WO2006080501A1 - rRNAを標的とした微生物の定量的解析方法 - Google Patents

rRNAを標的とした微生物の定量的解析方法 Download PDF

Info

Publication number
WO2006080501A1
WO2006080501A1 PCT/JP2006/301467 JP2006301467W WO2006080501A1 WO 2006080501 A1 WO2006080501 A1 WO 2006080501A1 JP 2006301467 W JP2006301467 W JP 2006301467W WO 2006080501 A1 WO2006080501 A1 WO 2006080501A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
pcr
acid fragment
rrna
target microorganism
Prior art date
Application number
PCT/JP2006/301467
Other languages
English (en)
French (fr)
Inventor
Hirokazu Tsuji
Kazunori Matsuda
Takashi Asahara
Koji Nomoto
Mayumi Kiwaki
Original Assignee
Kabushiki Kaisha Yakult Honsha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK06712610.2T priority Critical patent/DK1845158T3/da
Application filed by Kabushiki Kaisha Yakult Honsha filed Critical Kabushiki Kaisha Yakult Honsha
Priority to JP2007500631A priority patent/JP5238248B2/ja
Priority to CA2596059A priority patent/CA2596059C/en
Priority to US11/814,579 priority patent/US10174386B2/en
Priority to EP06712610.2A priority patent/EP1845158B1/en
Priority to ES06712610T priority patent/ES2428146T3/es
Priority to KR1020077017768A priority patent/KR101409193B1/ko
Priority to AU2006209416A priority patent/AU2006209416B2/en
Priority to NZ560246A priority patent/NZ560246A/en
Priority to PL06712610T priority patent/PL1845158T3/pl
Priority to BRPI0607194A priority patent/BRPI0607194B8/pt
Publication of WO2006080501A1 publication Critical patent/WO2006080501A1/ja
Priority to NO20073675A priority patent/NO342747B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR

Definitions

  • the present invention relates to a method for quantifying and detecting a microorganism, particularly a microorganism in a living state, by using rRNA as a target.
  • a method for quantifying microorganisms a method of culturing microorganisms in a selective medium predicted in advance and measuring the number of bacteria, and a method of culturing microorganisms in a selective liquid medium and measuring turbidity and absorbance are mainly used.
  • identification is performed by morphological observation, Gram staining, oxygen demand, sugar utilization, growth state in culture medium, etc.
  • Methods, determination by DNA-DNA homology test, detection method of microbial surface antigen by monoclonal antibody, etc. have been used. These methods required time and skill, and were problematic from the viewpoint of speed and simplicity.
  • Patent Document 1 a method for quantifying bacteria by the PCR method using a universal primer with total DNA as a target sequence
  • a method using 16S rDNA as a target has also been realized.
  • Patent Document 2 a quantitative analysis method by PCR using 16S rDNA as a target sequence
  • Patent Document 3 An analysis method
  • Patent Document 4 a detection method of Lactobacillus species that are beer turbid bacteria
  • Non-Patent Documents quantitative analysis of lactic acid bacteria in feces using mRNA as a target sequence
  • Patent Documents 5 and 6 A method for detecting cancer cells using a cancer cell-specific mRNA in a specimen as a target sequence.
  • detection sensitivity that can replace the conventional method as a quantitative method has not been obtained.
  • the detection limit of the quantitative analysis shown in Non-Patent Document 2 is only 10 3 ⁇ 5 or more / g 'stool, and it can be used as an alternative to conventional culture methods from the viewpoint of detection sensitivity. I could't do it.
  • these methods target mRNAs of genes unique to each microorganism, and due to problems such as the complexity of primer design and low specificity, there are many types of microorganisms included. It was not suitable for specimen detection.
  • the target may be redesigned to be more stable in the cell or in a larger amount in the cell.
  • the target may not be preferable for the purpose of detecting only living microorganisms.
  • it is not easy to achieve sufficient detection sensitivity and detection of only viable cells at the same time.
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-238585
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-259879
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001_112485
  • Patent Document 4 Japanese Patent Laid-Open No. 10-210980
  • Patent Document 5 Japanese Patent Laid-Open No. 10-248600
  • Patent Document 6 International Publication No. 00Z17395 pamphlet
  • Non-Patent Document 1 J Food Prot, vol. 67, No. 4, 823-832. (2004)
  • Non-patent document 2 FEMS Microbiology Letters, vol. 231, 125-130 (2004)
  • Non-patent document 3 Appl. Environ. Microbiol., Vol. 64, No. 11, 4264-4268 (19
  • An object of the present invention is to provide a method for quantitative analysis of microorganisms that can realize detection sensitivity sufficient to replace a conventional culture method and more accurate detection of microorganisms in a living state. To do.
  • rRNA 5S, 16S, 23S, eukaryotics in Itoda
  • rRNA 5S, 16S, 23S, eukaryotics in Itoda
  • 5S, 18S, 26S or 28S 5S, 18S, 26S or 28S
  • the inventors have also found that if PCR is used for quantification-detection, detection sensitivity that can replace the conventional method can be realized, and the present invention has been completed.
  • the present invention provides a method for quantifying a target microorganism using the amount of rRNA of the target microorganism in a subject as an index.
  • the present invention also provides a method for detecting a target microorganism using as an index the presence of the target microorganism rRNA in the subject.
  • the present invention also relates to a nucleic acid fragment used in the above method, comprising SEQ ID NO: 2, 3, or 5 to
  • the present invention provides a nucleic acid fragment consisting of the nucleotide sequence described in 28 or a complementary nucleotide sequence thereto, or a nucleic acid fragment consisting of a nucleotide sequence homologous thereto and functionally equivalent.
  • the present invention provides a kit for carrying out the above method.
  • the detection method using rRNA as a target of the present invention is used, a large amount of the target exists, so that a higher detection sensitivity can be achieved compared to the conventional target, but at the same time, the living state It is also possible to detect and quantify microorganisms in In addition, if the PCR method is used for such detection, detection sensitivity that can be used as a substitute for the conventional culture method can be realized. Furthermore, if a method using the PCR method is used, it is much quicker and simpler than conventional methods such as a culture method. That is, by using the method of the present invention, it is possible to simultaneously realize high detection sensitivity, more accurate quantification / detection of living microorganisms, and quickness and simplicity. Therefore, it can be used in practical fields where detection and quantification of microorganisms are required, such as analysis of intestinal flora and detection and quantification of microorganisms that survive in food samples.
  • FIG. 1 is a graph showing the correlation between the growth of various microorganisms and the amount of rRNA transcription.
  • FIG. 2 is a diagram showing a calibration curve by quantitative RT-PCR method and a comparison of detection range with quantitative PCR method.
  • FIG. 3 is a diagram showing the detection range of aeruginosa (Pseudomonas aeruginosa) from human feces.
  • FIG. 4 A diagram comparing the quantitative values of human fecal coliforms with quantitative RT-PCR and with the culture method.
  • FIG. 5 is a graph showing the sensitivity of detection of coli (E. coli), S. aureus (formerly Staphylococcus aureus) and B. cereu S (Cereus bacteria) from milk.
  • FIG. 6 is a graph showing the detection sensitivity of blood from £. Aeruginosa (Pseudomonas aeruginosa) and S. aureus (S. aureus).
  • FIG. 7 is a graph showing the sensitivity of detection of coli from fermented milk products.
  • the method for quantifying and detecting the target microorganism of the present invention is the target microorganism rRNA in the sample. It is characterized by using the abundance and presence of the as an index.
  • the target microorganism rRNA refers to the rRNA that can be possessed by the microorganism intended to be quantitatively detected.
  • examples of the rRNA include 5S rRNA in prokaryotes, 16S rRNA, 23S rRNA, 5S rRNA in eukaryotes, 5. 8SrRNA, 18SrRNA, 26SrRNA, and 28SrRN A are listed, but they are mainly used as reliable indicators for current microbial classifications, especially f, force, 16SrRNA, 23SrRNA, 18SrRNA, and 26SrRNA. .
  • the target microorganism is a microorganism for the purpose of quantification / detection, and is not particularly limited.
  • the target microorganism of the present invention is a concept including not only a microorganism consisting of one kind of bacteria but also a group, a genus and a family consisting of a collection of two or more kinds of bacteria sharing a certain property.
  • the subject refers to a target for examining the presence or amount of microorganisms.
  • subjects include conjunctival swab, tartar, plaque, sputum, throat swab, saliva, nasal discharge, alveolar lavage fluid, pleural effusion, gastric fluid, gastric lavage fluid, urine, cervical mucus, vaginal secretions, skin lesions
  • Ecologically derived samples such as feces, blood, ascites, tissue, spinal fluid, joint fluid, affected wiping fluid, foods, pharmaceuticals, cosmetics, foods / pharmaceuticals, intermediate treatment products of cosmetics, microbial cultures, plants, soil, Examples include objects that may contain microorganisms such as activated sludge and wastewater.
  • the specimen sample refers to a sample that is ingested or prepared based on the specimen, and is not particularly limited as long as the specimen can reflect the presence or amount of microorganisms in the specimen. Examples thereof include a mixture containing nucleotides contained in a specimen and a mixture containing RNA. From the viewpoint of use in PCR, a mixture containing RNA contained in a specimen is preferred. [0019]
  • the specimen sample can be obtained from all or a part of the specimen, if necessary, by pretreatment by an extraction / separation-purification method, if necessary, by a known method.
  • RNA is pretreated by a known method such as filtration, centrifugation, chromatography, etc., if necessary, for example, “guanidine-salt-cesium ultracentrifugation”, “ It can be obtained by extraction using general-purpose methods such as the acidic guanidine-phenol chloroform method (AGPC method), the magnetic bead method, and the silica column method. Also, commercially available kits such as HQIAGEN RNeasy KIt and TRIZOL) Can also be used.
  • RNA in a state immobilized in a microorganism as the analyte sample.
  • immobilization can be performed using, for example, a commercially available immobilizing agent (RNAprotect Bacterial Regent, RNAlater, etc.).
  • the immobilization is preferably performed immediately after the sample is collected from the viewpoint of avoiding a change in the amount of RNA in the microorganism.
  • Quantification of the target microorganism in the present invention uses the amount of rRNA of the target microorganism in the sample as an index.
  • the amount of the target microorganism rRNA in the sample can be determined, for example, by (1) obtaining the amount of amplified product by PCR using a nucleic acid fragment that can specifically hybridize to the target microorganism rRNA and the sample. It can be obtained by determining the hybridization efficiency between the nucleic acid fragment that can specifically hybridize to the target microorganism rRNA and the sample, or (3) by a quantification method using other known methods.
  • the design of “a nucleic acid fragment capable of specifically hybridizing to the target microorganism rRNA” is based on the base sequence possessed by the target microorganism and the base sequence possessed by another microorganism. And a sequence that is specific for the rRNA that the target microorganism may have can be selected.
  • the base sequence of rRNA that can be possessed by a microorganism can be obtained, for example, by referring to a database (DDBJ, Genbank, etc.).
  • base sequences can be aligned using software (Clustal X, etc.), and specific sequences can be found by visual means.
  • the sequence specific to the target microorganism takes into account the size of the range in which the microorganism to be quantified is included. That is, for example, if the purpose is to specifically quantify a certain species, it is preferable to select a sequence specific to that species, and the purpose is to specifically quantify a certain genus. If so, It is preferred to select a genus-specific sequence. Such selection can be appropriately performed using a known method.
  • the nucleic acid fragment capable of hybridizing to the target microorganism rRNA is not limited to a sequence designed by force, but can be assumed as appropriate according to known common technical knowledge, and is complementary to the base sequence 'J. Or a homologous base sequence that can be used in the same manner for quantification of the target microorganism, for example, a) one or several, preferably 1 to 10 bases of the base sequence are substituted, added or missing.
  • lost base sequence b) base sequence IJ having 90% or more, preferably 95% or more, more preferably 99% or more identity with the base sequence, c) from the base sequence complementary to the base sequence It is also possible to use a base sequence that hybridizes with a DNA under stringent conditions, a strong nucleic acid fragment, and the like.
  • nucleic acid fragment is a nucleic acid fragment to which an arbitrary number, preferably 100, more preferably 20, more preferably 10 or less bases are added at both ends or one end, preferably 5 ′ end. It may be a part of
  • the length of the nucleic acid fragment is not particularly limited, but a nucleic acid fragment consisting of 5 to 50 bases is preferred, and a nucleic acid fragment consisting of 12 to 35 bases is more preferred.
  • the nucleic acid fragment designed by force can be artificially synthesized by a DNA synthesizer, for example, according to the base sequence.
  • a fragment whose specificity has been confirmed after synthesis is preferred.
  • the specificity can be confirmed, for example, when the target rRNA is of a cocoon type as compared with an appropriate control. This can be done by confirming that a typical PCR amplification product can be obtained.
  • nucleic acid fragment for example, a nucleic acid fragment consisting of the base sequence described in SEQ ID NOs: 1 to 30 or a base sequence complementary thereto, or a base sequence homologous thereto and functionally Nucleic acid fragments that are equivalent are mentioned.
  • examples of nucleic acid fragments having a base sequence homologous to them and functionally equivalent thereto include the nucleic acid fragments shown in (a) to (c) below, and the quantification of the target microorganism rRNA. Listed are those that can be used for detection.
  • nucleic acid fragment consisting of the base sequence represented by SEQ ID NOs: 1 to 30 or a base sequence complementary thereto, wherein one or several bases are deleted, substituted or added.
  • a nucleic acid fragment comprising a nucleotide sequence having 90% or more, preferably 95% or more, more preferably 99% or more identity with the nucleotide sequence represented by SEQ ID NOs: 1 to 30 or a complementary nucleotide sequence thereto .
  • nucleic acid fragment comprising a base sequence represented by SEQ ID NOs: 1 to 30 or a base sequence which hybridizes under stringent conditions with DNA comprising a base sequence complementary thereto.
  • the identity of the base sequence is calculated by using the GENETYX (R) homology analysis program.
  • the “stringent conditions” include, for example, 50% formamide, 5 X SSC, 5 X Denhardt's solution and 250 mg / mL salmon sperm DNA, which is incubated at 42 ° C for 16 to 24 hours and hybridized. Conditions are mentioned.
  • Nucleic acid fragments that can be used for quantification / detection of the target microorganism rRNA are obtained, for example, by performing PCR and using the target microorganism rRNA as a template. For example, it can be obtained by selecting other microorganism rRNA or a nucleic acid fragment that cannot be obtained when mRNA is used as a template.
  • nucleic acid fragment comprising the nucleotide sequence of SEQ ID NO: 1 or 2, or a complementary nucleotide sequence IJ, or a nucleic acid fragment comprising a nucleotide sequence homologous to them and functionally equivalent Bacillus cereus is (2) a nucleic acid fragment consisting of the base sequence of SEQ ID NO: 3 or 4 or a base sequence complementary thereto, or a nucleic acid consisting of a base sequence homologous to them and functionally equivalent The fragment is Clostridium perfringens, (3) a nucleic acid fragment consisting of the nucleotide sequence of SEQ ID NO: 5 or 6 or a complementary nucleotide sequence thereof, or a nucleic acid fragment consisting of a nucleotide sequence homologous to them and functionally equivalent Enterobacteriaceae (4) Nucleic acid fragments comprising the nucleotide sequence of SEQ ID NO: 7 or 8 or a complementary nucleotide sequence thereof
  • Lactobacillus brevis (14) a base described in SEQ ID NO: 27 or 28 A nucleic acid fragment consisting of a sequence or a complementary base sequence thereof, or a nucleic acid fragment that is homologous and functionally equivalent to the nucleic acid fragment is represented by Lactobacillus fmctivorans as described in (15) SEQ ID NO: 29 or 30 Nucleic acid fragments consisting of the base sequence or its complementary base sequence, or nucleic acid fragments consisting of base sequences homologous to them and functionally equivalent are used for the specific quantification and detection of Lactobacillus fermentum. be able to.
  • nucleic acid fragment consisting of the base sequence described in SEQ ID NO: 1 is a known nucleic acid fragment described in FEMS Microbiology Letters, vol. 202, 209-213 (2001).
  • a nucleic acid fragment consisting of the base sequence set forth in SEQ ID NO: 4 is Microbiol. Immunol ., Vol. 46, No. 5, 353—358 (2002) ⁇ It is a nucleic acid fragment that is described in the public domain.
  • the nucleic acid fragment consisting of the base sequence shown in SEQ ID NO: 29 or 30 is a known nucleic acid fragment described in JP-A-11-151097.
  • nucleic acid fragment consisting of the nucleotide sequence of SEQ ID NO: 2, 3 or 5 to 28 is a nucleic acid fragment found by the present inventors.
  • the target microorganism rRNA is The PCR reaction can be performed.
  • Such a PCR method is not particularly limited as long as it is a reaction that specifically amplifies a nucleotide fragment derived from the target microorganism rRNA.
  • the target microorganism rRNA is of a saddle type and is preferably an enzyme, preferably reverse transcription.
  • a method including a step of preparing cDNA by an enzyme or the like is preferred, and a method including a step of amplifying nucleotides using the cDNA prepared by force as a saddle shape is more preferable.
  • a PCR method can be performed, for example, by using a known RT-PCR reaction.
  • the RT-PCR reaction is a force that can be performed using known methods such as Two-Step RT-PCR and One-Step RT-PCR. It is particularly simple and prevents cross-contamination. From this point, One-Step RT-PCR is preferable.
  • Such One-Step RT-PCR method can be performed using, for example, a commercially available kit (QIAGEN One-Step RT-PCR kit, etc.).
  • Various reverse transcriptases such as M_MHV reverse transcriptase can be used as the enzyme having reverse transcription activity used in the RT reaction.
  • the DNA polymerase used in the PCR reaction for amplifying DNA is preferably heat resistant at a temperature of 90 ° C or higher.
  • Such a PCR reaction includes, for example, a heat denaturation reaction in which double-stranded DNA is converted into a single strand at 90 to 98 ° C, and an annealing reaction to hybridize a primer to a vertical cDNA at 37 to 72 ° C.
  • the elongation reaction for allowing DNA polymerase to act can be carried out by carrying out 1 to several tens of cycles of 1 cycle of this at a temperature of 50 to 75 ° C. Examples of preferable reaction conditions are thermal denaturation 95 ° C. for 30 seconds, annealing 60 ° C. for 30 seconds, and extension reaction 72 ° C. for 60 seconds.
  • PCR reaction it is preferable to use two kinds of primers as one set. In this case, it is necessary to make both the combinations of leading and lagging strands.
  • Book Since the annealing temperature in the RT-PCR reaction of the nucleic acid fragment provided in the invention is set almost constant, it becomes possible to simultaneously assay nucleic acid fragments of a plurality of microorganisms. It can also be used as a probe, and can be used in combination with other known universal primers, oligonucleotides and the like.
  • rRNA which is a type of RT-PCR reaction
  • those containing lpg to lzg RNA as the total RNA amount are preferred, and those containing 10 pg to 0. preferable.
  • the amount of the target microorganism rRNA can be determined by appropriately calculating in consideration of the amount of amplification product amplified by the PCR reaction carried out by force and the number of PCR cycles.
  • Example Fig. 1 it has been clarified that there is also a good correlation between the "target microorganism rRNA amount” and "the number of target microorganisms” that are determined by force. It was. Therefore, the number of bacteria of the target microorganism can be determined by taking into account the “target microorganism rRNA amount” determined by force. Also, without going through the process of calculating the “target microorganism rRNA amount”, the “amplified product amount amplified by the PCR reaction” and the “number of PCR cycles” performed as described above should be taken into consideration. By doing so, the number of target microorganisms can be obtained.
  • Knowing the amount of PCR amplification product and the number of PCR cycles is not particularly limited, and can be performed by any method.
  • the number of PCR cycles when a certain amount of DNA is set arbitrarily. It can be done by specifying.
  • the number of PCR cycles when a certain set fluorescence intensity is reached can be identified using the ⁇ PCR method that measures labeling over time in conjunction with the PCR method for labeling PCR products. '' This can be done.
  • the constant fluorescence intensity is preferably set within the range of the fluorescence intensity that can be reached when the amplification product is logarithmically amplified from the viewpoint of reflecting an appropriate correlation. Such a range can be appropriately understood by a known method.
  • examples of the label include a label with a fluorescent dye
  • examples of measurement of the label include measurement of fluorescence intensity.
  • a label with a fluorescent dye for example, intercalation
  • SYBR (R) Green I is an example of the intercalator fluorescent dye. Since the intercalating dye has the property that the fluorescence intensity is enhanced by intercalating the double-stranded nucleic acid, fluorescence having an intensity reflecting the amplified PCR product is emitted.
  • labeling with a fluorescent dye can be performed by using a TaqMan probe or Moleculer Beacon labeled with a fluorescent dye.
  • the TaqMan probe and Moleculer Beacon are probes in which a fluorescent dye and a Taentia are bound to an oligonucleotide having homology with the internal sequence of the region amplified by PCR, and are used together in the PCR reaction.
  • a fluorescent dye and a Taentia are bound to an oligonucleotide having homology with the internal sequence of the region amplified by PCR, and are used together in the PCR reaction.
  • TaqMan probes and Moleculer Beacon have to find complementary sequences specific to bacteria suitable for the probe, which may be difficult depending on the target.
  • the amount of rRNA can be obtained by taking into account the “amplified PCR product amount and the number of PCR cycles” obtained by force and the results of appropriate comparative experiments. That is, for example, referring to “Results of Comparative Experiments Using rRNAs with Known Amounts” and appropriately comparing the “amount of PCR amplification products with the number of PCR cycles” obtained as described above. Then, the amount of the target microorganism rRNA can be calculated by a known method.
