WO2013031973A1 - 毒素産生性クロストリディウム・ディフィシルの検出方法 - Google Patents

毒素産生性クロストリディウム・ディフィシルの検出方法 Download PDF

Info

Publication number
WO2013031973A1
WO2013031973A1 PCT/JP2012/072219 JP2012072219W WO2013031973A1 WO 2013031973 A1 WO2013031973 A1 WO 2013031973A1 JP 2012072219 W JP2012072219 W JP 2012072219W WO 2013031973 A1 WO2013031973 A1 WO 2013031973A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
difficile
base sequence
seq
toxin
Prior art date
Application number
PCT/JP2012/072219
Other languages
English (en)
French (fr)
Inventor
博之 久保田
博 牧野
隆史 酒井
石川 英司
憲司 大石
Original Assignee
株式会社ヤクルト本社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヤクルト本社 filed Critical 株式会社ヤクルト本社
Priority to KR1020147003107A priority Critical patent/KR101990163B1/ko
Priority to JP2013531437A priority patent/JP5961171B2/ja
Priority to CN201280042806.6A priority patent/CN103764850B/zh
Priority to EP12828007.0A priority patent/EP2752496B1/en
Priority to US14/239,409 priority patent/US9388474B2/en
Publication of WO2013031973A1 publication Critical patent/WO2013031973A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention relates to an oligonucleotide for detecting toxin-producing Clostridium difficile and a method for detecting toxin-producing Clostridium difficile using the same.
  • Clostridium difficile is a spore-forming gram-positive gonococcus that produces exotoxins that are pathogenic to humans.
  • C. Cdifficile-related diarrhea (CDAD) caused by this bacterium has become a major problem in recent years (Non-patent Document 1). That is, excessive use of antibiotics or anticancer agents damages the normal intestinal bacterial flora, and as a result, the proliferated C. difficile produces toxins TcdA and TcdB and develops symptoms such as diarrhea.
  • C. C difficile is known to go out in the stool of an infected person, reach the person's mouth and mucous membranes through the instruments and hands, etc., and become infected.
  • C. difficile The pathogenicity of C. difficile is mainly caused by two toxins TcdA and TcdB belonging to the Large Closridial Toxin (LCTs) family, but each strain of C. difficile produces TcdA-produced TcdB due to the difference in their toxin productivity. It is roughly classified into a type (A + B +), a TcdA non-producing TcdB producing type (A-B +), and a non-toxin producing type (AB-). In addition, the toxin production system of C.
  • LCTs Large Closridial Toxin
  • tcdA and tcdB and tcdC, tcdR, and tcdE that encode these regulatory factors, and negatively regulates toxin production. It has been reported that deficiency of tcdC enhances the production of toxins TcdA and TcdB.
  • Non-Patent Document 2-4 Patent Document 1
  • C. difficile has a low number of bacteria in the healthy human intestine
  • a detection system with both higher specificity and detection sensitivity for detecting toxin-producing strains in feces using PCR.
  • the present invention relates to an oligonucleotide that enables specific and high-sensitivity detection of toxin-producing C. difficile and a method for detecting toxin-producing C. difficile using the same.
  • tcdA gene sequence of 20 strains tcdB gene sequence of 22 strains
  • tcsL which is a toxin gene of Clostridium sordelii
  • tcnA which is a toxin gene of Clostridium novyi
  • toxin gene of Clostridium perfringens Toxin-producing C. difficile can be detected with specific and excellent sensitivity by aligning the tcpL base sequences together and amplifying and measuring the tcdA and tcdB genes using the designed specific oligonucleotides. I found.
  • the present invention relates to the following 1) to 10).
  • a primer pair consisting of an oligonucleotide consisting of the base sequence shown in SEQ ID NO: 1 and an oligonucleotide consisting of the base sequence shown in SEQ ID NO: 2, or a primer pair consisting of a complementary sequence corresponding to the base sequence.
  • An oligonucleotide probe consisting of the base sequence shown in SEQ ID NO: 3 or an oligonucleotide probe consisting of a complementary sequence corresponding to the base sequence.
  • An oligonucleotide set for real-time PCR comprising the primer pair of 1) above and the oligonucleotide probe of 3) above.
  • oligonucleotide probe in which a fluorescent substance is bound to the 5 ′ end of the oligonucleotide and a quencher substance is bound to the 3 ′ end.
  • An oligonucleotide set for real-time PCR comprising the primer pair of 5) above and the oligonucleotide probe of 7) above.
  • Toxin production comprising the steps of performing PCR using DNA extracted from human feces as a template and using the oligonucleotide set of 4) or 8) above, and measuring the amplification product by measuring fluorescence How to detect sex C. difficile.
  • the oligonucleotide set of the above 4) and / or 8) and the primer pair (a) or the primer pair (a) and the oligonucleotide probe (b) shown below A process for performing PCR using each oligonucleotide set for real-time PCR, and a step for measuring an amplification product by measuring fluorescence.
  • B an oligonucleotide probe consisting of the base sequence shown in SEQ ID NO: 9 or an oligonucleotide probe consisting of a complementary sequence corresponding to the base sequence, and a fluorescent substance bound to the 5 ′ end of the oligonucleotide; An oligonucleotide probe having a quencher substance bound to the 3 ′ end.
  • the toxin-producing C. difficile in stool can be detected specifically and with high sensitivity. Therefore, according to the present invention, it is possible to easily and accurately diagnose toxin-producing C. difficile infections, and the frequency of detection of toxin-producing C. difficile strains in the stool of healthy adults is facilitated. Can be examined. In addition, by measuring the total number of C. difficile bacteria, the abundance ratio of toxin-producing C. difficile or non-toxin producing C. difficile can be calculated for C. difficile in feces.
  • the primer pair of the present invention includes (1) a primer pair for amplifying the tcdA gene and (2) a primer pair for amplifying the tcdB gene.
  • the primer pair for amplifying the tcdA gene is a first primer which is an oligonucleotide having the base sequence shown in SEQ ID NO: 1 (5'-CAGTCGGATTGCAAGTAATTGACAAT-3 '(tcdA-F)), and SEQ ID NO: 2 comprises a second primer which is an oligonucleotide having the base sequence shown in 2 (5′-AGTAGTATCTACTACCATTAACAGTCTGC-3 ′ (tcdA-R)).
  • the first primer can be used as a forward primer in a nucleic acid amplification reaction such as PCR (polymerase chain reaction), and the second primer can be used as a reverse primer combined with the first primer in a nucleic acid amplification reaction.
  • TcdA-producing TcdB-producing type A + B +
  • TcdA-nonproducing TcdB-producing type A-B +
  • non-toxin-producing type AB-
  • a primer pair for amplifying the tcdB gene is a third primer which is a primer consisting of the base sequence shown in SEQ ID NO: 4 (5'-TACAAACAGGTGTATTTAGTACAGAAGATGGA-3 '(tcdB-F)), and SEQ ID NO: 5 It consists of the 4th primer which is a primer which consists of a base sequence shown by (5'-CACCTATTTGATTTAGMCCTTTAAAAGC-3 '(tcdB-R)).
  • the third primer can be used as a forward primer in the nucleic acid amplification reaction
  • the fourth primer can be used as a reverse primer combined with the third primer in the nucleic acid amplification reaction.
  • the tcdB gene can be reliably amplified, and TcdB toxin-producing C. difficile, that is, the A + B + type strain and the A-B + type strain can be reliably detected (Table 3). ).
  • the oligonucleotide probe of the present invention includes (1) a probe that specifically hybridizes to the tcdA gene and (2) a probe that specifically hybridizes to the tcdB gene.
  • the probe that specifically hybridizes to the tcdA gene is an oligonucleotide (first probe) consisting of the base sequence shown in SEQ ID NO: 3 (5′-TTGAGATGATAGCAGTGTCAGGATTG-3 ′ (tcdA-P)) It specifically binds to the amplification range by the primer pair consisting of the first and second primers.
  • the probe that specifically hybridizes to the tcdB gene is an oligonucleotide (second probe) consisting of the base sequence shown in SEQ ID NO: 6 (5′-TTTKCCAGTAAAATCAATTGCTTC-3 ′ (tcdB-P)). Yes, it specifically binds to the amplification range by the primer pair consisting of the third and fourth primers.
  • Such an oligonucleotide probe has a fluorescent substance such as FAM (carboxyfluorescein) and TET (tetrachlorocarboxyfluorescein) at the 5 ′ end, and a quencher substance such as TAMRA (carboxytetramethylrhodamine) and BHQ-1 (black hole quencher-1) at the 3 ′ end.
  • FAM fluorescein
  • TET tetrachlorocarboxyfluorescein
  • TAMRA carboxytetramethylrhodamine
  • BHQ-1 black hole quencher-1
  • the modified first probe is an oligonucleotide set for amplifying and measuring the tcdA gene by real-time PCR together with the primer pair consisting of the first and second primers
  • the modified second probe is Together with the primer pair consisting of the third and fourth primers
  • the tcdB gene can be used as an oligonucleotide set for amplifying and measuring by real-time PCR.
  • the oligonucleotide of the present invention includes oligonucleotides composed of complementary sequences corresponding to the respective base sequences in addition to oligonucleotides composed of the base sequences shown in SEQ ID NOs: 1 to 6. That is, a primer pair consisting of a complementary sequence corresponding to the base sequence shown in SEQ ID NO: 1 and SEQ ID NO: 2, an oligonucleotide probe consisting of a complementary sequence corresponding to the base sequence shown in SEQ ID NO: 3, SEQ ID NO: 4 and a sequence A primer pair consisting of a complementary sequence corresponding to the base sequence shown in No. 5 and an oligonucleotide probe consisting of a complementary sequence corresponding to the base sequence shown in SEQ ID No.
  • nucleotide sequence shown in SEQ ID NOs: 1 to 6 or a complementary sequence corresponding to the nucleotide sequence comprises a nucleotide sequence in which 1 or 2 bases are deleted, substituted, added or inserted.
  • the oligonucleotide having the same function as a primer or probe and the oligonucleotide consisting of the base sequence shown in or a complementary sequence thereof are treated in the same manner as the oligonucleotide of the present invention.
  • the oligonucleotide of the present invention can be easily produced by a known chemical synthesis method.
  • a nucleic acid amplification reaction is performed using DNA extracted from human feces as a template, and the amplification product is measured to obtain a TcdA toxin-producing C difficile and TcdB toxin-producing C. difficile can be detected, respectively.
  • the detection includes determination of the presence or absence of C. difficile and quantification of C. difficile.
  • the quantification includes quantification of the number of bacteria.
  • the number of TcdA toxin-producing C. difficile and TcdB toxin-producing C. difficile bacteria in feces can be measured.
  • C. difficile-specific primers and probes and measuring the total number of C. difficile bacteria, the breakdown of C. difficile in the feces (intestines), that is, C. difficile Toxigenic C. difficile (A + B + type, A-B + type, or A +) against total number of bacteria (sum of A + B +, A-B + and AB-types) The sum of the numbers of B + and A-B + types) or the non-toxin producing C.
  • AB-type number can be calculated.
  • a primer and probe specific to such C. difficile the following primer pair (a) or (a) a primer pair and (b) an oligonucleotide probe for real-time PCR comprising an oligonucleotide probe: Can be mentioned.
  • the primer pair (a) is a fifth primer which is an oligonucleotide having the base sequence (5′-GCAAGTTGAGCGATTTACTTCGGT-3 ′ (CD16SrRNA-F)) shown in SEQ ID NO: 7, and the primer pair shown in SEQ ID NO: 8.
  • a sixth primer which is an oligonucleotide having a base sequence (5′-GTACTGGCTCACCTTTGATATTYAAGAG-3 ′ (CD16SrRNA-R)).
  • the fifth primer can be used as a forward primer in the nucleic acid amplification reaction
  • the sixth primer can be used as a reverse primer combined with the fifth primer in the nucleic acid amplification reaction.
  • the oligonucleotide probe (b) is an oligonucleotide (third probe) consisting of the base sequence shown in SEQ ID NO: 9 (5′-TGCCTCTCAAATATATTATCCCGTATTAG-3 ′ (CD16SrRNA-P)). It specifically binds to the amplification range by the primer pair consisting of the primers.
  • Such an oligonucleotide probe is a modified oligonucleotide for performing real-time PCR, for example, by modifying the 5 ′ end side with a fluorescent substance such as FAM or TET, and the 3 ′ end with a quencher substance such as TAMRA or BHQ-1.
  • nucleotide can be used as a nucleotide (so-called Taqman probe).
  • the nucleotide sequence shown in SEQ ID NOs: 7 to 9 or a complementary sequence corresponding to the nucleotide sequence comprises a nucleotide sequence in which 1 or 2 bases are deleted, substituted, added or inserted.
  • the oligonucleotide having the same sequence as a primer or probe and the oligonucleotide consisting of the base sequence shown in FIG. 1 or a complementary sequence thereof are treated in the same manner as the oligonucleotides (a) and (b) above.
  • Examples of subjects to be examined for the presence or abundance of microorganisms include, for example, conjunctival swab, calculus, plaque, sputum, pharyngeal swab, saliva, nasal discharge, alveolar lavage fluid, pleural effusion, gastric juice, gastric lavage fluid, urine, cervical canal Ecological samples such as mucus, vaginal secretions, skin lesions, feces, blood, ascites, tissue, spinal fluid, joint fluid, affected area wipes, foods, pharmaceuticals, cosmetics, intermediate products of foods / pharmaceuticals / cosmetics, microbial culture Examples include objects that may contain microorganisms such as liquids, plants, soil, activated sludge, and wastewater.
