WO2006080377A1 - 放射線画像検出器及び放射線画像撮影システム - Google Patents

放射線画像検出器及び放射線画像撮影システム Download PDF

Info

Publication number
WO2006080377A1
WO2006080377A1 PCT/JP2006/301190 JP2006301190W WO2006080377A1 WO 2006080377 A1 WO2006080377 A1 WO 2006080377A1 JP 2006301190 W JP2006301190 W JP 2006301190W WO 2006080377 A1 WO2006080377 A1 WO 2006080377A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
image detector
state
shooting
imaging
Prior art date
Application number
PCT/JP2006/301190
Other languages
English (en)
French (fr)
Inventor
Hiromu Ohara
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to US11/813,257 priority Critical patent/US20090232278A1/en
Priority to CN2006800036651A priority patent/CN101111782B/zh
Priority to JP2007500558A priority patent/JPWO2006080377A1/ja
Priority to EP06712372A priority patent/EP1857837A1/en
Publication of WO2006080377A1 publication Critical patent/WO2006080377A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/548Remote control of the apparatus or devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to a radiographic image detector and a radiographic image capturing system, and more particularly to a radiographic image detector and a radiographic image capturing system for capturing a radiographic image typified by an X-ray image.
  • the ready-to-shoot state power is supplied to the various parts required for force-set FPD shooting.
  • the shooting standby state power is supplied to at least each part necessary to accept various instructions, that is, electrodes are not supplied to parts that are necessary for photographing but are not necessary for accepting various instructions. It is in a state.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-342099
  • An object of the present invention is to prevent an image from being taken due to insufficient remaining battery power, to reduce the frequency of re-imaging, and to prevent excessive exposure to a patient.
  • a radiographic image detector capable of switching between a radiographable state in which radiation can be detected and a radiographing standby state with less power consumption than the radiographable state
  • a switching unit for giving an instruction to switch between the photographing enabled state and the photographing standby state
  • a battery that can be charged or exchanged as a power supply source for supplying power to a plurality of drive units; a battery remaining amount detection unit that detects the remaining amount of the battery;
  • the imaging state and the imaging standby state are switched by controlling operating states of the plurality of driving units, and the battery remaining amount detecting unit is controlled.
  • the controller is
  • the movable state of the plurality of driving units is controlled so as to switch from the shooting standby state to the shooting enabled state.
  • the battery remaining amount detection unit detects the remaining amount of the battery. Since the shooting standby state is switched to the shooting enabled state based on the output result, it is possible to prevent the camera from being switched to the shooting enabled state when the electromagnetic residual amount is insufficient. As a result, it is possible to prevent shooting due to insufficient remaining battery power.
  • the invention according to claim 2 is the radiation image detector according to claim 1,
  • the controller is
  • the shooting enabled state and the shooting standby state are switched.
  • the operating states of the plurality of driving units are controlled as described above.
  • the photographing enabled state and the photographing standby are performed based on the remaining amount detection result by the battery remaining amount detecting unit. Since the state can be switched, it can be automatically switched to a state suitable for the remaining battery power before shooting.
  • the invention according to claim 3 is the radiological image detector according to claim 2,
  • the controller is
  • the shootable state is set, and the amount is less than the shootable amount.
  • the operating states of the plurality of driving units are controlled so as to enter the photographing standby state.
  • the remaining battery level detection result force of the remaining battery level detection unit when the shooting instruction is input to the switching unit force, the remaining battery level detection result force of the remaining battery level detection unit When the amount that can be shot is satisfied Since the camera is set in a shootable state and is in a shooting standby state when the amount is less than the shootable amount, it is possible to reliably prevent shooting with less than the shootable amount.
  • the invention according to claim 4 is the radiological image detector according to claim 3,
  • a notification unit for performing notification based on the control of the control unit The controller is
  • the notification unit is controlled to perform capturing. It is characterized by notifying that there is.
  • the invention according to claim 5 is the radiological image detector according to any one of claims 1 to 4, wherein
  • the shooting standby state has a plurality of modes
  • the controller is
  • the operation state of the plurality of driving units is controlled so that power consumption differs for each of the plurality of modes.
  • the radiographic image detector is mounted after the charging or replacement of the battery is completed. It is possible to keep the most suitable state according to the use situation and the like, and it is possible to perform efficient photographing work while suppressing wasteful power consumption.
  • the invention according to claim 6 is the radiological image detector according to claim 5,
  • the controller is
  • the remaining amount detection result of the battery remaining amount detection unit when the shooting instruction is input from the switching unit is less than the amount that can be shot, the most power consumption among the plurality of modes in the shooting standby state
  • the operation state of the plurality of drive units is controlled so as to be in a mode with a small amount.
  • the invention according to claim 7 is the radiological image detector according to claim 5 or 6,
  • the control unit is configured to detect the remaining amount of the battery when a standby state switching instruction for switching from a mode of low power consumption to a mode of high power consumption among the plurality of modes is input from the switching unit.
  • the battery remaining amount detection unit is controlled.
  • the radiation image detector has a portion (such as a photodiode or a thin film transistor) that deteriorates with time when power is supplied. Even if photodiodes, thin film transistors, etc. are supplied again after power supply is stopped, it takes time to stabilize. For these reasons, when shooting is not performed for the time being among a plurality of shooting standby states, a shooting standby state in which power is not supplied to the photodiode or thin film transistor is set, and shooting is to be performed soon.
  • a portion such as a photodiode or a thin film transistor
  • a shooting standby state for supplying power to a photodiode or a thin film transistor is set.
  • the standby state for shooting is set without supplying power until immediately before shooting (in this response, the photodiodes and other devices have power consumption). Is supplied).
  • the standby state for shooting is set without supplying power until immediately before shooting (in this response, the photodiodes and other devices have power consumption). Is supplied).
  • the standby state for shooting is set without supplying power until immediately before shooting (in this response, the photodiodes and other devices have power consumption). Is supplied).
  • a large number of shooting standby states when there is a low power consumption among a plurality of shooting standby states, a large number of shooting standby states!
  • the remaining battery level is reduced. If detected, the remaining battery level can be recognized before shooting. As a result, it can be determined whether or not normal shooting is possible before shooting, and therefore it is possible to prevent shooting due to insufficient battery power.
  • the invention according to claim 8 is the radiological image detector according to any one of claims 1 to 7,
  • control unit that controls operating states of the plurality of drive units based on the result of the operation check.
  • a radiation image detector for detecting imaged radiation to acquire image information, wherein a plurality of driving units and the driving unit at the time of activation are provided. And a check means for checking the operation of the drive unit to determine whether or not it is capable of normal operation, and a control unit that controls the operating states of the plurality of drive units based on the result of the operation check. Therefore, the radiation image detector can check the operation of the drive unit before imaging. As a result, it is possible to determine whether or not each drive unit can normally operate before shooting, so that it is possible to prevent shooting while each drive unit is not operating normally. be able to.
  • the invention according to claim 9 is the radiological image detector according to claim 8,
  • the operating state includes a state in which the main power is turned on, which is an imaging ready state in which radiation can be detected and an imaging standby state in which the power consumption is lower than that in the imaging enabled state, and power supply to the drive unit is completely
  • the check means detects that each of the drive units cannot operate normally, at least not to switch to the photographing enabled state. It is characterized by.
  • the operation state is mainly composed of an imaging enabled state in which radiation can be detected and an imaging standby state in which power consumption is lower than the imaging enabled state. It is composed of a power-on state and a main power-off state in which power supply to the drive unit is completely cut off, and the check means can normally operate in each drive unit. If it is detected that it cannot be performed, at least the camera is not switched to the photographing enabled state. Therefore, the radiation image detector transitions between the main power ON state and the main power OFF state, which are the imaging ready state and the imaging standby state, as the operating state. As a result, when it is detected that each drive unit cannot operate normally, the control unit waits for shooting. It is possible to control the operating state of multiple drive units so as to switch to the state or the main power OFF state.
  • the invention according to claim 10 is the radiological image detector according to claim 9,
  • the control unit sets the main power supply OFF. It is characterized by that.
  • the control unit turns off the main power supply. Therefore, the radiographic image detector has a plurality of drive units so that the main power supply is turned off when the remaining power level of the power supply unit is less than a predetermined amount as a result of the remaining battery level detection by the battery level detection unit. It is possible to control the operation state of the unit and not activate the radiation image detector.
  • the invention according to claim 11 is the radiological image detector according to claim 9,
  • the shooting standby state includes a first shooting standby mode and a second shooting standby mode that consumes less power than the first shooting standby mode.
  • a communication check unit that performs communication check of the communication unit is provided.
  • the shooting standby state includes a first shooting standby mode and a second shooting standby mode that consumes less power than the first shooting standby mode.
  • the communication unit includes a communication unit as the drive unit and a communication check unit that performs a communication check of the communication unit as the operation check, so that the control unit performs a plurality of driving operations according to the result of the communication check.
  • the operating state of the unit can be controlled.
  • the invention according to claim 12 is the radiological image detector according to claim 11,
  • the power of the communication check unit The normal operation cannot be performed in the communication unit.
  • the control unit is set to the second photographing standby mode.
  • the control unit when the communication check unit detects that the communication unit cannot normally operate, the control unit Set to the second shooting standby mode. Therefore, when the communication check unit detects that the communication unit cannot normally operate in the communication unit, the control unit operates the plurality of drive units so as to enter the second shooting standby mode. The state can be controlled, and the radiation image detector can be operated with less power consumption.
  • the invention according to claim 13 is the radiological image detector according to claim 14,
  • the notification unit notifies that the communication unit cannot operate normally. It is characterized by
  • the notification unit that performs notification based on the control of the control unit, and the communication check unit operates normally in the communication unit.
  • the notification unit notifies that the communication unit cannot operate normally, so that the control unit cannot operate the communication unit normally.
  • the invention according to claim 14 is the radiological image detector according to claim 9,
  • the shooting standby state includes a first shooting standby mode and a second shooting standby mode that consumes less power than the first shooting standby mode.
  • a memory check unit that performs a memory check of the image storage unit as the operation check is provided.
  • the photographing standby state is the first photographing standby state.
  • a second imaging standby mode that consumes less power than the first imaging standby mode, and includes an image storage unit as the drive unit and the image storage unit as the operation check Since the memory check unit for performing the memory check is provided, the control unit can control the operating states of the plurality of drive units according to the result of the memory check of the image storage unit.
  • the invention according to claim 15 is the radiological image detector according to claim 14,
  • the control unit sets the second photographing standby mode.
  • the control unit when it is detected that the memory check unit force image storage unit cannot operate normally, the control unit performs the second operation described above. Shooting standby mode. Therefore, when the memory check unit detects that the image storage unit cannot operate normally, the control unit sets the operation states of the plurality of drive units so as to enter the second shooting standby mode. It is possible to control and operate the radiation image detector with less power consumption.
  • the invention according to claim 16 is the radiological image detector according to any one of claims 1 to 15,
  • Detects irradiated radiation converts the radiation into an electrical signal, stores it, and stores it
  • the radiation image detector is a force-set type FPD, it can be easily carried regardless of the photographing location, and the degree of freedom of photographing is improved. To do. Even when such a radiological image detector is used for imaging, the radiographic image detector is set in an imaging ready state or an imaging standby state depending on the use state after the battery is charged or replaced. There is an effect that it is possible to perform efficient photographing work while suppressing wasteful power consumption.
  • the radiographic imaging system according to the invention of claim 17 includes the radiographic image detector according to any one of claims 1 to 16,
  • the radiation image capturing system has the same operations and effects as those of the invention described in claims 1 to 16. be able to.
  • the invention according to claim 18 is the radiographic imaging system according to claim 17,
  • the console includes a display unit that performs display based on control of the control unit, and the control unit detects the remaining amount of the battery remaining amount detection unit when the shooting instruction is input from the switching unit. When the result is less than the amount that can be photographed, the display unit is controlled to display that photographing is impossible.
  • the invention according to claim 19 is the radiographic imaging system according to claim 18,
  • the control unit controls the display unit based on a detection result of the remaining battery level detection unit, and displays the remaining battery level.
  • the remaining battery level is displayed on the display section of the console, the remaining battery level can be visually recognized. This makes it possible to quickly cope with charging or replacement of the battery.
  • the invention described in claim 20 is the radiographic image capturing system described in claim 18 or 19, wherein
  • the control unit controls the display unit to display whether the radiation image detector is in the imaging ready state or the imaging standby state.
  • a radiographic imaging system includes: A radiation image detector according to any one of claims 8 to 15, and a console for controlling the radiation image detector,
  • the console includes an informing unit for informing V, one or both of the operating state of the radiological image detector and the result of the operation check of the radiological image detector.
  • the console is either or both of an operation state of the radiological image detector and an operation check result of the radiological image detector. Therefore, the console can notify the operating state of the radiation image detector and the check status by the checking means via the notification unit.
  • the present invention since it is possible to determine whether normal shooting is possible before shooting, it is possible to prevent shooting due to a shortage of remaining battery power.
  • the frequency of imaging can be reduced, and extra exposure to the patient can be prevented.
  • FIG. 1 is a diagram showing a schematic configuration illustrating an embodiment of a radiographic imaging system according to the present invention.
  • FIG. 2 is a perspective view showing a configuration of a main part of a radiographic image detector according to the present invention.
  • FIG. 3 is a block diagram showing a main configuration of a radiation image detector according to the present invention.
  • FIG. 4 is an equivalent circuit diagram of a photoelectric conversion unit for one pixel that constitutes a signal detection unit provided in the radiation image detector of FIG. 2.
  • FIG. 5 is an equivalent circuit diagram in which the photoelectric conversion units in FIG. 4 are two-dimensionally arranged.
  • FIG. 6 is a block diagram showing the main configuration of a console that constitutes the radiographic image capturing system of FIG. 1.
  • FIG. 7 is a perspective view showing a radiation image detector according to a third embodiment.
  • FIG. 8 is a block diagram showing a main part configuration of a radiation image detector according to a third embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of an embodiment of a radiographic image capturing system to which a radiographic image detector according to the present invention is applied.
  • the radiographic imaging system 1 is a system that is applied, for example, in radiographic imaging performed in a hospital. As shown in Fig. 1, various types of information regarding radiography and patients, etc.
  • Server 2 that manages the radiography
  • radiography operation device 3 that performs operations relating to radiographic imaging
  • a base station 4 that performs communication by a wireless communication method such as a wireless local area network (LAN)
  • LAN wireless local area network
  • a console 6 is connected through a network 7 for controlling and processing the radiation image detected by the radiation image detector 5.
  • a radiographic imaging device 10 is connected to the imaging operation device 3 via a cable 8 to irradiate a patient who is the subject 9 and take a radiographic image.
  • the radiographic image capturing device 10 and the radiographic image detector 5 are installed, for example, one in one radiographing room 1 1, and the radiographic image capturing device 10 is operated by the radiographic operation device 3 and the radiation image detector 5 performs radiation. Radiation image information can be obtained by detecting the image.
  • a single radiographing room 11 may be provided with a plurality of radiation image detectors 5.
  • the network 7 may be a dedicated communication line for the system. However, because of the low degree of freedom of the system configuration, the existing network such as Ethernet (registered trademark) is used. A line is preferred.
  • the network 7 is connected to a plurality of imaging operation devices 3, radiation image detectors 5, and consoles 6 for operating the radiographic imaging devices 10 in other imaging rooms 11 in addition to those illustrated here. Moyo.
  • the imaging operation device 3 includes an operation panel and the like, and operates the radiographic imaging device 10.
  • an input operation unit that inputs signals such as imaging conditions, information on imaging conditions, various instructions, and the like
  • a power supply unit for supplying power to the radiation image capturing apparatus 10 (not shown).
  • the radiographic imaging device 10 is disposed inside the radiographing room 11 and has a radiation source 12.
  • a tube voltage is applied to the radiation source 12
  • radiation is generated. Yes.
  • a radiation tube is used as the radiation source 12, and the radiation tube is used for thermal excitation. Radiation is generated by accelerating the resulting electrons at a high voltage and colliding with the cathode.
  • the radiation image detector 5 acquires radiation images by detecting radiation irradiated from the radiation source 12 of the radiation image capturing apparatus 10 and transmitted through the subject 9, and when capturing images. In addition, it is arranged in the irradiation range of the radiation irradiated from the radiation source 12. For example, as shown in FIG. 1, the radiation image detector 5 is disposed between the subject 9 and the bed 13 on which the subject 9 is placed, but the position at which the radiation image detector 5 is disposed is here. For example, a detector mounting port (not shown) for mounting the radiation image detector 5 is provided below the bed, and the radiation image detector 5 is mounted in the detector mounting port. Good.
  • the radiographic image detector 5 is a radiographic image detector 5 that is a force set type flat panel detector.
  • the structure of the radiation image detector 5 will be described with reference to FIG. 2 and FIG.
  • the radiation image detector 5 includes a casing 14 that protects the inside, and is configured to be portable as a force set.
  • An imaging panel 15 that converts irradiated radiation into an electrical signal is formed in layers inside the housing 14.
  • a light emitting layer (not shown) that emits light according to the intensity of the incident radiation is provided on the radiation irradiation side of the imaging panel 15.
  • the light emitting layer is generally called a scintillator layer.
  • a phosphor is a main component, and based on incident radiation, an electromagnetic wave having a wavelength of 300 nm to 800 nm, that is, mainly visible light.
  • Ultraviolet light power Electromagnetic waves (light) over infrared light are output.
  • Phosphors used in the light emitting layer include, for example, those based on CaW04 or the like, Csl:
  • T1, Gd202S: Tb, ZnS: Ag or the like in which the luminescent center substance is activated in the matrix.
  • the rare earth element is M
  • a phosphor represented by the general formula of (Gd, M, Eu) 203 can be used.
  • Csl: T1 and Gd202S: Tb are preferred because of their high radiation absorption and luminous efficiency, and high-quality images with low noise can be obtained.
  • FIG. 4 is an equivalent circuit diagram of the photoelectric conversion unit for one pixel constituting the signal detection unit 232.
  • the configuration of the photoelectric conversion unit for one pixel is composed of a photodiode 233 and a thin film transistor (hereinafter referred to as TFT234) that extracts electrical energy accumulated in the photodiode 233 as an electrical signal by switching. Constructed.
