WO2006082617A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2006082617A1
WO2006082617A1 PCT/JP2005/001330 JP2005001330W WO2006082617A1 WO 2006082617 A1 WO2006082617 A1 WO 2006082617A1 JP 2005001330 W JP2005001330 W JP 2005001330W WO 2006082617 A1 WO2006082617 A1 WO 2006082617A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor layer
layer
carrier extraction
type
Prior art date
Application number
PCT/JP2005/001330
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Takemori
Yuji Watanabe
Fuminori Sasaoka
Kazushige Matsuyama
Kunihito Ohshima
Masato Itoi
Original Assignee
Shindengen Electric Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co., Ltd. filed Critical Shindengen Electric Manufacturing Co., Ltd.
Priority to JP2007501455A priority Critical patent/JP4794545B2/ja
Priority to PCT/JP2005/001330 priority patent/WO2006082617A1/ja
Publication of WO2006082617A1 publication Critical patent/WO2006082617A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Definitions

  • a trench gate structure formed has been widely applied to various power sources such as a DC-DC converter in recent years.
  • the breakdown voltage is improved by improving the structure related to the gate electrode.
  • a parasitic diode is formed by a PN junction between a drain layer and a base diffusion layer.
  • FIG. 11 shows a cross-sectional structure of a conventional semiconductor device 2 having a trench gate type MOS structure.
  • a semiconductor device having such a structure is described in Patent Document 1, for example.
  • An N epitaxy layer 202 containing N-type impurities is formed on a P + substrate 201 containing high-concentration P-type impurities.
  • an N-epitaxial layer 203 containing an N-type impurity at a concentration lower than that of the N epitaxy layer 202 is formed.
  • P-wells 204 and 204a containing P-type impurities are formed in the surface region of the N-epoxy layer 203, and the N + emitter region containing high-concentration N-type impurities is formed near the surface of the P-well 204. Is formed.
  • a plurality of trenches 206 having a rectangular cross-sectional shape are formed on the surface of the N-epoxy layer 203.
  • a gate insulating film 207 is formed on the inner surface (including the side wall surface 206a and the bottom surface 206b) of the trench 206.
  • a gate electrode 208 made of polysilicon surrounded by a gate insulating film 207 and the like is formed inside the trench 206.
  • a parasitic diode is formed between the P-wells 204 and 204 a and the N epitaxial layer 202.
  • An emitter electrode film 209 made of metal is formed on the top of the above structure.
  • a collector electrode film 210 made of metal is formed on the back surface of the P + substrate 201.
  • the P + substrate 201, the N epitaxial layer 202, the N-epitaxial layer 203, the P well 204, the N + emitter region 205, the gate electrode 208, the emitter electrode film 209, and the collector electrode film 210 constitute a MOS structure. ing. In the active region, multiple MOS structures are formed. Yes. Figure 11 shows the structure around the outer edge of the active area. P-well 204a is used to reduce the electric field strength at the corner of the outermost trench 206, where electric field concentration is likely to occur, and is formed around the outer periphery of the outermost trench 206 so as to be in contact with the outermost trench 206. Has been.
  • P + substrate 201 which is a structure of only an IGBT (Insulated Gate Bipolar Transistor) in which a N-type epitaxial layer 202 or the like is formed on the P + substrate 201! ⁇ Minority carriers are also injected in the MOSFET-only structure and in the composite structure of IGBT and MOSFET where there is no P layer.
  • IGBT Insulated Gate Bipolar Transistor
  • Minority carriers are also injected in the MOSFET-only structure and in the composite structure of IGBT and MOSFET where there is no P layer.
  • the gate electrode 208 and the collector electrode film 210 are grounded and a positive voltage is applied to the emitter electrode film 209, P-wells 204 and 204a And the N-epaxial layer 203 are forward biased. At this time, minority carriers are injected into the N-epaxial layer 203 from the P-wells 204 and 204a.
  • Patent Document 2 Discloses a technique for preventing element breakdown due to carrier concentration by providing a fixed potential diffusion layer into which carriers flow in a planar MOSFET.
  • Patent Document 1 JP-A-6-45612
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-7322
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a semiconductor device capable of improving the breakdown voltage and reducing the occurrence of element breakdown.
  • the present invention provides a first semiconductor layer having first and second main surfaces facing each other, made of a first conductivity type semiconductor, and exposed to the first main surface.
  • a second semiconductor layer made of a first conductivity type semiconductor having a lower impurity concentration than the semiconductor layer, a plurality of grooves formed in the surface of the second semiconductor layer, and a gate insulating film formed in the groove;
  • a first electrode of the second conductivity type formed between the two grooves on the surface of the gate electrode surrounded by the gate insulating film and the second semiconductor layer, and the first region.
  • a first conductivity type second region having an impurity concentration higher than that of the second semiconductor layer on the surface, and a groove in contact with the first region on the surface of the second semiconductor layer;
  • a second conductivity type fourth region having a higher impurity concentration than the third region, and a second conductivity type carrier extraction region in contact with the third region on the surface of the second semiconductor layer;
  • An insulating layer having an insulating material force formed on the surface of the carrier extraction region, and the carrier pulling when viewed from a direction perpendicular to the first main surface, formed on the surface of the insulating layer.
  • a gate electrode pad that partially overlaps the extraction region, the first electrode that is in contact with the second region and the fourth region, and is in contact with the second main surface and the second electrode that is in contact with the second main surface.
  • the semiconductor device is provided with an electrode.
  • the present invention provides a first semiconductor layer having first and second main surfaces opposed to each other, made of a first conductivity type semiconductor, and exposed to the first main surface.
  • a second semiconductor layer made of a first conductivity type semiconductor having a lower impurity concentration than the semiconductor layer, and a surface of the second semiconductor layer;
  • the depth of the carrier extraction region in the surface force of the second semiconductor layer may be smaller than the depth of the groove in the surface force of the second semiconductor layer.
  • the gate electrode pad In view of the directional force in which the depth of the carrier extraction region from the surface of the second semiconductor layer in the vicinity of the third region is also perpendicular to the first main surface, the gate electrode pad Than the depth of the carrier extraction region from the surface of the second semiconductor layer in the region overlapping with / J.
  • the depth of the carrier extraction region from the surface of the second semiconductor layer in the vicinity of the third region is smaller than the depth of the groove of the surface force of the second semiconductor layer.
  • the depth of the carrier extraction region of the surface force of the second semiconductor layer in the region overlapping the gate electrode pad is the surface of the second semiconductor layer.
  • the force may be greater than the depth of the groove.
  • the thickness of the portion formed on the bottom surface of the groove may be larger than the thickness of the portion formed on the side wall surface of the groove.
  • the invention's effect there is an effect that the breakdown voltage can be improved and the occurrence of element breakdown can be reduced.
  • FIG. 1 is a sectional view showing a sectional structure of a semiconductor device la according to a first embodiment of the present invention.
  • FIG. 2A is a plan view of the semiconductor device la.
  • FIG. 2B is a plan view of the semiconductor device la.
  • FIG. 3A is a plan view of the semiconductor device la.
  • FIG. 3B is a plan view of the semiconductor device la.
  • FIG. 4 is a cross-sectional view for explaining a method of forming the carrier extraction region 112.
  • FIG. 5 is a cross-sectional view for explaining a method of forming the carrier extraction region 112.
  • FIG. 6 is a cross-sectional view for explaining a method of forming the carrier extraction region 112.
  • FIG. 7 is a cross-sectional view for explaining a method of forming the carrier extraction region 112.
  • FIG. 8 is a sectional view showing a sectional structure of a semiconductor device lb according to a second embodiment of the present invention.
  • FIG. 9 is a sectional view showing a sectional structure of a semiconductor device lc according to a third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a cross-sectional structure of a semiconductor device Id according to a fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a cross-sectional structure of a conventional semiconductor device 2.
  • Interlayer insulating film 112, 112a, 142 ... Carrier extraction region, 113 ⁇ 114, 121, 144, 1 51 Gate electrode pad, 120, 150 ... Zener diode, 122 ... Drain electrode film, 123, 124 ... Acid film, 125 ... Injection layer, 131 ... High concentration layer, 132 ... ⁇ Low-concentration layer, 135 ⁇ ⁇ + type emitter region, 148 ⁇ 'Emitter electrode film, 152 ⁇ ' Collector electrode film, 154 ⁇ 'Collector layer, P + 201 ... substrate, 202 ... ⁇ Epitaxial layer, 203...
  • FIG. 1 shows a cross-sectional structure of a semiconductor device la according to the first embodiment of the present invention.
  • This semiconductor device la is a MOSFET.