  • the sample derived from the subject is not particularly limited as long as it is a sample that can reflect the presence or amount of microorganisms in the subject, and examples thereof include a mixture containing nucleotides and a mixture containing DNA contained in the subject. From the viewpoint of use in the PCR method, a mixture containing DNA contained in the subject is preferable.
  • Extraction of DNA from human feces can be performed by the same method as in the case of conventional genomic DNA preparation.
  • extraction or separation / purification method can be performed from the whole or a part of the subject as necessary.
  • a known method such as filtration, centrifugation, chromatography, etc., for example, “physical crushing with stirring in the presence of glass beads”, “CTAB method”, “phenol”
  • CTAB method filtration, centrifugation, chromatography, etc.
  • It can be obtained by extraction using a general-purpose method such as the “chloroform method (PC method)”, “magnetic bead method”, “silica column method”, or a combination of these methods, or using a commercially available kit. You can also.
  • nucleic acid extracts from feces contain substances that inhibit PCR. It is desirable to obtain highly purified DNA that has been removed as much as possible. For this purpose, it is particularly preferable to use FastDNA SPIN Kit for Feces (MP Biomedicals) that can extract DNA with high concentration and high purity.
  • the nucleic acid amplification method is not particularly limited, and a known method using the principle of the PCR method can be mentioned.
  • PCR method LAMP (Loop-mediated isothermal AMPlification) method, ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids) method, RCA (Rolling Circle Amplification) method, LCR (Ligase Chain Reaction) method, SDA (Strand place) Amplification) method and the like.
  • a known means capable of specifically recognizing the amplification product can be used.
  • a labeled substance such as a radioisotope, a fluorescent substance, or a luminescent substance can be allowed to act on dNTP taken in during the amplification reaction, and this labeled substance can be detected.
  • any method for observing the amplification product incorporating the labeled dNTP any method may be used as long as it is a method known in the art for detecting the above-mentioned labeled body.
  • the radioactivity can be measured using, for example, a liquid scintillation counter or a ⁇ -counter.
  • fluorescence when fluorescence is used as the label, the fluorescence can be detected using a fluorescence microscope, a fluorescence plate reader, or the like.
  • a nucleic acid amplification method it is preferable from the viewpoint of rapidity and quantitativeness to use real-time PCR that monitors and analyzes the amount of PCR amplification in real time.
  • examples of the real-time PCR include methods usually used in the art, such as TaqMan probe method, intercalator method, and cycling probe method. In the present invention, it is particularly preferable to use the TaqMan probe method.
  • the TaqMan probe method is a method in which an oligonucleotide (TaqMan probe) in which the 5 ′ end is modified with a fluorescent substance (FAM, etc.) and the 3 ′ end is modified with a quencher substance (TAMRA, etc.) is added to the PCR reaction system.
  • the modified first probe and second probe can be used as TaqMan probes, which specifically hybridize to the template DNA in the annealing step of the PCR reaction. Since a quencher substance exists, the generation of fluorescence is suppressed even when irradiated with excitation light.
  • the TaqMan probe hybridized to the template is decomposed by the 5 ′ ⁇ 3 ′ exonuclease activity of Taq DNA polymerase during the extension reaction step, the fluorescent substance is released from the probe, and the inhibition by the quencher substance is released. And emits fluorescence.
  • the PCR conditions are not particularly limited, and an optimum condition may be determined for each PCR device. Examples thereof include the following conditions. 1) Thermal denaturation of double-stranded DNA into single-stranded DNA: Heat at about 93 to 95 ° C., usually about 10 seconds to 1 minute. 2) Annealing: Heating is usually performed at about 50 to 60 ° C., usually for about 10 seconds to 1 minute. 3) DNA extension reaction: Heated at about 70 to 74 ° C. for about 30 seconds to 5 minutes. Here, the annealing and the DNA extension reaction can be performed simultaneously without being separated. By carrying out the reactions 1) to 3) usually for about 30 to 50 cycles, the target tcdA gene and tcdB gene can be amplified to a detectable level.
  • the concentration of the Taqman probe in the reaction solution is preferably about 100 to 1000 nM from the viewpoint of sensitivity.
  • PCR when using an intercalator method in which a reagent that emits fluorescence by binding to double-stranded DNA (fluorescence intercalator) is used in a PCR reaction system, for example, SYBR GreenI, SYBR GreenII, SYBR Gold, PCR may be performed in the presence of a known reagent such as oxazole yellow, thiazole orange, ethidium bromide, pico green, and the fluorescence intensity that increases with amplification of the target sequence may be measured.
  • fluorescence intercalator fluorescence intercalator
  • Real-time PCR can be performed using an apparatus dedicated to real-time PCR in which a thermal cycler and a spectrofluorometer are integrated, for example, ABI PRISM 7900HT sequence detection system (Applied Biosystems).
  • a serially diluted standard DNA solution with a known concentration was used for PCR, and the amount of amplification product of PCR using this initial DNA amount as a template was reached to a certain amount. Plot the number of cycles (threshold cycle; Ct value) on the vertical axis to create a calibration curve.
  • Ct value the number of cycles (threshold cycle; Ct value) on the vertical axis.
  • a sample having an unknown concentration can also be reacted under the same conditions to obtain a Ct value, and the target DNA amount in the sample can be obtained from this value and a calibration curve.
  • Quantification of the number of bacteria can be performed in the same procedure as the measurement of the amount of DNA by calculating the number of bacteria corresponding to the amount of DNA used for preparing a calibration curve.
  • the number of bacteria in the pure culture solution of the strain used for the preparation of the standard DNA solution is measured, and DNA is extracted from these known numbers of bacteria to be included in the DNA solution after extraction (standard DNA solution)
  • standard DNA solution A bacterial value corresponding to the amount of DNA can be obtained. Therefore, since the bacterial value corresponding to the initial DNA amount tested for PCR can be calculated, by creating a calibration curve with the horizontal axis converted to the bacterial value, the target microorganism contained in the sample of unknown concentration The bacterial count can be calculated in the same manner.
  • PCR is carried out using a standard DNA solution with a known “DNA amount of the target microorganism” or “number of bacteria of the target microorganism (corresponding to the amount of DNA)” and a DNA sample of an unknown concentration.
  • the “number of PCR cycles” (Ct value) when the amount of amplification product is reached the “DNA amount of the target microorganism” or “the number of target microorganisms” in the sample of unknown concentration can be obtained.
  • Such a calibration curve is usually created by plotting the number of target microorganisms on the horizontal axis and the Ct value on the vertical axis.
  • a known strain such as a reference strain may be used as the microorganism used in preparing the calibration curve.
  • the amount of the target microbial DNA in the subject can also be determined, for example, by knowing the hybridization efficiency between the nucleic acid fragment that can specifically hybridize to the target microbial DNA and the subject sample.
  • TcdA toxin-producing C. difficile and TcdB toxin-producing C. difficile can be specifically detected (Example 2), and 10 3 or more C. If difficile is present, its DNA can be detected (Example 3), and highly sensitive detection is possible.
  • a primer set specific to C. difficile and an oligonucleotide probe and measuring the total number of C. difficile, the breakdown of C. difficile in the feces (intestine) (total number of bacteria) (Existing ratio of toxin-producing and non-toxin-producing C. difficile) to C. difficile, and can contribute to diagnosis, clinical research, etc. of C. difficile infection.
  • Example 1 Detection of toxin-producing C. difficile
  • DSM 1296T is from Deutsche Sammlung von Mikroorganizmen und Zellkulturen GmbH (DSMZ, Germany), ATCC 43255, 43596, 43598, 700057 are American Type Culture Collection (USA)
  • NTCT 13307 and 13366 were purchased from the Health Protection Agency (UK), and CCUG20309, 37780 and 37785 were purchased from the Culture Collection University of Goteborg (Sweden). All Clostridium species except C. difficile were purchased from DSMZ. All strains were cultured for 24 hours at 37 ° C. under anaerobic conditions using modified GAM medium supplemented with 1% glucose (Nissui Pharmaceutical). The number of bacteria in the bacterial solution was measured by the DAPI staining method.
  • TaqMan PCR reaction was performed using the ABI7900HT system.
  • Takara ExTaq Hot Start Version (Takara) and Ampdirect plus (shimadzu) were used.
  • the composition of the reaction solution was 2 ⁇ Ampdirect plus, primer F / R 0.2 ⁇ M, TaqMan probe 0.2 ⁇ M, Rox Reference Dye, ExTaq DNA polymerase 0.4 Units, and template DNA solution 5 ⁇ L, and the total was 20 ⁇ L.
  • the Taq enzyme was activated at 95 ° C. for 30 seconds, followed by 50 cycles of 95 ° C., 5 seconds, 56 ° C., 50 seconds.
  • Lysing Matrix E Sodium phosphate buffer 825 ⁇ L, and Pre-lysis solution 275 ⁇ L were added to 2.0 ⁇ mL tube containing 200 ⁇ g fecal pellet, and stirred with vortex for 10-15 ⁇ s.
  • the supernatant centrifuged at 14,000 ⁇ g for 2 ⁇ min was collected in a 15 mL tube. After adding 1 mL of binding matrix solution and gently mixing, the mixture was incubated at room temperature for 5 minutes. After removing the supernatant centrifuged at 14,000 ⁇ g for 2 ⁇ min, 1 ⁇ mL of Wash buffer-1 was added, and the pellet was gently resuspended by pipetting. About 600 ⁇ L of the suspension was transferred to a SPIN filter tube, and the flow-through centrifuged at 14,000 ⁇ g for 1 ⁇ min was removed.
  • Clostridium sordelii tcsL [X82638], Clostridium novyi tcnA [Z48636], and Clostridium perfringens tcpL [AB262081] were also used for alignment.
  • the homology between the target toxin gene and other genes is high, and tcdA and tcdB have about 60% homology between both base sequences. It was not possible to find a specific base sequence for the target toxin gene. Therefore, the alignment results were confirmed by visual inspection, and after trial and error, regions that are specific to the target gene and that are considered to be highly conserved among strains were selected, and primers and probes were designed (Table 1). ).
  • Primer and probe specificity (2) Among the primer set (J) described in Patent Document 1, the specificity of the primer (sequence 39/40) for amplifying tcdA and the primer tcdA-F / R / P of the present invention were compared. That is, the reactivity of the primer set (sequence 39/40) of Patent Document 1 against C. difficile 10 strains (A + B + type 5 strains, A-B + type 2 strains, AB-type 3 strains) was examined. Using a DNA solution extracted from pure cultured cells, an amount equivalent to 10 5 cells per reaction was subjected to PCR.
  • HotStartTaq DNA polymerase (Qiagen Co., Ltd.) was used, and the composition of the reaction solution was 10 ⁇ PCR buffer, primer F / R 0.4 ⁇ M, dNTP 0.25 mM each, Rox Reference Dye, SYBR Green I, Taq DNA polymerase 0.25 Units and template The DNA solution was 5 ⁇ L, and the total was 20 ⁇ L.
  • PCR was performed under reaction conditions of 45 cycles of 94 ° C. for 20 seconds, 50 ° C. for 30 seconds, and 74 ° C. for 40 seconds, and the obtained Ct value was within the range of Ct value ⁇ 3.3 of the standard strain (DSM 1296T). If there was “+”, it was judged as “-” if it was 45 or more.
  • the reactivity of tcdA-F / R / P obtained in (2) above was also evaluated using the same criteria. These results are shown in Table 4.
  • Example 2 Detection of toxin-producing C. difficile (addition recovery test)
  • an addition recovery test was performed using three stool samples from which endogenous C. difficile was not detected.
  • 10 8 , 10 7 , 10 6 , 10 5 , 10 4 , 10 3 were added per g. The number of added bacteria was adjusted based on the number of bacteria measured in the DAPI count.
  • DNA extraction was performed according to the methods (C) and (D), and TaqMan PCR was performed using the extracted DNA stock solution and 5 ⁇ L of the 2-fold diluted solution, respectively, under the conditions (B).
  • 10 8 PBS (-) was added to 10 8 (corresponding to 10 8 per 1 g of stool), and extracted in the same manner as the stool sample.
  • a standard curve was prepared by using 5 ⁇ L of a total of 6 points of DNA solution obtained by serially diluting the extracted standard DNA up to 10 5 times to 10 5 times, and used for calculating the number of bacteria in the fecal sample.
  • non-toxin-producing C. difficile is the most dominant (the most prevalent in the intestine), and non-toxinous toxin-producing C. difficile can also be detected. That is, by using a combination of CD16SrRNA-F / R / P, tcdA-F / R / P and tcdB-F / R / P, the total number of C. difficile bacteria (A + B + type) was determined by TaqMan PCR. , The total number of A-B + and AB-type bacteria), the number of TcdA-producing C. difficile (A + B +), and the number of TcdB-producing C.
  • C. difficile A + B + and A- Since the total number of B + bacteria can be measured, the breakdown of C. difficile in feces (intestine) (total bacteria, ratio of toxin-producing and non-toxin-producing C. difficile to total bacteria) ) Can be accurately grasped and can contribute to diagnosis, clinical research, etc. of C. difficile infection.