  • the extracted electrical signal is amplified by the amplifier 238 to a level that can be detected by the signal readout circuit 237.
  • the amplifier 238 is connected to a reset circuit (not shown) composed of a TFT 234 and a capacitor, and a reset operation for resetting the accumulated electrical signal is performed by switching the TFT 234. ing.
  • the photodiode 233 may simply be a photodiode having a regulating capacitance, or may include an additional capacitor in parallel so as to improve the dynamic range of the photodiode 233 and the photoelectric conversion unit! ! / ⁇ .
  • FIG. 5 is an equivalent circuit diagram in which such photoelectric conversion units are two-dimensionally arranged.
  • the feeder line L1 and the signal line Lr are arranged so as to be orthogonal to each other.
  • a TFT 234 is connected to the photodiode 233, and one end of the photodiode 233 on the side to which the TFT 234 is connected is connected to the signal line Lr.
  • the other end of the photodiode 233 is connected to one end of an adjacent photodiode 233 arranged in each row, and is connected to a bias power source 239 through a common bias line Lb.
  • One end of the bias power source 239 is connected to the control unit 27 so that a voltage is applied to the photodiode 233 through the bias line Lb according to an instruction from the control unit 27.
  • the TFTs 234 arranged in each row are connected to a common scanning line L1, and the scanning line L1 is connected to the control unit 27 via the scanning drive circuit 236.
  • the photodiodes 233 arranged in each column are connected to a signal readout circuit 237 connected to a common signal line Lr and controlled by the control unit 27.
  • the signal readout circuit 237 includes an amplifier 238 and a sample and hold circuit 24 in order from the imaging panel 15. 0, analog multiplexer 241 and AZD variable 242 are arranged on a common signal line Lr.
  • TFT234 may be out of alignment with inorganic or organic semiconductors used in liquid crystal displays or the like.
  • the photodiode 233 as the photoelectric conversion element is used is exemplified, but a solid-state imaging element other than the photodiode may be used as the photoelectric conversion element.
  • a scan driving circuit 16 that sends a pulse to each photoelectric conversion element to scan and drive each photoelectric conversion element, and each photoelectric conversion element A signal reading circuit 17 for reading the stored electric energy is arranged.
  • the radiation image detector 5 includes an image storage unit 18 that also has a rewritable read-only memory such as a volatile memory (RAM) or a flash memory.
  • the image storage unit 18 stores the image signal output from the imaging panel 15.
  • the image storage unit 18 may be a built-in memory or a removable memory such as a memory card.
  • the radiation image detector 5 includes a plurality of drive units (scanning drive circuit 16, signal readout circuit 17, communication unit 24 (described later), image storage unit 18, battery remaining part constituting the radiation image detector 5.
  • a power supply unit 19 is provided as a power supply source for supplying power to the amount detection unit 40 (described later), the indicator 25 (described later), the input operation unit 26 (described later), the imaging panel 15 and the like).
  • the power supply unit 19 includes, for example, a reserve battery 20 such as a manganese battery, an alkaline battery, an alkaline button battery, a lithium battery, an acid / silver battery, an air zinc battery, a nickel-cadmium battery, a mercury battery, a lead battery, Rechargeable batteries, nickel metal hydride batteries, lithium ion batteries, small sealed lead batteries, lead acid batteries, fuel cells, solar cells, etc.
  • a reserve battery 20 such as a manganese battery, an alkaline battery, an alkaline button battery, a lithium battery, an acid / silver battery, an air zinc battery, a nickel-cadmium battery, a mercury battery, a lead battery, Rechargeable batteries, nickel metal hydride batteries, lithium ion batteries, small sealed lead batteries, lead acid batteries, fuel cells, solar cells, etc.
  • the radiographic image detector 5 has at least a minimum when the charge amount of the rechargeable battery 21 is insufficient or while the rechargeable battery 21 is being replaced. It is possible to supply as much power
  • a charging terminal 22 is formed at one end of the housing 14, for example, as shown in FIG. Then, by attaching the radiation image detector 5 to the charging device 23 such as a cradle, a terminal (not shown) on the charging device 23 side and a terminal 22 on the housing side are connected to charge the rechargeable battery 21. It has come to be. Further, the rechargeable battery 21 can be replaced by pulling it out from the side of the housing 14, for example.
  • the shapes of the spare battery 20 and the rechargeable battery 21 constituting the power supply unit 19 are not limited to those illustrated in FIG. 2, and for example, a plate-shaped battery may be provided in parallel with the imaging panel 15. Good. If each battery has such a shape, the ratio of the imaging panel surface to the housing 14 increases, and the effective imaging area can be increased.
  • the radiation image detector 5 is provided with a communication unit 24 (see FIG. 3) that transmits and receives various signals to and from an external device such as the console 6.
  • the communication unit 24 is configured to transfer an image signal output from the imaging panel 15 to the console 6 or to receive a shooting instruction signal, a standby instruction signal, etc. to which the console 6 is also transmitted!
  • an indicator (notification unit) 25 for displaying and notifying the charging status of the rechargeable battery 21 and various operation statuses is provided at one end of the front surface of the housing 14 so that the operator can detect a radiographic image. It becomes possible to visually check the charging status of the rechargeable battery 21 of the vessel 5!
  • An input operation unit 26 for inputting a photographing instruction and a standby instruction is provided outside the casing 14.
  • the operation state of the radiation image detector 5 includes an imaging ready state and an imaging standby state that consumes less power than the imaging state, and can be switched and set by operating the input operation unit 26. ing.
  • shooting instruction is input to the input operation unit 26, or when a shooting instruction signal is input from the console 6 to the communication unit 24, shooting is possible.
  • a standby instruction is input to the input operation unit 26, or when a standby instruction signal is input from the console 6 to the communication unit 24, the imaging standby state is entered. That is, the input operation unit 26 or the communication unit 24 is a switching unit that gives an instruction to switch between the photographing enabled state and the photographing standby state according to the present invention.
  • the radiation image detector 5 is configured and all the radiographic images used for a series of radiographing operations are displayed. Power is supplied to all members used for a series of shooting operations, such as scanning drive circuit 16, signal readout circuit 17, photodiode 233, TFT 234, image storage unit 18, and communication unit 24, in a state where the members are operating.
  • a series of imaging operations such as initialization of image information, accumulation of electrical energy generated according to irradiated radiation, reading of electrical signals, and transfer of image signals, etc. Is possible.
  • the reset operation and idle reading operation in the imaging panel 15 are performed.
  • a series of imaging operations refers to operations such as initialization of image information, accumulation of electric energy generated in accordance with irradiated radiation, reading of electric signals, and transfer of image signals.
  • the first imaging standby mode that consumes less power than the imaging enabled state and the second imaging standby mode that consumes less power than the first imaging standby mode There is.
  • the first shooting standby mode is a state in which all members used for a series of shooting operations except for the signal readout circuit 17 that can be quickly started to a shooting ready state are started, and shooting is immediately performed.
  • This is a photographing standby state in a state where it can be performed. Specifically, power is supplied to the scanning drive circuit 16, the photodiode 233, the TFT 234, the image storage unit 18, and the communication unit 24.
  • the second shooting standby mode only the image storage unit 18 that is related to image storage and the communication unit 24 that is related to image information transfer to the outside and signal reception from the outside are started up. Yes, the camera is in a shooting standby state where it cannot take a picture immediately but has very low power consumption.
  • the radiological image detector 5 includes a control device 28 having a control unit 27 configured by, for example, a general-purpose CPU, ROM, RAM, or the like (not shown).
  • the control unit 27 reads a predetermined program stored in the ROM, expands it in the RAM work area, and the CPU executes various processes according to the program.
  • control data includes, for example, remaining amount determination data for determining whether the remaining amount of the rechargeable battery 21 satisfies the amount that can be photographed and whether or not the power is sufficient.
  • the radiation image detector 5 includes a battery remaining amount detection unit 40 that detects the remaining amount of the rechargeable battery 21.
  • the battery remaining amount detection unit 40 detects the remaining amount of the rechargeable battery 21 based on the control of the control unit 27, and outputs the obtained remaining battery amount to the control unit 27.
  • the control unit 27 receives at least an instruction (shooting instruction) for switching from the shooting standby state to the shooting enabled state from the input operation unit 26 or the communication unit 24. Then, the remaining battery level detection unit 40 is controlled so that the remaining capacity of the rechargeable battery 21 is detected.
  • the control unit 27 switches between the photographing enabled state and the photographing standby state based on the remaining amount detection result when the photographing instruction is input from the input operation unit 26 or the communication unit 24. . Specifically, the control unit 27 compares the remaining amount detection result when the shooting instruction is input with the remaining amount determination data in the ROM, and the remaining amount detection result satisfies the amount that can be shot. In some cases, the operating state of each of the plurality of drive units is controlled so as to switch to a photographing enabled state. On the other hand, if the amount is less than the shootable amount, the control unit 27 sets each of the drive units so as to enter the mode with the least power consumption in the shooting standby state, that is, the second shooting standby mode. Controls the operating status of. The power consumption of the rechargeable battery is controlled by controlling the driving state of each driving unit.
  • the control unit 27 displays the remaining amount of the rechargeable battery 21 on the indicator 25 based on the result. At this time, if the remaining amount detection result is less than the shootable amount, the control unit 27 controls the indicator 25 to display that shooting is impossible. Further, the control unit 27 transmits a signal to that effect to the console 6 via the communication unit 24.
  • Information input from the input operation unit 26 and a signal received from the communication unit 24 are sent to the control unit 27, and the control unit 27 receives the signal based on the transmitted signal. Each part is controlled.
  • control unit 27 drives the scanning drive circuit 16 to send a pulse to each photoelectric conversion element so as to scan and drive each photoelectric conversion element. Then, the signal is read out by the signal reading circuit 17 that reads out the electric energy accumulated in each photoelectric conversion element, and the read image signal is sent to the control unit 27. Control unit 27 is sent The received image signal is stored in the image storage unit 18. In addition, the image signal stored in the image storage unit 18 is appropriately sent to the console 6 via the communication unit 24.
  • the console 6 includes a control device 30 having a control unit 29 composed of, for example, a general-purpose CPU, ROM, RAM, etc. (all not shown).
  • the control unit 29 reads out a predetermined program stored in the ROM, develops it in the RAM work area, and the CPU executes various processes according to the program.
  • the console 6 transmits signals to and from external devices such as an input operation unit 31 for inputting various instructions, a display unit 32 for displaying images and various messages, and the radiation image detector 5. Provide communication unit 33 etc. to send and receive.
  • the input operation unit 31 is configured, for example, with an operation panel, a keyboard, a mouse, or the like, and receives a key press signal or a mouse operation signal pressed with the operation panel or keyboard.
  • the display unit 32 includes, for example, a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), and the like, and displays various screens according to instructions of display signals output from the control unit 29. Come on! /
  • the communication unit 33 communicates various information with the radiation image detector 5 via the base station 4 by a wireless communication method such as a wireless LAN.
  • a signal input from the input operation unit 31 or a signal received from the outside via the communication unit 33 is sent to the control unit 29, and a predetermined process is performed on the transmitted signal. It seems to be.
  • the radiation image information detected by the radiation image detector 5 is signaled and sent to the control unit 29, and the control unit 29 performs predetermined image processing based on this information.
  • the control unit 29 also includes radiographic images, thumbnail images, various types of information input from the input unit, the remaining amount of the rechargeable battery 21 based on the detection result of the battery remaining amount detection unit 40, and the state of the radiation image detector 5.
  • the state (shooting enabled state or shooting standby state) or the like is displayed on the display unit 32.
  • the control unit 27 of the radiation image detector 5 enters the first imaging standby mode so that imaging can be performed immediately after the reservation. In this way, the operating state of each of the plurality of drive units is controlled.
  • the radiologist selects the radiological image detector 5 to be used for the imaging on the console 6, and this is input to the input operation unit 31 of the console 6. input.
  • This input content is communicated to the communication unit 24 of the selected radiation image detector 5 through the communication unit 33 of the console 6 and input to the control unit 27 as, for example, imaging instruction information.
  • the control unit 27 controls the power consumption of the rechargeable battery 21 and switches the first shooting standby state power to the ready state.
  • the remaining battery level detection unit 40 is controlled so that is detected.
  • the control unit 27 determines that each of the plurality of driving units is based on the imaging instruction.
  • the power consumption of the rechargeable battery 21 is controlled by controlling the operating state of the rechargeable battery 21, and the first shooting standby state power is switched to the ready state. However, before the switching, the remaining capacity of the rechargeable battery 21 is detected.
  • the remaining battery level detection unit 40 is controlled so that
  • the remaining power detection result power obtained by the battery remaining amount detection unit 40 When the amount that can be photographed is satisfied, the control unit 27 switches each of the plurality of drive units so as to switch to the photographable state.
  • the power consumption of the rechargeable battery 21 is controlled by controlling the operating state of the battery.
  • the control unit 27 outputs to the console 6 via the communication unit 24 that shooting is possible. Based on the signal input to the communication unit 33, the console 6 controls the display unit 32 to indicate that photographing is possible.
  • the control unit 27 is set to the second shooting standby mode in the shooting standby state.
  • the power consumption of the rechargeable battery 21 is controlled by controlling the operating states of the plurality of drive units.
  • the control unit 27 controls the indicator 25 to display that shooting is impossible, and informs the console 6 via the communication unit 24 that shooting is impossible. Output to.
  • the console 6 controls the display unit 32 to display that photographing is impossible.
  • control unit 27 outputs the detection result of the battery remaining amount detection unit 40 and the state of the radiographic image detector 5 (capable of imaging or imaging standby state) to the console 6 via the communication unit 24.
  • the console 6 controls the display unit 32 based on the signal input to the communication unit 33 to display the remaining amount of the rechargeable battery 21 and the state of the radiation image detector 5.
  • the remaining battery level detection unit 40 Since the remaining battery level is detected by, the remaining battery level can be recognized before shooting. This makes it possible to determine whether normal shooting is possible before shooting, so that shooting can be prevented from being performed due to insufficient remaining battery capacity. In this way, if it is possible to prevent photographing due to a shortage of remaining battery power, the frequency of re-imaging can be suppressed and excessive exposure to the patient can be prevented.
  • the shooting is enabled and the shooting is enabled. If the amount is less than the maximum amount, the camera is placed in a shooting standby state, so that it is possible to reliably prevent the shooting from being performed in an amount less than the amount that can be shot. In addition, if the amount is less than the amount that can be photographed, the indicator 25 and the console 6 inform that the photographing is impossible, so the radiographer can take measures such as battery replacement and charging based on the notification. Can be applied.
  • the radiation image detector Since a plurality of modes (first and second imaging standby modes) with different power consumptions are provided in the imaging standby state, the radiation image detector is most suitable for the usage situation and the like.
  • the camera can be kept in a state of being able to perform efficient shooting operations while reducing unnecessary power consumption.
  • the present invention is not limited to the above embodiment, and can be modified as appropriate.
  • two types of modes can be selected as the shooting standby state.
  • the shooting standby mode is not limited to the two types illustrated here.
  • the power supply state deteriorates over time.
  • Photodiode standby mode that stops power supply only for photodiodes 233 and TFT234 that have a power supply to all but the image storage unit 18 and communication unit 24 are stopped. Only the photodiode 233 and the TFT 234, which require time, may be further selected from a plurality of types of modes such as a photographing standby mode in which power supply is started earlier than other members. Further, only one of the two shooting standby modes illustrated in the present embodiment may be provided.
  • the remaining amount detection of the rechargeable battery 21 is performed by the battery remaining amount detection unit 40 before switching from the first shooting standby state to the shooting ready state has been described as an example.
  • the remaining amount may be detected immediately after switching.
  • the term “immediately after switching” here refers to a state in which shooting is performed even though the shooting has been switched to a ready state.
  • the power source unit 19 is not limited to the configuration of the power source unit 19 provided with the rechargeable battery 21 in addition to the spare battery 20 as the battery constituting the power source unit 19. In addition, you can use it interchangeably or use a discarded battery.
  • a charging device such as a cradle is used to charge the rechargeable battery 21, and a power supply cord is connected to the terminal of the radiation image detector.
  • External power supply power It may be charged by receiving power. It is also possible to charge the battery with the rechargeable battery removed from the radiation image detector.
  • the communication unit 24 and the input operation unit 26 of the radiation image detector 5 are exemplified as a switching unit that gives an instruction (switching instruction) for switching between the imaging enabled state and the imaging standby state.
  • the force console 6 described above, mechanical switches other than these, electrical signals, sensors, etc. can be used as the switching unit.
  • the switching instruction is, for example, patient selection information input after the radiographic image information detector 5 used for imaging is selected, a power ON signal, For example, ONZOFF signal of other switches.
  • the signal from the radiation image detector 5 is handled as a switching instruction, for example, the signal from the switch or sensor (acceleration sensor, contact sensor, etc.) provided in the radiation image detector 5 or an external device such as a gradle.
  • a signal at the time of contact may be used.
  • server 2 and the radiation source 12 may be used as a switching unit, and signals from these may be used as a switching instruction.
  • the remaining amount detection is performed by the battery remaining amount detection unit 40 only when the shooting instruction is input to the control unit 27 is illustrated, but the input operation unit 26 and the console are illustrated. Even when there is a remaining amount detection instruction from 6, the remaining amount detection by the battery remaining amount detection unit 40 can be performed. Furthermore, the remaining amount detection is performed by the battery remaining amount detection unit 40 for a certain period. In this case, the remaining amount detection may be automatically performed every predetermined period. When continuous shooting is performed, it is always in the shooting state, so it is preferable to detect the remaining amount by the battery remaining amount detection unit 40 for each shooting. In this case, the remaining amount detection timing may be before or after shooting.
  • a read operation check that checks whether or not an image can be read normally
  • a transfer operation check that checks whether or not an image can be transferred normally
  • memory check to check whether the internal memory is normal or not. Determination data necessary for each determination is stored in the ROM of the control device 28 in the radiation image detector 5.
  • the control unit 27 controls the battery remaining amount detection unit 40 so that the remaining amount of the rechargeable battery 21 is detected.
  • an instruction to switch from the second shooting standby mode to the first shooting standby mode that is, among a plurality of shooting standby states, the power consumption is low. ! ⁇
  • an instruction to switch from standby mode to shooting standby mode standby mode switching command
  • the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • switching setting can be performed by operating the input operation unit 26.
  • a switching instruction to the first shooting standby mode is input to the input operation unit 26, or when a switching instruction signal to the first shooting standby mode is input from the console 6 to the communication unit 24, etc. Is the first shooting standby mode.
  • an instruction to switch to the second shooting standby mode is input to the input operation unit 26, or when a switching instruction signal to the second shooting standby mode is input from the console 6 to the communication unit 24, etc.
  • the input operation unit 26 or the communication unit 24 force S is a switching unit that gives an instruction for switching a plurality of shooting standby states according to the present invention.