  • the drain layer 101 containing a high-concentration N-type impurity has two main surfaces 301 and 302 facing each other, and constitutes an N + type silicon substrate.
  • a drift layer 102 containing a low-concentration N-type impurity is formed on the main surface 301 of the drain layer 101.
  • a P-type body region 103 containing P-type impurities is formed on the drift layer 102.
  • a P + type diffusion region 104 containing a P-type impurity having a higher concentration than the P-type body region 103 is formed.
  • An N + type source region 105 containing a high concentration of N type impurities is also formed on the surface of the P type body region 103 so as to sandwich the P + type diffusion region 104.
  • a plurality of trenches 106 having a rectangular cross-sectional shape are formed.
  • a gate insulating film 107 and an interlayer insulating film 126 are formed on the inner surface of the trench 106 (including the side wall surface 106a and the bottom surface 106b).
  • a gate electrode 108 made of polysilicon surrounded by a gate insulating film 107 and an interlayer insulating film 126 is formed.
  • an insulating interlayer insulating film 109 having BPSG (Boro-Phosphosilicate glass) force is formed.
  • the gate insulating film 107 may be formed such that the thickness of the portion formed on the bottom surface 106 b of the trench 106 is larger than the thickness of the portion formed on the side wall surface 106 a of the trench 106. In this way, the on-resistance capacitance can be kept low.
  • a P-type body region 110 containing a P-type impurity is also formed on the surface of the drift layer 102.
  • P-type body region 103 and P-type body region 110 are adjacent to each other through trench 106.
  • a P + type diffusion region 111 containing P-type impurities at a higher concentration than the P-type body region 110 is formed on the surface of the P-type body region 110.
  • a carrier extraction region 112 containing a P-type impurity is formed on the surface of the drift layer 102 so as to be in contact with the P-type body region 110.
  • the depth of the carrier extraction region 112 having a surface force of the drift layer 102 (distance X in the drawing) is smaller than the depth of the trench 106 from the surface of the drift layer 102 (distance X in the drawing).
  • the distance X is the same as the distance X.
  • the distance X X as in this embodiment.
  • a P-type well 113 containing a P-type impurity is provided adjacent to the carrier extraction region 112 in order to reduce the gate-drain capacitance.
  • an insulating film that also has SiO force 1 is provided on the surface of the carrier extraction region 112 and the P-type well 113.
  • the insulating film 114 covers a part of the carrier extraction region 112. On this insulating film 114, interlayer insulating films 115 and 116 having a BPSG force are formed, and a polysilicon film 117 having a polysilicon force is also formed.
  • a source electrode film 118 having a metal force is formed on the top of the above structure.
  • the source electrode film 118 is electrically connected to the N + type source region 105 and the P + type diffusion region 111, and is insulated from the gate electrode 108.
  • the source electrode film 118 forms an ohmic junction with the N + type source region 105 and the P + type diffusion region 111.
  • the carrier extraction region 112 is electrically connected to the source electrode film 118 through the P-type body region 110 and the P + type diffusion region 111.
  • a gate electrode pad 119 for applying a voltage to the gate electrode 108 from the external cover is formed on the interlayer insulating film 116.
  • this gate electrode Node 119 is electrically connected to gate electrode 108.
  • a drain electrode film 122 made of metal is formed on the main surface 302 of the drain layer 101.
  • the drain electrode film 122 forms an ohmic junction with the drain layer 101.
  • the drain layer 101, the drift layer 102, the P-type body region 103, the N + type source region 105, the gate electrode 108, the source electrode film 118, and the drain electrode film 122 constitute a MOSFET.
  • a plurality of MOSFET structures are formed in the active region.
  • Figure 1 shows the structure around the outer edge of the active area.
  • the drift layer 102 is formed by epitaxially growing silicon containing N-type impurities on the surface of the drain layer 101.
  • P-type body region 103 and P-type body region 110 are formed by implanting P-type impurities from the surface of drift layer 102 and diffusing the impurities at a high temperature within a predetermined depth range.
  • the P + type diffusion region 104 is formed by selectively injecting P type impurities from the surface of the P type body region 103 and diffusing the impurities at a high temperature within a predetermined depth range of surface force.
  • the surface force of the P-type diffusion region 111 is formed by selectively injecting P-type impurities into the surface force of the P-type body region 110 and diffusing the impurities at a high temperature within a predetermined depth range. ing.
  • the N + type source region 105 is formed by selectively injecting an N type impurity from the surface of the P type body region 103 and diffusing the impurity at a high temperature within a predetermined range of surface force. It is.
  • the surfaces of the P-type body region 103, the P + type diffusion region 104, and the N + type source region 105 that are in contact with the source electrode film 118 have the same height in the same plane. A mesa structure is formed.
  • the trench 106 is formed by etching the drift layer 102 and reaches the drift layer 102 from the surface of the P-type body region 103.
  • the gate insulating film 107 is formed by oxidizing the surface of the trench 106 in a high-temperature oxygen atmosphere.
  • the gate electrode 108 is formed by depositing polysilicon containing N-type impurities on the surface of the gate insulating film 107.
  • the carrier extraction region 112 is formed by implanting P-type impurities as well as the surface force of the drift layer 102, and diffusing the impurities at a high temperature within the range of the surface force within a predetermined depth.
  • the source electrode film 118 and the drain electrode film 122 are formed, for example, by sputtering an electrode material.
  • the impurity concentration of the drain layer 101 is, for example, 10 19 — 10 2 G cm ⁇ 3 .
  • the impurity concentration at the surfaces of the P-type body region 10 3 and the P-type body region 110 is, for example, 10 17 ⁇ 10 18 cm ⁇ 3 .
  • the impurity concentration at the surface of the P + type diffusion region 104 and the P + type diffusion region 111 is, for example, 10 18 ⁇ 10 19 cm ⁇ 3 .
  • the impurity concentration on the surface of the N + type source region 105 is, for example, 10 19 ⁇ 10 2 cm ⁇ 3 .
  • the impurity concentration on the surface of the carrier extraction region 112 is, for example, 10 17 ⁇ 10 18 cm ⁇ 3 .
  • FIGS. 2A to 3B are plan views of the semiconductor device la according to the present embodiment as viewed from a direction perpendicular to the main surface 301.
  • Figure 1 shows part of the cross-sectional structure taken along line AA in Figure 2A.
  • FIG. 2A-FIG. 2B show an example of the arrangement of the carrier extraction region 112 and the P-type wel 113.
  • FIGS. 3A and 3B show an example in which a carrier extraction region 112a is formed so as to surround the periphery of the P-type well 113, and a guard ring region 112b is formed so as to surround the outside thereof.
  • the operation of the semiconductor device la will be described.
  • a positive voltage is applied to the drain electrode film 122, and a positive voltage is applied to the gate electrode 108, an inversion layer is formed at the interface between the P-type body region 103 and the trench 106, and the drain electrode Source from membrane 122 A current flows to the electrode film 118 by force.
  • the ground force is also applied to the gate electrode 108, the inversion layer formed at the interface between the P-type body region 103 and the trench 106 is extinguished, and the current is cut off.
  • the drift layer 102 is formed by epitaxial growth on the drain layer 101, and an oxide such as SiO is deposited on the drift layer 102 to form an oxide film 123 (FIG. 4). continue,
  • a resist is applied on the oxide film 123, and a resist pattern is formed by a photographic process (exposure and development).
  • the oxide film 123 is etched using the resist pattern as a mask to expose the surface of the drift layer 102, and then the resist is removed (FIG. 5).
  • FIG. 6 A P-type impurity such as B (boron) is implanted into the surface of the drift layer 102 so as to pass through the oxide film 124, thereby forming an implanted layer 125 (FIG. 6).
  • B in the injection layer 125 diffuses into the drift layer 102, and a carrier extraction region 112 and a P-type well 113 are formed (FIG. 7).
  • This semiconductor device lb is a MOSFET.
  • the depth of the carrier extraction region 112 (distance X in the figure) from the surface of the drift layer 102 in the vicinity of the P-type body region 110 is perpendicular to the main surface 301.
  • the carrier extraction region 112 As seen from the figure, it is smaller than the depth (distance X in the figure) of the carrier extraction region 112 having the surface force of the drift layer 102 in the region overlapping with the gate electrode pad 119 and the Zener diode 120.
  • the carrier extraction region 112 is formed to be shallower than a portion located below the partial force gate electrode pad 119 and the Zener diode 120 in the vicinity of the P-type body region 110.
  • the depth of the carrier extraction region 112 (distance X in the figure) from the surface of the drift layer 102 in the vicinity of the P-type body region 110 is the trench 1 from the surface of the drift layer 102.
  • the surface of the drift layer 102 in the region overlapping with the node 119 and the Zener diode 120 The depth of the strong carrier extraction region 112 (distance X in the figure) is from the surface of the drift layer 102.
