dividing the display into three equal subframes by this display device (dashed line and solid line) and the results of normal hold display (dashed line and solid line). The same as in FIG. 2). As shown in this graph, when the number of subframes is increased to 3, the actual brightness can be made very close to the planned brightness. Therefore, it can be seen that the viewing angle characteristics of the present display device can be improved.
  • Fig. 16 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame. As shown in this figure, even in this case, the average liquid crystal voltage in 2 frames can be OV.
  • FIG. 17 is a graph showing the transition of the liquid crystal voltage when the frame is similarly divided into three and the voltage polarity is inverted for each subframe.
  • the control unit 15 causes the Mth (M; l to m) subframes between adjacent frames to have different polarities. It is preferable that the liquid crystal voltage is applied to bring it into a state of being turned on! As a result, the average liquid crystal voltage in two frames can be set to OV.
  • the polarity of the liquid crystal voltage is set so that the total liquid crystal voltage in 2 frames (or more frames) is OV. It is preferable to reverse.
  • viewing angle characteristics can be improved by displaying at least one subframe in white (maximum luminance) or black (minimum luminance).
  • the luminance is not adjusted!
  • the luminance of the subframe may be set to "a value greater than the maximum or the second predetermined value” instead of the maximum luminance.
  • “a minimum or a value smaller than the first predetermined value” may be used instead of setting the minimum luminance. Even in this case, the deviation (brightness deviation) between the actual brightness and the scheduled brightness in the sub-frame where the brightness is not adjusted can be sufficiently reduced. Therefore, the viewing angle characteristics of the present display device can be improved.
  • FIG. 18 shows the signal gradation (%: luminance gradation of the display signal) output to the display unit 14 and the actual luminance scale corresponding to each signal gradation in the subframe where the luminance is not adjusted. It is a graph showing the relationship (viewing angle gradation characteristics (actual measurement)) with tone (%).
  • the actual luminance gradation is defined as “the luminance (actual luminance) output from the liquid crystal panel 21 of the display unit 14 in accordance with each signal gradation, using the above equation (1). Converted to key. "
  • the above two gradations are equal on the front surface of the liquid crystal panel 21 (viewing angle 0 °).
  • the viewing angle is set to 60 degrees
  • the brightness gradation is actually halftone and brighter than the signal gradation due to whitening.
  • this whitening takes the maximum value when the luminance gradation is between 20% and 30% regardless of the viewing angle.
  • the second predetermined value it is preferable to set the second predetermined value to 80% of the maximum luminance, and it is preferable to set the first predetermined value to 0.02% of the maximum luminance. I can say that.
  • the viewing angle characteristics of the liquid crystal can be improved (whitening can be improved) by the sub-frame display.
  • the present invention is not limited to this, and the display quality of moving images can be improved by performing the subframe display as described above.
  • L is the signal gradation (frame gradation) when displaying an image in one frame (when displaying an image with normal hold display)
  • Lmax is the maximum luminance gradation (when the gradation signal is 8 bits, 255)
  • T is the display brightness
  • is the correction value (normally 2. 2).
  • L / Lmax is a value generally referred to as a normal display gradation
  • (LZLmax) ′ ⁇ is also referred to as normalized luminance.
  • Figure 19 shows a one-tone grayscale curve between normalized luminance and signal grayscale at room temperature (25 ° C)
  • the gradation-luminance curve of this display device is preferably in a smooth state (a state on a ⁇ curve) as shown in this figure.
  • the gray scale can be displayed with a natural gradation corresponding to the change in the signal gradation.
  • FIG. As shown in (f), when displaying an image with low luminance (less than half of the maximum luminance), the display is performed using only the rear subframe with the front subframe as black display.
  • the relationship between the gradation and the luminance in the liquid crystal panel 21 is in accordance with its response characteristic ( ⁇ value), and is the same in each subframe. Further, as shown in FIG. 19, the degree of increase in brightness (increase rate) with respect to the increase in gradation is small when the signal gradation is low, and is large when the signal gradation is high.
  • the value of ⁇ described above corresponds to the response characteristic of the liquid crystal panel 21. Therefore, when the response characteristic of the liquid crystal panel 21 changes according to the temperature change, the value of ⁇ also deviates from 2.2.
  • the inflection point shown in Fig. 21 occurs in the gradation-luminance curve.
  • the gray scale also has an unnatural gradation due to the occurrence of a heterogeneous region corresponding to the above inflection point.
  • FIGS. 24A to 24F are explanatory diagrams showing the luminances of the previous subframe and the subsequent subframe when such control is performed. As shown in these figures, in this control, the luminance difference between the two subframes does not exceed the predetermined range D.
  • the predetermined range D is set to “a luminance range corresponding to a gradation of 98% or less of the switching gradation and 50% or more of the switching gradation” in the present display device. For example, if the switching gradation is 170, the predetermined range D is a luminance range corresponding to the signal gradation of 85 to 167.
  • the luminance (frame luminance) power displayed in one frame is any luminance (threshold) D1 within the predetermined range D (in the case of B sound luminance), and the previous subframe is displayed in black. On the other hand, display is performed using only the subsequent subframe.
  • Dl ⁇ frame luminance ⁇ Dl + d the luminance of D1 is displayed in the subsequent subframe and the remaining luminance is displayed in the previous subframe.
  • Dl + d and frame luminance ⁇ Dl + 2d the luminance of D + d is displayed in the subsequent subframe and the remaining luminance is displayed in the previous subframe.
  • d is an arbitrary step value such that Dl + d is in D. In this control, the luminance difference between both subframes is D1 or Dl + d.
  • the luminance of both subframes alternately increases as the signal gradation increases.
  • a high increase rate and luminance (the increase rate; the degree of increase in luminance with respect to an increase in gradation! /,)
  • the low increase rate due to the previous subframe can be mixed (two types of luminance).
  • the luminance can be increased alternately for each step value d as the signal gradation increases).
  • step value d it is possible to mix two types of luminance at a narrow interval, so that the sharpness of the gradation-one luminance curve is improved. Can be suppressed. Therefore, the occurrence of inflection points can be suppressed more reliably. For this reason, it is preferable to set the step value d to a value as small as possible (for example, brightness of 1 to 3 gradations).
  • the luminance of both subframes is alternately increased for each step value in accordance with an increase in signal gradation.
  • the luminance of both subframes can be increased as the frame luminance increases (the luminance of both subframes can be mixed). Therefore, even in this case, it is possible to suppress the occurrence of inflection points.
  • the predetermined range D is "a luminance range corresponding to a gradation that is 98% or less of the switching gradation and 50% or more".
  • the upper limit value of D the effect of suppressing the inflection point will be reduced if it approaches the luminance corresponding to the switching gradation. Therefore, it can be said that the upper limit value 'lower limit value of D is preferably determined in consideration of these points.
  • the luminance difference between both subframes may be made smaller than the luminance corresponding to the switching gradation (a value half the maximum value of the frame luminance). Even with this configuration, the occurrence of inflection points can be suppressed.
  • the gradation value 170 is given as an example of the switching gradation, but this value varies depending on the characteristics of the liquid crystal material of the liquid crystal panel 21 (response speed, etc.).
  • the previous subframe in the case of low luminance, is displayed in black and the subsequent subframe is displayed. It is assumed that display is performed by adjusting the brightness, and that the display is performed by adjusting the brightness of the previous subframe with the rear subframe as white display in the case of high brightness.
  • the present invention is not limited to this, and the roles of the previous subframe and the subsequent subframe may be changed.
  • the display in the case of low luminance, the display is performed by adjusting the luminance of the previous subframe with the subsequent subframe as black, and in the case of high luminance, the luminance of the subsequent subframe is adjusted with the previous subframe as white display. You can set it to display.
  • the sub-frame that displays black (white display) in the case of low luminance (high luminance) may be either the front sub-frame or the rear sub-frame.
  • the luminance difference between both subframes is within D in order to avoid the inflection point.
  • the arithmetic device (CPU or MPU) of the information processing device reads the program recorded on the recording medium and executes the process. Therefore, it can be said that this program itself realizes processing.
  • the information processing apparatus in addition to a general computer (workstation or personal computer), a function expansion board or a function expansion unit attached to the computer can be used.
  • the above-mentioned program is a program code (execution format program, intermediate code program, source program, etc.) of software for realizing processing.
  • This program may be used alone or in combination with other programs (such as OS).
  • the program may be such that after the recording medium power is read out, it is stored in memory (such as RAM) in the apparatus, and then read out and executed again.
  • the recording medium on which the program is recorded may be one that can be easily separated from the information processing apparatus, or one that is fixed (attached) to the apparatus. Furthermore, as an external storage device It can be connected to ⁇ .
  • Such recording media include magnetic tapes such as video tapes and cassette tapes, magnetic disks such as floppy disks (registered trademark) and hard disks, CD-ROM, MO, MD, DVD, and CD-R.
  • Memory power such as optical disks (magneto-optical disks), IC cards, and optical cards, and semiconductor memories such as mask ROM, EPROM, EEPROM, and flash ROM can be applied.
  • a recording medium connected to the information processing apparatus via a network may be used.
  • the information processing apparatus acquires the program by downloading via the network. That is, the above program
  • the present invention can also be described as follows. That is, in a TFT liquid crystal display device, in the gradation luminance display of a pixel with a panel, with regard to the gradation luminance display method, the display performance is improved by dividing one frame into two sub-frames or displaying it, or With a drive method that improves viewing angle characteristics, etc., up to half luminance display, the first subframe of the two subframes is set to the minimum luminance, and the grayscale is changed by the other second subframe.
  • the display drive method (see Fig. 23) that performs brightness display by performing luminance display and changing the brightness of the first sub-frame to display gradation brightness when the display brightness is more than half of the maximum brightness. Expected to improve video performance and viewing angle characteristics.
  • the gradation display luminance changes depending on the temperature when the above driving method is performed (see FIG. 21). Therefore, even if the display gradation brightness is set to 2.2 at room temperature (see Fig. 19), ⁇ will change from 2.2 if the temperature decreases or increases (see Fig. 21). ).
  • the above driving method it is divided into two sub-frames, and both sub-frames are calculated from the luminance display gradation on one side.
  • the temperature characteristic of the gradation brightness characteristic changes, so that the gradation change changes at the gradation output and becomes an inflection point (see Fig. 22). It goes without saying that the impression of the image changes as y changes from 2.2, but it is a further problem that the gradation changes abruptly.
  • the gradation luminance of one frame is determined by the sum of the luminances of the pixels of the individual subframes.
  • the present invention can be suitably used for an apparatus having a display screen in which whitening occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

