WO2006093132A1 - 無線タグ回路素子及びタグラベル作成装置 - Google Patents

無線タグ回路素子及びタグラベル作成装置 Download PDF

Info

Publication number
WO2006093132A1
WO2006093132A1 PCT/JP2006/303722 JP2006303722W WO2006093132A1 WO 2006093132 A1 WO2006093132 A1 WO 2006093132A1 JP 2006303722 W JP2006303722 W JP 2006303722W WO 2006093132 A1 WO2006093132 A1 WO 2006093132A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
signal
circuit element
impedance
rfid
Prior art date
Application number
PCT/JP2006/303722
Other languages
English (en)
French (fr)
Inventor
Kazunari Taki
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Publication of WO2006093132A1 publication Critical patent/WO2006093132A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • G06K19/0726Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs the arrangement including a circuit for tuning the resonance frequency of an antenna on the record carrier

Definitions

  • the present invention relates to a RFID circuit element that can read or write RFID tag information from outside via wireless communication, and a tag label producing device that produces a tag label provided with the RFID circuit element.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-90186
  • RFID Radio
  • RFID has been used to read and write information from a wireless tag by sending a query, sending a response, and receiving a response to a small wireless tag without contact from a reader Z writer.
  • the RFID circuit element provided in the RFID tag includes an IC circuit unit for storing predetermined RFID tag information, an antenna connected to the IC circuit unit, and a transport from the interrogator received by the antenna.
  • Power generating means for rectifying waves (signals) to generate power and modulation / reflecting means for modulating a carrier wave based on a predetermined information signal and reflecting it back through an antenna are provided. And even if the RFID tag is dirty or invisible, it can be accessed (reading information and writing Z information) from the reader Z writer side even if it is placed in a position. It is expected to be practically used in various fields such as product management and inspection process.
  • the device side In order to perform communication by matching the impedance between the antenna and the IC circuit unit to efficiently generate power and perform communication, the device side (reader Z writer side) When the transmitted signal is received by the antenna of the RFID circuit element, the matching data stored in advance in the memory of the IC circuit section may be read out, and impedance matching may be performed accordingly.
  • An object of the present invention is to realize a good impedance matching state between an antenna and an IC circuit unit, and to perform a long-distance communication with certainty, and a tag label for producing a radio tag label having the same It is to provide a creation device.
  • a first invention includes an RFID circuit that includes an IC circuit unit that stores information and a tag-side antenna connected to the IC circuit unit, and that transmits and receives information.
  • the IC circuit unit that stores information and a tag-side antenna connected to the IC circuit unit, and that transmits and receives information.
  • the circuit section is characterized by comprising impedance control means for variably setting an I impedance in response to an input signal of an external force and holding the set state in a nonvolatile manner.
  • the impedance control means provided in the IC circuit section has a function of variably setting the impedance of the RFID circuit element in accordance with an external input signal.
  • the device side antenna of the tag label producing apparatus that can secure a relatively strong signal strength transmits a signal for impedance matching of the RFID tag circuit element, and the impedance according to the response signal of the RFID tag circuit element side force for this is transmitted. If the control signal for setting is output to the impedance control means and the impedance of the IC circuit section is variably set, power is reliably supplied to the impedance control means and the impedance Instance matching can be performed.
  • the impedance control means by providing a function to hold the impedance set by the impedance control means in a non-volatile manner, once the impedance matching is set, it is possible to ensure that there is no need to generate a matching drive power supply in particular.
  • the good impedance matching state can be maintained.
  • a good impedance matching state between the antenna of the RFID tag circuit element and the IC circuit section can always be realized, and long-distance communication can be reliably performed.
  • the impedance control means includes a plurality of reactance elements connected in parallel to the tag side antenna, and a plurality of reactance elements, respectively.
  • a plurality of fuses connected in series and a cutting control means capable of individually cutting the plurality of fuses according to an input signal of the external force are provided.
  • a third invention is characterized in that, in the second invention, the reactance element is a capacitor.
  • the cutting control means includes a tag side first control means for outputting a control signal in response to an input signal of the external force, 1.
  • a fuse control current applying means capable of supplying a fusing current to the fuse in response to the control signal from the control means.
  • the tag-side first control means outputs a control signal, and in response to this, the fuse control current application means supplies the blowing current to the fuse and cuts it, so that a plurality of fuses are individually cut. I can refuse.
  • a fifth invention is the first nonvolatile memory according to any one of the second to fourth inventions, wherein the cutting control means stores information on a location or number of pieces of the plurality of fuses that can be cut. It is characterized by comprising sex storage means.
  • the impedance control means is a reactance element connected to the tag-side antenna and a serially connected memory switch element connected to the tag-side antenna. And an element control means capable of controlling the storage switch element in accordance with an input signal from the outside.
  • the impedance of the IC circuit section is set to be variable and the setting is nonvolatile. Can be held by sex.
  • a seventh invention is characterized in that, in the sixth invention, the storage switch element is a floating gate type field effect transistor.
  • the impedance of the IC circuit section is variably set and the setting is made non-volatile. Can be held.
  • the element control means includes a tag side second control means for outputting a control signal in response to the external input signal, and the tag side second control.
  • Charge injection means capable of generating a predetermined charge in the floating gate type field effect transistor in accordance with the control signal of means power.
  • the control signal is output by the tag-side second control means, and in response to this, the charge injection means generates (or extinguishes) a predetermined charge in the floating gate type field effect transistor.
  • the amount of charge of the field effect transistor can be controlled.
  • the element control means stores information relating to a charge amount or a charge amount level of the floating gate field effect transistor.
  • the second non-volatile storage means is provided.
  • the second nonvolatile memory means obtains, for example, information on the amount of charge generated or further accumulated in the floating gate type field effect transistor at that time, or the charge amount level, etc. It is possible to perform reliable impedance control without excess or deficiency.
  • the tenth invention comprises an impedance control means arranged on the tag tape, variably setting the impedance according to an external input signal, and holding the set state in a nonvolatile manner Generates access information to the IC circuit unit and the device side antenna that transmits and receives information by wireless communication between the IC circuit unit and the RFID tag circuit element provided with the tag side antenna connected to the IC circuit unit Then, information is transmitted to the RFID circuit element via the device-side antenna and accessed to the IC circuit unit, and the RFID circuit element according to the access information by the information access means.
  • the return signal receiving means for receiving the returned reply signal via the device side antenna, and the reply signal received by the return signal receiving means, the IC A determination means for determining a matching state between the impedance of the road portion and the impedance of the tag side antenna, and the impedance control means of the IC circuit portion of the RFID circuit element based on the determination result of the determination means And impedance control signal output means for outputting a control signal for impedance setting.
  • the access information generated by the information access means is transmitted to the RFID circuit element provided on the tag tape via the device-side antenna to access the IC circuit unit (read or read).
  • the tag label is created by using the tag tape with the RFID circuit element after the information is read or written in this manner.
  • the access information from the information access means is sent to the RFID circuit element via the device side antenna for impedance matching.
  • the reply signal returned from the RFID circuit element is received by the reply signal receiving means via the device side antenna.
  • the determination means determines the impedance matching state between the IC circuit portion of the RFID circuit element and the tag side antenna, and further, based on the determination result, sets the impedance.
  • Control signal is output to the impedance control means of the RFID circuit element, and the impedance of the IC circuit section is variably set. This makes it possible to match the impedance between the IC circuit portion of the RFID tag circuit element and the tag side antenna.
  • the distance between the antenna on the device side and the RFID tag circuit element at the time of access is usually relatively short in the tag label producing device, as described above, to the IC circuit section in the tag label producing device.
  • the signal is delivered to the RFID tag circuit element with relatively strong signal strength and power is supplied to the impedance control means. It is possible to perform impedance matching with certainty.
  • the impedance control means holds the set impedance in a non-volatile manner, so that after V impedance adjustment is set, there is no need to generate a matching drive power supply.
  • the good impedance matching state can be maintained.
  • a good impedance matching state between the antenna of the RFID tag circuit element and the IC circuit unit can always be realized at the time of user use after the label is created, so that long-distance communication can be reliably performed.
  • the determining means transmits the information access means to the RFID circuit element with a predetermined signal strength, and the reply signal to the information access means When the response signal is received by the return signal receiving means, it is determined that the impedance of the IC circuit section is matched with the impedance of the tag side antenna.
  • the reply signal receiving means can receive a reply signal corresponding to the tag signal, even if transmission to the RFID circuit element with a predetermined signal strength is sufficiently small!
  • the radio wave of the specified signal strength is efficiently supplied to the power generation means of the RFID circuit element, can generate sufficient power necessary for the operation of the circuit, and good communication between the antenna on the device side and the RFID circuit element It can be seen that the state is realized. Therefore, the judging means does not consider that the impedance is well matched between the IC circuit unit and the tag side antenna, and can judge the matching completed state.
  • a twelfth invention comprises signal strength detection means for detecting the signal strength of the reply signal received by the reply signal receiving means, wherein the determination means comprises: When the information access means performs transmission to the RFID circuit element with a predetermined signal strength, and the signal strength of the reply signal detected by the signal strength detection means exceeds a predetermined threshold, It is determined that the matching between the impedance of the IC circuit section and the impedance of the tag side antenna is completed.
  • the judging means can consider that the impedance is well matched between the IC circuit unit and the tag side antenna, and judge that the matching is completed.
  • the driving means for feeding out the tag tape and the printing means for printing on a predetermined area of the tag tape are provided. It is characterized by.
  • the RFID tag circuit elements can be accessed sequentially by feeding out the tag tape by the driving means, and a printed tag tape can be generated by printing on a predetermined area of the tag tape by the printing means. This can be used to create printed RFID label.
  • the driving means is configured to perform the determination and output the control signal for setting the impedance in accordance with the determination when the feeding of the tag tape is stopped.
  • a device-side first control means for controlling the determination means and the impedance control signal output means.
  • the feeding out of the tag tape is stopped, and the impedance matching control can be stably performed in a state where the positional relationship and distance between the RFID circuit element on the tag tape and the device side antenna are fixed. it can.
  • the determination and output of the control signal for setting the impedance according to the determination are performed before printing on the predetermined area of the tag tape is started.
  • a device-side second control means for controlling the printing means, the determination means, and the impedance control signal output means Accordingly, for example, after impedance matching control is performed, access to the RFID circuit element and printing on a predetermined area of the tag tape can be performed to create a RFID label with printing.
  • the determination and output of the control signal for setting the impedance according to the determination are performed after the printing on the predetermined area of the tag tape is completed. It has a device side third control means for controlling the printing means, the determination means, and the impedance control signal output means.
  • a good impedance matching state between the antenna and the IC circuit unit can be realized, and long-distance communication can be reliably performed.
  • FIG. 1 is a system configuration diagram showing a wireless tag generation system to which a tag label producing apparatus according to an embodiment of the present invention is applied.
  • FIG. 2 is a conceptual configuration diagram showing a detailed structure of a tag label producing apparatus.
  • FIG. 3 is an explanatory diagram for explaining a detailed structure of a cartridge.
  • FIG. 4 is a functional block diagram showing detailed functions of a high-frequency circuit.
  • FIG. 5 is a functional block diagram showing a functional configuration of the RFID circuit element.
  • FIGS. 6A and 6B are a top view and a bottom view showing an example of the appearance of the RFID label.
  • FIG. 7 is a cross-sectional view taken along section VII-Vi in FIG.
  • FIG. 8 is a diagram illustrating an example of a screen displayed on a terminal or a general-purpose computer.
  • FIG. 9 is a flowchart showing a control procedure executed by the control circuit.
  • FIG. 10 is a flowchart showing a detailed procedure of step S200 shown in FIG.
  • FIG. 11 is a flowchart showing a detailed procedure of step S 30 shown in FIG.
  • FIG. 12 is a flowchart showing a detailed procedure of wireless tag reading processing.
  • FIG. 13 A control circuit executed in the control circuit of the IC circuit unit of the RFID circuit element. It is a flowchart.
  • FIG. 14 is a functional block diagram showing a functional configuration of an RFID tag circuit element according to a modified example in which a coil and a capacitor are arranged in reverse.
  • FIG. 15 is a functional block diagram showing a functional configuration of an RFID tag circuit element according to a modification in which impedance adjustment is performed without using a fuse.
  • FIG. 16 is a functional block diagram showing a functional configuration of an RFID tag circuit element of a modified example in which a floating gate type field effect transistor and an antenna are connected in series.
  • FIG. 17 is a diagram conceptually showing an embodiment of the present invention in which an antenna is used for both an access antenna and a matching antenna, and an access antenna is provided in the cartridge and a dedicated matching antenna is provided outside the cartridge.
  • FIG. 2 is a diagram conceptually illustrating a case where an access antenna is provided outside the cartridge and a matching dedicated antenna is provided inside the cartridge.
  • Print head (printing means)
  • Control circuit (Determination means, impedance control signal output means,
  • Device side first control means device side second control means
  • Control circuit 'memory cutting control means, impedance control hand Stage, first nonvolatile memory means, tag side first control means; element control
  • Control means impedance control means, second non-volatile memory means, tag side second control means
  • Capacitor (reactance element, impedance control means) Capacitor (reactance element, impedance control means)
  • FET element control means, impedance control means
  • FET element control means, impedance control means
  • FIG. 1 is a system configuration diagram showing a wireless tag generation system to which the tag label producing apparatus of this embodiment is applied.
  • the tag label generation device 2 includes a route server 4, a terminal 5, a general-purpose computer 6, and a plurality of computers via a wired or wireless communication line 3. Connected to the information server 7
  • FIG. 2 is a conceptual configuration diagram showing a detailed structure of the tag label producing apparatus 2.
  • the device body 8 of the tag label producing device 2 is provided with a cartridge holder portion (not shown) as a recess, and a cartridge (RFID tag circuit element force) is provided in the holder portion. 100) is detachably attached.
  • the apparatus body 8 includes a print head (thermal head, printing means) 10 that performs predetermined printing (printing) on the cover film 103 that also feeds the second roll 104, and an ink ribbon that has finished printing on the cover film 103.
  • a print head thermal head, printing means
  • An antenna that transmits and receives signals by radio communication between the pressure roller driving shaft 12 (driving means) and the RFID tag circuit element To (which will be described in detail later) provided on the base tape 101 using high-frequency waves such as the UHF band.
  • (Device side antenna) 14 and the above-mentioned tag label tape 110 with print are cut to a predetermined length at a predetermined timing, and a label-like RFID label T (for details)
  • a housing 9 having the cartridge holder portion and the carry-out port 16 into which the cartridge 100 is detachably fitted.
  • the antenna 14 is composed of a directional antenna (in this example, a so-called notch antenna) having directivity on one side (in this example, the front side of the paper in FIG. 2) and the first roll 102. 2 is arranged in the vicinity of the feeding portion vicinity region X of the base tape 101 of the first roll 102 (see FIG. 2).
  • a directional antenna in this example, a so-called notch antenna
  • the first roll 102. 2 is arranged in the vicinity of the feeding portion vicinity region X of the base tape 101 of the first roll 102 (see FIG. 2).
  • the apparatus body 8 also includes a high-frequency circuit 21 for performing the RFID circuit element To hair access (writing or reading) via the antenna 14 and a signal read from the RFID tag circuit element To.
  • a print drive circuit 25 that controls energization to the print head 10
  • a solenoid 26 that drives the cutter 15 to perform a cutting operation
  • a solenoid drive circuit 27 that controls the solenoid 26, and the delivery port
  • Motor 17 for feeding roller for driving the roller 17, the high frequency circuit 21, the signal processing circuit 22, the cartridge driving circuit 24, the printing driving circuit 25, the solenoid driving circuit 27, drive feed roller
  • a control circuit 30 for controlling the overall operation of the tag label producing apparatus 2 via the moving circuit 29 and the like.
  • the control circuit 30 is a so-called microcomputer, and includes a CPU, a ROM, a RAM, and the like, which are power central processing units that omit detailed illustrations. Signal processing is performed according to a pre-stored program.
  • the control circuit 30 is connected to, for example, a communication line via the input / output interface 31, and communicates with the route server 4, the other terminal 5, the general-purpose computer 6, the information server 7, etc. connected to the communication line. Information can be exchanged between them.
  • FIG. 3 is an explanatory diagram for explaining the detailed structure of the cartridge 100.
  • a cartridge 100 includes a casing 100A, the first roll 102 in which the strip-shaped base tape 101 disposed in the casing 100A is wound, and the base tape 101.
  • a pressure roller 107 (which also functions as a tape feed roller).
  • the first roll 102 winds the base tape 101 in which a plurality of RFID tag circuit elements To are sequentially arranged at predetermined equal intervals in the longitudinal direction around the reel member 102a.
  • the base tape 101 has a four-layer structure in this example (see a partially enlarged view in FIG. 3), from the side wound inside (right side in FIG. 3) to the opposite side (left side in FIG. 3).
  • Adhesive layer 101a with appropriate adhesive material strength, colored base film 101b with PET (polyethylene terephthalate) equivalent force, adhesive layer 101c with appropriate adhesive material layer, release paper lOld Has been.
  • an antenna (tag side antenna) 152 for transmitting and receiving information is provided in a body-like manner, so that information can be updated so that it can be connected to this antenna.
  • An IC circuit unit 151 for storing (in a rewritable manner) is formed, and the wireless tag circuit element To is configured by these.
  • the adhesive layer 101a for later bonding the cover film 103 is formed, and on the back side (left side in FIG.
  • the release paper 101d is bonded to the base film 101b by the adhesive layer 101c provided so as to enclose the RFID circuit element To.
  • the release paper 101d is one that can be adhered to the product or the like by the adhesive layer 101c when the RFID label T finally completed in a label form is attached to a predetermined product or the like by peeling it off. It is.
  • the second roll 104 winds the cover film 103 around the reel member 104a.
  • the cover film 103 fed out from the second roll 104 is driven by the ribbon supply side roll 111 and the ribbon take-off roller 106 arranged on the back side thereof (that is, the side to be bonded to the base tape 101).
  • the ribbon 105 is brought into contact with the back surface of the cover film 103 when pressed by the print head 10.
  • the ribbon take-off roller 106 and the pressure roller 107 are respectively driven by the cartridge take-up roller drive shaft 11 when the driving force of the cartridge motor 23 (see FIG. 2 described above), for example, a pulse motor provided outside the cartridge 100 is used. And it is driven to rotate by being transmitted to the pressure roller drive shaft 12.
  • the base tape 101 fed out from the first roll 102 is supplied to the pressure roller 107.
  • the cover film 103 fed out from the second roll 104 is ink driven by a ribbon supply side roll 111 and a ribbon take-off roller 106 disposed on the back side thereof (that is, the side to be bonded to the base tape 101).
  • the ribbon 105 is pressed against the print head 10 and brought into contact with the back surface of the cover film 103.
  • the pressure roller driving shaft 12 As the pressure roller driving shaft 12 is driven, the pressure roller 107, the sub roller 109, Then, the platen roller 108 is rotated, and the base tape 101 is also fed out with the first roll 102 force, and is supplied to the pressure roller 107 as described above.