  • the 112 is formed deeper than the trench 106 at a portion located below the gate electrode pad 119 and the Zener diode 120 where the portion in the vicinity of the P-type body region 110 is shallower than the trench 106.
  • the carrier extraction region 112 is for the parasitic diode constituted by the P-type body region 110 and the drift layer 102 adjacent to the outermost trench 106 when a reverse voltage is applied to the parasitic diode. Relax your career concentration. In order to fully exhibit this effect, it is desirable that the carrier extraction region 112 is formed wide and deep toward the outside of the outermost trench 106 in the active region.
  • the carrier extraction region 112 expands so as to cover the outermost trench 106 in the active region, the P-type body region 103 between the outermost trench 106 and the one inner trench 106 becomes smaller. As a result, the carrier extraction region 112 partially overlaps, which affects the impurity concentration in the vicinity. Naturally, in the outermost trench 106 Adversely affects the operation of the MOSFET. In order to avoid this, even if there is a slight process variation, the portion near the outermost trench 106 in the carrier extraction region 112 is formed shallower than the trench 106, and the carrier extraction region 112 is formed on the outermost region. Desirable, do not cover trench 106.
  • the drift layer 102 With the above structure, in the drift layer 102, minority carriers generated in a region outside the active region can be flowed into the carrier extraction region 112 more efficiently. In addition, by forming the carrier extraction region 112 to a deeper region of the drift layer 102, the radius of curvature of the edge of the carrier extraction region 112 is increased, so that the concentration of the electric field at the edge is reduced and the breakdown voltage is improved. can do.
  • B is implanted separately into the surface region of the drift layer 102 immediately below the gate electrode pad 119 and the Zener diode 120 and the surface region of the drift layer 102 in the vicinity of the P-type body region 110. .
  • FIG. 9 shows a cross-sectional structure of the semiconductor device lc according to the present embodiment.
  • This semiconductor device lc is an IGBT.
  • the high-concentration layer 131 containing high-concentration N-type impurities formed by epitaxial growth has two main surfaces 303 and 304 facing each other.
  • a low concentration layer 132 containing a low concentration N-type impurity is formed on the main surface 303 of the high concentration layer 131.
  • a P-type body region 133 containing P-type impurities is formed on the low concentration layer 132.
  • a P + type diffusion region 134 containing a P-type impurity at a higher concentration than the P-type body region 133 is formed.
  • an N + type emitter region 135 containing a high-concentration N-type impurity is also formed so as to sandwich the P + type diffusion region 134.
  • a plurality of trenches 136 having a rectangular cross section are formed.
  • a gate insulating film 137 and an interlayer insulating film 153 are formed on the inner surface of the trench 136 (including the side wall surface 136a and the bottom surface 136b).
  • a gate electrode 138 made of polysilicon surrounded by a gate insulating film 137 and an interlayer insulating film 153 is formed.
  • an insulating interlayer 139 for insulation with BPSG force is formed. It is made.
  • the gate insulating film 137 may be formed such that the thickness of the portion formed on the bottom surface 136b of the trench 136 is larger than the thickness of the portion formed on the side wall surface 136a of the trench 136. In this way, the on-resistance capacitance can be kept low.
  • a P-type body region 140 containing P-type impurities is also formed on the surface of the low concentration layer 132.
  • P-type body region 133 and P-type body region 140 are adjacent to each other through trench 136.
  • a P + type diffusion region 141 containing a P-type impurity having a higher concentration than the P-type body region 140 is formed on the surface of the P-type body region 140.
  • a carrier extraction region 142 containing a P-type impurity is formed on the surface of the low concentration layer 132 so as to be in contact with the P-type body region 140.
  • the depth (the distance X in the figure) of the carrier extraction region 142 having the surface strength of the low concentration layer 132 is the trench 13 from the surface of the low concentration layer 132.
  • a P-type well 143 containing a P-type impurity for reducing the capacitance between the gate and the collector is provided adjacent to the carrier extraction region 142.
  • the insulating film 144 covers a part of the carrier extraction region 142. On this insulating film 144, interlayer insulating films 145 and 146 having a BPSG force are formed, and a polysilicon film 147 having a polysilicon force is also formed.
  • An emitter electrode film 148 having a metal force is formed on the top of the above structure.
  • the emitter electrode film 148 is electrically connected to the N + type emitter region 135 and the P + type diffusion region 141 and insulated from the gate electrode 138.
  • the emitter electrode film 148 forms an ohmic junction with the N + type emitter region 135 and the P + type diffusion region 141.
  • the carrier extraction region 142 is electrically connected to the emitter electrode film 148 through the P-type body region 140 and the P + type diffusion region 141.
  • a gate electrode pad 149 for applying a voltage to the gate electrode 138 is formed on the external cover.
  • the gate electrode pad 149 is electrically connected to the gate electrode 138.
  • the carrier extraction region 142 and the gate electrode pad 149 are formed so as to partially overlap each other.
  • a high-concentration N-type layer, a P-type layer, a high-concentration N-type layer, a P-type layer, a high A Zener diode 150 is formed in which N-type layers of concentration are arranged in order.
  • An insulating film 151 is formed on the Zener diode 150.
  • a collector layer 154 containing a high-concentration P-type impurity is formed on the main surface 304 of the high-concentration layer 131.
  • the collector layer 154 constitutes a P + type silicon substrate.
  • a collector electrode film 152 having a metal force is formed on the collector layer 154.
  • the collector electrode film 152 forms an ohmic junction with the collector layer 154.
  • the low concentration layer 131, the high concentration layer 132, the P-type body region 133, the N + type emitter region 135, the gate electrode 138, the emitter electrode film 148, the collector layer 154, and the collector electrode film 152 constitute an IGBT.
  • a plurality of IGBT structures are formed in the active region.
  • Figure 9 shows the structure around the outer edge of the active area.
  • FIG. 10 shows a cross-sectional structure of the semiconductor device Id according to the present embodiment. Structures having the same functions as those shown in FIG. 9 are given the same reference numerals.
  • This semiconductor device Id is an IGBT.
  • the depth (distance X in the figure) of the carrier extraction region 142 from the surface of the low concentration layer 132 in the vicinity of the P-type body region 140 is from the direction perpendicular to the main surface 303.
  • the carrier extraction region 142 having a surface force of the low concentration layer 132 in the region overlapping with the gate electrode pad 149 and the Zener diode 150 is smaller than the depth (distance X in the figure).
  • the carrier extraction region 142 is a portion located below the partial force gate electrode pad 149 and the Zener diode 150 in the vicinity of the P-type body region 140. It is formed to be shallower.
  • the depth (distance X in the figure) of the carrier extraction region 142 of the low concentration layer 132 in the vicinity of the P-type body region 140 is the strength of the surface concentration of the low concentration layer 132.
  • the gate as viewed from the direction perpendicular to the main surface 303 which is smaller than the depth 136 (distance X in the figure)
  • the depth (distance X in the figure) of the carrier extraction region 142 from the surface of the low concentration layer 132 in the region overlapping the electrode pad 149 and the Zener diode 150 is the table of the low concentration layer 132
  • a portion in the vicinity of the P-type body region 140 is shallower than the trench 136, and a portion located below the Zener diode 150 is formed deeper than the trench 136.
  • the carrier extraction region 142 is a parasitic diode constituted by the P-type body region 140 and the low-concentration layer 1 32 adjacent to the outermost trench 136 when a reverse voltage is applied to the parasitic diode. Reduce the concentration of careers against In order to fully exhibit this effect, it is desirable that the carrier extraction region 142 be formed wide and deep by the outward force of the outermost trench 136 in the active region.
  • the carrier extraction region 142 expands so as to cover the outermost trench 136 in the active region, the P-type body region 133 between the outermost trench 136 and the innermost trench 136 has As a result, the carrier extraction region 142 partially overlaps, which affects the impurity concentration in the vicinity. Of course, this has an undesirable effect on the operation of the IGBT in the outermost trench 136. In order to avoid this, even if there is some process variation, the carrier extraction region 142 should be formed shallower than the trench 136 in the portion near the outermost trench 136, and the carrier extraction region 142 is the outermost region. Do not cover the trench 136! /
  • the breakdown voltage can be improved and the occurrence of device breakdown can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 ドリフト層102の表面において、P型ボディ領域110に接するように、P型不純物を含むキャリア引き抜き領域112が形成されている。ドリフト層102の表面からのキャリア引き抜き領域112の深さ(距離X1)は、ドリフト層102の表面からのトレンチ106の深さ(距離X2)よりも小さい。このキャリア引き抜き領域112には、半導体装置1aの動作時にドリフト層102に注入された少数キャリアが流れ込む。