  • the number of target microorganisms can be determined by taking into account the "amount of target microorganism rRNA" calculated by force and the result of an appropriate comparison experiment.
  • the appropriate comparison with the “quantity of target microorganism rRNA” calculated in advance is made.
  • the number of target microorganisms can be calculated by a known method.
  • the number of microorganisms of the test microorganism that is a type of PCR and “the number of PCR cycles” (hereinafter also referred to as C value) when a certain amount of PCR amplification product is reached. )
  • C value the number of PCR cycles
  • Such a calibration curve shows the number of target microorganisms on the horizontal axis.
  • a known strain such as a reference strain may be used.
  • the result of a comparative experiment conducted using a sample sample whose corresponding number of bacteria is known and "the amount of PCR amplification product and the number of PCR cycles” obtained as described above. If appropriate, the number of target microorganisms can be directly calculated without going through the process of calculating the amount of rRNA. Specifically, the C value derived from the specimen sample may be applied to the calibration curve described above.
  • the amount of the target microorganism rRNA in the subject is determined by, for example, (2) knowing the hybridization efficiency between the nucleic acid fragment that can specifically hybridize to the target microorganism rRNA and the subject sample. Can also be sought.
  • nucleic acid fragment that can specifically hybridize with the target microorganism rRNA for example, a nucleic acid fragment designed and produced as described above can be used.
  • a nucleic acid fragment is preferably a labeled nucleic acid fragment.
  • the label include an enzyme, a paramagnetic ion, piotin, a fluorescent dye, a chromophore, a heavy metal, and a radioisotope, and a more preferable marker includes an enzyme.
  • an enzyme includes a horseradish page. Roxidase or alkaline phosphatase can be mentioned. Such marking can be done by known methods.
  • the amount of the target microorganism rRNA and / or the number of the target microorganism in the specimen can be obtained by a known conversion method.
  • Measurement of the degree of such hybridization is not particularly limited, and can be performed according to a known method. For example, it can be performed by measuring a label added to a nucleic acid fragment. That is, for example, when a nucleic acid fragment labeled with a fluorescent dye is used, the measurement can be performed by measuring the fluorescence intensity. Such measurement is preferably performed in parallel with an appropriate control.
  • a sample known not to specifically hybridize with a nucleic acid fragment to be used” or “a sample containing a known number of target microorganisms” is derived.
  • Analyte sample “ analyte sample ingested or prepared from a subject whose target microorganism rRNA amount is already known ”, and the like.
  • the amount of target microorganism rRNA or the number of target microorganisms can be obtained by a known conversion method.
  • the number of microorganisms can be obtained publicly by taking into account the target microorganism rRNA amount calculated by force and the results of appropriate comparative experiments. It can also be done by known methods.
  • the target microorganism detection method of the present invention uses the presence of the target microorganism rRNA in the sample as an index.
  • “microbe detection” includes the identification of microorganisms. It also includes confirming that the detection target microorganism is present in the sample, or confirming that the detection target microorganism is not present in the sample.
  • the detection method of the present invention In order to confirm the presence of the target microorganism rRNA in the specimen using the detection method of the present invention, (1) PCR using a nucleic acid fragment that can specifically hybridize to the specimen sample and the target microorganism rRNA. Detection of amplification products by the method, (2) detection of hybrids between such nucleic acid fragments and sample, (3) detection of the target microorganism rRNA using other known methods, etc. Just do it. The methods (1) to (3) can be easily performed by considering the method already described. The presence of the target microorganism rRNA indicates that the target microorganism was present in the sample, so that the target microorganism can be detected. However, since non-specific PCR product amplification and non-specific hybridization can be performed, it is preferable to perform the comparison with an appropriate control.
  • the quantification method using the amount of rRNA as an indicator and the detection method using the presence of rRNA as an indicator have higher detection sensitivity than conventional methods using the amount of rDNA as an indicator. It became clear that it could be achieved.
  • the method using the amount of rRNA as an index can accurately quantify and detect living microorganisms without quantitatively detecting dead cells together. It was.
  • the quantification * detection method of the present invention (hereinafter also referred to as "method of the present invention") is used, microorganisms in a living state can be specifically quantified and detected with higher detection sensitivity than conventional methods. can do. Therefore, the method of the present invention can be used, for example, (1) for the purpose of quantifying and detecting a target microorganism in a living state contained in a subject with higher detection sensitivity than the conventional method, and (2) higher detection sensitivity than the conventional method. (3) Measure the ratio of the number of dead cells contained in the sample to the number of living microorganisms with higher detection sensitivity than the conventional method.
  • confirmation for example, (a) when it is necessary to accurately and accurately grasp the number of living microorganisms Quantitative detection to determine the presence or amount of living microorganisms, and (b) If the number of living microorganisms is calculated by other experimental systems And confirmation to examine the accuracy of the calculated numerical value.
  • the number of dead cells is quantified, for example, the total number of dead cells and viable cells is measured by a known method known to detect dead cells together. It is preferable.
  • the number of viable cells calculated by the method of the present invention can be obtained by removing from the total number.
  • the method of the present invention as a method for quantitatively detecting a microorganism that is difficult to measure by a conventional culture method, such as a colony that cannot be formed, a microorganism, or a microorganism that cannot be liquid-cultured, for example. I'll use it for you.
  • the method of the present invention quantifies microorganisms with a detection sensitivity equivalent to or higher than that of the culture method, that is, a detection sensitivity of 10 ° or more / g ⁇ sample, or 10 ° or more / mL ⁇ sample. It can also be used as a method.
  • RNA extractability of the sample can be completed within about 6 hours until the quantification / detection of the microorganism. Therefore, the method of the present invention can also be used as a method for detecting microorganisms in a short time (within 6 hours).
  • the method of the present invention If a method using the PCR method is used in the method of the present invention, it is possible to simultaneously realize high detection sensitivity, more accurate quantitative detection of microorganisms in a living state, and quickness and simplicity. . For this reason, the method of the present invention is used, for example, for the purpose of “inspection of contaminating bacteria, harmful bacteria, pathogenic microorganisms” in the medical field and the food industry where particularly rapid and sensitive quantitative detection is required. Can do.
  • the method of the present invention can also be carried out using a kit for carrying out such a method.
  • a kit for carrying out such a method for example, (1) a nucleic acid fragment that can specifically hybridize to the target microorganism rRNA, (2) a protocol that describes the carrying method, and / or Or (3) kits containing reagents used for RNA extraction, RNA immobilization, or PCR reactions, but the kit of the present invention is not limited to these, and all or some of the steps of the method are performed.
  • a kit for carrying out such a method for example, (1) a nucleic acid fragment that can specifically hybridize to the target microorganism rRNA, (2) a protocol that describes the carrying method, and / or Or (3) kits containing reagents used for RNA extraction, RNA immobilization, or PCR reactions, but the kit of the present invention is not limited to these, and all or some of the steps of the method are performed.
  • 16S and 23S rRNA DNA sequences were obtained from DNA Data Bank of Japan (http://www.ddbj.nig.ac.jp/Welcome—j.html). After arranging these sequences using the Clustal W program, a phylogenetic tree was created. Based on the phylogenetic tree, each fungus was classified into a family, genus, and subgroup, and primers were designed for each classification. Table 1 shows the primer sequences and target rRNA species. Note that the column of reference in Table 1 indicates a document in which such a sequence is described. In addition, when this column is blank, it indicates that the sequence is a novel sequence found by the present invention. Non-patent document 4 shows Microbiol.
  • Patent Document 7 discloses Japanese Patent Application Laid-Open No. 11-151097.
  • Example 2 Confirmation of primer specificity
  • Table 2 28 species of genus and 57 species
  • Table 3 18 species of genus and 60 species
  • lysis buffer 450 ⁇ 1 [RLT buffer (QIAGEN) 346.5 ⁇ 1, / 3-mercaptoethanol 3.5 ⁇ 1, ⁇ buffer 100 zl] and 300 mg of glass beads (0.1 mm in diameter) were added, and the cells were disrupted by shaking vigorously at 5, OOOrpm for 1 minute with FastPrep FP120 (BiolOl).
  • 500 ⁇ l of water-saturated phenol was added and incubated at 60 ° C for 10 minutes. After adding 100 ⁇ of black mouth form / isoamyl alcohol (CIA) and stirring, the mixture was centrifuged at 12, OOOrpm, 4 ° C, 5 minutes.
  • CIA black mouth form / isoamyl alcohol
  • the supernatant was removed, the tube was air-dried, and the precipitate was dissolved in 50 ⁇ 1 RNase_free water to obtain a total RNA extraction solution.
  • QIAGEN OneStep RT-PCR Kit QIAGEN
  • the composition of the reaction solution (total volume 25 ⁇ 1) consists of 2 1 total 13 ⁇ 4 ⁇ 8 solutions (2 10 1; equivalent) and IX QIAGEN OneStep RT-PCR Buffer, 0.5 mM dNTP Mix as final concentration, 1Z25 QIAGEN OneStep RT-PCR Enzyme Mix, 1 / 100,000 amount of SYBR (R) Green I (Molecular Probes), 0.75 ⁇ M
  • Each primer (described in Table 1) was prepared.
  • RNA corresponding to 2xlO3 ⁇ 4FU was used as a template.
  • the reaction solution was first subjected to reverse transcription at 50 ° C for 30 minutes, and then heated at 95 ° C for 15 minutes to inactivate the reverse transcription enzyme. Bow I followed by 94 ° C '20 seconds, 55 ° C or 60 ° C '20 seconds, 72. O '50 seconds were measured for 40 to 45 cycles, and the amount of amplified product was measured as the fluorescence intensity of SY BR (R) Green I for each cycle.
  • R fluorescence intensity of SY BR
  • primers En_lsu 3F / 3 'R Enterobacteriaceae
  • g— Staph— FZR genus Staphylococcus
  • PSD7F / R genus Pseudomonas
  • s-Clper-F / C1PER-R Clostridium perfringens
  • S—S—Be—200—a—S—18 / Bc2R Bacillus cereus
  • g—Encoc FR EnterococcusS
  • the primers sg _Laci_FZR (Lactobacills acidophilus subgnoleop), sg— Lsak— F / R (Lactobacillus sakei safuku, nore ipuno, sg— Leas— F / R (Lactobacillus casei safuku, / Leffe, sg—Lrum—FR (Lactobacillus ruminis), sg—Lreu—F / R (Lactobacillus reuteri), sg—Lpla—F / R (Lactobacillus plantarum Saf-Knolefe), s—Lbre—F / R (Lactobacillus brevis), s— Lfru— F / R (Lactobacillus fructivorans), and LFer-1 / 2 (Lactobacillus fermentum) are clearly able to detect only the target subgroup
  • the relationship between the number of bacteria having colony-forming ability derived from the amount of rRNA transcript measured by the method was examined. In other words, after the start of aerobic shaking culture at 37 ° C using BHI medium, the number of bacteria was measured by the culture method (37 ° C, 24 hours) using BHI agar medium using the bacterial solution collected over time did. On the other hand, RNA was extracted from sampnore collected in the same manner and subjected to quantitative RT-PCR analysis.
  • the number of bacteria in each sampnore was calculated based on a calibration curve prepared in the manner described in Example 4 using RNA extracted from the late growth of logarithmic strains with known numbers of bacteria. Total RNA extraction and quantitative RT-PCR were performed as described in Example 2. The results are shown in Fig. 1.
  • Fig. 1 the number of bacteria calculated from the amount of rRNA transcribed is indicated by black circles, and the number of bacteria by the culture method is indicated by ⁇ (white circles).
  • the fluctuation curves for the number of viable cells and the number of cells calculated from the amount of rRNA transcribed by the culture method in the bacterial solution are highly related to the logarithmic growth phase force until the death phase. It was. Thus, it was clarified that the number of living microorganisms can be measured in any state by measuring the amount of rRNA transcription.
  • Calibration curves were prepared by the method of the present invention (quantitative RT-PCR method) using cultured cells in the late logarithmic growth of _ aeruginosa YIT6108 T (reference strain) and ⁇ aureus YIT6075 T (reference strain).
  • a calibration curve by a quantitative PCR method was prepared and compared with the method of the present invention.
  • sort the cells to 10 5 , 10 ⁇ 10 3 , 10 2 , 10 1 , 10 °, and extract RNA as in Example 2. did. They were subjected to quantitative RT-PCR according to Example 2 using the primers shown in Table 1. The correlation between the obtained C value and the number of bacteria determined by the culture method described in Example 3 was examined. Also, the following
  • the DNA obtained from the same sample by the method shown in Fig. 5 was also examined for quantification by PCR using rDNA as the target sequence. Specifically, the number of bacteria is 10 5 . After adding lmL of PBS to the bacterial solution separated so as to be 10 ° C and stirring, centrifugation was performed at 15,000 rpm, 4 ° C for 5 minutes, and the supernatant was removed. Add lmL PBS to the precipitate The operation of stirring, centrifuging, and removing the supernatant was repeated twice.
  • lysis buffer 100 ⁇ Tris—HC1, 40 mM EDTA, 1% SDS, pH 9.0
  • TE saturated phenol 500 ⁇ 1 300 mg (0.1 mm in diameter).
  • the cells were crushed by shaking vigorously at 5, OOOrpm for 30 seconds in FP120. Centrifugation was performed under conditions of 15, OOOrpm, 4 ° C for 5 minutes, and the supernatant was collected. Add phenol (TE-filled mouth) / black mouth form / isoamyl alcohol to the supernatant, shake vigorously with FastPrep FP120 for 4, seconds at OOOrpm, then at 15, OOOrpm, 4 ° C for 5 minutes. Centrifugal operation was performed under the conditions described above.
  • Alcohol precipitation was performed using the separated and recovered supernatant, and then dissolved in 50 ⁇ l of cocoon buffer to obtain a DNA solution. Subsequently, a PCR reaction was carried out using the obtained DNA solution as a bowl. The total amount of the PCR reaction is 25 ⁇ 1, 2 ⁇ 1 DNA solution and final concentration of 10 mM Tris-HCl (pH 8.3), 50 mM KC1, 2.5 mM MgCl, 0.45%
  • Each reaction solution containing each primer PSD7F / R, g- Staph — F / R was used.
  • the reaction solution was heated at 94 ° C. for 5 minutes, then subjected to 40 cycles of 94 ° C. for 20 seconds, 60 ° C. for 20 seconds, and 72 ° C. for 50 seconds, and then reacted at 72 ° C. for 10 minutes.
  • the amount of amplified product was measured as the fluorescence intensity of SYBR (R) Green I for each cycle.
  • R fluorescence intensity of SYBR
  • R ABI PRISM
  • 1/25 of RNA and DNA extraction amount were used for the reaction.
  • both methods have very good logarithmic values and C values for the number of microorganisms.
  • Figure 2 shows the C value on the vertical axis measured by the culture method for each bacterial species used in the sample.
  • the quantitative RT-PCR method can detect that the number of microorganisms in the extracted sample is 10 °, and has the same detection sensitivity as the conventional culture method. As an alternative, it has become clear that it can be used for quantification 'detection of microorganisms.
  • rDN Compared with the PCR method using A as a target sequence, the detection sensitivity of the method of the present invention is about 1,000 times higher than that of the conventional method for quantifying microorganisms using the gene amplification method. It became clear that it had sensitivity.
  • Example 4 the number of bacteria was measured from the same sample by a culture method. Extraction of total RNA and quantitative RT-PCR were performed in the same manner as in Example 2, culture was performed in Example 3, and DNA extraction and quantitative PCR were performed in the same manner as in Example 4. Of the total RNA and total DNA obtained, 1 / 2,500 were subjected to quantitative RT-PCR and quantitative PCR.
  • the method of the present invention shows a straight line in the approximate curve of the measured value in the range of 10 2 9 to 10 1Q pieces / g 'stool. Sex was recognized.
  • Figure 3 shows the C value on the vertical axis and P.. Aeruginosa ⁇ used for Sampnore.
  • the number / g 'stool measured by the culture method is plotted on the horizontal axis. Quantitative RT-PCR postcards (black circles) and quantitative PCRs are shown with ⁇ (white circles).
  • the limit of quantification in the human fecal sample of the method of the present invention was 10 2 ⁇ 9 or more / g ′ feces, which was almost the same as the culture method of 10 2 or more Zg ′ feces.
  • the method of the present invention completed the test from RNA fixation to quantification in about 6 hours.
  • RNA extracted from coli YIT 6044 T was used.
  • FIG. 4 it was clarified that the quantitative RT-PCR method targeting the rRNA of the present invention and the culture method showed a very high correlation coefficient of 0.9255.
  • the vertical axis shows the quantification result by the culture method
  • the horizontal axis shows the quantification result by the method of the present invention.
  • the culture method it took 2 days to perform all operations, whereas in the method of the present invention, the entire operation was completed in about 6 hours.
  • C in the range of 10 ° to 10 6 per ml of milk for any bacterial species.
  • FIG. 5 shows E. coli applied to the sample with C value on the vertical axis (Fig. 5, upper left)
  • RNA extraction and quantitative RT-PCR were performed by the method described in Example 2. Of the total RNA extracted, 1/25 was subjected to quantitative RT-PCR.
  • Figure 6 shows P. aeruginosa (Fig. 6).
  • ⁇ il ⁇ (Fig. 6 right) are plotted by the horizontal axis of the number / 0.5mL 'blood measured by the pour culture method.
  • the limit of quantification of the method of the present invention is 10 ° or more / 0.5 mL-blood, which is similar to the pour culture method, indicating that it can be an alternative to the pour culture method.
  • the method of the present invention completed the determination of the RNA fixation force of the specimen in about 6 hours.
  • Example 9 E. coli testing of fermented milk products
  • lmL was subjected to total RNA extraction, and lmL was subjected to a pour culture method (37.C, 20 ⁇ 2 hours) using a desoxycholate agar medium.
  • the extracted total RNA was analyzed by quantitative RT-PCR using coliform group-specific primer En_lsu 3F / 3 'R, and the obtained C value and pour culture
  • Example 2 The correlation of the number of bacteria obtained by the cultivation method was examined. Extraction of total RNA was performed by the method described in Example 2 except for the disruption of bacterial cells with glass beads, and quantitative RT-PCR was performed in Example 2. The method described in 1. Of the total RNA extracted, 1/25 was subjected to quantitative RT-PCR.
  • the C value and the number of bacteria are highly correlated in the range of 10 ° to 10 5 cells / mL.
  • Fig. 7 shows the c value as a vertical axis and log measured by the pour culture method of ⁇ li used for Sampu Nore.
  • ZmL 'Yakult is equivalent to the pour culture method, so it can be used as an alternative to the pour culture method using the official medium (desoxycholate agar medium) described in the Ministerial Ordinance of Milk. It became power.
  • the method of the present invention completed the determination in about 6 hours from the RNA fixation force of the specimen.
  • Example 10 Analysis of lactic acid bacteria and enterococci in human feces by quantitative RT-PCR and culture method Quantification using the primers listed in Table 1 according to the number of Lactobacillus and Enterococcus species in human sparrow stool Comparison of RT-PCR method and culture method. Freshly excreted stool from 48 healthy adults was collected, stool was treated by the method described in Example 6, and RNA fixation, total RNA extraction, and quantitative RT-PCR were performed by the method described in Example 2. It was. Of the total RNA obtained, 1 / 2,000-: 1 / 200,000 was subjected to quantitative RT-PCR.
  • CFU was quantified from the same stool dilution by a culture method (Lactobacillus 3 ⁇ 4: LBS medium, Enterococcus genus: COBA medium, both at 37 ° C, 48 hours).
  • the culture method was in accordance with the standard method, and the colonies that appeared were identified by biochemical property tests (Gram staining, catalase test, API Strep).
  • the method of the present invention can detect and quantify bacteria that could not be detected by the conventional culture method, in addition to being able to obtain the same number of bacteria as the culture method. Moreover, in the culture method, it took 7 days to perform all operations including identification of the bacterial species, whereas in the method of the present invention, the entire operation was completed in about 20 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 生存状態にある微生物を高い感度で、且つより的確に検出できる、微生物の定量・検出方法の提供。  被検体中における目的微生物rRNA量を指標とする目的微生物の定量方法。