表示装置,液晶モニター,液晶テレビジョン受像機および表示方法 技術分野
[0001] 本発明は、 1フレームを、第 1および第 2サブフレームからなる 2つのサブフレームに 分割して画像表示を行う表示装置に関するものである。
背景技術
[0002] 近年、 CRT (陰極線管)が用いられて ヽた分野で、液晶表示装置、特に TN(Twisted
Nematic)型の液晶表示パネル(TNモードの液晶パネル; TNパネル)を有するカラ 一液晶表示装置が多く用いられるようになってきて!/、る。
[0003] 例えば、特許文献 1には、表示する画像が動画像であるか静止画像であるかによつ て TNパネルの駆動方法を切り替える、液晶表示装置が開示されて 、る。
[0004] ところで、このような TNパネルでは、 CRTに比して、視野角特性にやや問題がある
[0005] このため、視線角度 (パネルを見る角度;パネルの法線方向と、パネルを見る方向と のなす角度)の増加に応じて階調特性が変わり、階調反転してしまう角度も存在する
[0006] そこで、従来、光学フィルムを用いて視野角特性の改善する技術や、表示方法に 工夫を凝らすことで階調反転を抑制する記述が開発されている。例えば、特許文献 2 および特許文献 3では、 1フレームを分割して 1画素に複数回信号書込みを行う、ま たその信号書込み電圧レベルを組み合わせて改善する方法がある。
[0007] また、 TV (テレビジョン受像機)などの広視野角を必要とする液晶表示パネルでは 、 TNモードではなぐ IPS (In-Plane- Switching)モードや VA (Vertical Alignment)モ ードなどの液晶を用いることによって、広視野角化を図っている。例えば、 VAモード の液晶パネル (VAパネル)では、上下左右 170° の範囲でコントラストが 10以上とな り、階調反転もなくなつている。
特許文献 1:特開 2001— 296841号公報 (公開日; 2001年 10月 26日)
特許文献 2:特開平 5 - 68221号公報 (発行日; 1993年 3月 19日) 特許文献 3:特開 2002— 23707号公報 (公開日; 2002年 1月 25日) 非特許文献 1 :新編 色彩科学ハンドブック;第 2版 (東京大学出版会;公開日; 1998 年 6月 10曰)
発明の開示
[0008] しカゝしながら、広視野角と!ヽわれて ヽる VAパネルでも、視野角度による階調特性 の変化を完全になくすことはできず、例えば左右方向の視野角度が大きくなると階調 特性が悪化する。
[0009] すなわち、図 2に示すように、視野角度が 60度となると、正面からパネルを望む場 合 (視野角度 0度)に対し、階調 γ特性が変わり、中間調の輝度が明るくなる白浮き 現象が起こってしまう。
[0010] また、 IPSモードの液晶パネルに関しても、光学フィルムなどの光学特性の設計に もよるが、程度の大小はあれ、視野角度の増加に応じて階調特性の変化が起こる。
[0011] 本発明は、上記のような従来の問題点に鑑みてなされたものであり、その目的は、 白浮き現象を抑制可能な表示装置を提供することにある。
[0012] 上記の目的を達成するために、本発明の表示装置 (本表示装置)は、
1フレームを、第 1および第 2サブフレーム力 なる 2つのサブフレームに分割して画 像表示を行う表示装置において、
入力された表示信号の輝度階調に基づいた輝度の画像を表示する表示部と、 1フレームに表示部から出力される輝度の総和であるフレーム輝度をフレームの分 割によつて変えないように、第 1および第 2サブフレームの表示信号である第 1および 第 2表示信号を生成して表示部に出力する制御部とを備えており、
この制御部が、フレーム輝度が最大値より小さい場合、両サブフレームから出力さ れる輝度に差をつけるとともに、この輝度差を、 1つのサブフレームで表示できる最大 の輝度であるサブ最大輝度より小さくする構成である。
[0013] 本表示装置は、表示画面 (液晶パネルなど)を備えた表示部を用いて画像を表示 するものである。
[0014] そして、本表示装置は、制御部が、サブフレーム表示によって表示部を駆動するよ うになつている。ここで、サブフレーム表示とは、 1つのフレームを複数 (本表示装置で は 2つ)のサブフレーム (第 1および第 2サブフレーム)に分けて行う表示方法である。
[0015] すなわち、制御部は、 1フレーム期間に、表示部に対して、表示信号を 2回出力す る(第 1サブフレームの表示信号である第 1表示信号と、第 2サブフレームの表示信号 である第 2表示信号とを出力する)。
[0016] これにより、制御部は、両サブフレーム期間で、表示部の表示画面の全ゲートライン を 1回ずつ ONとする(1フレームに 2回 ONとする)こととなる。なお、フレームをサブフ レームに分割せずに行う通常の表示(通常ホールド表示)では、 1フレーム期間で、 表示画面の全ゲートラインを 1回だけ ONとすることとなる。
[0017] また、表示部 (表示画面)は、制御部力 入力された表示信号の輝度階調に基づい た輝度の画像を表示するように設計されて!、る。
[0018] そして、制御部は、フレームを分割することによって、 1フレームに画面から出力され る輝度の総和 (フレーム輝度)を変えな 、ように、第 1表示信号および第 2表示信号を 生成する(これらの表示信号の輝度階調を設定する)ようになって!/、る。
[0019] また、通常、表示部の表示画面は、画像の輝度を最小あるいは最大に近づける場 合に、大きな視野輝度での実際輝度と予定輝度とのズレ (輝度ズレ)を小さくできる。
[0020] ここで、予定輝度とは、表示画面から出力されるはずの輝度 (表示信号の輝度階調 に応じた値)のことである。また、実際輝度とは、画面力も実際に出力された輝度のこ とであり、視野角度に応じて変化する値である。また、画面の正面では、これら実際輝 度と予定輝度とは等しくなる。
[0021] 本表示装置では、制御部が、フレーム輝度が最大値より小さい場合 (完全な白表示 でない場合)、両サブフレームから出力される輝度に差をつけるように設計されている
[0022] これにより、本表示装置では、両サブフレームから同じ輝度を出力する場合 (通常 ホールド表示に相当)に比して、いずれか一方のサブフレームで表示される輝度を、 最小あるいは最大に近づけることができる。
[0023] このため、本表示装置では、通常ホールド表示を行う構成に比して、 1フレームでの 輝度ズレを減らすことが可能となり、このズレに起因する白浮き現象を抑制できるよう になっている。 [0024] また、上記のようなサブフレーム表示を行うことによって、動画の表示品質を向上さ せることち可會となる。
[0025] すなわち、通常ホールド表示で表示されている物体の動きを視線追従すると、直前 のフレームの色や明るさも同時に見えてしまう。このため、物体のエッジがボケて認識 される。
[0026] 一方、サブフレーム表示 (特に低輝度)で動画を表示する場合には、各フレームの いずれかのサブフレームの輝度が低くなる。このため、視認しているフレームの画像 と、直前のフレームの画像 (色'明るさ)とが視覚上で混在することを抑制できる。従つ て、上記のようなエッジボケを回避し、動画の表示品質を向上させられる。
[0027] ここで、上記した輝度ズレを最大限に防止するためには、フレーム輝度がサブ最大 輝度(1つのサブフレームで表示できる最大の輝度)以下の場合 (低輝度の場合)、 一方のサブフレームを黒表示としたまま、他方のサブフレームの輝度を調整すること で表示を行うことが好まし 、。
[0028] なお、サブ最大輝度は、サブフレームの期間を 1: 1とする場合には、フレーム輝度 の最大値の半分となる。
[0029] また、フレーム輝度がサブ最大輝度より高 、場合 (高輝度の場合)には、他方のサ ブフレームを白表示としつつ、一方のサブフレームの輝度を調整することで表示を行 うことが好ましい。これにより、いずれか一方のサブフレームの輝度ズレを 0にできる。
[0030] ところで、表示部における階調と輝度との関係は、その応答特性( γ値)に応じたも のであり、各サブフレームで同様のものである。また、一般に、階調の増加に対する 輝度の上昇の度合 、 (上昇率)は、輝度階調の低!、場合には小さく、輝度階調の高 い場合には大きくなる。
[0031] 従って、上記した輝度ズレを最大限に防止可能なサブフレーム表示を行うと、低輝 度と高輝度との切り替わる階調 (切替階調;サブ最大輝度に対応)を境に、輝度を出 力するサブフレームが完全に入れ代わる。
[0032] このため、階調増加に対する輝度の上昇率が大きく変化し、階調一輝度曲線に変 曲点 (特異点)が生じてしまう(詳しくは、後述する〔発明を実施するための最良の形 態〕を参照されたい)。 [0033] そこで、このような変曲点の発生を抑制するために、本表示装置では、両サブフレ ームの輝度差を、 1つのサブフレームで表示できる最大の輝度であるサブ最大輝度 より小さくするように設定されている。
[0034] これにより、少なくともサブ最大輝度 (切替階調)の近傍では、階調の増加に応じて
、両サブフレームの輝度がともに上昇することなる(上昇率の高い輝度と上昇率の低 い輝度とがともに増加する)。従って、サブ最大輝度 (切替階調)の近傍で発生する 変曲点を抑制することが可能となる。
[0035] また、本表示装置では、制御部は、フレーム輝度が所定の閾値以下である場合に は、一方のサブフレームを黒表示とする一方、他方のサブフレームの輝度を調整して 表示を行うことが好ましい。
[0036] さらに、フレーム輝度が上記の閾値より大きい場合には、両サブフレームから出力さ れる輝度の差をサブ最大輝度より小さくすることが好ましい。なお、この閾値は、サブ 最大輝度よりも小さい値である。
[0037] これにより、本表示装置では、フレーム輝度が小さい(サブ最大輝度よりも小さい閾 値以下となる)場合、すなわち、上記の変曲点の発生しない場合には、 1つのサブフ レームを黒表示とできる。従って、輝度ズレを小さくできる。
[0038] ここで、上記の閾値については、これを小さくして切替階調に応じた輝度 (サブ最大 輝度)から離すにつれて、変曲点の抑制効果を向上できる。一方、閾値を小さくし過 ぎると、フレーム輝度の小さい場合での、サブフレーム表示による白浮き改善効果を 減少させてしまう。
[0039] そこで、本表示装置では、上記の閾値を、サブ最大輝度に応じた輝度階調の 98% 以下で、 50%以上の輝度階調に応じた輝度範囲に設定することが好ましい。
[0040] 閾値をこの範囲に設定すれば、白浮き改善効果を維持したまま、変曲点の抑制効 果を良好に発揮できる。
[0041] また、上記の構成では、フレーム輝度が閾値より大きい場合には、両サブフレーム から輝度を出力することとなる。ここで、一方のサブフレームの輝度がサブ最大輝度( 白表示)となるまでは、両サブフレームの輝度差を小さくし過ぎると、サブフレーム表 示による白浮き改善効果を減少させてしまう。また、輝度差を大きくしすぎると、変曲 点の抑制効果を減じてしまう。
[0042] そこで、本表示装置では、両サブフレームの輝度差を、閾値と同様に、サブ最大輝 度に応じた輝度階調の 98%以下で、 50%以上の輝度階調に応じた輝度範囲に設 定することが好ましい。
[0043] 両サブフレームの輝度差をこの範囲に設定すれば、白浮き改善効果を維持したま ま、変曲点の抑制効果を良好に発揮できる。
[0044] また、液晶パネルカゝらなる表示部を備えた本表示装置と画像信号入力部 (信号入 力部)とを組み合わせることで、パーソナルコンピューターなどに使用される液晶モ- ターを構成することが可能である。
[0045] ここで、画像信号入力部とは、外部から入力された画像信号を制御部に伝達する ためのものである。
[0046] この構成では、本表示装置の制御部が、画像信号入力部から伝達された画像信号 に基づいて、表示信号を生成して表示部に出力することとなる。
[0047] また、液晶パネル力 なる表示部を備えた本表示装置とチューナ部とを組み合わせ ることで、液晶テレビジョン受像機を構成することも可能である。
[0048] ここで、チューナ部とは、テレビ放送信号のチャネルを選択し、選択されたチャネル のテレビ画像信号を制御部に伝達するためのものである。
[0049] この構成では、本表示装置の制御部が、チューナ部力 伝達されたテレビ画像信 号に基づいて表示信号を生成して表示部に出力することとなる。
[0050] また、本発明の画像表示方法 (本表示方法)は、 1フレームを、第 1および第 2サブ フレーム力 なる 2つのサブフレームに分割して画像表示を行う表示方法において、 1フレームに表示部から出力される輝度の総和であるフレーム輝度をフレームの分割 によって変えないように、第 1および第 2サブフレームの表示信号である第 1および第 2表示信号を生成して表示部に出力する出力工程を含み、この出力工程が、フレー ム輝度が最大値より小さい場合、両サブフレームから出力される輝度に差をつけると ともに、この輝度差を、 1つのサブフレームで表示できる最大の輝度であるサブ最大 輝度より小さくするように設定されている方法である。
[0051] 本表示方法は、上記した本表示装置において使用されている表示方法である。従 つて、本表示方法によれば、通常ホールド表示を行う場合に比して、輝度ズレを小さ く抑えられるので、視野角特性を向上させることが可能となる。このため、白浮き現象 を良好に抑制できる。また、動画の表示品質を向上させることも可能となる。
[0052] さらに、サブフレームの輝度差をサブ最大輝度より小さくすることによって、階調一 輝度曲線に変曲点 (特異点)の発生することを防止できる。
[0053] 以上のように、本発明の表示装置 (本表示装置)は、 1フレームを、第 1および第 2サ ブフレーム力 なる 2つのサブフレームに分割して画像表示を行う表示装置において 、入力された表示信号の輝度階調に基づいた輝度の画像を表示する表示部と、 1フ レームに表示部から出力される輝度の総和であるフレーム輝度をフレームの分割に よって変えないように、第 1および第 2サブフレームの表示信号である第 1および第 2 表示信号を生成して表示部に出力する制御部とを備えており、この制御部が、フレー ム輝度が最大値より小さい場合、両サブフレームから出力される輝度に差をつけると ともに、この輝度差を、 1つのサブフレームで表示できる最大の輝度であるサブ最大 輝度より小さくする構成である。
[0054] 本表示装置では、制御部が、フレーム輝度が最大値より小さい場合 (完全な白表示 でない場合)、両サブフレームから出力される輝度に差をつけるように設計されている