Description

明 細 書
半導体装置
技術分野
[0001] パワー MOSFET(MOS Field Effect Transistor)の構成を有する半導体装置にお いて、トレンチゲート構造が形成されたものは、近年、 DC— DCコンバータ等、各種電 源に幅広く応用されている。トレンチゲート型 MOSFETを備えた半導体装置におい ては、ゲート電極に関わる構造を改良することによって、耐圧の向上が図られている 。一般に、 MOSFETにおいては、ドレイン層とベース拡散層との間の PN接合によつ て寄生ダイオードが形成されて 、る。
[0002] 図 11は、トレンチゲート型の MOS構造を備えた従来の半導体装置 2の断面構造を 示している。このような構造の半導体装置は、例えば特許文献 1に記載されている。 高濃度の P型不純物を含む P+基板 201上には、 N型不純物を含む Nェピタキシャル 層 202が形成されている。 Nェピタキシャル層 202上には、 Nェピタキシャル層 202よ りも低濃度の N型不純物を含む N—ェピタキシャル層 203が形成されて ヽる。 N—ェピ タキシャル層 203の表面領域には、 P型不純物を含む Pゥエル 204および 204aが形 成され、 Pゥエル 204の表面近傍には、高濃度の N型不純物を含む N+ェミッタ領域 2 05が形成されている。
[0003] N—ェピタキシャル層 203の表面には、断面の形状が矩形である複数のトレンチ 20 6が形成されている。このトレンチ 206の内面(側壁面 206aおよび底面 206bを含む) には、ゲート絶縁膜 207が形成されている。トレンチ 206の内部には、ゲート絶縁膜 2 07等によって囲まれた、ポリシリコンからなるゲート電極 208が形成されている。この 半導体装置 2においては、 Pゥエル 204および 204aと Nェピタキシャル層 202との間 に寄生ダイオードが形成されている。上記の構造の最上部には、金属力 なるエミッ タ電極膜 209が形成されている。 P+基板 201の裏面には、金属カゝらなるコレクタ電極 膜 210が形成されている。
[0004] P+基板 201、 Nェピタキシャル層 202、 N—ェピタキシャル層 203、 Pゥエル 204、 N +ェミッタ領域 205、ゲート電極 208、ェミッタ電極膜 209、およびコレクタ電極膜 210 によって MOS構造が構成されている。能動領域には、 MOS構造が複数形成されて いる。図 11は能動領域の外縁周辺の構造を示している。 Pゥエル 204aは、電界集中 が起きやすい最外縁のトレンチ 206の角部における電界強度を緩和するためのもの であり、最外縁のトレンチ 206の外周周辺において、最外縁のトレンチ 206に接する ように形成されている。
[0005] ェミッタ電極膜 209を接地し、コレクタ電極膜 210に正電圧を印加し、ゲート電極 20 8に正電圧を印加すると、 Pゥエル 204とトレンチ 206との界面に反転層が形成され、 コレクタ電極膜 210からェミッタ電極膜 209へ向力つて電流が流れる。図 11に示され る構造は、 P+基板 201上に Nェピタキシャル層 202等が形成された IGBT (Insulated Gate Bipolar Transistor)のみの構造である力 P+基板 201に相当する P層が存在し な!ヽ MOSFETのみの構造や、部分的に P層が存在しな 、IGBTと MOSFETとの複 合構造においても、同様に少数キャリアが注入される。また、 MOSFETのみの構造 、または IGBTと MOSFETとの複合構造の場合には、ゲート電極 208およびコレクタ 電極膜 210を接地し、ェミッタ電極膜 209に正電圧を印加すると、 Pゥエル 204およ び 204aと N—ェピタキシャル層 203との間の PN接合が順バイアスとなる。このとき、 P ゥエル 204および 204aから N—ェピタキシャル層 203に少数キャリアが注入される。
[0006] その状態でェミッタ電極膜 209とコレクタ電極膜 210との間の電圧が反転すると、 N —ェピタキシャル層 203に注入された少数キャリアは、 Pゥエル 204および 204aに流 れ込む。最も外側のトレンチ 206 (図 11において右端のトレンチ 206)よりも外側の N_ ェピタキシャル層 203に注入された少数キャリアは、 N—ェピタキシャル層 203に沿つ て水平に移動し、 Pゥエル 204aに流れ込む。このため、 Pゥエル 204aには少数キヤリ ァが集中する。また、 IGBTのみの構造では、 IGBTがオフとなったときに、同様の少 数キャリアの集中が起こる。したがって、いずれの構造においても、能動領域の外縁 周辺には、最外縁のトレンチ 206の角部における電界強度を緩和するだけでなぐ少 数キャリアを局所的に集中させずに素子の外部へ積極的に引き抜く構造が必要にな る。
[0007] このように、トレンチゲート型 MOSFET等の半導体装置においては、寄生ダイォー ドを回路の一部として利用することがあるが、能動領域の外縁に位置する寄生ダイォ ードにキャリアが集中し、素子破壊を起こしやすいという問題があった。特許文献 2に は、プレーナ型 MOSFETにおいて、キャリアが流れ込む固定電位拡散層を設けるこ とにより、キャリアの集中による素子破壊を防止する技術が開示されている。
特許文献 1:特開平 6 - 45612号公報
特許文献 2:特開 2001-7322号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、上述した問題点に鑑みてなされたものであって、耐圧を向上し、素子破 壊の発生を低減することができる半導体装置を提供することを目的とする。
課題を解決するための手段
[0009] 本発明は、対向する第 1および第 2の主面を有し、第 1導電型の半導体からなる第 1 の半導体層と、前記第 1の主面に露出する、前記第 1の半導体層よりも不純物濃度 の低い第 1導電型の半導体からなる第 2の半導体層と、前記第 2の半導体層の表面 に形成された複数の溝と、前記溝に形成されたゲート絶縁膜と、前記ゲート絶縁膜に 囲まれたゲート電極と、前記第 2の半導体層の表面において、 2つの前記溝の間に 形成された第 2導電型の第 1の領域と、前記第 1の領域の表面において、前記第 2の 半導体層よりも不純物濃度の高い第 1導電型の第 2の領域と、前記第 2の半導体層 の表面において、前記第 1の領域と接する前記溝に接し、前記溝を介して前記第 1 の領域と隣り合う第 2導電型の第 3の領域と、前記第 3の領域の表面において、前記 第 3の領域よりも不純物濃度の高 、第 2導電型の第 4の領域と、前記第 2の半導体層 の表面において、前記第 3の領域と接する第 2導電型のキャリア引き抜き領域と、前 記キャリア引き抜き領域の表面上に形成された、絶縁材料力 なる絶縁層と、前記絶 縁層の表面上に形成され、前記第 1の主面に垂直な方向から見て、前記キャリア引 き抜き領域と一部が重なるゲート電極パッドと、前記第 2の領域および前記第 4の領 域に接し、金属力 なる第 1の電極と、前記第 2の主面に接し、金属力 なる第 2の電 極とを備えたことを特徴とする半導体装置である。
[0010] 本発明は、対向する第 1および第 2の主面を有し、第 1導電型の半導体からなる第 1 の半導体層と、前記第 1の主面に露出する、前記第 1の半導体層よりも不純物濃度 の低い第 1導電型の半導体からなる第 2の半導体層と、前記第 2の半導体層の表面 に形成された複数の溝と、前記溝に形成されたゲート絶縁膜と、前記ゲート絶縁膜に 囲まれたゲート電極と、前記第 2の半導体層の表面において、 2つの前記溝の間に 形成された第 2導電型の第 1の領域と、前記第 1の領域の表面において、前記第 2の 半導体層よりも不純物濃度の高い第 1導電型の第 2の領域と、前記第 2の半導体層 の表面において、前記第 1の領域と接する前記溝に接し、前記溝を介して前記第 1 の領域と隣り合う第 2導電型の第 3の領域と、前記第 3の領域の表面において、前記 第 3の領域よりも不純物濃度の高 、第 2導電型の第 4の領域と、前記第 2の半導体層 の表面において、前記第 3の領域と接する第 2導電型のキャリア引き抜き領域と、前 記キャリア引き抜き領域の表面上に形成された、絶縁材料力 なる絶縁層と、前記絶 縁層の表面上に形成され、前記第 1の主面に垂直な方向から見て、前記キャリア引 き抜き領域と一部が重なるゲート電極パッドと、前記第 2の領域および前記第 4の領 域に接し、金属力 なる第 1の電極と、前記第 2の主面に露出する、第 2導電型の半 導体からなる第 3の半導体層と、前記第 3の半導体層に接し、金属力 なる第 2の電 極とを備えたことを特徴とする半導体装置である。
[0011] 前記第 2の半導体層の表面力 の前記キャリア引き抜き領域の深さは、前記第 2の 半導体層の表面力 の前記溝の深さよりも小さくてもよい。
[0012] 前記第 3の領域の近傍における前記第 2の半導体層の表面からの前記キャリア引 き抜き領域の深さが、前記第 1の主面に垂直な方向力も見て、前記ゲート電極パッド と重なる領域における前記第 2の半導体層の表面からの前記キャリア引き抜き領域の 深さよりち/ J、さくてちょい。
[0013] 前記第 3の領域の近傍における前記第 2の半導体層の表面からの前記キャリア引 き抜き領域の深さが、前記第 2の半導体層の表面力 の前記溝の深さよりも小さぐ 前記第 1の主面に垂直な方向から見て、前記ゲート電極パッドと重なる領域における 前記第 2の半導体層の表面力 の前記キャリア引き抜き領域の深さが、前記第 2の半 導体層の表面力 の前記溝の深さよりも大きくてもよい。
[0014] 前記ゲート絶縁膜は、前記溝の底面上に形成された部分の厚さが、前記溝の側壁 面上に形成された部分の厚さよりも大きくてもよい。