Description

明 細 書
rRNAを標的とした微生物の定量的解析方法
技術分野
[0001] 本発明は、 rRNAを標的として行う、微生物、とりわけ生存状態にある微生物を定量 •検出する方法に関する。
背景技術
[0002] 従来、微生物の定量法としては、予め予測した選択培地において微生物を培養し 菌数を計測する方法、選択液体培地中で微生物を培養し濁度や吸光度を測定する 方法が主に用いられてきた。また、検体中の微生物の検出に当たって必要となる微 生物の同定作業には、形態観察、グラム染色、酸素要求性、糖資化性、培地におけ る生育状態等の菌学的性質により同定する方法、 DNA—DNA相同性試験による 判定、微生物表面抗原のモノクローナル抗体による検出方法等が用いられてきた。こ れらの方法は、時間や熟練が要求され、迅速性や簡便性の観点から問題があった。
[0003] 近年、 PCR法をはじめとした遺伝子増幅法力 微量の核酸を検出するための技術 として広範な分野で用いられており、検体中の微生物の培養を必須要件とせず、ま た検体を直接試料として扱うことができるなど、迅速化や簡便化に供しうる利点を有 すること力ら、微生物の定量、検出への応用が検討されている。
[0004] そして、 PCR法を微生物の分析に応用した例としては、全 DNAを標的配列としュ 二バーサルプライマーを用いた PCR法による細菌の定量方法(特許文献 1)が知られ ている。また、標的として 16SrDNAを用いる方法も実現されており、例えば、 16SrD NAを標的配列とした PCR法による定量的解析方法(特許文献 2)、 16SrDNAを標 的配列とした PCR法による腸内細菌の解析方法(特許文献 3)、ビール混濁菌である ラクトバチルス属菌種の検出方法(特許文献 4)等が知られている。しかし、これらの 方法は、従来用いられてきた培養法ほどの検出感度を得られないため、従来法の代 替方法としては用いることができないという問題があった。たとえば、特許文献 2で提 案されている定量的解析方法は、その実施のためには、微生物数として 105個 / μ 1 以上のものに相当する大量の铸型 DNAが必要であり、斯カる方法は実用的ではな レ、。なお、この感度の低さは、 PCR反応の铸型となる全 DNAあるいは 16SrDNAの 微生物中に占めるコピー数 (铸型量)が少ないためであると考えられる。また、 DNA は微生物の死滅後も残存することが知られており、これらの方法は、死滅後の微生物 と生存状態の微生物とをあわせて定量 *検出するにすぎず、生存状態の微生物を的 確に定量'検出することは難しいという問題もあった (非特許文献 1)。
[0005] また、 PCR法を微生物の分析に応用した例として、 mRNAを標的配列として行う試 みもなされており、例えば、 mRNAを標的配列とした糞便中の乳酸菌の定量的解析 (非特許文献 2)等が知られている。また、検体中の癌細胞特異的な mRNAを標的 配列とした癌細胞の検出方法(特許文献 5、 6)も知られている。しかし、これらの方法 でも、定量法として従来法に代替できるほどの検出感度は得られていなかった。すな わち、非特許文献 2で示されている定量的解析の検出限界は、 103· 5個以上 /g'糞 便にすぎず、検出感度の観点から従来の培養法の代替として使用することはできな かった。また、これらの方法は、各微生物に特有の遺伝子の mRNAを標的とする方 法であり、プライマー設計の煩雑さ、特異性の低さなどの問題から、多種類の微生物 が含まれている被検体の検出には不向きであった。
[0006] そこで、 PCR法等を用いた迅速な方法でありつつも、同時に従来の検出方法と同 程度の検出感度が得られ、更に、生存状態の微生物をより的確に定量 ·検出すること ができる方法の開発が待たれていた。
感度の改善のためには、標的を、細胞内でより安定に又は細胞内により大量に存 在するものへ設計変更することも考えられる。しかし、そのような安定な標的は、死滅 後の細胞にも長く残存することが疑われることを考慮すると、生存状態の微生物のみ を検出するという目的のためには好ましくはないと考えられる。このように、十分な検 出感度の高さと、生存細胞のみを検出することとを同時に達成することは容易ではな レ、。
[0007] 一方、 rRNAは細胞内 RNA含有率の約 85%程度を占め多コピーであること、蛋白 質と複合体を形成しているため mRNAに比べて安定性が高いことが知られていた。 また、 rRNAは死後 48時間程度検出されるとの報告 (非特許文献 3)もあり、生存状 態にある微生物を検出するのに向力ないとの考えが一般的であった (非特許文献 1) 特許文献 1 :特開 2002— 238585号公報
特許文献 2 :特開 2003— 259879号公報
特許文献 3:特開 2001 _ 112485号公報
特許文献 4 :特開平 10— 210980号公報
特許文献 5:特開平 10— 248600号公報
特許文献 6 :国際公開第 00Z17395号パンフレット
非特許文献 1 :J Food Prot, vol. 67、 No. 4、 823— 832. (2004)
非特許文献 2 : FEMS Microbiology Letters, vol. 231、 125— 130 (2004) 非特許文献 3 : Appl. Environ. Microbiol. 、 vol. 64、 No. 11 , 4264-4268 (19
98)
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、従来の培養法の代替となりうるほどの検出感度、及び生存状態にある微 生物のより的確な検出を実現できる、微生物の定量的解析方法を提供することを目 的とする。
課題を解決するための手段
[0009] 本発明者らは、鋭意検討を行った結果、安定性から生存状態にある微生物を検出 するのに向かなレ、とも考えられた rRNA (糸田菌では 5S、 16S、 23S、真核生物では 5 S、 18S、 26S又は 28S)を標的に用いれば、意外にも、死細胞を反映せずに生存状 態にある微生物数を的確に定量 ·検出することができることを見出し、更に、定量 -検 出の際に PCR法を用いれば、従来方法の代替となりうるほどの検出感度を実現でき ることをも見出し本発明を完成させた。
[0010] すなわち、本発明は、被検体中における目的微生物 rRNA量を指標とする目的微 生物の定量方法を提供するものである。
[0011] また、本発明は、被検体中における目的微生物 rRNAの存在を指標とする目的微 生物の検出方法を提供するものである。
[0012] また、本発明は、上記方法に用いられる核酸断片であって、配列番号 2、 3又は 5〜 28記載の塩基配列若しくはそれと相補的な塩基配列からなる核酸断片又はそれらと 相同な塩基配列からなり且つ機能的に等価である核酸断片を提供するものである。
[0013] 更にまた、本発明は、上記方法を実施するためのキットを提供するものである。
発明の効果
[0014] 本発明の rRNAを標的とした検出方法を用いれば、標的が多量に存在するため従 来の標的に比べて高い検出感度を達成することができるにも関らず、同時に生存状 態にある微生物をより的確に検出 ·定量することもできる。また、斯カる検出において PCR法を用いれば、従来の培養法の代替となり得る程の検出感度を実現することが できる。更に、 PCR法を用いた方法であれば、培養法などの従来法に比べて、格段 の迅速さかつ簡便さが実現される。すなわち、本発明の方法を用いれば、検出感度 の高さと、生存状態にある微生物のより的確な定量 ·検出と、迅速さ簡便さとを同時に 実現することができる。そのため、腸内菌叢の解析や、食品'生体由来試料中に生存 する微生物の検出'定量など、微生物を検出'定量することが求められる実用的な場 面において用いることができる。
図面の簡単な説明
[0015] [図 1]各種微生物の増殖と rRNA転写量の相関を示した図である。
[図 2]定量的 RT— PCR法による検量線及び定量的 PCR法との検出範囲の比較を示 した図である。
[図 3]ヒト糞便からの aeruginosa (緑膿菌)の検出範囲を示した図である。
[図 4]ヒト糞便大腸菌群の定量値について、定量的 RT— PCRによって求めた場合と 培養法によって求めた場合とを比較した図である。
[図 5]牛乳からの coli (大腸菌)、 S. aureus (昔色ブドウ球菌)及び B. cereu S (セレウス菌)の検出感度を示した図である。
[図 6]血液からの £. aeruginosa (緑膿菌)、 S. aureus (黄色ブドウ球菌)の検出感 度を示した図である。
[図 7]発酵乳製品からの coli (大腸菌)の検出感度を示した図である。
発明を実施するための最良の形態
[0016] 本発明の目的微生物の定量 ·検出方法は、被検体中における目的微生物 rRNA の存在量や存在を指標とすることを特徴とするものである。
[0017] 目的微生物 rRNAとは、定量'検出することを目的とする微生物が有しうる rRNAを レヽい、 rRNAとしては、例えば、原核生物における 5SrRNA、 16SrRNA、 23SrRN A、真核生物における 5SrRNA、 5. 8SrRNA, 18SrRNA, 26SrRNA, 28SrRN Aが挙げられるが、特に、現在の微生物分類の信頼できる指標として主に用いられて レヽる^ f、力ら、 16SrRNA、 23SrRNA, 18SrRNAや 26SrRNAカ好ましレヽ。また、 目 的微生物とは、定量 ·検出する目的である微生物をいい、特に限定されないが、例え は、 Enterobactenaceae^ Enterococcus属、 Lactobaci丄 lus属、 Streptococcus j¾、 ataphvlococcusj¾. Veiilonella禹、 Pseudomonas属、し lostridmm¾、 Bac teroides禹、 Bifidobacterium属、 Eubacterium属、 Prevotella Ruminococc us属、 Fusobacterim属、 Propionibacterium属、 Peptostreptococcus属、 Vibri 属、 Bacillus属、 Campylobacter属、 AcinetobacterJ禹、 L&ctococcus属、 Pedi ococcus属、 Wsisssll&J禹、 Leuconostoc属、 Osnococcus禹、 Helicobacter J禹、 Neisseria属、 Listeria属、 Haemophillus属、 Mycobacterium属、 Gardnerella 属、 Legionella属、 Aeromonas属、 Moraxella属、 Candida属などの微生物、及び 後記表 2、表 3記載の微生物が挙げられる。また、本発明の目的微生物は、 1種の菌 種からなる微生物のみならず、ある性質を共有する 2種以上の菌種の集まりからなる グループ、属及び科を含む概念である。
[0018] 被検体とは、微生物の存在又は存在量等を調べる対象をレ、う。被検体としては、例 えば、結膜ぬぐい液、歯石、歯垢、喀痰、咽頭ぬぐい液、唾液、鼻汁、肺胞洗浄液、 胸水、胃液、胃洗浄液、尿、子宮頸管粘液、膣分泌物、皮膚病巣、糞便、血液、腹 水、組織、髄液、関節液、患部ぬぐい液などの生態由来試料、食品、医薬品、化粧 品、食品 ·医薬品,化粧品の中間処理物、微生物培養液、植物、土壌、活性汚泥、排 水のような微生物を含有する可能性のある対象が挙げられる。また、被検体試料とは 、被検体をもとに摂取又は作製される試料をいい、被検体の微生物の存在又は存在 量を反映しうる試料であれば特に限定されるものではないが、例えば、被検体に含ま れるヌクレオチドを含む混合物や RNAを含む混合物が挙げられるが、 PCR法に用 レ、るという観点からは、被検体に含まれる RNAを含む混合物が好ましい。 [0019] 被検体試料は、例えば、被検体の全部又は一部から、必要に応じて、抽出 '分離- 精製方法により前処理を行ったのち、適宜公知の方法により取得することができる。 例えば、 RNAを含む混合物は、必要に応じて、ろ過、遠心分離、クロマトグラフィー 等の公知の方法による前処理を行ったのち、例えば、「グァ二ジン—塩ィ匕セシウム超 遠心法」、「酸性グァニジン—フヱノールクロ口ホルム法 (AGPC法)」、「磁気ビーズ法 」、「シリカカラム法」等の汎用法を用いた抽出により得ることができ、また、市販のキッ HQIAGEN RNeasy KIt、 TRIZOL等)を用いて行うこともできる。
また、被検体試料としては、分解を防ぎ高い検出感度を維持するという観点からは 、微生物中に固定化された状態の RNAを用いることが好ましい。斯かる固定化は、 例えば、市販の固定化剤(RNAprotect Bacterial Regent、 RNAlater等)により 行うことができる。また、固定化は、微生物内の RNA量の変化を避けるという観点か ら、検体の採取後直ちに行うのが好ましい。
[0020] 本発明における目的微生物の定量は、被検体中における目的微生物 rRNA量を 指標とする。ここで、被検体中における目的微生物 rRNA量は、例えば、(1)目的微 生物 rRNAに特異的にハイブリダィズしうる核酸断片及び被検体試料を用いて PCR 法による増幅産物量を求めること、(2)目的微生物 rRNAに特異的にハイブリダィズ しうる核酸断片と被検体試料とのハイブリダィズ効率を求めること、又は(3)その他公 知の方法を用いた定量方法により求めることができる。
[0021] ここで、 (l) PCR法を用いる場合において、「目的微生物 rRNAに特異的にハイブ リダィズしうる核酸断片」の設計は、 目的微生物が有する塩基配列と他の微生物が有 する塩基配列とを比較し、 目的微生物が有しうる rRNAに特異的である配列を選ぶこ とにより行うことができる。ここで、微生物が有しうる rRNAの塩基配列は、例えば、デ ータベース(DDBJ、 Genbank等)を参酌することにより得ることができる。また、塩基 配列をソフトウェア(Clustal X等)を用いて整列させ、 目視等の手段により特異的な 配列を見出すことができる。また、 目的とする微生物に特異的である配列は、定量の 対象である微生物が含まれる範囲の広さを参酌することが好ましい。すなわち、例え ば、ある菌種を特異的に定量することを目的とするならば、その菌種特異的な配列を 選択することが好ましぐまた、ある属を特異的に定量することを目的とするならば、そ の属特異的な配列を選択することが好ましい。斯かる選択は、公知の方法を用いて 適宜行うことができる。
[0022] 目的微生物 rRNAにハイブリダィズしうる核酸断片としては、力べして設計される配 列のみならず、公知の技術常識にのっとれば適宜想定することができ、当該塩基配 歹' Jと相補的な塩基配列や目的微生物の定量に同様に用いることができる相同な塩 基配列、例えば、 a)当該塩基配列のうちの 1又は数個、好ましくは 1乃至 10個の塩基 が置換、付加又は欠失した塩基配列、 b)当該塩基配列と 90%以上、好ましくは 95 %以上、より好ましくは 99%以上の同一性を有する塩基配歹 IJ、 c)当該塩基配列と相 補的な塩基配列からなる DNAとストリンジェントな条件下でハイブリダィズする塩基 配列、力 なる核酸断片などを用いることもできる。
また、斯かる核酸断片は、その両端又は片端、好ましくは 5 '端に任意の数、好まし くは 100個、より好ましくは 20個、更に好ましくは 10個以下の塩基が付加された核酸 断片の一部であってもよい。
[0023] 当該核酸断片の長さは、特に制限はないが、 5〜50塩基からなる核酸断片が好ま しぐ 12〜35塩基からなる核酸断片がより好ましい。
[0024] 力べして設計される核酸断片は、例えば、その塩基配列に従い、 DNA合成機により 人工的に合成することができる。当該断片としては、合成後に、その特異性の確認の なされた断片が好ましぐここで特異性の確認としては、例えば、 目的 rRNAを铸型と する場合には、適当な対照と比べて特異的な PCR増幅産物が得られることを確かめ ることにより行うこと力できる。
[0025] このような核酸断片としては、例えば、配列番号 1〜30記載の塩基配列若しくはそ れと相補的な塩基配列からなる核酸断片、又はそれらと相同な塩基配列からなり且 つ機能的に等価である核酸断片が挙げられる。ここで、それらと相同な塩基配列から なり且つ機能的に等価である核酸断片としては、例えば、以下に示す(a)〜(c)に示 す核酸断片であって、 目的微生物 rRNAの定量 '検出に用いることができるものが挙 げられる。
(a)配列番号 1〜30で示される塩基配列若しくはそれと相補的な塩基配列からなる 核酸断片において、 1又は数個の塩基が欠失、置換若しくは付加された核酸断片。 (b)配列番号 1〜30で示される塩基配列若しくはそれと相補的な塩基配列と 90%以 上、好ましくは 95%以上、より好ましくは 99%以上の同一性を有する塩基配列からな る核酸断片。
(c)配列番号 1〜30で示される塩基配列若しくはそれと相補的な塩基配列からなる DNAとストリンジェントな条件下でハイブリダィズする塩基配列からなる核酸断片。
[0026] 尚、ここで、塩基配列の同一性は、 GENETYX (R)のホモロジ一解析プログラムを 用いることにより算出される。
また、「ストリンジェントな条件」としては、例えば、 50%ホルムアミド、 5 X SSC、 5 X デンハルト溶液及び 250mg/mLサケ精子 DNAを含む溶液に 42°Cで 16〜24時 間恒温し、ハイブリダィズさせる条件が挙げられる。
[0027] 目的微生物 rRNAの定量 ·検出に用いることができる核酸断片は、例えば、 PCR法 を行い、 目的微生物 rRNAをテンプレートとした場合には増幅産物が得られるのに対 し、その他の標的、例えば、その他の微生物 rRNAや、 mRNAをテンプレートとした 場合には得られない核酸断片を選ぶことにより得ることができる。
[0028] そして、 (1)配列番号 1若しくは 2記載の塩基配列若しくはそれと相補的な塩基配 歹 IJからなる核酸断片、又はそれらと相同な塩基配列からなり且つ機能的に等価であ る核酸断片は、 Bacillus cereusを、 (2)配列番号 3若しくは 4記載の塩基配列若し くはそれと相補的な塩基配列からなる核酸断片、又はそれらと相同な塩基配列から なり且つ機能的に等価である核酸断片は、 Clostridium perfringensを、 (3)配列 番号 5若しくは 6記載の塩基配列若しくはそれと相補的な塩基配列からなる核酸断片 、又はそれらと相同な塩基配列からなり且つ機能的に等価である核酸断片は、 Ente robacteriaceaeを、 (4)配列番号 7若しくは 8記載の塩基配列若しくはそれと相補的 な塩基配列からなる核酸断片、又はそれらと相同な塩基配列からなり且つ機能的に 等価である核酸断片は、 Staphylococcus属を、 (5)配列番号 9若しくは 10記載の 塩基配列若しくはそれと相補的な塩基配列からなる核酸断片、又はそれらと相同な 塩基配列からなり且つ機能的に等価である核酸断片は、 Pseudomonas属を、 (6) 配列番号 11若しくは 12記載の塩基配列若しくはそれと相補的な塩基配列からなる 核酸断片、又はそれらと相同な塩基配列からなり且つ機能的に等価である核酸断片 は、 Enterococcus属を、 (7)配列番号 13若しくは 14記載の塩基配列若しくはそれ と相補的な塩基配列からなる核酸断片、又はそれらと相同な塩基配列からなり且つ 機能的に等価である核酸断片は、 Lactobacillus acidophilusサブグループを、 (8 )配列番号 15若しくは 16記載の塩基配列若しくはそれと相補的な塩基配列からなる 核酸断片、又はそれらと相同な塩基配列からなり且つ機能的に等価である核酸断片 は、 Lactobacillus mminisサブグループを、 (9)配列番号 17若しくは 18記載の塩 基配列若しくはそれと相補的な塩基配列からなる核酸断片、又はそれらと相同な塩 基配列からなり且つ機能的に等価である核酸断片は、 Lactobacillus plantarum サブグループを、(10)配列番号 19若しくは 20記載の塩基配列若しくはそれと相補 的な塩基配列からなる核酸断片、又はそれらと相同な塩基配列からなり且つ機能的 に等価である核酸断片は、 Lactobacillus reuteriサブグループを、 (11)配列番号 21若しくは 22記載の塩基配列若しくはそれと相補的な塩基配列からなる核酸断片、 又はそれらと相同な塩基配列からなり且つ機能的に等価である核酸断片は、 bacillus sakeiサブグループを、 (12)配列番号 23若しくは 24記載の塩基配列若し くはそれと相補的な塩基配列からなる核酸断片、又はそれらと相同な塩基配列から なり つ機能的に等価である核酸断片は、 Lactobacillus caseiサブグループを、 ( 13)配列番号 25若しくは 26記載の塩基配列若しくはそれと相補的な塩基配列から なる核酸断片、又はそれらと相同な塩基配列からなり且つ機能的に等価である核酸 断片は、 Lactobacillus brevisを、 (14)配列番号 27若しくは 28記載の塩基配列 若しくはそれと相補的な塩基配列からなる核酸断片、又はそれらと相同な塩基配列 カゝらなり且つ機能的に等価である核酸断片は、 Lactobacillus fmctivoransを、 (1 5)配列番号 29若しくは 30記載の塩基配列若しくはそれと相補的な塩基配列からな る核酸断片、又はそれらと相同な塩基配列からなり且つ機能的に等価である核酸断 片は、 Lactobacillus fermentumを、特異的に定量.検出する用途に用いることが できる。
なお、ここで、配列番号 1記載の塩基配列からなる核酸断片は、 FEMS Microbio logy Letters, vol. 202、 209— 213 (2001)に記載されてレヽる公知の核酸断片で ある。また、配列番号 4記載の塩基配列からなる核酸断片は、 Microbiol. Immunol .、 vol. 46、 No. 5、 353— 358 (2002) ίこ記載されてレヽる公失口の核酸断片である。 また、配列番号 29又は 30記載の塩基配列からなる核酸断片は、特開平 11一 1510 97号公報に記載されている公知の核酸断片である。一方、配列番号 2、 3又は 5〜2 8記載の塩基配列からなる核酸断片は、本発明者らが見出した核酸断片である。
[0030] 力べして作製される核酸断片及び被検体試料を用いる PCR法は、「斯かる核酸断 片をプライマーとして用いて、被検体試料を含む反応系において、 目的微生物 rRN Aを鎳型とする PCR反応」により行うことができる。斯かる PCR法としては、 目的微生 物 rRNAに由来するヌクレオチド断片を特異的に増幅する反応であれば特に制限さ れるものではないが、 目的微生物 rRNAを铸型とし、酵素、好ましくは逆転写酵素な どによって cDNAを作製する工程を含む方法が好ましぐまた、斯かる工程に加えて 、力べして作製された cDNAを铸型としてヌクレオチドを増幅する工程を含む方法が より好ましい。このような PCR法は、例えば、公知の RT— PCR反応を用いることによ り行うこと力 Sできる。ここで、 RT— PCR反応は、 Two— Step RT—PCRや One— St ep RT— PCR等の公知の方法を用いて行うことができる力 特に簡便であり、かつク ロスコンタミネーシヨンを防ぐという点からは、 One -Step RT—PCRが好ましい。
[0031] 斯かる One— Step RT—PCR法は、例えば、市販のキットを用いて行うことができ る(QIAGEN One - Step RT— PCR kit等)。 RT反応に使用する逆転写活性を 有する酵素としては M_MHV reverse transcriptase等の種々の逆転写酵素を 用レ、ることができる。また、 DNAを増幅させる PCR反応に用いる DNAポリメラーゼは 90°C以上の温度に耐熱性があるものが好ましい。
[0032] このような PCR反応は、例えば、二本鎖 DNAを一本鎖にする熱変性反応を 90〜9 8°C、プライマーを铸型 cDNAにハイブリダィズさせるアニーリング反応を 37〜72°C 、 DNAポリメラーゼを作用させる伸長反応を 50〜75°Cという温度条件で、これを 1サ イタルとしたものを 1〜数十サイクル行うことにより、行うことができる。なお、好ましい 反応条件の一例は、熱変性 95°C ' 30秒、アニーリング 60°C ' 30秒、伸長反応 72°C ' 60秒、である。
[0033] また、 PCR反応の際は、 2種類のプライマーを 1組として用いることが好ましぐこの 場合は両者がリーディング鎖とラギング鎖との組合せになるようにする必要がある。本 発明で提供する核酸断片は、 RT—PCR反応におけるアニーリング温度をほぼ一定 に設定してあるので、複数の微生物の核酸断片を同時に検定することが可能となる。 また、プローブとしての使用もでき、他の公知のユニバーサルプライマー、オリゴヌク レオチド等と組合わせても用いることもできる。
[0034] また、この RT— PCR反応の鎳型となる rRNAを含む被検体試料としては、 RNA全 体量として lpg〜l z gの RNAを含むものが好ましぐ 10pg〜0. 含むものがよ り好ましい。
[0035] 適切な PCR反応が行われた場合には通常、「PCR増幅産物量」、「PCRサイクノレ 数」と「PCRの铸型量」との間には相関関係がある。したがって、力べして行われた PC R反応により増幅された増幅産物量と PCRサイクル数を参酌して適宜計算すれば、 目的微生物 rRNA量を求めることができる。
[0036] また、後記の実施例図 1に示すとおり、力べして求められる「目的微生物 rRNA量」と 「目的微生物の菌数」との間にも良好な相関関係があることが明らかになった。したが つて、力べして求められた「目的微生物 rRNA量」を参酌して計算すれば、 目的微生 物の菌数を求めることができる。また、「目的微生物 rRNA量」を計算する過程を経な くても、上述のようにして行われた「PCR反応により増幅された増幅産物量」と「PCR サイクル数」を参酌して適宜計算することによつても、 目的微生物の菌数を求めること ができる。
[0037] PCR増幅産物量と PCRサイクル数の知得は、特に限定されず、あらゆる方法により 行うことができる力 例えば、任意に設定された一定量の DNA量に達したときの PCR サイクル数を特定することにより行うことができる。斯かる特定は、例えば、「PCR産物 を標識する PCR法に併せて、標識の経時的な計測を行う PCR法」を用いて、設定し た一定の蛍光強度に達する際の PCRサイクル数を特定することにより行うことができ る。ここで、一定の蛍光強度は、「増幅産物が対数的に増幅する際に達しうる蛍光強 度の範囲内」で設定されるのが、適切な相関関係を反映しうる点から好ましい。斯か る範囲は公知の方法により適宜理解することができる。また、ここで標識としては、例 えば、蛍光色素による標識が挙げられ、標識の計測としては、例えば、蛍光強度の計 測が挙げられる。またここで、蛍光色素による標識としては、例えば、インターカレー ター性蛍光色素による標識が挙げられ、インターカレーター性蛍光色素としては、例 えば、 SYBR (R) Green Iが挙げられる。インターカレーター性色素は、二本鎖核酸 にインターカレーシヨンすることで蛍光強度が増強する性質を有することから、増幅し た PCR産物を反映した強度の蛍光が発せられることとなる。また、蛍光色素による標 識は、蛍光色素により標識した TaqManプローブや Moleculer Beacon等の使用 により行うこともできる。 TaqManプローブや Moleculer Beaconは、 PCRにより増 幅される領域の内部配列と相同性を有するオリゴヌクレオチドに蛍光色素とタエンチ ヤーを結合させたプローブであり、 PCR反応に共存させて用いる。プローブに結合し た蛍光色素とクェンチヤ一の相互作用で PCR増幅反応に応じた蛍光を発するため、 各 PCR段階での蛍光強度を測定することにより増幅される PCR産物の経時的な観 察を行うことができる。ただし、 TaqManプローブや Moleculer Beacon等では、プ ローブに適した細菌に特異的な相補配列を見出さなければならず、対象によっては 困難な場合がある。
[0038] 力べして知得された「PCR増幅産物量と PCRサイクル数」と、適当な比較実験の結 果を参酌すれば、 rRNA量を求めることができる。すなわち、例えば、「その量が知ら れている rRNAを用いて行った比較実験の結果」を参酌し、上述のように知得された 「PCR増幅産物量と PCRサイクル数」との対比を適宜行えば、公知の方法によって、 目的微生物 rRNA量を計算することができる。
[0039] そして、力べして計算された「目的微生物 rRNA量」と、適当な比較実験の結果を参 酌すれば、 目的微生物の菌数を求めることができる。すなわち、例えば、「対応する その菌数が知られている被検体試料を用いて行った比較実験の結果」を参酌し、か くして計算された「目的微生物 rRNA量」との対比を適宜行えば、公知の方法により、 目的微生物の菌数を計算することができる。なお、斯かる対比においては、 PCRの 鎳型とする「被検体微生物の菌数」と、一定の PCR増幅産物量に達したときの「PCR サイクル数」(以下、 C値と称することもある)との相関関係を示す検量線を用レ、ること
T
、簡便性の点から好ましい。斯カる検量線は、標的とする微生物の菌数を横軸に、
C値を縦軸にプロットして作成されるのが通常である(図 2参照)。検量線作成の際に
T
用いる微生物は、基準株等の公知菌株を用いてもよい。 [0040] なお、「対応するその菌数が知られている被検体試料を用いて行った比較実験の 結果」と、上述のようにして知得された「PCR増幅産物量と PCRサイクル数」とを適宜 対比すれば、 rRNA量を具体的に計算する過程を経ることなぐ直接目的微生物の 菌数を計算することもできる。具体的には上述の検量線に、被検体試料から導かれ た C値を適用すればよい。
T
[0041] また、前述のとおり、被検体中における目的微生物 rRNA量は、例えば、(2)目的 微生物 rRNAに特異的にハイブリダィズしうる核酸断片と被検体試料とのハイブリダ ィズ効率の知得によっても、求めることができる。
[0042] ここで、 目的微生物 rRNAに特異的にハイブリダィズしうる核酸断片は、例えば、前 述のように設計及び作製されたものを用いることができる。また、斯かる核酸断片とし ては、標識がなされている核酸断片が好ましい。ここで、標識としては、酵素、常磁性 イオン、ピオチン、蛍光色素、発色団、重金属、あるいはラジオアイソトープが挙げら れ、より好ましいマーカーとしては酵素が挙げられ、ここで酵素としては、ホースラディ ッシュぺロキシダーゼ又はアルカリフォスファターゼが挙げられる。斯かる標識は、公 知の方法により行うことができる。
[0043] 被検体試料とこのような核酸断片とのハイブリダィズの程度を測定すれば、公知の 換算方法により、被検体中における目的微生物 rRNA量及び/又は目的微生物の 菌数を知得することができる。斯かるハイブリダィズの程度の計測は、特に限定され ず、公知の方法に準じて行うことができるが、たとえば核酸断片に付加された標識の 計測により行うことができる。すなわち、たとえば、蛍光色素によって標識された核酸 断片を用いた場合には、蛍光強度を計測することにより行うことができる。斯かる計測 は、適当な対照と並行して行う計測が好ましい。ここで、適当な対照としては、例えば 、「用いる核酸断片と特異的なハイブリダィズをしないことが知られている試料」、「含 まれる目的微生物菌数が既に知られている被検体に由来する被検体試料」「目的微 生物 rRNA量が既に知られてレ、る被検体から摂取又は作製された被検体試料」など が挙げられる。斯かる対照を参酌することにより、公知の換算方法により、 目的微生 物 rRNA量又は目的微生物菌数を知得することができる。なお、微生物菌数の知得 は、力べして計算された目的微生物 rRNA量と適当な比較実験結果とを参酌して公 知の方法によっても行うことができる。
[0044] また、本発明の目的微生物の検出方法は、被検体試料中における目的微生物 rR NAの存在を指標とするものである。ここで「微生物の検出」とは微生物の同定を含む 意である。また、検体中に検出対象微生物が存在することを確認すること、あるいは、 検体中に検出対象微生物が存在しないことを確認することも含まれるものである。
[0045] 本発明の検出方法を用いて、被検体中における目的微生物 rRNAの存在を確認 するには、(1)被検体試料及び目的微生物 rRNAに特異的にハイブリダィズしうる核 酸断片を用いる PCR法による増幅産物を検出すること、(2)斯かる核酸断片と被検 体試料とのハイブリダィズを検出すること、(3)その他公知の方法を用いて目的微生 物 rRNAを検出することなどにより行えばよい。この(1)〜(3)の方法は、既に述べた 方法を参酌することにより容易に行うことができる。そして目的微生物 rRNAの存在は 、 目的微生物が被検体中に存在していたことを示すので、 目的微生物を検出するこ とができる。ただし、非特異的な PCR産物の増幅や非特異的なハイブリダィズもおこ りうるので、適切な対照と比較して行うことが好ましい。
[0046] 後記の実施例で示すとおり、 rRNA量を指標とする定量方法や、 rRNAの存在を指 標とする検出方法は、従来の rDNA量を指標とする方法に比べて、高い検出感度を 達成することができることが明らかになった。また、後記の実施例で示すとおり、 rRN A量を指標とする方法は、死細胞を併せて定量'検出することなぐ生存状態にある 微生物を正確に定量 ·検出することができることが明らかになった。
[0047] したがって、本発明の定量 *検出方法(以下、「本発明の方法」ともいう)を用いれば 、従来法よりも高い検出感度で、しかも生存状態にある微生物を特異的に定量 '検出 することができる。よって、本発明の方法は、例えば、(1)従来法よりも高い検出感度 で、被検体に含まれる生存状態にある目的微生物を定量 '検出する用途、 (2)従来 法よりも高い検出感度で、被検体に含まれる死細胞数を定量'検出する用途、(3)従 来法よりも高い検出感度で、被検体に含まれる死細胞数と生存状態にある微生物数 の比率を計測する用途、(4)従来法よりも高い検出感度で、生存状態にある微生物 の存在又は存在量を「確認」する用途、などに用いることができる。ここで、確認として は、例えば、(a)生存状態にある微生物数をより厳密に正確に把握する必要がある場 合において、生存状態にある微生物の存在又は存在量を把握するために行う定量- 検出、 (b)「生存状態にある微生物数」がその他の実験系によって計算されている場 合において、その実験の精度や、計算された数値の正確さを検討するために行う確 認が挙げられる。なお、死細胞数を定量する場合、例えば、死細胞を併せて検出す ることが知られている公知の方法などによる、死細胞数と生存細胞数との合計数の計 測を併せて行うことが好ましい。本発明の方法により計算される生存細胞数を、合計 数から除くことにより求めることができる。