[0055] これにより、本表示装置では、両サブフレームから同じ輝度を出力する場合 (通常 ホールド表示に相当)に比して、いずれか一方のサブフレームで表示される輝度を、 最小あるいは最大に近づけることができる。
[0056] このため、本表示装置では、通常ホールド表示を行う構成に比して、 1フレームでの 輝度ズレを減らすことが可能となり、このズレに起因する白浮き現象を抑制できるよう になっている。
[0057] また、上記のようなサブフレーム表示を行うことによって、動画の表示品質を向上さ せることち可會となる。
[0058] すなわち、通常ホールド表示で表示されている物体の動きを視線追従すると、直前 のフレームの色や明るさも同時に見えてしまう。このため、物体のエッジがボケて認識 される。 [0059] 一方、サブフレーム表示 (特に低輝度)で動画を表示する場合には、各フレームの いずれかのサブフレームの輝度が低くなる。このため、視認しているフレームの画像 と、直前のフレームの画像 (色'明るさ)とが視覚上で混在することを抑制できる。従つ て、上記のようなエッジボケを回避し、動画の表示品質を向上させられる。
[0060] また、本表示装置では、両サブフレームの輝度差を、 1つのサブフレームで表示で きる最大の輝度であるサブ最大輝度より小さくするように設定されて 、る。
これにより、少なくともサブ最大輝度 (切替階調)の近傍では、階調の増加に応じて、 両サブフレームの輝度がともに上昇することなる(上昇率の高 、輝度と上昇率の低!ヽ 輝度とがともに増加する)。従って、サブ最大輝度 (切替階調)の近傍で発生する変 曲点を抑制することが可能となる。
[0061] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[0062] [図 1]本発明の一実施形態に力かる表示装置の構成を示すブロック図である。
[図 2]通常ホールド表示の場合に液晶パネルから出力される表示輝度(予定輝度と実 際輝度との関係)を示すグラフである。
[図 3]図 1に示した表示装置においてサブフレーム表示を行う場合に液晶パネルから 出力される表示輝度 (予定輝度と実際輝度との関係)を示すグラフである。
[図 4] (a)な 、し (c)は、図 1に示した表示装置のフレームメモリに入力される画像信号 を示す説明図である。
[図 5]図 1に示した表示装置においてフレームを 3 : 1に分割する場合における、前段 表示信号と後段表示信号とに関するゲートラインの ONタイミングを示す説明図であ る。
[図 6]図 3に示した輝度のグラフを明度に変換したものを示すグラフである。
[図 7]図 1に示した表示装置においてフレームを 3 : 1に分割した場合における、予定 明度と実際明度との関係を示すグラフである。
[図 8]図 1に示した表示装置の構成を一部変更した表示装置を示す説明図である。 圆 9(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 9(b)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。
[図 10(a)]液晶の応答速度を説明するための図である。
[図 10(b)]液晶の応答速度を説明するための図である。
[図 10(c)]液晶の応答速度を説明するための図である。
[図 11]応答速度の遅い液晶を用いてサブフレーム表示を行う場合に、液晶パネルか ら出力される表示輝度 (予定輝度と実際輝度との関係)を示すグラフである。
[図 12(a)]表示輝度力Lmaxの 3Z4および 1Z4の場合に、前サブフレームおよび後 サブフレームによって表示される輝度を示すグラフである。
圆 12(b)]液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で変えた場 合の、液晶電圧の遷移状態を示すグラフである。
圆 13(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 13(b)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。
[図 14(a)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明図 である。
[図 14(b)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明 図である。
[図 14(c)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明図 である。
[図 14(d)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明 図である。
[図 15]均等な 3つのサブフレームにフレームを分割して表示を行った結果 (破線およ び実線)と、通常ホールド表示を行った結果 (一点鎖線および実線)と合わせて示す グラフである。
[図 16]フレームを 3つに分割し、フレームごとに電圧極性を反転した場合における、 液晶電圧の遷移を示すグラフである。
[図 17]フレームを 3つに分割し、サブフレームごとに電圧極性を反転した場合におけ る、液晶電圧の遷移を示すグラフである。 [図 18]輝度を調整しないサブフレームにおける、表示部に出力される信号階調(%; 表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)との関係 (視野角 階調特性 (実測) )を示すグラフである。
[図 19]液晶パネルに関する、正規化輝度と信号階調とのなす階調-輝度曲線を示 すグラフである。
[図 20]液晶パネルによって表示される、グレースケールを示す説明図である。
[図 21]液晶パネルに関する、変曲点を有する階調-輝度曲線を示すグラフである。
[図 22]液晶パネルによって表示される、変曲点を有するグレースケールを示す説明 図である。
[図 23] (a)な 、し (f)は、 2つのサブフレームを用いたサブフレーム表示を示す説明図 である。
[図 24] (a)ないし (f)は、 2つのサブフレームを用いたサブフレーム表示において、両 サブフレームの輝度差を所定範囲内に抑えるように制御した場合の表示を示す説明 図である。
[図 25]液晶パネルに関する、変曲点のない階調-輝度曲線を示すグラフである。
[図 26]液晶パネルによって表示される、変曲点の解消されたグレースケールを示す 説明図である。
発明を実施するための最良の形態
[0063] 本発明の一実施形態について説明する。
[0064] 本実施の形態に力かる液晶表示装置 (本表示装置)は、複数のドメインに分割され た垂直配向(VA)モードの液晶パネルを有するものである。そして、本表示装置は、 外部から入力された画像信号を液晶パネルに表示する液晶モニターとして機能する ものである。
[0065] 図 1は、本表示装置の内部構成を示すブロック図である。図 1に示すように、本表示 装置は、フレームメモリ(F. M. ) 11,前段 LUT12,後段 LUT13,表示部 14および 制御部 15を備えている。
[0066] フレームメモリ(画像信号入力部) 11は、外部の信号源から入力される画像信号 (R GB信号)を 1フレーム分蓄積するものである。前段 LUT (look-up table) 12および後 段 LUT13は、外部から入力される画像信号と、表示部 14に出力する表示信号との 対応表 (変換表)である。
[0067] なお、本表示装置は、サブフレーム表示を行うようになって!/、る。ここで、サブフレー ム表示とは、 1つのフレームを複数のサブフレームに分けて表示を行う方法である。
[0068] すなわち、本表示装置は、 1フレーム期間に入力される 1フレーム分の画像信号に 基づいて、その 2倍の周波数で、サイズ (期間)の等しい 2つのサブフレームによって 表示を行うように設計されて 、る。
[0069] そして、前段 LUT12は、前段のサブフレーム(前サブフレーム)において出力され る表示信号 (前段表示信号)のための対応表である。一方、後段 LUT13は、後段の サブフレーム (後サブフレーム)において出力される表示信号 (後段表示信号)のた めの対応表である。
[0070] 表示部 14は、図 1に示すように、液晶パネル 21,ゲートドライバー 22,ソースドライ バー 23を備えており、入力される表示信号に基づいて画像表示を行うものである。こ こで、液晶パネル 21は、 VAモードのアクティブマトリックス(TFT)液晶パネルである
[0071] 制御部 15は、本表示装置における全動作を制御する、本表示装置の中枢部であ る。そして、制御部 15は、上記した前段 LUT12,後段 LUT13を用いて、フレームメ モリ 11に蓄積された画像信号力も表示信号を生成し、表示部 14に出力するものであ る。
[0072] すなわち、制御部 15は、通常の出力周波数 (通常クロック;例えば 25MHz)で送ら れてくる画像信号をフレームメモリ 11に蓄える。そして、制御部 15は、この画像信号 を、通常クロックの 2倍の周波数を有するクロック(倍クロック; 50MHz)により、フレー ムメモリ 11から 2回出力する。
[0073] そして、制御部 15は、 1回目に出力する画像信号に基づいて、前段 LUT12を用い て前段表示信号を生成する。その後、 2回目に出力する画像信号に基づいて、後段 LUT13を用いて後段表示信号を生成する。そして、これらの表示信号を、倍クロック で順次的に表示部 14に出力する。
[0074] これにより、表示部 14が、順に入力される 2つの表示信号に基づいて、 1フレーム 期間に、互いに異なる画像を 1回ずつ表示する(両サブフレーム期間で、液晶パネル
21の全ゲートラインを 1回ずつ ONとする)。なお、表示信号の出力動作については、 後により詳細に説明する。
[0075] ここで、制御部 15による、前段表示信号および後段表示信号の生成について説明 する。まず、液晶パネルに関する一般的な表示輝度 (パネルによって表示される画像 の輝度)について説明する。
[0076] 通常の 8ビットデータを、サブフレームを用いずに 1フレームで画像を表示する場合
(1フレーム期間で、液晶パネルの全ゲートラインを 1回だけ ONとする、通常ホールド 表示する場合)、表示信号の輝度階調 (信号階調)は、 0〜255までの段階となる。
[0077] そして、液晶パネルにおける信号階調と表示輝度とは、以下の(1)式によって近似 的に表現される。
( (T-T0) / (Tmax-TO) ) = (L/Lmax) " γ - - - (1)
ここで、 Lは 1フレームで画像を表示する場合 (通常ホールド表示で画像を表示する 場合)の信号階調 (フレーム階調)、 Lmaxは最大の輝度階調 (255)、 Tは表示輝度
、 Tmaxは最大輝度(L = Lmax = 255のときの輝度;白)、 TOは最小輝度(L = 0のと きの輝度;黒)、 γは補正値 (通常 2. 2)である。
[0078] なお、実際の液晶パネル 21では、 ΤΟ = 0ではない。し力しながら、説明を簡略化す るため、以下では、 TO = 0とする。
[0079] また、この場合 (通常ホールド表示の場合)に液晶パネル 21から出力される表示輝 度 Tを、図 2にグラフとして示す。このグラフは、横軸に出力されるはずの輝度(予定 輝度;信号階調に応じた値,上記の表示輝度 Tに相当)を、縦軸に実際に出力され た輝度 (実際輝度)を示して 、る。
[0080] このグラフに示すように、この場合には、上記した 2つの輝度は、液晶パネル 21の 正面 (視野角度 0度)においては等しくなる。一方、視野角度を 60度としたときには、 実際輝度が、階調 γ特性の変化によって、中間調の輝度で明るくなつてしまう。
[0081] 次に、本表示装置における表示輝度について説明する。
本表示装置では、制御部 15が、
(a)「前サブフレームおよび後サブフレームのそれぞれにおいて表示部 14によって表 示される画像の輝度 (表示輝度)の総和(1フレームにおける積分輝度)を、通常ホー ルド表示を行う場合の 1フレームの表示輝度と等しくする」
(b)「一方のサブフレームを黒 (最小輝度)、または白(最大輝度)にする」
を満たすように階調表現を行うように設計されて!ヽる。
[0082] このために、本表示装置では、制御部 15が、フレームを 2つのサブフレームに均等 に分割し、 1つのサブフレームによって最大輝度の半分までの輝度を表示するように 設計されている。
[0083] すなわち、最大輝度の半分(閾輝度; TmaxZ2)までの輝度を 1フレームで出力す る場合 (低輝度の場合)、制御部 15は、前サブフレームを最小輝度(黒)とし、後サブ フレームの表示輝度のみを調整して階調表現を行う(後サブフレームのみを用いて 階調表現を行う)。この場合、 1フレームにおける積分輝度は(最小輝度 +後サブフレ ームの輝度) Z2の輝度となる。
[0084] また、上記の閾輝度より高い輝度を出力する場合 (高輝度の場合)、制御部 15は、 後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調整して階調表 現を行う。この場合、 1フレームにおける積分輝度は(前サブフレームの輝度 +最大 輝度) Z2の輝度となる。
[0085] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。
[0086] なお、信号階調設定については、図 1に示した制御部 15が行う。制御部 15は、上 記した(1)式を用いて、上記した閾輝度 (TmaxZ2)に対応するフレーム階調をあら かじめ算出しておく。
[0087] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Lt = 0. 5" (ΐ/ γ ) X Lmax …(2)
となる。
[0088] そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。そして、この Lが Lt以下の場合、制御部 15 は、前段表示信号の輝度階調 (Fとする)を、前段 LUT12によって最小 (0)とする。 一方、制御部 15は、後段表示信号の輝度階調 (Rとする)を、(1)式に基づいて、 R = 0. 5" (ΐ/ γ ) X L …(3)
となるように、後段 LUT13を用いて設定する。
[0089] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。一方、制御部 15は、前サブフレームの輝度階調 Fを、 (1) 式に基づいて、
F= (L" y -0. 5 X Lmax" γ ) " (1/ γ ) · · · (4)
とする。
[0090] 次に、本表示装置における表示信号の出力動作について、より詳細に説明する。