発明の効果 [0015] 本発明によれば、耐圧を向上し、素子破壊の発生を低減することができるという効 果が
図面の簡単な説明
[0016] [図 1]図 1は、本発明の第 1の実施形態による半導体装置 laの断面構造を示す断面 図である。
[図 2A]図 2Aは半導体装置 laの平面図である。
[図 2B]図 2Bは半導体装置 laの平面図である。
[図 3A]図 3Aは半導体装置 laの平面図である。
[図 3B]図 3Bは半導体装置 laの平面図である。
[図 4]図 4は、キャリア引き抜き領域 112の形成方法を説明するための断面図である。
[図 5]図 5は、キャリア引き抜き領域 112の形成方法を説明するための断面図である。
[図 6]図 6は、キャリア引き抜き領域 112の形成方法を説明するための断面図である。
[図 7]図 7は、キャリア引き抜き領域 112の形成方法を説明するための断面図である。
[図 8]図 8は、本発明の第 2の実施形態による半導体装置 lbの断面構造を示す断面 図である。
[図 9]図 9は、本発明の第 3の実施形態による半導体装置 lcの断面構造を示す断面 図である。
[図 10]図 10は、本発明の第 4の実施形態による半導体装置 Idの断面構造を示す断 面図である。
[図 11]図 11は、従来の半導体装置 2の断面構造を示す断面図である。
符号の説明
[0017] la, lb, 2···半導体装置、 101…ドレイン層、 102···ドリフト層、 103, 110, 13 3, 140···Ρ型ボディ領域、 104, 111, 134, 141···Ρ+型拡散領域、 105, 205·· •Ν+型ソース領域、 106, 136, 206…卜レンチ、 106a, 136a, 206a…側壁面、 1 06b, 136b, 206b…底面、 107, 137, 207…ゲー卜絶縁膜、 108, 138, 208·· •ゲート電極、 109, 115, 116, 126, 139, 145, 146, 153…層間絶縁膜、 112, 112a, 142…キャリア引き抜き領域、 113, 143···Ρ型ゥエル、 114, 121, 144, 1 51···絶縁膜、 117, 147···ポリシリコン膜、 118···ソース電極膜、 119, 149··· ゲート電極パッド、 120, 150· · ·ツエナーダイオード、 122· · ·ドレイン電極膜、 123, 124· · ·酸ィ匕膜、 125 · · ·注入層、 131 · · ·高濃度層、 132· · ·低濃度層、 135 · · ·Ν+ 型ェミッタ領域、 148 · · 'ェミッタ電極膜、 152· · 'コレクタ電極膜、 154· · 'コレクタ層 、 P+201. . '基板、 202· . .Νェピタキシャル層、 203. . .Ν—ェピタキシャル層、 204, 204a- · ·Ρゥエル、 205 · · ·Ν+ェミッタ領域、 209 · · 'ェミッタ電極膜、 210· · 'コレクタ 電極膜、 301, 302, 303, 304…主面。
発明を実施するための最良の形態
[0018] 以下、図面を参照し、本発明を実施するための最良の形態について説明する。図 1 は、本発明の第 1の実施形態による半導体装置 laの断面構造を示している。この半 導体装置 laは MOSFETである。高濃度の N型不純物を含むドレイン層 101は、対 向する 2つの主面 301および 302を有し、 N+型シリコン基板を構成している。ドレイン 層 101の主面 301上には、低濃度の N型不純物を含むドリフト層 102が形成されて いる。ドリフト層 102上には、 P型不純物を含む P型ボディ領域 103が形成されている 。 P型ボディ領域 103の表面近傍には、 P型ボディ領域 103よりも高濃度の P型不純 物を含む P+型拡散領域 104が形成されている。 P型ボディ領域 103の表面には、 P+ 型拡散領域 104を挟むように、高濃度の N型不純物を含む N+型ソース領域 105も 形成されている。
[0019] P型ボディ領域 103の表面からドリフト層 102に至るまでの領域には、断面の形状 が矩形である複数のトレンチ 106が形成されている。このトレンチ 106の内面(側壁面 106aおよび底面 106bを含む)には、ゲート絶縁膜 107および層間絶縁膜 126が形 成されている。トレンチ 106の内部には、ゲート絶縁膜 107および層間絶縁膜 126に よって囲まれた、ポリシリコンからなるゲート電極 108が形成されている。トレンチ 106 および N+型ソース領域 105上には、 BPSG (Boro- Phospho silicate glass)力もなる絶 縁用の層間絶縁膜 109が形成されている。ゲート絶縁膜 107は、トレンチ 106の底面 106b上に形成された部分の厚さが、トレンチ 106の側壁面 106a上に形成された部 分の厚さよりも大きくなるように形成されていてもよい。このようにすれば、オン抵抗静 電容量を低く抑えることができる。
[0020] ドリフト層 102の表面には、 P型不純物を含む P型ボディ領域 110も形成されている 。 P型ボディ領域 103と P型ボディ領域 110は、トレンチ 106を介して隣り合つている。 この P型ボディ領域 110の表面には、 P型ボディ領域 110よりも高濃度の P型不純物 を含む P+型拡散領域 111が形成されている。また、ドリフト層 102の表面において、 P型ボディ領域 110に接するように、 P型不純物を含むキャリア引き抜き領域 112が 形成されている。
[0021] ドリフト層 102の表面力ものキャリア引き抜き領域 112の深さ(図中の距離 X )は、ド リフト層 102の表面からのトレンチ 106の深さ(図中の距離 X )よりも小さい。キャリア
2
引き抜き領域 112が不純物拡散によって形成されるので、距離 Xを距離 Xと同じ、
1 2 または距離 Xよりも大きくすると、横方向への拡散も大きくなる。横方向への拡散が
2
大きくなると、キャリア引き抜き領域 112の面積が増大するので、半導体装置 laの面 積を増大させる必要が生じる。したがって、半導体装置 laの小型化が特に必要とな る場合には、本実施形態のように、距離 X X
1を距離 2よりも小さくすることが望ましい。 このキャリア引き抜き領域 112には、半導体装置 laの動作時にドリフト層 102に注入 された少数キャリアが流れ込む。これにより、少数キャリアの集中を緩和し、素子破壊 を防ぐことができる。
[0022] ドリフト層 102の表面には、ゲート—ドレイン間の容量を低下させるための、 P型不純 物を含む P型ゥエル 113が、キャリア引き抜き領域 112と隣り合うように設けられている 。キャリア引き抜き領域 112および P型ゥエル 113の表面には、 SiO力もなる絶縁膜 1
2
14が形成されて 、る。絶縁膜 114はキャリア引き抜き領域 112の一部を被覆して 、る 。この絶縁膜 114上には、 BPSG力もなる層間絶縁膜 115および 116が形成され、ポ リシリコン力 なるポリシリコン膜 117も形成されて 、る。
[0023] 上記の構造の最上部には、金属力もなるソース電極膜 118が形成されている。ソー ス電極膜 118は N+型ソース領域 105および P+型拡散領域 111と電気的に接続され 、ゲート電極 108とは絶縁されている。ソース電極膜 118は N+型ソース領域 105およ び P+型拡散領域 111とォーミック接合を形成している。キャリア引き抜き領域 112は 、 P型ボディ領域 110および P+型拡散領域 111を介してソース電極膜 118と電気的 に接続される。層間絶縁膜 116上には、外部カゝらゲート電極 108に電圧を印加する ためのゲート電極パッド 119が形成されている。図示されていないが、このゲート電極 ノ^ド 119はゲート電極 108と電気的に接続されている。主面 301に垂直な方向から 半導体装置 laを見たときに、キャリア引き抜き領域 112とゲート電極パッド 119は、互 Vヽに一部が重なるように形成されて!、る。
[0024] ソース電極膜 118とゲート電極パッド 119との間には、絶縁膜 114の表面に沿って 、高濃度の N型層、 P型層、高濃度の N型層、 P型層、高濃度の N型層が順に並んだ ツエナーダイオード 120が形成されて!、る。ソース電極膜 118とゲート電極パッド 119 との間に電圧が印加された場合、電圧値が所定の値に達するまではツエナーダイォ ード 120には電流が流れないが、電圧値が所定の値を超えると、ソース電極膜 118と ゲート電極パッド 119との間を電流が流れる。これにより、高電圧が印加されてゲート 電極パッド 119が破壊することを防ぐことができる。ッヱナ一ダイオード 120上には、 絶縁膜 121が形成されて!、る。
[0025] ドレイン層 101の主面 302には、金属からなるドレイン電極膜 122が形成されている 。ドレイン電極膜 122はドレイン層 101とォーミック接合を形成している。ドレイン層 10 1、ドリフト層 102、 P型ボディ領域 103、 N+型ソース領域 105、ゲート電極 108、ソー ス電極膜 118、およびドレイン電極膜 122によって MOSFETが構成されている。能 動領域には、 MOSFET構造が複数形成されている。図 1は能動領域の外縁周辺の 構造を示している。
[0026] 上述した構造にぉ ヽてドリフト層 102は、 N型不純物を含むシリコンをドレイン層 10 1の表面上にェピタキシャル成長させることにより形成されている。 P型ボディ領域 10 3および P型ボディ領域 110は、ドリフト層 102の表面から P型不純物を注入し、表面 力も所定の深さの範囲内にその不純物を高温で拡散することにより形成されている。 P+型拡散領域 104は、 P型ボディ領域 103の表面から P型不純物を選択的に注入し 、表面力 所定の深さの範囲内にその不純物を高温で拡散することにより形成されて いる。 P+型拡散領域 111も同様に、 P型ボディ領域 110の表面力も P型不純物を選 択的に注入し、表面力 所定の深さの範囲内にその不純物を高温で拡散することに より形成されている。