  • the cover film 103 is unwound from the second roll 104, and the plurality of heating elements of the print head 10 are energized by the print drive circuit 25. As a result, a print R (see FIG. 7 described later) is printed on the back surface of the cover film 103.
  • the base tape 101 and the cover film 103 on which the printing has been completed are bonded together by the pressure roller 107 and the sub-roller 109, and are formed as a tag label tape that has been printed, and out of the cartridge 100. It is carried out.
  • the ink ribbon 105 that has finished printing on the cover film 103 is scraped by the ribbon scraping roller 106 by driving the ribbon scraping roller drive shaft 11.
  • a guide roller 120 is provided in the vicinity of the feeding of the first roll 102, and the positional relationship between the antenna 14 on the apparatus side and the RFID label T is predetermined even if the outer diameter Di changes depending on the remaining amount of the first roll 102. As a result, the communication conditions with the RFID circuit element To are kept constant!
  • FIG. 4 is a functional block diagram showing detailed functions of the high-frequency circuit 21.
  • the high frequency circuit 21 transmits a reflected wave from the RFID tag circuit element To received by the antenna 32 and the transmitter 32 that transmits a signal to the RFID circuit element To via the antenna 14.
  • the receiving unit 33 includes an input unit 33 and a transmission / reception separator 34.
  • the transmission unit 32 includes a crystal unit 35 that generates a carrier wave for accessing (writing or reading) the RFID tag information of the IC circuit unit 151 of the RFID circuit element To, and a PLL (P hase
  • VCO Voltage Controlled Oscillator
  • the generated carrier wave are modulated based on the signal supplied from the signal processing circuit 22 (in this example, the signal from the signal processing circuit 22 Transmission multiplier circuit 38 (amplitude modulation based on “TX_ASK” signal) (however, in the case of amplitude modulation, an amplification factor variable amplifier or the like may be used) and a modulated wave (wireless tag information) modulated by the transmission multiplier circuit 38 And a variable transmission amplifier 39 that determines and amplifies the amplification factor based on the “TX-PWR” signal from the control circuit 30.
  • the generated carrier wave preferably uses a frequency in the UHF band or the microwave band, and the output of the transmission amplifier 39 is transmitted to any one of the antennas 14 via the transmission / reception separator 34, and the RFID circuit. Supplied to IC circuit 151 of element To. Note that the RFID tag information is not limited to the signal modulated as described above, but may be only a carrier wave.
  • the receiving unit 33 includes a reception first multiplication circuit 40 that multiplies the reflected wave from the RFID circuit element To received by the antenna 14 and the generated carrier wave, and a reception first multiplication circuit thereof.
  • a first band-pass filter 41 for extracting only a signal of a necessary band from the output of 40, and a reception first amplifier 43 for amplifying the output of the first band-pass filter 41 and supplying it to the first limiter 42;
  • the second RFID circuit 44 for receiving the RFID tag circuit element To force received by the antenna 14 and the carrier wave whose phase is delayed by 90 ° after being generated, and the second multiplier circuit for reception.
  • the second band-pass filter 45 for extracting only the signal in the necessary band with the output power of 44, and the reception first signal supplied to the second limiter 46 while inputting the output of the second band-pass filter 45 and amplifying it. With 2 amplifiers 47 .
  • the signal “RXS-I” output from the first limiter 42 and the signal “RXS-Q” output from the second limiter 46 are input to the signal processing circuit 22 and processed.
  • the outputs of the reception first amplifier 43 and the reception second amplifier 47 are RSSI (Received Signal).
  • Strength Indicator circuit 48 is also input, and a signal “: RSSI” indicating the strength of those signals is input to signal processing circuit 22.
  • FIG. 5 is a functional block diagram showing a functional configuration of the RFID circuit element To.
  • the RFID circuit element To includes an antenna 14 (tag antenna) that transmits and receives signals in a non-contact manner using an antenna 14 on the tag label producing apparatus 2 side and a high frequency such as a UHF band.
  • the IC circuit unit 151 connected to the antenna 152 is provided.
  • the IC circuit unit 151 includes a plurality of (in this example, four) severable capacitors CI, C2, C3, C4 (reactance elements) connected to the antenna 152 in parallel with each other and a non-severable capacitor CO.
  • This coil LI, L2 can be built in the IC circuit 151! ⁇ .
  • the control circuit 'memory 155 has a function of controlling the operation of the RFID circuit element To and storing a predetermined information signal.
  • the four capacitors C1 to C4 The number of pieces that can be cut (in other words, four sets of eight fuses Fl l, F12, fuses F21, F22, fuses F31, F32, fuses F41, F42, how many sets remain? Information on the first non-volatile storage means (details will be described later). Of course, it is also possible to store cut portion information or uncut portion information indicating a cut group or an uncut group that is not cut.
  • control circuit 'memory 155 interprets the received signal demodulated by the modulation / demodulation circuit 158, generates a reply signal based on the stored information signal as described above, and returns the response signal by the modulation / demodulation circuit 158.
  • Basic control such as control is executed.
  • Modulation / demodulation circuit 158 demodulates the communication signal received from antenna 152 from antenna 14 of tag label producing apparatus 2 and receives from antenna 152 based on the response signal from control circuit memory 155.
  • the modulated carrier wave is modulated and reflected.
  • FETtl 1 to t42 are acquired by the rectifier circuit 153 and stored in the control circuit 'memory 155. The adjusted current is passed through the corresponding fuses Fl 1 to F42, respectively.
  • the capacitors CI, C2, C3, and C4 have the same capacitance.
  • FIGS. 6 (a) and 6 (b) show the outside of the RFID label T formed after the writing of information on the RFID circuit element To and the cutting of the printed tag label tape 110 are completed as described above.
  • FIG. 6A is a diagram illustrating an example of a view
  • FIG. 6A is a top view
  • FIG. 6B is a bottom view.
  • FIG. 7 is a cross-sectional view taken along the Vll-Vi section in FIG.
  • the RFID label T has a five-layer structure in which the cover film 103 is added to the four-layer structure shown in Fig. 3, and the cover From the film 103 side (upper side in Fig. 7) to the opposite side (lower side in Fig. 7), cover film 103, adhesive layer 1 Ola, base film 101b, adhesive layer 101c, and release paper 101d constitute five layers. ing.
  • the RFID circuit element To including the antenna 152 provided on the back side of the base film 101b is provided in the adhesive layer 101c, and printed on the back surface of the cover film 103 R (in this example, the RFID label T "RF-ID" indicating the type of print) is printed.
  • FIG. 8 shows the above-described terminal 5 or general-purpose computer 6 when accessing (writing or reading) the RFID tag information of the IC circuit unit 151 of the RFID circuit element To by the tag label producing device 2 as described above. It is a figure showing an example of the screen performed.
  • the tag label type (access frequency and tape size), the printed character R printed corresponding to the RFID circuit element To, and the RFID tag circuit element To are specific.
  • the terminal 5 or the general-purpose computer 6 has an ID (access or write) ID, an address of article information stored in the information server 7, a storage address of the corresponding information in the route server 4, etc. It can be displayed.
  • the tag label producing device 2 is operated by operating the terminal 5 or the general-purpose computer 6 so that the print character R is printed on the cover film 103, and the write ID and article information are written on the IC circuit unit 151 as will be described later. (Or radio tag information such as article information stored in advance in the IC circuit unit 151 is read).
  • the ID of the generated RFID label T Upon writing (or reading) as described above, the ID of the generated RFID label T and its ID
  • the correspondence relationship with the information read from the IC circuit unit 151 of the RFID label T (or information written in the IC circuit unit 151) is stored in the route server 4 and can be referred to as necessary. It becomes like this.
  • the capacitors C1 to C4 are preliminarily used using the fuses F11 to F42 provided in the IC circuit unit 151 when the RFID label is produced. By cutting in a predetermined order (defined), impedance matching is performed, and the setting is retained with non-volatility. The contents will be explained in detail below.
  • FIG. 9 is a flowchart showing a control procedure executed by the control circuit 30.
  • step S 10 the RFID tag information to be written from the antenna 14 to the IC circuit portion 151 of the RFID circuit element To and input via the terminal 5 or the general-purpose computer 6, and the RFID label by the print head 10.
  • Print information to be printed on T is read via communication line 3 and input / output interface 31.
  • step S15 in which the variable N for counting the number of times of retry (retry) in which the response of the RFID circuit element To force is received, and the flag F indicating whether communication is good or bad are initialized to 0. Turn into.
  • step S 16 a control signal is output to the cartridge drive circuit 24, and the ribbon scraping roller 106 and the pressure roller 107 are driven to rotate by the drive force of the cartridge motor 23.
  • the base tape 101 is fed out from the first roll 102 and supplied to the press roller 107, and the cover film 103 is fed out from the second roll 104.
  • a control signal is output to the delivery roller motor 28 via the delivery roller drive circuit 29 to drive the delivery roller 17 to rotate.
  • the base tape 101 and the cover film 103 (which has been printed as described later) are bonded together by the pressure roller 107 and the sub-roller 109 to be integrated together, and the tag label tape with print is provided.
  • Each tape 101, 103, 110 is started to be driven so that 110 is transported outward from the cartridge body 100. Thereafter, the process proceeds to step S17, and it is determined whether or not the base tape 101 has been transported to a predetermined position (position where the RFID circuit element To is directly facing the antenna 14). Specifically, for example, an appropriate identification mark provided corresponding to each RFID circuit element To on the base tape 101 (specifically, for example, release paper 101d or cover film 103) may be used as the cartridge. It is sufficient to detect by a known tape sensor provided outside 100 (for example, further downstream of the cutter 15 in the conveying direction).
  • step S18 a control signal is output to the cartridge driving circuit 24 to stop the rotational driving of the ribbon scoop roller 106 and the pressure roller 107, and via the feed roller driving circuit 29. Then, a control signal is output to the delivery roller motor 28 to stop the rotational drive of the delivery roller 17 and stop the tape conveyance.
  • step S200 impedance matching processing is performed between the antenna 152 of the RFID circuit element To and the IC circuit unit 151 (refer to FIG. 10 described later for details).
  • step S20 a control signal is output to the cartridge drive circuit 24 to rotate the ribbon scraping roller 106 and the pressure roller 107 again, and for the feed roller via the feed roller drive circuit 29.
  • a control signal is output to the motor 28, the delivery roller 17 is rotated again, and the tape drive is resumed.
  • step S30 a write process is performed in which the RFID tag information is transmitted to and written in the RFID circuit element To (refer to FIG. 11 described later for details).
  • step S 35 a control signal is output to the print drive circuit 25, the print head 10 is energized, and a predetermined area of the cover film 103 (for example, the base tape 101 is equidistantly spaced at a predetermined pitch). In the area to be pasted on the back side of the RFID circuit element To placed in step), the print R of characters, symbols, barcodes, etc. read in step S10 is printed.
  • step S35 ends, the process proceeds to step S39.
  • step S40 the combination of the wireless tag information written to the RFID circuit element To in step S30 and the print information printed by the print head 10 corresponding thereto is used as the input / output interface 31 and the communication.
  • the data is output via the line 3 via the terminal 5 or the general-purpose computer 6 and stored in the information server 7 or the route server 4. This stored data is stored and held in, for example, a database so that it can be referred to from the terminal 5 or the general-purpose computer 6 as necessary.
  • step S50 after confirming whether or not all the printing in the area corresponding to the RFID circuit element To which is the target of processing at this time in the cover film 103 is completed, the process proceeds to step S60. .
  • step S60 it is determined whether the tag label tape 110 with print has been transported to a predetermined position to be cut by the cutter 15. Specifically, for example, based on whether or not the target RFID circuit element To and the corresponding print area of the cover film 103 all exceed the cutter 15 by a predetermined length (margin amount).
  • Appropriate identification marks provided corresponding to each RFID circuit element To on the material tape 101 may be provided outside the cartridge 100 (for example, the cutter 15 Further, the detection may be performed by a known tape sensor provided on the downstream side in the transport direction.
  • the print information determines whether the length of the print R print character length plus a predetermined blank area exceeds the total length of the RFID circuit element To (or exceed). For example, it is possible to avoid cutting the RFID circuit element T 0 to be bonded by cutting the blank area with the cutter 15 at least when the printing of the cover film 103 is completed). May be.
  • step S 70 a control signal is output to the cartridge drive circuit 24 and the delivery roller drive circuit 29, the drive of the cartridge motor 23 and the delivery roller motor 28 is stopped, and the ribbon take-off roller 106 and the pressure roller 107.
  • the rotation of the feed roller 17 is stopped.
  • the first roll 102 The feeding of the base tape 101, the feeding of the cover film 103 from the second roll 104, and the feeding of the tag label tape 110 with print by the feeding roller 17 are stopped.
  • a control signal is output to the solenoid drive circuit 27 to drive the solenoid 26, and the tag label tape 110 with print is cut by the cutter 15.
  • the RFID tag information T of the tag circuit element To is read, and a label-like RFID tag T with a predetermined print corresponding to the parenthesis is generated.
  • step S90 a control signal is output to the delivery roller drive circuit 29, the drive of the delivery roller motor 28 is resumed, and the delivery roller 17 is rotated.
  • the conveyance by the delivery roller 17 is resumed, and the wireless tag label T generated in the label shape in step S150 is conveyed toward the carry-out port 16 and discharged from the carry-out port 16 to the outside of the apparatus 2.
  • step S100 all RFID tag information of the IC circuit unit 151 provided in the RFID label circuit element To remaining in the communication range (the above-mentioned area X) in the cartridge 100 is erased (initialized). ) Specifically, an “Era Se ” command for initializing information stored in the memory unit 157 of the RFID circuit element To is output to the signal processing circuit 22. Based on this, an “Erase” signal is generated in the signal processing circuit 22 as RFID tag information, and all RFID circuit elements T in the communication range (region X above) are transmitted via the transmitter 32 and the antenna 14 of the high-frequency circuit 21. The memory unit 157 is initialized.
  • FIG. 10 is a flowchart showing the detailed procedure of step S200.
  • step S205 the “TX-P WR” signal is output to the variable transmission amplifier 39 provided in the transmission unit 32 of the high-frequency circuit 21.
  • the access power (output power amount) value for the RFID circuit element To of the transmitter 32 is set to the maximum value (within the range allowed by the device 2 or within the preset power range). .
  • step S210 the presence of the RFID circuit element To existing within the communication range is detected and its response is obtained (in other words, impedance matching A “matching” command for giving a notice) is output to the signal processing circuit 22.
  • a predetermined ID for example, ID number is minimum or maximum
  • a matching (command) signal is transmitted to the target tag circuit element to prompt a reply.
  • step S215 a reply signal (for example, wireless tag information including tag information, etc.) transmitted in response to the matching signal is received via the antenna 14 in response to the matching signal, and a high frequency signal is received. Capture through circuit 21 and signal processing circuit 22. Then, the RFID tag circuit element To force is judged from the fetched result to determine whether or not the correct response signal is received. If the response signal has not been received, the determination is not satisfied, and the routine goes to Step S220, where the predetermined error processing is performed. For example, an error display signal is output to the terminal 5 or the general-purpose computer 6 through the input / output interface 31 and the communication line 3 to display a corresponding error (no target tag), and this flow is terminated.
  • a reply signal for example, wireless tag information including tag information, etc.
  • the correct response signal is not received. (If the RFID tag circuit element cannot recognize the matching command, the command is ignored and the reply signal is not received. (No response is sent or a response signal is sent if the command cannot be handled and V is correct).
  • step S225 the “TX—PWR” signal is output to the variable transmission amplifier 39 provided in the transmission unit 32 of the high-frequency circuit 21, and the access power (output power amount) value for the RFID tag circuit element To of the transmission unit 32 is set. Set to the minimum value (within the range allowed by the device 2 or within the preset power range).
  • ”Start” command to detect signal level is output to the signal processing circuit 22 To do.
  • step S235 the reply signal (for example, the RFID tag information including the tag If blueprint etc.) transmitted from the target RFID circuit element To in response to the activation signal is stored in the antenna. 14 is received via the high-frequency circuit 21 and the signal processing circuit 22.
  • the RFID tag circuit element To force is judged from the result of the capture whether a correct response signal is received. If the response signal is received, if impedance matching is sufficient, it is assumed that the reception signal is low (and therefore the reception sensitivity is low!), The determination is not satisfied, and the routine goes to Step S240.
  • step S240 as in step S205, the "TX-PWR" signal is output to the variable transmission amplifier 39 provided in the transmission unit 32 of the high-frequency circuit 21, and the RFID tag circuit element To of the transmission unit 32 is accessed. Set the power (output energy) value to the maximum value.
  • step S245 a predetermined number (one in this example) of capacitors C1 to C4 provided in a plurality (four in this example) of RFID tag circuit element To (relatively large in advance) are provided.
  • a “capacitor cut” command for cutting is output to the signal processing circuit 22.
  • a predetermined capacitor disconnection (command) signal is generated in the signal processing circuit 22 and transmitted to the target RFID circuit element To existing within the communication range via the high-frequency circuit 21, and the RFID circuit element To control circuit 'is taken into the memory 155.
  • step S225 While no signal is received, repeat step S225 ⁇ step S230 ⁇ step S235 ⁇ step S240 ⁇ step S245 ⁇ step S250 ⁇ step S225 and repeat step S225.
  • the fuses F11 to F42 related to the shita C1 to C4 are cut one by one (details will be described later). As a result, the capacitance of the capacitors C1 to C4 changes and the input impedance changes (decreases) sequentially. (In this example, matching is achieved by reducing the capacitance component).
  • step S235 By repeating such an operation, the input impedance is decreased and the sensitivity is gradually increased.
  • the impedance matching is sufficiently achieved (therefore, the reception sensitivity is increased).
  • the determination at step S235 is satisfied, and the routine goes to step S265.
  • step S265 the “TX—PWR” signal is output to the variable transmission amplifier 39 provided in the transmission unit 32 of the high-frequency circuit 21, and the access power (output power amount) for the RFID tag circuit element To of the transmission unit 32 is output.
  • the value is set to a value optimally set in advance for writing information to the IC circuit unit 151 when the RFID label is created in the device 2, and the process returns to step S20 in FIG.
  • step S225 ⁇ step S230 ⁇ step S235 ⁇ step S24 0 ⁇ step S245 ⁇ step S250 ⁇ step S225 is repeated and fuses F11 to F42 are disconnected one by one and the input impedance is gradually reduced. Even if this sensitivity is increased, the activation response signal is not received, and when the pair of fuses F41 to F42 to be cut eventually disappears and the cut response signal is not received, the determination in step S250 is not satisfied, Move on to step S255.
  • step S255 in response to the fact that the activation response signal is not received even when the sensitivity is greatly increased as described above, the RFID circuit element To sets the impedance matching range by the tag label producing device 2 to be higher.
  • An error display signal indicating that the sensitivity is too low is output to the terminal 5 or the general-purpose computer 6 via the input / output interface 31 and the communication line 3 to display the corresponding low sensitivity, and the process proceeds to step S260.
  • step S260 it is determined whether or not the operator inputs an operation instruction signal to create a tag label, for example, from the terminal 5 via the input / output interface 31 and the communication line 3.
  • the terminal 5 or the general-purpose computer 6 displays the low sensitivity in step S255 above, if the operator gives an instruction to create a tag label with the knowledge (that is, the operator can only use near field communication) (If you are aware!), The determination is satisfied and the process proceeds to step S265 above, and as before, the access power (output power amount) value is set to the value for writing information when creating the RFID tag label.
  • the access power (output power amount) value is set to the value for writing information when creating the RFID tag label.
  • the RFID circuit element To may be discharged without writing or reading information.
  • FIG. 11 is a flowchart showing the detailed procedure of step S30.
  • step S31 when the above-described step S20 in FIG. 9 ends, the process proceeds to step S31, and a “Program” command for writing desired data in the memory unit 157 is output to the signal processing circuit 22.
  • the signal processing circuit 22 Based on this, the signal processing circuit 22 generates, for example, a “Program” signal as RFID tag information including I blueprints, and within the communicable area via the transmitter 32 and the antenna 14 of the high-frequency circuit 21 (the above-mentioned area). Is transmitted to all RFID tag circuit elements To in X), and information is written in the memory unit 157.