[0048] また、本発明の方法では、例えば、コロニーを形成しなレ、微生物、液体培養ができ ない微生物など、従来の培養法では計測することが困難である微生物を定量'検出 する方法として用レ、ることちでさる。
[0049] また、後記の実施例で示すとおり、斯かる定量'検出方法に、 PCR法を用いた場合 には、培養法と同程度の検出感度を実現することができることが明らかになった。した がって、本発明の方法は、培養法と同程度以上の検出感度、すなわち、 10°個以上 /g ·検体、あるいは 10°個以上/ mL ·検体の検出感度で微生物を定量 '検出する 方法として用いることもできる。
[0050] また、 PCR法を用いた場合、培養法と比較して、極めて迅速かつ簡便に微生物の 定量 ·検出を行うことができる。また、 PCR法を用いた方法によると、検体の RNAの 抽出力 微生物の定量 ·検出まで約 6時間以内で完了することもできる。したがって、 本発明の方法は、短時間(6時間以内)で微生物を検出できる方法として用いることも できる。
[0051] 本発明の方法で、 PCR法を用いる方法を用いれば、検出感度の高さと、生存状態 にある微生物のより的確な定量'検出と、迅速さ簡便さとを同時に実現することができ る。このため、本発明の方法は、例えば、特に迅速かつ感度の高い定量'検出が要 求される医療現場や食品産業での「汚染菌、有害菌、病原微生物などの検査」という 用途に用いることができる。
[0052] 本発明の方法は、斯かる方法を実施するためのキットを用いて行うこともできる。ここ で、斯かる方法を実施するためのキットとしては、例えば、(1)目的微生物 rRNAに特 異的にハイブリダィズしうる核酸断片、(2)実施方法を記載したプロトコール、及び/ 又は(3) RNAの抽出、 RNAの固定若しくは PCR反応に用いる試薬を含むキットが 挙げられるが、本発明のキットはこれらに限定されず、斯カる方法の全部又は一部の 工程を行うのに必要なものの全部又は一部を集めたものをいう。ここで、「工程を行う のに必要なもの」は、本明細書の記載を参酌することにより、適宜理解することができ る。
実施例
[0053] 以下、実施例によって本発明の内容を更に詳細に説明する力 S、本発明はこれらに 限定されるものではない。
[0054] 実施例 1 プライマーの作製
さまざまな細菌種について、 16S及び 23S rRNA DNA配列を DNA Data Ba nk of Japan (http: / / www. ddbj . nig. ac. jp/ Welcome— j . html)より人牛 した。それらの配列を Clustal W プログラムにて整列後、系統樹を作成した。系統 樹をもとに各菌種を、科、属、サブグループごとに分類し、分類ごとにプライマーの設 計を行った。表 1に作成したプライマーの配列と対象とした rRNA種を示す。なお、表 1の参考文献の欄は、斯カる配列が記載されている文献を示す。また、斯カる欄が空 欄であるものは、その配列が、本発明により見出された新規な配列であることを示す。 尚、非特許文献 4は、 Microbiol. Immunol. 、 vol. 46、 No. 5、 353— 358 (2002 )を示し、非特許文献 5は、 FEMS Microbiology Letters, vol. 202, 209 - 21 3 (2001)を示し、特許文献 7は特開平 11 _ 151097号公報を示す。
[0055] [表 1-1]
増幅産物
標的 プライマー名 配列 サイズ 参考文献
(bp)
1 16S S - S - Be - 200 - a - S- 18 TCGAAATTGAAAGGCGGC 非特許文献 5
Baci l lus cereus
纖 285
2 Bc2R CCAGCTTATTCAAGTAGCACTT
3 16S GGGGGTTTCAACACCTCC
Clostridium perfringens 170
4 r腿 GCAAGGGATGTCAAGTGT 非特許文献 4
5 23S En-lsu 3F TGCCGTAACTTCGGGAGAAGGCA
Enterobacteriaceae 428
6 rRNA En-lsu 3' R TCAAGGACCAGTGTTCAGTGTC
7 16S g-Stap -F TTTGGGCTACACACGTGCTACAATGGACAA
Staphylococcus
rRNA 79
8 g-Stap -R AACAACTTTATGGGATTTGCWTGA
1 9 16S PSD7F CAAAACTACTGAGCTAGAGTACG
Pseudomonas 215
10 rRNA PSD7R TAAGATCTCAAGGATCCCAACGGCT
11 16S g-Encoc-F ATCAGAGGGGGATAACACTT
Enterococcus 336
12 rRNA g-Encoc-R ACTCTCATCCTTGTTCTTCTC
13 Lactobaci l lus acidophi lus 16S sg-Laci-F GATGCATAGCCGAGTTGAGAGACTGAT
197
14 subgroup rRNA sg-Laci-R TAAAGGCCAGTTACTACCTCTATCC
15 16S sg-Lrum-F CACCGAATGCTTGCAYTCA
Lactobaci l lus ruminis subgroup 182
16 rRNA sg-Lrum-R GCCGCGGGTCCATCCAAAA
17 Lactobac i l lus pi ant arum 16S sg-Lpla-F CTCTGGTATTGATTGGTGCTTGCAT
54
18 subgroup rRNA sg-Lpla-R GTTCGCCACTCACTCAAATGTAAA
19 16S sg-Lreu-F GAACGCAYTGGCCCAA
Lactobaci l lus reuteri subgroup 290
20 rRNA sg-Lreu-R TCCATTGTGGCCGATCAGT
[0056] [表 1-2]
Figure imgf000019_0001
[0057] 実施例 2 プライマーの特異性確認 実施例 1のプライマーが、実際に特異性を有している力確認するため、各種細菌に 対する特異性を検討した。すなわち、表 2 (28菌属 57菌種)及び表 3 (18菌属 60菌 種)に示した各種細菌懸濁液 50 μ 1を 2倍量の RNAprotect Bacterial Reagent (QIAGEN)に懸濁し、室温で 5分間インキュベートした。 5, 000gで 10分間遠心分 離し上清を除去した後、溶菌バッファー 450 μ 1[RLTバッファー (QIAGEN) 346. 5 μ 1、 /3—メルカプトエタノール 3. 5 ^ 1、 ΤΕバッファー 100 z l]及びガラスビーズ 300 mg (直径 0. 1mm)を添カロし、 FastPrep FP120 (BiolOl)にて 5, OOOrpmで 1分 間激しく振とうすることにより菌体を破砕した。破碎液に水飽和フエノール 500 μ 1を添 加し、 60°Cで 10分間インキュベートした。クロ口ホルム/イソァミルアルコール(CIA) 100 μ ΐを添加、攪拌した後、 12, OOOrpm, 4°C, 5分間の条件で遠心分離操作を 行った。回収した上清に等量の水飽和フエノール(水飽和) /クロ口ホルムを加えて 撹拌し、再度同条件にて遠心分離操作を行った。回収した上清に等量の CIAを加え て振とうし、再度同条件にて遠心分離操作を行った。回収した上清 400 μ ΐに、等量 のイソプロピルアルコール及び 1/10量の 3Μ酢酸ナトリウムを添加し、転倒混和した 後、 15, OOOrpm, 4°C, 10分間の条件で遠心分離操作を行った。上清を取り除い たちのに 75%エタノーノレ 500 μ ΐをカロ免て転倒昆禾口した後、 15, OOOrpm, 4°C, 2分 間の条件で遠心分離操作を行った。上清を除去し、チューブ内を風乾させた後、 50 β 1の RNase_free水で沈殿物を溶解させたものを全 RNA抽出溶液とした。定量的 RT-PCR 反応は、 QIAGEN OneStep RT-PCR Kit (QIAGEN)を用いた 。反応液(総量 25 μ 1)の組成は、 2 1の全1¾^八溶液(2 10 1;相当)及び最終 濃度として I X QIAGEN OneStep RT-PCR Buffer, 0. 5mM dNTP Mix 、 1Z25量の QIAGEN OneStep RT-PCR Enzyme Mix, 1/100, 000量 の SYBR (R) Green I (Molecular Probes)、 0. 75 μ M各プライマー(表 1記載 )となるように調整した。また、 RT—PCR反応に対して 2xlO¾FU相当の RNAを鎳 型として用いた。反応液はまず 50°Cで 30分間逆転写反応を行い、その後逆転写酵 素を失活させるため 95°Cで 15分間加熱した。弓 Iき続いて、 94°C ' 20秒、 55°C又は 6 0°C ' 20秒、 72。〇' 50秒を40〜45サィクノレ行レ、、増幅産物の量をサイクルごとに SY BR (R) Green Iの蛍光強度として測定した。これらの一連の反応は、 ABI PRISM (R) 7900HT (Applied Biosystems)により行った。
その結果、表 2に示すようにプライマー En_lsu 3F/3 ' R (Enterobacteriaceae )、 g— Staph— FZR (Staphylococcus属)、 PSD7F/R (Pseudomonas属)、 s - Clper - F/C1PER - R (Clostridium perfringens)、 S— S— Be— 200— a— S— 18/ Bc2R (Bacillus cereus)、 g— Encoc F R (EnterococcusS)は、 目 的とする菌属あるいは菌種のみを特異的に検出できることが明らかとなった。また、表 3に示すようにプライマー sg _Laci_FZR (Lactobacills acidophilus サブグノレ 一プ)、 sg— Lsak— F/R (Lactobacillus sakei サフク、、ノレ一プノ、 sg— Leas— F / R (Lactobacillus casei サフク、、 /レーフ 、 sg— Lrum— F R (Lactobacillus ruminis サブグノレープ)、 sg― Lreu— F/R (Lactobacillus reuteri サブグノレー フ。)、 sg― Lpla— F/R (Lactobacillus plantarum サフ-クノレーフ。)、 s— Lbre— F / R (Lactobacillus brevis)、 s— Lfru— F/R (Lactobacillus fructivorans)、 LFer- 1/2 (Lactobacillus fermentum)は目的とするサブグループあるいは菌 種のみを特異的に検出できることが明ら力となった。なお、表 2、表 3において、 +は 特異的検出を行うことができた(C値が:!〜 30)ことを、一は C値が 31以降あるいは
T T
全く増幅産物が得られなかったことを示す。
τ , Reactions with the following primers i arget En-lsu 3F/3TR g-Encoc-F/R g-Staph-F/R s-C er-F /CIPER-R S-S-Bc-200-
Escherichia coli
Citrobacter freundii
Citrobacter koseri
Citrobacter amalonaticus
Enterobacter cloacae
Enterobacter aerogenes +++++++++++++++ +++++++
Enterobacter sakazaJdi
Enterobacter cancerogenus
Enterobacter amnigenus
Klebsiella pneumoniae
Klebsiella oxytoca
Serratia marcescens
Proteus mirabilis
Proteus vulgaris
Proteus penneri
Hafiiia alvei
Edwardsiella tarda
Providencia alcalifaciens
Providencia rettgerii
Morganella morganii
Salmonella choleraesuis
Yersinia enterocolitica
Pseudomonas aeruginosa
Pseudomonas fluorescens
Pseudomonas putida
Acinatebacter calcoaceticus
Bacteroides ovatus
Bacteroides vulgatus
Prevotella melaninogenica
Figure imgf000023_0001
Collinsella aerofaciens
Eggertiiella lenta
Bifidobacterium
catenulatum
Bifidobacterium longum
Ruminococcus productus
Ruminococcus obeum
Clostridium orbiscindens
Clostridium perfringens +
Streptococcus intermedius
Streptococcus bovis
Staphylococcus aureus +
Staphylococcus
pidermidis +
Staphylococcus
haemolytic s +
Staphylococcus
lugduaensis +
Staphylococcus
saprophyticus +
Staphylococcus schleiferi
ss. coagulans +
Bacillus cereus + Bacillus subtilis
Enterococcus faecalis
Enterococcus faecixim
Enterococcus hirae
Enterococcus gallinarum
Enterococcus ilavescens
Enterococcus durans
Lactobacillus acidophilus
Lactobacillus casei
Campylobacter jejuni
Catidida albicans
Figure imgf000024_0001
Lactobaci lus fermentum
Reactions with the followmgjjnmers
i m¾CL sg-Laci-F/R sg-Lsak-F/R sg-Lcas-F/R sg-Lrum-F/R sg-Lreu-F/R sg-Lpla-F/R s-Lbre-F/R s-L ru-F/R Lfer-1/2
Escherichia coli
Figure imgf000025_0001
Pseudomonas aeruginosa
Pseudomonas fluorescens
Pseudomonas putida
Acinatebacter calcoaceticus
Bacteroides ovatus
Bacteroides vulgatus
Prevotella melaninogenica
Collinsella aerofaciens
Eggerthella lenta
Bifidobacterium catenulatum
Bifidobacterium longum
Ruminococcus productus
Ruminococcus obeum
Clostridium orbiscindens
Clostridium perfringens
Streptococcus intermedins
Streptococcus bovis
Staphylococcus aureus
Bacillus cereus
Bacillus subtilis
Enterococcus faecalis
Lactococcus lactis lactis
Campylobacter jejuni
Candida albicans
[0062] 実施例 3 各種微生物の生育性状と rRNA 転写量の関連性の検討
Escherichia coli 大腸 ¾ 、 S. aureus (¾色フドウ球菌)、 P. aeruginosa ( 緑膿菌)の様々な培養期の菌体を用いて、培養法により測定される生菌数と定量的 RT— PCR法により測定される rRNA転写量から導き出したコロニー形成能を有する 細菌数の関係を調べた。すなわち、 BHI培地を用いて 37°Cで好気振盪培養開始後 、経時的に採取した菌液を用いて、 BHI寒天培地を用いた培養法(37°C、 24時間) により菌数を測定した。一方で同様に採取したサンプノレより RNAを抽出し、定量的 R T— PCR解析に供した。菌数が既知の対数増殖後期菌株力 抽出した RNAを用い 、実施例 4に記載の要領で作成した検量線に基づいて、各サンプノレ中の菌数を算出 した。なお、全 RNA抽出及び定量的 RT— PCRは実施例 2のとおり行った。その結 果を図 1に示した。図 1では、 rRNA転写量から算出した菌数をき(黒丸)、培養法に よる菌数を〇(白丸)で示した。解析に供した全菌株に関して、菌液中の培養法によ る生菌数と rRNA転写量から算出した菌数のそれぞれの変動曲線は、対数増殖期 力も死滅期に至るまで高い関連性が認められた。このこと力 、 rRNAの転写量を測 定することで、いかなる状態であっても生存状態にある微生物数を測定できることが 明らかとなった。
[0063] 実施例 4 検量線の作成及び定量的 PCR法との比較
_ aeruginosa YIT6108T (基準株)及び^^ aureus YIT6075T (基準株)の 対数増殖後期の培養菌体を用いて本発明の方法 (定量的 RT— PCR法)による検量 線の作成を行った。また、定量的 PCR法による検量線を作成し、本発明の方法との 比較を行った。それぞれの ΒΗΙ培地を用いた純培養菌体について、菌数が 105、 10 \ 103、 102、 101、 10°個となるように分取し、実施例 2と同様に RNAを抽出した。そ れらを表 1記載のプライマーを用い実施例 2に従って定量的 RT—PCRを行った。得 られた C値と実施例 3に記載した培養法で求めた菌数の相関を調べた。また、以下
Τ
に示す方法にて同じサンプルより得た DNAについて、 rDNAを標的配列とした PCR 法による定量も併せて検討した。具体的には、菌数が 105
Figure imgf000026_0001
10 °個となるように分取した菌液に lmLの PBSを加えて攪拌した後、 15, 000rpm、 4°C 、 5分間の条件で遠心分離を行レ、、上清を除去した。沈殿物に lmLの PBSを加えて 攪拌、遠心、上清除去する操作を 2回繰り返し行った。このペレットに、溶菌バッファ 一 300 μ 1 (100πιΜ Tris— HC1、 40mM EDTA、 1% SDS、 pH9. 0)、 TE飽 和フエノール 500 μ 1及びガラスビーズ 300mg (直径 0. 1mm)を添加し、 FastPrep FP120にて、 5, OOOrpmで 30秒間激しく振とうすることにより菌体を破砕した。 15 , OOOrpm, 4°C、 5分間の条件で遠心分離を行レ、、上清を回収した。上清にフエノー ル(TE飽禾口)/クロ口ホルム/イソァミルアルコールを加えて、 FastPrep FP120に て 4, OOOrpmで 45秒間激しく振とうした後、 15, OOOrpm, 4°C、 5分間の条件で遠 心操作を行った。分離、回収した上清を用いてアルコール沈殿を行った後、 50 μ 1の ΤΕバッファーに溶解し DNA溶液とした。引き続き、得られた DNA溶液を铸型として PCR反応を行った。 PCR反応は、総量を 25 μ 1とし、 2 μ 1 DNA溶液及び最終濃度 として 10mM Tris-HCl (pH8. 3)、 50mM KC1、 2. 5mM MgCl、 0. 45%
2
Triton X— 100、 200 μ Μ dNTP mixture, 1/100, 000量の SYBR (R) Gre en I、 l ing/ μ 1 TaqStart (R) antibody (ClonTech)、 0. 05UZ 1 Taq D NA polymerase (TaKaRa)、 0. 25 μ M 各プライマー(PSD7F/R、 g— Staph — F/R)を含む反応液で行った。反応液は 94°Cで 5分間加熱した後、 94°C ' 20秒、 60°C ' 20秒、 72°C ' 50秒を 40サイクル行い、その後、 72°Cで 10分間反応した。増 幅産物の量をサイクルごとに SYBR (R) Green Iの蛍光強度として測定した。これ らの一連の反応は、 ABI PRISM (R) 7900HTにより行った。なお、 RNA及び DN A抽出量の 1/25を反応に供した。
その結果、図 2に示すとおり、両方法ともに微生物数の対数値と C値は非常に良好
T
な相関を示した。図 2は、 C値を縦軸に、サンプルに供した各菌種の培養法で測定
T
した個数 Z抽出を横軸にプロットしたものである。定量的 RT—PCRは ·(黒丸)、定 量的 PCRは〇(白丸)で示す。定量的 RT—PCR法により得られた近似曲線におけ る相関係数 R2値は、 £. aeruginosaで 0. 9955、 . aureusでは 0. 9961であること から、この検量線をもって C値から菌数の算出ができることが明らかとなった。また、
T
定量的 RT—PCR法は、抽出したサンプル中に微生物数が 10°個であることの検出も 可能であり、従来用レ、られている培養法と同等の検出感度を有することから、培養法 の代替として、微生物の定量'検出に用いることができることが明らかとなった。 rDN Aを標的配列とした PCR法と比較すると、本発明の方法の検出感度は約 1, 000倍 高ぐ従来から検討されている遺伝子増幅法を用いた微生物定量手段と比較して、 格段の検出感度を有していることが明らかとなった。
[0064] 実施例 5 糞便中の細菌の定量的検出
ヒト糞便に各種濃度の £^ aeruginosaを添加し、定量的 PCR法と本発明の方法 の検出範囲を比較した。ヒト大便 20mgあたり菌数として 101, 102, 103, 104, 105, 1 06, 107, 108個相当の aeruginosaをそれぞれ添加した P. aeruginosa添カロ 糞便サンプルを作製した。 _ aeruginosa添加娄便サンプルより全 RNA柚出を行 レ、、それを铸型とした本発明の定量的 RT— PCRを行った。また、同じサンプノレより D NAを抽出し、それを铸型とした定量的 PCRを行った。更に同じサンプルから培養法 にて菌数を測定した。全 RNAの抽出及び定量的 RT— PCR法は実施例 2と、培養法 は実施例 3と、 DNAの抽出、定量的 PCR法は実施例 4と同様に行った。なお、得ら れた全 RNA及び全 DNAのうち 1/2, 500を定量的 RT— PCR及び定量的 PCRに 供した。
その結果、図 3に示すとお H aeruginosa添加娄便サンプルにおレヽて、本発 明の方法では糞便 lgあたり 102· 9から 101Q個 /g'糞便の範囲で測定値の近似曲線 に直線性が認められた。図 3は、 C値を縦軸に、サンプノレに供した P. . aeruginosa τ
の培養法で測定した個数 /g'糞便を横軸にプロットしたものである。定量的 RT—P CRはき(黒丸)、定量的 PCRは〇(白丸)で示す。本発明の方法のヒト糞便サンプル での定量限界は 102· 9個以上 /g'糞便であり、 102個以上 Zg'糞便の培養法とほぼ 同等であった。また、培養法では 1日間の日数を要したのに対し、本発明の方法では 、検体の RNA固定から定量まで約 6時間で完了した。一方、定量的 PCR法による解 析では、 105· 8から 101Q個 Zg'糞便の範囲において測定値の近似曲線に直線性が 認められ、検出限界は定量的 RT—PCR法の約 1/1000であった。
[0065] 実施例 6 定量的 RT— PCR及び培養法によるヒト糞便大腸菌群の解析
大腸菌群特異的プライマー En_lsu3F/3' Rを用いて、定量的 RT—PCR法にて ヒト糞便フローラの解析を行った。成人 38名の新鮮排泄便を採取し、嫌気条件下に て輸送培地(グリセリン 10%,システィン 5%, lab lemco powder 1 %, NaCl 0 . 045%, KH PO 0. 0225%, K HPO 0. 0225%, (NH ) SO 0. 0225%
2 4 2 4 4 2 4
, CaCl 0. 00225%, MgSO 0. 00225%)により 10倍希釈した。この希釈液よ
2 4
り 200 μ 1 (糞便として 20mg)を分取し、定量的 RT— PCR法により用いる全 RNAを 抽出した。全 RNAの 1Z2, 500量を鎳型として定量的 RT_ PCRを行った。また、同 じ希釈液より培養法(DHL選択培地)による CFUの定量を行った。 RNAの固定及び 全 RNAの抽出ならびに定量的 RT— PCRは実施例 2の記載に、培養法は定法に従 つた。定量的 RT— PCRによる菌数算出のための検量線には coli YIT 6044 T (基準株)より抽出した全 RNAを用いた。
その結果、図 4に示すように本発明の rRNAを標的とした定量的 RT— PCR法と培 養法では相関係数が 0. 9255と非常に高い相関関係を示すことが明らかとなった。 なお、図 4では、縦軸に培養法による定量結果を、横軸には本発明の方法による定 量結果を示す。また、培養法では、全操作を行うのに 2日間を要したのに対し、本発 明の方法では約 6時間ですベての操作を完了した。
実施例 7 牛乳の微生物検査
市販の牛乳に、各種濃度の coH, aureus, B. cereusを添加し、混釈培 養法と本発明の方法の定量値を比較した。市販の牛乳に 10°、 101, 102, 103, 104 , 105, 106個/ mLとなるように coli又は S. ^ §^を添加したものをサンプル とした。各サンプルのうち、 lmLを全 RNA抽出、 lmLを混釈培養法 d coli :デソ キシコレイト寒天培地、^^ aureus、 B. cereus:—般寒天培地、 37°C、 20 ± 2時 間)に供した。抽出した全 RNAについて、表 1に記載のプライマーを用いて定量的 R T一 PCR法による解析を行レ、、得られた C値と混釈培養法で得た菌数の相関を求
T
めた。なお、実施例 2に記載する方法で、全 RNA抽出及び定量的 RT— PCR法を行 レ、、抽出した全 RNAのうち 1/25を定量的 RT—PCRに供した。
その結果、図 5に示すように何れの菌種でも牛乳 lmlあたり 10°〜106の範囲で C
T
値と菌数は相関した。図 5は、 C値を縦軸に、サンプルに供した E. coli (図 5左上)
T
S,_ aureus (図 5右)及び B. ^miS (図 5左下)の混釈培養法で測定した個数 Z mL'牛乳を横軸にプロットしたものである。また、本発明の方法の定量限界は 10°個 以上/ mL'牛乳で混釈培養法と同等であることから、乳等省令に記載の公定培地( デソキシコレイト寒天培地、一般寒天培地)を用いた混釈培養法の代替になり得るこ とが明らかとなった。また、混釈培養法では 1日間の日数を要したのに対し、本発明 の方法では、検体の RNA固定から定量まで約 6時間で完了した。
[0067] 実施例 8 血液中の細菌検查
ヒト血液に、各種濃度の aureus. _ aeruginosaを添加し、混釈培養法(血 液培養法)と本発明の方法の定量値を比較した。抗凝固剤として 3. 8%クェン酸ナト リウム ί夜を 1/10量添カロしたヒト 夜に 100、 101, 102, 103, 104, 105個/ mLとなる ように ^ aureus又は P. aeruginosaを添加したものをサンプルとした。各サンプ ルのうち、 0. 5mLを全 RNA抽出、 0. 5mLを混釈培養法(BHI寒天培地)に供した 。抽出した全 RNAについて、定量的 RT— PCR法による解析を行い得られた C値と
T
混釈培養法で得た菌数の相関を求めた。なお、実施例 2に記載する方法で、全 RN A抽出及び定量的 RT— PCR法を行った。なお、抽出した全 RNAのうち 1/25を定 量的 RT— PCRに供した。
その結果、図 6に示すように各菌株で 10°〜: 105個 /0. 5mLの範囲で菌数と C値
T
に相関が見られた。図 6は、 C値を縦軸に、サンプルに供した P. aeruginosa (図 6
T
左)及び ^il^ (図 6右)の混釈培養法で測定した個数 /0. 5mL'血液を横軸 にプロットしたものである。また、本発明の方法の定量限界は 10°個以上 /0. 5mL- 血液であり、混釈培養法と同程度であることから、混釈培養法の代替となり得ることが 示された。更に、混釈培養法では 1日間の日数を要したのに対し、本発明の方法で は、検体の RN A固定力ら定量まで約 6時間で完了した。
[0068] 実施例 9 発酵乳製品の大腸菌検査
市販のヤクルト((株)ヤクルト本社製)に 10°、 101、 102、 103、 104、 105個 ZmLの 菌数となるように milを添加したものをサンプルとした。各サンプルのうち、 lmL を全 RNA抽出、 lmLをデソキシコレイト寒天培地による混釈培養法(37。C、 20 ± 2 時間)に供した。抽出した全 RNAについて、大腸菌群特異的プライマー En_lsu 3F/3' Rを用いて定量的 RT—PCR法による解析を行レ、、得られた C値と混釈培
T
養法で得た菌数の相関を調べた。全 RNA抽出は、ガラスビーズ添カ卩による菌体破 砕を除いた以外は実施例 2に記載する方法で行い、定量的 RT— PCR法は実施例 2 に記載する方法で行った。なお、抽出した全 RNAのうち 1/25を定量的 RT—PCR に供した。
その結果、図 7に示すように、 10°〜: 105個/ mLの範囲で C値と菌数は高く相関し
T
た。図 7は、 c値を縦軸に、サンプノレに供した ^liの混釈培養法で測定した log
T 1 個数 ZmL'ヤクルトを横軸にプロットしたものである。本発明の方法の定量限界は 1
0
0°個以上 ZmL'ヤクルトで、混釈培養法と同等であることから、乳等省令に記載の公 定培地 (デソキシコレイト寒天培地)を用いた混釈培養法の代替になり得ることが明ら 力となった。また、混釈培養法では 1日間の日数を要したのに対し、本発明の方法で は、検体の RN A固定力ら定量まで約 6時間で完了した。
実施例 10 定量的 RT— PCR及び培養法によるヒト糞便中の乳酸菌、腸球菌の解析 ヒト雀便中の Lactobacillus属、 Enterococcus属の菌数にっレヽて、表 1記載のプ ライマーを用いた定量的 RT— PCR法と培養法による比較を行った。健常成人 48名 の新鮮排泄便を採取し、実施例 6に記載の方法で糞便を処理し、実施例 2に記載の 方法で、 RNAの固定、全 RNA抽出及び定量的 RT— PCR法を行った。得られた全 RNAのうち 1/2, 000〜: 1/200, 000を定量的 RT— PCRに供した。また、同じ糞 便希釈液より培養法 (Lactobacillus ¾: LBS培地、 Enterococcus属: COBA培地 、共に 37°C、 48時間)による CFUの定量を行った。培養法は定法に従い、出現した コロニーは生化学的性状試験(グラム染色、カタラーゼ試験、 API Strep)により菌 種の同定を行った。定量的 RT—PCR法による Lactobacillus属の菌数値は、 sg_ Laci— F R (Lactobacills acidophilus サフグノレ1 ~フ)、 sg— Lsak— F R (La ctobacillus sakei サプグノレ1 ~刀、 sg— i^cas— R (Lactobacillus casei r ブク、ノレープ)、 sg— Lrum— F R (Lactobacillus ruminis サブグノレ1 ~プ)、 sg_ Lreu— F R (Lactobacillus reuteri サブク、、ノレ1 ~フ。)、 sg— Lpla— F^R (Lacto bacillus plantarum サブク、、ノレープ)、 s― Lbre— F R (Lactobacillus brevis) 、 s― Lf ru— F R (Lactobacillus fructivorans) Λ LFer— \/ 2 (Lactobacillus fermentum)の各プライマーを用いた定量的 RT—PCR法により得た菌数を合算 して算出した。
その結果、表 4に示すように、ヒト糞便中の Lactobacillus属、 Enterococcus属の 菌数は、本発明の方法と培養法でほぼ同等であった。一方、両菌属とも培養法に比 ベて本発明の方法では検出頻度が高力つた。これは、今回の標的とした Lactobacil 属、 Enterococcus属に属しているにもかかわらず、用いた選択培地の選択性が 必要以上に強かったために増殖できない菌が存在したカ あるいは、用いた選択培 地の選択性が弱かったために、他の大量に存在する標的以外の菌属に属する菌が 培地に成育して、標的とする菌属の検出ができなかったためと推察された。以上より 、本発明の方法は、培養法と同等の菌数を得ることができるだけでなぐこれまで培 養法では検出できなかった菌をも検出 ·定量できることが示唆された。また、培養法で は、菌種の同定まで含めた全操作を行うのに 7日間を要したのに対し、本発明の方 法では約 20時間ですベての操作を完了した。
[表 4]
定量的 RT>PCR法
Genus
Frequency log10 cell/ g-feces log10 CFU/ g -feces
(%)
Lactobacillus 5.2 ± 1.2 44/46 (96) 5.5 ± 1.4 37/46 (80)
Enterococcus 6.2 ± 1.0 46/46 (100) 6.2 ± 1.9 23/46 (50)