  • the control unit 27 of the radiographic image detector 5 performs the second radiography standby mode in order to reduce power consumption during standby.
  • the operation state of each of the plurality of drive units is controlled so that
  • the radiologist selects the radiological image detector 5 to be used for the imaging on the console 6, and this is input to the input operation unit 31 of the console 6. input.
  • This input content is the communication unit 2 of the selected radiation image detector 5. 4 is communicated via the communication section 33 of the console 6, and is input to the control section 27 as standby state switching instruction information.
  • the control unit 27 controls the power consumption of the rechargeable battery 21 to switch from the second shooting standby mode to the first shooting standby mode.
  • the remaining battery level detector 40 is controlled so that the remaining battery level 21 is detected. Even when the radiologist directly operates the input operation unit 26 of the radiation image detector 5 and inputs a standby state switching instruction, the control unit 27 determines whether or not a plurality of driving units are operated based on the standby state switching instruction.
  • the power consumption of the rechargeable battery 21 is controlled by controlling the operating state of each, and the second shooting standby mode is switched to the first shooting standby mode.
  • the remaining battery level detection unit 40 is controlled so as to be detected.
  • the remaining amount detection result power obtained by the battery remaining amount detection unit 40 When the amount that can be photographed is satisfied, the control unit 27 has a plurality of drive units so that it can be switched to the first photographing standby mode. The power consumption of the rechargeable battery 21 is controlled by controlling the operating state of each. At this time, the control unit 27 outputs to the console 6 via the communication unit 24 that shooting is possible. Based on the signal input to the communication unit 33, the console 6 controls the display unit 32 to display that photography is possible.
  • the control unit 27 has a plurality of drive units so as to enter the second photographing standby mode.
  • the power consumption of the rechargeable battery 21 is controlled by controlling the respective operating states.
  • the control unit 27 controls the indicator 25 to display that shooting is impossible, and outputs to the console 6 via the communication unit 24 that shooting is impossible.
  • the console 6 controls the display unit 32 to display that photographing is impossible.
  • the remaining battery level detection unit Because the battery level is detected by 40, the battery level can be recognized before shooting. As a result, it is possible to determine whether or not normal shooting is possible before shooting, and thus it is possible to prevent shooting due to insufficient remaining battery power. Thus, the remaining battery If it is possible to prevent the imaging from being performed in an insufficient amount, the frequency of re-imaging can be suppressed and excessive exposure to the patient can be prevented.
  • the first shooting standby mode is set.
  • the second shooting standby mode is set in such a case that the amount that can be shot is satisfied, so that it is possible to reliably prevent shooting with less than the amount that can be shot.
  • the indicator 25 and the console 6 inform that the photographing is impossible, so that the radiographer takes measures such as battery replacement and charging based on the notification. Can be applied.
  • the communication unit 24 and the input operation unit 26 of the radiation image detector 5 are described as examples of the switching unit that gives the standby state switching instruction.
  • other mechanical switches and In addition, an electric signal, a sensor, or the like can be used as the switching unit.
  • the input content is treated as standby state switching instruction information.
  • the standby state switching instruction information is not limited to this, and other signals input to the console 6 may be handled as the standby state switching instruction information.
  • patient selection information, power ON signal, ONZOFF signal of other switches, etc. which are input after the radiographic image information detector 5 used for imaging is selected.
  • signals from the radiation image detector 5, server 2, and radiation source 12 are also used as standby state switching instruction information.
  • the signal from the radiation image detector 5 is handled as standby state switching instruction information, for example, the signal from the switch or sensor (acceleration sensor, contact sensor, etc.) provided in the radiation image detector 5, or the grade, etc. It is recommended to use a signal when touching an external device. I can get lost.
  • the check unit is driven at the time of start-up accordingly.
  • the operation check of the drive unit is performed to determine whether the unit can operate normally.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the main power source of the radiographic image detector 5 is turned ON and OFF as shown in FIG.
  • a start switch 41 is provided for inputting display and start stop instructions, and the operation state of the radiation image detector 5 can be switched and set by operating the start switch 41 and the input operation unit 26.
  • the activation switch 41 is used when replacing the rechargeable battery of the radiation image detector 5, and is used very rarely. Therefore, the activation switch 41 cannot be easily touched inside the housing 14, for example, the housing. It is preferable to provide a door that can be opened and closed at a part of the body 14 and to be provided inside the door so that it can be operated by opening the door. By arranging the activation switch 41 in this way, it is possible to prevent the radiation image detector 5 from malfunctioning due to an operator touching it accidentally.
  • the power supply unit 19 of the radiation image detector 5A is composed of only a rechargeable battery is illustrated.
  • the operation state of the radiation image detector 5 is composed of a main power supply OFF state and a main power supply ON state.
  • the main power supply OFF state is applied to all drive units of the radiation image detector 5! / In this state, the power is completely cut off! /, And the power supply from the rechargeable battery to each drive unit is completely cut off.
  • the rechargeable battery power is supplied to each drive unit of the radiation image detector 5, and it is possible to perform the photographing operation and consume more than the photographing enabled state. It consists of a shooting standby state with low power!
  • the main power OFF state is switched to the predetermined photographing standby state.
  • the shooting standby states when the shooting instruction is input to the input operation unit 26 or the shooting instruction signal from the console 6 is input to the communication unit 24 in the first shooting standby mode, the first shooting standby mode The camera is configured to switch to the shooting enabled state.
  • the second shooting standby mode when a standby instruction is input to the input operation unit 26 or when a standby instruction signal is input from the console 6 to the communication unit 24, the second shooting standby mode is switched from the first shooting standby mode. It is good also as a structure switched to imaging
  • the start switch 41 is a switching unit that gives an instruction to switch between the main power ON state and the main power OFF state, and the input operation unit 26 or the communication unit 24 is in a shooting ready state and a shooting standby state. It is a switching part which gives the instruction
  • the radiation image detector 5 includes check means for performing an operation check as to whether or not it is possible to normally perform the operation of each drive unit.
  • an operation check a power check of the power supply unit 19, a communication check of the communication unit 24, and a memory check of the image storage unit 18 are performed, and a check unit is provided for each operation check. ing.
  • each check means will be described.
  • a checking means for the power check there is a battery remaining amount detection unit 40 shown in FIG. 8.
  • the remaining battery level detection is performed to detect the remaining battery level, and it is checked whether the remaining battery level is more than a predetermined amount that can be shot and the result is output to the control unit 27. I'm starting to do it.
  • the communication check unit 20 includes a communication check unit 20. Whether the communication check unit 20 can normally exchange signals with the console 6 or the server 2 based on the control of the control unit 27. Alternatively, it is checked whether or not the image can be transferred normally, and the obtained result is output to the control unit 27.
  • the memory check unit 21 includes a memory check unit 21.
  • the memory check unit 21 checks whether the internal memory is normal or not based on the control of the control unit 27, and the obtained result. Is output to the control unit 27.
  • the timing of operation check by each of these check means can be considered in various ways, in this embodiment, it is at the time of startup, and the state power of the main power supply FF is activated by the activation switch 41 in the control unit 27.
  • the control unit 27 controls the operation check means to perform an operation check.
  • the control unit 27 detects each check means when a start instruction is input by the start switch 41. Based on the result of the operation check by each check means, the main power OFF state and the main switch are detected. The power is switched on. At that time, each drive unit for which the operation check is performed is temporarily operated, and in that state, the operation check is performed by the check unit. After the operation check, the drive unit is switched to a predetermined operation state. When it is detected that the drive unit that is checked for operation by the check means cannot operate normally, the control unit 27 does not switch to at least the shooting ready state! /, The In particular, when the power supply unit 19 detects that the normal operation cannot be performed, the main power supply is turned off and the communication unit 24 and the image storage unit 18 cannot operate normally.
  • the case where it is detected that the power supply unit 19 cannot operate normally refers to the case where the battery remaining amount detection unit 40 detects that the remaining amount of the rechargeable battery is less than a predetermined amount that can be shot. ing. [0129] Specifically, the control unit 27 compares the result of the power check and the result of the communication check when the start instruction is input, the result of the memory check, and the determination data in the ROM, and the rechargeable battery If it is detected that the remaining amount is more than the predetermined amount that can be shot and that the communication unit 24 and the image storage unit 18 can operate normally, shooting is immediately performed in the shooting standby state.
  • the power supply from the rechargeable battery is started to control the operating status of multiple drive units by controlling the amount of power supplied to each drive unit so that the first shooting standby mode is possible. Yes. Further, when the control unit 27 detects that the remaining amount of the rechargeable battery is equal to or greater than the predetermined amount and the communication unit 24 or the image storage unit 18 cannot operate normally, the control unit 27 Start charging the rechargeable battery power and control the amount of power supplied to each drive unit so that the camera is in the shooting standby state with the lowest power consumption, that is, the second shooting standby mode. This controls the operating status of multiple drive units.
  • control unit 27 detects that the remaining battery charge is less than the predetermined amount that can be shot, the rechargeable battery power was supplied during the operation check so that the main power supply was turned off.
  • the operating status of multiple drive units is controlled by shutting off the power supply to each drive unit. Therefore, by controlling the operating state of each drive unit, the power consumption of the entire radiation image detector 5 is controlled.
  • control unit 27 displays the result of the operation check by each check means on the indicator 25. Specifically, the remaining battery level is greater than or equal to a predetermined amount that can be taken.
  • the control unit 27 controls the indicator 25 to display that photographing is possible.
  • the control unit 27 controls the indicator 25 to operate normally. Is displayed.
  • the control unit 27 transmits these display signals to the console 6 as the operation state information of each drive unit via the communication unit 24! / RU
  • the control unit 27 controls the operating state of each drive unit to turn off the main power source. Switch to the predetermined shooting standby state, but before switching, the remaining battery level detection unit 40 and communication are performed so that the remaining battery level detection, communication unit 24 communication check, and image storage unit 18 memory check are performed. Controls the check unit 20 and memory check unit 21.
  • control unit 27 detects that the remaining amount of the rechargeable battery is equal to or greater than a predetermined amount that can be photographed and the communication unit 24 and the image storage unit 18 can perform normal operations
  • the control unit 27 controls the operating state of each drive unit by controlling the amount of power supplied from the rechargeable battery to each drive unit so as to switch to the first photographing standby mode.
  • the control unit 27 controls the indicator 25 to display that shooting is possible and outputs to the console 6 via the communication unit 24 that shooting is possible.
  • the console 6 controls the display unit 32 to display that photography is possible.
  • control unit 27 detects that the remaining amount of the rechargeable battery is greater than or equal to a predetermined amount that can be photographed and the communication unit 24 or the image storage unit 18 cannot operate normally.
  • the control unit 27 controls the operating state of each drive unit by controlling the amount of power supplied from the rechargeable battery to each drive unit so as to switch to the second photographing standby mode.
  • the control unit 27 controls the indicator 25 so that the drive unit that is detected to be unable to operate normally in the communication unit 24 or the image storage unit 18 can operate normally. Display that it is not possible.
  • the control unit 27 detects that the remaining amount of the rechargeable battery is equal to or greater than a predetermined amount that can be photographed and the image storage unit 18 cannot perform normal operation
  • the image storage unit 18 Is output to the console 6 via the communication unit 24 to the effect that cannot operate normally.
  • the console 6 controls the display unit 32 to display that the image storage unit 18 cannot operate normally.
  • the radiologist looks at the indicator 25 or the display unit 32 and repairs the drive unit that is displayed if it cannot operate normally. Used for operation.
  • the control unit 27 detects that the remaining amount of the rechargeable battery is less than a predetermined amount that can be photographed, the rechargeable battery power is supplied to each drive unit so that the main power supply is turned off.
  • the operating state of each drive unit is controlled by cutting off the power that is generated. Then, the radiologist sees that the radiation image detector 5A does not start, attaches the radiation image detector 5 to the charging device 23, charges the rechargeable battery, replaces the rechargeable battery, etc. Resolve the problem with the power supply unit 19 and use it again for shooting.
  • control unit 27 of the radiation image detector 5A switched to the first imaging standby mode receives either imaging instruction information or standby instruction information via the input operation unit 26 or the communication unit 24. Detect whether or not.
  • the radiographing instruction information is input to the console 6, and the radiographer selects the radiological image detector 5A to be used for imaging from the console 6, and that effect is input to the input operation unit 31 of the console 6.
  • this input content is communicated to the communication unit 24 of the selected radiation image detector 5 A through the communication unit 33 of the console 6 and input to the control unit 27 as imaging instruction information.
  • the imaging instruction is input as the imaging instruction information by directly operating the input operation unit 26 of the radiographic image detector 5A used for imaging by the radiologist.
  • the control unit 27 controls the operating states of the plurality of drive units, switches from the first shooting standby mode to the shooting ready state, and performs a shooting operation.
  • the radiographer selects radiological image detector 5A for switching the operation state to the second standby mode on console 6, and this is indicated to console 6 Input to the input operation unit 31. Then, this input content is communicated to the communication unit 24 of the selected radiation image detector 5 A through the communication unit 33 of the console 6 and is input to the control unit 27 as imaging standby instruction information.
  • the radiographer switches the operating state to the second standby mode before the imaging reservation instruction is input to the console 6, and the standby instruction is instructed by directly operating the input operation unit 26 of the radiation image detector 5A. Input as information.
  • the control unit 27 controls the operating states of the plurality of drive units to change from the first shooting standby mode to the second shooting standby mode. Switch.
  • the check means checks whether it is possible to perform normal operation at startup, so it can be determined whether it is possible to perform normal shooting before shooting, and each drive unit does not operate correctly. It is possible to prevent shooting in the state of. Therefore, it is possible to suppress the frequency of re-imaging due to malfunction of each drive unit and to prevent excessive exposure to the patient.
  • the control unit 27 controls the operation state of each drive unit according to the result of the operation check, and determines that it is impossible to normally operate in each drive unit based on the result of the operation check.
  • the radiation image detector 5A should not be switched to at least the radiographable state, and the radiographic image detector 5A is in the main power OFF state, particularly when the remaining amount of the rechargeable battery is less than a predetermined amount that can be captured. Therefore, it is possible to reliably prevent shooting with the rechargeable battery in a malfunctioning state.
  • the remaining charge of the rechargeable battery is equal to or greater than a predetermined amount that can be photographed, and the operation check results of the communication check unit 20 and the memory check unit 21 are normal. If the rechargeable battery is more than the specified amount and the results of the operation check of the communication check unit 20 and the memory check unit 21 are not normal, Since the indicator 25 and the console 6 respectively notify that the operation cannot be performed, the radiologist can deal with the malfunction of each drive unit based on the notification.
  • the radiological image detector Since a plurality of modes (first and second imaging standby modes) with different power consumption are provided as imaging standby states, the radiological image detector is most suitable depending on the usage conditions and the like. The camera can be kept in a state of being able to perform efficient shooting operations while reducing unnecessary power consumption.
  • the shooting standby state is displayed.
  • the mode with the lowest power consumption (second shooting standby mode) As a result, power consumption can be reduced as much as possible when there is little battery left.
  • the radiological image detector 5A can improve the degree of freedom of the imaging operation and improve the overall operability compared to the case where it is used in a wired connection with a cord or the like. It is preferable to use it in a dress.
  • information such as images can be exchanged quickly.
  • the console unlike the case of using a cordless radiological image detector, it is not always possible to communicate with the console, so it is not possible to constantly check communication and charge.
  • the application of the present invention can be more effective.
  • the remaining battery level detection unit 40, the communication check unit 20, and the memory check unit 21 are provided as check means. It is possible to check the operation. At that time, it is possible to have one check means perform multiple operation checks.
  • a specific operation check includes a reading operation check of the signal reading circuit 17 that checks whether or not an image can be read normally. Further, an operation check may be performed to check whether the photodiode 233 and the TFT 234 function normally.
  • the radiographic image detector 5A is not switched at least to the imaging enabled state. do it.
  • a configuration may be adopted in which restarting is performed. Note that determination data necessary for each determination of these operation checks may be stored in the ROM of the control device 28 in the radiation image detector 5A.
  • the communication unit 24 and the input operation unit of the radiographic image detector 5A are used as a switching unit that gives an instruction to switch the operation state between the main power ON states of the radiographic image detector 5A.
  • 26 has been described as an example, but it is also possible to arrange a sensor in the radiation image detector 5A and use this sensor as a switching unit.
  • a sensor for example, acceleration
  • An external device such as a cradle is installed to detect changes in acceleration and pressure applied to the radiation image detector 5A when the radiation image detector 5 is in contact with the external device and when it is not in contact.
  • the operation state between the main power ON states of the radiation image detector 5 may be switched.
  • the operation state between the main power ON states of the radiation image detector 5A is switched. However, at that time, it may be configured to simultaneously select patients to be photographed. Alternatively, the operation state between the main power ON states may be switched with respect to the radiation image detector 5A previously registered in the console 6 by turning on the power to the console 6.
  • the remaining battery level detection unit 40, the communication check unit 20, and the memory check unit 21 have been described by way of example.
  • the operation by these check means is performed appropriately during startup.
  • a check may be performed.
  • an operation check timing for example, when there is an operation check instruction from the input operation unit 26 or the console 6, it is possible to perform an operation check by the check means.
  • the operation check by the check means for a certain period is not performed during the start-up after switching to the predetermined operation state, the operation check may be automatically performed every predetermined period. .
  • the shooting state is always V, so the check means is used for each shooting.
  • the operation check in this case may be before or after shooting.
  • the radiographic image detected by the radiographic image detector 5A is transmitted to the console 6 to perform image processing.
  • the transmission destination of the radiographic image and the image processing are performed.
  • the location may be performed by another external device such as the host computer or the server 2.
  • the result of the operation check of the radiation image detector 5 is displayed on the display unit 32 of the console 6, and the function of the notification unit is also used on the display unit 32. Let's display the operating status of the radiation image detector 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