Abstract

 毒素産生性C. difficileを特異的且つ高感度で検出することを可能とするオリゴヌクレオチド、及びこれを用いた毒素産生性C. difficileの検出方法の提供。 1)配列番号1に示される塩基配列からなるオリゴヌクレオチド及び配列番号2に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。2)配列番号4に示される塩基配列からなるオリゴヌクレオチド及び配列番号5に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。

Description

毒素産生性クロストリディウム・ディフィシルの検出方法
 本発明は、毒素産生性クロストリディウム・ディフィシル(Clostridium difficile)を検出するためのオリゴヌクレオチド及びそれを用いた毒素産生性クロストリディウム・ディフィシルの検出方法に関する。
 クロストリジウム・ディフィシル(C. difficile)は、ヒトに対して病原性である菌体外毒素を産生する芽胞形成グラム陽性桿菌である。本菌により引き起こされるC. difficile関連下痢症(CDAD)は、近年、大きな問題となっている(非特許文献1)。すなわち、抗生物質や抗がん剤等の過剰使用により正常な腸内細菌叢が損なわれ、その結果増殖したC. difficileが毒素TcdA及びTcdBを産生し、下痢等の症状を発症する。C. difficileは、感染した人の便中に出て、器物や手等を介して、人の口や粘膜に到達して感染することが知られている。
 C. difficileの病原性は主として、Large Clostridial Toxin (LCTs)ファミリーに属する2種類の毒素TcdA及びTcdBに起因するが、C. difficileの各菌株はこれらの毒素産生性の違いにより、TcdA産生TcdB産生型(A+B+)、TcdA非産生TcdB産生型(A-B+)、及び毒素非産生型(A-B-)に大別される。また、C.difficile の毒素産生系は、tcdA及びtcdBと、それらの調節因子をコードするtcdC, tcdR, tcdE から構成される病原性座位により成り立っているとされ、毒素の産生を負に制御するtcdC が欠損すると、毒素TcdA及びTcdB産生が亢進されることが報告されている。
 従って、毒素産生性C. difficile(A+B+及びA-B+)のみを選択的に検出することは、CDAD等のC. difficile感染症(Clostridium difficile infection:CDI)の診断において臨床上重要である。
 従来、毒素産生性C. difficileの検出については、毒素遺伝子tcdA及びtcdBを標的としたプライマーが幾つか報告されており、これらを用いて糞便抽出DNAから当該遺伝子を検出できることが報告されている(非特許文献2-4、特許文献1)。
 しかしながら、C. difficileは健常なヒト腸内における菌数レベルが低いため、PCRを用いて糞便中の毒素産生株を検出するためには、より高い特異性及び検出感度の両方を有した検出系の構築が必要であり、この点で、未だ十分であるとは云えなかった。
特開2003-164282号公報
Rupnik, M., M. H. Wilcox, and D. N. Gerding., Nat Rev Microbiol. 2009 7:526-36 Belanger, S. D., M. Boissinot, N. Clairoux, F. J. Picard, and M. G. Bergeron., J Clin Microbiol. 2003 41:730-4 Houser, B. A., A. L. Hattel, and B. M. Jayarao., Foodborne Pathog Dis. 2010 7:719-26. Sloan, L. M., B. J. Duresko, D. R. Gustafson, and J. E. Rosenblatt., J Clin Microbiol. 2008 46:1996-2001
 本発明は、毒素産生性C. difficileを特異的且つ高感度で検出することを可能とするオリゴヌクレオチド、及びこれを用いた毒素産生性C. difficileの検出方法を提供することに関する。
 本発明者らは、上記課題に鑑み、20菌株のtcdA遺伝子配列、22菌株のtcdB遺伝子配列、更にはClostridium sordeliiの毒素遺伝子であるtcsL 、Clostridium novyiの毒素遺伝子であるtcnA、Clostridium perfringensの毒素遺伝子であるtcpLの塩基配列を併せてアライメントし、設計した特定のオリゴヌクレチドを用いてtcdA遺伝子及びtcdB遺伝子を増幅・測定することにより、毒素産生性のC. difficileを特異的且つ優れた感度で検出できることを見出した。
 本発明は、以下の1)~10)に係るものである。
 1)配列番号1に示される塩基配列からなるオリゴヌクレオチド及び配列番号2に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。
 2)配列番号3に示される塩基配列からなるオリゴヌクレオチドプローブ、又は当該塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブ。
 3)オリゴヌクレオチドの5’末端に蛍光物質が結合し、3’末端にクエンチャー物質が結合した上記2)のオリゴヌクレオチドプローブ。
 4)上記1)のプライマーペアと上記3)のオリゴヌクレオチドプローブとを備えるリアルタイムPCR用のオリゴヌクレオチドセット。
 5)配列番号4に示される塩基配列からなるオリゴヌクレオチド及び配列番号5に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。
 6)配列番号6に示される塩基配列からなるオリゴヌクレオチドプローブ、又は当該塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブ。
 7)オリゴヌクレオチドの5’末端に蛍光物質が結合し、3’末端にクエンチャー物質が結合した上記6)オリゴヌクレオチドプローブ。
 8)上記5)のプライマーペアと上記7)のオリゴヌクレオチドプローブとを備えるリアルタイムPCR用のオリゴヌクレオチドセット。
 9)ヒト糞便から抽出したDNAを鋳型として、上記4)又は8)のオリゴヌクレオチドセットを用いてそれぞれPCRを行う工程と、蛍光を測定することにより増幅産物を測定する工程とを含む、毒素産生性C. difficileの検出方法。
 10)ヒト糞便から抽出したDNAを鋳型として、上記4)及び/又は8)のオリゴヌクレオチドセット、並びに以下に示す(a)のプライマーペア又は(a)のプライマーペアと(b)のオリゴヌクレオチドプローブとを備えるリアルタイムPCR用のオリゴヌクレオチドセットを用いてそれぞれPCRを行う工程と、蛍光を測定することにより増幅産物を測定する工程とを含む、ヒト糞便中のC. difficileにおける毒素産生性C. difficile及び/又は毒素非産生性C. difficileの存在比率の算出方法。
 (a)配列番号7に示される塩基配列からなるオリゴヌクレオチド及び配列番号8に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。
 (b)配列番号9に示される塩基配列からなるオリゴヌクレオチドプローブ、又は当該塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブであって、当該オリゴヌクレオチドの5’末端に蛍光物質が結合し、3’末端にクエンチャー物質が結合したオリゴヌクレオチドプローブ。
 本発明のオリゴヌクレオチド及び毒素産生性C. difficileの検出方法によれば、特異的且つ高感度で糞便中の毒素産生性C. difficileを検出することができる。したがって、本発明によれば、毒素産生性C. difficileの感染症の診断を簡易且つ正確に行うことが可能となり、また、健常成人の糞便中における毒素産生性C. difficile株の検出頻度を容易に調べることができる。また、併せてC. difficileの総菌数を測定することにより、糞便中のC. difficileについて、毒素産生性C. difficile或いは毒素非産生性C. difficileの存在比率を算出することができる。
TaqMan PCR法における標的菌に対する反応性(A:tcdA-F/R/P、B:tcdB-F/R/P) TaqMan PCR法における糞便中の標的菌の検出感度(A:tcdA-F/R/P、B:tcdB-F/R/P)
 本発明のプライマーペアには、(1)tcdA遺伝子を増幅するためのプライマーペアと、(2)tcdB遺伝子を増幅するためのプライマーペアが含まれる。
 (1)tcdA遺伝子を増幅するためのプライマーペアは、配列番号1に示される塩基配列(5’-CAGTCGGATTGCAAGTAATTGACAAT-3’(tcdA-F))からなるオリゴヌクレオチドである第1のプライマーと、配列番号2に示される塩基配列(5’-AGTAGTATCTACTACCATTAACAGTCTGC-3’(tcdA-R))からなるオリゴヌクレオチドである第2のプライマーからなる。第1のプライマーは、PCR(ポリメラーゼ連鎖反応)等の核酸増幅反応においてフォワードプライマーとして使用でき、第2のプライマーは、核酸増幅反応において第1のプライマーと組み合わせるリバースプライマーとして使用できる。
 C. difficileの各菌株は、TcdA産生TcdB産生型(A+B+)、TcdA非産生TcdB産生型(A-B+)、及び毒素非産生型(A-B-)に大別されるが、tcdA毒素遺伝子の有無とTcdA毒素産生の有無は必ずしも一致しないことが明らかになっている。従来公知のtcdA遺伝子を増幅するためのプライマーを用いた場合では、A+B+型株のみならず、A-B+型株も検出されることが多く、当該方法ではTcdA毒素産生菌のみを検出することはできない(実施例2(3)参照)。これに対して、本発明の第1及び第2のプライマーからなるプライマーペアを用いた場合は、表3に示すとおりA+B+型株におけるtcdAのみが増幅され、A-B+型株におけるtcdAは増幅されない。すなわち、本発明のtcdA遺伝子を増幅するためのプライマーペアを用いた場合には、TcdA毒素産生性C. difficile、すなわちA+B+型株のみを確実に検出することができる(実施例2(2)及び(3)参照)。
 (2)tcdB遺伝子を増幅するためのプライマーペアは、配列番号4に示される塩基配列(5’- TACAAACAGGTGTATTTAGTACAGAAGATGGA-3’(tcdB-F))からなるプライマーである第3のプライマーと、配列番号5に示される塩基配列(5’- CACCTATTTGATTTAGMCCTTTAAAAGC-3’(tcdB-R))からなるプライマーである第4のプライマーからなる。第3のプライマーは、核酸増幅反応においてフォワードプライマーとして使用でき、第4のプライマーは、核酸増幅反応において第3のプライマーと組み合わせるリバースプライマーとして使用できる。