[0027] N+型ソース領域 105は、 P型ボディ領域 103の表面から N型不純物を選択的に注 入し、表面力 所定の深さの範囲内にその不純物を高温で拡散することにより形成さ れている。図 1においては、ソース電極膜 118と接触している P型ボディ領域 103、 P +型拡散領域 104、および N+型ソース領域 105の各表面の高さが等しぐ各表面が 同一平面内にあるメサ状の構造が形成されている。
[0028] トレンチ 106は、ドリフト層 102をエッチングすることによって形成され、 P型ボディ領 域 103の表面からドリフト層 102まで達している。ゲート絶縁膜 107は、高温の酸素雰 囲気中でトレンチ 106の表面を酸ィ匕することにより形成されている。ゲート電極 108は 、N型不純物を含むポリシリコンをゲート絶縁膜 107の表面に堆積することにより形成 されている。
[0029] キャリア引き抜き領域 112は、ドリフト層 102の表面力も P型不純物を注入し、表面 力も所定の深さの範囲内にその不純物を高温で拡散することにより形成されている。 ソース電極膜 118およびドレイン電極膜 122は、例えば電極材料のスパッタリングに よって形成されている。
[0030] ドレイン層 101の不純物濃度は例えば 1019— 102Gcm— 3である。 P型ボディ領域 10 3および P型ボディ領域 110の表面における不純物濃度は例えば 1017— 1018cm— 3 である。 P+型拡散領域 104および P+型拡散領域 111の表面における不純物濃度は 例えば 1018— 1019cm— 3である。 N+型ソース領域 105の表面における不純物濃度は 例えば 1019— 102 cm— 3である。キャリア引き抜き領域 112の表面における不純物濃 度は例えば 1017— 1018cm— 3である。
[0031] 図 2A—図 3Bは、本実施形態による半導体装置 laを主面 301に垂直な方向から 見た平面図である。これらの図においては、ソース電極膜 118やゲート電極パッド 11 9等の図示が省略されている。図 1は、図 2Aの線分 A— A,における断面構造の一部 を示している。図 2A—図 2Bは、キャリア引き抜き領域 112および P型ゥエル 113の配 置の一例を示している。図 3A—図 3Bは、 P型ゥエル 113の周囲を取り囲むようにキヤ リア引き抜き領域 112aが形成され、その外側を取り囲むようにガードリング領域 112 bが形成されて 、る例を示して 、る。
[0032] 次に、半導体装置 laの動作について説明する。ソース電極膜 118を接地し、ドレイ ン電極膜 122に正電圧を印加し、ゲート電極 108に正電圧を印加すると、 P型ボディ 領域 103とトレンチ 106との界面に反転層が形成され、ドレイン電極膜 122からソース 電極膜 118へ向力つて電流が流れる。その状態力もゲート電極 108に接地電圧を印 加すると、 P型ボディ領域 103とトレンチ 106との界面に形成されていた反転層が消 滅し、電流は遮断される。
[0033] また、ソース電極膜 118にドレイン電極膜 122よりも高い電圧が印加された場合に は、ドリフト層 102、 P型ボディ領域 103、および P+型拡散領域 104によって形成され る寄生ダイオードと、ドリフト層 102、 P型ボディ領域 110、および P+型拡散領域 111 によって形成される寄生ダイオードとが順バイアスされ、それらの寄生ダイオードを通 つて電流が流れる。その電流により、ドリフト層 102内に少数キャリアが注入される。そ の状態でソース電極膜 118とドレイン電極膜 122との間の電圧が反転すると、ドリフト 層 102に注入された少数キャリアは、ソース電極膜 118に接続された P型ボディ領域 103および 110に流れ込む。
[0034] MOSFET構造が形成された能動領域の端部では、最外周に位置する P型ボディ 領域 103および 110に少数キャリアが集中しやすいが、ソース電極膜 118に電気的 に接続されたキャリア引き抜き領域 112が形成されていることにより、少数キャリアがこ のキャリア引き抜き領域 112に流れ込むため、少数キャリアの集中は起こらない。した がって、耐圧を向上し、素子破壊を低減することができる。
[0035] 次に、キャリア引き抜き領域 112の形成方法について、図 4一図 7を用いて説明す る。まず、ドレイン層 101上に、ェピタキシャル成長によってドリフト層 102を形成し、ド リフト層 102上に SiO等の酸化物を堆積し、酸化膜 123を形成する(図 4)。続いて、
2
酸ィ匕膜 123上にレジストを塗布し、写真工程 (露光および現像)によってレジストのパ ターンを形成する。このレジストのパターンをマスクとして酸化膜 123をエッチングして 、ドリフト層 102の表面を露出させた後、レジストを除去する(図 5)。
[0036] 続いて、高温の酸素雰囲気中で熱酸化を行い、ドリフト層 102の表面のうち、酸ィ匕 膜 123によって被覆された部分以外の部分の表面に薄い酸ィ匕膜 124を形成する。こ の酸ィ匕膜 124を通過するように、ドリフト層 102の表面に B (ボロン)等の P型不純物を 注入し、注入層 125を形成する(図 6)。高温の酸素雰囲気中でァニールを行うと、注 入層 125内の Bがドリフト層 102内に拡散し、キャリア引き抜き領域 112および P型ゥ エル 113が形成される(図 7)。 [0037] 次に、本発明の第 2の実施形態について説明する。図 8は、本実施形態による半導 体装置 lbの断面構造を示している。図 1に示された構造と同一の機能を有する構造 には同一の符号が付与されている。この半導体装置 lbは MOSFETである。この半 導体装置 lbにおいては、 P型ボディ領域 110の近傍におけるドリフト層 102の表面か らのキャリア引き抜き領域 112の深さ(図中の距離 X )が、主面 301に垂直な方向か
3
ら見て、ゲート電極パッド 119およびツエナーダイオード 120と重なる領域におけるド リフト層 102の表面力ものキャリア引き抜き領域 112の深さ(図中の距離 X )よりも小さ
4 い。すなわち、キャリア引き抜き領域 112は、 P型ボディ領域 110の近傍における部 分力 ゲート電極パッド 119およびツエナーダイオード 120の下方に位置する部分よ りも浅くなるように形成されている。
[0038] 言い換えると、 P型ボディ領域 110の近傍におけるドリフト層 102の表面からのキヤリ ァ引き抜き領域 112の深さ(図中の距離 X )が、ドリフト層 102の表面からのトレンチ 1
3
06の深さ(図中の距離 X )よりも小さぐ主面 301に垂直な方向力も見て、ゲート電極
5
ノッド 119およびツエナーダイオード 120と重なる領域におけるドリフト層 102の表面 力ものキャリア引き抜き領域 112の深さ(図中の距離 X )が、ドリフト層 102の表面から
4
のトレンチ 106の深さ(図中の距離 X )よりも小さい。すなわち、キャリア引き抜き領域
5
112は、 P型ボディ領域 110の近傍における部分がトレンチ 106よりも浅ぐゲート電 極パッド 119およびツエナーダイオード 120の下方に位置する部分がトレンチ 106よ りも深く形成されている。
[0039] キャリア引き抜き領域 112は、寄生ダイオードへの逆電圧の印加時に、能動領域の 最も外側に位置するトレンチ 106に隣接する、 P型ボディ領域 110およびドリフト層 10 2によって構成される寄生ダイオードに対するキャリアの集中を緩和する。この作用を 十分に発揮させるためには、キャリア引き抜き領域 112が、能動領域の最も外側のト レンチ 106の外側へ向力つて広くかつ深く形成されていることが望ましい。
[0040] しかし、キャリア引き抜き領域 112が能動領域の最も外側のトレンチ 106を覆うほど に広がると、最も外側のトレンチ 106とその 1つ内側のトレンチ 106との間にある P型 ボディ領域 103に対して、キャリア引き抜き領域 112が部分的に重なってしまい、この 付近の不純物濃度に影響を与えることになる。当然、最も外側のトレンチ 106におけ る MOSFETの動作に好ましくない影響が及ぶ。これを避けるためには、プロセス上 のばらつきが若干生じたとしても、キャリア引き抜き領域 112において、最も外側のト レンチ 106に近い部分はトレンチ 106よりも浅く形成し、キャリア引き抜き領域 112が 最も外側のトレンチ 106を覆わな 、ようにすることが望ま 、。
[0041] 上記の構造とすることにより、ドリフト層 102において、能動領域よりも外側の領域に 発生した少数キャリアをより効率的にキャリア引き抜き領域 112に流し込ませることが できる。また、キャリア引き抜き領域 112をドリフト層 102のより深い領域まで形成する ことにより、キャリア引き抜き領域 112の端部の曲率半径が大きくなるので、端部にお ける電界の集中が緩和し、耐圧を向上することができる。
[0042] キャリア引き抜き領域 112を形成するには、 Bの注入を 2回以上行う必要がある。つ まり、ゲート電極パッド 119およびツエナーダイオード 120の直下におけるドリフト層 1 02の表面領域と、 P型ボディ領域 110の近傍におけるドリフト層 102の表面領域とに 分けて、 Bの注入を行うことになる。
[0043] 次に、本発明の第 3の実施形態について説明する。図 9は、本実施形態による半導 体装置 lcの断面構造を示している。この半導体装置 lcは IGBTである。ェピタキシャ ル成長によって形成された高濃度の N型不純物を含む高濃度層 131は、対向する 2 つの主面 303および 304を有している。高濃度層 131の主面 303上には、低濃度の N型不純物を含む低濃度層 132が形成されている。低濃度層 132上には、 P型不純 物を含む P型ボディ領域 133が形成されている。 P型ボディ領域 133の表面近傍に は、 P型ボディ領域 133よりも高濃度の P型不純物を含む P+型拡散領域 134が形成 されている。 P型ボディ領域 133の表面には、 P+型拡散領域 134を挟むように、高濃 度の N型不純物を含む N+型ェミッタ領域 135も形成されている。
[0044] P型ボディ領域 133の表面力も低濃度層 132に至るまでの領域には、断面の形状 が矩形である複数のトレンチ 136が形成されて 、る。このトレンチ 136の内面 (側壁面 136aおよび底面 136bを含む)には、ゲート絶縁膜 137および層間絶縁膜 153が形 成されている。トレンチ 136の内部には、ゲート絶縁膜 137および層間絶縁膜 153に よって囲まれた、ポリシリコンからなるゲート電極 138が形成されている。トレンチ 136 および N+型ェミッタ領域 135上には、 BPSG力もなる絶縁用の層間絶縁膜 139が形 成されている。ゲート絶縁膜 137は、トレンチ 136の底面 136b上に形成された部分 の厚さが、トレンチ 136の側壁面 136a上に形成された部分の厚さよりも大きくなるよう に形成されていてもよい。このようにすれば、オン抵抗静電容量を低く抑えることがで きる。
[0045] 低濃度層 132の表面には、 P型不純物を含む P型ボディ領域 140も形成されている 。 P型ボディ領域 133と P型ボディ領域 140は、トレンチ 136を介して隣り合つている。 この P型ボディ領域 140の表面には、 P型ボディ領域 140よりも高濃度の P型不純物 を含む P+型拡散領域 141が形成されている。また、低濃度層 132の表面において、 P型ボディ領域 140に接するように、 P型不純物を含むキャリア引き抜き領域 142が 形成されている。
[0046] 第 1の実施形態による半導体装置 laと同様に、低濃度層 132の表面力ものキャリア 引き抜き領域 142の深さ(図中の距離 X )は、低濃度層 132の表面からのトレンチ 13
6
6の深さ(図中の距離 X )よりも小さい。このキャリア引き抜き領域 142には、半導体装 置 lcの動作時に低濃度層 132に注入された少数キャリアが流れ込む。これにより、 少数キャリアの集中を緩和し、素子破壊を防ぐことができる。
[0047] 低濃度層 132の表面には、ゲート コレクタ間の容量を低下させるための、 P型不純 物を含む P型ゥエル 143が、キャリア引き抜き領域 142と隣り合うように設けられている 。キャリア引き抜き領域 142および P型ゥエル 143の表面には、 SiO力もなる絶縁膜 1
2
44が形成されている。絶縁膜 144はキャリア引き抜き領域 142の一部を被覆している 。この絶縁膜 144上には、 BPSG力もなる層間絶縁膜 145および 146が形成され、ポ リシリコン力もなるポリシリコン膜 147も形成されている。
[0048] 上記の構造の最上部には、金属力もなるェミッタ電極膜 148が形成されている。ェ ミッタ電極膜 148は N+型ェミッタ領域 135および P+型拡散領域 141と電気的に接続 され、ゲート電極 138とは絶縁されている。ェミッタ電極膜 148は N+型ェミッタ領域 1 35および P+型拡散領域 141とォーミック接合を形成している。キャリア引き抜き領域 142は、 P型ボディ領域 140および P+型拡散領域 141を介してェミッタ電極膜 148と 電気的に接続される。層間絶縁膜 146上には、外部カゝらゲート電極 138に電圧を印 加するためのゲート電極パッド 149が形成されている。図示されていないが、このゲ ート電極パッド 149はゲート電極 138と電気的に接続されている。主面 303に垂直な 方向から半導体装置 lcを見たときに、キャリア引き抜き領域 142とゲート電極パッド 1 49は、互いに一部が重なるように形成されて!、る。
[0049] ェミッタ電極膜 148とゲート電極パッド 149との間には、絶縁膜 144の表面に沿って 、高濃度の N型層、 P型層、高濃度の N型層、 P型層、高濃度の N型層が順に並んだ ツエナーダイオード 150が形成されている。ツエナーダイオード 150上には、絶縁膜 1 51が形成されている。
[0050] 高濃度層 131の主面 304には、高濃度の P型不純物を含むコレクタ層 154が形成 されている。コレクタ層 154は P+型シリコン基板を構成している。コレクタ層 154上に は、金属力もなるコレクタ電極膜 152が形成されている。コレクタ電極膜 152はコレク タ層 154とォーミック接合を形成している。低濃度層 131、高濃度層 132、 P型ボディ 領域 133、 N+型ェミッタ領域 135、ゲート電極 138、ェミッタ電極膜 148、コレクタ層 154、およびコレクタ電極膜 152によって IGBTが構成されている。能動領域には、 I GBT構造が複数形成されて ヽる。図 9は能動領域の外縁周辺の構造を示して 、る。
[0051] IGBT構造が形成された能動領域の端部では、最外周に位置する P型ボディ領域 133および 140に少数キャリアが集中しやすいが、ェミッタ電極膜 148に電気的に接 続されたキャリア引き抜き領域 142が形成されていることにより、少数キャリアがこのキ ャリア引き抜き領域 142に流れ込むため、少数キャリアの集中は起こらない。したがつ て、耐圧を向上し、素子破壊を低減することができる。
[0052] 次に、本発明の第 4の実施形態について説明する。図 10は、本実施形態による半 導体装置 Idの断面構造を示している。図 9に示された構造と同一の機能を有する構 造には同一の符号が付与されている。この半導体装置 Idは IGBTである。この半導 体装置 Idにおいては、 P型ボディ領域 140の近傍における低濃度層 132の表面から のキャリア引き抜き領域 142の深さ(図中の距離 X )が、主面 303に垂直な方向から
8
見て、ゲート電極パッド 149およびツエナーダイオード 150と重なる領域における低 濃度層 132の表面力ものキャリア引き抜き領域 142の深さ(図中の距離 X )よりも小さ
9 い。すなわち、キャリア引き抜き領域 142は、 P型ボディ領域 140の近傍における部 分力 ゲート電極パッド 149およびツエナーダイオード 150の下方に位置する部分よ りも浅くなるように形成されている。
[0053] 言い換えると、 P型ボディ領域 140の近傍における低濃度層 132の表面力ものキヤ リア引き抜き領域 142の深さ(図中の距離 X )が、低濃度層 132の表面力ものトレン
8
チ 136の深さ(図中の距離 X )よりも小さぐ主面 303に垂直な方向から見て、ゲート
10
電極パッド 149およびツエナーダイオード 150と重なる領域における低濃度層 132の 表面からのキャリア引き抜き領域 142の深さ(図中の距離 X )が、低濃度層 132の表
9
面からのトレンチ 136の深さ(図中の距離 X )よりも小さい。すなわち、キャリア引き抜
10
き領域 142は、 P型ボディ領域 140の近傍における部分がトレンチ 136よりも浅ぐゲ ート電極パッド 149およびツエナーダイオード 150の下方に位置する部分がトレンチ 136よりも深く形成されている。
[0054] キャリア引き抜き領域 142は、寄生ダイオードへの逆電圧の印加時に、能動領域の 最も外側に位置するトレンチ 136に隣接する、 P型ボディ領域 140および低濃度層 1 32によって構成される寄生ダイオードに対するキャリアの集中を緩和する。この作用 を十分に発揮させるためには、キャリア引き抜き領域 142が、能動領域の最も外側の トレンチ 136の外側へ向力つて広くかつ深く形成されていることが望ましい。
[0055] しかし、キャリア引き抜き領域 142が能動領域の最も外側のトレンチ 136を覆うほど に広がると、最も外側のトレンチ 136とその 1つ内側のトレンチ 136との間にある P型 ボディ領域 133に対して、キャリア引き抜き領域 142が部分的に重なってしまい、この 付近の不純物濃度に影響を与えることになる。当然、最も外側のトレンチ 136におけ る IGBTの動作に好ましくない影響が及ぶ。これを避けるためには、プロセス上のばら つきが若干生じたとしても、キャリア引き抜き領域 142において、最も外側のトレンチ 1 36に近い部分はトレンチ 136よりも浅く形成し、キャリア引き抜き領域 142が最も外側 のトレンチ 136を覆わな!/、ようにすることが望まし!/、。
[0056] 上記の構造とすることにより、低濃度層 132において、能動領域よりも外側の領域 に発生した少数キャリアをより効率的にキャリア引き抜き領域 142に流し込ませること ができる。また、キャリア引き抜き領域 142を低濃度層 132のより深い領域まで形成 することにより、キャリア引き抜き領域 142の端部の曲率半径が大きくなるので、端部 における電界の集中が緩和し、耐圧を向上することができる。 [0057] 以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成 はこれらの実施の形態に限られるものではなぐこの発明の要旨を逸脱しない範囲の 設計変更等も含まれる。例えば、 MOSFETおよび IGBTの複合構造も本発明の適 用範囲に含まれる。
産業上の利用可能性
[0058] 耐圧を向上し、素子破壊の発生を低減することができる。

Claims

請求の範囲
[1] 対向する第 1および第 2の主面を有し、第 1導電型の半導体からなる第 1の半導体 層と、
前記第 1の主面に露出する、前記第 1の半導体層よりも不純物濃度の低い第 1導電 型の半導体からなる第 2の半導体層と、
前記第 2の半導体層の表面に形成された複数の溝と、
前記溝に形成されたゲート絶縁膜と、
前記ゲート絶縁膜に囲まれたゲート電極と、
前記第 2の半導体層の表面において、 2つの前記溝の間に形成された第 2導電型 の第 1の領域と、
前記第 1の領域の表面において、前記第 2の半導体層よりも不純物濃度の高い第 1 導電型の第 2の領域と、
前記第 2の半導体層の表面において、前記第 1の領域と接する前記溝に接し、前 記溝を介して前記第 1の領域と隣り合う第 2導電型の第 3の領域と、
前記第 3の領域の表面にお 、て、前記第 3の領域よりも不純物濃度の高 、第 2導電 型の第 4の領域と、
前記第 2の半導体層の表面において、前記第 3の領域と接する第 2導電型のキヤリ ァ引き抜き領域と、
前記キャリア引き抜き領域の表面上に形成された、絶縁材料力 なる絶縁層と、 前記絶縁層の表面上に形成され、前記第 1の主面に垂直な方向から見て、前記キ ャリア引き抜き領域と一部が重なるゲート電極パッドと、
前記第 2の領域および前記第 4の領域に接し、金属からなる第 1の電極と、 前記第 2の主面に接し、金属からなる第 2の電極と、
を備えたことを特徴とする半導体装置。
[2] 対向する第 1および第 2の主面を有し、第 1導電型の半導体からなる第 1の半導体 層と、
前記第 1の主面に露出する、前記第 1の半導体層よりも不純物濃度の低い第 1導電 型の半導体からなる第 2の半導体層と、 前記第 2の半導体層の表面に形成された複数の溝と、
前記溝に形成されたゲート絶縁膜と、
前記ゲート絶縁膜に囲まれたゲート電極と、
前記第 2の半導体層の表面において、 2つの前記溝の間に形成された第 2導電型 の第 1の領域と、
前記第 1の領域の表面において、前記第 2の半導体層よりも不純物濃度の高い第 1 導電型の第 2の領域と、
前記第 2の半導体層の表面において、前記第 1の領域と接する前記溝に接し、前 記溝を介して前記第 1の領域と隣り合う第 2導電型の第 3の領域と、
前記第 3の領域の表面にお 、て、前記第 3の領域よりも不純物濃度の高 、第 2導電 型の第 4の領域と、
前記第 2の半導体層の表面において、前記第 3の領域と接する第 2導電型のキヤリ ァ引き抜き領域と、
前記キャリア引き抜き領域の表面上に形成された、絶縁材料力 なる絶縁層と、 前記絶縁層の表面上に形成され、前記第 1の主面に垂直な方向から見て、前記キ ャリア引き抜き領域と一部が重なるゲート電極パッドと、
前記第 2の領域および前記第 4の領域に接し、金属からなる第 1の電極と、 前記第 2の主面に露出する、第 2導電型の半導体からなる第 3の半導体層と、 前記第 3の半導体層に接し、金属からなる第 2の電極と、
を備えたことを特徴とする半導体装置。
[3] 前記第 2の半導体層の表面力 の前記キャリア引き抜き領域の深さは、前記第 2の 半導体層の表面力もの前記溝の深さよりも小さいことを特徴とする請求項 1または請 求項 2に記載の半導体装置。
[4] 前記第 3の領域の近傍における前記第 2の半導体層の表面からの前記キャリア引 き抜き領域の深さが、前記第 1の主面に垂直な方向力も見て、前記ゲート電極パッド と重なる領域における前記第 2の半導体層の表面からの前記キャリア引き抜き領域の 深さよりも小さいことを特徴とする請求項 1または請求項 2に記載の半導体装置。
[5] 前記第 3の領域の近傍における前記第 2の半導体層の表面からの前記キャリア引 き抜き領域の深さが、前記第 2の半導体層の表面力 の前記溝の深さよりも小さぐ 前記第 1の主面に垂直な方向から見て、前記ゲート電極パッドと重なる領域における 前記第 2の半導体層の表面力 の前記キャリア引き抜き領域の深さが、前記第 2の半 導体層の表面力もの前記溝の深さよりも大きいことを特徴とする請求項 1または請求 項 2に記載の半導体装置。
前記ゲート絶縁膜は、前記溝の底面上に形成された部分の厚さが、前記溝の側壁 面上に形成された部分の厚さよりも大きいことを特徴とする請求項 1または請求項 2に 記載の半導体装置。
PCT/JP2005/001330 2005-01-31 2005-01-31 半導体装置 WO2006082617A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007501455A JP4794545B2 (ja) 2005-01-31 2005-01-31 半導体装置
PCT/JP2005/001330 WO2006082617A1 (ja) 2005-01-31 2005-01-31 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/001330 WO2006082617A1 (ja) 2005-01-31 2005-01-31 半導体装置

Publications (1)

Publication Number Publication Date
WO2006082617A1 true WO2006082617A1 (ja) 2006-08-10

Family

ID=36777012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001330 WO2006082617A1 (ja) 2005-01-31 2005-01-31 半導体装置

Country Status (2)

Country Link
JP (1) JP4794545B2 (ja)
WO (1) WO2006082617A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329268A (zh) * 2011-03-17 2013-09-25 富士电机株式会社 半导体器件及制造其的方法
JP2014204007A (ja) * 2013-04-05 2014-10-27 三菱電機株式会社 半導体素子
JP2016167559A (ja) * 2015-03-10 2016-09-15 株式会社東芝 半導体装置
JP2017501567A (ja) * 2013-11-29 2017-01-12 アーベーベー・テクノロジー・アーゲー 絶縁ゲートバイポーラトランジスタ
CN107887382A (zh) * 2016-09-29 2018-04-06 英飞凌科技德累斯顿有限责任公司 半导体器件和用于形成半导体器件的方法
JP2018182216A (ja) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192174A (ja) * 1988-01-27 1989-08-02 Hitachi Ltd 半導体装置の製造方法
JPH09270512A (ja) * 1996-04-01 1997-10-14 Mitsubishi Electric Corp 絶縁ゲート型半導体装置およびその製造方法
JPH11251594A (ja) * 1997-12-31 1999-09-17 Siliconix Inc 電圧クランプされたゲ―トを有するパワ―mosfet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192174A (ja) * 1988-01-27 1989-08-02 Hitachi Ltd 半導体装置の製造方法
JPH09270512A (ja) * 1996-04-01 1997-10-14 Mitsubishi Electric Corp 絶縁ゲート型半導体装置およびその製造方法
JPH11251594A (ja) * 1997-12-31 1999-09-17 Siliconix Inc 電圧クランプされたゲ―トを有するパワ―mosfet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329268A (zh) * 2011-03-17 2013-09-25 富士电机株式会社 半导体器件及制造其的方法
EP2688102A1 (en) * 2011-03-17 2014-01-22 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method therefor
EP2688102A4 (en) * 2011-03-17 2014-09-03 Fuji Electric Co Ltd SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD THEREFOR
US9209296B2 (en) 2011-03-17 2015-12-08 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
CN103329268B (zh) * 2011-03-17 2016-06-29 富士电机株式会社 半导体器件及制造其的方法
US9502496B2 (en) 2011-03-17 2016-11-22 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
JP2014204007A (ja) * 2013-04-05 2014-10-27 三菱電機株式会社 半導体素子
JP2017501567A (ja) * 2013-11-29 2017-01-12 アーベーベー・テクノロジー・アーゲー 絶縁ゲートバイポーラトランジスタ
JP2016167559A (ja) * 2015-03-10 2016-09-15 株式会社東芝 半導体装置
CN107887382A (zh) * 2016-09-29 2018-04-06 英飞凌科技德累斯顿有限责任公司 半导体器件和用于形成半导体器件的方法
JP2018182216A (ja) * 2017-04-20 2018-11-15 トヨタ自動車株式会社 半導体装置

Also Published As

Publication number Publication date
JP4794545B2 (ja) 2011-10-19
JPWO2006082617A1 (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
US11239312B2 (en) Semiconductor chip integrating high and low voltage devices
US7714383B2 (en) Semiconductor device
JP4874516B2 (ja) トレンチショットキー整流器が組み込まれたトレンチ二重拡散金属酸化膜半導体トランジスタ
JP5569162B2 (ja) 半導体装置および半導体装置の製造方法
JP5530602B2 (ja) 半導体装置およびその製造方法
TWI473248B (zh) 結合高低壓元件之半導體芯片
US20070052015A1 (en) Semiconductor device
JP2006073740A (ja) 半導体装置及びその製造方法
JP2005191227A (ja) 半導体装置
JP2008016518A (ja) 半導体装置および製造方法
JP2004511910A (ja) トレンチショットキー整流器が組み込まれたトレンチ二重拡散金属酸化膜半導体トランジスタ
JP2006196518A (ja) 半導体装置およびその製造方法
JP2005285913A (ja) 半導体装置およびその製造方法
JP2006210392A (ja) 半導体装置およびその製造方法
JP2004064063A (ja) 高電圧縦型dmosトランジスタ及びその製造方法
JP4896001B2 (ja) 半導体装置
US7986004B2 (en) Semiconductor device and method of manufacture thereof
JP2007042954A (ja) 半導体装置
JP4794545B2 (ja) 半導体装置
JP2021002623A (ja) 半導体装置
CN110603645B (zh) 半导体装置
JP2008235590A (ja) 半導体装置
JP4794546B2 (ja) 半導体装置およびその製造方法
JP2005347367A (ja) 半導体装置とその製造方法
JP4865194B2 (ja) 超接合半導体素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007501455

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05709493

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5709493

Country of ref document: EP