 放射線の検出が可能な撮影可能状態と、撮影可能状態よりも消費電力量の少ない撮影待機状態とを切り替え自在な放射線画像検出器である。この放射線画像検出器には、撮影可能状態及び撮影待機状態を切り替えるための指示を与える切替部と、電力供給源として充電又は交換自在な電池と、電池の残量を検出する電池残量検出部とが備えられている。また、放射線画像検出器には、切替部からの指示に基づいて、電池の消費電力量を制御し撮影可能状態及び撮影待機状態とを切り替えるとともに、電池残量検出部を制御する制御部が備えられている。制御部は、撮影待機状態を撮影可能状態に切り替える撮影指示が切替部から入力されると電池の残量が検出されるように、電池残量検出部を制御する。

Description

放射線画像検出器及び放射線画像撮影システム
技術分野
[0001] 本発明は、放射線画像検出器及び放射線画像撮影システムに係り、特に、 X線画 像に代表される放射線画像を撮影するための放射線画像検出器及び放射線画像撮 影システムに関する。
背景技術
[0002] 従来より、医療診断にあっては、被写体に X線等の放射線を照射し、当該被写体を 透過した放射線の強度分布を検出して得られた放射線画像が広く利用されており、 近年では、撮影に際し、放射線を検出して電気エネルギーに変換し、放射線画像情 報として検出する FPD (Flat Panel Detector:放射線画像検出器)を用いた放射線画 像撮影装置が提案されて ヽる。
[0003] 近年、 FPDの運搬性'取扱い性の向上を目的として当該 FPDを力セッテに収容し た力セッテ型 FPDも開発されている(例えば、特許文献 1参照)。特に力セッテ型 FP Dの搬送性を活かすために、力セッテ型 FPDを制御するコンソールに無線で通信す る力セッテ型 FPDが開発されている。無線式の力セッテ型 FPDにおいては他の機器 力もの給電が行われないので、電池が内蔵されている。そして、力セッテ型 FPDでは 電池をできるだけ持続させるために、例えば撮影時などの電力消費の大き ヽ状態( 撮影可能状態)と、待機時などの電力消費の少な ヽ状態 (撮影待機状態)とを切り替 えるようになつている。撮影可能状態では、力セッテ型 FPDの撮影に必要な各部に 電力が供給された状態になっている。一方、撮影待機状態では少なくとも各種指示 を受け付けるために必要な各部に電力が供給された状態、つまり撮影には必要であ るものの各種指示の受付には不要な各部には電極が供給されていない状態となって いる。
特許文献 1:特開平 6 - 342099号公報
発明の開示
発明が解決しょうとする課題 [0004] ところで、無線型の力セッテ型 FPDであると、他の機器からの給電が行われて!/、な いために電力残量によっては、撮影待機状態力も撮影可能状態に切り替わって撮影 が行われたとしても、十分に電力が供給されない場合がある。撮影を行うための必要 な電力がないと、信号が読み取れな力つたり、読み取ったとしても画像が不鮮明で正 確な診断が行えないという不具合を生じてしまう。さらに読み取った画像データは通 常メモリに保持されるが電力供給が十分でなければメモリも正常に稼動せずに画像 データを消去する可能性もある。そして、コンソール等の外部機器に画像データを送 信する場合にぉ ヽても電力供給が不十分であれば送信できなくなってしまう。 Vヽずれ の場合にぉ 、ても患者に再撮影を強 、ることになつてしま 、、不要な被曝を生じてし まつ。
[0005] 本発明の課題は、電池の残量不足で撮影が行われることを防止して、再撮影の頻 度を抑え、患者に対する余分な被曝を防止することである。
課題を解決するための手段
[0006] 請求の範囲第 1項に記載の発明における放射線画像検出器は、
放射線の検出が可能な撮影可能状態と、前記撮影可能状態よりも消費電力量の 少な 、撮影待機状態とを切り替え自在な放射線画像検出器であって、
前記撮影可能状態及び前記撮影待機状態を切り替えるための指示を与える切替 部と、
複数の駆動部に電力を供給する電力供給源として充電又は交換自在な電池と、 前記電池の残量を検出する電池残量検出部と、
前記切替部からの指示に基づ!/、て、前記複数の駆動部の稼働状態を制御すること で前記撮影可能状態及び前記撮影待機状態を切り替えるとともに、前記電池残量検 出部を制御する制御部とを備え、
前記制御部は、
前記電池残量検出部による前記電池の残量の検出結果に基づいて、前記撮影待 機状態から前記撮影可能状態に切り替わるように、前記複数の駆動部の可動状態を 制御することを特徴として 、る。
[0007] 請求の範囲第 1項に記載の発明によれば、電池残量検出部による電池の残量の検 出結果に基づいて撮影待機状態から撮影可能状態に切り替えられるので、電磁残 量が不足の場合には撮影可能状態に切り替えられないようにすることができる。これ により、電池の残量不足で撮影が行われることを防止することができる。
[0008] 請求の範囲第 2項に記載の発明は、請求の範囲第 1項に放射線画像検出器にお いて、
前記制御部は、
前記撮影待機状態を前記撮影可能状態に切り替える撮影指示が前記切替部から 入力された際における前記電池残量検出部による残量検出結果に基づいて、前記 撮影可能状態及び前記撮影待機状態が切り替えられるように前記複数の駆動部の 稼働状態を制御することを特徴として 、る。
[0009] 請求の範囲第 2項に記載の発明によれば、撮影指示が切替部から入力された際に おける電池残量検出部による残量検出結果に基づいて、撮影可能状態及び撮影待 機状態が切り替えられるので、撮影前に電池残量に適した状態に自動で切り替える ことができる。
[0010] 請求の範囲第 3項に記載の発明は、請求の範囲第 2項に記載の放射線画像検出 器において、
前記制御部は、
前記撮影指示が前記切替部から入力された際における前記電池残量検出部の残 量検出結果が、撮影可能な量を満たしている場合には前記撮影可能状態にし、撮 影可能な量未満である場合には前記撮影待機状態にするように、前記複数の駆動 部の稼働状態を制御することを特徴として 、る。
[0011] 請求の範囲第 3項に記載の発明によれば、撮影指示が切替部力 入力された際に おける電池残量検出部の残量検出結果力 撮影可能な量を満たしている場合には 撮影可能状態にされて、撮影可能な量未満である場合には撮影待機状態にされる ので、撮影可能な量未満で撮影が行われることを確実に防止することができる。
[0012] 請求の範囲第 4項に記載の発明は、請求の範囲第 3項に記載の放射線画像検出 器において、
前記制御部の制御に基づいて報知を行う報知部を備え、 前記制御部は、
前記撮影指示が前記切替部から入力された際における前記電池残量検出部の残 量検出結果が、撮影可能な量未満である場合には、前記報知部を制御して、撮影が 不可能である旨を報知させることを特徴として 、る。
[0013] 請求の範囲第 4項に記載の発明によれば、撮影指示が切替部から入力された際に おける電池残量検出部の残量検出結果が、撮影可能な量未満である場合には、撮 影が不可能である旨を報知部が報知するので、放射線技師はその報知に基づいて 、例えば電池の交換、充電等の対処を施すことができる。
[0014] 請求の範囲第 5項に記載の発明は、請求の範囲第 1項〜第 4項の何れか一項に記 載の放射線画像検出器において、
前記撮影待機状態は、複数のモードを有し、
前記制御部は、
前記複数のモードのそれぞれ毎に消費電力が異なるように、前記複数の駆動部の 稼働状態を制御することを特徴として 、る。
[0015] 請求の範囲第 5項に記載の発明によれば、撮影待機状態にそれぞれ消費電力の 異なる複数のモードが設けられているので、電池の充電又は交換の完了後、放射線 画像検出器をその使用状況等に応じて最も適した状態にしておくことができ、無駄な 消費電力を抑えつつ効率的な撮影作業を行うことができる。
[0016] 請求の範囲第 6項に記載の発明は、請求の範囲第 5項に記載の放射線画像検出 器において、
前記制御部は、
前記撮影指示が前記切替部から入力された際における前記電池残量検出部の残 量検出結果が、撮影可能な量未満である場合には前記撮影待機状態の前記複数の モードうち、最も消費電力量の少ないモードとなるように、前記複数の駆動部の稼働 状態を制御することを特徴として 、る。
[0017] 請求の範囲第 6項に記載の発明によれば、撮影指示が切替部から入力された際に おける電池残量検出部の残量検出結果が、撮影可能な量未満である場合には撮影 待機状態の複数のモードうち、最も消費電力量の少ないモードとなっているので、撮 影が不可能であるときの消費電力を極力低減することができる。
[0018] 請求の範囲第 7項に記載の発明は、請求の範囲第 5項又は第 6項に記載の放射線 画像検出器において、
前記制御部は、前記複数のモードのうち、消費電力の少ないモードから消費電力 の多いモードに切り替える待機状態切替指示が前記切替部から入力されると前記電 池の残量が検出されるように、前記電池残量検出部を制御することを特徴としている
[0019] 消費電力の異なる複数の撮影待機状態が用意されていると、待機時の条件に応じ て撮影待機状態を切り替えることが可能となる。放射線画像検出器には、電力が供 給されていると経時的に劣化する部分 (フォトダイオードや薄膜トランジスタ等)がある 。フォトダイオードや薄膜トランジスタ等は、電力供給が停止されてから再度供給され たとしても、安定するまでに時間が力かってしまう。これらのことから、複数の撮影待機 状態のうち、当分の間撮影が行われない場合にはフォトダイオードや薄膜トランジス タに電力供給しない撮影待機状態が設定されて、間もなく撮影が行われる場合には フォトダイオードや薄膜トランジスタに電力を供給する撮影待機状態が設定されること が考えられる。また、読み取り ICなどは消費電力が大きく立ち上がりに時間がかから な 、ので撮影直前まで電力を供給しな 、撮影待機状態が設定されることが考えられ る(この応対ではフォトダイオード等には電力が供給されている)。この例からも分かる ように複数の撮影待機状態のうち、消費電力の少な!、撮影待機状態から多!、撮影待 機状態に遷移する場合にはその後に撮影が控えている可能性が高い。つまり、請求 の範囲第 7項に記載の発明のように、消費電力の少ない撮影待機状態力 消費電力 の多い撮影待機状態に切り替える待機状態切替指示が切替部から入力されると電 池残量が検出されれば、撮影の前に電池残量を認識することができる。これにより、 撮影前に正常な撮影が可能か否かを判定することができるために、電池の残量不足 で撮影が行われることを防止することができる。
[0020] 請求の範囲第 8項に記載の発明は、請求の範囲第 1項〜第 7項の何れか一項に記 載の放射線画像検出器において、
起動時に前記駆動部が正常に動作を行うことができるか否か前記駆動部の動作チ エックを行うチェック手段とを備えており、
前記動作チェックの結果に基づき、前記複数の駆動部の稼働状態を制御する制御 部を備えたことを特徴として 、る。
[0021] 請求の範囲第 8項に記載の発明によれば、照射された放射線を検出して画像情報 を取得する放射線画像検出器であって、複数の駆動部と、起動時に前記駆動部が 正常に動作を行うことができる力否か前記駆動部の動作チェックを行うチェック手段と を備えており、前記動作チェックの結果に基づき、前記複数の駆動部の稼働状態を 制御する制御部を備えて!/ヽるので、放射線画像検出器は撮影前に駆動部の動作チ エックを行うことができる。これにより、撮影前に正常に各駆動部が動作を行うことが可 能か否力判定することが可能となるために、各駆動部が正常に作動されない状態で 撮影が行われることを防止することができる。
[0022] 請求の範囲第 9項に記載の発明は、請求の範囲第 8項に記載の放射線画像検出 器において、
前記稼動状態は、放射線の検出が可能な撮影可能状態及び前記撮影可能状態よ りも消費電力量の少ない撮影待機状態からなる主電源 ONの状態と、前記駆動部に 対して電力供給が完全に遮断される主電源 OFFの状態とから構成されており、 前記チェック手段が、前記各駆動部において正常に動作を行うことができないこと を検知した場合には、少なくとも前記撮影可能状態へ切り替えないようにすることを 特徴としている。
[0023] 請求の範囲第 9項に記載の発明によれば、前記稼動状態は、放射線の検出が可 能な撮影可能状態及び前記撮影可能状態よりも消費電力量の少ない撮影待機状態 からなる主電源 ONの状態と、前記駆動部に対して電力供給が完全に遮断される主 電源 OFFの状態とから構成されており、前記チェック手段が、前記各駆動部におい て正常に動作を行うことができないことを検知した場合には、少なくとも前記撮影可能 状態へ切り替えないようにする。したがって、放射線画像検出器は、その稼動状態と して撮影可能状態及び撮影待機状態からなる主電源 ONの状態と、主電源 OFFの 状態との間を遷移しており、チェック手段による動作チェックの結果、各駆動部にお いて正常に動作を行うことができないことを検知した場合には、制御部は、撮影待機 状態又は主電源 OFFの状態へ切り替えるように複数の駆動部の稼働状態を制御す ることがでさる。
[0024] 請求の範囲第 10項に記載の発明は、請求の範囲第 9項に記載の放射線画像検出 器において、
前記電池残量検出部が、前記電源部の電力残量が撮影可能な所定量未満である ことを検知した場合には、前記制御部は、前記主電源 OFFの状態とすることを特徴と することを特徴としている。
[0025] 請求の範囲第 10項に記載の発明によれば、前記電池残量検出部が、前記電源部 の電力残量が撮影可能な所定量未満であることを検知した場合には、前記制御部は 、前記主電源 OFFの状態にする。したがって、放射線画像検出器は、電池残量検出 部による残量検出の結果、電源部の電力残量が所定量未満の場合には、制御部は 、主電源 OFF状態とするように複数の駆動部の稼働状態を制御し、放射線画像検出 器を起動させな 、ようにすることができる。
[0026] 請求の範囲第 11項に記載の発明は、請求の範囲第 9項に記載の放射線画像検出 器において、
前記撮影待機状態は、第 1の撮影待機モードと、前記第 1の撮影待機モードより消 費電力の少ない第 2の撮影待機モードとから構成されており、
前記駆動部として通信部を備えるとともに、
前記動作チェックとして前記通信部の通信チェックを行う通信チェック部を備えるこ とを特徴としている。
[0027] 請求の範囲第 11項に記載の発明によれば、前記撮影待機状態は、第 1の撮影待 機モードと、前記第 1の撮影待機モードより消費電力の少ない第 2の撮影待機モード とから構成されており、前記駆動部として通信部を備えるとともに、前記動作チェック として前記通信部の通信チヱックを行う通信チヱック部を備えるので、制御部は通信 チェックの結果に応じて、複数の駆動部の稼働状態を制御することができる。
[0028] 請求の範囲第 12項に記載の発明は、請求の範囲第 11項に記載の放射線画像検 出器において、
前記通信チェック部力 前記通信部において正常に動作を行うことができないこと を検知した場合には、前記制御部は、前記第 2の撮影待機モードとすることを特徴と している。
[0029] 請求の範囲第 12項に記載の発明によれば、前記通信チェック部が、前記通信部に おいて正常に動作を行うことができないことを検知した場合には、前記制御部は、前 記第 2の撮影待機モードとする。したがって、制御部は、通信チェック部が、通信部に おいて正常に動作を行うことができないことを検知した場合には、第 2の撮影待機モ ードとするように複数の駆動部の稼働状態を制御し、放射線画像検出器をより消費 電力の少ない状態で稼動させることができる。
[0030] 請求の範囲第 13項に記載の発明は、請求の範囲第 14項に記載の放射線画像検 出器において、
前記制御部の制御に基づいて報知を行う報知部を備え、
前記通信チェック部力 前記通信部において正常に動作を行うことができないこと を検知した場合には、前記報知部は、前記通信部が正常に動作を行うことが不可能 である旨を報知することを特徴として 、る。
[0031] 請求の範囲第 13項に記載の発明によれば、前記制御部の制御に基づいて報知を 行う報知部を備え、前記通信チェック部が、前記通信部において正常に動作を行うこ とができないことを検知した場合には、前記報知部は、前記通信部が正常に動作を 行うことが不可能である旨を報知するので、制御部は通信部が正常に動作を行うこと が不可能である場合に報知部を介して通信部が正常に動作を行うことが不可能であ る旨を知らせることができる。
[0032] 請求の範囲第 14項に記載の発明は、請求の範囲第 9項に記載の放射線画像検出 器において、
前記撮影待機状態は、第 1の撮影待機モードと、前記第 1の撮影待機モードより消 費電力の少ない第 2の撮影待機モードとから構成されており、
前記駆動部として画像記憶部を備えるとともに、
前記動作チェックとして前記画像記憶部のメモリチェックを行うメモリチェック部を備 えることを特徴としている。
[0033] 請求の範囲第 14項に記載の発明によれば、前記撮影待機状態は、第 1の撮影待 機モードと、前記第 1の撮影待機モードより消費電力の少ない第 2の撮影待機モード とから構成されており、前記駆動部として画像記憶部を備えるとともに、前記動作チェ ックとして前記画像記憶部のメモリチェックを行うメモリチェック部を備えるので、制御 部は画像記憶部のメモリチェックの結果に応じて、複数の駆動部の稼働状態を制御 することがでさることがでさる。
[0034] 請求の範囲第 15項に記載の発明は、請求の範囲第 14項に記載の放射線画像検 出器において、
前記メモリチェック部力 画像記憶部において正常に動作を行うことができないこと を検知した場合には、前記制御部は前記第 2の撮影待機モードとすることを特徴とし ている。
[0035] 請求の範囲第 15項に記載の発明によれば、前記メモリチェック部力 画像記憶部 において正常に動作を行うことができないことを検知した場合には、前記制御部は前 記第 2の撮影待機モードとする。したがって、制御部は、メモリチェック部が、画像記 憶部において正常に動作を行うことができないことを検知した場合には、第 2の撮影 待機モードとするように複数の駆動部の稼働状態を制御し、放射線画像検出器をよ り消費電力の少ない状態で稼動させることができる。
[0036] 請求の範囲第 16項に記載の発明は、請求の範囲第 1項〜第 15項の何れか一項 に記載の放射線画像検出器において、
照射された放射線を検出し、当該放射線を電気信号に変換して蓄積し、蓄積され
7こ
信号を読み出して放射線画像情報を取得する力セッテ型のフラットパネルディテクタ であることを特徴として 、る。
[0037] 請求の範囲第 16項に記載の発明によれば、放射線画像検出器が力セッテ型 FPD であるため、撮影場所を選ばず容易に持ち運ぶことが可能であり、撮影の自由度が 向上する。また、このような放射線画像検出器を撮影に用いる場合でも、電池の充電 又は交換の完了後、放射線画像検出器をその使用状況等に応じて撮影可能状態又 は撮影待機状態にしておくので、無駄な消費電力を抑えつつ効率的な撮影作業を 行うことができるという効果を奏する。 [0038] 請求の範囲第 17項に記載の発明における放射線画像撮影システムは、 請求の範囲第 1項〜第 16項の何れか一項の放射線画像検出器と、
前記放射線画像検出器を制御するコンソールとを備えることを特徴としている。
[0039] 請求の範囲第 17に記載の発明によれば、放射線画像撮影システムにお!/、ても請 求の範囲第 1項〜第 16項に記載の発明と同等の作用、効果を奏することができる。
[0040] 請求の範囲第 18項に記載の発明は、請求の範囲第 17項に記載の放射線画像撮 影システムにおいて、
前記コンソールは、前記制御部の制御に基づ 、て表示を行う表示部を備え、 前記制御部は、前記撮影指示が前記切替部から入力された際における前記電池 残量検出部の残量検出結果が、撮影可能な量未満である場合には、前記表示部を 制御して、撮影が不可能である旨を表示させることを特徴として 、る。
[0041] 請求の範囲第 18項に記載の発明によれば、請求の範囲第 4項に記載の発明と同 等の作用、効果を奏することができる。
[0042] 請求の範囲第 19項に記載の発明は、請求の範囲第 18項に記載の放射線画像撮 影システムにおいて、
前記制御部は、前記電池の残量検出部の検出結果に基づいて前記表示部を制御 し、前記電池の残量を表示することを特徴としている。