 当該プライマーペアを用いることにより、tcdB遺伝子を確実に増幅することができ、TcdB毒素産生性C. difficile、すなわちA+B+型株及びA-B+型株を確実に検出することができる(表3)。
 本発明のオリゴヌクレオチドプローブには、(1)tcdA遺伝子に特異的にハイブリダイズするプローブと、(2)tcdB遺伝子に特異的にハイブリダイズするプローブが含まれる。
 (1)tcdA遺伝子に特異的にハイブリダイズするプローブは、配列番号3に示される塩基配列(5’-TTGAGATGATAGCAGTGTCAGGATTG- 3’(tcdA-P))からなるオリゴヌクレオチド(第1のプローブ)であり、上記第1及び第2のプライマーからなるプライマーペアによる増幅範囲に特異的に結合するものである。また、(2)tcdB遺伝子に特異的にハイブリダイズするプローブは、配列番号6に示される塩基配列(5’-TTTKCCAGTAAAATCAATTGCTTC- 3’(tcdB-P))からなるオリゴヌクレオチド(第2のプローブ)であり、上記第3及び第4のプライマーからなるプライマーペアによる増幅範囲に特異的に結合するものである。
 斯かるオリゴヌクレオチドプローブは、5’末端側をFAM (carboxyfluorescein) 、TET (tetrachlorocarboxyfluorescein)等の蛍光物質、3’末端をTAMRA (carboxytetramethylrhodamine) 、BHQ-1 (black hole quencher-1)等のクエンチャー物質で修飾することにより、例えばリアルタイムPCRを行うための、修飾オリゴヌクレオチド(所謂Taqmanプローブ)として使用できる。
 すなわち、修飾された第1のプローブは、上記第1及び第2のプライマーからなるプライマーペアと共に、tcdA遺伝子をリアルタイムPCRによって増幅・測定するためのオリゴヌクレオチドセットとして、修飾された第2のプローブは、上記第3及び第4のプライマーからなるプライマーペアと共に、tcdB遺伝子をリアルタイムPCRによって増幅・測定するためのオリゴヌクレオチドセットとして使用することができる。
 本発明のオリゴヌクレオチドは、上記配列番号1~6に示される塩基配列からなるオリゴヌクレオチドの他、当該各塩基配列に対応する相補的配列からなるオリゴヌクレオチドが包含される。すなわち、配列番号1及び配列番号2に示される塩基配列に対応する相補的配列からなるプライマーペア、配列番号3に示される塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブ、配列番号4及び配列番号5に示される塩基配列に対応する相補的配列からなるプライマーペア、配列番号6に示される塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブが包含される。
 また、配列番号1~6に示される塩基配列や当該塩基配列に対応する相補的配列において1若しくは2個の塩基が欠失、置換、付加又は挿入された塩基配列からなり、配列番号1~6に示される塩基配列又はその相補的配列からなるオリゴヌクレオチドと其々プライマー又はプローブとして同等の機能を有するオリゴヌクレオチドは、本発明のオリゴヌクレオチドと同等に扱われる。
 本発明のオリゴヌクレオチドは、公知の化学合成法により容易に製造することができる。
 本発明の上記各プライマーペア、好ましくは上記各オリゴヌクレオチドプローブとを併せて用い、ヒト糞便から抽出したDNAを鋳型として核酸増幅反応を行い、その増幅産物を測定することにより、TcdA毒素産生性C. difficile及びTcdB毒素産生性C. difficileをそれぞれ検出することができる。
 ここで、当該検出には、C. difficileの有無の判定及びC. difficileの定量が包含される。尚、定量には菌数の定量が包含される。
 本発明の上記各プライマーペア、好ましくは上記各オリゴヌクレオチドプローブとを併せて用いることにより、糞便中におけるTcdA毒素産生性C. difficile及びTcdB毒素産生性C. difficileの菌数を測定することができるが、これらと、C. difficile特異的なプライマーやプローブを組み合わせ、C. difficileの総菌数を併せて測定することで、糞便中(腸内)におけるC. difficileの内訳、すなわちC. difficileの総菌数(A+B+型、A-B+型及びA-B-型の菌数の総和)に対する、毒素産生性C. difficile(A+B+型の菌数、A-B+型の菌数又はA+B+型及びA-B+型の菌数の総和)、又は毒素非産生性C. difficile(A-B-型の菌数)の存在比率を算出することができる。
 斯かるC. difficileに特異的なプライマー、プローブとしては、以下に示す(a)のプライマーペア又は(a)のプライマーペアと(b)のオリゴヌクレオチドプローブとを備えるリアルタイムPCR用のオリゴヌクレオチドセットが挙げられる。
 (a)配列番号7に示される塩基配列からなるオリゴヌクレオチド及び配列番号8に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。
 (b)配列番号9に示される塩基配列からなるオリゴヌクレオチドプローブ、又は当該塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブであって、当該オリゴヌクレオチドの5’末端に蛍光物質が結合し、3’末端にクエンチャー物質が結合したオリゴヌクレオチドプローブ。
 ここで、(a)のプライマーペアは、配列番号7に示される塩基配列(5'-GCAAGTTGAGCGATTTACTTCGGT-3'(CD16SrRNA-F))からなるオリゴヌクレオチドである第5のプライマーと、配列番号8に示される塩基配列(5'-GTACTGGCTCACCTTTGATATTYAAGAG-3'(CD16SrRNA-R))からなるオリゴヌクレオチドである第6のプライマーからなる。第5のプライマーは、核酸増幅反応においてフォワードプライマーとして使用でき、第6のプライマーは、核酸増幅反応において第5のプライマーと組み合わせるリバースプライマーとして使用できる。
 (b)のオリゴヌクレオチドプローブは、配列番号9に示される塩基配列(5'-TGCCTCTCAAATATATTATCCCGTATTAG-3'(CD16SrRNA-P))からなるオリゴヌクレオチド(第3のプローブ)であり、上記第5及び第6のプライマーからなるプライマーペアによる増幅範囲に特異的に結合するものである。斯かるオリゴヌクレオチドプローブは、5’末端側をFAM、TET等の蛍光物質、3’末端をTAMRA、BHQ-1等のクエンチャー物質で修飾することにより、例えばリアルタイムPCRを行うための、修飾オリゴヌクレオチド(所謂Taqmanプローブ)として使用できる。
 なお、配列番号7~9に示される塩基配列や当該塩基配列に対応する相補的配列において1若しくは2個の塩基が欠失、置換、付加又は挿入された塩基配列からなり、配列番号7~9に示される塩基配列又はその相補的配列からなるオリゴヌクレオチドと其々プライマー又はプローブとして同等の機能を有するオリゴヌクレオチドは、上記(a)及び(b)のオリゴヌクレオチドと同等に扱われる。
 微生物の存在又は存在量等を調べる被検体としては、例えば、結膜ぬぐい液、歯石、歯垢、喀痰、咽頭ぬぐい液、唾液、鼻汁、肺胞洗浄液、胸水、胃液、胃洗浄液、尿、子宮頸管粘液、膣分泌物、皮膚病巣、糞便、血液、腹水、組織、髄液、関節液、患部ぬぐい液などの生態由来試料、食品、医薬品、化粧品、食品・医薬品・化粧品の中間処理物、微生物培養液、植物、土壌、活性汚泥、排水のような微生物を含有する可能性のある対象が挙げられる。被検体由来の試料としては、被検体の微生物の存在又は存在量を反映しうる試料であれば特に限定されず、例えば、被検体に含まれるヌクレオチドを含む混合物やDNAを含む混合物が挙げられるが、PCR法に用いるという観点からは、被検体に含まれるDNAを含む混合物が好ましい。
 ヒト糞便からのDNAの抽出は、従来のゲノムDNAの調製の場合と同様の手法により行うことができるが、例えば、被検体の全部又は一部から、必要に応じて、抽出・分離・精製方法により前処理を行ったのち、適宜公知の方法により取得することができる。必要に応じて、ろ過、遠心分離、クロマトグラフィー等の公知の方法による前処理を行ったのち、例えば、「ガラスビーズ等の存在下で撹拌する物理的破砕法」、「CTAB法」、「フェノールクロロホルム法(PC法)」、「磁気ビーズ法」、「シリカカラム法」等の汎用法、あるいはこれらを組み合わせた手法を用いた抽出により得ることができ、また、市販のキットを用いて行うこともできる。
 PCRによる高い検出感度を得るためには、高濃度なDNAを取得することが望ましく、一方で、糞便からの核酸抽出液中にはPCRを阻害する物質が混在するため、これら阻害物質を可能な限り除去した高純度なDNAを取得することが望ましい。この目的のため、特に、高濃度かつ高純度のDNAが抽出できるFastDNA SPIN Kit for Feces (MP Biomedicals)を用いることが好ましい。
 核酸増幅法としては、特に限定されないが、PCR法の原理を利用した公知の方法を挙げることができる。例えば、PCR法、LAMP(Loop-mediated isothermal AMPlification)法、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法、RCA(Rolling Circle Amplification)法、LCR(Ligase Chain Reaction)法、SDA(Strand Displacement Amplification)法等を挙げることができる。
 また、核酸増幅反応後の増幅産物の検出には、増幅産物を特異的に認識することができる公知の手段を用いることができる。例えば、増幅反応の過程で取り込まれるdNTPに、放射性同位体、蛍光物質、発光物質等の標識体を作用させ、この標識体を検出することができる。標識したdNTPを取り込んだ増幅産物を観察する方法としては、上述した標識体を検出するための当技術分野で公知の方法であればいずれの方法でもよい。例えば、標識体として放射性同位体を用いた場合には、放射活性を、例えば液体シンチレーションカウンター、γ-カウンター等により計測することができる。また標識体として蛍光を用いた場合には、その蛍光を蛍光顕微鏡、蛍光プレートリーダー等を用いて検出することができる。
 本発明においては、核酸増幅法として、PCRの増幅量をリアルタイムでモニターし解析するリアルタタイムPCRを用いるのが迅速性と定量性の点から好ましい。また、リアルタイムPCRとしては、当技術分野で通常用いられる方法、例えばTaqManプローブ法、インターカレーター法及びサイクリングプローブ法等が挙げられるが、本発明においては、TaqManプローブ法を用いるのが特に好ましい。
 TaqManプローブ法は、5'末端を蛍光物質(FAM等)で、3'末端をクエンチャー物質(TAMRA等)で修飾したオリゴヌクレオチド(TaqManプローブ)をPCR反応系に加える方法である。