なお、以下では、液晶パネル 21の画素数を a X bとする。
[0091] この場合、制御部 15は、ソースドライバー 23に対し、倍クロックで、 1番目のゲートラ インの画素 (a個)の前段表示信号を蓄積する。
[0092] そして、制御部 15は、ゲートドライバー 22によって、 1番目のゲートラインを ONとし 、このゲートラインの画素に対して前段表示信号を書き込む。その後、制御部 15は、 ソースドライバー 23に蓄積する前段表示信号を変えながら、同様に、 2〜b番目のゲ 一トラインを倍クロックで ONしてゆく。これにより、 1フレームの半分の期間(1Z2フレ ーム期間)で、全ての画素に前段表示信号を書き込める。
[0093] さらに、制御部 15は、同様の動作を行って、残りの 1Z2フレーム期間で、全ゲート ラインの画素に後段表示信号の書き込みを行う。これにより、各画素には、前段表示 信号と後段表示信号とが、それぞれ均等の時間(1Z2フレーム期間)書き込まれるこ とになる。
[0094] 図 3は、このような前段表示信号および後段表示信号を前'後サブフレームに分け て出力するサブフレーム表示を行った結果 (破線および実線)を、図 2に示した結果( 一点鎖線および実線)と合わせて示すグラフである。
[0095] 本表示装置では、図 2に示したように、大きな視野角度での実際輝度と予定輝度( 実線と同等)とのズレが、表示輝度が最小あるいは最大の場合に最小 (0)となる一方 、中間調(閾輝度近傍)で最も大きくなる液晶パネル 21を用いて 、る。
[0096] そして、本表示装置では、 1つのフレームをサブフレームに分割するサブフレーム 表示を行っている。さらに、 2つのサブフレームの期間を等しく設定し、低輝度の場合 、 1フレームにおける積分輝度を変化させない範囲で、前サブフレームを黒表示とし 、後サブフレームのみを用いて表示を行っている。従って、前サブフレームでのズレ が最小となるので、図 3の破線に示すように、両サブフレームのトータルのズレを約半 分に減少することができる。
[0097] 一方、高輝度の場合、 1フレームにおける積分輝度を変化させない範囲で、後サブ フレームを白表示とし、前サブフレームの輝度だけを調整して表示を行っている。こ のため、この場合にも、後サブフレームのズレが最小となるので、図 3の破線に示すよ うに、両サブフレームのトータルのズレを約半分に減少することができる。
[0098] このように、本表示装置では、通常ホールド表示を行う構成 (サブフレームを用いず に 1フレームで画像を表示する構成)に比して、全体的にズレを約半分に減らすこと が可能となっている。このため、図 2に示したような、中間調の画像が明るくなつて白く 浮!、てしまう現象(白浮き現象)を抑制することが可能である。
[0099] なお、本実施の形態では、前サブフレームと後サブフレームとの期間が等しいとし ている。これは、最大値の半分までの輝度を 1つのサブフレームで表示するためであ る。し力しながら、これらのサブフレームの期間を、互いに異なる値に設定してもよい
[0100] すなわち、本表示装置において問題とされている白浮き現象は、視野角度の大き い場合に実際輝度が図 2のような特性を持つことで、中間調の輝度の画像が明るくな つて白く浮いて見える現象のことである。
[0101] なお、通常、カメラに撮像された画像は、輝度に基づいた信号となる。そして、この 画像をデジタル形式で送信する場合には、(1)式に示した γを用いて画像を表示信 号に変換する (すなわち、輝度の信号を(ΐΖ γ )乗し、均等割りして階調をつける)。 そして、このような表示信号に基づいて、液晶パネル等の表示装置によって表示され る画像は、(1)式によって示される表示輝度を有することとなる。
[0102] ところで、人間の視覚感覚は、画像を、輝度ではなく明度として受け取つている。ま た、明度(明度指数) Μとは、以下の(5) (6)式によって表されるものである(非特許文 献 1参照)。 [0103] M= 116 XY" (l/3) - 16, Y>0. 008856 · · · (5)
M = 903. 29 XY, Y≤0. 008856 · · · (6)
ここで、 Yは、上記した実際輝度に相当するものであり、 Y= (yZyn)なる量である。 なお、 yは、任意な色の xyz表色系における三刺激値の y値であり、また、 ynは、完全 拡散反射面の標準の光による y値であり yn= 100と定められている。
[0104] これらの式より、人間は、輝度的に暗い映像に対して敏感であり、明るい映像に対 しては鈍感になっていく傾向がある。そして、白浮きに関しても、人間は、輝度のズレ ではなぐ明度のズレとして受け取っていると考えられる。
[0105] ここで、図 6は、図 3に示した輝度のグラフを明度に変換したものを示すグラフである 。このグラフは、横軸に『出力されるはずの明度 (予定明度;信号階調に応じた値,上 記の明度 Mに相当)』を、縦軸に『実際に出力された明度 (実際明度)』を示している。 このグラフに実線で示すように、上記した 2つの明度は、液晶パネル 21の正面 (視野 角度 0度)においては等しくなる。
[0106] 一方、このグラフの破線に示すように、視野角度を 60度とし、かつ、各サブフレーム の期間を均等とした場合 (すなわち、最大値の半分までの輝度を 1つのサブフレーム で表示する場合)には、実際明度と予定明度とのズレは、通常ホールド表示を行う従 来の場合よりは改善されている。従って、白浮き現象を、ある程度は抑制できているこ とがわかる。
[0107] また、人間の視覚感覚にあわせて白浮き現象をより大きく抑制するためには、輝度 ではなぐ明度に合わせてフレームの分割割合を決定することがより好ましいといえる 。そして、実際明度と予定明度とのズレは、輝度の場合と同様に、予定明度における 最大値の半分の点で最も大きくなる。
[0108] 従って、最大値の半分までの輝度を 1つのサブフレームで表示するようにフレーム を分割するよりも、最大値の半分までの明度を 1つのサブフレームで表示するようにフ レームを分割する方が、人間に感じられるズレ (すなわち白浮き)を改善できることに なる。
[0109] そこで、以下に、フレームの分割点における好ましい値について説明する。まず、 演算を簡単に行うために、上記した(5) (6)式を、以下の(6a)式のような形((1)式に 類似の形)にまとめて近似する。
Μ =Υ" ( 1/ α ) - - - (6a)
このような形に変換した場合、この式の αは、約 2. 5となる。
[0110] また、この aの値が 2. 2〜3. 0の間にあれば、(6a)式における輝度 Yと明度 Mとの 関係は適切となる(人間の視覚感覚に対応している)と考えられている。
[0111] そして、 1つのサブフレームで、最大値の半分の明度 Mを表示するためには、 2つ のサブフレームの期間を、 γ = 2. 2のときは約 1 : 3、 γ = 3. 0のときは約 1: 7とするこ とが好ましいことがわ力つている。なお、このようにフレームを分割する場合には、輝 度の小さいときに表示に使用する方のサブフレーム(高輝度の場合に最大輝度に維 持しておく方のサブフレーム)を短い期間とすることとなる。
[0112] 以下に、前サブフレームと後サブフレームとの期間を 3 : 1とする場合について説明 する。まず、この場合における表示輝度について説明する。
[0113] この場合には、最大輝度の 1Ζ4 (閾輝度; TmaxZ4)までの輝度を 1フレームで出 力する表示する低輝度表示を行う際、制御部 15は、前サブフレームを最小輝度(黒) とし、後サブフレームの表示輝度のみを調整して階調表現を行う(後サブフレームの みを用いて階調表現を行う)。このときには、 1フレームにおける積分輝度は『(最小輝 度 +後サブフレームの輝度) /4』の輝度となる。
[0114] また、閾輝度 (TmaxZ4)より高い輝度を 1フレームで出力する場合 (高輝度の場合
)、制御部 15は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を 調整して階調表現を行う。この場合、 1フレームにおける積分輝度は『(前サブフレー ムの輝度 +最大輝度) Z4』の輝度となる。
[0115] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。なお、この場合にも、信号階調( および後述する出力動作)は、上記した (a)(b)の条件を満たすように設定される。
[0116] まず、制御部 15は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ4)に対応 するフレーム階調をあら力じめ算出しておく。
[0117] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、 Lt= (l/4) " (l/ y ) X Lmax · · · (7)
そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。そして、この Lが Lt以下の場合、制御部 15 は、前段表示信号の輝度階調 (F)を、前段 LUT12を用いて最小 (0)とする。
[0118] 一方、制御部 15は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、 R= (1
/4) " (l/ y ) X L · ' · (8)
となるように、後段 LUT13を用いて設定する。
[0119] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。一方、制御部 15は、前サブフレームの輝度階調 Fを、 (1) 式に基づいて、
F= ( (L - (1/4) X Lmax" γ ) ) ΊΐΖ Ύ ) · · · (9)
とする。
[0120] 次に、このような前段表示信号および後段表示信号の出力動作について説明する 上記したように、フレームを均等分割する構成では、画素には、前段表示信号と後段 表示信号とが、それぞれ均等の時間(1Z2フレーム期間)書き込まれる。これは、倍 クロックで前段表示信号を全て書き込んだ後に、後段表示信号の書き込みを行うた め、各表示信号に関するゲートラインの ON期間が均等となったためである。
[0121] 従って、後段表示信号の書き込みの開始タイミング (後段表示信号に関するゲート
ONタイミング)を変えることにより、分害の害合を変えられる。
[0122] 図 4 (a)は、フレームメモリ 11に入力される画像信号、(b)は、 3 : 1に分割する場合 における、フレームメモリ 11から前段 LUT12に出力される画像信号、そして、(c)は
、同じく後段 LUT13に出力される画像信号を示す説明図である。また、図 5は、同じ く 3 : 1に分割する場合における、前段表示信号と後段表示信号とに関するゲートライ ンの ONタイミングを示す説明図である。
[0123] これらの図に示すように、この場合、制御部 15は、 1フレーム目の前段表示信号を、 通常のクロックで各ゲートラインの画素に書き込んでゆく。そして、 3Z4フレーム期間 後に、後段表示信号の書き込みを開始する。このときからは、前段表示信号と後段表 示信号とを、倍クロックで、交互に書き込んでゆく。
[0124] すなわち、「全ゲートラインの 3Z4」番目のゲートラインの画素に前段表示信号を書 き込んだ後、ソースドライバー 23に 1番目のゲートラインに関する後段表示信号の蓄 積し、このゲートラインを ONする。次に、ソースドライバー 23に「全ゲートラインの 3/ 4」 + 1番目のゲートラインに関する前段表示信号を蓄積し、このゲートラインを ONす る。
[0125] このように 1フレーム目の 3Z4フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力することで、前サブフレームと後サブフレームとの割合 を 3 : 1とすることが可能となる。そして、これら 2つのサブフレームにおける表示輝度の 総和 (積分総和)が、 1フレームにおける積分輝度となる。なお、フレームメモリ 11に 蓄えられたデータは、ゲートタイミングにあわせてソースドライバー 23に出力されるこ とになる。
[0126] また、図 7は、フレームを 3 : 1に分割した場合における、予定明度と実際明度との関 係を示すグラフである。図 7に示すように、この構成では、予定明度と実際明度とのズ レの最も大きくなる点でフレームを分割できている。従って、図 6に示した結果に比べ て、視野角度を 60度とした場合における予定明度と実際明度との差が、非常に小さ くなつている。
[0127] すなわち、本表示装置では、「TmaxZ4」までの低輝度 (低明度)の場合、 1フレー ムにおける積分輝度を変化させない範囲で、前サブフレームを黒表示とし、後サブフ レームのみを用いて表示を行っている。従って、前サブフレームでのズレ(実際明度 と予定明度との差)が最小となるので、図 7の破線に示すように、両サブフレームのト 一タルのズレを約半分に減少することができる。
[0128] 一方、高輝度 (高明度)の場合、 1フレームにおける積分輝度を変化させない範囲 で、後サブフレームを白表示とし、前サブフレームの輝度だけを調整して表示を行つ ている。このため、この場合にも、後サブフレームのズレが最小となるので、図 7の破 線に示すように、両サブフレームのトータルのズレを約半分に減少することができる。
[0129] このように、本表示装置では、通常ホールド表示を行う構成に比して、全体的に明 度のズレを約半分に減らすことが可能となっている。このため、図 2に示したような、中 間調の画像が明るくなつて白く浮いてしまう現象(白浮き現象)を、より効果的に抑制 することが可能である。
[0130] ここで、上記では、表示開始時から 3Z4フレーム期間までの間において、 1フレー ム目の前段表示信号を、通常のクロックで各ゲートラインの画素に書き込むとしてい る。これは、後段表示信号を書き込むべきタイミングに達していないからである。
[0131] し力しながら、このような措置に変えて、ダミーの後段表示信号を用いて、表示開始 時力も倍クロックでの表示を行うようにしてもよい。すなわち、表示開始時から 3Z4フ レーム期間までの間に、前段表示信号と、信号階調 0の後段表示信号 (ダミーの後段 表示信号)とを交互に出力するようにしてもょ 、。
[0132] ここで、以下に、より一般的に、前サブフレームと後サブフレームとの割合を n: 1とす る場合について説明する。この場合、制御部 15は、最大輝度の lZ (n+ l) (閾輝度 ; Tmax/ (n+ 1) )までの輝度を 1フレームで出力する場合 (低輝度の場合)、前サブ フレームを最小輝度(黒)とし、後サブフレームの表示輝度のみを調整して階調表現 を行う(後サブフレームのみを用いて階調表現を行う)。この場合、 1フレームにおける 積分輝度は(最小輝度 +後サブフレームの輝度) Z (n+ 1)の輝度となる。
[0133] また、閾輝度 (TmaxZ (n+ l) )より高い輝度を出力する場合 (高輝度の場合)、制 御部 15は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調整 して階調表現を行う。この場合、 1フレームにおける積分輝度は『(前サブフレームの 輝度 +最大輝度) / (n+ 1)』の輝度となる。
[0134] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。なお、この場合にも、信号階調( および後述する出力動作)は、上記した (a)(b)の条件を満たすように設定される。
[0135] まず、制御部 15は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ (n+ l) ) に対応するフレーム階調をあら力じめ算出しておく。
[0136] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Lt= (l/ (n+ l) ) " (l/ y ) X Lmax · · · (10)
そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。そして、この Lが Lt以下の場合、制御部 15 は、前段表示信号の輝度階調 (F)を、前段 LUT12を用いて最小 (0)とする。一方、 制御部 15は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、
Figure imgf000023_0001
となるように、後段 LUT13を用いて設定する。
[0137] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。一方、制御部 15は、前サブフレームの輝度階調 Fを、 (1) 式に基づいて、
F=((L -(l/(n+l))XLmax ))"(l/y)---(12)
とする。
[0138] また、表示信号の出力動作については、フレームを 3: 1に分けた場合の動作にお いて、 1フレーム目の nZ(n+l)フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力するように設計すればよい。
[0139] また、フレームを均等分割する構成は、以下のような構成であるといえる。すなわち 、 1フレームを「l+n」のサブフレーム期間に分割する。そして、通常クロックの「l+n 」倍のクロックで、 1つのサブフレーム期間に前段表示信号を出力し、後の n個のサブ フレーム期間に後段表示信号を連続的に出力する。
[0140] し力しながら、この構成では、 nが 2以上となると、クロックを非常に速める必要がある ため、装置コストが増大する。従って、 nが 2以上となる場合には、上記したような前段 表示信号と後段表示信号とを交互に出力する構成とすることが好ましい。 この場合 には、後段表示信号の出力タイミングを調整することで、前サブフレームと後サブフレ ームとの割合を n:lとすることが可能となるため、必要となるクロック周波数を、通常の 2倍に維持できる。
[0141] また、本実施の形態では、制御部 15が、前段 LUT12,後段 LUT13を用いて、画 像信号を表示信号に変換するとしている。ここで、本表示装置に備える前段 LUT12 ,後段 LUT13を、複数としてもよい。
[0142] 図 8は、図 1に示した構成において、前段 LUT12に変えて 3つの前段 LUT12aな いし 12c,後段 LUT13に代えて 3つの後段 LUT13aないし 13cを備え、さらに、温度 センサー 16を備えた構成である。
[0143] すなわち、液晶パネル 21は、環境温度 (表示部 14のおかれている環境の温度 (気 温))により、その応答特性や階調輝度特性の変化するものである。このため、画像信 号に応じた最適な表示信号も、環境温度に応じて変化する。
[0144] そして、上記の前段 LUT12aないし 12cは、互いに異なる温度範囲での使用に適 した前段 LUTである。また、後段 LUT13aないし 13cも、互いに異なる温度範囲での 使用に適した後段 LUTである。
[0145] また、温度センサー 16は、本表示装置のおかれて 、る環境温度を計測し、計測結 果を制御部 15に伝達するものである。
[0146] そして、この構成では、制御部 15は、温度センサー 16から伝達された環境温度の 情報に基づいて、使用する LUTを切り替えるように設計されている。従って、この構 成では、画像信号に対してより適切な表示信号を液晶パネル 21に伝達できる。従つ て、想定される全ての温度範囲(例えば 0°C〜65°Cの範囲)で、より忠実な輝度での 画像表示を行うことが可能となる。
[0147] また、液晶パネル 21は、交流により駆動されることが好ましい。これは、交流駆動と することにより、フレーム毎に、画素の電荷極性 (液晶を挟む画素電極間の電圧(電 極間電圧)の向き)を変えられるからである。
[0148] 直流駆動とすると、電極間に偏った電圧が力かるため、電極に電荷がたまる。そし て、この状態が続くと、電圧を印加していないときでも、電極間に電位差が発生した 状態 ( 、わゆる焼き付きと 、う状態)になってしまう。
[0149] ここで、本表示装置のようにサブフレーム表示を行う場合、サブフレーム間で、画素 電極間に印加される電圧値 (絶対値)が異なることが多!、。
[0150] 従って、電極間電圧の極性をサブフレーム周期で反転させると、前サブフレームと 後サブフレームとの電圧値の違いにより、印加される電極間電圧に偏りが生じる。こ のため、液晶パネル 21を長時間駆動させると、電極に電荷がたまり、上記した焼き付 きゃフリツ力などの発生する可能性がある。
[0151] そこで、本表示装置では、電極間電圧の極性をフレーム周期(1フレームの時間幅 の周期)で反転させることが好ましい。なお、電極間電圧の極性をフレーム周期で反 転させる方法は 2つある。 1つの方法は、 1フレームの間、同極性の電圧を印加する 方法である。また、もう 1つの方法は、 1フレーム内の 2つのサブフレーム間で電極間 電圧を逆極性とし、さらに、後サブフレームと、 1つ後のフレームの前サブフレームと を同極性で駆動する方法である。
[0152] 図 9 (a)に、前者の方法をとつた場合における、電圧極性 (電極間電圧の極性)とフ レーム周期との関係を示す。また、図 9 (b)に、後者の方法をとつた場合における、電 圧極性とフレーム周期との関係を示す。このようにフレーム周期で電極間電圧を交流 化することにより、サブフレーム間で電極間電圧が大きく異なっていても、焼き付きや フリツ力を防止できる。
[0153] また、上記のように、本表示装置では、サブフレーム表示によって液晶パネル 21を 駆動しており、これにより、白浮きを抑制している。しかしながら、液晶の応答速度 (液 晶にカゝかる電圧 (電極間電圧)が印加電圧と等しくなるまでの速度)が遅い場合、この ようなサブフレーム表示による効果が薄れてしまうことがある。
[0154] すなわち、通常ホールド表示を行う場合、 TFT液晶パネルでは、ある輝度階調に 対して 1つの液晶状態が対応する。従って、液晶の応答特性は、表示信号の輝度階 調に依存しない。
[0155] 一方、本表示装置のようにサブフレーム表示を行う場合、前サブフレームが最小輝 度(白)で後サブフレームが最大輝度となる、中間階調の表示信号を表示する場合、 1フレームで液晶に印加される電圧は、図 10 (a)に示すように変動する。また、電極 間電圧は、液晶の応答速度 (応答特性)に従って、図 10 (b)に実線 Xで示すように変 化する。
[0156] ここで、液晶の応答速度が遅い場合、このような中間調表示を行うと、電極間電圧( 実線 X)は、図 10 (c)に示すように変化する。従って、この場合には、前サブフレーム の表示輝度が最小とならないとともに、後サブフレームの表示輝度が最大とならない
[0157] このため、予定輝度と実際輝度との関係は、図 11に示すようになる。すなわち、サ ブフレーム表示を行っても、視野角度の大きい場合における予定輝度と実際輝度と の差 (ズレ)の少なくなる輝度 (最小輝度 ·最大輝度)での表示を行えなくなる。このた め、白浮き現象の抑制効果が減少する。
[0158] 従って、本表示装置のようなサブフレーム表示を良好に行うためには、液晶パネル 21における液晶の応答速度が、以下の (c)(d)を満足するように設計されていることが 好ましい。
[0159] (c)最小輝度 (黒;最小明度に相当)を表示している液晶に最大輝度(白;最大明度 に相当)となるための電圧信号 (表示信号に基づいてソースドライバー 23によって生 成されるもの)を与えたときに、短い方のサブフレーム期間内で、液晶の電圧(電極間 電圧)が、電圧信号の電圧における 90%以上の値に到達する(正面の実際明度が 最大明度の 90%に到達する。 )
(d)最大輝度 (白)を表示して 、る液晶に最小輝度 (黒)となるための電圧信号を与え たときに、短い方のサブフレーム期間内で、液晶の電圧 (電極間電圧)が、電圧信号 の電圧における 5%以下の値に到達する(正面の実際明度が最小明度の 5%に到達 する)。
[0160] また、制御部 15は、液晶の応答速度をモニターできるように設計されていることが 好ましい。そして、環境温度の変化等によって液晶の応答速度が遅くなり、上記の (c) (d)を満足できなくなつたと判断した場合、制御部 15は、サブフレーム表示を中断して 、液晶パネル 21を、通常ホールド表示によって駆動するように設定されていてもよい
[0161] これにより、サブフレーム表示によって白浮き現象がかえって顕著となってしまった 場合に、液晶パネル 21の表示方式を通常ホールド表示に切り替えられる。
[0162] また、本実施の形態では、本表示装置が液晶モニターとして機能するとしている。し 力しながら、本表示装置を、液晶テレビジョン受像機 (液晶テレビ)として機能させるこ とも可能である。このような液晶テレビは、本表示装置に、チューナ部を備えることで 実現できる。このチューナ部は、テレビ放送信号のチャネルを選択し、選択されたチ ャネルのテレビ画像信号を、フレームメモリ 11を介して制御部 15に伝達するためのも のである。この構成では、制御部 15が、このテレビ画像信号に基づいて表示信号を 生成することとなる。
[0163] なお、本実施の形態では、低輝度の場合に前サブフレームを黒とし、後サブフレー ムのみを用いて階調表現を行うとしている。し力しながら、サブフレームの前後関係を 交換しても(低輝度の場合に後サブフレームを黒として、前サブフレームのみを用い て階調表現を行うようにしても)、同様の表示を得られる。
[0164] また、本実施の形態では、(1)式を用いて表示信号 (前段表示信号および後段表 示信号)の輝度階調 (信号階調)を設定するとしている。しかしながら、実際のパネル では、黒表示(階調 0)の場合でも輝度を有し、さらに液晶の応答速度は有限である ため、従って、信号階調の設定に関しては、これらの要素を加味することが好ましい。 すなわち、液晶パネル 21によって実際の画像を表示させて、信号階調と表示輝度と の関係を実測し、実測結果に基づいて、(1)式に合うよう LUT (出力テーブル)を決 めることが好ましい。
[0165] また、本実施の形態では、式(6a)に示した aを、 2. 2〜3の範囲であるとして!/、る。
この範囲は、厳密に導き出されたものではないが、人間の視覚感覚的にほぼ妥当で あるとされて 、る範囲である。
[0166] また、本表示装置のソースドライバー 23として通常ホールド表示用のソースドライバ 一を用いると、入力される信号階調 (表示信号の輝度階調)に応じて、 y = 2. 2とし た(1)式を用いて得られる表示輝度を得られるように、各画素 (液晶)に対して電圧信 号が出力される。
[0167] そして、このようなソースドライバー 23は、サブフレーム表示を行う場合でも、各サブ フレームにおいて、入力される信号階調に応じて、通常ホールド表示で使用する電 圧信号をそのまま出力することとなる。
[0168] しかしながら、このような電圧信号の出力方法では、サブフレーム表示における 1フ レーム内での輝度の総和を、通常ホールド表示での値と同一にできない (信号階調 を表現しきれな ヽ)ことがある。
[0169] 従って、サブフレーム表示では、ソースドライバー 23は、分割した輝度に換算した 電圧信号を出力するように設計されていることが好ましい。すなわち、ソースドライバ 一 23が、信号階調に応じて、液晶に印加する電圧 (電極間電圧)を微調整するように 設定されていることが好ましい。このため、ソースドライバー 23をサブフレーム表示用 に設計し、上記のような微調整を行えるようにしておくことが好ま 、。 [0170] また、本実施の形態では、液晶パネル 21が VAパネルであるとして!/、る。しかしなが ら、これに限らず、 VAモード以外の他モードの液晶パネルを用いても、本表示装置 のサブフレーム表示によって、白浮き現象を抑制することが可能である。
[0171] すなわち、本表示装置のサブフレーム表示は、視野角度を大きくしたときに予定輝 度 (予定明度)と実際輝度 (実際明度)とがずれてしまう液晶パネル (階調ガンマの視 野角特性変化するモードの液晶パネル)に対しては、白浮き現象を抑制することが可 能である。
[0172] また、特に、本表示装置のサブフレーム表示は、視野角度を増加させると表示輝度 の強くなるような特性を有している液晶パネルに有効である。
[0173] また、本表示装置における液晶パネル 21は、 NB (Normally Black;ノーマリーブラッ ク)であっても、また、 NW (Normally White;ノーマリーホワイト)であってもよい。
[0174] さらに、本表示装置では、液晶パネル 21に変えて、他の表示パネル (例えば有機 E
Lパネルやプラズマディスプレイパネル)を用いてもょ 、。
[0175] また、本実施の形態では、フレームを 1:3〜1: 7に分割することが好ましいとしてい る。しかしながら、これに限らず、本表示装置を、フレームを l:nあるいは n:l(nは 1 以上の自然数)の範囲で分割するように設計してもよ!/、。
[0176] また、本実施の形態では、上記した(10)式を用いて、表示信号 (前段表示信号お よび後段表示信号)の信号階調設定を行うとしている。しかしながら、この設定は、液 晶の応答速度を Omsとし、かつ、 TO (最小輝度) =0とした設定方法である。このため
、実使用の際には、さらに工夫を重ねることが好ましい。
[0177] すなわち、片側のサブフレーム (後サブフレーム)で出力できる最大の輝度(閾輝度
)は、液晶応答が Omsで T0 = 0の場合には、 TmaxZ(n+l)となる。そして、閾輝度 階調 Ltは、この輝度のフレーム階調である。
Lt= (( (Tmax/(n+ 1)) /Tmax)" (1/ γ ) ) XLmax(y =2.2)
液晶の応答速度が 0でない場合、例えば、黒→白がサブフレーム内で Y%の応答、 白→黒がサブフレーム内で Ζ%の応答、 ΤΟ=ΤΟとすると、閾輝度 (Ltの輝度) Ttは、 Tt=((Tmax-TO) XY/100+ (Tmax— TO) XZ/100)/2
となる。従って、 Lt=(((Tt— TO)Z(Tmax— ΤΟ))'(1ΖΎ)) XLmax(y =2.2) となる。
[0178] また、実際には、 Ltはもう少し複雑になることもあり、閾輝度 Ttを単純な式では表せ ないこともある。従って、 Ltを Lmaxで表現することが困難なこともある。このような場 合に Ltを求めるには、液晶パネルの輝度を測定した結果を用いることが好ましい。す なわち、片側のサブフレームが最大の輝度、かつ、他方のサブフレームの輝度が最 小輝度の場合に液晶パネルから照射される輝度を測定して、その輝度を Ttとする。 そして、下式により、こぼれだしの階調 Ltを決める。
Lt= ( ( (Tt TO) / (Tmax-TO) ) " (ΐ/ γ ) ) X Lmax
( y = 2. 2)
このように、 (10)式を用いて求めた Ltについては、理想的な値であり、目安として 使用することが好まし 、場合もあると 、える。
[0179] ここで、本表示装置において、電極間電圧の極性をフレーム周期で反転させること が好ましい点について、より詳細に説明する。図 12 (a)は、表示輝度力Lmaxの 3Z 4および 1Z4の場合に、前サブフレームおよび後サブフレームによって表示される輝 度を示すグラフである。この図に示すように、本表示装置のようにサブフレーム表示を 行う場合、サブフレーム間で、液晶に印加される電圧値 (画素電極間に印加される電 圧値;絶対値)は異なる。
[0180] 従って、液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で反転させ ると、図 12 (b)に示すように、前サブフレームと後サブフレームとの電圧値の違いによ り、印加される液晶電圧に偏りが生じる(トータルの印加電圧が (ことならない)。この ため、液晶電圧の直流成分をキャンセルできなくなり、液晶パネル 21を長時間駆動 させると、電極に電荷がたまり、焼き付きゃフリツ力などの発生する可能性がある。
[0181] そこで、本表示装置では、液晶電圧の極性をフレーム周期で反転させることが好ま しい。なお、液晶電圧の極性をフレーム周期で反転させる方法は 2つある。 1つの方 法は、 1フレームの間、同極性の電圧を印加する方法である。また、もう 1つの方法は 、 1フレーム内の 2つのサブフレーム間で液晶電圧を逆極性とし、さらに、後サブフレ ームと、 1つ後のフレームの前サブフレームとを同極性とする方法である。
[0182] 図 13 (a)は、前者の方法をとつた場合における、電圧極性 (液晶電圧の極性)とフ レーム周期および液晶電圧との関係を示すグラフである。一方、図 13 (b)は、後者の 方法をとつた場合の、同様のグラフである。
[0183] これらのグラフに示すように、液晶電圧を 1フレーム周期で反転させる場合、隣り合 う 2つのフレーム間で、前サブフレームどうしの平均電圧、および、後サブフレームの 平均電圧を、 0Vとできる。従って、 2フレームでの平均電圧を 0Vとできるので、印加 電圧の直流成分をキャンセルすることが可能となる。このようにフレーム周期で液晶 電圧を交流化することにより、サブフレーム間で液晶電圧が大きく異なっていても、焼 き付きゃフリツ力を防止できる。
[0184] また、図 14 (a)ないし図 14 (d)は、液晶パネル 21における 4つの画素と、各画素の 液晶電圧の極性を示す説明図である。上記したように、 1つの画素に印加される電圧 については、フレーム周期で極性を反転させることが好ましい。この場合、各画素の 液晶電圧の極性は、フレーム周期ごとに、図 14 (a)から図 14 (d)の順で示すように変 ィ匕することとなる。
[0185] ここで、液晶パネル 21の全画素に印加される液晶電圧の和については、 OVとする ことが好ましい。このような制御については、例えば、図 14 (a)ないし図 14 (d)に示す ように、隣接する画素間で電圧極性を変えることで実現できる。
[0186] また、本実施の形態では、前サブフレーム期間と後サブフレーム期間との比(フレ ームの分割比)を、 3 : 1〜7 : 1に設定することが好ましいとしている。し力しながら、こ れに限らず、フレームの分割比を、 1 : 1あるいは 2 : 1に設定してもよい。
[0187] 例えば、フレームの分割比を 1: 1とする場合、図 3に示したように、通常ホールド表 示に比して、実際輝度を予定輝度に近づけることが可能となる。また、図 6に示したよ うに、明度に関しても、通常ホールド表示に比して、実際明度を予定明度に近くでき る。従って、この場合でも、通常ホールド表示に比して、視野角特性を改善できること は明らかである。
[0188] また、液晶パネル 21では、液晶電圧 (液晶に印加される電圧;電極間電圧)を表示 信号に応じた値とするまでに、液晶の応答速度に応じた時間がかかる。従って、いず れかのサブフレーム期間が短すぎると、この期間内に、液晶の電圧を表示信号に応 じた値にまで上げられな 、可能性がある。 [0189] 従って、前サブフレームと後サブフレーム期間との比を、 1 : 1あるいは 2 : 1に設定す ることで、一方のサブフレーム期間を短くしすぎることを防止できる。従って、応答速 度の遅い液晶を用いても、適切な表示を行える。
[0190] また、フレームの分割比(前サブフレームと後サブフレームとの比)については、 n: 1
(nは 7以上の自然)に設定してもよい。また、この分割比を、 n: l (nは 1以上の実数( より好ましくは 1より大きい実数))としてもよい。例えば、この分割比を 1. 5 : 1に設定 することで、 1 : 1とする場合に比して視野角特性を向上させられる。また、 2 : 1とする 場合に比べて、応答速度の遅い液晶材料を使用することが容易となる。
[0191] また、フレームの分割比を n: 1 (nは 1以上の実数)とする場合でも、「最大輝度の (n
+ 1)分の 1 (TmaxZ (n+ l) ) jまでの低輝度 (低明度)の画像を表示する際には、 前サブフレームを黒表示とし、後サブフレームのみを用いて表示を行うことが好まし い。また、「TmaxZ (n+ l)」以上の高輝度(高明度)の画像を表示するときには、後 サブフレームを白表示とし、前サブフレームの輝度だけを調整して表示を行うことが 好ましい。これにより、常に 1つのサブフレームを、実際輝度と予定輝度との差のない 状態としておける。従って、本表示装置の視野角特性を良好にできる。
[0192] ここで、フレームの分割比を n: 1にする場合、前フレームを nとしても後フレーム nと しても実質的に同じ効果が狙える。すなわち n: lと l :nは視野角改善効果に関しては 同一である。また、 nは 1以上の実数とした場合でも、上記した(10)〜(12)式を用い た輝度階調の制御にっ 、ては有効である。
[0193] また、本実施の形態では、本表示装置のサブフレーム表示を、フレームを 2つのサ ブフレームに分割して行う表示であるとしている。しかしながら、これに限らず、本表 示装置を、フレームを 3つ以上のサブフレームに分割したサブフレーム表示を行うよう に設計してもよい。
[0194] フレームを m個に分割する場合のサブフレーム表示では、輝度の非常に低い場合 には、 m— 1個のサブフレームを黒表示とする一方、 1つのサブフレームの輝度 (輝度 階調)だけを調整して表示を行う。そして、このサブフレームだけでは表現できないく らい輝度の高くなつた場合に、このサブフレームを白表示とする。そして、 m— 2個の サブフレームを黒表示とする一方、残った 1つのサブフレームの輝度を調整して表示 を行う。
[0195] すなわち、フレームを m個に分割する場合でも、 2個に分割するときと同様に、輝度 を調整する(変化させる)サブフレームを常に 1つとし、他のサブフレームを白表示あ るいは黒表示としておくことが好ましい。これにより、 m—l個のサブフレームを、実際 輝度と予定輝度とのズレのない状態とできる。従って、本表示装置の視野角特性を 良好にできる。
[0196] 図 15は、本表示装置によって、均等な 3つのサブフレームにフレームを分割して表 示を行った結果 (破線および実線)と、通常ホールド表示を行った結果 (一点鎖線お よび実線;図 2に示したものと同様)と合わせて示すグラフである。このグラフに示すよ うに、サブフレームを 3つに増やした場合、実際輝度を予定輝度に非常に近づけるこ とが可能となる。従って、本表示装置の視野角特性をより良好な状態とできることがわ かる。
[0197] また、フレームを m個に分割する場合でも、上記した極性反転駆動を行うことが好ま しい。図 16は、フレームを 3つに分割し、フレームごとに電圧極性を反転した場合に おける、液晶電圧の遷移を示すグラフである。この図に示すように、この場合でも、 2 フレームでの平均の液晶電圧を OVとできる。
[0198] また、図 17は、同様にフレームを 3つに分割し、サブフレームごとに電圧極性を反 転した場合における、液晶電圧の遷移を示すグラフである。このように、フレームを奇 数個に分割する場合には、サブフレームごとに電圧極性を反転させても、 2フレーム での平均の液晶電圧を OVとできる。従って、フレームを m個(m; 2以上の整数)に分 割した場合には、制御部 15は、隣接するフレーム間の M番目(M ; l〜m)のサブフレ ームどうし力 異なる極性の液晶電圧を印加されて 、る状態とすることが好ま 、と!/ヽ える。これにより、 2フレームでの平均の液晶電圧を OVとできる。
[0199] また、フレームを m個(m; 2以上の整数)に分割した場合には、 2フレーム(あるいは より多くのフレーム)でのトータルの液晶電圧を OVとするように、液晶電圧の極性を反 転させることが好ま ヽと 、える。
[0200] また、上記では、フレームを m個に分割する場合、輝度を調整するサブフレームを 常に 1つとし、他のサブフレームを白表示 (最大輝度)あるいは黒表示 (最小輝度)と することが好ま U、として 、る。
[0201] し力しながら、これに限らず、輝度を調整するサブフレームを 2つ以上としてもょ 、。
この場合でも少なくとも 1つのサブフレームを白表示 (最大輝度)あるいは黒表示 (最 小輝度)とすることで、視野角特性を向上させられる。
[0202] また、輝度を調整しな!、サブフレームの輝度を、最大輝度とする代わりに「最大また は第 2所定値より大きい値」としてもよい。また、最小輝度とする代わりに、「最小また は第 1所定値より小さい値」としてもよい。この場合でも、輝度を調整しないサブフレー ムにおける実際明度と予定明度とのズレ(明度ズレ)を十分に小さくできる。従って、 本表示装置の視野角特性を向上させられる。
[0203] ここで、図 18は、輝度を調整しないサブフレームにおける、表示部 14に出力される 信号階調 (%;表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)と の関係 (視野角階調特性 (実測) )を示すグラフである。
[0204] なお、実際輝度階調とは、「各信号階調に応じて表示部 14の液晶パネル 21から出 力された輝度 (実際輝度)を、上記した(1)式を用いて輝度階調に変換したもの」であ る。
[0205] このグラフに示すように、上記した 2つの階調は、液晶パネル 21の正面 (視野角度 0 度)においては等しくなる。一方、視野角度を 60度としたときには、白浮きのため、実 際輝度階調が中間調で信号階調より明るくなる。また、この白浮きは、視野角度によ らず、輝度階調が 20%〜30%の間となるときに最大値をとる。
[0206] ここで、このような白浮きについては、上記のグラフに破線で示した「最大値の 10% 」を越えて 、な 、場合には、本表示装置の十分に表示品位を保てる(上記した明度 ズレを十分に小さくできる)ことがわ力つている。また、白浮きが「最大値の 10%」を越 えないような信号階調の範囲は、信号階調の最大値の 80〜100%、および、 0〜0. 02%である。また、この範囲は、視野角度が変化しても不変である。
[0207] 従って、上記した第 2所定値としては、最大輝度の 80%に設定することが好ましぐ また、第 1所定値としては、最大輝度の 0. 02%に設定することが好ましいといえる。
[0208] また、輝度を調整しな!、サブフレームを設けなくてもよ 、。すなわち、 m個のサブフ レームで表示を行う場合、各サブフレームの表示状態に差をつけなくてもよい。この ような構成であっても、上記したような、フレーム周期で液晶電圧の極性を反転する 極性反転駆動を行うことが好ましい。なお、 m個のサブフレームで表示を行う場合、 各サブフレームの表示状態に少しでも差をつけるだけで、液晶パネル 21の視野角特 性を向上させることは可能である。
[0209] また、本実施形態では、サブフレーム表示によって、液晶の視野角特性を向上でき る(白浮きを改善できる)としている。しかしながら、これに限らず、上記のようなサブフ レーム表示を行うことによって、動画の表示品質を向上させることが可能となる。
[0210] すなわち、通常ホールド表示で表示されている物体の動きを視線追従すると、直前 のフレームの色や明るさも同時に見えてしまう。このため、物体のエッジがボケて認識 される。一方、サブフレーム表示 (特に低輝度)で動画を表示する場合には、各フレ ームのいずれかのサブフレームの輝度が低くなる。このため、視認しているフレーム の画像と、直前のフレームの画像 (色'明るさ)とが視覚上で混在することを抑制でき る。従って、上記のようなエッジボケを回避し、動画の表示品質を向上させられる。
[0211] ここで、上記したように、液晶パネルにおける信号階調と表示輝度とは、以下の(1) 式によって近似的に表現される。
( (T-TO) / (Tmax-TO) ) = (L/Lmax) " γ - - - (1)
なお、 Lは 1フレームで画像を表示する場合 (通常ホールド表示で画像を表示する 場合)の信号階調 (フレーム階調)、 Lmaxは最大の輝度階調 (階調信号が 8ビット時 は、 255)、 Tは表示輝度、 Tmaxは最大輝度(L=Lmax= 255のときの輝度;白)、 TOは最小輝度 (L = 0のときの輝度;黒)、 γは補正値 (通常 2. 2)である。また、 L/ Lmaxは、一般に正規ィ匕表示階調と称される値であり、また、(LZLmax) ' γは、同 じく正規化輝度と呼ばれるものである。
[0212] 図 19は、室温 (25°C)における正規化輝度と信号階調とのなす階調一輝度曲線(
7曲線)を示すグラフである。本表示装置の階調一輝度曲線は、この図に示すような 、滑らかな状態(γ曲線にのった状態)になることが好ましい。
また、このような場合、液晶パネルの表示画面では、図 20に示すように、グレースケ ールを、信号階調の変化に応じた自然なグラデーションで表示できる。
[0213] ここで、上記のように、本表示装置では、白浮きを防止するために、図 23 (a)ないし (f)に示すように、低輝度 (最大輝度の半分以下)の画像を表示する場合、前サブフ レームを黒表示として後サブフレームのみを用いて表示を行って 、る。
[0214] 一方、高輝度 (最大輝度の半分より高輝度)の画像を表示する場合、後サブフレー ムを白表示として前サブフレームの輝度だけを調整して表示を行っている。
[0215] また、液晶パネル 21における階調と輝度との関係は、その応答特性 ( γ値)に応じ たものであり、各サブフレームで同様のものである。また、図 19に示すように、階調の 増加に対する輝度の上昇の度合い (上昇率)は、信号階調の低い場合には小さく、 信号階調の高い場合には大きくなる。
[0216] 従って、単純にサブフレーム表示を行うと、低輝度と高輝度との切り替わる階調 (切 替階調)の前後で、輝度を出力するサブフレームが完全に入れ代わる。このため、切 替階調の前後で輝度の上昇率が大きく異なることとなり、図 21に示すように、本表示 装置の階調一輝度曲線に変曲点 (特異点)が生じてしまう。従って、本表示装置では 、切替階調の前後で階調-輝度曲線を滑らかにつなげられるように、画像信号を表 示信号 (信号階調)に変換するための前段 LUT12,後段 LUT13の値を、適切に設 定することが好ましい。
[0217] なお、これらの LUT12. 13の値は、通常、 γ = 2. 2のとき(ほぼ 25°Cのとき)に、階 調—輝度曲線を、図 19に示すような滑らかな関係にできるように設定される。
[0218] ここで、上記の γの値は、液晶パネル 21の応答特性に応じたものである。従って、 温度変化に応じて液晶パネル 21の応答特性が変化すると、この γの値も 2. 2からず れることとなる。そして、室温に応じた 1組の LUT12' 13だけを用いる場合、本表示 装置のおかれている環境温度が変化して γが 2. 2からずれると、前サブフレームで の表示を開始する輝度で (切替階調で)、階調—輝度曲線に図 21に示すような変曲 点が生じてしまう。また、この場合、図 22に示すように、グレースケールも、上記の変 曲点に応じた異質な部位が生じるため、不自然なグラデーションとなる。
[0219] なお、このような変曲点については、 LUTを複数組備え、温度に応じて使い分ける ことで容易に防止できる。しかしながら、この構成では、複数の LUTを記憶させる必 要があるため、コスト高となる。
[0220] そこで、本表示装置では、このような変曲点の発生を回避するために、前サブフレ 一ムと後サブフレームとの輝度差を、所定範囲内に抑えるように制御することが好ま しい。図 24 (a)ないし (f)は、このような制御を行う場合における、前サブフレームと後 サブフレームとの輝度を示す説明図である。これらの図に示すように、この制御では、 両サブフレームの輝度差が所定範囲 Dを超えな 、ようになって 、る。
[0221] なお、この所定範囲 Dについては、本表示装置では、「切替階調の 98%以下で、 5 0%以上の階調に応じた輝度範囲」に設定される。例えば、切替階調が 170であれ ば、所定範囲 Dは、 85〜167の信号階調に応じた輝度範囲となる。
[0222] この構成では、 1フレームで表示する輝度 (フレーム輝度)力 所定範囲 D内の任意 の輝度(閾値) D1以下である場合(B音輝度の場合)、前サブフレームを黒表示とする 一方、後サブフレームのみを用いて表示を行う。
[0223] 一方、フレーム輝度が D1より高ぐ「最大輝度 Dl」以下となるとき(中間輝度の場 合)、前サブフレームと後サブフレームとの双方の輝度を調整する。また、このとき、後 サブフレームの輝度が最大(白表示)となるまでは、両サブフレームの輝度差を D内 に保つように制御する。
[0224] すなわち、 Dl <フレーム輝度≤Dl + dである場合、後サブフレームで D1の輝度を 、前サブフレームで残りの輝度を表示する。また、 Dl + dくフレーム輝度≤Dl + 2d である場合、後サブフレームで D + dの輝度を、前サブフレームで残りの輝度を表示 する。ここで、 dは、 Dl + dを D内にとするような、任意のステップ値である。この制御 では、両サブフレームの輝度差は、 D1あるいは Dl + dとなる。
[0225] また、フレーム輝度が「最大輝度一(Dl + d)」以上となる場合(明輝度の場合)、後 サブフレームの輝度が最大(白表示)となる。従って、フレーム輝度がこれ以上の値と なる場合には、後サブフレームを白表示とし、前サブフレームの輝度だけを調整して 表示を行う。
[0226] このような制御を行うことによって、中間輝度では、信号階調の増加に応じて、両サ ブフレームの輝度が交互に上昇することなる。すなわち、後サブフレームによる上昇 率の高 、輝度 (上昇率;階調の増加に対する輝度の上昇の度合!/、)と、前サブフレー ムによる上昇率の低い輝度とを混在させられる(2種類の輝度を、信号階調の増加に 応じて、ステップ値 dごとに交互に増加できる)。 [0227] このため、本表示装置の階調—輝度曲線を、図 25に示すような状態にできる。この 曲線は、図 19に示した γ曲線からは外れている。しかしながら、中間輝度 (切替階調 の前後)で、上昇率の異なる輝度を混在させているため、図 25に示すように、曲線の 尖りを抑えられる。このため、変曲点 (特異点)の発生を防止することが可能となり、図 26に示すように、自然なグレースケール表示を得られる。
[0228] なお、上記したステップ値 dについては、これを小さく設定することによって、狭い間 隔で 2種類の輝度を細力べ混ぜられるため、階調一輝度曲線における尖り度合いをよ り良好に抑制できる。従って、変曲点の発生をより確実に抑えることが可能となる。こ のため、ステップ値 dについては、なるべく小さい値 (例えば、 1階調〜 3階調分の輝 度)に設定することが好ましい。
[0229] また、上記では、信号階調の増加に応じて、両サブフレームの輝度をステップ値ご とに交互に増カロさせるとしている。しかしながら、このようなステップ値を用いることなく (交互に増加させることなく)、両サブフレームの輝度差を D内とするように制御するだ けでもよい。この構成でも、中間輝度では、両サブフレームの輝度を、フレーム輝度 の上昇に応じて増加させられる(両サブフレームの輝度を混在させられる)。従って、 この場合でも、変曲点の発生を抑えることは可能である。
[0230] また、上記では、所定範囲 Dを、「切替階調の 98%以下で、 50%以上の階調に応 じた輝度範囲」としている。ここで、 Dの下限値については、これを小さくし過ぎると、 サブフレーム表示による白浮き改善効果を減少させてしまう。また、 Dの上限値につ いては、切替階調に応じた輝度に近づけると、変曲点の抑制効果を減じてしまう。従 つて、 Dの上限値'下限値については、これらの点を考慮して決定することが好ましい といえる。
[0231] しかし、より単純に、両サブフレームの輝度差を、切替階調に応じた輝度 (フレーム 輝度の最大値の半分の値)より小さくするだけでもよい。この構成でも、変曲点の発生 を抑制することは可能である。また、上記では、切替階調の例として階調値 170を挙 げたが、この値は、液晶パネル 21の液晶材料の特性 (応答速度など)によって変わる 値である。
[0232] また、上記では、低輝度の場合、前サブフレームを黒表示として後サブフレームの 輝度を調整して表示を行うとし、高輝度の場合に後サブフレームを白表示として前サ ブフレームの輝度を調整して表示を行うとして 、る。
[0233] し力しながら、これに限らず、前サブフレームとあとサブフレームとの役割を代えても よい。すなわち、低輝度の場合、後サブフレームを黒表示として前サブフレームの輝 度を調整して表示を行うとし、高輝度の場合に前サブフレームを白表示として後サブ フレームの輝度を調整して表示を行うように設定してもよ 、。
[0234] すなわち、低輝度(高輝度)の場合に黒表示(白表示)とするサブフレームについて は、前サブフレームでも後サブフレームでも、どちらでもよい。なお、この点について は、変曲点を回避するために両サブフレームの輝度差を D内とする場合についても 同様である。
[0235] また、上記では、本表示装置における全ての処理を、制御部 15の制御により行うと している。し力しながら、これに限らず、これらの処理を行うためのプログラムを記録媒 体に記録し、このプログラムを読み出すことのできる情報処理装置を、制御部 15に代 えて用いるようにしてもよい。
[0236] この構成では、情報処理装置の演算装置 (CPUや MPU)が、記録媒体に記録さ れているプログラムを読み出して処理を実行する。従って、このプログラム自体が処 理を実現するといえる。
[0237] ここで、上記の情報処理装置としては、一般的なコンピューター(ワークステーション やパソコン)の他に、コンピューターに装着される、機能拡張ボードや機能拡張ュ-ッ トを用いることができる。
[0238] また、上記のプログラムとは、処理を実現するソフトウェアのプログラムコード (実行 形式プログラム,中間コードプログラム,ソースプログラム等)のことである。このプログ ラムは、単体で使用されるものでも、他のプログラム (OS等)と組み合わせて用いられ るものでもよい。また、このプログラムは、記録媒体力 読み出された後、装置内のメ モリ (RAM等)にいつたん記憶され、その後再び読み出されて実行されるようなもの でもよい。
[0239] また、プログラムを記録させる記録媒体は、情報処理装置と容易に分離できるもの でもよいし、装置に固定 (装着)されるものでもよい。さらに、外部記憶機器として装置 に接続するものでもよ ヽ。
[0240] このような記録媒体としては、ビデオテープやカセットテープ等の磁気テープ、フロ ッピー(登録商標)ディスクやハードディスク等の磁気ディスク、 CD-ROM, MO, M D, DVD, CD— R等の光ディスク(光磁気ディスク)、 ICカード,光カード等のメモリ力 ード、マスク ROM, EPROM, EEPROM,フラッシュ ROM等の半導体メモリなどを 適用できる。
[0241] また、ネットワーク (イントラネット'インターネット等)を介して情報処理装置と接続さ れている記録媒体を用いてもよい。この場合、情報処理装置は、ネットワークを介する ダウンロードによりプログラムを取得する。すなわち、上記のプログラムを、ネットワーク
(有線回線あるいは無線回線に接続されたもの)等の伝送媒体 (流動的にプログラム を保持する媒体)を介して取得するようにしてもよい。なお、ダウンロードを行うための プログラムは、装置内(あるいは送信側装置'受信側装置内)にあらかじめ記憶されて 、ることが好まし!/、。
[0242] また、本発明について、以下のように述べることもできる。すなわち、 TFT液晶表示 デバイスにおいて、パネルのある画素の階調輝度表示において、その階調輝度表示 方法に関して、 1フレームを 2つのサブフレームに分割し表示を行うことにより動画表 示性能の向上もしくは、視野角特性の向上などを行う駆動方法で、半分の輝度表示 までは、 2つのサブフレームの第 1のサブフレームを最小輝度にし、もう一方の第 2の サブフレームにより階調を変化させ階調輝度表示を行い、表示輝度が最大輝度の半 分以上の場合には、第 1のサブフレームの輝度を変化させ階調輝度表示をさせるよう な駆動を行う表示駆動方法 (図 23参照)は、動画性能の向上や、視野角特性の向上 が見込まれる。
[0243] し力しながら、このような表示方法を液晶パネルで行うと次のような不具合を生じる。
液晶パネルは、温度により応答特性が変化するため、上記駆動方法を行う場合に、 その温度によって、階調表示輝度が変化してしまう(図 21参照)。したがって、室温で 表示階調輝度を γが 2.2となる設定 (図 19参照)としていても、温度が低くなつた場合 や高くなつた場合には、 γが 2.2から変化してしまう(図 21参照)。また、上記駆動方 法を行うと 2つのサブフレームに分割し、片側の輝度表示階調から、両サブフレーム の輝度表示になった場合にその階調輝度特性の温度特性が変化するため、その階 調出力で階調変化が変わり、変曲点となる(図 22参照)。 yが 2.2から変化することに より画像の印象が変わることは、もちろんであるが、階調変化が急激に変化すること は、さらに問題である。
[0244] これを解決するために、前サブフレーム表示と後サブフレーム表示の信号を各温度 で変えて出力する方法があるが、その場合には、温度センサーと温度ごとの出力テ 一ブルをもつ必要がありコストアップにつながる。従って、階調輝度表示の方法をサ ブフレームフレーム期間の表示輝度の差以上にならないように出力することにより、 上記問題を解決することが好ましい(図 24参照)。この表示駆動方法を行うことにより 、変曲点がなくなり、見かけ上スムースなグレースケール表示となる(図 25、図 26参 照)。
[0245] また、本発明の TFT液晶パネルを、 1フレームを 2つのサブフレームに分割する TF T液晶パネルの表示駆動方法において、個々のサブフレームの画素の輝度の総和 により 1フレームの階調輝度表示を行う方法において、そのサブフレーム期間での表 示輝度が 1フレーム表示時のサブフレーム間での差がある一定の輝度 (相対的に)以 上とならないような、表示をさせる TFT液晶パネル(モジュール、モニター、 TV)、と 表現することちでさる。
[0246] 発明の詳細な説明の項にお!、てなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する特許請求 事項の範囲内で、いろいろと変更して実施することができるものである。
産業上の利用可能性
[0247] 本発明は、白浮き現象の生じる表示画面を備えた装置に対し、好適に使用できるも のである。

Claims

請求の範囲
[1] 1フレームを、第 1および第 2サブフレーム力 なる 2つのサブフレームに分割して画 像表示を行う表示装置において、
入力された表示信号の輝度階調に基づいた輝度の画像を表示する表示部と、 1フレームに表示部から出力される輝度の総和であるフレーム輝度をフレームの分 割によつて変えないように、第 1および第 2サブフレームの表示信号である第 1および 第 2表示信号を生成して表示部に出力する制御部とを備えており、
この制御部が、
フレーム輝度が最大値より小さい場合、両サブフレームから出力される輝度に差を つけるとともに、この輝度差を、 1つのサブフレームで表示できる最大の輝度であるサ ブ最大輝度より小さくすることを特徴とする表示装置。
[2] 上記の制御部が、
フレーム輝度が所定の閾値以下である場合には、一方のサブフレームを黒表示と する一方、他方のサブフレームの輝度を調整して表示を行うように設計されており、 フレーム輝度が上記閾値より大きい場合には、両サブフレームから出力される輝度 の差をサブ最大輝度より小さくするように設計されており、
さらに、上記閾値が、サブ最大輝度よりも小さく設定されていることを特徴とする請 求項 1に記載の表示装置。
[3] 上記の閾値が、サブ最大輝度に応じた輝度階調の 98%以下で、 50%以上の輝度 階調に応じた輝度範囲に設定されていることを特徴とする、請求項 2に記載の表示装 置。
[4] 上記の制御部は、
一方のサブフレームの輝度がサブ最大輝度となるまでは、両サブフレームの輝度 差を、サブ最大輝度に応じた輝度階調の 98%以下で、 50%以上の輝度階調に応じ た輝度範囲に設定することを特徴とする、請求項 2に記載の表示装置。
[5] 上記の表示部が液晶パネルであることを特徴とする請求項 1に記載の表示装置。
[6] 請求項 5に記載の表示装置と、
外部カゝら入力された画像信号を制御部に伝達するための信号入力部とを備え、 表示装置の制御部が、この画像信号に基づいて表示信号を生成するように設計さ れて 、ることを特徴とする液晶モニター。
[7] 請求項 5に記載の表示装置と、
テレビ放送信号のチャネルを選択し、選択されたチャネルのテレビ画像信号を制御 部に伝達するためのチューナ部とを備え、
表示装置の制御部が、このテレビ画像信号に基づ 、て表示信号を生成するように 設計されていることを特徴とする液晶テレビジョン受像機。
[8] 1フレームを、第 1および第 2サブフレーム力もなる 2つのサブフレームに分割して画 像表示を行う表示方法にぉ 、て、
1フレームに表示部から出力される輝度の総和であるフレーム輝度をフレームの分 割によつて変えないように、第 1および第 2サブフレームの表示信号である第 1および 第 2表示信号を生成して表示部に出力する出力工程を含み、
この出力工程が、
フレーム輝度が最大値より小さい場合、両サブフレームから出力される輝度に差を つけるとともに、この輝度差を、 1つのサブフレームで表示できる最大の輝度であるサ ブ最大輝度より小さくするように設定されて ヽることを特徴とする表示方法。
PCT/JP2006/303781 2005-03-15 2006-02-28 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法 WO2006098148A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/886,227 US7936325B2 (en) 2005-03-15 2006-02-28 Display device, liquid crystal monitor, liquid crystal television receiver, and display method
JP2007508060A JP4567052B2 (ja) 2005-03-15 2006-02-28 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-073966 2005-03-15
JP2005073966 2005-03-15

Publications (1)

Publication Number Publication Date
WO2006098148A1 true WO2006098148A1 (ja) 2006-09-21

Family

ID=36991500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303781 WO2006098148A1 (ja) 2005-03-15 2006-02-28 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法

Country Status (3)

Country Link
US (1) US7936325B2 (ja)
JP (1) JP4567052B2 (ja)
WO (1) WO2006098148A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117569A (ja) * 2008-11-13 2010-05-27 Lenovo Singapore Pte Ltd デュアル・ディスプレイ式のコンピュータ
JP2011141497A (ja) * 2010-01-08 2011-07-21 Canon Inc 映像処理装置及び方法
CN102473389A (zh) * 2009-07-10 2012-05-23 夏普株式会社 液晶驱动电路和液晶显示装置

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US7619597B2 (en) 2004-12-15 2009-11-17 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
JP5355080B2 (ja) 2005-06-08 2013-11-27 イグニス・イノベイション・インコーポレーテッド 発光デバイス・ディスプレイを駆動するための方法およびシステム
CA2518276A1 (en) 2005-09-13 2007-03-13 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
JP4584333B2 (ja) * 2006-04-14 2010-11-17 シャープ株式会社 表示パネル駆動装置、表示装置、表示パネル駆動方法、テレビジョン受像機
JP4824087B2 (ja) * 2006-04-14 2011-11-24 シャープ株式会社 表示パネル駆動装置、表示パネルの駆動方法、表示装置、テレビジョン受像機
CN101501748B (zh) 2006-04-19 2012-12-05 伊格尼斯创新有限公司 有源矩阵显示器的稳定驱动设计
CA2556961A1 (en) 2006-08-15 2008-02-15 Ignis Innovation Inc. Oled compensation technique based on oled capacitance
KR101537828B1 (ko) * 2008-06-30 2015-07-17 가부시키가이샤 제이올레드 표시 장치 및 표시 장치의 제어 방법
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
CA2688870A1 (en) 2009-11-30 2011-05-30 Ignis Innovation Inc. Methode and techniques for improving display uniformity
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
CA2669367A1 (en) 2009-06-16 2010-12-16 Ignis Innovation Inc Compensation technique for color shift in displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
JP5316377B2 (ja) * 2009-11-13 2013-10-16 セイコーエプソン株式会社 電気光学装置の駆動方法、電気光学装置、並びに、電子機器
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
US20130038798A1 (en) * 2009-12-16 2013-02-14 Sharp Kabushiki Kaisha Display device and television receiver
US20140313111A1 (en) 2010-02-04 2014-10-23 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
CA2692097A1 (en) 2010-02-04 2011-08-04 Ignis Innovation Inc. Extracting correlation curves for light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
CA2696778A1 (en) 2010-03-17 2011-09-17 Ignis Innovation Inc. Lifetime, uniformity, parameter extraction methods
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
CN103562989B (zh) 2011-05-27 2016-12-14 伊格尼斯创新公司 用于amoled显示器的老化补偿的系统和方法
WO2013002146A1 (ja) * 2011-06-27 2013-01-03 シャープ株式会社 液晶表示装置
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US8937632B2 (en) * 2012-02-03 2015-01-20 Ignis Innovation Inc. Driving system for active-matrix displays
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
EP2779147B1 (en) 2013-03-14 2016-03-02 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
DE112014002086T5 (de) 2013-04-22 2016-01-14 Ignis Innovation Inc. Prüfsystem für OLED-Anzeigebildschirme
CN105474296B (zh) 2013-08-12 2017-08-18 伊格尼斯创新公司 一种使用图像数据来驱动显示器的方法及装置
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
JP6330396B2 (ja) * 2014-03-18 2018-05-30 セイコーエプソン株式会社 表示ドライバー、電気光学装置及び電子機器
DE102015206281A1 (de) 2014-04-08 2015-10-08 Ignis Innovation Inc. Anzeigesystem mit gemeinsam genutzten Niveauressourcen für tragbare Vorrichtungen
CA2879462A1 (en) 2015-01-23 2016-07-23 Ignis Innovation Inc. Compensation for color variation in emissive devices
CA2889870A1 (en) 2015-05-04 2016-11-04 Ignis Innovation Inc. Optical feedback system
CA2892714A1 (en) 2015-05-27 2016-11-27 Ignis Innovation Inc Memory bandwidth reduction in compensation system
CA2900170A1 (en) 2015-08-07 2017-02-07 Gholamreza Chaji Calibration of pixel based on improved reference values
US11011095B2 (en) * 2018-08-31 2021-05-18 Chongqing Hkc Optoelectronics Technology Co., Ltd. Display panel, and image control device and method thereof
CN109166545B (zh) * 2018-09-27 2022-02-22 京东方科技集团股份有限公司 Ar/vr显示设备的驱动方法、驱动装置及显示设备
WO2020093216A1 (zh) * 2018-11-05 2020-05-14 昆山龙腾光电股份有限公司 液晶显示装置的驱动方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568221A (ja) * 1991-09-05 1993-03-19 Toshiba Corp 液晶表示装置の駆動方法
JPH07121144A (ja) * 1993-10-20 1995-05-12 Nec Corp 液晶表示装置
JPH07294881A (ja) * 1994-04-20 1995-11-10 Kodo Eizo Gijutsu Kenkyusho:Kk 液晶表示装置
JPH10161600A (ja) * 1996-11-29 1998-06-19 Hitachi Ltd 液晶表示制御装置
JP2000029442A (ja) * 1998-05-07 2000-01-28 Canon Inc 中間調処理方法及び装置及びシステム
JP2004525402A (ja) * 2001-01-26 2004-08-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶ディスプレイにおけるサブピクセルの輝度特性に基ずくサブピクセル信号強度値の調節
JP2004302270A (ja) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp 画像処理方法及びそれを用いた液晶表示装置
WO2005038766A1 (ja) * 2003-10-16 2005-04-28 Matsushita Electric Industrial Co., Ltd. マトリックス型表示装置及びその駆動方法
JP2005234552A (ja) * 2004-01-21 2005-09-02 Sharp Corp 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP2005241932A (ja) * 2004-02-26 2005-09-08 Fujitsu Display Technologies Corp 液晶表示装置の駆動方法
JP2005352483A (ja) * 2004-06-09 2005-12-22 Samsung Electronics Co Ltd 液晶表示装置及びその駆動方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251818A (ja) 1990-03-01 1991-11-11 Matsushita Electric Ind Co Ltd 液晶パネルの駆動方法および液晶制御回路
JP3744714B2 (ja) * 1998-12-08 2006-02-15 シャープ株式会社 液晶表示装置及びその駆動方法
JP2001296841A (ja) 1999-04-28 2001-10-26 Matsushita Electric Ind Co Ltd 表示装置
JP4655341B2 (ja) * 2000-07-10 2011-03-23 日本電気株式会社 表示装置
KR100870487B1 (ko) * 2001-07-04 2008-11-26 엘지디스플레이 주식회사 광시야각을 위한 액정디스플레이의 구동 방법 및 장치
JP4079793B2 (ja) * 2003-02-07 2008-04-23 三洋電機株式会社 表示方法、表示装置およびそれに利用可能なデータ書込回路
KR100836986B1 (ko) * 2003-03-31 2008-06-10 샤프 가부시키가이샤 화상 처리 방법 및 그것을 이용한 액정 표시 장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568221A (ja) * 1991-09-05 1993-03-19 Toshiba Corp 液晶表示装置の駆動方法
JPH07121144A (ja) * 1993-10-20 1995-05-12 Nec Corp 液晶表示装置
JPH07294881A (ja) * 1994-04-20 1995-11-10 Kodo Eizo Gijutsu Kenkyusho:Kk 液晶表示装置
JPH10161600A (ja) * 1996-11-29 1998-06-19 Hitachi Ltd 液晶表示制御装置
JP2000029442A (ja) * 1998-05-07 2000-01-28 Canon Inc 中間調処理方法及び装置及びシステム
JP2004525402A (ja) * 2001-01-26 2004-08-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶ディスプレイにおけるサブピクセルの輝度特性に基ずくサブピクセル信号強度値の調節
JP2004302270A (ja) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp 画像処理方法及びそれを用いた液晶表示装置
WO2005038766A1 (ja) * 2003-10-16 2005-04-28 Matsushita Electric Industrial Co., Ltd. マトリックス型表示装置及びその駆動方法
JP2005234552A (ja) * 2004-01-21 2005-09-02 Sharp Corp 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP2005241932A (ja) * 2004-02-26 2005-09-08 Fujitsu Display Technologies Corp 液晶表示装置の駆動方法
JP2005352483A (ja) * 2004-06-09 2005-12-22 Samsung Electronics Co Ltd 液晶表示装置及びその駆動方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117569A (ja) * 2008-11-13 2010-05-27 Lenovo Singapore Pte Ltd デュアル・ディスプレイ式のコンピュータ
CN102473389A (zh) * 2009-07-10 2012-05-23 夏普株式会社 液晶驱动电路和液晶显示装置
JP2011141497A (ja) * 2010-01-08 2011-07-21 Canon Inc 映像処理装置及び方法

Also Published As

Publication number Publication date
JP4567052B2 (ja) 2010-10-20
JPWO2006098148A1 (ja) 2008-08-21
US7936325B2 (en) 2011-05-03
US20090121994A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4567052B2 (ja) 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP5031553B2 (ja) 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法
JP4197322B2 (ja) 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP5299741B2 (ja) 表示パネルの制御装置、液晶表示装置、電子機器、表示装置の駆動方法、及び制御プログラム
JP4629096B2 (ja) 画像表示装置、画像表示モニター、およびテレビジョン受像機
JP4176818B2 (ja) 表示装置、表示装置の調整方法、画像表示モニター、及びテレビジョン受像機
WO2006098194A1 (ja) 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置
JP2007033864A (ja) 画像処理回路及び画像処理方法
WO2006098246A1 (ja) 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
WO2006098328A1 (ja) 表示装置の駆動装置、表示装置
US8593382B2 (en) Liquid crystal display device
US20060197732A1 (en) Video signal processing apparatus, method of processing video signal, program for processing video signal, and recording medium having the program recorded therein
KR20030073390A (ko) 동적 휘도비를 향상시키기 위한 액정 표시 장치 및 이장치를 위한 감마 전압 생성 방법
KR20030004049A (ko) 액정표시장치
JP4588754B2 (ja) 表示装置およびテレビジョン受像機
WO2006095743A1 (ja) 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法
US7142182B2 (en) Image processing circuit, image processing method, electro-optical device, and electronic apparatus
JP2005070582A (ja) 高画質液晶表示器及びその駆動方法
JPWO2006112108A1 (ja) 液晶表示装置の駆動方法
KR100747290B1 (ko) 액정 표시장치의 잔상 저감 장치 및 그 방법
JP4199655B2 (ja) 液晶パネルの駆動回路及び駆動方法
JP2006292973A (ja) 表示装置の駆動装置、および、それを備える表示装置
JP5539007B2 (ja) 液晶表示装置および画像表示方法
JP5566165B2 (ja) 液晶表示装置
KR101552886B1 (ko) 동영상의 화질 개선 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508060

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11886227

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714909

Country of ref document: EP

Kind code of ref document: A1