Claims

請求の範囲
[I] 被検体中における目的微生物 rRNA量を指標とする目的微生物の定量方法。
[2] 目的微生物 rRNAに特異的にハイブリダィズしうる核酸断片及び被検体試料を用 レ、て行う PCR反応による増幅産物を測定するものである請求項 1記載の方法。
[3] 増幅産物の測定が、増幅産物が一定量に達した時の PCRサイクル数を特定するも のである請求項 2記載の方法。
[4] 増幅産物を経時的に計測するものである請求項 2又は 3記載の方法。
[5] 被検体中における目的微生物 rRNAの存在を指標とする目的微生物の検出方法
[6] 目的微生物 rRNAに特異的にハイブリダィズしうる核酸断片及び被検体試料を用 レ、て行う PCR反応による増幅産物を検出するものである請求項 5記載の方法。
[7] 増幅産物の検出が、増幅産物が一定量に達した時の PCRサイクル数を特定するも のである請求項 6記載の方法。
[8] 増幅産物を経時的に計測するものである請求項 6又は 7記載の方法。
[9] 被検体が、糞便、食品又は生体由来試料である請求項 1〜8のいずれ力 1項記載 の方法。
[10] 被検体試料中における目的微生物 rRNAが、微生物中で固定化されたものである 請求項:!〜 9のいずれか 1項記載の方法。
[I I] 目的微生物 rRNAに特異的にハイブリダィズしうる核酸断片が、配列番号 2、 3又は
5〜28記載の塩基配列若しくはそれと相補的な塩基配列からなる核酸断片又はそ れらと相同な塩基配列からなり且つ機能的に等価である核酸断片である請求項 2〜 4又は 6〜: 10のいずれ力 1項記載の方法。
[12] 請求項 2〜4又は 6〜: 11のいずれか 1項記載の方法に用いられる核酸断片であつ て、配列番号 2、 3又は 5〜28記載の塩基配列若しくはそれと相補的な塩基配列から なる核酸断片又はそれらと相同な塩基配列からなり且つ機能的に等価である核酸断 片。
[13] 請求項 1〜: 12のいずれ力 1項記載の方法を実施するためのキット。
[14] (1)目的微生物 rRNAに特異的にハイブリダィズしうる核酸断片、及び/又は(2) RNAの抽出、 RNAの固定若しくは PCR反応に用いる試薬を含む請求項 13記載の キット。
PCT/JP2006/301467 2005-01-31 2006-01-30 rRNAを標的とした微生物の定量的解析方法 WO2006080501A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
ES06712610T ES2428146T3 (es) 2005-01-31 2006-01-30 Método para analizar cuantitativamente un microorganismo eligiendo como diana un ARNr
JP2007500631A JP5238248B2 (ja) 2005-01-31 2006-01-30 rRNAを標的とした微生物の定量的解析方法
CA2596059A CA2596059C (en) 2005-01-31 2006-01-30 Method of quantitatively analysing microorganism targeting rrna
US11/814,579 US10174386B2 (en) 2005-01-31 2006-01-30 Method of quantitatively analyzing microorganism targeting rRNA
EP06712610.2A EP1845158B1 (en) 2005-01-31 2006-01-30 METHOD OF QUANTITATIVELY ANALYSING MICROORGANISM TARGETING rRNA
DK06712610.2T DK1845158T3 (da) 2005-01-31 2006-01-30 Metode til kvantitativ analyse af mikroorganisme med rrna-targeting
KR1020077017768A KR101409193B1 (ko) 2005-01-31 2006-01-30 알 알엔에이를 표적으로 한 미생물의 정량적 해석방법
PL06712610T PL1845158T3 (pl) 2005-01-31 2006-01-30 Sposób ilościowego oznaczania drobnoustroju ukierunkowanego na rRNA
NZ560246A NZ560246A (en) 2005-01-31 2006-01-30 Method of quantitatively analysing microorganism using targeting rRNA
AU2006209416A AU2006209416B2 (en) 2005-01-31 2006-01-30 Method of quantitatively analysing microorganism targeting rRNA
BRPI0607194A BRPI0607194B8 (pt) 2005-01-31 2006-01-30 método e kit para analisar quantitativamente um microrganismo por marcação de rrna
NO20073675A NO342747B1 (no) 2005-01-31 2007-07-17 Fremgangsmåte for kvantifisering av en mikroorganisme, anvendelse av et nukleinsyrefragment for kvantifisering av en mikroorganisme og anvendelse av et sett for kvantifisering av en mikroorganisme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-023448 2005-01-31
JP2005023448 2005-01-31

Publications (1)

Publication Number Publication Date
WO2006080501A1 true WO2006080501A1 (ja) 2006-08-03

Family

ID=36740518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301467 WO2006080501A1 (ja) 2005-01-31 2006-01-30 rRNAを標的とした微生物の定量的解析方法

Country Status (15)

Country Link
US (1) US10174386B2 (ja)
EP (1) EP1845158B1 (ja)
JP (1) JP5238248B2 (ja)
KR (1) KR101409193B1 (ja)
CN (3) CN110079617A (ja)
AU (1) AU2006209416B2 (ja)
BR (1) BRPI0607194B8 (ja)
CA (1) CA2596059C (ja)
DK (1) DK1845158T3 (ja)
ES (1) ES2428146T3 (ja)
NO (1) NO342747B1 (ja)
NZ (1) NZ560246A (ja)
PL (1) PL1845158T3 (ja)
RU (1) RU2420595C2 (ja)
WO (1) WO2006080501A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146306A2 (en) * 2007-06-01 2008-12-04 Council Of Scientific & Industrial Research A novel method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system
JP2015188359A (ja) * 2014-03-27 2015-11-02 三菱重工業株式会社 スフィンゴモナス属細菌の検出方法及びそのプライマー、生物処理槽の活性予測方法
JP2018121528A (ja) * 2017-01-30 2018-08-09 株式会社Kri 活性汚泥の診断方法、活性汚泥処理装置の最適運転条件決定方法、活性汚泥異常要因微生物の同定方法及び活性汚泥処理装置の運転改善方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909099B1 (fr) * 2006-11-24 2012-10-19 Univ Aix Marseille Ii Methode de diagnostic et de suivi d'une vaginose bacterienne par quantification moleculaire.
CN101240315A (zh) * 2008-02-21 2008-08-13 上海交通大学 检测药物防癌效果的非损伤性分子方法
CN102094089B (zh) * 2010-12-06 2013-09-11 北京大北农科技集团股份有限公司 用于鉴定短小乳杆菌的引物序列及其应用
CN102936619B (zh) * 2012-06-15 2014-10-22 清华大学 定量检测大肠杆菌rna的方法及其专用标准品和应用
RU2530170C1 (ru) * 2013-03-27 2014-10-10 Михаил Аркадьевич Шурдов Способ детекции стволовых раковых клеток
CN106755470A (zh) * 2017-01-16 2017-05-31 吉林省浦生泰生物技术有限责任公司 一种利用q‑pcr检测混合益生菌中益生菌种类和含量的方法
US11834695B2 (en) * 2017-05-18 2023-12-05 Kabushiki Kaisha Yakult Honsha Marker and method for determination of Parkinson's disease
CN109402288A (zh) * 2018-11-29 2019-03-01 安徽省农业科学院烟草研究所 一种用于检测根串珠霉菌的引物及检测方法
US20220057311A1 (en) * 2018-12-13 2022-02-24 Kabushiki Kaisha Yakult Honsha Method for measuring stool consistency and method for evaluating stool state using same
CN110029155A (zh) * 2019-05-27 2019-07-19 天益健康科学研究院(镇江)有限公司 一种基于荧光定量pcr组合式肠道细菌检测方法
CN110512010B (zh) * 2019-08-20 2023-04-07 吉林农业大学 一种检测大肠杆菌rRNA转录速率的试剂盒及方法
CN112029885B (zh) * 2020-09-29 2022-06-07 广东省微生物研究所(广东省微生物分析检测中心) 用于鉴定瑞士乳杆菌、发酵乳杆菌和嗜酸乳杆菌的分子标记、检测引物和检测方法
CN113430287A (zh) * 2021-06-11 2021-09-24 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 一种肠道益生菌快速检测试剂盒及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504069A (ja) * 2000-07-28 2004-02-12 ユニバーシティ オブ シドニー 微生物を検出する方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154410A (zh) * 1995-11-06 1997-07-16 麦克罗戴克公司 微生物定量和检测的方法及试剂盒
JPH10210980A (ja) 1997-01-29 1998-08-11 Asahi Breweries Ltd 乳酸菌検出用オリゴヌクレオチド及び該菌の検出方法
JPH10248600A (ja) 1997-03-10 1998-09-22 Sumitomo Electric Ind Ltd 癌細胞の検出方法及び癌細胞検出用プライマ
CA2343054C (en) 1998-09-18 2007-10-30 Chugai Seiyaku Kabushiki Kaisha Method for detection or measurement of plasmacytoma cells
US6894156B2 (en) * 1999-04-15 2005-05-17 E. I. Du Pont De Nemours And Company Nucleic acid fragments for the identification of dechlorinating bacteria
JP4724380B2 (ja) * 1999-04-20 2011-07-13 独立行政法人産業技術総合研究所 核酸の測定方法に用いる核酸プローブおよびデータを解析する方法
JP2001112485A (ja) 1999-10-19 2001-04-24 Yakult Honsha Co Ltd 腸内細菌用プライマー及び該プライマーを用いた検出方法
JP2002238585A (ja) 2001-02-21 2002-08-27 Joji Oshima 核酸定量を応用した細菌の定量法及び菌種判別法
CA2451985C (en) * 2001-07-19 2012-03-13 Infectio Diagnostic (I.D.I.) Inc. Universal method and composition for the rapid lysis of cells for the release of nucleic acids and their detection
JP2003259879A (ja) 2002-03-12 2003-09-16 Mitsui Eng & Shipbuild Co Ltd 複合微生物群の定量的解析方法
AU2003260815A1 (en) * 2002-08-08 2004-02-25 University Of Lausanne Method for the rapid assessment of the presence and viability of bacterial cells and use thereof________________________
US20060257871A1 (en) * 2002-11-12 2006-11-16 Franck Chaubron One step real-time rt pcr kits for the universal detection of organisms in industrial products
JP4304976B2 (ja) * 2002-12-19 2009-07-29 東ソー株式会社 リボゾームrnaを標的とした抗酸菌の検出法
CN1232651C (zh) * 2003-01-21 2005-12-21 中国人民解放军军事医学科学院微生物流行病研究所 一种用于临床细菌检测的生物芯片
US7575864B2 (en) * 2004-05-27 2009-08-18 E.I. Du Pont De Nemours And Company Method for the direct detection of diagnostic RNA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504069A (ja) * 2000-07-28 2004-02-12 ユニバーシティ オブ シドニー 微生物を検出する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CENTURION-LARA A. ET AL.: "Detection of Treponema pallidum by a Sensitive Reverse Transcriptase PCR", J. CLIN. MICROBIOL., vol. 35, no. 6, 1997, pages 1348 - 1352, XP002999607 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146306A2 (en) * 2007-06-01 2008-12-04 Council Of Scientific & Industrial Research A novel method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system
WO2008146306A3 (en) * 2007-06-01 2009-01-15 Council Scient Ind Res A novel method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system
KR20100044736A (ko) * 2007-06-01 2010-04-30 카운실 오브 사이언티픽 엔드 인더스트리얼 리서치 눈과 중앙 신경조직의 세균성, 균성, 기생성 및 바이러스성 감염을 동시에 검출 및 판별하기 위한 신규한 방법
US8465951B2 (en) 2007-06-01 2013-06-18 Council Of Scientific & Industrial Research Method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system
TWI410491B (zh) * 2007-06-01 2013-10-01 Council Scient Ind Res 眼睛與中樞神經系統之細菌、黴菌、寄生蟲及病毒感染之新穎同步檢測及鑑別方法
US9777339B2 (en) 2007-06-01 2017-10-03 Council Of Scientific & Industrial Research Method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system
KR101866766B1 (ko) * 2007-06-01 2018-06-18 카운실 오브 사이언티픽 엔드 인더스트리얼 리서치 눈과 중앙 신경조직의 세균성, 균성, 기생성 및 바이러스성 감염을 동시에 검출 및 판별하기 위한 신규한 방법
US10584392B2 (en) 2007-06-01 2020-03-10 Council Of Scientific And Industrial Research Method for simultaneous detection and discrimination of bacterial, fungal, parasitic and viral infections of eye and central nervous system
JP2015188359A (ja) * 2014-03-27 2015-11-02 三菱重工業株式会社 スフィンゴモナス属細菌の検出方法及びそのプライマー、生物処理槽の活性予測方法
JP2018121528A (ja) * 2017-01-30 2018-08-09 株式会社Kri 活性汚泥の診断方法、活性汚泥処理装置の最適運転条件決定方法、活性汚泥異常要因微生物の同定方法及び活性汚泥処理装置の運転改善方法

Also Published As

Publication number Publication date
JP5238248B2 (ja) 2013-07-17
CN104232769B (zh) 2020-04-14
NZ560246A (en) 2011-03-31
EP1845158A4 (en) 2009-12-09
US20090170078A1 (en) 2009-07-02
CN101111596A (zh) 2008-01-23
KR20070105980A (ko) 2007-10-31
ES2428146T3 (es) 2013-11-06
DK1845158T3 (da) 2013-11-11
RU2420595C2 (ru) 2011-06-10
AU2006209416A1 (en) 2006-08-03
CA2596059A1 (en) 2006-08-03
NO20073675L (no) 2007-08-28
US10174386B2 (en) 2019-01-08
CA2596059C (en) 2015-08-04
BRPI0607194B1 (pt) 2018-02-14
JPWO2006080501A1 (ja) 2008-06-19
KR101409193B1 (ko) 2014-06-19
AU2006209416B2 (en) 2011-02-10
BRPI0607194B8 (pt) 2021-07-27
RU2007132732A (ru) 2009-03-10
CN104232769A (zh) 2014-12-24
EP1845158A1 (en) 2007-10-17
EP1845158B1 (en) 2013-09-11
PL1845158T3 (pl) 2014-02-28
CN110079617A (zh) 2019-08-02
BRPI0607194A2 (pt) 2009-08-25
NO342747B1 (no) 2018-08-06

Similar Documents

Publication Publication Date Title
WO2006080501A1 (ja) rRNAを標的とした微生物の定量的解析方法
US20150315632A1 (en) RATIOMETRIC PRE-rRNA ANALYSIS
CN116042902A (zh) 一种同时检测六种念珠菌的实时荧光核酸恒温扩增检测试剂盒及其专用引物和探针
US20050244836A1 (en) Methods and compositions to detect bacteria using multiplex PCR
WO2013031973A1 (ja) 毒素産生性クロストリディウム・ディフィシルの検出方法
CN110656188A (zh) 检测引发血流感染的杆菌的引物和/或探针组合物及其应用
KR102207922B1 (ko) 반코마이신 저항성 엔테로코커스 특이적인 프라이머 세트, 그를 포함하는 조성물 및 시료 중 반코마이신 저항성 엔테로코커스 속 미생물을 검출하는 방법
KR101752274B1 (ko) 장출혈성 대장균의 시가독소 유전자형 stx1 및 stx2를 동시에 판별하기 위한 고감도 실시간 다중 등온증폭반응용 프라이머 세트 및 이를 이용한 장출혈성 대장균의 시가독소 유전자형의 판별 방법
FR2844522A1 (fr) Procede et sequences nucleotidiques pour la detection et l'identification de microorganismes dans un melange complexe
JP2007075017A (ja) Campylobacterjejuniの検出法
JP2014064543A (ja) ビフィドバクテリウム・ロンガムの検出および/または定量用オリゴヌクレオチド
JPWO2018199279A1 (ja) リボソームrna前駆体を利用した微生物の生死判定方法
EP2723891B1 (en) Diagnostic methods for detecting clostridium difficile
TWI692528B (zh) 用於檢測大腸桿菌之方法以及使用之分子標記
FR2844523A1 (fr) Procede et sequences nucleotidiques pour la detection et l'identification de microorganismes dans un melange complexe ou dans de l'eau
JP2007075018A (ja) Campylobactercoliの検出法
MX2007009174A (es) Metodo de analisis cuantitativo de microorganismo usando arnr como objetivo.
JP2004081054A (ja) 腸管出血性大腸菌ベロトキシン検出のためのプライマーおよびそれを用いた腸管出血性大腸菌の同定法
WO2024053642A1 (ja) フソバクテリウム・ヌクレアタムの検出方法及びフソバクテリウム・ヌクレアタム亜種ヌクレアタムの検出方法
CN116397037A (zh) 可视化检测嗜麦芽窄食单胞菌的rpa-lfs引物探针组合及其应用
Almeida et al. Unusual Techniques: Identification of H. pylori from Biopsies: Culture, PCR and FISH
CN113652494A (zh) 一种检测幽门螺杆菌的探针、引物组和试剂盒
JP2010142188A (ja) 工程精度保証方法及び工程精度保証用キット
EP1257666A1 (fr) Methode de detection d'une inteine specifique de mycobacterium tuberculosis et son utilisation pour le diagnostic de la tuberculose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500631

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 5427/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11814579

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2596059

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006712610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/009174

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 560246

Country of ref document: NZ

Ref document number: 200680003601.1

Country of ref document: CN

Ref document number: 2006209416

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077017768

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006209416

Country of ref document: AU

Date of ref document: 20060130

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006209416

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007132732

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006712610

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0607194

Country of ref document: BR

Kind code of ref document: A2