 本発明においては、上記のごとく、修飾された第1のプローブと第2のプローブがTaqManプローブとして使用でき、これはPCR反応のアニーリングステップで鋳型DNAに特異的にハイブリダイズするが、プローブ上にクエンチャー物質が存在するため、励起光を照射しても蛍光の発生は抑制される。伸長反応ステップのときに、Taq DNAポリメラーゼのもつ5’→3’エキソヌクレアーゼ活性により、鋳型にハイブリダイズしたTaqManプローブが分解されると、蛍光物質がプローブから遊離し、クエンチャー物質による抑制が解除されて蛍光を発する。
 PCRの条件は、特に限定されず、PCR装置毎に最適条件を定めればよいが、例えば、以下の条件が挙げられる。
 1)2本鎖DNAの1本鎖DNAへの熱変性:通常93~95℃程度で、通常10秒間~1分間程度加熱する。
 2)アニーリング:通常50~60℃程度で、通常10秒間~1分間程度加熱する。
 3)DNA伸長反応:通常70~74℃程度で、通常30秒間~5分間程度加熱する。
 ここで、アニーリングとDNA伸長反応は分けずに同時に行うことも可能である。
 上記1)~3)の反応を、通常30~50サイクル程度行うことにより、目的のtcdA遺伝子及びtcdB遺伝子を検出可能な程度に増幅することができる。
 また、上記Taqmanプローブの反応液中の濃度は、感度の点から、100~1000nM程度が好ましい。
 また、二本鎖DNAに結合することで蛍光を発する試薬(蛍光インターカレーター)をPCR反応系に加えるインターカレーター法を用いる場合は、蛍光インターカレーターとして、例えば、SYBR GreenI、SYBR GreenII、SYBR Gold、オキサゾールイエロー、チアゾールオレンジ、エチジウムブロマイド、ピコグリーン等の公知の試薬の存在下でPCRを行い、標的配列の増幅に伴って増加する蛍光強度を測定すればよい。
 リアルタタイムPCRは、サーマルサイクラーと分光蛍光光度計を一体化したリアルタイムPCR専用の装置、例えば、ABI PRISM 7900HT sequence detection system (Applied Biosystems)を用いて行うことができる。
 DNA量の測定は、まず、濃度既知の標準DNA溶液を段階希釈したものをPCRに供試し、この初発のDNA量を横軸に、それを鋳型としたPCRの増幅産物量が一定量に到達するときのサイクル数(threshold cycle;Ct値)を縦軸にプロットし、検量線を作成する。未知濃度の試料についても、同じ条件下で反応を行い、Ct値を求め、この値と検量線から、試料中の目的のDNA量を求めることにより行うことができる。
 また、菌数の定量は、検量線作成用に供試したDNA量に相当する菌数値を算出することにより、DNA量の測定と同様の手順で行うことができる。まず、標準DNA溶液の調製に用いる菌株の純培養菌液中の菌数を測定し、これら既知菌数からDNAの抽出を実施することにより、抽出後のDNA溶液(標準DNA溶液)に含まれるDNA量に相当する菌数値を得ることができる。従って、PCRに供試した初発のDNA量に相当する菌数値を算出することができるため、横軸を菌数値に換算した検量線を作成することで、未知濃度の試料中に含まれる目的微生物の菌数値を同様に算出することができる。
 斯くして、「目的微生物のDNA量」または「目的微生物の(DNA量に相当する)菌数」が既知の標準DNA溶液と、未知濃度のDNA試料を用いて、PCRを行い、一定のPCR増幅産物量に達したときの「PCRサイクル数」(Ct値)の対比を行えば、濃度未知試料中の「目的微生物のDNA量」または「目的微生物の菌数」を求めることができる。なお、斯かる対比においては、PCRの鋳型とする「目的微生物の菌数」と、「Ct値」との相関関係を示す検量線を用いることが、簡便性の点から好ましい。斯かる検量線は、目的微生物の菌数を横軸に、Ct値を縦軸にプロットして作成されるのが通常である。検量線作成の際に用いる微生物は、基準株等の公知菌株を用いてもよい。
 また、被検体中における目的微生物DNA量は、例えば、目的微生物DNAに特異的にハイブリダイズしうる核酸断片と被検体試料とのハイブリダイズ効率の知得によっても、求めることができる。
 斯くして、本発明の方法によれば、TcdA毒素産生性C. difficile及びTcdB毒素産生性C. difficileを特異的に検出でき(実施例2)、また糞便1g当たり103個以上のC. difficileが存在していればそのDNAを検出することができ(実施例3)、高感度な検出が可能である。
 さらに、C. difficileに特異的なプライマーセット、オリゴヌクレオチドプローブを組み合わせて使用し、C. difficileの総菌数を測定することで、糞便中(腸内)におけるC. difficileの内訳(総菌数に対する毒素産生性及び毒素非産生性C. difficileの存在比率)を正確に把握することができ、C. difficile感染症の診断、臨床研究等に貢献できる。
実施例1 毒素産生性C. difficileの検出
[I]材料及び方法
(A)使用菌株及び培養条件
 C. difficile DSM 1296TはDeutsche Sammlung von Mikroorganizmen und Zellkulturen GmbH (DSMZ,Germany)から、ATCC 43255、43596、43598、700057はAmerican Type Culture Collection (USA)から、NTCT 13307、13366はHealth Protection Agency (UK)から、CCUG20309、37780、37785はCulture Collection University of Goteborg (Sweden)からそれぞれ購入した。C. difficile以外のClostridium属菌種はすべて、DSMZから購入した。
 すべての菌株は、1% グルコース添加変法GAM培地(日水製薬)を用い、嫌気条件下、37 ℃で24時間培養した。菌液中の菌数測定は、DAPI染色法により行った。
(B)TaqMan PCR反応
 ABI7900HTシステムを用いて、TaqMan PCRを行った。PCRにはTakara ExTaq Hot Start Version (Takara)及びAmpdirect plus (shimadzu)を用いた。反応液組成は2×Ampdirect plus、プライマーF/R 0.2 μM、TaqManプローブ 0.2 μM、Rox Reference Dye、ExTaq DNA polymerase 0.4 Units及び鋳型DNA溶液5 μLであり、total 20 μLとした。95℃, 30秒でTaq酵素を活性化した後、95℃, 5秒、56℃,50秒を50サイクル行った。
(C)DNA抽出用糞便サンプルの調製
 RNAlaterを用いて調製した10%糞便懸濁液(w/v) 2 mL (200 mg糞便を含む)を遠心分離し、上清1 mLを除去した。リン酸緩衝生理食塩水(PBS(-))1 mLを添加してvortexで撹拌した後、遠心分離した全上清をデカンテーションで除去した。PBS(-) 1 mLを添加してvortexで撹拌した後、遠心分離した全上清を除去した。得られた糞便ペレットはDNA抽出に用いるまで、-80℃で保存した。
(D)DNAの抽出
 培養菌液からのDNA抽出は、松木らの方法( Matsuki, T., K. Watanabe, J. Fujimoto, Y. Kado, T. Takada, K. Matsumoto,and R. Tanaka. 2004. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl.Environ. Microbiol. 70:167-173)に従い行った。
 糞便ペレットからのDNA抽出は、FastDNA SPIN Kit for Feces (MP Biomedicals)を用いた。抽出法の詳細を以下に示す。
 200 mg糞便ペレット入り2.0 mL tubeに、Lysing Matrix E 、Sodium phosphate buffer 825 μL及びPre-lysis solution 275 μLを添加して、vortexで10-15 s撹拌した。14,000×gで5 min遠心分離した上清を除去し、Sodium phosphate buffer 978 μL及びMT buffer 122 μLを添加して撹拌した。FastPrep level 6.0で45 s激しく振とうし、14,000×gで15 min遠心分離した。上清を新しい2.0 mL tubeに回収し、Protein precipitate solution 250 μLを添加して、激しく振とうして混和した。4 ℃で10 min静置した後、14,000×gで2 min遠心分離した上清を15 mL tubeに回収した。Binding matrix solution 1 mLを添加して穏やかに混和した後、室温で5 minインキュベートした。14,000×gで2 min遠心分離した上清を除去した後、Wash buffer-1を1 mL添加し、ピペッティングによりペレットを穏やかに再懸濁させた。懸濁液約600 μLをSPIN filter tubeに移し、14,000×gで1 min遠心分離したフロースルーを除去した。残りの懸濁液を再度SPIN filter tubeに移し、14,000×gで1 min遠心分離したフロースルーを除去した。Wash buffer-2を0.5 mL添加し、フィルター上のマトリックスをピペッティングにより穏やかに再懸濁させた後、14,000×gで2 min遠心分離したフロースルーを除去した。再度、14,000×gで2 min遠心分離し、フィルターを新しい1.9 mL catch tubeに移した。TES 100 μLを添加し、軽くタッピングしてマトリックスを懸濁させ、14,000×gで2 min遠心分離したフロースルーを回収した。
[II]プライマー及びプローブの設計
 C. difficileの毒素遺伝子tcdA及びtcdBを標的とし、それぞれに特異的なプライマー及びプローブを以下の手順で設計した。データベースから取得した20菌株のtcdA遺伝子配列(*1)及び22菌株のtcdB遺伝子配列(*2)を用いて、Clustal Xによる相同性検索(アライメント)を行った。TcdA及びTcdBはLarge Clostridial Toxin (LCTs)に分類され、一部の Clostridium属細菌が産生するLCTsと高い相同性を有する。そのため、対照としてClostridium sordeliiのtcsL [X82638] 、Clostridium novyiのtcnA [Z48636]、Clostridium perfringensのtcpL [AB262081]の遺伝子配列を併せてアライメントに用いた。アライメントの結果、標的毒素遺伝子とその他の遺伝子の相同性が高く、また、tcdA及びtcdBは両者の塩基配列間で約60%の相同性があったことから、プライマー作成用ソフトウェアではtcdA及びtcdB各々の標的毒素遺伝子に対する特異的な塩基配列を見出すことはできなかった。そこで、アライメント結果を目視により確認し、試行錯誤のうえ、標的遺伝子に特異的であり、かつ、菌株間で保存性が高いと思われる領域を選択して、プライマー及びプローブを設計した(表1)。