[0043] 請求の範囲第 19項に記載の発明によれば、コンソールの表示部に電池の残量が 表示されるので電池残量を視認することができる。これにより、電池の充電若しくは交 換に 、ち早く対処することが可能となる。
[0044] 請求の範囲第 20項に記載の発明は、請求の範囲第 18項又は第 19項に記載の放 射線画像撮影システムにお 、て、
前記制御部は、前記表示部を制御して、前記放射線画像検出器が前記撮影可能 状態であるか前記撮影待機状態であるかを表示することを特徴としている。
[0045] 請求の範囲第 20項に記載の発明によれば、コンソールの表示部に放射線画像検 出器が撮影可能状態であるカゝ撮影待機状態であるかが表示されるので放射線画像 検出器の現状を視認することができる。
[0046] 請求の範囲第 21項に記載の発明における放射線画像撮影システムは、 請求の範囲第 8項〜第 15項の何れか一項の放射線画像検出器と、 前記放射線画像検出器を制御するコンソールとを備え、
前記コンソールは、前記放射線画像検出器の稼動状態及び前記放射線画像検出 器の動作チェックの結果のうち、 V、ずれか一方又は両方を報知する報知部を備える ことを特徴としている。
[0047] 請求の範囲第 21項に記載の発明によれば、前記コンソールは、前記放射線画像 検出器の稼動状態及び前記放射線画像検出器の動作チェックの結果のうち、いず れか一方又は両方を報知する報知部を備えるので、コンソールは報知部を介して放 射線画像検出器の稼動状態や前記チェック手段によるチェック状況を知らせることが できる。
発明の効果
[0048] 本発明によれば、撮影前に正常な撮影が可能力否かを判定することが可能である ために、電池の残量不足で撮影が行われることを防止することができ、再撮影の頻度 を抑え、患者に対する余分な被曝を防止することができる。
図面の簡単な説明
[0049] [図 1]本発明に係る放射線画像撮影システムの一実施形態を例示する概略構成を示 す図である。
[図 2]本発明に係る放射線画像検出器の要部構成を示す斜視図である。
[図 3]本発明に係る放射線画像検出器の要部構成示すブロック図である。
[図 4]図 2の放射線画像検出器に備わる信号検出部を構成する 1画素分の光電変換 部の等価回路図である。
[図 5]図 4の光電変換部を二次元に配列した等価回路図である。
[図 6]図 1の放射線画像撮影システムを構成するコンソールの要部構成示すブロック 図である。
[図 7]第 3の実施の形態の放射線画像検出器を表す斜視図である。
[図 8]第 3の実施の形態の放射線画像検出器の要部構成を表すブロック図である。 発明を実施するための最良の形態
[0050] [第 1の実施の形態] 以下、本発明の実施の形態を、図 1から図 6を参照して説明する。
[0051] 図 1は、本発明に係る放射線画像検出器を適用した放射線画像撮影システムの一 実施形態の概略構成を示す図である。
[0052] 本実施形態による放射線画像撮影システム 1は、例えば、病院内で行われる放射 線画像撮影において適用されるシステムであり、図 1に示すように、撮影や患者に関 する各種の情報等を管理するサーバ 2と、放射線画像撮影に関する操作を行う撮影 操作装置 3と、例えば無線 LAN (Local Area Network)等の無線通信方式による通信 を行うための基地局 4と、放射線画像検出器 5を制御するとともに放射線画像検出器 5により検出された放射線画像の画像処理等を行うコンソール 6とがネットワーク 7を 通じて接続されている。撮影操作装置 3にはケーブル 8を介して、被写体 9である患 者に放射線を照射して放射線画像の撮影を行う放射線画像撮影装置 10が接続され ている。放射線画像撮影装置 10及び放射線画像検出器 5は、例えば 1つの撮影室 1 1内に 1つずつ設置されており、撮影操作装置 3によって放射線画像撮影装置 10を 操作し放射線画像検出器 5によって放射線画像を検出することによって放射線画像 情報を得ることができるようになつている。なお、 1つの撮影室 11に複数の放射線画 像検出器 5が備えられて 、てもよ 、。
[0053] ここで、ネットワーク 7は、当該システム専用の通信回線であっても良いが、システム 構成の自由度が低くなつてしまう等の理由のため、イーサネット(Ethernet ;登録商標) 等の既存の回線である方が好ましい。なお、ネットワーク 7には、ここに例示したもの の他、他の撮影室 11の放射線画像撮影装置 10を操作する撮影操作装置 3や放射 線画像検出器 5、コンソール 6が複数接続されて 、てもよ 、。
[0054] まず、撮影操作装置 3は、操作パネル等から構成され放射線画像撮影装置 10を操 作する、例えば撮影条件などの信号を入力する入力操作部、撮影条件等の情報や 各種の指示等を表示する表示部、及び放射線画像撮影装置 10に対して電力を供 給する電源部等 ( ヽずれも図示せず)を備えて構成されて ヽる。
[0055] 放射線画像撮影装置 10は、撮影室 11の内部に配置され、放射線源 12を有してお り、この放射線源 12に管電圧が印加されることによって放射線が発生するようになつ ている。放射線源 12としては、例えば、放射線管が用いられ、放射線管は熱励起に よって生ずる電子を高電圧で加速して陰極に衝突させることで、放射線を発生するよ うになつている。
[0056] 次に、放射線画像検出器 5は、放射線画像撮影装置 10の放射線源 12から照射さ れて被写体 9を透過した放射線を検出して放射線画像を取得するものであり、撮影を 行う際に放射線源 12から照射される放射線の照射範囲に配置されるようになって ヽ る。なお、放射線画像検出器 5は、例えば、図 1に示すように、被写体 9と被写体 9を 載置する寝台 13との間に配置されるが、放射線画像検出器 5を配置する位置はこれ に限定されず、例えば、寝台の下方に放射線画像検出器 5を装着する検出器装着 口(図示しない)を設けて、放射線画像検出器 5がこの検出器装着口に装着されるよ うにしてもよい。
[0057] 放射線画像検出器 5は、力セッテ型のフラットパネルディティクタである放射線画像 検出器 5である。以下、図 2及び図 3を用いて、放射線画像検出器 5の構造について 説明する。
[0058] 図 2に示すように、放射線画像検出器 5は、内部を保護する筐体 14を備えており、 力セッテとして携帯可能に構成されて 、る。
[0059] 筐体 14の内部には、照射された放射線を電気信号に変換する撮像パネル 15が層 を成して形成されている。撮像パネル 15における放射線の照射面側には、入射され た放射線の強度に応じて発光を行う発光層(図示せず)が設けられている。
[0060] 発光層は、一般にシンチレータ層と呼ばれるものであり、例えば、蛍光体を主たる 成分とし、入射した放射線に基づいて、波長が 300nmから 800nmの電磁波、すな わち、可視光線を中心に紫外光力 赤外光にわたる電磁波 (光)を出力するようにな つている。
[0061] この発光層で用いられる蛍光体は、例えば、 CaW04等を母体とするものや、 Csl :
T1や Gd202S :Tb、 ZnS: Ag等の母体内に発光中心物質が付活されたものを用い ることができる。また、希土類元素を Mとしたとき、 (Gd, M, Eu) 203の一般式で示さ れる蛍光体を用いることができる。特に、放射線吸収及び発光効率が高いことより Csl : T1や Gd202S :Tbが好ましぐこれらを用いることで、ノイズの低い高画質の画像を 得ることができる。 [0062] この発光層の放射線が照射される側の面と反対側の面には、発光層から出力され た電磁波 (光)を電気工ネルギ一に変換して蓄積し、蓄積された電気工ネルギ一に基 づく画像信号の出力を行う信号検出部 232が形成されている。
[0063] ここで、撮像パネル 15の回路構成について説明する。図 4は、信号検出部 232を 構成する 1画素分の光電変換部の等価回路図である。
[0064] 図 4に示すように、 1画素分の光電変換部の構成は、フォトダイオード 233と、フォト ダイオード 233で蓄積された電気エネルギーをスイッチングにより電気信号として取り 出す薄膜トランジスタ (以下 TFT234)とから構成されて ヽる。取り出された電気信号 は、増幅器 238により信号読み出し回路 237が検出可能なレベルにまで電気信号を 増幅するようになっている。なお、増幅器 238には、 TFT234とコンデンサで構成さ れた図示しないリセット回路が接続されており、 TFT234にスィッチを入れることによ り蓄積された電気信号をリセットするリセット動作が行われるようになつている。また、 フォトダイオード 233は、単に規制キャパシタンスを有した光ダイオードでもよいし、フ オトダイオード 233と光電変換部のダイナミックレンジを改良するように追加コンデン サを並列に含んで!/ヽるものでもよ!/ヽ。
[0065] 図 5は、このような光電変換部を二次元に配列した等価回路図であり、画素間には 、走
查線 L1と信号線 Lrが直交するように配設されている。前述のフォトダイオード 233に は、 TFT234が接続されており、 TFT234が接続されている側のフォトダイオード 23 3の一端は信号線 Lrに接続されている。一方、フォトダイオード 233の他端は、各行 に配された隣接するフォトダイオード 233の一端と接続されて共通のバイアス線 Lbを 通じてバイアス電源 239に接続されている。このバイアス電源 239の一端は制御部 2 7に接続され、制御部 27からの指示によりバイアス線 Lbを通じてフォトダイオード 233 に電圧が力かるようになっている。また各行に配された TFT234は、共通の走査線 L1 に接続されており、走査線 L1は走査駆動回路 236を介して制御部 27に接続されて いる。同様に、各列に配されたフォトダイオード 233は、共通の信号線 Lrに接続され て制御部 27に制御される信号読み出し回路 237に接続されている。信号読み出し 回路 237には、撮像パネル 15から近い順に、増幅器 238、サンプルホールド回路 24 0、アナログマルチプレクサ 241、 AZD変 «242が共通の信号線 Lr上に配されて いる。
なお、 TFT234は、液晶ディスプレイ等に使用されている無機半導体系のもの、有 機半導体を用いたものの 、ずれであってもよ 、。
また、本実施形態では光電変換素子としてのフォトダイオード 233を用いた場合を 例示したが、光電変換素子はフォトダイオード以外の固体撮像素子を用いてもよい。
[0066] この信号検出部 232の側部には、図 2に示すように各光電変換素子にパルスを送 つて当該各光電変換素子を走査 ·駆動させる走査駆動回路 16と、各光電変換素子 に蓄積された電気エネルギーを読み出す信号読出し回路 17とが配されている。
[0067] また、図 2及び図 3に示すように放射線画像検出器 5は、揮発性メモリ(RAM)ゃフ ラッシュメモリなどの書き換え可能な読み出し専用メモリ等力もなる画像記憶部 18を 備えており、画像記憶部 18は、撮像パネル 15から出力された画像信号を記憶するよ うになつている。画像記憶部 18は内蔵型のメモリでもよいし、メモリカード等の着脱可 能なメモリでもよい。
[0068] また、放射線画像検出器 5には、放射線画像検出器 5を構成する複数の駆動部( 走査駆動回路 16、信号読出し回路 17、通信部 24 (後述)、画像記憶部 18、電池残 量検出部 40 (後述)、インジケータ 25 (後述)、入力操作部 26 (後述)、撮像パネル 1 5など)に電力を供給する電力供給源として電源部 19が設けられている。電源部 19 は、例えばマンガン電池、アルカリ電池、アルカリボタン電池、リチウム電池、酸ィ匕銀 電池、空気亜鉛電池、ニッケル ·カドミウム電池、水銀電池、鉛電池等力 なる予備電 池 20と、例えば-力ド電池、ニッケル水素電池、リチウムイオン電池、小型シール鉛 電池、鉛蓄電池、燃料電池、太陽電池等の充電自在な充電池 (電池) 21とで構成さ れている。このように、充電池 21の他に予備電池 20を備えることにより、充電池 21の 充電量が不足している場合や、充電池 21を取り替えている間等も放射線画像検出 器 5に少なくとも最低限の電力を供給することが可能であり、画像記憶部 18に記憶さ れている画像情報が誤って消えてしまったり、コンソール 6等の外部装置力 の信号 を受信できな 、状態となることがな 、。
[0069] 筐体 14の一端には充電用の端子 22が形成されており、例えば、図 1に示すように 、放射線画像検出器 5をクレードル等の充電用装置 23に装着することによって充電 用装置 23側の端子(図示せず)と筐体側の端子 22とが接続されて前記充電池 21の 充電が行われるようになつている。また、充電池 21は、例えば、筐体 14の側部から引 き出すことにより交換可能となっている。なお、電源部 19を構成する予備電池 20及 び充電池 21の形状は、図 2に例示したものに限定されず、例えば、撮像パネル 15と 平行してプレート状の電池を設けるようにしてもよい。各電池をこのような形状とすると 、筐体 14に対する撮像パネル面の割合が増えることになり、有効な撮像領域を増加 させることができ
る。このため、撮像領域が同じで放射線画像検出器 5全体の大きさを小さくすることが でき、結果的に放射線画像検出器 5を薄型化することが可能となる。
[0070] また、放射線画像検出器 5には、コンソール 6等の外部装置との間で各種信号の送 受信を行う通信部 24 (図 3参照)が設けられている。通信部 24は、例えば、撮像パネ ル 15から出力された画像信号をコンソール 6に転送したり、コンソール 6等力も送信さ れる撮影指示信号、待機指示信号等を受信するようになって!/ヽる。
[0071] また、筐体 14の表面一端には、充電池 21の充電状況や各種の操作状況等を表示 して報知するインジケータ (報知部) 25が設けられており、操作者が放射線画像検出 器 5の充電池 21の充電状況等を目視にて確認することができるようになって!/、る。
[0072] 筐体 14の外部には、撮影指示及び待機指示を入力するための入力操作部 26が 設けられている。ここで、放射線画像検出器 5の動作状態としては、撮影可能状態と 、撮影状態よりも消費電力の少ない撮影待機状態とがあり、入力操作部 26を操作す ることにより切り替え設定できるようになつている。例えば入力操作部 26に撮影指示 が入力された場合や、通信部 24にコンソール 6からの撮影指示信号が入力された場 合などには撮影可能状態となる。一方、入力操作部 26に待機指示が入力された場 合や、通信部 24にコンソール 6からの待機指示信号が入力された場合などには撮影 待機状態となる。つまり、入力操作部 26又は通信部 24が、本発明に係る撮影可能 状態及び撮影待機状態を切り替えるための指示を与える切替部である。
[0073] 以下、撮影可能状態及び撮影待機状態につ!ヽて説明する。
撮影可能状態は、放射線画像検出器 5を構成し、一連の撮影動作に用いる全ての 部材が稼動している状態、すなわち、走査駆動回路 16、信号読出し回路 17、フォト ダイオード 233、 TFT234、画像記憶部 18、通信部 24といった一連の撮影動作に 用いる全ての部材に電力が供給されて 、る状態であり、一連の撮影動作である画像 情報の初期化、照射された放射線に応じて生成された電気エネルギーの蓄積、電気 信号の読み取り、及び画像信号の転送等の各動作を行なうことが可能となっている。 なお、初期化では、撮像パネル 15におけるリセット動作及び空読み動作が行われる ようになつている。また、一連の撮影動作とは、画像情報の初期化、照射された放射 線に応じて生成された電気工ネルギの蓄積、電気信号の読み取り及び画像信号の 転送などの各動作のことである。
[0074] 本実施形態においては、撮影待機状態として、撮影可能状態よりも消費電力が少 ない第 1の撮影待機モードと、第 1の撮影待機モードよりも消費電力の少ない第 2の 撮影待機モードとがある。
[0075] 第 1の撮影待機モードは、撮影可能状態への迅速な立ち上げが可能な信号読出し 回路 17を除く一連の撮影動作に用いる全ての部材を立ち上げた状態であり、すぐに 撮影を行うことが可能な状態にある撮影待機状態である。具体的には、走査駆動回 路 16、フォトダイオード 233、 TFT234、画像記憶部 18、通信部 24といった各部に 対して電力が供給されている状態となる。第 2の撮影待機モードは、画像保存に関わ る部分である画像記憶部 18や、外部への画像情報の転送、外部からの信号受信に 関わる部分である通信部 24のみを立ち上げた状態であり、すぐに撮影を行うことがで きないが消費電力の非常に低い状態にある撮影待機状態である。
[0076] また、図 3に示すように、放射線画像検出器 5は、例えば、汎用の CPU、 ROM, R AM等 ( ヽずれも図示せず)から構成された制御部 27を有する制御装置 28を備えて おり、制御部 27は、 ROMに格納される所定のプログラムを読み出して RAMの作業 領域に展開し、当該プログラムに従って CPUが各種処理を実行するようになってい る。
ROMにはプログラムの他に種々の制御データが記憶されている。この制御データ には、例えば充電池 21の残量が撮影可能な量を満たして 、る力否かを判定するた めの残量判定データなどがある。 [0077] また、放射線画像検出器 5は、充電池 21の残量を検出する電池残量検出部 40を 備えている。この電池残量検出部 40は、制御部 27の制御に基づいて充電池 21の 残量を検出し、得られた電池残量を制御部 27に出力するようになっている。電池残 量検出のタイミングは種々考えられるものの、本実施形態においては制御部 27は、 少なくとも撮影待機状態から撮影可能状態に切り替える指示 (撮影指示)が入力操作 部 26若しくは通信部 24から入力されると、充電池 21の残量が検出されるように電池 残量検出部 40を制御するようになって ヽる。
[0078] そして、制御部 27は、入力操作部 26若しくは通信部 24から撮影指示が入力され た際における残量検出結果に基づいて、撮影可能状態及び撮影待機状態を切り替 えるようになつている。具体的には、制御部 27は撮影指示が入力された際における 残量検出結果と、 ROM内の残量判定データとを比較して、残量検出結果が撮影可 能な量を満たしている場合には撮影可能状態に切り替えるように、複数の駆動部の それぞれの稼働状態を制御している。一方、撮影可能な量未満である場合には、制 御部 27は撮影待機状態のうち、最も消費電力の少ないモード、つまり第 2の撮影待 機モードとなるように、複数の駆動部のそれぞれの稼働状態を制御している。各駆動 部の駆動状態が制御されることで充電池の消費電力量が制御されることになる。
[0079] また、制御部 27は、電池残量検出部 40から残量検出結果が入力されるとそれに基 づいて、充電池 21の残量をインジケータ 25に表示させるようになつている。この際、 残量検出結果が撮影可能な量未満である場合には、制御部 27はインジケータ 25を 制御して、撮影が不可能である旨を表示させている。さらに、制御部 27は、通信部 2 4を介してその旨の信号をコンソール 6に送信させるようになって 、る。
[0080] そして、制御部 27には、入力操作部 26から入力された情報や通信部 24から受信 された信号が送られるようになっており、制御部 27は、送られた信号に基づいて各部 の制御を行うようになって 、る。
[0081] また、制御部 27は、走査駆動回路 16を駆動させて各光電変換素子にパルスを送り 当該各光電変換素子を走査 '駆動させるようになつている。そして、各光電変換素子 に蓄積された電気エネルギーを読み出す信号読出し回路 17によって読み出され、 読み出された画像信号は制御部 27に送られるようになつている。制御部 27は送られ た画像信号を画像記憶部 18に記憶させるようになつている。また、画像記憶部 18に 記憶された画像信号は通信部 24を介して適宜コンソール 6に送られるようになって ヽ る。
[0082] 次に、コンソール 6は、図 6に示すように、例えば、汎用の CPU、 ROM, RAM等( いずれも図示せず)から構成された制御部 29を有する制御装置 30を備えており、制 御部 29は、 ROMに格納される所定のプログラムを読み出して RAMの作業領域に 展開し、当該プログラムに従って CPUが各種処理を実行するようになっている。
[0083] また、コンソール 6は、各種の指示等を入力する入力操作部 31、画像や各種のメッ セージ等を表示する表示部 32、放射線画像検出器 5等の外部装置との間で信号の 送受信を行う通信部 33等を備えて ヽる。
[0084] 入力操作部 31は、例えば、操作パネルやキーボードやマウス等力 構成されてお り、操作パネル又はキーボードで押下操作されたキーの押下信号やマウスによる操 作信号を入
力信号として制御部 29に対して出力するようになって 、る。
[0085] 表示部 32は、例えば、 CRT (Cathode Ray Tube)や LCD (Liquid Crystal Display) 等を備えて構成されており、制御部 29から出力される表示信号の指示に従って、各 種画面を表示するようになって!/、る。
[0086] 通信部 33は、無線 LAN等の無線通信方式により、基地局 4を介して、放射線画像 検出器 5との間で各種情報の通信を行うものである。
[0087] 制御部 29には、入力操作部 31から入力された信号や通信部 33を介して外部から 受信した信号等が送られるようになっており、送られた信号について所定の処理を行 うようになっている。例えば、制御部 29には放射線画像検出器 5により検出された放 射線画像情報等が信号化されて送られるようになっており、制御部 29は、これに基 づいて所定の画像処理を行うことにより放射線画像を得るようになつている。また、制 御部 29は放射線画像や、サムネイル画像、入力部から入力された各種の情報、電 池残量検出部 40の検出結果に基づく充電池 21の残量、放射線画像検出器 5の状 態 (撮影可能状態若しくは撮影待機状態)等を前記表示部 32に表示させるようにな つている。 [0088] 次に、本実施形態に係る放射線画像検出器 5を適用した放射線画像撮影システム 1の作用について説明する。
[0089] 通常、放射線画像検出器 5に撮影予約が入力されていない状態では、予約後すぐ に撮影ができるように、放射線画像検出器 5の制御部 27は、第 1の撮影待機モードと なるように複数の駆動部のそれぞれの稼働状態を制御して 、る。
[0090] その後、コンソール 6に撮影予約指示が入力されると、放射線技師はその撮影に使 用する放射線画像検出器 5をコンソール 6上で選択し、その旨をコンソール 6の入力 操作部 31に入力する。この入力内容は、選択された放射線画像検出器 5の通信部 2 4にコンソール 6の通信部 33を介して通信され、制御部 27に例えば撮影指示情報と して入力される。制御部 27は、この撮影指示情報に基づいて、充電池 21の消費電 力量を制御して、第 1の撮影待機状態力も撮影可能状態に切り替えるが、その切替 前に、充電池 21の残量が検出されるように電池残量検出部 40を制御する。なお、放 射線技師が放射線画像検出器 5の入力操作部 26を直接操作して撮影指示を入力し た場合においても、制御部 27は、その撮影指示に基づいて、複数の駆動部のそれ ぞれの稼働状態を制御することで充電池 21の消費電力量を制御して、第 1の撮影待 機状態力 撮影可能状態に切り替えるが、その切替前に、充電池 21の残量が検出 されるように電池残量検出部 40を制御する。
[0091] 電池残量検出部 40によって得られた残量検出結果力 撮影可能な量を満たしてい る場合には、制御部 27は撮影可能状態に切り替えるように、複数の駆動部のそれぞ れの稼働状態を制御することで充電池 21の消費電力量を制御する。この際、制御部 27は、撮影が可能である旨を通信部 24を介して、コンソール 6に出力する。コンソ一 ル 6は通信部 33に入力された信号を基にし、表示部 32を制御して撮影が可能であ る旨を表示する。
[0092] 一方、電池残量検出部 40によって得られた残量検出結果が、撮影可能な量未満 である場合には、制御部 27は撮影待機状態における第 2の撮影待機モードとなるよ うに、複数の駆動部のそれぞれの稼働状態を制御することで、充電池 21の消費電力 量を制御する。この際、制御部 27は、インジケータ 25を制御して撮影が不可能であ る旨を表示させるとともに、撮影が不可能である旨を通信部 24を介して、コンソール 6 に出力する。コンソール 6は通信部 33に入力された信号を基にし、表示部 32を制御 して撮影が不可能である旨を表示する。
[0093] ここで、制御部 27は、電池残量検出部 40の検出結果及び放射線画像検出器 5の 状態 (撮影可能状態若しくは撮影待機状態)を通信部 24を介してコンソール 6に出 力していて、コンソール 6は通信部 33に入力された信号を基にし、表示部 32を制御 して充電池 21の残量及び放射線画像検出器 5の状態を表示している。
[0094] 以上のように本実施形態によれば、撮影指示が入力操作部 26又は通信部 24を介 して放射線画像検出器 5の制御部 27に入力されると、電池残量検出部 40によって 電池残量が検出されるので、撮影の前に電池残量を認識することができる。これによ り、撮影前に正常な撮影が可能力否かを判定することが可能となるために、電池の残 量不足で撮影が行われることを防止することができる。このように、電池の残量不足で 撮影が行われることを防止できれば再撮影の頻度を抑え、患者に対する余分な被曝 を防止することができる。
[0095] そして、撮影指示が制御部 27に入力された際における電池残量検出部 40の残量 検出結果が、撮影可能な量を満たしている場合には撮影可能状態にされて、撮影可 能な量未満である場合には撮影待機状態にされるので、撮影可能な量未満で撮影 が行われることを確実に防止することができる。また、撮影可能な量未満である場合 には、撮影が不可能である旨をインジケータ 25及びコンソール 6が報知するので、放 射線技師はその報知に基づいて、例えば電池の交換、充電等の対処を施すことが できる。
[0096] そして撮影待機状態にそれぞれ消費電力の異なる複数のモード (第 1及び第 2の 撮影待機モード)が設けられているので、放射線画像検出器をその使用状況等に応 じて最も適した状態にしておくことができ、無駄な消費電力を抑えつつ効率的な撮影 作業を行うことができる。
また、撮影指示が制御部 27に入力された際における電池残量検出部 40の残量検 出結果が、撮影可能な量未満である場合には撮影待機状態の複数のモードうち、最 も消費電力量の少ないモード (第 2の撮影待機モード)となっているので、撮影が不 可能であるときの消費電力を極力低減することができる。 [0097] なお、本発明は上記実施形態に限らず適宜変更可能であるのは勿論である。 例えば、本実施形態では、撮影待機状態として 2種類のモードを選択できるようにし たが、撮影待機モードはここに例示した 2種類に限定されず、例えば、電力供給状態 では経時的に劣化する性質をもつフォトダイオード 233及び TFT234についてのみ 電力供給を停止させる撮影待機モード、画像記憶部 18及び通信部 24以外に対して は全て電力供給を停止するが一旦電力供給を停止した後再度立ち上げるまでに時 間の力かるフォトダイオード 233及び TFT234についてのみ他の部材よりも早く電力 の供給を開始させる撮影待機モード等、さらに複数の種類のモードを選択できるよう にしてもよい。また、本実施形態に例示した 2つの撮影待機モードのうちいずれか 1 つのみを有するようにしてもよ 、。
[0098] なお、本実施形態では、第 1の撮影待機状態から撮影可能状態に切り替える前に 、電池残量検出部 40による充電池 21の残量検出を行う場合を例示して説明したが、 切替直後に残量検出を行ってもよい。ここで言う切替直後とは撮影が撮影可能状態 に切り替えられたものの撮影が行われて 、な 、状態である。
また、本実施形態においては、電源部 19を構成する電池として、予備電池 20の他 に充電可能な充電池 21を備えるものとした力 電源部 19の構成はこれに限定されず 、予備電池の他に交換自在な使 、捨ての電池を用いるものとしてもよ 、。
[0099] また、本実施形態では、充電池 21の充電を行うためにクレードル等の充電用装置 を用いるものとした力 放射線画像検出器の端子に電力供給用のコードを接続する ことにより
外部電源力 電力の供給を受けて充電されるようにしてもよい。また、充電池を放射 線画像検出器から取り出した状態で充電を行う構成としてもょ ヽ。
[0100] そして、本実施形態では、撮影可能状態及び撮影待機状態を切り替えるための指 示 (切替指示)を与える切替部として、放射線画像検出器 5の通信部 24及び入力操 作部 26を例示して説明した力 コンソール 6や、これら以外の機械的なスィッチや、 電気信号、センサなどを切替部とすることも可能である。
コンソール 6を切替部とした場合、切替指示は、例えば、撮影に使用する放射線画 像情報検出器 5が選択された後に入力される患者の選択情報や、電源の ON信号、 その他のスィッチの ONZOFF信号等が挙げられる。
放射線画像検出器 5からの信号を切替指示として扱う場合には、例えば、放射線画 像検出器 5に備わるスィッチやセンサ (加速度センサ、接触センサ等)からの信号や、 グレードル等の外部機器に接触した際の信号などを用いることが挙げられる。
また、サーバ 2、放射線源 12を切替部として、これらからの信号を切替指示としても よい。
[0101] さらに、本実施形態では、撮影指示が制御部 27に入力されたときにのみ電池残量 検出部 40による残量検出が行われる場合を例示したが、入力操作部 26やコンソ一 ル 6からの残量検出指示があった場合においても電池残量検出部 40による残量検 出を行うことも可能である。さらには、一定期間電池残量検出部 40による残量検出が 行われて 、な 、場合は所定の期間毎に自動で残量検出を行わせてもよ 、。そして、 連続で撮影が行われる場合には、常に撮影状態になって ヽるので撮影毎に電池残 量検出部 40による残量検出を行うことが好ましい。この場合の残量検出タイミングは 撮影の前であっても後であっても構わな 、。
[0102] また、電池残量検出部 40による充電池 21の残量検出以外にも、種々の動作チ ッ クを行うことも可能である。例えば、正常に画像を読み取れるか否かをチェックする読 取動作チェックや、正常に画像を転送できるか否かをチェックする転送動作チェック、 正常にコンソール 6又はサーバ 2と信号のやり取りができる力否かをチェックする無線 動作チェック、内部メモリが正常力否かをチェックするメモリチェックなどが挙げられる 。これら各判定毎に必要な判定データは、放射線画像検出器 5における制御装置 28 の ROMに記憶されることになる。
[0103] [第 2の実施の形態]
第 1の実施の形態では、入力操作部 26や通信部 24から撮影指示が入力されると、 充電池 21の残量が検出されるように、制御部 27が電池残量検出部 40を制御する場 合を例示して説明したが、この第 2の実施の形態では、第 2の撮影待機モードから第 1の撮影待機モードに切り替える指示、つまり複数の撮影待機状態のうち、消費電力 の少な!ヽ撮影待機状態から、消費電力の多!ヽ撮影待機状態に切り替える指示 (待機 状態切替指示)が入力操作部 26や通信部 24から入力された場合においても、充電 池 21の残量が検出されるように、制御部 27が電池残量検出部 40を制御する場合に ついて説明する。なお、第 2の実施の形態では、第 1の実施の形態と同一部分にお いては同一符号を付してその説明を省略する。
[0104] ここで、フォトダイオード 233や TFT234等は、電力供給が停止されてから再度供 給されたとしても、安定するまでに時間が力かってしまうために、当分の間撮影が行 われな 、場合にはフォトダイオード 233や TFT234に電力供給しな 、第 2の撮影待 機モードが設定されて、間もなく撮影が行われる場合にはフォトダイオード 233や TF T234に電力を供給する第 1の撮影待機モードが設定されることになる。このように第 2の撮影待機モードから第 1の撮影待機モードに遷移する場合にはその後に撮影が 控えている可能性が高いために、待機状態切替指示が入力されたときに充電池 21 の残量を検出するようになっている。
[0105] なお、これらの複数の撮影待機状態においても、入力操作部 26を操作することによ り切り替え設定できるようになつている。例えば入力操作部 26に第 1の撮影待機モー ドへの切替指示が入力された場合や、通信部 24にコンソール 6からの第 1の撮影待 機モードへの切替指示信号が入力された場合などには第 1の撮影待機モードとなる 。一方、入力操作部 26に第 2の撮影待機モードへの切替指示が入力された場合や、 通信部 24にコンソール 6からの第 2の撮影待機モードへの切替指示信号が入力され た場合などには第 2の撮影待機モードとなる。つまり、入力操作部 26又は通信部 24 力 S、本発明に係る複数の撮影待機状態を切り替えるための指示を与える切替部であ る。
[0106] 次に、本実施形態に係る放射線画像検出器 5を適用した放射線画像撮影システム 1の作用について説明する。
[0107] 通常、放射線画像検出器 5に撮影予約が入力されていない状態では、待機時にお ける消費電力を少なくするために放射線画像検出器 5の制御部 27は、第 2の撮影待 機モードとなるように複数の駆動部のそれぞれの稼働状態を制御して 、る。
[0108] その後、コンソール 6に撮影予約指示が入力されると、放射線技師はその撮影に使 用する放射線画像検出器 5をコンソール 6上で選択し、その旨をコンソール 6の入力 操作部 31に入力する。この入力内容は、選択された放射線画像検出器 5の通信部 2 4にコンソール 6の通信部 33を介して通信され、制御部 27に待機状態切替指示情報 として入力され
る。制御部 27は、この待機情報切替指示情報に基づいて、充電池 21の消費電力を 制御して、第 2の撮影待機モードから第 1の撮影待機モードに切り替えるが、その切 替前に、充電池 21の残量が検出されるように電池残量検出部 40を制御する。なお、 放射線技師が放射線画像検出器 5の入力操作部 26を直接操作して待機状態切替 指示を入力した場合においても、制御部 27は、その待機状態切替指示に基づいて 、複数の駆動部のそれぞれの稼働状態を制御することで充電池 21の消費電力を制 御して、第 2の撮影待機モードから第 1の撮影待機モードに切り替えるが、その切替 前に、充電池 21の残量が検出されるように電池残量検出部 40を制御する。
[0109] 電池残量検出部 40によって得られた残量検出結果力 撮影可能な量を満たしてい る場合には、制御部 27は第 1の撮影待機モードに切り替えられるように、複数の駆動 部のそれぞれの稼働状態を制御することで充電池 21の消費電力を制御する。この 際、制御部 27は、撮影が可能である旨を通信部 24を介して、コンソール 6に出力す る。コンソール 6は通信部 33に入力された信号を基にし、表示部 32を制御して撮影 が可能である旨を表示する。
[0110] 一方、電池残量検出部 40によって得られた残量検出結果力 撮影可能な量未満 である場合には、制御部 27は第 2の撮影待機モードとなるように、複数の駆動部のそ れぞれの稼働状態を制御することで、充電池 21の消費電力を制御する。この際、制 御部 27は、インジケータ 25を制御して撮影が不可能である旨を表示させるとともに、 撮影が不可能である旨を通信部 24を介して、コンソール 6に出力する。コンソール 6 は通信部 33に入力された信号を基にし、表示部 32を制御して撮影が不可能である 旨を表示する。
[0111] 以上のように本実施形態によれば、待機状態切替指示が入力操作部 26又は通信 部 24を介して放射線画像検出器 5の制御部 27に入力されると、電池残量検出部 40 によって電池残量が検出されるので、撮影の前に電池残量を認識することができる。 これにより、撮影前に正常な撮影が可能か否かを判定することが可能となるために、 電池の残量不足で撮影が行われることを防止することができる。このように、電池の残 量不足で撮影が行われることを防止できれば再撮影の頻度を抑え、患者に対する余 分な被曝を防止することができる。
[0112] そして、待機状態切替指示が制御部 27に入力された際における電池残量検出部 40の残量検出結果が、撮影可能な量を満たしている場合には第 1の撮影待機モー ドにされて、撮影可能な量を満たして ヽな 、場合には第 2の撮影待機モードにされる ので、撮影可能な量未満で撮影が行われることを確実に防止することができる。また 、撮影可能な量未満である場合には、撮影が不可能である旨をインジケータ 25及び コンソール 6が報知するので、放射線技師はその報知に基づいて、例えば電池の交 換、充電等の対処を施すことができる。
[0113] また、待機状態切替指示が制御部 27に入力された際における電池残量検出部 40 の残量検出結果が、撮影可能な量未満である場合には複数の撮影待機状態のうち 、最も消費電力の少な ヽ撮影待機状態 (第 2の撮影待機モード)となって ヽるので、 撮影が不可能であるときの消費電力を極力低減することができる。
[0114] なお、本発明は上記実施形態に限らず適宜変更可能であるのは勿論である。
[0115] そして、本実施形態では、待機状態切替指示を与える切替部として、放射線画像 検出器 5の通信部 24及び入力操作部 26を例示して説明したが、これら以外の機械 的なスィッチや、電気信号、センサなどを切替部とすることも可能である。
[0116] また、本実施形態では、撮影に使用する放射線画像検出器 5がコンソール 6の入力 操作部 31に入力されると、その入力内容が待機状態切替指示情報として扱われる 場合を例示しているが、待機状態切替指示情報はこれに限定されるものではなぐコ ンソール 6に入力される他の信号を待機状態切替指示情報として扱ってもよい。例え ば、撮影に使用する放射線画像情報検出器 5が選択された後に入力される患者の 選択情報や、電源の ON信号、その他のスィッチの ONZOFF信号等が挙げられる 。また、これら以外にも放射線画像検出器 5やサーバ 2、放射線源 12からの信号を待 機状態切替指示情報としてもょ ヽ。
放射線画像検出器 5からの信号を待機状態切替指示情報として扱う場合には、例 えば、放射線画像検出器 5に備わるスィッチやセンサ (加速度センサ、接触センサ等 )からの信号や、グレードル等の外部機器に接触した際の信号などを用いることが挙 げられる。
[0117] [第 3の実施の形態]
第 1の実施の形態では、電池残量検出部 40によって電池残量が検出される場合に ついて説明したが、この第 3の実施の形態では、それに合わせて、チェック手段によ つて起動時に駆動部が正常に動作を行うことができる力否か前記駆動部の動作チェ ックを行う場合について説明する。なお、第 3の実施の形態では、第 1の実施の形態 と同一部分においては同一符号を付してその説明を省略する。
[0118] 第 3の実施の形態の放射線画像検出器 5Aにおける筐体 14には、図 7に示すように 放射線画像検出器 5の主電源の ONZOFFを行 、、放射線画像検出器 5の起動指 示及び起動中止指示を入力するための起動スィッチ 41が設けられており、起動スィ ツチ 41及び入力操作部 26を操作することにより放射線画像検出器 5の動作状態を 切り替え設定できるようになつている。なお、起動スィッチ 41は、放射線画像検出器 5 の充電池の交換を行う際などに使用し、使用頻度が極度に少ないため、筐体 14の 内部の容易に触れることができない位置、例えば、筐体 14の一部に開閉可能な扉を 設け、扉を開けた状態とすることで操作可能となるように扉の内側に設けることが好ま しい。起動スィッチ 41をこのような配置とすることで、操作者が誤って触れて放射線画 像検出器 5に誤動作が生じることを防ぐことができるようになつている。
なお、この第 3の実施の形態では放射線画像検出器 5Aの電源部 19が充電池のみ で構成されて 、る場合を例示して 、る。
[0119] ここで、放射線画像検出器 5の動作状態について説明する。
放射線画像検出器 5の動作状態としては、主電源 OFFの状態と主電源 ONの状態 とから構成されており、主電源 OFFの状態は、放射線画像検出器 5の全ての駆動部 にお!/、て電源が完全に切れて!/、る状態であり、充電池から各駆動部に対して行われ る電力供給が完全に遮断されるようになっている。一方、主電源 ONの状態は、放射 線画像検出器 5の各駆動部に対し、充電池力 電力が供給されており、撮影動作を 行うことができる撮影可能状態と、撮影可能状態よりも消費電力が少ない撮影待機状 態とから構成されるようになって!/、る。
[0120] 前述した放射線画像検出器 5の動作状態の切り替えは、起動スィッチ 41の操作に より起動指示が入力された場合に主電源 ONの状態に切り替え、起動中止指示が入 力された場合に主電源 OFFの状態に切り替えるように構成されており、主電源 ONの 状態を構成する各動作状態間の切り替えは、入力操作部 26の操作により撮影指示 及び待機指示が入力された場合、又は、撮影指示信号及び待機指示信号が通信部 24に入力された場合など入力操作部 26又は通信部 24に入力された指示に基づ!/ヽ て行われるようになって!/ヽる。
[0121] 具体的には、主電源 OFFの状態において、起動スィッチ 41の操作により起動指示 が入力された場合に主電源 OFFの状態から所定の撮影待機状態に切り替えるよう に構成されている。撮影待機状態のうち、第 1の撮影待機モードにおいて、入力操作 部 26に撮影指示が入力された場合や通信部 24にコンソール 6からの撮影指示信号 が入力された場合に第 1の撮影待機モードから撮影可能状態に切り替えるように構 成されている。また、第 1の撮影待機モードにおいて、入力操作部 26に待機指示が 入力された場合や通信部 24にコンソール 6からの待機指示信号が入力された場合 に第 1の撮影待機モードから第 2の撮影待機モードに切り替える構成としてもよい。
[0122] このように、放射線画像検出器 5の動作状態の切り替えは、起動スィッチ 41、入力 操作部 26、通信部 24からの指示に基づいて行われるようになっており、本発明に係 る動作状態のうち、起動スィッチ 41が、主電源 ONの状態及び主電源 OFFの状態を 切り替えるための指示を与える切替部であり、入力操作部 26又は通信部 24が、撮影 可能状態及び撮影待機状態を切り替えるための指示を与える切替部である。なお、 主電源 ONの状態から主電源 OFFの状態への切り替えは、通信部 24からの指示に 基づ 、て行うことも可能である。
[0123] また、放射線画像検出器 5は、各駆動部の動作を正常に行うことが可能力どうか動 作チェックを行うチェック手段を備えている。本実施形態では、動作チェックとして、電 源部 19の電源チェックと、通信部 24の通信チェック、画像記憶部 18のメモリチェック が行われるようになっており、チェック手段は動作チェック毎に備えられている。ここで 、各チェック手段について説明する。
[0124] 電源チェックのチェック手段としては、図 8に示す電池残量検出部 40が挙げられ、 この電池残量検出部 40によって、制御部 27の制御に基づ 、て電源部 19の電力残 量として充電池の残量を検出する残量検知が行われて、得られた充電池の残量が 撮影可能な所定量以上力否かをチェックし、得られた結果を制御部 27に出力するよ うになつている。
[0125] 通信チェックのチェック手段としては、通信チェック部 20を備えており、通信チェック 部 20は、制御部 27の制御に基づいて正常にコンソール 6又はサーバ 2と信号のやり 取りができるか否か、あるいは、正常に画像を転送できる力否かをチェックし、得られ た結果を制御部 27に出力するようになっている。
[0126] メモリチェックのチェック手段としては、メモリチェック部 21を備えており、メモリチエツ ク部 21は、制御部 27の制御に基づいて内部メモリが正常力否かをチェックし、得ら れた結果を制御部 27に出力するようになっている。
[0127] なお、これら各チェック手段による動作チェックのタイミングは種々考えられるものの 、本実施形態においては起動時であり、制御部 27に起動スィッチ 41により主電源 O FFの状態力 主電源 ONの状態に切り替える指示 (起動指示)が入力されると、制御 部 27は動作チェックをそれぞれ行うように動作チェック手段を制御するようになって いる。
[0128] 制御部 27では、起動スィッチ 41により起動指示が入力された際に各チェック手段 を検知するようになっており、各チェック手段による動作チェックの結果に基づいて主 電源 OFFの状態と主電源 ONの状態とを切り替えるようになつている。その際、動作 チェックが行われる各駆動部は、一旦稼動し、その状態でチェック手段により動作チ エックが行われ、動作チェック後に所定の動作状態に切り替えられるようになつており 、チェック手段が当該チェック手段により動作チェックが行われる駆動部が正常に動 作を行うことができないことを検知した場合には、制御部 27は、少なくとも撮影可能状 態には切り替えな 、ようになって!/、る。特に電源部 19にお 、て正常に動作を行うこと ができないことを検知した場合には、主電源 OFFの状態とし、通信部 24及び画像記 憶部 18において正常に動作を行うことができないことを検知した場合には、第 2の撮 影待機モードとなるように構成させるのが好ましい。なお、電源部 19において正常に 動作を行うことができないことを検知した場合とは、電池残量検出部 40が充電池の残 量が撮影可能な所定量未満であることを検知した場合を指している。 [0129] 具体的には、制御部 27は起動指示が入力された際における電源チェックの結果及 び通信チェックの結果、メモリチェックの結果と、 ROM内の判定データとを比較して、 充電池の残量が撮影可能な所定量以上であって、通信部 24及び画像記憶部 18に おいて正常に動作を行うことができることを検知した場合には撮影待機状態のうち、 すぐに撮影を行うことが可能な第 1の撮影待機モードとなるように、充電池からの電力 供給を開始し、各駆動部に供給される電力量を制御することで複数の駆動部の稼働 状態を制御している。また、制御部 27が充電池の残量が所定量以上であって、かつ 、通信部 24又は画像記憶部 18において正常に動作を行うことができないことを検知 した場合には、制御部 27は撮影待機状態のうち、最も消費電力の少ない撮影待機 状態、つまり第 2の撮影待機モードとなるように、充電池力 の電力供給を開始し、各 駆動部に供給される電力量を制御することで複数の駆動部の稼働状態を制御してい る。また、制御部 27が充電池の残量が撮影可能な所定量未満であることを検知した 場合には、主電源 OFFの状態となるように、動作チェックを行う際に充電池力 供給 された各駆動部への電力供給を遮断することで複数の駆動部の稼働状態を制御し ている。したがって、各駆動部の稼働状態が制御されることで放射線画像検出器 5全 体での消費電力量が制御されるようになって!/、る。
[0130] また、制御部 27は、各チェック手段による動作チェックの結果をインジケータ 25に 表示させるようになつている。具体的には、充電池の残量が撮影可能な所定量以上 であつ
て、通信チェック及びメモリチェックの結果がいずれも正常である場合には、制御部 2 7はインジケータ 25を制御して、撮影が可能である旨を表示させている。また、充電 池の残量が所定量以上であって、かつ、通信チェック及びメモリチェックの結果のうち 、いずれかが正常でない場合には、制御部 27はインジケータ 25を制御して、正常に 動作を行うことができない旨表示させている。さらに、制御部 27は、通信チェックの結 果が正常である場合には、通信部 24を介してこれらの表示信号を各駆動部の動作 状態情報としてコンソール 6に送信させるようになって!/、る。
[0131] 次に、本実施形態に係る放射線画像検出器 5Aを適用した放射線画像撮影システ ムの作用につ 、て説明する。 [0132] 通常、放射線画像検出器 5Aが主電源 OFFの状態では、放射線画像検出器 5Aの 全ての駆動部にお 、て電源が完全に切れて 、る状態である。
[0133] その後、放射線技師による起動スィッチの操作により放射線画像検出器 5Aが主電 源 ONの状態に切り替えられると、制御部 27は、各駆動部の稼働状態を制御して、 主電源 OFF状態から所定の撮影待機状態に切り替えるが、その切り替え前に、充電 池の残量の検出及び通信部 24の通信チェック、画像記憶部 18のメモリチェックが行 われるように電池残量検出部 40及び通信チェック部 20、メモリチェック部 21を制御 する。
[0134] そして、制御部 27が充電池の残量が撮影可能な所定量以上であって、通信部 24 及び画像記憶部 18において正常に動作を行うことができることを検知した場合には 、制御部 27は第 1の撮影待機モードに切り替えるように、充電池から各駆動部に供 給される電力量を制御することで各駆動部の稼働状態を制御する。この際、制御部 2 7は、インジケータ 25を制御して撮影が可能である旨を表示させるとともに、撮影が可 能である旨を通信部 24を介して、コンソール 6に出力する。コンソール 6は通信部 33 に入力された信号を基にし、表示部 32を制御して撮影が可能である旨を表示する。
[0135] 一方、制御部 27が充電池の残量が撮影可能な所定量以上であって、かつ、通信 部 24又は画像記憶部 18において正常に動作を行うことができないことを検知した場 合には、制御部 27は第 2の撮影待機モードに切り替えるように、充電池から各駆動 部に供給される電力量を制御することで各駆動部の稼働状態を制御する。この際、 制御部 27は、インジケータ 25を制御して、通信部 24又は画像記憶部 18のうち、正 常に動作を行うことができないと検知された方の駆動部が正常に動作を行うことがで きない旨を表示させる。また、制御部 27は、充電池の残量が撮影可能な所定量以上 であって、かつ、画像記憶部 18において正常に動作を行うことができないことを検知 した場合には、画像記憶部 18が正常に動作を行うことができない旨を通信部 24を介 して、コンソール 6に出力する。コンソール 6は通信部 33に入力された信号を基に、 表示部 32を制御して画像記憶部 18が正常に動作を行うことができない旨を表示す る。そして、放射線技師はインジケータ 25又は表示部 32をみて、正常に動作を行うこ とができないと表示された駆動部の修理を行う等して不具合を解消して力 再び撮影 動作に使用する。
[0136] また、制御部 27が、充電池の残量が撮影可能な所定量未満であることを検知した 場合には、主電源 OFF状態となるように、充電池力 各駆動部に供給される電力を 遮断することで各駆動部の稼働状態を制御する。そして、放射線技師は放射線画像 検出器 5Aが起動しない様子をみて、放射線画像検出器 5を充電用装置 23に装着し て充電池への充電を行ったり、充電池の交換を行う等して、電源部 19の不具合を解 消して力 再び撮影動作に使用する。
[0137] その後、第 1の撮影待機モードに切り替わった放射線画像検出器 5Aの制御部 27 は、入力操作部 26又は通信部 24を介して撮影指示情報、待機指示情報のいずれ かが入力されて 、るかどうかを検知する。
[0138] このとき、コンソール 6に撮影予約指示情報が入力され、放射線技師がこれから撮 影に使用する放射線画像検出器 5Aをコンソール 6上で選択し、その旨をコンソール 6の入力操作部 31に入力すると、この入力内容は、選択された放射線画像検出器 5 Aの通信部 24にコンソール 6の通信部 33を介すことにより通信され、制御部 27に撮 影指示情報として入力される。あるいは、撮影予約指示が入力された後、放射線技 師が撮影に使用する放射線画像検出器 5Aの入力操作部 26を直接操作すること〖こ より、撮影指示が撮影指示情報として入力される。制御部 27は、撮影指示情報に基 づいて、複数の駆動部の稼動状態を制御して、第 1の撮影待機モードから撮影可能 状態に切り替え、撮影動作が行われる。
[0139] 一方、コンソール 6に撮影予約指示が入力される前に、放射線技師が動作状態を 第 2の待機モードに切り替える放射線画像検出器 5Aをコンソール 6上で選択し、そ の旨をコンソール 6の入力操作部 31に入力する。すると、この入力内容は、選択され た放射線画像検出器 5 Aの通信部 24にコンソール 6の通信部 33を介すことにより通 信され、制御部 27に撮影待機指示情報として入力される。あるいは、コンソール 6に 撮影予約指示が入力される前に放射線技師が動作状態を第 2の待機モードに切り 替える放射線画像検出器 5Aの入力操作部 26を直接操作することにより、待機指示 が待機指示情報として入力される。制御部 27は、待機指示情報に基づいて、複数の 駆動部の稼動状態を制御して、第 1の撮影待機モードから第 2の撮影待機モードに 切り替わる。
[0140] 以上のように本実施形態によれば、起動スィッチ 41を介して放射線画像検出器 5 A の制御部 27に起動指示が入力されると、充電池、通信部 24、画像記憶部 18のチエ ック手段によって起動時に正常に動作を行うことが可能力否かチェックされるので、 撮影前に正常に撮影を行うことが可能か否力判定することができ、各駆動部が動作 不良の状態で撮影が行われることを未然に防ぐことができる。したがって、各駆動部 の動作不良による再撮影の頻度を抑え、患者に対する余分な被曝を防止することが できる。
[0141] そして、制御部 27は、動作チェックの結果に応じて各駆動部の動作状態を制御し、 動作チェックの結果により各駆動部において正常に動作を行うことが不可能であると 判断した場合には、放射線画像検出器 5Aを少なくとも撮影可能状態に切り替えない ようにし、特に充電池の残量が撮影可能な所定量未満である場合には、放射線画像 検出器 5Aを主電源 OFFの状態にするので、充電池が動作不良の状態で撮影が行 われることを確実に防止することができる。
[0142] また、起動指示が制御部 27に入力された際における充電池の残量が撮影可能な 所定量以上であって、通信チェック部 20及びメモリチェック部 21の動作チェックの結 果が正常である場合には、撮影可能である旨を、充電池の残量が所定量以上であつ て、通信チェック部 20及びメモリチェック部 21の動作チェックの結果が正常でない場 合には、正常に動作を行うことができない旨をそれぞれインジケータ 25及びコンソ一 ル 6が報知するので、放射線技師はその報知に基づいて、各駆動部の不具合の対 処を施すことができる。
[0143] そして、撮影待機状態としてそれぞれ消費電力の異なる複数のモード (第 1及び第 2の撮影待機モード)が設けられているので、放射線画像検出器をその使用状況等 に応じて最も適した状態にしておくことができ、無駄な消費電力を抑えつつ効率的な 撮影作業を行うことができる。
[0144] 特に、起動指示が制御部 27に入力された際における充電池の残量が所定量以上 であって、その他の駆動部の動作チェックの結果が正常でな 、場合には撮影待機状 態の複数のモードうち、最も消費電力量の少ないモード (第 2の撮影待機モード)とな つているので、ノ ッテリが残り僅かであるときの消費電力を極力低減することができる
[0145] また、放射線画像検出器 5Aは、コード等を接続した有線で使用する場合と比較し 、撮影操作の自由度を向上させ、全体的な操作性を向上させることができるので、コ 一ドレスで使用することが好ましい。特に、通信する際に、無線通信方式では、迅速 に画像などの情報をやり取りすることが可能となる。その際、コードレスの放射線画像 検出器では、有線を用いた場合と異なり、常にコンソールと通信を行っているとは限 らな 、ために通信チェックや充電チェックを絶えず行うことができな 、ことから、本発 明の適用は一層効果を発揮することができる。
[0146] なお、本発明は上記第 3の実施の形態に限らず適宜変更可能であるのは勿論であ る。
例えば、本実施形態では、チェック手段として、電池残量検出部 40、通信チェック 部 20、メモリチェック部 21を設けて各駆動部の動作チェックを行わせた力 それ以外 の駆動部においてにも種々の動作チェックを行うことが可能である。その際、 1つチェ ック手段に、複数の動作チェックを行わせる構成としてもょ 、。
[0147] 具体的な動作チェックとしては、正常に画像を読み取れるか否かをチェックする信 号読出し回路 17の読取動作チェックなどが挙げられる。また、フォトダイオード 233や TFT234が正常に機能するか否かをチェックする動作チェックであってもよい。
[0148] この場合において、制御部 27が、これら駆動部が正常に動作を行うことが不可能で あると判断した場合には、放射線画像検出器 5Aを少なくとも撮影可能状態に切り替 えないようにすればよい。また、放射線画像検出器 5Aに何らかの異常が見つ力つた 場合には、再起動を行わせる構成としてもよい。なお、これらの動作チェックの各判定 毎に必要な判定データは、放射線画像検出器 5Aにおける制御装置 28の ROMに 記憶させればよい。
[0149] また、本実施形態では、放射線画像検出器 5Aの主電源 ONの状態間における動 作状態を切り替えるための指示を与える切替部として、放射線画像検出器 5Aの通信 部 24及び入力操作部 26を例示して説明したが、放射線画像検出器 5Aにセンサを 配設し、このセンサを切替部とすることも可能である。センサとしては、例えば、加速 度センサや接触センサなどが挙げられ、クレードル等の外部機器を設けて、放射線 画像検出器 5の外部機器への接触時及び非接触時における放射線画像検出器 5A の加速度及び加圧力の変化を検知することにより放射線画像検出器 5の主電源 ON の状態間における動作状態を切り替える構成としてもよい。
[0150] また、コンソール 6の入力操作部 31に撮影に使用する放射線画像検出器 5Aを選 択して入力することにより、放射線画像検出器 5Aの主電源 ONの状態間における動 作状態を切り替えたが、その際、撮影を行う患者の選択を同時に行う構成としてもよ い。また、コンソール 6への電源投入により予めコンソール 6に登録された放射線画像 検出器 5Aに対して主電源 ONの状態間における動作状態を切り替える構成としても よい。
[0151] また、放射線画像検出器 5Aやコンソール 6からの入力に限らず、コンソール 6を制 御するホストコンピュータや放射線源 12等ネットワーク 7上の他の外部機器力も制御 部 27に入力される構成としてもよい。
[0152] また、本実施形態では、起動指示が制御部 27に入力されたとき、すなわち、起動 後、動作チェックが行われて所定の動作状態への切り替えが完了する前に電池残量 検出部 40や通信チェック部 20、メモリチェック部 21による動作チェックを行う場合を 例示して説明したが、一旦、所定の動作状態への切り替えが行われてから、起動中 に適宜これらのチェック手段による動作チェックを行わせてもよい。この場合、動作チ エックを行うタイミングとしては、例えば、入力操作部 26やコンソール 6から動作チェッ ク指示があった場合にチェック手段による動作チェックを行うことが可能である。さらに は、所定の動作状態への切り替えが行われた後の起動中に一定期間チェック手段に よる動作チェックが行われていない場合は、所定の期間毎に自動で動作チェックを 行わせてもよい。そして、連続で撮影が行われる場合には、常に撮影状態になって V、るので撮影毎にチェック手段によ
る動作チェックを行うことが好まし 、。この場合の動作チェックは撮影の前であっても 後であっても構わない。
[0153] また、本実施形態では、コンソール 6に放射線画像検出器 5Aで検出された放射線 画像を送信し、画像処理を行わせたが、放射線画像の送信先や画像処理が行われ る箇所をホストコンピュータやサーバ 2等の他の外部機器で行う構成としてもよい。
[0154] また、本実施形態では、コンソール 6の表示部 32に放射線画像検出器 5の動作チ ックの結果を表示させ、表示部 32に報知部の機能を兼用させたが、表示部 32に 放射線画像検出器 5の稼動状態を表示させてもょ 、。
符号の説明
[0155] 1 放射線画像撮影システム
2 サーバ
3 撮影操作装置
4 基地局
5 放射線画像検出器
6 コンソ一ノレ
7 ネットワーク
10 放射線画像撮影装置
16 走査駆動回路
17 信号読出し回路
18 画像記憶部
19 電源部
20 予備電池
21 充電池(電池)
23 充電用装置
24 通信部 (切替部)
26 入力操作部 (切替部)
27 制御部
40 電池残量検出部

Claims

請求の範囲
[1] 放射線の検出が可能な撮影可能状態と、前記撮影可能状態よりも消費電力量の 少な 、撮影待機状態とを切り替え自在な放射線画像検出器であって、
前記撮影可能状態及び前記撮影待機状態を切り替えるための指示を与える切替 部と、
複数の駆動部に電力を供給する電力供給源として充電又は交換自在な電池と、 前記電池の残量を検出する電池残量検出部と、
前記切替部からの指示に基づ!/、て、前記複数の駆動部の稼働状態を制御すること で前記撮影可能状態及び前記撮影待機状態を切り替えるとともに、前記電池残量検 出部を制御する制御部とを備え、
前記制御部は、
前記電池残量検出部による前記電池の残量の検出結果に基づいて、前記撮影待 機状態から前記撮影可能状態に切り替わるように、前記複数の駆動部の可動状態を 制御することを特徴とする放射線画像検出器。
[2] 請求の範囲第 1項に記載の放射線画像検出器において、
前記制御部は、
前記撮影待機状態を前記撮影可能状態に切り替える撮影指示が前記切替部から 入力された際における前記電池残量検出部による残量検出結果に基づいて、前記 撮影可能状態及び前記撮影待機状態が切り替えられるように前記複数の駆動部の 稼働状態を制御することを特徴とする放射線画像検出器。
[3] 請求の範囲第 2項に記載の放射線画像検出器において、
前記制御部は、
前記撮影指示が前記切替部から入力された際における前記電池残量検出部の残 量検出結果が、撮影可能な量を満たしている場合には前記撮影可能状態にし、撮 影可能な量未満である場合には前記撮影待機状態にするように、前記複数の駆動 部の稼働状態を制御することを特徴とする放射線画像検出器。
[4] 請求の範囲第 3項に記載の放射線画像検出器において、
前記制御部の制御に基づいて報知を行う報知部を備え、 前記制御部は、
前記撮影指示が前記切替部から入力された際における前記電池残量検出部の残 量検出結果が、撮影可能な量未満である場合には、前記報知部を制御して、撮影が 不可能である旨を報知させることを特徴とする放射線画像検出器。
[5] 請求の範囲第 1項〜第 4項の何れか一項に記載の放射線画像検出器において、 前記撮影待機状態は、複数のモードを有し、
前記制御部は、
前記複数のモードのそれぞれ毎に消費電力が異なるように、前記複数の駆動部の 稼働状態を制御することを特徴とする放射線画像検出器。
[6] 請求の範囲第 5項に記載の放射線画像検出器において、
前記制御部は、
前記撮影指示が前記切替部から入力された際における前記電池残量検出部の残 量検出結果が、撮影可能な量未満である場合には前記撮影待機状態の前記複数の モードうち、最も消費電力量の少ないモードとなるように、前記複数の駆動部の稼働 状態を制御することを特徴とする放射線画像検出器。
[7] 請求の範囲第 5項又は第 6項に記載の放射線画像検出器において、
前記制御部は、前記複数のモードのうち、消費電力の少ないモードから消費電力 の多いモードに切り替える待機状態切替指示が前記切替部から入力されると前記電 池の残量が検出されるように、前記電池残量検出部を制御することを特徴とする放射 線画像検出器。
[8] 請求の範囲第 1項〜第 7項の何れか一項に記載の放射線画像検出器において、 起動時に前記駆動部が正常に動作を行うことができるか否か前記駆動部の動作チ エックを行うチェック手段とを備えており、
前記動作チェックの結果に基づき、前記複数の駆動部の稼働状態を制御する制御 部を備えたことを特徴とする放射線画像検出器。
[9] 請求の範囲第 8項に記載の放射線画像検出器において、
前記稼動状態は、放射線の検出が可能な撮影可能状態及び前記撮影可能状態よ りも消費電力量の少ない撮影待機状態からなる主電源 ONの状態と、前記駆動部に 対して電力供給が完全に遮断される主電源 OFFの状態とから構成されており、 前記チェック手段が、前記各駆動部において正常に動作を行うことができないこと を検知した場合には、少なくとも前記撮影可能状態へ切り替えないようにすることを 特徴とする放射線画像検出器。
[10] 請求の範囲第 9項に記載の放射線画像検出器において、
前記電池残量検出部が、前記電源部の電力残量が撮影可能な所定量未満である ことを検知した場合には、前記制御部は、前記主電源 OFFの状態とすることを特徴と することを特徴とする放射線画像検出器。
[11] 請求の範囲第 9項に記載の放射線画像検出器において、
前記撮影待機状態は、第 1の撮影待機モードと、前記第 1の撮影待機モードより消 費電力の少ない第 2の撮影待機モードとから構成されており、
前記駆動部として通信部を備えるとともに、
前記動作チェックとして前記通信部の通信チェックを行う通信チェック部を備えるこ とを特徴とする放射線画像検出器。
[12] 請求の範囲第 11項に記載の放射線画像検出器において、
前記通信チェック部力 前記通信部において正常に動作を行うことができないこと を検知した場合には、前記制御部は、前記第 2の撮影待機モードとすることを特徴と する放射線画像検出器。
[13] 請求の範囲第 14項に記載の放射線画像検出器において、
前記制御部の制御に基づいて報知を行う報知部を備え、
前記通信チェック部力 前記通信部において正常に動作を行うことができないこと を検知した場合には、前記報知部は、前記通信部が正常に動作を行うことが不可能 である旨を報知することを特徴とする放射線画像検出器。
[14] 請求の範囲第 9項に記載の放射線画像検出器において、
前記撮影待機状態は、第 1の撮影待機モードと、前記第 1の撮影待機モードより消 費電力の少ない第 2の撮影待機モードとから構成されており、
前記駆動部として画像記憶部を備えるとともに、
前記動作チェックとして前記画像記憶部のメモリチェックを行うメモリチェック部を備 えることを特徴とする放射線画像検出器。
[15] 請求の範囲第 14項に記載の放射線画像検出器において、
前記メモリチェック部力 画像記憶部において正常に動作を行うことができないこと を検知した場合には、前記制御部は前記第 2の撮影待機モードとすることを特徴とす る放射線画像検出器。
[16] 請求の範囲第 1項〜第 15項の何れか一項に記載の放射線画像検出器において、 照射された放射線を検出し、当該放射線を電気信号に変換して蓄積し、蓄積され
7こ
信号を読み出して放射線画像情報を取得する力セッテ型のフラットパネルディテクタ であることを特徴とする放射線画像検出器。
[17] 請求の範囲第 1項〜第 16項の何れか一項の放射線画像検出器と、
前記放射線画像検出器を制御するコンソールとを備えることを特徴とする放射線画 像撮影システム。
[18] 請求の範囲第 17項に記載の放射線画像撮影システムにお 、て、
前記コンソールは、前記制御部の制御に基づ 、て表示を行う表示部を備え、 前記制御部は、前記撮影指示が前記切替部から入力された際における前記電池 残量検出部の残量検出結果が、撮影可能な量未満である場合には、前記表示部を 制御して、撮影が不可能である旨を表示させることを特徴とする放射線画像撮影シス テム。
[19] 請求の範囲第 18項に記載の放射線画像撮影システムにお 、て、
前記制御部は、前記電池の残量検出部の検出結果に基づいて前記表示部を制御 し、前記電池の残量を表示することを特徴とする放射線画像撮影システム。
[20] 請求の範囲第 18項又は第 19項に記載の放射線画像撮影システムにおいて、 前記制御部は、前記表示部を制御して、前記放射線画像検出器が前記撮影可能 状態であるか前記撮影待機状態であるかを表示することを特徴とする放射線画像撮 影システム。
[21] 請求の範囲第 8項〜第 15項の何れか一項の放射線画像検出器と、
前記放射線画像検出器を制御するコンソールとを備え、 前記コンソールは、前記放射線画像検出器の稼動状態及び前記放射線画像検出 器の動作チェックの結果のうち、 V、ずれか一方又は両方を報知する報知部を備える ことを特徴とする放射線画像撮影システム。
PCT/JP2006/301190 2005-01-31 2006-01-26 放射線画像検出器及び放射線画像撮影システム WO2006080377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/813,257 US20090232278A1 (en) 2005-01-31 2006-01-26 Radiation image detector and radiation imaging system
CN2006800036651A CN101111782B (zh) 2005-01-31 2006-01-26 辐射图像检测器和辐射成像系统
JP2007500558A JPWO2006080377A1 (ja) 2005-01-31 2006-01-26 放射線画像検出器及び放射線画像撮影システム
EP06712372A EP1857837A1 (en) 2005-01-31 2006-01-26 Radiation image detector and radiation imaging system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-023884 2005-01-31
JP2005023744 2005-01-31
JP2005023884 2005-01-31
JP2005-023744 2005-01-31
JP2005-023724 2005-01-31
JP2005023724 2005-01-31

Publications (1)

Publication Number Publication Date
WO2006080377A1 true WO2006080377A1 (ja) 2006-08-03

Family

ID=36740404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301190 WO2006080377A1 (ja) 2005-01-31 2006-01-26 放射線画像検出器及び放射線画像撮影システム

Country Status (5)

Country Link
US (1) US20090232278A1 (ja)
EP (1) EP1857837A1 (ja)
JP (1) JPWO2006080377A1 (ja)
CN (1) CN101111782B (ja)
WO (1) WO2006080377A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145053A (ja) * 2007-12-11 2009-07-02 Konica Minolta Medical & Graphic Inc 放射線検出器の撮像部および放射線検出器の製造方法
JP2009175104A (ja) * 2008-01-28 2009-08-06 Fujifilm Corp 放射線変換器及び放射線画像撮影システム
JP2009189793A (ja) * 2008-02-15 2009-08-27 Ge Medical Systems Global Technology Co Llc X線撮影装置およびディテクタパネル
WO2009122797A1 (ja) * 2008-03-31 2009-10-08 コニカミノルタエムジー株式会社 放射線画像生成システム
JP2010022836A (ja) * 2008-07-22 2010-02-04 General Electric Co <Ge> 無線ディジタルx線検出器のバッテリ充電装置
JP2010154912A (ja) * 2008-12-26 2010-07-15 Fujifilm Corp 放射線検出装置、放射線画像撮影システム及び放射線画像撮影方法
JP2010264000A (ja) * 2009-05-13 2010-11-25 Konica Minolta Medical & Graphic Inc 放射線画像検出器及び放射線画像撮影システム
WO2011021404A1 (ja) * 2009-08-20 2011-02-24 コニカミノルタエムジー株式会社 放射線画像検出装置及び放射線画像撮影システム
WO2011046049A1 (ja) * 2009-10-14 2011-04-21 コニカミノルタエムジー株式会社 放射線画像撮影システム
WO2011065266A1 (ja) * 2009-11-24 2011-06-03 キヤノン株式会社 X線撮影装置
JP2011206198A (ja) * 2010-03-29 2011-10-20 Fujifilm Corp 放射線検出器の管理装置、システム、及びプログラム
WO2012026518A1 (ja) * 2010-08-27 2012-03-01 富士フイルム株式会社 放射線撮像システム、放射線撮像装置
JP2012045242A (ja) * 2010-08-27 2012-03-08 Fujifilm Corp 放射線撮像システム、放射線撮像装置
JP2012045243A (ja) * 2010-08-27 2012-03-08 Fujifilm Corp 放射線撮像システム、放射線撮像装置
JP2015112358A (ja) * 2013-12-13 2015-06-22 コニカミノルタ株式会社 可搬型放射線画像撮影装置および放射線画像撮影システム
KR20170013214A (ko) * 2014-03-28 2017-02-06 배리언 메디컬 시스템즈, 인크. 무선 영상기에서의 저전력 대기 모드
JP2017056279A (ja) * 2016-12-27 2017-03-23 キヤノン株式会社 放射線撮影システム、制御方法、制御方法、及びプログラム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7822180B2 (en) * 2007-01-12 2010-10-26 General Electric Company Methods and apparatus for battery powered devices
CN101507609B (zh) * 2008-02-15 2013-03-06 Ge医疗系统环球技术有限公司 探测器面板和x射线成像设备
EP2412312B1 (en) * 2009-03-24 2015-07-08 Konica Minolta Medical & Graphic, Inc. Radiation image detecting system
US8786873B2 (en) * 2009-07-20 2014-07-22 General Electric Company Application server for use with a modular imaging system
JP5787477B2 (ja) * 2009-12-21 2015-09-30 キヤノン株式会社 放射線画像撮影装置
JP2011200427A (ja) * 2010-03-25 2011-10-13 Fujifilm Corp 無線通信型カセッテのバッテリ管理装置およびシステム、並びに方法
JP5508983B2 (ja) * 2010-08-05 2014-06-04 株式会社東芝 X線コンピュータ断層撮影装置
JP5455857B2 (ja) * 2010-09-28 2014-03-26 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影方法、及び放射線画像撮影プログラム
US20130208862A1 (en) * 2012-02-15 2013-08-15 Robert A. Levine Apparatus and method for digital radiography
JP2013180061A (ja) * 2012-03-01 2013-09-12 Canon Inc 情報処理装置、その制御方法及びプログラム
CN104688254B (zh) * 2013-12-06 2020-06-09 Ge医疗系统环球技术有限公司 医用便携探测器设备及其工作方法
DE102016207904A1 (de) * 2016-05-09 2017-11-09 Siemens Healthcare Gmbh Betrieb einer Detektoreinrichtung
JP6849328B2 (ja) * 2016-07-05 2021-03-24 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
JP6890443B2 (ja) * 2017-03-22 2021-06-18 キヤノン株式会社 放射線撮影システム、放射線撮影方法、及びプログラム
CN111806605B (zh) * 2019-12-31 2022-02-25 北京骑胜科技有限公司 调整系统运行状态的方法、装置、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306062A (ja) * 1990-10-10 1992-10-28 Fuji Xerox Co Ltd デジタル電子写真複写装置
JPH10209953A (ja) * 1997-01-24 1998-08-07 Nec Ic Microcomput Syst Ltd 携帯無線電話装置の省電力制御方式
JP2000347330A (ja) * 1999-06-01 2000-12-15 Konica Corp カセッテ型放射線画像読取装置
JP2003223937A (ja) * 2002-01-29 2003-08-08 Sony Corp 電力制御装置、電力制御方法、及び情報処理装置、並びに電力制御プログラム
JP2004101195A (ja) * 2002-09-04 2004-04-02 Konica Minolta Holdings Inc カセッテ型放射線画像検出器及び放射線画像検出システム
JP2004303206A (ja) * 2003-03-18 2004-10-28 Matsushita Electric Ind Co Ltd プロセッサ及びその駆動方法並びに電子情報処理機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030593A1 (ja) * 2004-09-16 2006-03-23 Konica Minolta Medical & Graphic, Inc. 放射線画像検出器及び放射線画像撮影システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306062A (ja) * 1990-10-10 1992-10-28 Fuji Xerox Co Ltd デジタル電子写真複写装置
JPH10209953A (ja) * 1997-01-24 1998-08-07 Nec Ic Microcomput Syst Ltd 携帯無線電話装置の省電力制御方式
JP2000347330A (ja) * 1999-06-01 2000-12-15 Konica Corp カセッテ型放射線画像読取装置
JP2003223937A (ja) * 2002-01-29 2003-08-08 Sony Corp 電力制御装置、電力制御方法、及び情報処理装置、並びに電力制御プログラム
JP2004101195A (ja) * 2002-09-04 2004-04-02 Konica Minolta Holdings Inc カセッテ型放射線画像検出器及び放射線画像検出システム
JP2004303206A (ja) * 2003-03-18 2004-10-28 Matsushita Electric Ind Co Ltd プロセッサ及びその駆動方法並びに電子情報処理機器

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145053A (ja) * 2007-12-11 2009-07-02 Konica Minolta Medical & Graphic Inc 放射線検出器の撮像部および放射線検出器の製造方法
US8330597B2 (en) 2008-01-28 2012-12-11 Fujifilm Corporation Radiation detection apparatus and radiation image capturing system
JP2009175104A (ja) * 2008-01-28 2009-08-06 Fujifilm Corp 放射線変換器及び放射線画像撮影システム
JP2009189793A (ja) * 2008-02-15 2009-08-27 Ge Medical Systems Global Technology Co Llc X線撮影装置およびディテクタパネル
WO2009122797A1 (ja) * 2008-03-31 2009-10-08 コニカミノルタエムジー株式会社 放射線画像生成システム
JP2010022836A (ja) * 2008-07-22 2010-02-04 General Electric Co <Ge> 無線ディジタルx線検出器のバッテリ充電装置
JP2010154912A (ja) * 2008-12-26 2010-07-15 Fujifilm Corp 放射線検出装置、放射線画像撮影システム及び放射線画像撮影方法
JP2010264000A (ja) * 2009-05-13 2010-11-25 Konica Minolta Medical & Graphic Inc 放射線画像検出器及び放射線画像撮影システム
US8786257B2 (en) 2009-08-20 2014-07-22 Konica Minolta Medical & Graphic, Inc. Radiographic image detection device and radiographic image capturing system
WO2011021404A1 (ja) * 2009-08-20 2011-02-24 コニカミノルタエムジー株式会社 放射線画像検出装置及び放射線画像撮影システム
WO2011046049A1 (ja) * 2009-10-14 2011-04-21 コニカミノルタエムジー株式会社 放射線画像撮影システム
US8611501B2 (en) 2009-11-24 2013-12-17 Canon Kabushiki Kaisha X-ray imaging apparatus
JP2011110103A (ja) * 2009-11-24 2011-06-09 Canon Inc X線撮影装置
WO2011065266A1 (ja) * 2009-11-24 2011-06-03 キヤノン株式会社 X線撮影装置
JP2011206198A (ja) * 2010-03-29 2011-10-20 Fujifilm Corp 放射線検出器の管理装置、システム、及びプログラム
WO2012026518A1 (ja) * 2010-08-27 2012-03-01 富士フイルム株式会社 放射線撮像システム、放射線撮像装置
JP2012045242A (ja) * 2010-08-27 2012-03-08 Fujifilm Corp 放射線撮像システム、放射線撮像装置
JP2012045243A (ja) * 2010-08-27 2012-03-08 Fujifilm Corp 放射線撮像システム、放射線撮像装置
JP2015112358A (ja) * 2013-12-13 2015-06-22 コニカミノルタ株式会社 可搬型放射線画像撮影装置および放射線画像撮影システム
KR20170013214A (ko) * 2014-03-28 2017-02-06 배리언 메디컬 시스템즈, 인크. 무선 영상기에서의 저전력 대기 모드
KR102236072B1 (ko) * 2014-03-28 2021-04-05 바렉스 이미징 코포레이션 무선 영상기에서의 저전력 대기 모드
JP2017056279A (ja) * 2016-12-27 2017-03-23 キヤノン株式会社 放射線撮影システム、制御方法、制御方法、及びプログラム

Also Published As

Publication number Publication date
CN101111782A (zh) 2008-01-23
CN101111782B (zh) 2010-09-08
EP1857837A1 (en) 2007-11-21
US20090232278A1 (en) 2009-09-17
JPWO2006080377A1 (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
WO2006080377A1 (ja) 放射線画像検出器及び放射線画像撮影システム
JP4581713B2 (ja) 放射線画像撮影システム
JP5012503B2 (ja) 放射線画像撮影システム
US7365337B2 (en) Radiographic image detection device and radiographic imaging system
US7250608B2 (en) Radiographic image detector and radiographic imaging system
JP4715844B2 (ja) 放射線画像撮影システム
WO2006103791A1 (ja) カセッテ型放射線画像検出器及び放射線画像検出システム
US20080107234A1 (en) Radiation image radiographing system and radiation image detecting apparatus
JP2006247137A (ja) 放射線画像撮影システム
JP2010212741A (ja) 放射線画像検出装置
JP4552672B2 (ja) 放射線画像検出器及び放射線画像撮影システム
JP2006247138A (ja) 放射線画像撮影システム
JP2006208303A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2006208306A (ja) 放射線画像検出器及び放射線画像撮影システム
JP4682650B2 (ja) 放射線画像検出器及び放射線画像撮影システム
JP2006250729A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2007333384A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2006247141A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2007333383A (ja) 放射線画像検出器及び放射線画像撮影システム
JP5707869B2 (ja) 放射線画像撮影システム
JP2009219586A (ja) 放射線画像撮影システム
JP5645651B2 (ja) 放射線検出装置及び放射線撮影システム
WO2009122797A1 (ja) 放射線画像生成システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11813257

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007500558

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006712372

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680003665.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006712372

Country of ref document: EP