  • step S 32 a “Verify” command for confirming the contents of the memory unit 157 is output to the signal processing circuit 22. Based on this, a “Verify” signal as RFID tag information is generated by the signal processing circuit 22 and transmitted to all the RFID circuit elements To within the communicable area via the transmitter 32 and the antenna 14 of the high-frequency circuit 21. , Prompting a reply.
  • step S33 the reply (response) signal transmitted (reply) from all the RFID circuit elements in the communicable area corresponding to the "Verify” signal to the antenna 14 is transmitted. Via the receiver 33 and the signal processing circuit 22 of the high-frequency circuit 21.
  • the RFID circuit element To that is the target of the matching process is identified. Therefore, only the RFID circuit element To may be specified and the write process in Step 30 may be performed. .
  • the writing process is the same as in FIG. 11. In this case, since the number of RFID tag circuit elements To targeted for the writing process is limited, a stable writing process can be performed. Furthermore, step 100 in FIG. 9 is not necessary.
  • the present invention is not limited to this, and predetermined RFID tag information (tag identification) Read-only RFID circuit element To force that information etc. is stored and retained in a non-rewritable manner
  • the RFID label T may be created by reading the RFID tag information and performing printing corresponding to it.
  • step S10 only the print information is read in step S10 in FIG. 9, and the RFID tag information is read in step S30 (refer to FIG. 12 described later for details). Thereafter, in step S40, the combination of the print information and the read RFID tag information is saved.
  • FIG. 12 is a flowchart showing a detailed procedure of the above-described wireless tag reading process.
  • step S101 when the RFID circuit element To to which information is to be read is conveyed near the antenna 14, in step S101, the information stored in the RFID circuit element To is read “Scroll”.
  • the “All ID” command is output to the signal processing circuit 22. Based on this, a “Scroll All ID” signal as radio tag information is generated by the signal processing circuit 22 and transmitted to the RFID circuit element To to be read via the high frequency circuit 21 to prompt a reply.
  • step S102 a reply signal transmitted from the RFID circuit element To be read in response to the "Scroll All ID" signal (RFID information including tag I and blueprints) Is received via the antenna 14 and taken in via the high frequency circuit 21 and the signal processing circuit 22.
  • RFID information including tag I and blueprints
  • step S103 whether or not there is an error in the reply signal received in step S102 is determined using a known error detection code (CRC code; Cyclic Redundancy Check, etc.).
  • CRC code Cyclic Redundancy Check
  • step S 103 When the determination in step S 103 is satisfied, reading of the RFID tag information corresponding to the RFID circuit element To power to be read is completed, and this routine ends.
  • FIG. 13 is executed in the control circuit 'memory 155 of the IC circuit unit 151 of the RFID circuit element To corresponding to the flow of step S200 by the control circuit 30 of the tag label producing apparatus 2 shown in FIG. It is a flowchart showing a control procedure.
  • step S305 the signal is received via the antenna 152 and sent to the modem circuit 158. Interpret the received signal demodulated and determine whether any command (command signal) is included in it.
  • a matching signal matching command signal, see step S210 in FIG. 10
  • a start signal start command signal diagram. 10
  • capacitor disconnection signal capacitor disconnection command signal, see step S245 in Figure 10
  • access information signal for writing or reading information when creating tag labels ( Figures 9, 11, and 12) Scroll All ID signal, Erase signal, Program ID signal, Verify signal, etc.). If the received signal power S is any of these, the determination in step S305 is satisfied, and the process proceeds to step S310.
  • step S310 it is determined whether or not the received signal is the matching signal. If it is a matching signal, the determination is satisfied and the routine goes to Step S315, where a response signal corresponding to the matching signal is generated based on the stored information signal as described above. After replying to the antenna 14 of the tag label producing apparatus 2 via 152, the process returns to step S305 and the same procedure is repeated. If it is not a matching signal, the determination at step S310 is not satisfied and the routine goes to step S320. Before returning the response signal in step S315 and returning to step S305, set the flag indicating that it was a matching signal in the non-volatile memory means in the control circuit 'memory 155, and then return to step S305. May determine that the flag is set and skip step S305 and step S310 and proceed to step S320 (the same applies to other signals).
  • step S320 it is determined whether or not the received signal is the activation signal.
  • Step S325 a response signal corresponding to the activation signal is generated based on the information signal stored as described above, and the modulation / demodulation circuit 158
  • the process returns to step S305 and the same procedure is repeated. If it is not a start signal, the determination at step S320 is not satisfied and the routine goes to step S330.
  • step S330 it is determined whether or not the received signal is the capacitor disconnect signal. If it is a capacitor disconnect signal, the determination is satisfied and the routine goes to Step S335.
  • the control circuit 'memory 155 has a function of storing and holding the NF by the number of times that the capacitor can be cut (in other words, the number of uncut fuses F11 to 42 remaining).
  • step S335 the number of possible cuttings NF is read out.
  • step S345 the next fuse set cutting process in a predetermined order among the set of uncut fuses F11 to F42 is performed. That is, a control signal is output to the corresponding FETtl 1 to t42, and in response to this, the gate voltage corresponding to the control signal is output from the FETtl 1 to t42 to the corresponding fuse F11 to F42, and the set of fuses. Is blown (cut).
  • step S350 the NF value read in step S340 is decremented by 1 in response to the disconnection in step S345, and the reduced value is updated and stored as a new NF value in step S355. Then, go to step S360.
  • step S360 based on the information signal stored as described above, a predetermined disconnection response signal (indicating that the processing for disconnecting one set of fuses F has been completed) is generated, and the modem circuit 15 8 After returning to the antenna 14 of the tag label producing apparatus 2 via the antenna 152, the process returns to step S305 and the same procedure is repeated.
  • step S305 ⁇ step 3310 ⁇ step Step S320 ⁇ Step S330 ⁇ Step S335 ⁇ Step S340 ⁇ ” ⁇ Step S360 ⁇ Step S305 are repeated, and the fuse F is disconnected one by one in the prescribed order to reduce the capacitance of the capacitor C as a whole.
  • step S365 all capacitors C1 to C4 are disconnected, and no more A disconnection impossible signal indicating that disconnection processing is impossible is generated, and the modulation / demodulation circuit 158 sends a reply to the antenna 14 of the tag label producing apparatus 2 via the antenna 152, and then returns to step S3 05 to perform the same procedure. repeat.
  • step S370 it is determined whether or not the received signal is an access information signal (Scroll All ID signal, Erase signal, Program ID signal, Verify signal, etc.) for writing or reading information at the time of creating the tag label described above. . If it is an access information signal, the determination is satisfied and the routine goes to Step S375, where a response signal corresponding to each signal is generated based on the stored information signal as described above (see previous FIG. 11 and FIG.
  • the modem circuit 158 returns a response to the antenna 14 of the tag label producing apparatus 2 via the antenna 152, and then returns to step S305 to repeat the same procedure. If the access information signal fails, the determination in step S375 is not satisfied, and the process returns to step S305 as described above.
  • the control circuit for the RFID circuit element To 'memory 155 and the FETtl-t42 can control a plurality of fuses individually according to an external input signal according to each claim.
  • the impedance control means is configured to variably set the impedance according to the input signals of these capacitors, capacitors C1 to C4, fuses F11 to F42, force S, and external force, and hold the setting state in a nonvolatile manner. To do.
  • the transmission unit 32 and the signal processing circuit 22 of the high-frequency circuit 21 of the tag label producing device 2 generate access information to the IC circuit unit, and transmit the access information to the RFID circuit element via the device-side antenna.
  • the information access means for accessing the access section is configured, and the receiving section 33 and the signal processing circuit 22 of the high-frequency circuit 21 send the reply signal sent back from the RFID circuit element in response to the access information by the information access means.
  • a reply signal receiving means for receiving via the antenna is configured.
  • step S235 is a state of matching between the impedance of the IC circuit unit and the impedance of the tag side antenna based on the return signal received by the return signal receiving means.
  • step S245 based on the determination result of the determination means, the impedance control means of the IC circuit portion of the wireless tag circuit element is controlled for impedance setting.
  • An impedance control signal output means for outputting a control signal is configured.
  • step S18 and step S200 of the flow of Fig. 9 executed by the control circuit 30 are performed when the tag tape feeding is stopped, and the control signal for impedance setting corresponding to this is output. It constitutes a device-side first control means for controlling the drive means, determination means, and impedance control signal output means.
  • step S200 of the flow shown in FIG. 9 executed by the control circuit 30 is performed before the start of printing on the predetermined area of the base tape 101, and the output of the control signal for setting the impedance corresponding thereto is performed.
  • the apparatus-side second control means for controlling the printing means, the determination means, and the impedance control signal output means is configured to perform.
  • the signal processing circuit 22 and the high-frequency circuit 21 are used for the RFID circuit element To provided on the base tape 101.
  • the generated access information signal is transmitted via the antenna 14 to access (read or write) the IC circuit unit 151, and the RFID circuit element To after the information reading or writing is performed in this way.
  • the RFID label T is produced using the printed tag label tape 110 provided.
  • an activation signal as access information is sent from the signal processing circuit 22 and the high frequency circuit 32 to the antenna 14 for impedance matching in the same manner as described above. Is transmitted to the RFID circuit element To (see step S230 in FIG. 10), and in response thereto, the reply signal returned from the RFID circuit element To is received via the antenna 14.
  • the RFID label producing apparatus 2 uses the antenna 14 and RFID circuit element at the time of access.
  • the distance from To is set to be relatively short.
  • impedance matching is performed using the antenna 14 used to access the IC circuit unit 151 in the wireless tag label producing apparatus 2.
  • the signal is sent to the RFID tag circuit element To with a relatively strong signal strength and power can be supplied to the control circuit 'Memory 155, etc. Since power can also be supplied, impedance matching can be reliably performed.
  • a good impedance matching state between the antenna 152 of the RFID circuit element To and the IC circuit 151 can always be realized, and long-distance communication is ensured. Can be done.
  • steps S18 and S200 of the flow shown in FIG. 9 when the feeding of the base tape 101 is stopped, determination of the impedance matching state and control for impedance setting corresponding thereto are performed. Output the signal. As a result, the feeding of the base tape 101 from the first roll 102 is stopped, and the positional relationship and the distance between the wireless tag circuit element To and the antenna 14 on the base tape 101 are stably fixed. Impedance matching control can be performed.
  • transmission is performed with the transmission power from the RFID label producing apparatus 2 side to the RFID circuit element To minimized (step S225, scan). (Step S230), and the impedance matching state is determined based on whether or not the response is present (Step S235). 1S Not limited to this.
  • step S225 transmission is performed with a predetermined fixed value, not a minimum value.
  • step S235 the radio tag circuit element To power received by the antenna 14 in response to the activation signal is transmitted.
  • the signal strength of the activation response signal (detected by the RSSI circuit 48, which is the signal strength detection means of the receiving unit 33 of the high-frequency circuit 21 and acquired by the signal processing circuit 22) exceeds a predetermined threshold value.
  • the impedance matching state may be determined based on whether or not it has been.
  • the impedance When the impedance is well matched, the power received by the tag antenna is efficiently supplied to the rectifier circuit, and the power reflected by the tag antenna force is small.
  • modulation is performed based on the activation response signal in the wireless tag circuit, for example, if the tag antenna is short-circuited by the diode of the modulation circuit, etc., power is not supplied to the rectifier circuit, and almost no received power is received. Force reflected. Therefore, the intensity change of the radio wave reflected by the tag antenna force increases with this modulation. If the impedance is not matched, even if the tag antenna is not short-circuited by the modulation circuit, there will be reflection due to mismatching, and the tag antenna power will be reflected when the impedance is matched. Therefore, the intensity change accompanying the modulation of the radio wave reflected from the tag antenna becomes smaller. As a result, the response signal subjected to IQ quadrature demodulation becomes larger as impedance is well matched.
  • the received response signal is relatively large and exceeds the threshold value, it is understood that a good communication state is realized between the antenna 14 and the RFID circuit element To. Therefore, it can be determined that the impedance is well matched between the IC circuit unit 151 and the antenna 152.
  • the transmission power value may be decreased in several steps rather than making the initial power minimum as in the above embodiment.
  • it is effective to set the capacitances of the capacitors C1 to C4 to be different from each other and specify the capacitance to be cut from the RFID label producing apparatus 2 side according to the starting power. That is, for example, if there is no activation response even though the power is large, the matching deviation is large, so the capacitor C having a large capacitance is disconnected. To do. When the transmission power is low and the force is not activated, the matching deviation is small, so the capacitor C with a small capacity is disconnected.
  • a capacitor disconnection signal when transmitted from the RFID label producing apparatus 2 side, a signal specifying which capacitor C is to be disconnected may be transmitted.
  • the RFID circuit element To updates and stores the location of the capacitor C that has been disconnected or the location of the capacitor C that can be disconnected without disconnection, and determines whether or not disconnection is possible.
  • FIG. 14 is a functional block diagram showing a functional configuration of the RFID circuit element To-1 according to this modification, and corresponds to FIG. 5 described above.
  • coils LA, LB, LC, LD, and L0 as reactance elements are provided instead of the capacitors C1, C2, C3, C4, and CO shown in FIG. Instead of these, capacitors CA and CB are provided at the positions of the coils LI and L2.
  • the RFID circuit element To-1 of the present modification is merely an exchange of the RFID circuit element To of the above embodiment and the capacitor C and the coil L as reactance elements. Details and the like are substantially the same except for the above replacement part, and thus the description thereof is omitted.
  • the impedance is controlled by controlling the charge amount of a floating gate type FET (field effect transistor) without using a fuse.
  • FIG. 15 is a functional block diagram showing a functional configuration of the RFID circuit element To-2 according to the present modification, and is a diagram substantially corresponding to FIGS. 5 and 11 described above.
  • the RFID circuit element To-2 includes a capacitor CP as a reactance element connected to the antenna 152 and a floating gate type as a storage switch element connected in parallel with the antenna 152.
  • Field-effect transistor (FET) ttA and a control circuit that functions as a tag-side second control means that outputs a control signal in response to an external force input signal 'floating gate field-effect transistor in response to a control signal from memory 155 (FET) ttA includes a field effect transistor (FET) tA as a charge injection means capable of generating a predetermined charge.
  • control signal impedance setting control signal
  • FETtA as a charge injection means generates (or extinguishes) a predetermined charge (gate charge) in the floating gate type field effect transistor ttA.
  • the control circuit' memory 155 is a floating gate type. It has a (second non-volatile storage means) function for storing information on the charge amount or charge amount level of the field effect transistor ttA, for example, the applied voltage, applied current, applied time thereof, etc. At this point, information on the amount of charge that can be accumulated or the amount of charge that is generated in the floating gate type field effect transistor ttA can be acquired, so that it is possible to perform reliable impedance control without excess or deficiency. And then speak.
  • a (second non-volatile storage means) function for storing information on the charge amount or charge amount level of the field effect transistor ttA, for example, the applied voltage, applied current, applied time thereof, etc.
  • control circuit 'memory 155 and the FETtA force are configured as element control means that can control the memory switch element in accordance with an external input signal, and the floating gate type FETtt A and capacitor CP (reactance element) ) Constitutes an impedance control means that variably sets the impedance according to an external input signal and holds the set state in a nonvolatile manner.
  • the control circuit memory 155 also constitutes a second non-volatile storage means for storing information relating to the charge amount or charge amount level of the floating gate type field effect transistor.
  • the impedance of the IC circuit unit 151 is variably set by controlling the amount of charge of the floating gate type field effect transistor ttA by controlling the control circuit 'memory 155 as described above.
  • the setting can be held in a nonvolatile manner.
  • the impedance variable setting can be performed and the set impedance value can be held in a nonvolatile manner.
  • the floating gate field effect transistor tA is not limited to the force connected in parallel to the antenna 152. You may connect to.
  • FIG. 16 is a functional block diagram showing a functional configuration of the RFID circuit element To-3 of such a further modification.
  • a coil LP as a reactance element connected to the antenna 152 and a floating gate type field effect transistor as a storage switch element connected in series with respect to the antenna 152 ( FET) ttB, t tC and the floating gate type field effect transistor (FET) ttB, ttC as a charge injection means that can generate a predetermined charge according to the control signal from the control circuit 'memory 155. (FET) tB, tC.
  • capacitors CQ and CR may be connected in parallel with the floating gate field effect transistors (FETs) ttB and ttC as indicated by broken lines in the figure.
  • control circuit 'memory 155 and the FETtB, tC force are configured as element control means that can control the storage switch element in accordance with the external input signal, and this is configured with the floating gate type FETttB. , ttC, coil LP (reactance element) and force Impedance control means that variably sets the impedance according to the input signal from the outside and holds the set state in a nonvolatile manner.
  • the floating gate type FET is used as the memory switch element.
  • the present invention is not limited to this, and a ferroelectric type FET is used.
  • a similar function may be performed using a combination of a non-volatile memory and a switch. In this case, the same effect is obtained.
  • the IC circuit portion 151 of the RFID tag circuit element To of the material tape 101 was accessed (reading / writing) via the antenna 14 and impedance matching (matching) was also performed using the antenna 14.
  • antenna 14 was used as an antenna for both access and matching.
  • the matching was performed in a state where the tape drive was stopped (that is, at least printing was not performed after printing was completed or before printing was started).
  • FIG. 17 (a) is a diagram conceptually showing this.
  • the application of the present invention is not limited to such an antenna arrangement.
  • the IC circuit section 151 of the RFID tag circuit element To of the base tape 101 that is present in the cartridge 100 is accessed (read and written).
  • a dedicated antenna for performing matching (impedance matching) with the RFID tag circuit element To outside the cartridge 100 may be separately provided. In this case, for example, after the base tape 101 and the cover film 103 are transported and driven, access (reading / writing) by the access-dedicated antenna and printing by the print head are performed, then the tape drive is stopped, and mating is performed in this stopped state Can be done.
  • impedance matching is performed with respect to the IC circuit portion 151 of the RFID tag circuit element To of the base tape 101 that is present in the cartridge 100.
  • an antenna dedicated to access for reading (writing) the RFID tag circuit element To outside the cartridge 100 may be provided.
  • the drive of the base tape 101 and the cover film 103 is stopped first, matching is performed in this stopped state, the tape transport drive is started, and access (reading / writing) and the print head are performed while transporting. It is sufficient to print with.
  • the tag is not formed by printing on the cover film 103 different from the base tape 101 provided with the RFID circuit element To as in the above embodiment and bonding them together.
  • Printing on the cover film provided on the tape The present invention may be applied to any non-laminate type cartridge.
  • a plurality of RFID circuit elements To may be provided on the thermal tape, and a print may be printed on the surface of the thermal tape by a print head having a plurality of heating elements. It can also be printed using a ribbon.
  • the present invention can always realize a good impedance matching state between the antenna 152 of the RFID tag circuit element To and the IC circuit unit 151, and reliably perform long-distance communication. The original effect can be obtained.
  • a positioning marker may be provided on the base tape 101, and this may be detected by a detecting means to perform highly accurate positioning. In this case, as described with reference to FIG. 9, it may also be used as an identification mark (for positioning the tape cutting position or wireless tag information writing position) detected by the tape sensor.
  • the RFID tag circuit element To may be common and the tag label producing device 2 may be adapted to each country. In this case, even if the antenna is common, It is possible to create a wireless tag that can match impedance and perform stable communication.
  • EPC global is a non-profit corporation established jointly by the International EAN Association, an international organization for distribution codes, and the Uniform Code Council (UCC), a US distribution code organization. It should be noted that signals conforming to other standards may be used as long as they perform the same function.