 *1  tcdA遺伝子のGenBank accession no. :M30307, NC_009089, NC_013316, NC_013315, AJ011301, NZ_ADVM01000023, NZ_ABHF02000018, NZ_ABHE02000016, NZ_ABFD02000006, NZ_ABHD02000008, NZ_ABHG02000011, NZ_ABKK02000013, NZ_AAML04000007,  NZ_ABKL02000008, FN668941, FN668375, FN665652, FN665653,  FN665654, Y12616, AJ132669
 *2  tcdB遺伝子のGenBank accession no. :M30307, Z23277, AJ011301, NC_009089, NC_013316, NC_013315, AF217292, NZ_ABHF02000018, NZ_ADVM01000023, NZ_ADNX01000011, NZ_ABHE02000016, NZ_ABHD02000008, NZ_ABFD02000006, NZ_ABKL02000008, NZ_ABKK02000013, NZ_ABHG02000011, NZ_AAML04000007, FN668941, FN668375, FN665652, FN665653,  FN665654
Figure JPOXMLDOC01-appb-T000001
[III]プライマー及びプローブの特異性
(1)C. difficile菌株の毒素産生性の確認
 イムノクロマト法を利用した毒素検出キットKeul-o-test Clostridium difficile Complete (BioGenTechnologies)を用いて、C. difficile 10菌株の毒素産生性を調べた。
 BHI液体培地を用いて、各菌株を嫌気条件下、37 ℃で4日間培養した。培養上清をキットのプロトコールに従い供試し、TcdA及びTcdBの毒素産生を特異的なバンドの有無により判定した。その結果、下記表2に示すとおり、いずれも毒素産生性を示すことが確認された。
Figure JPOXMLDOC01-appb-T000002
(2)TaqMan PCR法における特異性(1)
 C. difficile 10菌株(A+B+型5菌株、A-B+型2菌株、A-B-型3菌株)、Clostridium属10菌種、及び腸内菌12菌種を用いて、本発明のプライマー及びプローブセット(tcdA-F/R/P及びtcdB-F/R/P)の特異性を調べた。純培養菌体から抽出したDNA溶液を用い、反応当たり105個相当量を供試して、前記(B)の条件でTaqMan PCRを行い、増幅シグナルの有無を確認した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、DSM 1296T株ではtcdAとtcdBの両方の増幅シグナルが検出され、毒素産生性と一致した。同様に、その他の菌株においても、毒素産生性に一致した増幅シグナルが確認された。一方、非標的菌株においてはシグナルが全く検出されず、プライマーダイマーのシグナルも全く認められなかった。
(3)プライマー及びプローブの特異性(2)
 前記特許文献1に記載のプライマーセット(J)のうち、tcdAを増幅するためのプライマー(配列39/40)と本願発明の上記プライマーtcdA-F/R/Pとの特異性を比較した。
 すなわち、C. difficile 10菌株(A+B+型5菌株、A-B+型2菌株、A-B-型3菌株)に対する、特許文献1のプライマーセット(配列39/40)の反応性を調べた。純培養菌体から抽出したDNA溶液を用い、反応当たり105個相当量をPCRに供試した。PCRにはHotStartTaq DNA polymerase(株式会社キアゲン)を用い、反応液組成は10×PCR buffer、プライマーF/R 0.4 μM、dNTP 0.25 mM each、Rox Reference Dye、SYBR Green I、Taq DNA polymerase 0.25 Units及び鋳型DNA溶液 5 μLであり、total 20 μLとした。94℃で20秒、50℃で30秒、74℃で40秒を45サイクルの反応条件でPCRを行い、得られたCt値が、標準菌株(DSM 1296T)のCt値±3.3の範囲内であれば"+"、45以上であれば"-"と判定した。
 上記(2)で得られたtcdA-F/R/Pの反応性についても、同一の判定基準で評価した。これらの結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 特許文献1のプライマーセット(J)(配列39/40)については、A+B+株に加えて、A-B+株でも増幅が認められたのに対し、本発明のtcdA-F/R/PではA-B+株では増幅せず、A+B+株のみを確実に増幅できることが示された。
 次に、標的菌株間で反応性に差異がないことを確認するために、各標的菌株の検量線をそれぞれ作成し比較した。その結果、いずれも供試した標的菌株をCt値2以内(菌数に換算して4倍以内)の差異で検出可能であった(図1)。これらの結果から、本発明の方法は標的の毒素を産生する菌株のみを特異的、かつ正確に検出できることが示された。
実施例2 毒素産生性C. difficileの検出(添加回収試験)
 糞便中の毒素産生性C. difficileの検出下限値を検証するため、内在性のC. difficileが検出されない3名の糞便サンプルを用いて、添加回収試験を実施した。
 あらかじめ内在性のC. difficileが存在しないことを確認した健常成人3名の糞便サンプルを選択し、TcdA及びTcdBの両方を産生するC. difficile DSM 1296T株の純培養菌体を糞便中に1 g当たり108, 107, 106, 105, 104, 103個となるように添加した。なお、添加菌数はDAPIカウントの測定菌数に基づき調整した。
 前記(C)及び(D)の方法に従ってDNA抽出を行い、抽出DNA原液及び2倍希釈液5 μLをそれぞれ用いて、前記(B)の条件でTaqMan PCRを行った。検量線作成用のスタンダードとして、PBS(-) 10 mL当たり108個(糞便1 g当たり108個に対応)となるように添加し、糞便サンプルと同様に抽出した。抽出したスタンダードDNAを105倍まで10倍系列希釈した計6ポイントのDNA溶液5 μL をPCRに供試して検量線を作成し、糞便添加サンプルの菌数算出に用いた。
 その結果、tcdA-F/R/P及びtcdB-F/R/Pいずれに関しても、糞便1 g当たり103個を検出可能であった(図2)。斯様に本発明の方法によれば、細菌DNAを標的として高感度な検出が可能であり、毒素産生性C. difficileを特異的かつ高感度(検出下限値:糞便1 gあたり103個)に定量することが可能である。
実施例3 腸内に内在菌として棲息する菌株の検出
[I]材料及び方法
(1)CD16SrRNA-F/R/Pの作製
 C.difficile総菌数を測定するためのプライマーセットCD16SrRNA-F及びCD16SrRNA-Rを作製し、さらにその増幅範囲に新たにプローブを設計したTaqManプローブCD16SrRNA-Pを設計した(表5)。
Figure JPOXMLDOC01-appb-T000005
(2)糞便DNAサンプル
 日本の高齢者施設入居者及び職員102名から採取した糞便のうち、選択培養法によりC. difficileの分離が確認された16検体の糞便DNAを本解析に用いた。
(3)選択培養法
 凍結便を融解後、9倍容量の嫌気輸送培地に懸濁した。これを等量の98% エタノールと混和し、室温にて30分間インキュベートした。エタノール処理液0.1 mlをCycloserine cefoxin mannitol agar(CCMA)に塗抹し、本培地を37℃で24時間嫌気培養した。培地上に検出されたコロニーについて、性状及びグラム染色性からC. difficileと推定されるものの数を計測した。
(4)DNA抽出法
 2mLスクリューキャップチューブ中の検量線用菌液200μLまたは大便10倍希釈液に、0.3gのガラスビーズ(φ0.1mm), 300μLのTris-SDS溶液(250mLの200mM Tris-HCl, 80mM EDTA, pH 9.0と50mLの10% SDSを混合して調整する)、500μLのTris-EDTA buffer Saturated Phenolを加える。
 サンプルの入ったチューブを振とう破砕機(FastPrep FP120)にセットする。パワーレベル5.0で30秒間激しく振とうし、菌体を破砕する。チューブを取り出し、15,000 rpmで5分間遠心分離する。
 上清400μLを、新しい2mLスクリューキャップに移す。400μLのPhenol / Chloroform / Isoamyl alcohol (25:24:1)を加え、FastPrep FP120にセットする。パワーレベル4.0で45秒激しく振とうし、15,000 rpmで5分間遠心分離する。
 新しい1.5mLチューブに250μLの上清を移す。25μLの3M酢酸Na (pH 5.4)を加えて混合する。
 300μLのIsopropanolを加える。15,000 rpmで5分間遠心分離する。上清をデカンテーションで除く。500μLの70% Ethanol を加え、(撹拌しないでそのまま)再度、15,000 rpmで5分間遠心分離する。上清をデカンテーションで除く。
 蓋を外して60℃のヒートブロックインキュベーターで約30分間加温しながら乾燥させる。Tris-EDTA bufferを加え、撹拌して均一に溶解させる。-30℃にて凍結保存する。
(5)TaqMan PCR反応
 実施例1[I](B)と同様の方法で行った。
[II]結果
 16検体のうち、8検体から毒素産生株が検出された(表6)。これら8検体のうち、7検体では、TapMan PCR法によるC. difficileの総菌数(CD16SrRNA-F/R/P)、TcdA産生性C. difficileの菌数(tcdA-F/R/P)、及びTcdB産生性C. difficileの菌数(tcdB-F/R/P)が同等であったことから、腸内にA+B+型の毒素産生株が優勢に存在していることがわかる。
 毒素産生株が検出された8検体のうちの1検体(S-09)では、C. difficileの総菌数が毒素産生性C. difficileの菌数より対数値で1.5以上と大幅に高かったことから、毒素非産生性C. difficileが最優勢(腸内で最も優勢に存在する)であると判別できる他、最優勢でない毒素産生性C. difficileも検出できることがわかる。
 すなわち、CD16SrRNA-F/R/P、tcdA-F/R/P及びtcdB-F/R/Pを組み合わせて使用することで、TaqMan PCR法により、C. difficileの総菌数(A+B+型、A-B+型及びA-B-型の菌数の総和)、TcdA産生性C. difficile(A+B+型)の菌数、及びTcdB産生性C. difficileの菌数(A+B+型及びA-B+型の菌数の総和)を測定することができるため、糞便中(腸内)におけるC. difficileの内訳(総菌数、総菌数に対する毒素産生性及び毒素非産生性C. difficileの比率)を正確に把握することができ、C. difficile感染症の診断、臨床研究等に貢献できる。
Figure JPOXMLDOC01-appb-T000006

Claims (10)

  1.  配列番号1に示される塩基配列からなるオリゴヌクレオチド及び配列番号2に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。
  2.  配列番号3に示される塩基配列からなるオリゴヌクレオチドプローブ、又は当該塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブ。
  3.  オリゴヌクレオチドの5’末端に蛍光物質が結合し、3’末端にクエンチャー物質が結合した請求項2記載のオリゴヌクレオチドプローブ。
  4.  請求項1記載のプライマーペアと請求項3記載のオリゴヌクレオチドプローブとを備えるリアルタイムPCR用のオリゴヌクレオチドセット。
  5.  配列番号4に示される塩基配列からなるオリゴヌクレオチド及び配列番号5に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。
  6.  配列番号6に示される塩基配列からなるオリゴヌクレオチドプローブ、又は当該塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブ。
  7.  オリゴヌクレオチドの5’末端に蛍光物質が結合し、3’末端にクエンチャー物質が結合した請求項6記載のオリゴヌクレオチドプローブ。
  8.  請求項5記載のプライマーペアと請求項7記載のオリゴヌクレオチドプローブとを備えるリアルタイムPCR用のオリゴヌクレオチドセット。
  9.  ヒト糞便から抽出したDNAを鋳型として、請求項4及び/又は請求項8記載のオリゴヌクレオチドセットを用いてそれぞれPCRを行う工程と、蛍光を測定することにより増幅産物を測定する工程とを含む、毒素産生性C. difficileの検出方法。
  10.  ヒト糞便から抽出したDNAを鋳型として、請求項4及び/又は請求項8記載のオリゴヌクレオチドセット、並びに以下に示す(a)のプライマーペア又は(a)のプライマーペアと(b)のオリゴヌクレオチドプローブとを備えるリアルタイムPCR用のオリゴヌクレオチドセットを用いてそれぞれPCRを行う工程と、蛍光を測定することにより増幅産物を測定する工程とを含む、ヒト糞便中のC. difficileにおける毒素産生性C. difficile及び/又は毒素非産生性C. difficileの存在比率の算出方法。
     (a)配列番号7に示される塩基配列からなるオリゴヌクレオチド及び配列番号8に示される塩基配列からなるオリゴヌクレオチドからなるプライマーペア、又は当該塩基配列に対応する相補的配列からなるプライマーペア。
     (b)配列番号9に示される塩基配列からなるオリゴヌクレオチドプローブ、又は当該塩基配列に対応する相補的配列からなるオリゴヌクレオチドプローブであって、当該オリゴヌクレオチドの5’末端に蛍光物質が結合し、3’末端にクエンチャー物質が結合したオリゴヌクレオチドプローブ。
PCT/JP2012/072219 2011-09-01 2012-08-31 毒素産生性クロストリディウム・ディフィシルの検出方法 WO2013031973A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147003107A KR101990163B1 (ko) 2011-09-01 2012-08-31 독소 산생성 클로스트리듐·디피실의 검출 방법
JP2013531437A JP5961171B2 (ja) 2011-09-01 2012-08-31 毒素産生性クロストリディウム・ディフィシルの検出方法
CN201280042806.6A CN103764850B (zh) 2011-09-01 2012-08-31 毒素产生性艰难梭菌的检测方法
EP12828007.0A EP2752496B1 (en) 2011-09-01 2012-08-31 Method for detecting toxin-producing clostridium difficile
US14/239,409 US9388474B2 (en) 2011-09-01 2012-08-31 Method for detecting toxin-producing Clostridium difficile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011190706 2011-09-01
JP2011-190706 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013031973A1 true WO2013031973A1 (ja) 2013-03-07