Abstract

【課題】アンテナとIC回路部との良好なインピーダンス整合状態を実現でき、長距離通信を確実に行う。 【解決手段】情報を記憶するIC回路部151と、このIC回路部151に接続されたアンテナ152とを備え、情報の送受信を行う無線タグ回路素子Toであって、IC回路部151は、外部からの入力信号に応じインピーダンスを可変設定し、その設定状態を不揮発性にて保持するための制御回路・メモリ155、キャパシタC1~4、ヒューズF11~42、FETt11~42を備える。

Description

明 細 書
無線タグ回路素子及びタグラベル作成装置
技術分野
[0001] 本発明は、外部より無線通信を介し無線タグ情報の読み取り又は書き込みを行える 無線タグ回路素子及びこれを備えたタグラベルを作成するタグラベル作成装置に関 する。
背景技術
[0002] 従来、受信機とアンテナのアンテナインピーダンスを、受信周波数に応じて整合す る無線通信システムがすでに提唱されている(例えば、特許文献 1参照)。この従来 技術では、アンテナインピーダンス検出値に基づ 、てマッチングデータを受信周波 数ごとに取得して記憶手段に記憶する。そして、受信時にその受信周波数に応答し て対応する記憶マッチングデータを読み出し、その読み出したデータに対応した整 合制御信号で整合用素子により定数を調整制御し、自動的に整合を行うようになつ ている。
特許文献 1:特開平 6— 90186号公報
発明の開示
発明が解決しょうとする課題
[0003] 近年、小型の無線タグに対し、リーダ Zライタより非接触で問 、合わせの送信及び 返答の受信を行うことで、無線タグの情報の読み取り Z書き込みを行う RFID (Radio
Frequency Identification)システムが知られて!/、る。
[0004] 無線タグに備えられた無線タグ回路素子は、所定の無線タグ情報を記憶する IC回 路部と、この IC回路部に接続されたアンテナと、アンテナで受信した質問器からの搬 送波 (信号)を整流して電力を発生させる電力発生手段と、所定の情報信号に基づき 搬送波を変調し、アンテナを介し反射返信する変調反射手段とが備えられている。そ して、無線タグが汚れて 、る場合や見えな 、位置に配置されて 、る場合であっても、 リーダ Zライタ側より ic回路部に対してアクセス (情報の読み取り Z書き込み)が可能 であり、商品管理や検査工程等の様々な分野にぉ 、て実用が期待されて!、る。 [0005] このような無線タグ通信システムにおいて、アンテナと IC回路部とのインピーダンス を整合させ効率よく電力を発生させ通信を行うために、上記従来技術を適用し、装置 側(リーダ Zライタ側)力 送信された信号を無線タグ回路素子のアンテナで受信した 時に、 IC回路部のメモリに予め格納蓄積されていたマッチングデータを読み出し、こ れに応じてインピーダンス整合を行うことが考えられる。
[0006] し力しながら、この場合、以下のような不都合が生じる。すなわち、無線タグ回路素 子は受信電波により電力が供給されこれを駆動源として動作するものが多いため、例 えば装置側(リーダ Zライタ側)力 無線タグ回路素子までの距離が比較的離れて 、 ると無線タグ回路素子へ電力が十分に供給されず、インピーダンス整合を行うために メモリからデータを読み出す動作自体が不可能となる可能性がある。このため無線タ グ回路素子のアンテナと ic回路部との良好なインピーダンス整合状態を確保するの は難しぐ長距離通信を確実に行うのは困難であった。
[0007] 本発明の目的は、アンテナと IC回路部との良好なインピーダンス整合状態を実現 でき、長距離通信を確実に行うことができる無線タグ回路素子及びこれを備えた無線 タグラベルを作成するタグラベル作成装置を提供することにある。
課題を解決するための手段
[0008] 上記目的を達成するために、第 1の発明は、情報を記憶する IC回路部と、この IC回 路部に接続されたタグ側アンテナとを備え、情報の送受信を行う無線タグ回路素子 であって、前記 IC
回路部は、外部力 の入力信号に応 I ンピーダンスを可変設定し、その設定状態 を不揮発性にて保持するインピーダンス制御手段を備えることを特徴とする。
[0009] 本願第 1発明においては、 IC回路部に設けたインピーダンス制御手段が、外部入 力信号に応じて無線タグ回路素子のインピーダンスを可変に設定する機能を備えて いる。これにより、例えば比較的強い信号強度が確保できるタグラベル作成装置の装 置側アンテナにより無線タグ回路素子インピーダンス整合のための信号送信を行い 、これに対する無線タグ回路素子側力 の返信信号に応じてインピーダンス設定用 の制御信号をインピーダンス制御手段へ出力し IC回路部のインピーダンスを可変に 設定するようにすれば、インピーダンス制御手段へ確実に電力を供給してインピーダ ンス整合を実行することができる。またこのとき、インピーダンス制御手段が設定した インピーダンスを不揮発性にて保持する機能を備えることにより、いったんインピーダ ンス整合設定した後は、特に整合用の駆動電源等をさらに発生させなくても、確実に 当該良好なインピーダンス整合状態を維持できる。以上の結果、無線タグ回路素子 のアンテナと IC回路部との良好なインピーダンス整合状態を常に実現できるので、長 距離通信を確実に行うことができる。
[0010] 第 2の発明は、上記第 1発明において、前記インピーダンス制御手段は、前記タグ 側アンテナに対し互!ヽに並列に接続された複数のリアクタンス素子と、これら複数のリ ァクタンス素子にそれぞれ直列に接続された複数のヒューズと、前記外部力 の入力 信号に応じて、前記複数のヒューズを個別に切断可能な切断制御手段とを備えるこ とを特徴とする。
[0011] 複数のリアクタンス素子に直列接続した複数のヒューズを切断制御手段で個別に 切断することにより、タグ側アンテナに対し互!ヽに並列に接続されるリアクタンス素子 の数を減少させ、これによつて IC回路部のインピーダンスを可変に設定しかつその 設定を不揮発性にて保持することができる。
[0012] 第 3の発明は、上記第 2発明において、前記リアクタンス素子は、キャパシタである ことを特徴とする。
[0013] 複数のリアクタンス素子としてのキャパシタに直列接続した複数のヒューズを切断制 御手段で個別に切断することにより、タグ側アンテナに対し互いに並列に接続される キャパシタの数を減少させ、これによつて IC回路部のインピーダンスを可変に設定し かつその設定を不揮発性にて保持することができる。また、キャパシタは容易に IC回 路部内に作製できる。
[0014] 第 4の発明は、上記第 2又は第 3発明において、前記切断制御手段は、前記外部 力 の入力信号に応じて制御信号を出力するタグ側第 1制御手段と、このタグ側第 1 制御手段からの前記制御信号に応じて前記ヒューズに溶断電流を供給可能なヒユー ズ制御用電流印加手段とを備えることを特徴とする。
[0015] タグ側第 1制御手段で制御信号を出力し、これに応じてヒューズ制御用電流印加手 段がヒューズに溶断電流を供給して切断することにより、複数のヒューズを個別に切 断することができる。
[0016] 第 5の発明は、上記第 2乃至第 4発明のいずれか 1つにおいて、前記切断制御手 段は、前記複数のヒューズのうち切断可能な箇所あるいは個数に関する情報を記憶 する第 1不揮発性記憶手段を備えることを特徴とする。
[0017] 第 1不揮発性記憶手段より例えばそれ以降さらに切断可能なヒューズの個数ゃ箇 所、あるいは既に切断されたヒューズの個数や箇所等の情報を取得し、過不足のな い確実なインピーダンス制御を行うことができる。
[0018] 第 6の発明は、上記第 1発明において、前記インピーダンス制御手段は、前記タグ 側アンテナに接続されたリアクタンス素子と、前記タグ側アンテナに関し直列ある ヽは 並列に接続された記憶スィッチ素子と、前記外部からの入力信号に応じて、前記記 憶スィッチ素子を制御可能な素子制御手段とを備えることを特徴とする。
[0019] 例えば浮遊ゲート型電界効果トランジスタの電荷量を制御して増減させる等、記憶 スィッチ素子を素子制御手段で制御することにより、 IC回路部のインピーダンスを可 変に設定しかつその設定を不揮発性にて保持することができる。
[0020] 第 7の発明は、上記第 6発明において、前記記憶スィッチ素子は、浮遊ゲート型電 界効果トランジスタであることを特徴とする。
[0021] 素子制御手段で例えば記憶スィッチ素子としての浮遊ゲート型電界効果トランジス タの電荷量を制御して増減させることにより、 IC回路部のインピーダンスを可変に設 定しかつその設定を不揮発性にて保持することができる。
[0022] 第 8の発明は、上記第 7発明において、前記素子制御手段は、前記外部からの入 力信号に応じて制御信号を出力するタグ側第 2制御手段と、このタグ側第 2制御手段 力 の前記制御信号に応じて前記浮遊ゲート型電界効果トランジスタに所定の電荷 を発生可能な電荷注入手段とを備えることを特徴とする。
[0023] タグ側第 2制御手段で制御信号を出力し、これに応じて電荷注入手段が浮遊ゲー ト型電界効果トランジスタに所定の電荷を発生 (又は消滅)させることにより、浮遊ゲ ート型電界効果トランジスタの電荷量を制御することができる。
[0024] 第 9の発明は、上記第 7又は第 8発明において、前記素子制御手段は、前記浮遊 ゲート型電界効果トランジスタの電荷量又は電荷量レベルに関する情報を記憶する 第 2不揮発性記憶手段を備えることを特徴とする。
[0025] 第 2不揮発性記憶手段より、例えばその時点で浮遊ゲート型電界効果トランジスタ に発生して 、るあるいはさらに蓄積しうる電荷の量や、あるいは電荷量レベル等に関 する情報を取得し、過不足のな 、確実なインピーダンス制御を行うことができる。
[0026] 上記目的を達成するために、第 10の発明は、タグテープに配置され、外部からの 入力信号に応じインピーダンスを可変設定しその設定状態を不揮発性にて保持する インピーダンス制御手段を有する IC回路部及びこの IC回路部に接続されたタグ側ァ ンテナを備えた無線タグ回路素子との間で無線通信により情報の送受信を行う装置 側アンテナと、前記 IC回路部へのアクセス情報を生成し、前記装置側アンテナを介 して前記無線タグ回路素子へ送信し、前記 IC回路部へアクセスを行う情報アクセス 手段と、この情報アクセス手段による前記アクセス情報に応じて前記無線タグ回路素 子より返信された返信信号を、前記装置側アンテナを介して受信する返信信号受信 手段と、この返信信号受信手段で受信された前記返信信号より、前記 IC回路部のィ ンピーダンスと前記タグ側アンテナのインピーダンスとの整合状態を判定する判定手 段と、この判定手段の前記判定結果に基づき、前記無線タグ回路素子の前記 IC回 路部の前記インピーダンス制御手段へインピーダンス設定用の制御信号を出力する インピーダンス制御信号出力手段とを有することを特徴とする。
[0027] タグラベル作成装置においては、タグテープに備えられた無線タグ回路素子に対し 、情報アクセス手段で生成されたアクセス情報が装置側アンテナを介して送信されて IC回路部へのアクセス (読み取り又は書き込み)が行われ、このように情報読み取り 又は書き込みが行われた後の無線タグ回路素子付きタグテープを用いてタグラベル が作成される。
[0028] ここで、本願第 10発明においては、例えば上記 IC回路部へのアクセスの前にイン ピーダンス整合のために情報アクセス手段からの上記アクセス情報を装置側アンテ ナを介し無線タグ回路素子へ送信し、これに応じて無線タグ回路素子より返信された 返信信号を装置側アンテナを介して返信信号受信手段で受信する。そしてこの返信 信号に基づき、判定手段が無線タグ回路素子の IC回路部とタグ側アンテナとのイン ピーダンスの整合状態を判定し、さらにその判定結果に基づき、インピーダンス設定 用の制御信号が無線タグ回路素子のインピーダンス制御手段へ出力され、 IC回路 部のインピーダンスが可変に設定される。これにより、無線タグ回路素子の IC回路部 とタグ側アンテナとのインピーダンスを整合させることができる。
[0029] また、通常、タグラベル作成装置ではアクセス時の装置側アンテナと無線タグ回路 素子との距離は比較的短くなつていることから、上記のようにして、タグラベル作成装 置における IC回路部へのアクセスに用いる装置側アンテナを利用してインピーダン ス整合のための信号送信を行うことで、比較的強 、信号強度で無線タグ回路素子へ 信号を届力せインピーダンス制御手段へ電力を供給することができ、確実にインピー ダンス整合を実行することができる。またこのとき、インピーダンス制御手段は設定し たインピーダンスを不揮発性にて保持することにより、 Vヽつたんインピーダンス整合設 定した後は、特に整合用の駆動電源等をさらに発生させなくても、確実に当該良好 なインピーダンス整合状態を維持できる。以上の結果、ラベル作成後のユーザ使用 時において、無線タグ回路素子のアンテナと IC回路部との良好なインピーダンス整 合状態を常に実現できるので、長距離通信を確実に行うことができる。
[0030] 第 11の発明は、上記第 10発明において、前記判定手段は、前記情報アクセス手 段が所定の信号強度で前記無線タグ回路素子への送信を行 、、これに対する前記 返信信号が前記返信信号受信手段で受信されたとき、前記 IC回路部のインピーダ ンスと前記タグ側アンテナのインピーダンスとの整合完了状態と判定することを特徴と する。
[0031] 例えば十分に小さ!/、所定の信号強度で無線タグ回路素子への送信を行ってもこれ に対応する返信信号が返信信号受信手段で受信できた場合には、タグ側アンテナ で受信した所定の信号強度の電波が効率よく無線タグ回路素子の電力発生手段に 供給され、回路の動作に必要な十分な電力を発生でき、装置側アンテナと無線タグ 回路素子との間で良好な通信状態が実現されていることがわかる。したがって、判定 手段では IC回路部とタグ側アンテナとでインピーダンスが良好に整合されていると見 なし、整合完了状態と判定することができる。
[0032] 第 12の発明は、上記第 10発明において、前記返信信号受信手段で受信された前 記返信信号の信号強度を検出する信号強度検出手段を有し、前記判定手段は、前 記情報アクセス手段が所定の信号強度で前記無線タグ回路素子への送信を行い、 前記信号強度検出手段で検出された前記返信信号の信号強度が所定のしきい値以 上となったとき、前記 IC回路部のインピーダンスと前記タグ側アンテナのインピーダン スとの整合完了状態と判定することを特徴とする。
[0033] 例えばある定まった所定の信号強度で無線タグ回路素子への送信を行い、これに 対応して返信信号受信手段で受信した返答信号が比較的大きく所定のしきい値以 上となる場合には、装置側アンテナと無線タグ回路素子との間で良好な通信状態が 実現されていることがわかる。したがって、判定手段では IC回路部とタグ側アンテナと でインピーダンスが良好に整合されていると見なし、整合完了状態と判定することが できる。
[0034] 第 13の発明は、上記第 10乃至第 12発明のいずれか 1つにおいて、前記タグテー プを繰り出すための駆動手段と、前記タグテープの所定領域に印字を行う印字手段 とを有することを特徴とする。
[0035] 駆動手段でタグテープを繰り出すことにより無線タグ回路素子に順次アクセスを行う ことができ、また印字手段でタグテープの所定領域に印字を行うことにより印字済み タグテープを生成することができ、これを用いて印字付き無線タグラベルを作成する ことができる。
[0036] 第 14の発明は、上記第 13発明において、前記タグテープの繰り出しが停止したと きに前記判定及びこれに応じた前記インピーダンス設定用の制御信号の出力を行う ように、前記駆動手段、前記判定手段、及び前記インピーダンス制御信号出力手段 を制御する装置側第 1制御手段を有することを特徴とする。
[0037] これにより、タグテープの繰り出しが停止し、タグテープ上の無線タグ回路素子と装 置側アンテナとの位置関係及び距離が固定された状態で安定的にインピーダンス整 合制御を行うことができる。
[0038] 第 15の発明は、上記第 13発明において、前記タグテープの所定領域への印字が 開始される前に前記判定及びこれに応じた前記インピーダンス設定用の制御信号の 出力を行うように、前記印字手段、前記判定手段、及び前記インピーダンス制御信号 出力手段を制御する装置側第 2制御手段を有することを特徴とする。 [0039] これにより、例えばインピーダンス整合制御を行った後に、無線タグ回路素子への アクセス及びタグテープ所定領域への印字を行 ヽ、印字付き無線タグラベルを作成 することができる。
[0040] 第 16の発明は、上記第 13発明において、前記タグテープの所定領域への印字が 完了した後に前記判定及びこれに応じた前記インピーダンス設定用の制御信号の 出力を行うように、前記印字手段、前記判定手段、及び前記インピーダンス制御信号 出力手段を制御する装置側第 3制御手段を有することを特徴とする。
[0041] これにより、例えば先にタグテープ所定領域への印字を行った後にインピーダンス 整合制御を行い、さらにその後に無線タグ回路素子へのアクセスを行って、印字付き 無線タグラベルを作成することができる。
発明の効果
[0042] 本発明によれば、アンテナと IC回路部との良好なインピーダンス整合状態を実現で き、長距離通信を確実に行うことができる。
図面の簡単な説明
[0043] [図 1]本発明の一実施形態のタグラベル作成装置が適用される無線タグ生成システ ムを表すシステム構成図である。
[図 2]タグラベル作成装置の詳細構造を表す概念的構成図である。
[図 3]カートリッジの詳細構造を説明するための説明図である。
[図 4]高周波回路の詳細機能を表す機能ブロック図である。
[図 5]無線タグ回路素子の機能的構成を表す機能ブロック図である。
[図 6]無線タグラベルの外観の一例を表す上面図及び下面図である。
[図 7]図 6中 VII— Vi 断面による横断面図である。
[図 8]端末又は汎用コンピュータに表示される画面の一例を表す図である。
[図 9]制御回路によって実行される制御手順を表すフローチャートである。
[図 10]図 9に示したステップ S200の詳細手順を表すフローチャートである。
[図 11]図 9に示したステップ S 30の詳細手順を表すフローチャートである。
[図 12]無線タグ読み取り処理の詳細手順を表すフローチャートである。
[図 13]無線タグ回路素子の IC回路部の制御回路'メモリで実行される制御手順を表 すフローチャートである。
[図 14]コイルとキャパシタとを逆に配置した変形例による無線タグ回路素子の機能的 構成を表す機能ブロック図である。
[図 15]ヒューズを用いずにインピーダンス調整を行う変形例による無線タグ回路素子 の機能的構成を表す機能ブロック図である。
[図 16]浮遊ゲート型電界効果トランジスタとアンテナとを直列に接続た変形例の無線 タグ回路素子の機能的構成を表す機能ブロック図である。
[図 17]アンテナをアクセス用とマッチング用の兼用アンテナとして用いた本発明の一 実施形態を概念的に表した図、カートリッジ内にアクセス用アンテナを設けカートリツ ジ外にマッチング専用アンテナを設けた場合を概念的に表した図、カートリッジ外に アクセス用アンテナを設けカートリッジ内にマッチング専用アンテナを設けた場合を 概念的に表した図である。
符号の説明
2 タグラベル作成装置
10 印字ヘッド (印字手段)
12 圧着ローラ駆動軸 (駆動手段)
14 アンテナ(装置側アンテナ)
21 高周波回路
22 信号処理回路 (情報アクセス手段、返信信号受信手段)
30 制御回路 (判定手段、インピーダンス制御信号出力手段、
装置側第 1制御手段、装置側第 2制御手段)
32 送信部 (情報アクセス手段)
33 受信部 (返信信号受信手段)
48 RSSI回路 (信号強度検出手段)
101 基材テープ (タグテープ)
151 IC回路部
152 アンテナ (タグ側アンテナ)
155 制御回路'メモリ(切断制御手段、インピーダンス制御手 段、第 1不揮発性記憶手段、タグ側第 1制御手段;素子制
御手段、インピーダンス制御手段、第 2不揮発性記憶手段、 タグ側第 2制御手段)
キャパシタ(リアクタンス素子、インピーダンス制御手段) キャパシタ(リアクタンス素子、インピーダンス制御手段)
ヒューズ (インピーダンス制御手段)
コイル (リアクタンス素子、インピーダンス制御手段)
無線タグラベル
無線タグ回路素子
無線タグ回路素子
無線タグ回路素子
無線タグ回路素子
FET (切断制御手段、ヒューズ制御用電流印加手段、ィ
ンピーダンス制御手段)
FET (素子制御手段、インピーダンス制御手段)
FET (素子制御手段、インピーダンス制御手段)
FET (インピーダンス帘1』御手段)
ttB, ttC FET (インピーダンス制御手段)
発明を実施するための最良の形態
[0045] 以下、本発明の一実施の形態を図面を参照しつつ説明する。
[0046] 図 1は、本実施形態のタグラベル作成装置が適用される無線タグ生成システムを表 すシステム構成図である。
[0047] 図 1に示すこの無線タグ生成システム 1において、本実施形態によるタグラベル作 成装置 2は、有線あるいは無線による通信回線 3を介してルートサーバ 4、端末 5、汎 用コンピュータ 6、及び複数の情報サーバ 7に接続されている。
[0048] 図 2は、上記タグラベル作成装置 2の詳細構造を表す概念的構成図である。
[0049] 図 2において、タグラベル作成装置 2の装置本体 8には、凹所としてのカートリッジホ ルダ部(図示せず)が設けられ、このホルダ部に、カートリッジ (無線タグ回路素子力 ートリッジ) 100が着脱可能に取り付けられている。
[0050] 装置本体 8は、第 2ロール 104力も繰り出されるカバーフィルム 103に所定の印字( 印刷)を行う印字ヘッド (サーマルヘッド、印字手段) 10と、カバーフィルム 103への 印字が終了したインクリボン 105を駆動するリボン卷取りローラ駆動軸 11と、カバーフ イルム 103と第 1ロール 102から繰り出される基材テープ (タグテープ) 101とを貼り合 わせつつ印字済タグラベル用テープ 110としてカートリッジ 100から繰り出すための 圧着ローラ駆動軸 12 (駆動手段)と、基材テープ 101に備えられる無線タグ回路素子 To (詳細は後述)との間で UHF帯等の高周波を用いて無線通信により信号の送受 を行うアンテナ(装置側アンテナ) 14と、上記印字済タグラベル用テープ 110を所定 のタイミングで所定の長さに切断しラベル状の無線タグラベル T (詳細は後述)を生成 するカツタ 15と、無線タグラベル Tを搬出口 16へと搬送し送出する送出ローラ 17と、 上記搬出口 16における無線タグラベル Tの有無を検出するセンサ 18と、それらを収 納するように外郭を構成し、カートリッジ 100を着脱可能に嵌合させる上記カートリツ ジホルダ部及び上記搬出口 16を備える筐体 9とを有する。
[0051] アンテナ 14は、一方側(この例では図 2の紙面に向かって手前側)に指向性を備え た指向性アンテナ (この例ではいわゆるノツチアンテナ)で構成されるとともに上記第 1ロール 102の軸方向(図 2の紙面に向かって奥側)近傍に配置されており、第 1ロー ル 102の基材テープ 101の送り出し部分近傍領域 Xと通信可能となるように配置され ている。
[0052] 一方、装置本体 8はまた、上記アンテナ 14を介し上記無線タグ回路素子 Toヘアク セス(書き込み又は読み取り)を行うための高周波回路 21と、無線タグ回路素子 Toか ら読み出された信号を処理するための信号処理回路 22と、前述したリボン卷取り口 ーラ駆動軸 11、圧着ローラ駆動軸 12を駆動するカートリッジ用モータ 23と、このカー トリッジ用モータ 23の駆動を制御するカートリッジ駆動回路 24と、上記印字ヘッド 10 への通電を制御する印刷駆動回路 25と、上記カツタ 15を駆動して切断動作を行わ せるソレノイド 26と、そのソレノイド 26を制御するソレノイド駆動回路 27と、上記送出口 ーラ 17を駆動する送出ローラ用モータ 28と、上記高周波回路 21、信号処理回路 22 、カートリッジ駆動回路 24、印刷駆動回路 25、ソレノイド駆動回路 27、送出ローラ駆 動回路 29等を介し、タグラベル作成装置 2全体の動作を制御するための制御回路 3 0とを有する。
[0053] 制御回路 30は、いわゆるマイクロコンピュータであり、詳細な図示を省略する力 中 央演算処理装置である CPU、 ROM、及び RAM等から構成され、 RAMの一時記憶 機能を利用しつつ ROMに予め記憶されたプログラムに従って信号処理を行うように なっている。またこの制御回路 30は、入出力インターフェイス 31を介し例えば通信回 線に接続され、この通信回線に接続された前述のルートサーバ 4、他の端末 5、汎用 コンピュータ 6、及び情報サーバ 7等との間で情報のやりとりが可能となっている。
[0054] 図 3は、上記カートリッジ 100の詳細構造を説明するための説明図である。
[0055] この図 3において、カートリッジ 100は、筐体 100Aと、この筐体 100A内に配置され 帯状の上記基材テープ 101が卷回された上記第 1ロール 102と、上記基材テープ 10 1と略同じ幅である透明な上記カバーフィルム 103が卷回された上記第 2ロール 104 と、上記インクリボン 105 (熱転写リボン、但しカバーフィルムが感熱テープで構成さ れる場合は不要)を繰り出すリボン供給側ロール 111と、印字後のリボン 105を卷取 るリボン卷取りローラ 106と、上記基材テープ 101と上記カバーフィルム 103とを押圧 し接着させ上記印字済タグラベル用テープとしつつ矢印 Aで示す方向にテープ送り をする(=テープ送りローラとしても機能する)圧着ローラ 107とを有する。
[0056] 第 1ロール 102は、リール部材 102aの周りに、長手方向に複数の無線タグ回路素 子 Toが所定の等間隔で順次配設された上記基材テープ 101を卷回している。
[0057] 基材テープ 101はこの例では 4層構造となっており(図 3中部分拡大図参照)、内側 に巻かれる側(図 3中右側)よりその反対側(図 3中左側)へ向力つて、適宜の粘着材 力もなる粘着層 101a、 PET (ポリエチレンテレフタラート)等力も成る色付きのベース フィルム 101b、適宜の粘着材カゝらなる粘着層 101c、剥離紙 lOldの順序で積層され 構成されている。
[0058] ベースフィルム 101bの裏側(図 3中左側)には、情報の送受信を行うアンテナ (タグ 側アンテナ) 152がー体的に設けられており、これに接続するように情報を更新可能 に(書き換え可能 rewritableに)記憶する IC回路部 151が形成され、これらによって無 線タグ回路素子 Toが構成されて ヽる。 [0059] ベースフィルム 101bの表側(図 3中右側)には、後にカバーフィルム 103を接着す るための上記粘着層 101aが形成され、またベースフィルム 101bの裏側(図 3中左側 )には、無線タグ回路素子 Toを内包するように設けた上記粘着層 101cによって上記 剥離紙 101dがベースフィルム 101bに接着されている。なお、この剥離紙 101dは、 最終的にラベル状に完成した無線タグラベル Tが所定の商品等に貼り付けられる際 に、これを剥がすことで粘着層 101cにより当該商品等に接着できるようにしたもので ある。
[0060] 第 2ロール 104は、リール部材 104aの周りに上記カバーフィルム 103を卷回してい る。第 2ロール 104より繰り出されるカバーフィルム 103は、その裏面側(すなわち上 記基材テープ 101と接着される側)に配置された上記リボン供給側ロール 111及び 上記リボン卷取りローラ 106で駆動されるリボン 105が、上記印字ヘッド 10に押圧さ れることで当該カバーフィルム 103の裏面に当接させられるようになつている。
[0061] リボン卷取りローラ 106及び圧着ローラ 107は、それぞれカートリッジ 100外に設け た例えばパルスモータである上記カートリッジ用モータ 23 (前述の図 2参照)の駆動 力が上記リボン卷取りローラ駆動軸 11及び上記圧着ローラ駆動軸 12に伝達されるこ とによって回転駆動される。
[0062] 上記構成のカートリッジ 100において、上記第 1ロール 102より繰り出された基材テ ープ 101は、圧着ローラ 107へと供給される。一方、第 2ロール 104より繰り出される カバーフィルム 103は、その裏面側(すなわち上記基材テープ 101と接着される側) に配置されたリボン供給側ロール 111及びリボン卷取りローラ 106で駆動されるインク リボン 105が上記印字ヘッド 10に押圧されて当該カバーフィルム 103の裏面に当接 させられる。
[0063] そして、カートリッジ 100が上記装置本体 8のカートリッジホルダ部に装着されロール ホルダ(図示せず)が離反位置から当接位置に移動されると、カバーフィルム 103及 びインクリボン 105が印字ヘッド 10とプラテンローラ 108との間に狭持されるとともに、 基材テープ 101及びカバーフィルム 103が圧着ローラ 107とサブローラ 109との間に 狭持される。そして、カートリッジ用モータ 23の駆動力によってリボン卷取りローラ 10 6及び圧着ローラ 107が矢印 B及び矢印 Dで示す方向にそれぞれ同期して回転駆動 される。このとき、前述の圧着ローラ駆動軸 12と上記サブローラ 109及びプラテン口 ーラ 108はギヤ(図示せず)にて連結されており、圧着ローラ駆動軸 12の駆動に伴い 圧着ローラ 107、サブローラ 109、及びプラテンローラ 108が回転し、第 1ロール 102 力も基材テープ 101が繰り出され、上述のように圧着ローラ 107へ供給される。一方 、第 2ロール 104からはカバーフィルム 103が繰り出されるとともに、上記印刷駆動回 路 25により印字ヘッド 10の複数の発熱素子が通電される。この結果、カバーフィルム 103の裏面に印字 R (後述の図 7参照)が印刷される。そして、上記基材テープ 101と 上記印刷が終了したカバーフィルム 103とが上記圧着ローラ 107及びサブローラ 10 9により接着されて一体ィ匕され、印字済タグラベル用テープとして形成され、カートリツ ジ 100外へと搬出される。なお、カバーフィルム 103への印字が終了したインクリボン 105は、リボン卷取りローラ駆動軸 11の駆動によりリボン卷取りローラ 106に卷取られ る。また、第 1ロール 102の繰り出し近傍にはガイドローラ 120が設けられており、第 1 ロール 102の残量により外径 Diが変化しても装置側のアンテナ 14と無線タグラベル Tの位置関係が所定の範囲となるように規制して、無線タグ回路素子 Toとの通信条 件を一定に保つようになって!/、る。
[0064] 図 4は、上記高周波回路 21の詳細機能を表す機能ブロック図である。この図 4にお いて、高周波回路 21は、アンテナ 14を介し無線タグ回路素子 Toに対して信号を送 信する送信部 32と、アンテナ 14により受信された無線タグ回路素子 Toからの反射波 を入力する受信部 33と、送受分離器 34とから構成される。
[0065] 送信部 32は、無線タグ回路素子 Toの IC回路部 151の無線タグ情報にアクセスす る (書き込み又は読み取りを行う)ための搬送波を発生させる水晶振動子 35、 PLL (P hase
Locked Loop) 36、及び VCO (Voltage Controlled Oscillator) 37と、上記信号処理回 路 22から供給される信号に基づ 、て上記発生させられた搬送波を変調 (この例では 信号処理回路 22からの「TX_ASK」信号に基づく振幅変調)する送信乗算回路 38 (但し振幅変調の場合は増幅率可変アンプ等を用いてもよい)と、その送信乗算回路 38により変調された変調波 (無線タグ情報)を、制御回路 30からの「TX— PWR」信 号によって増幅率を決定し増幅する可変送信アンプ 39とを備えている。そして、上記 発生される搬送波は、好適には UHF帯やマイクロ波帯の周波数を用いており、上記 送信アンプ 39の出力は、送受分離器 34を介してアンテナ 14のいずれか〖こ伝達され て無線タグ回路素子 Toの IC回路部 151に供給される。なお、無線タグ情報は上記 のように変調した信号に限られず、単なる搬送波のみの場合もある。
[0066] 受信部 33は、アンテナ 14により受信された無線タグ回路素子 Toからの反射波と上 記発生させられた搬送波とを掛け合わせる受信第 1乗算回路 40と、その受信第 1乗 算回路 40の出力から必要な帯域の信号のみを取り出すための第 1バンドパスフィル タ 41と、この第 1バンドパスフィルタ 41の出力を増幅して第 1リミッタ 42に供給する受 信第 1アンプ 43と、上記アンテナ 14により受信された無線タグ回路素子 To力もの反 射波と上記発生された後に位相が 90° 遅れた搬送波とを掛け合わせる受信第 2乗 算回路 44と、その受信第 2乗算回路 44の出力力も必要な帯域の信号のみを取り出 すための第 2バンドパスフィルタ 45と、この第 2バンドパスフィルタ 45の出力を入力す るとともに増幅して第 2リミッタ 46に供給する受信第 2アンプ 47とを備えている。そして 、上記第 1リミッタ 42から出力される信号「RXS—I」及び第 2リミッタ 46から出力される 信号「RXS— Q」は、上記信号処理回路 22に入力されて処理される。
[0067] また、受信第 1アンプ 43及び受信第 2アンプ 47の出力は、 RSSI (Received Signal
Strength Indicator)回路 48にも入力され、それらの信号の強度を示す信号「: RSSI 」が信号処理回路 22に入力されるようになっている。このようにして、本実施形態のタ グラベル作成装置 2では、 I Q直交復調によって無線タグ回路素子 Toからの反射 波の復調が行われる。
[0068] 図 5は、上記無線タグ回路素子 Toの機能的構成を表す機能ブロック図である。この 図 5において、無線タグ回路素子 Toは、タグラベル作成装置 2側のアンテナ 14と UH F帯等の高周波を用いて非接触で信号の送受信を行う上記アンテナ 152 (タグ側ァ ンテナ)と、このアンテナ 152に接続された上記 IC回路部 151とを有して 、る。
[0069] IC回路部 151は、アンテナ 152に対し互いに並列に接続された複数 (この例では 4 個)の切断可能なキャパシタ CI, C2, C3, C4 (リアクタンス素子)及び切断不能なキ ャパシタ COと、それら複数のキャパシタ CI, C2, C3, C4に(詳細には両端の端子 側に)それぞれ直列に接続された複数 (この例では 4組 X各組 2個 = 8個)のヒューズ Fl l, F12、ヒューズ F21, F22、ヒューズ F31, F32、ヒューズ F41, F42と、外咅力 らの入力信号に応じて制御信号を出力する制御回路'メモリ 155 (タグ側第 1制御手 段)と、この制御回路'メモリ 155からの上記制御信号に応じたゲート電圧で上記ヒュ ーズ Fl l, F12, F21, F22, F31, F32, F41, F42にそれぞれ溶断電流を供給可 能な FET( =電界効果トランジスタ、ヒューズ制御用電流印加手段) ti l, tl2, t21, t22, t31, t32, t41, t42と、アンテナ 152により受信された搬送波を整流する整流 回路 153と、上記アンテナ 152に接続された変復調回路 158と、上記整流回路 153 により整流された搬送波のエネルギを蓄積し IC回路部 151の駆動電源とするための 電源回路 (制御回路'メモリ 155内)と、上記アンテナ 152により受信された搬送波か らクロック信号を抽出して上記制御回路'メモリ 155に供給するクロック抽出部(図示 せず)とを有している。なお、 IC回路部 151とアンテナ 152との間には、アンテナ 152 に対しそれぞれ直列に接続された 2つのコイル (但し配線パターンによってコイル機 能を持たせるようにしても良い) LI, L2が設けられている。伹しこのコイル LI, L2は I C回路部 151内に内蔵させても良!ヽ。
[0070] 制御回路'メモリ 155は、無線タグ回路素子 Toの作動を制御するとともに所定の情 報信号を記憶し得る機能を備えたものであり、この例では、上記 4個のキャパシタ C1 〜C4のうち切断可能な個数(言い換えれば 4組 8個のヒューズ Fl l, F12、ヒューズ F 21, F22、ヒューズ F31, F32、ヒューズ F41, F42のうち切断可能なものが何組残つ ているか。各組ごとに同時に切断される)に関する情報を記憶する(第 1不揮発性記 憶手段、詳細は後述)。もちろん、切断可能な個数ではなぐ切断された組、あるいは 未切断の組を示す切断箇所情報あるいは未切断箇所情報を記憶しても良い。また 制御回路'メモリ 155は、上記変復調回路 158により復調された受信信号を解釈する とともに、前述のように記憶された情報信号に基づいて返信信号を生成し、上記変復 調回路 158により返信する制御等の基本的な制御を実行する。
[0071] 変復調回路 158は、アンテナ 152により受信された上記タグラベル作成装置 2のァ ンテナ 14からの通信信号の復調を行うと共に、上記制御回路'メモリ 155からの応答 信号に基づき、アンテナ 152より受信された搬送波を変調反射する。
[0072] FETtl l〜t42は、上記整流回路 153で取得され制御回路'メモリ 155内でチヤ一 ジされた電流を、対応するヒューズ Fl 1〜F42にそれぞれ流すようになって 、る。
[0073] キャパシタ CI, C2, C3, C4は、この例では、それぞれ互いの容量が等しくなつて いる。
[0074] 図 6 (a)及び図 6 (b)は、上述のようにして無線タグ回路素子 Toの情報書き込み及 び印字済タグラベル用テープ 110の切断が完了し形成された無線タグラベル Tの外 観の一例を表す図であり、図 6 (a)は上面図、図 6 (b)は下面図である。また図 7は、 図 6中 Vll—Vi 断面による横断面図である。
[0075] これら図 6 (a)、図 6 (b)、及び図 7において、無線タグラベル Tは、図 3に示した 4層 構造にカバーフィルム 103が加わった 5層構造となっており、カバーフィルム 103側( 図 7中上側)よりその反対側(図 7中下側)へ向かって、カバーフィルム 103、粘着層 1 Ola,ベースフィルム 101b、粘着層 101c、剥離紙 101dで 5層を構成している。そし て、前述のようにベースフィルム 101bの裏側に設けられたアンテナ 152を含む無線 タグ回路素子 Toが粘着層 101c内に備えられるとともに、カバーフィルム 103の裏面 に印字 R (この例では無線タグラベル Tの種類を示す「RF— ID」の文字)が印刷され ている。
[0076] 図 8は、上述したようなタグラベル作成装置 2による無線タグ回路素子 Toの IC回路 部 151の無線タグ情報へのアクセス (書き込み又は読み取り)に際して、上記した端末 5又は汎用コンピュータ 6に表示される画面の一例を表す図である。
[0077] 図 8にお 、て、この例では、タグラベルの種別(アクセス周波数及びテープ寸法)、 無線タグ回路素子 Toに対応して印刷された印字文字 R、その無線タグ回路素子 To に固有の IDであるアクセス(書き込み又は読み取り) ID、上記情報サーバ 7に記憶さ れた物品情報のアドレス、及び上記ルートサーバ 4におけるそれらの対応情報の格 納先アドレス等が前記端末 5又は汎用コンピュータ 6に表示可能となっている。そして 、その端末 5又は汎用コンピュータ 6の操作によりタグラベル作成装置 2が作動されて 、カバーフィルム 103に上記印字文字 Rが印刷されると共に、後述するように IC回路 部 151に上記書き込み ID及び物品情報等の情報が書き込まれる(又は IC回路部 15 1に予め記憶された物品情報等の無線タグ情報が読みとられる)。
[0078] 上記のような書き込み (又は読み取り)の際、生成された無線タグラベル Tの IDとそ の無線タグラベル Tの IC回路部 151から読みとられた情報 (又は IC回路部 151に書 き込まれた情報)との対応関係は、前述のルートサーバ 4に記憶され、必要に応じて 参照できるようになって 、る。
[0079] ここで、本実施形態のタグラベル作成装置 2の最も大きな特徴は、無線タグラベル 作成の際に、 IC回路部 151内に備えられたヒューズ F11〜F42を用いてキャパシタ C1〜C4を (予め定められた)所定の順序にて切断すること〖こより、インピーダンス整 合を実行し、かつ非揮発性をもってその設定を保持することにある。以下、その内容 を順次詳細に説明する。
[0080] 図 9は、上記制御回路 30によって実行される制御手順を表すフローチャートである
[0081] この図 9において、タグラベル作成装置 2の書き込み (又は読み取り)操作が行われ るとこのフローが開始される。まずステップ S 10において、上記端末 5又は汎用コンビ ユータ 6を介して入力操作された、アンテナ 14より無線タグ回路素子 Toの IC回路部 1 51へ書き込むべき無線タグ情報と、印字ヘッド 10により無線タグラベル Tへ印字す べき印字情報とが、通信回線 3及び入出力インターフェイス 31を介し読み込まれる。
[0082] その後、ステップ S 15に移り、無線タグ回路素子 To力もの応答がなぐリトライ (再試 行)を行った回数をカウントする変数 N、及び通信良好か不良かを表すフラグ Fを 0に 初期化する。
[0083] 次に、ステップ S16において、カートリッジ駆動回路 24に制御信号を出力し、カート リッジ用モータ 23の駆動力によってリボン卷取りローラ 106及び圧着ローラ 107を回 転駆動させる。これにより、第 1ロール 102から基材テープ 101が繰り出され圧着ロー ラ 107へ供給されるとともに、第 2ロール 104からはカバーフィルム 103が繰り出され る。さらに送出ローラ駆動回路 29を介して送出ローラ用モータ 28に制御信号を出力 し、送出ローラ 17を回転駆動させる。以上の結果、前述したように基材テープ 101と( 後述のように印刷が終了した)カバーフィルム 103とが上記圧着ローラ 107及びサブ ローラ 109により接着されて一体ィ匕され、印字済タグラベル用テープ 110としてカート リッジ体 100外方向へと搬送されていくように、各テープ 101, 103, 110が駆動開始 される。 [0084] その後、ステップ S17に移り、基材テープ 101が所定位置 (無線タグ回路素子 Toが アンテナ 14に正対する位置)にまで搬送されたかどうかを判定する。具体的には、例 えば、基材テープ 101 (詳細には例えば剥離紙 101d、あるいはカバーフィルム 103 等でもよい)に対し各無線タグ回路素子 Toに対応して設けた適宜の識別用マークを カートリッジ 100外 (例えばカツタ 15のさらに搬送方向下流側)に設けた公知のテー プセンサで検出することにより行えば足りる。
[0085] 判定が満たさされたらステップ S18に移って、カートリッジ駆動回路 24に制御信号 を出力してリボン卷取りローラ 106及び圧着ローラ 107の回転駆動を停止するととも に、送出ローラ駆動回路 29を介して送出ローラ用モータ 28に制御信号を出力し送 出ローラ 17の回転駆動を停止し、テープ搬送を停止させる。
[0086] その後、ステップ S200において、無線タグ回路素子 Toのアンテナ 152と IC回路部 151とのインピーダンス整合処理を実施する(詳細は後述する図 10参照)。
[0087] そして、ステップ S20に移り、カートリッジ駆動回路 24に制御信号を出力して再びリ ボン卷取りローラ 106及び圧着ローラ 107を回転駆動させるとともに、送出ローラ駆 動回路 29を介して送出ローラ用モータ 28に制御信号を出力し、送出ローラ 17を再 び回転駆動させ、テープ駆動を再開する。
[0088] その後、ステップ S30において、無線タグ情報を無線タグ回路素子 Toに送信し書き 込む書き込み処理を行う(詳細は後述の図 11を参照)。
[0089] そして、ステップ S35に移り、印刷駆動回路 25に制御信号を出力し、印字ヘッド 10 を通電して、カバーフィルム 103のうち所定の領域 (例えば基材テープ 101に所定ピ ツチで等間隔で配置された無線タグ回路素子 Toの裏面に貼り合わせることとなる領 域)に、ステップ S 10で読み込んだ文字、記号、バーコード等の印字 Rを印刷させる。 ステップ S35が終了すると、ステップ S39に移る。
[0090] ステップ S39では、フラグ F=0であるかどうかが判定される。書き込み処理が正常 に完了して ヽれば F= 0のまま(後述の図 11に示すフローのステップ S38A参照)で あるので、この判定が満たされ、ステップ S40に移る。一方、何らかの理由で書き込 み処理が正常に完了して 、な 、場合は F = 1とされて 、る(後述の図 11に示すフロ 一のステップ S38A参照)のでこの判定が満たされず、ステップ S45に移り、印刷駆 動回路 25に制御信号を出力して印字ヘッド 10を通電を中止し印字を停止させる。こ のように印字中途停止によって当該無線タグ回路素子 Toが正常品でないことを明ら かに表示するようにした後、後述のステップ S60へ移る。
[0091] ステップ S40では、上記ステップ S30で無線タグ回路素子 Toへ書き込んだ無線タ グ情報と、これに対応して印字ヘッド 10により印字された印字情報との組み合わせが 、入出力インターフェイス 31及び通信回線 3を介し端末 5又は汎用コンピュータ 6を 介して出力され、情報サーバ 7やルートサーバ 4に記憶される。なお、この記憶データ は必要に応じて端末 5又は汎用コンピュータ 6より参照可能に例えばデータベース内 に格納保持される。
[0092] その後、ステップ S50で、カバーフィルム 103のうちこの時点で処理対象としている 無線タグ回路素子 Toに対応する領域への印字がすべて完了しているかどうかを確 認した後、ステップ S60へ移る。
[0093] ステップ S60では、印字済タグラベル用テープ 110がカツタ 15で切断されるべき所 定位置にまで搬送されたかどうかを判定する。具体的には、例えば、対象とする無線 タグ回路素子 To及びこれに対応するカバーフィルム 103の印字領域のすべてがカツ タ 15を所定の長さ (余白量)分だけ越えた力どうかを、基材テープ 101 (詳細には例え ば剥離紙 101d、あるいはカバーフィルム 103等でもよい)に対し各無線タグ回路素 子 Toに対応して設けた適宜の識別用マークをカートリッジ 100外 (例えばカツタ 15の さらに搬送方向下流側)に設けた公知のテープセンサで検出することにより行えば足 りる。またこのような検出を行わず、印字 Rの印字文字長に所定の余白領域分を加え た長さが無線タグ回路素子 Toの全長を超えているかどうかを印字情報に基づき判定 する(超えていれば、少なくともカバーフィルム 103の印字が完了した段階でその余 白領域外をカツタ 15で切断するようにすれば、貼り合わせられる無線タグ回路素子 T 0を切断することは回避できるため)ことで代用してもよい。
[0094] 上記ステップ S60の判定が満たされたら、ステップ S 70に移る。ステップ S 70では、 カートリッジ駆動回路 24及び送出ローラ駆動回路 29に制御信号を出力し、カートリツ ジ用モータ 23及び送出ローラ用モータ 28の駆動を停止して、リボン卷取りローラ 10 6、圧着ローラ 107、送出ローラ 17の回転を停止する。これにより、第 1ロール 102か らの基材テープ 101の繰り出し、第 2ロール 104からのカバーフィルム 103の繰り出し 、及び送出ローラ 17による印字済タグラベル用テープ 110の搬送が停止する。
[0095] 次のステップ S80では、ソレノイド駆動回路 27に制御信号を出力してソレノイド 26を 駆動し、カツタ 15によって印字済タグラベル用テープ 110の切断を行う。前述したよう に、この時点で、例えば処理対象の無線タグ回路素子 To及びこれに対応するカバ 一フィルム 103の印字領域のすべてがカツタ 15を十分に越えており、このカツタ 15の 切断によって、無線タグ回路素子 Toの無線タグ情報が読み取られかっこれに対応 する所定の印字が行われたラベル状の無線タグラベル Tが生成される。
[0096] その後、ステップ S90に移り、送出ローラ用駆動回路 29に制御信号を出力し、送出 ローラ用モータ 28の駆動を再開して、送出ローラ 17を回転させる。これにより、送出 ローラ 17による搬送が再開されて上記ステップ S150でラベル状に生成された無線タ グラベル Tが搬出口 16へ向かって搬送され、搬出口 16から装置 2外へと排出される
[0097] そして最後に、ステップ S 100で、カートリッジ 100内の通信範囲(前述の領域 X)に 残存する無線タグラベル回路素子 Toに備えられた IC回路部 151の全無線タグ情報 を消去 (初期化)する。詳細には、無線タグ回路素子 Toのメモリ部 157に記憶された 情報を初期化する「EraSe」コマンドを信号処理回路 22に出力する。これに基づき信 号処理回路 22で無線タグ情報としての「Erase」信号が生成されて高周波回路 21の 送信部 32及びアンテナ 14を介し通信範囲(上記領域 X)内の全無線タグ回路素子 T ◦に送信され、そのメモリ部 157を初期化する。
[0098] 図 10は、上記ステップ S200の詳細手順を表すフローチャートである。
[0099] 図 10において、図 9における前述のステップ S18が終了すると、まずステップ S205 に移り、高周波回路 21の送信部 32に備えられる前記可変送信アンプ 39に「TX—P WR」信号を出力し、送信部 32の無線タグ回路素子 Toに対するアクセスパワー(出 力電力量)値を (この装置 2が許容する範囲内における、あるいは予め設定された電 力範囲内のうちで)最大値に設定する。
[0100] その後、ステップ S210に移り、通信範囲内に存在する無線タグ回路素子 Toの存 在を探知するとともにその応答を求める(言い換えればインピーダンスマッチングの 予告を行う)ための「マッチング」コマンドを信号処理回路 22に出力する。これに基づ き信号処理回路 22で所定のマッチング (コマンド)信号( =この例では問 、かけ信号 、例えば「Scroll All ID」信号や「Ping」信号等のアクセス情報信号)が生成されて高周 波回路 21を介して通信範囲内に存在する対象の無線タグ回路素子 Toに送信され、 対象の無線タグ回路素子の IDを識別する。複数の無線タグ回路素子 Toが応答した 場合は、所定の ID (例えば、 ID番号が最小または最大など)を有する無線タグ回路素 子をマッチングの対象とする。この対象となるタグ回路素子に対してマッチング (コマ ンド)信号を送信し、返信を促す。
[0101] そして、ステップ S215において、上記マッチング信号に対応して対象の無線タグ 回路素子 To力 送信されたリプライ信号 (例えばタグ 情報等を含む無線タグ情報) をアンテナ 14を介して受信し、高周波回路 21及び信号処理回路 22を介し取り込む 。そしてその取り込み結果より、無線タグ回路素子 To力 正しい応答信号が受信され た力どうかを判定する。応答信号が受信されていない場合は判定が満たされず、ステ ップ S220に移り、所定のエラー処理を行う。例えばエラー表示信号を入出力インタ 一フェイス 31及び通信回線 3を介し上記端末 5又は汎用コンピュータ 6へ出力し、対 応するエラー表示 (対象タグなし)を行わせ、このフローを終了する。なお、対象となる 無線タグ回路素子力インピーダンスマッチング処理に対応できな 、場合も正 ヽ応 答信号は受信されな 、(マッチングコマンドを認識できな 、無線タグ回路素子では、 コマンドは無視されリプライ信号を送信しない、あるいは、コマンドに対し、対処不能と V、う正しくな 、応答信号を送信する)ので、ステップ 220に移る。
[0102] 無線タグ回路素子 Toより正 ヽ応答信号が受信された場合は判定が満たされ、ス テツプ S225に移る。ステップ S225では、高周波回路 21の送信部 32に備えられる前 記可変送信アンプ 39に「TX— PWR」信号を出力し、送信部 32の無線タグ回路素子 Toに対するアクセスパワー(出力電力量)値を (この装置 2が許容する範囲内におけ る、あるいは予め設定された電力範囲内のうちで)最小値に設定する。
[0103] その後、ステップ S230に移り、応答してきた(=通信範囲内に存在することが確認 された)無線タグ回路素子 Toに対しその応答を求める(言 、換えれば現在のインピ 一ダンスの整合の程度を検出する)ための「起動」コマンドを信号処理回路 22に出力 する。これに基づき信号処理回路 22で所定の起動 (コマンド)信号(=この例では問 いかけ信号、例えば「Scroll All ID」信号や「Ping」信号等のアクセス情報信号)が生 成されて高周波回路 21を介してインピーダンスマッチング対象の無線タグ回路素子 Toに送信され、返信を促す。
[0104] そして、ステップ S235において、上記起動信号に対応して対象の無線タグ回路素 子 Toカゝら送信されたリプライ信号 (例えばタグ Iひ f青報等を含む無線タグ情報)をアン テナ 14を介して受信し、高周波回路 21及び信号処理回路 22を介し取り込む。そし てその取り込み結果より、無線タグ回路素子 To力 正しい応答信号が受信されたか どうかを判定する。応答信号が受信されて 、な 、場合はインピーダンス整合が十分 にとれて 、な ヽ(そのため受信感度が低!、)とみなされて判定が満たされず、ステップ S 240に移る。
[0105] ステップ S240では、上記ステップ S205と同様、高周波回路 21の送信部 32に備え られる前記可変送信アンプ 39に「TX— PWR」信号を出力し、送信部 32の無線タグ 回路素子 Toに対するアクセスパワー(出力電力量)値を最大値に設定する。
[0106] そしてステップ S245において、無線タグ回路素子 Toに(予め比較的多めに)複数 個(この例では 4個)設けられたキャパシタ C1〜C4を所定数ずつ(この例では 1つず つ)切断するための「キャパシタ切断」コマンドを信号処理回路 22に出力する。これに 基づき信号処理回路 22で所定のキャパシタ切断 (コマンド)信号が生成されて高周 波回路 21を介して通信範囲内に存在する対象の無線タグ回路素子 Toに送信され、 当該無線タグ回路素子 Toの制御回路'メモリ 155に取り込まれる。
[0107] そして、ステップ S250において、上記キャパシタ切断信号に対応して対象の無線 タグ回路素子 Toカゝら送信された応答信号をアンテナ 14を介して受信し、高周波回路 21及び信号処理回路 22を介し取り込む。そしてその取り込み結果より、無線タグ回 路素子 To力 正しい切断応答信号(=キャパシタ切断信号に応じて対応する 1つの キャパシタ C 1〜C4に係るヒューズ F 11〜F42の組を切断した旨の信号。詳細は後 述)が受信されたかどうかを判定する。切断応答信号が受信された場合は判定が満 たされ、ステップ S225に戻って再び送信出力を最小値にし、以降同様の手順を繰り 返す。このようにして送信電力最小値にぉ 、て無線タグ回路素子 Toによる起動応答 信号が受信されない間はステップ S225→ステップ S230→ステップ S235→ステップ S240→ステップ S245→ステップ S250→ステップ S225を繰り返しステップ S245に てキャパシタ切断信号によりその都度無線タグ回路素子 Toの IC回路部 151のキャパ シタ C1〜C4に係るヒューズ F11〜F42が 1糸且ずつ切断され (詳細は後述)、これによ つてキャパシタ C1〜C4の静電容量が変化し入力インピーダンスが順次変化 (減少) して 、く(すなわちこの例では容量成分を減少させることでマッチングをとる)。
[0108] このような繰り返しにより入力インピーダンスが減少して徐々に感度が増大し、起動 応答信号が受信されるようになると、インピーダンス整合が十分にとれた (そのため受 信感度が高くなつた)とみなされてステップ S235の判定が満たされ、ステップ S265 に移る。
[0109] ステップ S265では、高周波回路 21の送信部 32に備えられる前記可変送信アンプ 39に「TX— PWR」信号を出力し、送信部 32の無線タグ回路素子 Toに対するァクセ スパワー(出力電力量)値を、装置 2にお 、て無線タグラベル作成時の IC回路部 151 への情報書き込み用に予め最適に設定された値に設定し、図 9のステップ S20へと 戻る。
[0110] 一方、上記のようにステップ S225→ステップ S230→ステップ S235→ステップ S24 0→ステップ S245→ステップ S250→ステップ S225を繰り返しヒューズ F11〜F42が 1組ずつ切断され入力インピーダンスが減少して徐々〖こ感度が増大しても、起動応 答信号が受信されず、ついに切断するヒューズ F41〜F42の組がなくなって切断応 答信号が受信されなくなった場合には、ステップ S250の判定が満たされず、ステツ プ S255へ移る。
[0111] ステップ S255では、上記のように感度を大きく増大させても起動応答信号が受信さ れな力 たことに対応し、当該無線タグ回路素子 Toがタグラベル作成装置 2によるィ ンピーダンスマッチング範囲を超えて感度が非常に小さ力つた旨のエラー表示信号 を入出力インターフェイス 31及び通信回線 3を介し上記端末 5又は汎用コンピュータ 6へ出力し、対応する低感度表示を行わせ、ステップ S260へ移る。
[0112] ステップ S260では、操作者よりタグラベル作成の旨の操作指示信号が入出力イン ターフェイス 31及び通信回線 3を介し例えば端末 5から入力された力どうかを判定す る。上記ステップ S255において端末 5又は汎用コンピュータ 6において上記低感度 表示をした場合でも、それを承知の上で操作者がタグラベル作成の指示をした場合 ( すなわち近距離通信しか使用できな ヽことを操作者が承知して!/ヽる場合)は判定が 満たされ、上記ステップ S265へ移り、前述と同様、アクセスパワー(出力電力量)値を 無線タグラベル作成時の情報書き込み用の値に設定し、図 9のステップ S20へと戻る 。操作者がタグラベル作成の指示をしなカゝつた場合 (低感度なのであきらめる場合等 )は、前述のステップ S220に移り所定のエラー処理 (例えば、感度が低くタグラベル 作成を行いません等のエラー表示)を行わせ、このフローを終了する。なおエラー処 理としては、そのほか、情報書き込み又は読み取りを行わずに無線タグ回路素子 To を排出するようにしてもよい。
[0113] 図 11は、上記ステップ S30の詳細手順を表すフローチャートである。
[0114] 図 11において、図 9における前述のステップ S20が終了すると、まずステップ S31 に移り、所望のデータをメモリ部 157に書き込む「Program」コマンドを信号処理回路 2 2に出力する。これに基づき信号処理回路 22で例えば Iひ f青報を含む無線タグ情報 としての「Program」信号が生成されて高周波回路 21の送信部 32及びアンテナ 14を 介して通信可能エリア内(前述の領域 X内)にあるすべての無線タグ回路素子 Toに 送信され、そのメモリ部 157に情報が書き込まれる。
[0115] その後、ステップ S32において、メモリ部 157の内容を確認する「Verify」コマンドを 信号処理回路 22に出力する。これに基づき信号処理回路 22で無線タグ情報として の「Verify」信号が生成されて高周波回路 21の送信部 32及びアンテナ 14を介して上 記通信可能エリア内の全無線タグ回路素子 Toに送信され、返信を促す。
[0116] そして、ステップ S33〖こ移り、上記「Verify」信号に対応して上記通信可能エリア内 の全無線タグ回路素子 Toカゝら送信 (返信)されたリプライ (応答)信号をアンテナ 14を 介して受信し、高周波回路 21の受信部 33及び信号処理回路 22を介し取り込む。
[0117] 次に、ステップ S34において、上記ステップ S33の受信結果に基づき、上記通信ェ リア内の全無線タグ回路素子 Toのうち、少なくとも 1つから何らかの有効なリプライ信 号 (メモリ部 157に正常に記憶されたことを表す信号)が受信されたかどうかを判定す る。 [0118] 判定が満たされたら、上記領域 X内の少なくとも 1つの無線タグ回路素子 Toには正 しく書き込まれており、領域 X内の全無線タグ回路素子 Toへの書き込み失敗は回避 されていることから、このルーチンを終了する。判定が満たされない場合はステップ S 36に移って Nに 1を加え、さらにステップ S37において N = 5かどうかが判定される。 N≤ 4の場合は判定が満たされずステップ S31に戻り同様の手順を繰り返す。 N = 5 の場合はステップ S38に移る。ステップ S38では、エラー表示信号を入出力インター フェイス 31及び通信回線 3を介し上記端末 5又は汎用コンピュータ 6へ出力し、対応 する書き込み失敗 (エラー)表示を行わせた後、ステップ S 38 Aでフラグ F = 1としてこ のルーチンを終了する。このように、情報書き込みが不調でも 5回までは再試行が行 われることにより、書き込み信頼性の確保上、万全を期すことができる。
[0119] また、インピーダンスマッチング処理において、マッチング処理する対象の無線タグ 回路素子 Toが識別されて ヽるので、その無線タグ回路素子 Toのみを指定してステツ プ 30の書き込み処理を行っても良い。書き込み処理は図 11と同様であり、この場合 、書き込み処理の対象カ^つの無線タグ回路素子 Toに限定されるので、安定した書 き込み処理を行うことができる。さらに、図 9のステップ 100は不要となる。
[0120] なお、以上は、無線タグ回路素子 Toに対し無線タグ情報を送信し IC回路部 151〖こ 書き込みを行う場合を説明したが、これに限られず、予め所定の無線タグ情報 (タグ 識別情報等)が書き換え不可に記憶保持されている読み取り専用の無線タグ回路素 子 To力 無線タグ情報を読み取りながら、これに対応する印字を行って無線タグラベ ル Tを作成する場合がある。
[0121] この場合には、図 9におけるステップ S10において印字情報のみを読み込み、ステ ップ S30で無線タグ情報の読み込み処理を行うようにすればよい (詳細は後述の図 1 2参照)。その後ステップ S40では印字情報とその読み込んだ無線タグ情報との組み 合わせを保存する。
[0122] 図 12は、上記無線タグ読み取り処理の詳細手順を表すフローチャートである。
[0123] この図 12において、情報読み取り対象とする無線タグ回路素子 Toがアンテナ 14近 傍に搬送されてきたら、ステップ S 101において、無線タグ回路素子 Toに記憶された 情報を読み出す「Scroll All ID」コマンドを信号処理回路 22に出力する。これに基づき信号処理回路 22で無 線タグ情報としての「Scroll All ID」信号が生成されて高周波回路 21を介して読み取 り対象の無線タグ回路素子 Toに送信され、返信を促す。
[0124] 次に、ステップ S 102において、上記「Scroll All ID」信号に対応して読み取り対象 の無線タグ回路素子 Toから送信されたリプライ信号 (タグ Iひ f青報等を含む無線タグ 情報)をアンテナ 14を介して受信し、高周波回路 21及び信号処理回路 22を介し取り 込む。
[0125] 次に、ステップ S103において、上記ステップ S 102で受信したリプライ信号に誤りが ないか否かを公知の誤り検出符号(CRC符号; Cyclic Redundancy Check等)を用い て判定する。
[0126] 判定が満たされない場合はステップ S104に移って Nに 1をカ卩え、さらにステップ S1 05において N = 5かどうかが判定される。 N≤ 4の場合は判定が満たされずステップ S 101に戻り同様の手順を繰り返す。 N = 5の場合はステップ S106に移り、エラー表 示信号を入出力インターフェイス 31及び通信回線 3を介し上記端末 5又は汎用コン ピュータ 6へ出力し、対応する読み取り失敗 (エラー)表示を行わせた後、ステップ S1 07でフラグ F= lとしてこのルーチンを終了する。このように、情報読み取りが不調で も 5回までは再試行が行われることにより、読み取り信頼性の確保上、万全を期すこと ができる。
[0127] ステップ S 103の判定が満たされた場合、読み取り対象とする無線タグ回路素子 To 力もの無線タグ情報の読み取りが完了し、このルーチンを終了する。
[0128] 図 13は、図 10に示したタグラベル作成装置 2の制御回路 30によるステップ S200 のフローに対応して、無線タグ回路素子 Toの IC回路部 151の制御回路'メモリ 155 で実行される制御手順を表すフローチャートである。
[0129] 図 13において、無線タグ回路素子 Toでは、前述したように、タグラベル作成装置 2 のアンテナ 14より何らかの信号が送信されこれをアンテナ 152で受信して上記整流 回路 153で整流後、上記電源回路により駆動電源が供給されるとこのフローが開始 される。
[0130] まず、ステップ S305で、上記アンテナ 152を介し受信され上記変復調回路 158に より復調された受信信号を解釈し、その中に何らかのコマンド (コマンド信号)が含ま れるかどうかを判定する。図 9及び図 10を用いて前述したように、本実施形態では、 受信されうるコマンドを含んだ信号として、マッチング信号 (マッチングコマンド信号、 図 10のステップ S210参照)、起動信号(起動コマンド信号図 10のステップ S230参 照)、キャパシタ切断信号 (キャパシタ切断コマンド信号、図 10のステップ S 245参照) 、及びタグラベル作成の際の情報書き込み又は読み取りを行うアクセス情報信号 (図 9、図 11、図 12における Scroll All ID信号、 Erase信号、 Program ID信号、 Verify信号 等)がある。受信信号力 Sこれらのいずれかである場合にはステップ S305の判定が満 たされ、ステップ S310〖こ移る。
[0131] ステップ S310では、上記受信信号が上記マッチング信号であるかどうかが判定さ れる。マッチング信号であった場合は判定が満たされてステップ S315へ移り、前述し たように記憶された情報信号に基づ 、てこのマッチング信号に対応した応答信号を 生成し、上記変復調回路 158によりアンテナ 152を介しタグラベル作成装置 2のアン テナ 14へと返信を行った後、ステップ S305へ戻って同様の手順を繰り返す。マッチ ング信号でなかった場合はステップ S310の判定が満たされずステップ S320へ移る 。なお、ステップ S315で応答信号の返信を行ってステップ S305に戻る前に、マッチ ング信号であった旨のフラグを制御回路'メモリ 155内の不揮発メモリ手段に立てて からステップ S305に戻り、これ以降はそのフラグが立ったことを判定してステップ S3 05、ステップ S310を飛ばしてステップ S320へ移るようにしてもよい(その他の信号に ついても同様)。
[0132] ステップ S320では、上記受信信号が上記起動信号であるかどうかが判定される。
起動信号であった場合は判定が満たされてステップ S325へ移り、前述したように記 憶された情報信号に基づ 、てこの起動信号に対応した応答信号を生成し、上記変 復調回路 158によりアンテナ 152を介しタグラベル作成装置 2のアンテナ 14へと返信 を行った後、ステップ S305へ戻って同様の手順を繰り返す。起動信号でなかった場 合はステップ S320の判定が満たされずステップ S330へ移る。
[0133] ステップ S330では、上記受信信号が上記キャパシタ切断信号であるかどうかが判 定される。キャパシタ切断信号であった場合は判定が満たされてステップ S335へ移 る。ここで、前述したように制御回路'メモリ 155はキャパシタ切断可能回数 (言い換え れば、未切断のヒューズ F11〜42の組が何組残って 、るかの数) NFを記憶保持す る機能を備えており、ステップ S335では、この切断可能回数 NFを読み出す。
[0134] その後、ステップ S340において、上記ステップ S335で読み出した切断可能回数 NF = 0であるかどうかを判定する(既に切断した個数 NF^ を記憶するようにしてこれ が配置済みの個数 NFo (この例では NFo = 4)に達したかどうかを判定してもよい)。未 切断のヒューズ F 11〜F42の組(言!/、換えれば未切断のキャパシタ C 1〜C4)が残つ ている場合は NF≥ 1であり判定が満たされず、ステップ S345へ移る。
[0135] ステップ S345では、未切断のヒューズ F11〜F42の組のうち所定の順序に沿った 次のヒューズの組切断処理を行う。すなわち対応する上記 FETtl l〜t42に制御信 号を出力し、これに応じて FETtl l〜t42から当該制御信号に対応したゲート電圧が 対応する上記ヒューズ F11〜F42へ出力され、当該 1組のヒューズが溶断 (切断)さ れる。
[0136] その後、ステップ S350において、上記ステップ S345による切断に対応して上記ス テツプ S340で読み出した NFの値を 1つ減じ、ステップ S355でその減じた値を新た な NFの値として更新記憶した後、ステップ S 360に移る。
[0137] ステップ S360では、前述したように記憶された情報信号に基づ 、て所定の(1組の ヒューズ Fの切断処理が完了した旨の)切断応答信号を生成し、上記変復調回路 15 8によりアンテナ 152を介しタグラベル作成装置 2のアンテナ 14へと返信を行った後、 ステップ S305へ戻って同様の手順を繰り返す。
[0138] このようにして切断信号が受信されかつ NF≥ 1である間(=切断可能なヒューズ F1 1〜F42の組が 1組以上残っている間)は、ステップ S305→ステップ 3310→ステツ プ S320→ステップ S330→ステップ S335→ステップ S340→"→ステップ S360→ ステップ S305を繰り返し、上記所定の順序に沿って 1組ずつヒューズ Fを切断してキ ャパシタ C全体による静電容量を減少させ、 IC回路部 151の感度を向上させていく。 このような繰り返しの間に NF = 0となると(=すべてのヒューズ F11〜F42を切断した 状態となると)、ステップ S340の判定が満たされ、ステップ S365に移る。
[0139] ステップ S365では、(すべてのキャパシタ C1〜C4の切断が終了し)これ以上の切 断処理は不可能である旨の切断不能信号を生成し、上記変復調回路 158によりアン テナ 152を介しタグラベル作成装置 2のアンテナ 14へと返信を行った後、ステップ S3 05へ戻って同様の手順を繰り返す。
[0140] 一方、前述のステップ S330において前述した受信信号が上記キャパシタ切断信 号でなかった場合は判定が満たされず、ステップ S370へ移る。ステップ S370では、 上記受信信号が前述したタグラベル作成の際の情報書き込み又は読み取りを行うァ クセス情報信号(Scroll All ID信号、 Erase信号、 Program ID信号、 Verify信号等)で あるかどうかが判定される。アクセス情報信号であった場合は判定が満たされてステ ップ S375へ移り、前述したように記憶された情報信号に基づいてそれぞれの信号に 対応した応答信号を生成し (先の図 11及び図 12参照)、上記変復調回路 158により アンテナ 152を介しタグラベル作成装置 2のアンテナ 14へと返信を行った後、ステツ プ S305へ戻って同様の手順を繰り返す。それらアクセス情報信号でな力つた場合は ステップ S375の判定が満たされず、上記同様ステップ S305へ戻る。
[0141] 以上において、無線タグ回路素子 Toの制御回路'メモリ 155と FETtl l〜t42とが 、各請求項記載の外部からの入力信号に応じて、複数のヒューズを個別に切断可能 な切断制御手段を構成し、これらと、キャパシタ C1〜C4と、ヒューズ F11〜F42と力 S 、外部力 の入力信号に応じインピーダンスを可変設定し、その設定状態を不揮発 性にて保持するインピーダンス制御手段を構成する。
[0142] また、タグラベル作成装置 2の高周波回路 21の送信部 32及び信号処理回路 22が 、IC回路部へのアクセス情報を生成し装置側アンテナを介して無線タグ回路素子へ 送信し、 IC回路部へアクセスを行う情報アクセス手段を構成し、また高周波回路 21 の受信部 33及び信号処理回路 22が、情報アクセス手段によるアクセス情報に応じ て無線タグ回路素子より返信された返信信号を、装置側アンテナを介して受信する 返信信号受信手段を構成する。また、制御回路 30が実行する図 10のフローのうち、 ステップ S235が、この返信信号受信手段で受信された前記返信信号より、前記 IC 回路部のインピーダンスと前記タグ側アンテナのインピーダンスとの整合状態を判定 する判定手段を構成する。ステップ S245が、この判定手段の判定結果に基づき、無 線タグ回路素子の IC回路部のインピーダンス制御手段へインピーダンス設定用の制 御信号を出力するインピーダンス制御信号出力手段を構成する。
[0143] さらに、制御回路 30が実行する図 9のフローのステップ S18、ステップ S200力 タ グテープの繰り出しが停止したときに判定及びこれに応じたインピーダンス設定用の 制御信号の出力を行うように、駆動手段、判定手段、及びインピーダンス制御信号出 力手段を制御する装置側第 1制御手段を構成する。
[0144] また、制御回路 30が実行する図 9のフローのステップ S200力 基材テープ 101の 所定領域への印字が開始される前に判定及びこれに応じたインピーダンス設定用の 制御信号の出力を行うように、印字手段、判定手段、及びインピーダンス制御信号出 力手段を制御する装置側第 2制御手段を構成する。
[0145] 以上説明した本実施形態において、無線タグラベル作成装置 2による無線タグラベ ル Tの作成時には、基材テープ 101に備えられた無線タグ回路素子 Toに対し、信号 処理回路 22及び高周波回路 21で生成されたアクセス情報信号がアンテナを 14介し て送信されて IC回路部 151へのアクセス (読み取り又は書き込み)が行われ、このよう に情報読み取り又は書き込みが行われた後の無線タグ回路素子 Toを備えた印字済 みタグラベル用テープ 110を用いて無線タグラベル Tが作成される。
[0146] このとき、無線タグラベル作成装置 2においては、上記無線タグラベル Tの作成前 において、インピーダンス整合のために上記同様に信号処理回路 22及び高周波回 路 32からアクセス情報としての起動信号をアンテナ 14を介し無線タグ回路素子 Toへ 送信し(図 10のステップ S230参照)、これに応じて無線タグ回路素子 Toより返信さ れた返信信号をアンテナ 14を介して受信する。そしてこの返信信号に基づき、制御 回路 30が IC回路部 151とアンテナ 152とのインピーダンスの整合状態を判定し (ステ ップ S235)、さらにその判定結果に基づき、インピーダンス設定用の制御信号(=こ の例ではキャパシタ切断信号)が無線タグ回路素子 Toの制御回路'メモリ 155へ出 力され (ステップ S 245参照)、キャパシタ C1〜C4に係る各組のヒューズ F11〜F42 を順次切断し全体の総静電容量を変化させることで IC回路部 151のインピーダンス が可変に設定される。これにより、無線タグ回路素子 Toの IC回路部 151とアンテナ 1 52とのインピーダンスを整合させることができる。
[0147] また、無線タグラベル作成装置 2ではアクセス時のアンテナ 14と無線タグ回路素子 Toとの距離が比較的短く設定されており、本実施形態では上記のようにして、無線タ グラベル作成装置 2における IC回路部 151へのアクセスに用 、るアンテナ 14を利用 してインピーダンス整合のための信号送信を行うので、比較的強 1、信号強度で無線 タグ回路素子 Toへ信号を届力せ制御回路'メモリ 155等へ電力を供給することがで き、また、ヒューズ切断に必要な電力も供給することができるので、確実にインピーダ ンス整合を実行することができる。またこのとき、ヒューズ Fl l〜42を溶断 (切断)して インピーダンス可変設定を行 1ヽ、その設定したインピーダンス値を不揮発性にて保持 することができる( =一度 IC回路部 151に設定したマッチング条件は電力供給が絶 たれても保持されている)ので、いったんインピーダンス整合設定した後は、特に整 合用の駆動電源等をさらに発生させなくても、確実に当該良好なインピーダンス整合 状態を維持できる。以上の結果、作成した後の無線タグラベル Tをユーザ使用時に ぉ 、て、無線タグ回路素子 Toのアンテナ 152と IC回路部 151との良好なインピーダ ンス整合状態を常に実現でき、長距離通信を確実に行うことができる。
[0148] また、この実施形態では特に、無線タグ回路素子 Toの制御回路'メモリ 155内にそ れ以降さらに切断可能なヒューズ Fの組の数や、あるいは既に切断されたヒューズ F の組の数等の情報を記憶して 、るので、これを用いて過不足のな 、確実なインピー ダンス制御を行うことができる。
[0149] またこの実施形態では特に、図 9に示すフローのステップ S18及びステップ S200 において、基材テープ 101の繰り出しが停止したときにインピーダンス整合状態の判 定及びこれに応じたインピーダンス設定用の制御信号の出力を行う。これにより、基 材テープ 101の第 1ロール 102からの繰り出しが停止し、基材テープ 101上の無線タ グ回路素子 Toとアンテナ 14との位置関係及び距離が固定された状態で安定的にィ ンピーダンス整合制御を行うことができる。
[0150] また、上記実施形態は、上記以外にも、その趣旨と技術思想の範囲を逸脱しない 範囲でさらに種々の変形が可能である。以下、そのような変形例を順次説明する。
[0151] (1)受信信号強度に基づきインピーダンス整合状態の判定を行う場合
上記実施形態においては、図 10に示したように、無線タグラベル作成装置 2側から 無線タグ回路素子 Toへの送信電力を最小値にして送信を行い (ステップ S225、ス テツプ S230)、その応答があつたかどうかによってインピーダンス整合状態の判定を 行った(ステップ S235) 1S これに限られない。
[0152] すなわち、ステップ S225では特に最小値とはせず所定の固定値で送信を行うよう にし、ステップ S235において、起動信号に対応してアンテナ 14で受信された無線タ グ回路素子 To力もの起動応答信号の信号強度 (高周波回路 21の受信部 33の信号 強度検出手段である RSSI回路 48にて検出され、信号処理回路 22にて取得されて いる)が、所定のしきい値以上となったかどうかによつて上記インピーダンス整合状態 を判定するようにしてもよい。
[0153] インピーダンスが良好に整合されている場合、タグ用アンテナで受信された電力は 効率よく整流回路に供給され、タグ用アンテナ力 反射される電力は小さい。無線タ グ回路で起動応答信号等に基づき変調を行う場合、例えば、変調回路のダイオード 等によりタグ用アンテナ間が短絡されると整流回路には電力は供給されず受信した 電力はほとんどタグ用アンテナ力 反射される。従って、この変調に伴ってタグ用アン テナ力も反射される電波の強度変化は大きくなる。インピーダンスが整合されて 、な い場合は、変調回路によりタグ用アンテナ間が短絡されていない場合でも不整合に よる反射があり、タグ用アンテナ力 反射される電波の強度はインピーダンスが整合さ れている場合より大きくなるので、タグ用アンテナから反射される電波の変調に伴う強 度変化は小さくなる。これにより、 I Q直交復調された返答信号はインピーダンスが 良好に整合されて 、る程大きくなる。
[0154] すなわちこの場合、受信した返答信号が比較的大きく上記しきい値以上となる場合 には、アンテナ 14と無線タグ回路素子 Toとの間で良好な通信状態が実現されている ことがわ力るので、 IC回路部 151とアンテナ 152とでインピーダンスが良好に整合さ れていると判定することができる。
[0155] あるいは、上記実施形態のように送信電力値を最初力 最小とするのではなぐ何 段階かに分けて下げていくようにしてもよい。この際は、キャパシタ C1〜C4の静電容 量を互いに異なる値とし、起動電力に応じて無線タグラベル作成装置 2側より切断す べき容量を指定するようにすると効果的である。すなわち例えば、電力が大きいのに 起動応答がなければマッチングずれが大き 、ので、容量の大きなキャパシタ Cを切断 する。送信電力が小さくなつて力も起動しないときは、マッチングずれが小さくなつて きているので、容量の小さなキャパシタ Cを切断する。この場合、無線タグラベル作成 装置 2側からキャパシタ切断信号を送信する時に、どのキャパシタ Cを切断するか指 定した信号を送信すればよい。このとき、無線タグ回路素子 Toは切断したキャパシタ Cの箇所あるいは未切断で切断可能なキャパシタ Cの箇所を切断の度に更新、記憶 しておき、切断可能かどうかを判定すればょ 、。
[0156] (2)コイルとキャパシタとを逆に配置した場合
図 14は、この変形例による無線タグ回路素子 To— 1の機能的構成を表す機能プロ ック図であり、前述の図 5に相当する図である。この図 14では、図 5に示したキャパシ タ C1,C2, C3, C4, COの位置に、これに代えて、リアクタンス素子としてのコイル LA , LB, LC, LD, L0を設け、また図 5に示したコイル LI, L2の位置に、これに代えて 、キャパシタ CA, CBを設けている。コイル LA, LB, LC, LD, LEには前述の複数( この例では 4組 X各組 2個 =8個)のヒューズ Fl l, F12、ヒューズ F21, F22、ヒユー ズ F31, F32、ヒューズ F41, F42力 S直歹 IJに接続されており、上記 FETtl l, tl2, t2 1, t22, t31, t32, t41, t42力 制御回路'メモリ 155からの上記制御信号に応じた ゲート電圧で上記ヒューズ Fl l, F12, F21, F22, F31, F32, F41, F42【こそれぞ れ溶断電流を供給するようになって ヽる。
[0157] 本変形例の無線タグ回路素子 To— 1は、上記実施形態の無線タグ回路素子 Toと、 互 ヽにリアクタンス素子としてのキャパシタ Cとコイル Lとを入れ替えただけであり、動 作の詳細等は上記入れ替え部分を除けばほぼ同様であるので、説明を省略する。
[0158] 本変形例においても、上記実施形態と同様の効果を得る。
[0159] (3)ヒューズを用いずにインピーダンス調整を行う場合
本変形例は、ヒューズを用いずに浮遊ゲート型の FET (電界効果トランジスタ)の電 荷量を制御してインピーダンスを制御するものである。
[0160] 図 15は、本変形例による無線タグ回路素子 To— 2の機能的構成を表す機能ブロッ ク図であり、上記図 5、図 11にほぼ相当する図である。この図 15において、無線タグ 回路素子 To— 2は、アンテナ 152に接続されたリアクタンス素子としてのキャパシタ C Pと、アンテナ 152に関し並列に接続された記憶スィッチ素子としての浮遊ゲート型の 電界効果トランジスタ (FET)ttAと、外部力 の入力信号に応じて制御信号を出力す るタグ側第 2制御手段として機能する制御回路'メモリ 155からの制御信号に応じて 浮遊ゲート型電界効果トランジスタ (FET) ttAに所定の電荷を発生可能な電荷注入 手段としての電界効果トランジスタ (FET) tAとを備えて 、る。
[0161] 前述したようにタグラベル作成装置 2のアンテナ 14力も送信された信号に応じて無 線タグ回路素子 To— 2の制御回路'メモリ部 155が対応する制御信号 (インピーダン ス設定用の制御信号)を出力し、さらにこの制御信号に応じて電荷注入手段としての FETtAが浮遊ゲート型電界効果トランジスタ ttAに所定の電荷 (ゲート電荷)を発生( 又は消滅)させ、これによつて浮遊ゲート型電界効果トランジスタ ttAの電荷量を制御 する(=容量を変化させる)ようになって 、る。
[0162] またこのとき、上記実施形態において制御回路'メモリ 155が切断可能なヒューズ F の組数を記憶していたのと同様に、本変形例では、制御回路'メモリ 155が浮遊ゲー ト型電界効果トランジスタ ttAの電荷量又は電荷量レベルに関する情報、例えば、印 加電圧、印加電流やその印加時間等を記憶する (第 2不揮発性記憶手段)機能を備 え、これによつて、例えばその時点で浮遊ゲート型電界効果トランジスタ ttAに発生し て 、るある 、はさらに蓄積しうる電荷の量や、あるいは電荷量レベル等の情報を取得 し、過不足のな ヽ確実なインピーダンス制御を行えるようになって ヽる。
[0163] 以上において、制御回路'メモリ 155及び FETtA力 外部からの入力信号に応じて 、記憶スィッチ素子を制御可能な素子制御手段を構成し、これと浮遊ゲート型 FETtt Aとキャパシタ CP (リアクタンス素子)とが、外部からの入力信号に応じインピーダンス を可変設定し、その設定状態を不揮発性にて保持するインピーダンス制御手段を構 成する。また制御回路'メモリ 155は、浮遊ゲート型電界効果トランジスタの電荷量又 は電荷量レベルに関する情報を記憶する第 2不揮発性記憶手段をも構成する。
[0164] 本変形例においては、上述したように制御回路'メモリ 155の制御により浮遊ゲート 型電界効果トランジスタ ttAの電荷量を制御して増減させることにより、 IC回路部 151 のインピーダンスを可変に設定しかつその設定を不揮発性にて保持することができる 。この結果、上記実施形態と同様、インピーダンス可変設定を行うとともにその設定し たインピーダンス値を不揮発性にて保持することができる。以上の結果、作成した後 の無線タグラベル Tをユーザ使用時において、無線タグ回路素子 Toのアンテナ 152 と IC回路部 151との良好なインピーダンス整合状態を常に実現でき、長距離通信を 確実に行うことができる。
[0165] なお、上記の無線タグ回路素子 To— 2においては、図 15に示したように、浮遊ゲー ト型電界効果トランジスタ tAはアンテナ 152に並列に接続されていた力 これに限ら れず、直列に接続しても良い。
[0166] 図 16はそのようなさらなる変形例の無線タグ回路素子 To— 3の機能的構成を表す 機能ブロック図である。この図 16において、無線タグ回路素子 To— 3では、アンテナ 152に接続されたリアクタンス素子としてのコイル LPと、アンテナ 152に関し直列に接 続された記憶スィッチ素子としての浮遊ゲート型の電界効果トランジスタ (FET)ttB, t tCと、制御回路'メモリ 155からの制御信号に応じて浮遊ゲート型電界効果トランジス タ (FET)ttB, ttCに所定の電荷を発生可能な電荷注入手段としての電界効果トラン ジスタ (FET) tB, tCとを備えている。なお、図中破線で示したように、上記浮遊ゲート 型電界効果トランジスタ (FET)ttB, ttCと並列にキャパシタ CQ, CRを接続配置して も良い。
[0167] 以上において、本変形例では、制御回路'メモリ 155及び FETtB, tC力 外部から の入力信号に応じて、記憶スィッチ素子を制御可能な素子制御手段を構成し、これ と浮遊ゲート型 FETttB, ttCとコイル LP (リアクタンス素子)と力 外部からの入力信 号に応じインピーダンスを可変設定し、その設定状態を不揮発性にて保持するインピ 一ダンス制御手段を構成する。
[0168] 本変形例によっても、上記図 15に示した変形例と同様の作動原理で同様の効果を 得ることができる。
[0169] なお、上記図 15及び図 16に示した 2つの変形例では、記憶スィッチ素子として浮 遊ゲート型 FETを用いたが、これに限られず、強誘電体型 FETを用いたり、あるいは 別の構造の不揮発性メモリとスィッチの組み合わせを用いて同様の機能を実行して も良い。この場合も同様の効果を得る。
[0170] (4)カートリッジ及びアンテナの配置構成のバリエーション
以上においては、図 3に示したように、カートリッジ 100内に存在している状態の基 材テープ 101の無線タグ回路素子 Toの IC回路部 151に対し、アンテナ 14を介して アクセス (読み取り '書き込み)を行うとともに、当該アンテナ 14を用いてインピーダン ス整合 (マッチング)も行った。言い換えれば、アンテナ 14をアクセス用とマッチング 用の兼用アンテナとして用いた。そして、マッチングについてはテープ駆動を停止し た状態 (すなわち印字終了後か印字開始前の少なくとも印字は行っていない状態) にて行った。
[0171] 図 17 (a)はこれを概念的に表した図である力 本発明の適用はこのようなアンテナ 配置に限られるものではな 、。
[0172] すなわち、図 17 (b)に示すように、カートリッジ 100内に存在している状態の基材テ ープ 101の無線タグ回路素子 Toの IC回路部 151に対しアクセス (読み取り '書き込 み)を行うためのアクセス専用アンテナを設けるとともに、カートリッジ 100外において 無線タグ回路素子 Toに対しインピーダンス整合 (マッチング)を行うマッチング専用の アンテナを別途設けても良い。この場合、例えば基材テープ 101及びカバーフィルム 103を搬送駆動しつつアクセス専用アンテナによるアクセス (読み取り ·書き込み)及 び印字ヘッドによる印字を行った後、テープ駆動を停止し、この停止状態でマツチン グを行えばよい。
[0173] また逆に、図 17 (c)に示すように、カートリッジ 100内に存在している状態の基材テ ープ 101の無線タグ回路素子 Toの IC回路部 151に対しインピーダンス整合 (マッチ ング)を行うマッチング専用のアンテナを設けるとともに、カートリッジ 100外において 無線タグ回路素子 Toにアクセス (読み取り ·書き込み)を行うためのアクセス専用アン テナを設けても良い。この場合、まず基材テープ 101及びカバーフィルム 103の駆動 を停止しこの停止状態でマッチングを行った後、テープ搬送駆動を開始し搬送しつ つアクセス専用アンテナによるアクセス (読み取り ·書き込み)及び印字ヘッドによる印 字を行うようにすればよい。
[0174] (5)貼り合わせを行わない場合
すなわち、特に図面を用いて説明はしないが、上記実施形態のように無線タグ回路 素子 Toを備えた基材テープ 101とは別のカバーフィルム 103に印字を行ってこれら を貼り合わせるのではなぐタグテープに備えられたカバーフィルムに印字を行ういわ ゆるノンラミネートタイプのカートリッジに本発明を適用してもよい。この場合、複数の 無線タグ回路素子 Toを感熱テープに設け、複数の発熱素子を有する印字ヘッドによ り感熱テープの表面に印字を印刷するようにしてもよいし、上記実施形態のようなイン クリボンを用いた印字としてもよ 、。
[0175] 本変形例においても、上記実施形態と同様、無線タグ回路素子 Toのアンテナ 152 と IC回路部 151との良好なインピーダンス整合状態を常に実現でき、長距離通信を 確実に行えるという本発明本来の効果を得ることができる。
[0176] (6)その他
また、キャパシタ C 1〜C4のほかに同様のキャパシタを新たに無線タグ回路素子 To の外部より取付(=いわゆる外付け)て接続可能としてもょ 、。このようにすることで、 例えばキャパシタ C 1〜C4をすベて合計してもインピーダンス整合のための静電容 量が足りな力 た場合に、上記外付けの別のキャパシタ Cを付けカ卩えることでマッチ ング範囲を広げることが可能となる。
[0177] また、無線タグラベル作成装置 2内において、インピーダンスマッチング時のアンテ ナ 14の位置と無線タグ回路素子 Toの位置は常に同じにしておくことが好ましいので 、位置決め用のローラ等を別途設けてもよい。また、位置決め用のマーカを基材テー プ 101に設け、これを検出手段で検出して高精度の位置決めを行うようにしても良 ヽ 。この場合、図 9において説明したようにテープセンサにて検出される識別用マーク( テープ切断位置や無線タグ情報書込み位置の位置決め用)と兼用してもよ ヽ。
[0178] また、図 9に示したようにステップ S200ですベての無線タグ回路素子 Toに対しイン ピーダンス整合処理を行うのでなぐ例えば予め操作者力 Sインピーダンス整合処理を 行う(言い換えれば長距離通信用無線タグ回路素子である)かどうかを指定するよう にしても良い。あるいは逆に、インピーダンス非整合処理を行って(=インピーダンス 整合処理の逆でわざとインピーダンスをずらして)超近距離用無線タグ回路素子 To を意図的に作成しても良い。
[0179] また、現状、無線タグ回路素子 Toとの無線通信周波数は、国ごとに少しずつ異なる ので、無線タグ回路素子 To (カートリッジ)は共通とし、タグラベル作成装置 2を各国 対応としてもよい。この場合、アンテナが共通でも各国の無線通信周波数に応じてィ ンピーダンスを整合でき、安定した通信を行える無線タグを作成できる。
[0180] また、以上においては、印刷動作に伴いカートリッジ 100等の内部を移動中の基材 テープ 101 (又は感熱テープ)に対して通信(書き込み又は読み取り)を行う例を示し たが、これに限られず、基材テープ 101等を所定位置で停止させて (さらに所定の搬 送ガイドにて保持した状態で)上記通信を行うようにしてもょ ヽ。
[0181] さらに、以上で用いた「Scroll All ID」信号、「Erase」信号、「Verify」信号、「Program」 信号とは、 EPC globalが策定した仕様に準拠しているものとする。 EPC globalは 、流通コードの国際機関である国際 EAN協会と、米国の流通コード機関である Unif ormed Code Council (UCC)が共同で設立した非営利法人である。なお、他の 規格に準拠した信号でも、同様の機能を果たすものであればよ ヽ。
[0182] その他、一々例示はしないが、本発明は、その趣旨を逸脱しない範囲内において、 種々の変更が加えられて実施されるものである。

Claims

請求の範囲
[1] 情報を記憶する IC回路部(151)と、この IC回路部(151)に接続されたタグ側アン テナ( 152)とを備え、情報の送受信を行う無線タグ回路素子 (To; To— 1; To— 2; T 0— 3)であって、
前記 IC回路部(151)は、外部からの入力信号に応じインピーダンスを可変設定し 、その設定状態を不揮発性にて保持するインピーダンス制御手段 (C1〜C4, LA〜L D, F11〜F42, 155, tll〜t42 ;CP, LP, ttA, ttB, ttC, 155, tA, tB, tC)を備え ることを特徴とする無線タグ回路素子 (To ;To— 1 ;To— 2 ;To— 3)。
[2] 請求項 1記載の無線タグ回路素子において、
前記インピーダンス制御手段は、
前記タグ側アンテナ(152)に対し互 ヽに並列に接続された複数のリアクタンス素子 (C1〜C4;LA〜LD)と、
これら複数のリアクタンス素子 (C1〜C4;LA〜LD)にそれぞれ直列に接続された複 数のヒューズ(F11〜F42)と、
前記外部力もの入力信号に応じて、前記複数のヒューズ (F11〜F42)を個別に切 断可能な切断制御手段(155, tll〜t42)とを備えることを特徴とする無線タグ回路 素子(To ;To— 1)。
[3] 請求項 2記載の無線タグ回路素子において、
前記リアクタンス素子は、キャパシタ (C1〜C4)であることを特徴とする無線タグ回路 素子 (To)。
[4] 請求項 2又は 3記載の無線タグ回路素子において、
前記切断制御手段は、前記外部からの入力信号に応じて制御信号を出力するタグ 側第 1制御手段(155)と、このタグ側第 1制御手段(155)からの前記制御信号に応 じて前記ヒューズ (F11〜F42)に溶断電流を供給可能なヒューズ制御用電流印加手 段 (tl l〜t42)とを備えることを特徴とする無線タグ回路素子 (To ;To— 1)。
[5] 請求項 2乃至 4のいずれか 1項記載の無線タグ回路素子において、
前記切断制御手段は、前記複数のヒューズ (F11〜F42)のうち切断可能な個数あ るいは箇所に関する情報を記憶する第 1不揮発性記憶手段(155)を備えることを特 徴とする無線タグ回路素子 (To ;To— 1)。
[6] 請求項 1記載の無線タグ回路素子において、
前記インピーダンス制御手段は、
前記タグ側アンテナ(152)に接続されたリアクタンス素子 (CP ; LP)と、 前記タグ側アンテナ(152)に関し直列あるいは並列に接続された記憶スィッチ素 子(ttA;ttB, ttC)と、
前記外部力 の入力信号に応じて、前記記憶スィッチ素子 (ttA;ttB, ttC)を制御 可能な素子制御手段(155, tA; 155, tB, tC)とを備えることを特徴とする無線タグ 回路素子 (To— 2 ;To— 3)。
[7] 請求項 6記載の無線タグ回路素子において、
前記記憶スィッチ素子は、浮遊ゲート型電界効果トランジスタ (ttA;ttB, ttC)であ ることを特徴とする無線タグ回路素子 (To— 2; To— 3)。
[8] 請求項 7記載の無線タグ回路素子において、
前記素子制御手段は、前記外部からの入力信号に応じて制御信号を出力するタグ 側第 2制御手段(155)と、このタグ側第 2制御手段(155)からの前記制御信号に応 じて前記浮遊ゲート型電界効果トランジスタ (ttA;ttB, ttC)に所定の電荷を発生可 能な電荷注入手段 (tA;tB, tC)とを備えることを特徴とする無線タグ回路素子 (To— 2 ;To— 3)。
[9] 請求項 7又は 8記載の無線タグ回路素子において、
前記素子制御手段は、前記浮遊ゲート型電界効果トランジスタ (ttA;ttB, ttC)の 電荷量又は電荷量レベルに関する情報を記憶する第 2不揮発性記憶手段(155)を 備えることを特徴とする無線タグ回路素子 (To— 2 ;To— 3)。
[10] タグテープ(101)に配置され、外部からの入力信号に応じインピーダンスを可変設 定しその設定状態を不揮発性にて保持するインピーダンス制御手段 (C1〜C4, LA 〜LD, F11〜F42, 155, tll〜t42 ;CP, LP, ttA, ttB, ttC, 155, tA, tB, tC)を 有する IC回路部(151)及びこの IC回路部(151)に接続されたタグ側アンテナ(152 )を備えた無線タグ回路素子 (To; To— 1; To— 2; To— 3)との間で無線通信により 情報の送受信を行う装置側アンテナ(14)と、 前記 IC回路部(151)へのアクセス情報を生成し、前記装置側アンテナ(14)を介し て前記無線タグ回路素子 (To; To— 1; To— 2; To— 3)へ送信し、前記 IC回路部( 1 51)へアクセスを行う情報アクセス手段(32, 22)と、
この情報アクセス手段(32, 22)による前記アクセス情報に応じて前記無線タグ回 路素子 (To; To— 1; To— 2; To— 3)より返信された返信信号を、前記装置側アンテ ナ(14)を介して受信する返信信号受信手段 (33; 22)と、
この返信信号受信手段 (33; 22)で受信された前記返信信号より、前記 IC回路部( 151)のインピーダンスと前記タグ側アンテナ(152)のインピーダンスとの整合状態を 判定する判定手段(S235)と、
この判定手段(S235)の前記判定結果に基づき、前記無線タグ回路素子 (To ;To 1; To— 2; To— 3)の前記 IC回路部(151)の前記インピーダンス制御手段(C 1〜 C4, LA〜LD, F11〜F42, 155, tll〜t42 ;CP, LP, ttA, ttB, ttC, 155, tA, tB, tC)ヘインピーダンス設定用の制御信号を出力するインピーダンス制御信号出力手 段 (S245)とを有することを特徴とするタグラベル作成装置 (2)。
[11] 請求項 10記載のタグラベル作成装置において、
前記判定手段(S235)は、前記情報アクセス手段(32, 22)が所定の信号強度で 前記無線タグ回路素子 (To; To— 1; To— 2; To— 3)への送信を行!、、これに対する 前記返信信号が前記返信信号受信手段 (33; 22)で受信されたとき、前記 IC回路部 (151)のインピーダンスと前記タグ側アンテナ(152)のインピーダンスとの整合完了 状態と判定することを特徴とするタグラベル作成装置 (2)。
[12] 請求項 10記載のタグラベル作成装置にぉ 、て、
前記返信信号受信手段 (33; 22)で受信された前記返信信号の信号強度を検出 する信号強度検出手段 (48)を有し、
前記判定手段(S235)は、前記情報アクセス手段(32, 22)が所定の信号強度で 前記無線タグ回路素子 (To; To— 1; To— 2; To— 3)への送信を行!、、前記信号強 度検出手段 (48)で検出された前記返信信号の信号強度が所定のしき!、値以上とな つたとき、前記 IC回路部(151)のインピーダンスと前記タグ側アンテナ(152)のイン ピーダンスとの整合完了状態と判定することを特徴とするタグラベル作成装置 (2)。
[13] 請求項 10乃至 12のいずれか 1項記載のタグラベル作成装置において、 前記タグテープ(101)を繰り出すための駆動手段(12)と、
前記タグテープ(101)の所定領域に印字を行う印字手段(10)とを有することを特 徴とするタグラベル作成装置(2)。
[14] 請求項 13記載のタグラベル作成装置にぉ 、て、
前記タグテープ(101)の繰り出しが停止したときに前記判定及びこれに応じた前記 インピーダンス設定用の制御信号の出力を行うように、前記駆動手段(12)、前記判 定手段(S235)、及び前記インピーダンス制御信号出力手段(S245)を制御する装 置側第 1制御手段 (S18, S200)を有することを特徴とするタグラベル作成装置(2)。
[15] 請求項 13記載のタグラベル作成装置において、
前記タグテープ(101)の所定領域への印字が開始される前に前記判定及びこれ に応じた前記インピーダンス設定用の制御信号の出力を行うように、前記印字手段( 10)、前記判定手段(S235)、及び前記インピーダンス制御信号出力手段(S245) を制御する装置側第 2制御手段 (S200)を有することを特徴とするタグラベル作成装 置 (2)。
[16] 請求項 13記載のタグラベル作成装置において、
前記タグテープ(101)の所定領域への印字が完了した後に前記判定及びこれに 応じた前記インピーダンス設定用の制御信号の出力を行うように、前記印字手段(10 )、前記判定手段(S235)、及び前記インピーダンス制御信号出力手段(S245)を制 御する装置側第 3制御手段を有することを特徴とするタグラベル作成装置。
PCT/JP2006/303722 2005-03-01 2006-02-28 無線タグ回路素子及びタグラベル作成装置 WO2006093132A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005055907A JP4666281B2 (ja) 2005-03-01 2005-03-01 無線タグ回路素子及びタグラベル作成装置
JP2005-055907 2005-03-01

Publications (1)

Publication Number Publication Date
WO2006093132A1 true WO2006093132A1 (ja) 2006-09-08

Family

ID=36941161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303722 WO2006093132A1 (ja) 2005-03-01 2006-02-28 無線タグ回路素子及びタグラベル作成装置

Country Status (2)

Country Link
JP (1) JP4666281B2 (ja)
WO (1) WO2006093132A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035528A1 (ja) * 2008-09-29 2010-04-01 ブラザー工業株式会社 無線タグ回路素子
US10217044B2 (en) 2015-06-30 2019-02-26 Siemens Aktiengesellschaft Transponder and method for tuning the radio transponder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702861B1 (ko) * 2009-12-24 2017-02-23 삼성전자주식회사 무선 전력 전송 장치 및 방법
JP4676554B2 (ja) * 2010-01-12 2011-04-27 東芝テック株式会社 Rfidラベル発行装置
JP6855989B2 (ja) * 2017-09-14 2021-04-07 オムロン株式会社 Rfタグ回路
JP6855988B2 (ja) * 2017-09-14 2021-04-07 オムロン株式会社 Rfタグ回路
WO2020039533A1 (ja) * 2018-08-23 2020-02-27 三菱電機株式会社 生体センサ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115185A (en) * 1977-03-17 1978-10-07 Sanyo Electric Co Ltd Memory type variable capacitive device
JPH0555474A (ja) * 1991-08-23 1993-03-05 Mitsubishi Electric Corp 半導体装置
JP2001263231A (ja) * 2000-03-23 2001-09-26 Sanyo Electric Co Ltd 密閉型圧縮機およびそれを用いた冷凍装置
JP2002304609A (ja) * 2001-04-06 2002-10-18 Kanai Hiroaki 識別ラベルの周波数調整方法及びこれに適した識別ラベル
JP2003067693A (ja) * 2001-08-27 2003-03-07 Fujitsu Ltd 非接触icカード

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263231A (ja) * 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd シャントレギュレータ、その調整方法及び非接触icカード

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115185A (en) * 1977-03-17 1978-10-07 Sanyo Electric Co Ltd Memory type variable capacitive device
JPH0555474A (ja) * 1991-08-23 1993-03-05 Mitsubishi Electric Corp 半導体装置
JP2001263231A (ja) * 2000-03-23 2001-09-26 Sanyo Electric Co Ltd 密閉型圧縮機およびそれを用いた冷凍装置
JP2002304609A (ja) * 2001-04-06 2002-10-18 Kanai Hiroaki 識別ラベルの周波数調整方法及びこれに適した識別ラベル
JP2003067693A (ja) * 2001-08-27 2003-03-07 Fujitsu Ltd 非接触icカード

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035528A1 (ja) * 2008-09-29 2010-04-01 ブラザー工業株式会社 無線タグ回路素子
US10217044B2 (en) 2015-06-30 2019-02-26 Siemens Aktiengesellschaft Transponder and method for tuning the radio transponder

Also Published As

Publication number Publication date
JP2006243920A (ja) 2006-09-14
JP4666281B2 (ja) 2011-04-06

Similar Documents

Publication Publication Date Title
JP4600742B2 (ja) 印字ヘッド及びタグラベル作成装置
CN100517379C (zh) 签条制作装置
WO2006093132A1 (ja) 無線タグ回路素子及びタグラベル作成装置
EP1796022A1 (en) Wireless tag circuit element container, tag label creating apparatus, wireless tag creation information management server and management system
WO2006016638A1 (ja) ラベル作成装置
JP2008242662A (ja) タグラベル作成装置及び無線タグラベル
WO2005041117A1 (ja) 無線タグ情報通信装置、及び無線タグ情報通信装置用カートリッジ、並びに無線タグ回路素子処理システム
WO2007007739A1 (ja) 無線タグ回路素子収納体及び無線タグ情報通信装置
JP2006309557A (ja) タグラベル作成装置及びタグテープ
JP4761214B2 (ja) 無線タグラベル作成装置
JP2005128867A (ja) 無線タグ情報通信装置用カートリッジ、無線タグ情報通信装置、及び無線タグ回路素子処理システム
JP2007316973A (ja) 無線タグ回路素子カートリッジ及び無線タグ情報通信装置
JP4687970B2 (ja) タグ集合体及びタグラベル作成装置
JP4666207B2 (ja) 無線タグ情報管理装置及び無線タグ情報読み取り装置並びに無線タグ
JP4666206B2 (ja) 無線タグ情報管理システム
JP4720138B2 (ja) タグラベル作成装置、タグテープロール、及びタグテープロールカートリッジ
JP4110412B2 (ja) 無線タグ情報通信装置
JP2008080710A (ja) 印字装置、無線タグ情報通信装置及び無線タグラベル生成システム
JP4496466B2 (ja) タグラベル作成装置
JP4711170B2 (ja) タグラベル作成装置
JP4671170B2 (ja) 無線タグ情報通信装置
JP4761184B2 (ja) タグラベル作成装置及びタグラベル作成システム
JP2006099443A (ja) 無線タグ情報通信装置及び無線タグ回路素子カートリッジ
JP4470430B2 (ja) 無線タグ及び無線タグ作成装置
JP2006053763A (ja) ラベル作成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714859

Country of ref document: EP

Kind code of ref document: A1