Family

ID=47756447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072219 WO2013031973A1 (ja) 2011-09-01 2012-08-31 毒素産生性クロストリディウム・ディフィシルの検出方法

Country Status (6)

Country Link
US (1) US9388474B2 (ja)
EP (1) EP2752496B1 (ja)
JP (1) JP5961171B2 (ja)
KR (1) KR101990163B1 (ja)
CN (1) CN103764850B (ja)
WO (1) WO2013031973A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173963A1 (en) * 2013-04-25 2014-10-30 Orion Diagnostica Oy Strand-invasion based dna amplification method
CN110055311A (zh) * 2019-04-17 2019-07-26 江苏佰思瑞生物科技有限公司 艰难梭菌荧光定量pcr检测引物组及试剂盒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105525023A (zh) * 2016-02-04 2016-04-27 广州赛哲生物科技股份有限公司 艰难梭菌毒素a/b的荧光定量pcr检测试剂盒及检测方法
US11085912B2 (en) * 2016-12-14 2021-08-10 University Of Cincinnati Methods of diagnosing Clostridium difficile infection or recurrence in a subject
CN113502354A (zh) * 2021-07-14 2021-10-15 中国医学科学院输血研究所 一种用于移植患者感染的病原体检测引物和探针组、试剂盒及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164282A (ja) 2001-11-29 2003-06-10 Rakan:Kk 微生物の検出方法、及び微生物の検出用プライマーセット
WO2009061752A1 (en) * 2007-11-05 2009-05-14 3M Innovative Properties Company Methods for detecting toxigenic microbes
JP2010537648A (ja) * 2007-09-06 2010-12-09 ジェネオーム サイエンシズ カナダ、 インク. クロストリジウム・ディフィシレの毒素原性菌株の検出

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110287965A1 (en) 2008-11-26 2011-11-24 Tzam Diagnostics Llc Methods and compositions to detect clostridium difficile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164282A (ja) 2001-11-29 2003-06-10 Rakan:Kk 微生物の検出方法、及び微生物の検出用プライマーセット
JP2010537648A (ja) * 2007-09-06 2010-12-09 ジェネオーム サイエンシズ カナダ、 インク. クロストリジウム・ディフィシレの毒素原性菌株の検出
WO2009061752A1 (en) * 2007-11-05 2009-05-14 3M Innovative Properties Company Methods for detecting toxigenic microbes

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BELANGER S. D. ET AL.: "Rapid Detection of Clostridium difficile in Feces by Real-Time PCR", JOURNAL OF CLINICAL MICROBIOLOGY, vol. 41, no. 2, 2003, pages 730 - 734, XP002561409 *
BELANGER, S. D; M. BOISSINOT; N. CLAIROUX; F. J. PICARD; M. G. BERGERON, J. CLIN.MICROBIOL, vol. 41, 2003, pages 730 - 4
DE BOER R.F. ET AL.: "Evaluation of a rapid molecular screening approach for the detection of toxigenic Clostridium difficile in general and subsequent identification of the tcdC A117 mutation in human stools", JOURNAL OF MICROBIOLOGICAL METHODS, vol. 83, 2010, pages 59 - 65, XP027265471 *
HOUSER, B. A.; A. L. HATTEL; B. M. JAYARAO., FOODBORNE PATHOG. DIS., vol. 7, 2010, pages 719 - 26
KAZUNORI MATSUDA ET AL.: "Sensitive Quantification of Clostridium difficile in the Stool Samples of Healthy Adults by Quantitative RT-PCR", JAPANESE JOURNAL OF BACTERIOLOGY, vol. 63, no. 1, 2008, pages 166, XP008173106 *
MATSUKI, T.; K. WATANABE; J. FUJIMOTO; Y. KADO; T. TAKADA; K. MATSUMOTO; R. TANAKA: "Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria", APPL. ENVIRON. MICROBIOL., vol. 70, 2004, pages 167 - 173, XP002431255, DOI: doi:10.1128/AEM.70.1.167-173.2004
RINTTILA T. ET AL.: "Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR", JOURNAL OF APPLIED MICROBIOLOGY, vol. 97, 2004, pages 1166 - 1177, XP008128526 *
SLOAN, L. M.; B. J. DURESKO; D. R. GUSTAFSON; J. E. ROSENBLATT., J. CLIN. MICROBIOL., vol. 46, 2008, pages 1996 - 2001

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173963A1 (en) * 2013-04-25 2014-10-30 Orion Diagnostica Oy Strand-invasion based dna amplification method
US10227660B2 (en) 2013-04-25 2019-03-12 Orion Diagnostica Oy Strand-invasion based DNA amplification method
CN110055311A (zh) * 2019-04-17 2019-07-26 江苏佰思瑞生物科技有限公司 艰难梭菌荧光定量pcr检测引物组及试剂盒

Also Published As

Publication number Publication date
EP2752496B1 (en) 2018-05-23
CN103764850B (zh) 2015-11-25
US20140212879A1 (en) 2014-07-31
EP2752496A1 (en) 2014-07-09
CN103764850A (zh) 2014-04-30
JPWO2013031973A1 (ja) 2015-03-23
KR20140054023A (ko) 2014-05-08
US9388474B2 (en) 2016-07-12
EP2752496A4 (en) 2015-03-11
KR101990163B1 (ko) 2019-06-17
JP5961171B2 (ja) 2016-08-02

Similar Documents

Publication Publication Date Title
Gurjar et al. Real-time multiplex PCR assay for rapid detection and toxintyping of Clostridium perfringens toxin producing strains in feces of dairy cattle
CN104232769B (zh) 以rRNA为标的的微生物定量分析方法
Benacer et al. Characterization of drug-resistant Salmonella enterica serotype Typhimurium by antibiograms, plasmids, integrons, resistance genes, and PFGE
US10724106B2 (en) Method for determining the presence of diarrhoea causing pathogens
JP5961171B2 (ja) 毒素産生性クロストリディウム・ディフィシルの検出方法
US20130065232A1 (en) Assays and kits for serotyping pseudomonas aeruginosa and oligonucleotide sequences useful in such methods and kits
Rousselon et al. A new real time PCR (TaqMan® PCR) system for detection of the16S rDNA gene associated with fecal bacteria
EP3298163B1 (en) Diagnostic method for bacterial organisms using the smpb gene
JP6716596B2 (ja) エコール産生能の測定方法
KR20170030190A (ko) Lamp를 이용한 클로스트리디움 퍼프린젠스 검출용 프라이머 및 그 용도
KR101765677B1 (ko) 결핵 및 비결핵 항산균 검출용 프라이머 세트 및 이를 이용한 검출 방법
KR102182731B1 (ko) 락토바실러스 퍼멘툼 판별용 마커 및 이의 용도
US7439022B2 (en) Nucleic acids for detection of Listeria
JP7390736B2 (ja) 腐蛆病菌の同時検出方法及びプライマーキット
JP2012187067A (ja) ラクトバチルス属細菌の定量方法
EP2723891B1 (en) Diagnostic methods for detecting clostridium difficile
KR102184743B1 (ko) 락토바실러스 파라카제이 아종 파라카제이 판별용 마커 및 이의 용도
JP2007228868A (ja) Lamp法を用いたジフテリア毒素遺伝子検出方法およびこの方法に用いるプライマーセット
EP3822370A1 (en) Method of determining the presence of a hyper-virulent clostridioides difficile strain of the b1/nap1/027 group in a sample
JP2007075018A (ja) Campylobactercoliの検出法
JP2009089652A (ja) オリゴヌクレオチド及びこれをプライマーとして用いたラクトバチルス・フルクチボランスの検出法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531437

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147003107

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14239409

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012828007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE