WO2006030593A1 - 放射線画像検出器及び放射線画像撮影システム - Google Patents

放射線画像検出器及び放射線画像撮影システム Download PDF

Info

Publication number
WO2006030593A1
WO2006030593A1 PCT/JP2005/014838 JP2005014838W WO2006030593A1 WO 2006030593 A1 WO2006030593 A1 WO 2006030593A1 JP 2005014838 W JP2005014838 W JP 2005014838W WO 2006030593 A1 WO2006030593 A1 WO 2006030593A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
radiation image
image detector
battery
radiation
Prior art date
Application number
PCT/JP2005/014838
Other languages
English (en)
French (fr)
Inventor
Hisanori Tsuchino
Yasuaki Tamakoshi
Hiromu Ohara
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004269974A external-priority patent/JP2007333381A/ja
Priority claimed from JP2005023643A external-priority patent/JP2007333383A/ja
Priority claimed from JP2005023659A external-priority patent/JP2007333384A/ja
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Publication of WO2006030593A1 publication Critical patent/WO2006030593A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings

Definitions

  • the present invention relates to a radiographic image detector and a radiographic image capturing system.
  • FPD flat panel detector
  • the radiation image detector is roughly classified into a stationary type that is stationary at a predetermined position as a part of the system and a portable type that is portable (force set type), and is easy to carry and handle. Recently, the use of force set-type radiation image detectors has been widely studied.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-181942
  • TFTs thin film transistors
  • the members constituting the radiation image detector there are members such as photodiodes and TFTs that deteriorate with time when power is supplied. For this reason, for example, when radiography is not performed for a long period of time and the power supply state is maintained with respect to the members that have deteriorated with time, the radiographic image detector is caused by the deterioration of these members. If the lifetime of is shortened, there will be a problem.
  • the present invention has been made to solve the above-described problems.
  • the efficiency of the entire radiation imaging workflow is improved, and The purpose is to extend the life of the members of the radiation image detector.
  • the radiological image detector comprises:
  • a radiation image detector that has a plurality of operating states and obtains radiation image information by detecting irradiated radiation
  • a power supply source including a rechargeable or replaceable battery for supplying power to a plurality of drive units; a state storage unit for storing post-completion operation information regarding an operation state after the battery is completely charged or replaced;
  • the [0010] A radiographic imaging system includes:
  • a radiation image detector which has a plurality of operating states and obtains radiation image information by detecting irradiated radiation
  • a state storage unit for storing post-completion operation information related to the operation state after the battery has been charged or replaced
  • the post-completion operation information is stored in the state storage unit.
  • the radiation image detector is
  • a power supply source that includes a rechargeable or replaceable battery and supplies power to a plurality of drive units, and after completion of charging or replacement of the battery, according to the post-completion operation information stored in the state storage unit And a control unit for controlling the operating state of each of the drive units.
  • radiographic image detectors and radiographic imaging systems have the effects of improving the overall efficiency of the radiographic imaging workflow and extending the life of members of the radiographic image detector.
  • the control unit may store the post-completion operation information in the state storage unit based on an operation state immediately before charging or replacing the battery.
  • the operation state of the radiation image detector is based on the operation state immediately before the battery is charged or replaced. If the battery is charged or replaced, control is performed so that the camera is ready for shooting or shooting standby after completion, or if the battery is charged or replaced in shooting standby, the camera is set in shooting standby after completion. Therefore, even if the operator does not know and set the operation state of the radiation image detector, it will return to an appropriate operation state after the battery is fully charged or replaced. This has the effect of suppressing the deterioration and increase in power consumption and enabling efficient shooting.
  • the operation state after the charging or replacement of the battery is completed can be selected and set, and the control unit can select and set the operation state.
  • the post-completion operation information may be stored in the state storage unit.
  • the operation state after the battery charging or replacement is completed is selected and set so that the operation state after the battery charging or replacement is completed is a desired state. Can do. For this reason, there is an effect that it is possible to suppress the deterioration of the member and the increase in power consumption and to perform an efficient photographing operation.
  • the operation state after completion of charging or replacement of the battery can be set to a preset operation state or arbitrarily set, and the control unit can select a preset operation state based on the selection.
  • the post-completion operation information may be stored in the state storage unit based on the state or an arbitrarily set operation state.
  • the power consumption to the at least a part of each of the drive units is less than the shooting enabled state and consumes less power!
  • the operation state after battery charging or replacement is completed can be set to an appropriate state according to the situation, suppressing deterioration of members and increase in power consumption, and efficiency The effect which can perform typical photography work is produced.
  • the plurality of operating states are:
  • the power consumption to the at least a part of each of the drive units is less than the shooting enabled state and consumes less power!
  • the radiographic image detector since the radiographic image detector has an operation state including a radiographable state, an imaging standby state, and an imaging pause state, it is possible to suppress deterioration of members and increase in power consumption.
  • the shooting standby state is:
  • the photographing standby state has a plurality of modes, there is an effect that the operation state can be made more appropriate and deterioration of members and increase in power consumption can be suppressed.
  • photodiodes, TFTs, etc. take time to stabilize to a state suitable for photography once power supply is stopped.
  • they have the property of deteriorating over time when power is supplied. Therefore, it is preferable not to stop the power supply to the photodiode or TFT in a shooting environment where continuous shooting is performed with a short break, etc. In a shooting environment, it is preferable to stop power supply to these.
  • the controller is
  • the communication mode when the communication mode is in a state where power is supplied to the communication unit while minimizing the power consumption, it receives the signal of the external device power while charging or replacing the battery and It is possible to start control immediately after the charging or replacement to move to the next shooting, and the reduction in work efficiency can be suppressed.
  • the battery is a
  • the battery is in a non-energized state at the time of replacement, and the operator can be prevented from being exposed to a risk of electric shock from the battery replaced by the operator when the battery is replaced.
  • a force set type flat panel detector that detects irradiated radiation, converts the radiation into an electrical signal, accumulates it, and reads the accumulated electrical signal to acquire radiation image information.
  • the radiation image detector power set type FPD makes it easy to carry around regardless of the shooting location, improving the degree of freedom of shooting, and operating after the battery has been charged or replaced.
  • the state can be changed to an appropriate state, and there is an effect that the deterioration of the member and the increase in power consumption can be suppressed.
  • a radiographic workflow is provided. This has the effect of improving the overall efficiency and extending the life of the members of the radiation image detector.
  • FIG. 1 is a diagram showing a schematic configuration illustrating an embodiment of a radiographic image capturing system.
  • FIG. 2 is a perspective view showing a main configuration of a radiation image detector.
  • FIG. 3 is an equivalent circuit configuration diagram for one pixel of a photoelectric conversion unit configuring a photoelectric conversion layer.
  • FIG. 4 is an equivalent circuit configuration diagram in which the photoelectric conversion units shown in FIG. 3 are two-dimensionally arranged.
  • FIG. 5 is a block diagram showing a main configuration of a radiation image detector.
  • FIG. 6 is a block diagram showing a main configuration of the console.
  • FIG. 7 is a flowchart showing the processing performed by the radiographic image detector over time when the radiographic imaging system is activated.
  • FIG. 8 is a flowchart showing the processing performed in the console over time when the radiographic imaging system is activated.
  • FIG. 9 is a drawing showing an example of a non-energization mechanism.
  • FIG. 10 is a flowchart showing the processing performed by the radiological image detector over time when the radiographic image capturing system according to the second embodiment is operated.
  • FIG. 11 is a flowchart showing a process performed over time when the radiographic image capturing system according to the second embodiment is operated.
  • FIG. 1 is a diagram showing a schematic configuration of an embodiment of a radiographic imaging system to which a radiographic image detector according to the present invention is applied.
  • the radiographic imaging system 1 according to the present embodiment is a system that is applied, for example, in radiographic imaging performed in a hospital. As shown in Fig. 1, various types of information about radiography and patients, etc.
  • Server 2 that manages the radiography
  • radiography operation device 3 that performs operations relating to radiographic imaging
  • a base station 4 that performs communication by a wireless communication method such as a wireless local area network (LAN), and a radiographic image detector 5
  • a console 6 is connected through a network 7 for operating and processing the radiation image detected by the radiation image detector 5.
  • LAN wireless local area network
  • a radiographic image capturing device 10 is connected to the radiographing operation device 3 via a cable 8 to irradiate a patient as a subject 9 with radiation to capture a radiographic image.
  • the radiographic image capturing device 10 and the radiographic image detector 5 are installed, for example, in one radiographing room 11 one by one.
  • the radiographic image capturing device 10 is operated by the radiographing operation device 3 to detect the radiographic image detector 5.
  • the radiation image information can be obtained by detecting the radiation image by. Note that a plurality of radiation image detectors 5 may be provided in one imaging room 11.
  • the network 7 may be a dedicated communication line for the system. However, the network 7 may be an existing line such as Ethernet (registered trademark) because of a low degree of freedom in system configuration. Some are preferred. In addition to those exemplified here, the network 7 may be connected to a plurality of imaging operation devices 3, radiographic image detectors 5, and consoles 6 for operating the radiographic imaging devices 10 in other imaging rooms 11.
  • Ethernet registered trademark
  • the imaging operation device 3 is composed of an operation panel or the like, and operates the radiographic imaging device 10. For example, an input operation unit for inputting signals such as imaging conditions, information on imaging conditions, various instructions, and the like are displayed. And a power supply unit for supplying power to the radiation image capturing apparatus 10 (not shown).
  • the radiographic imaging device 10 is disposed inside a radiographing room 11 and has a radiation source 12, and radiation is generated when a tube voltage is applied to the radiation source 12. Yes.
  • a radiation tube is used as the radiation source 12.
  • the radiation tube generates radiation by accelerating electrons generated by thermal excitation at a high voltage and colliding with the cathode.
  • the radiographic image detector 5 detects the radiation irradiated from the radiation source 12 of the radiographic imaging device 10 and transmitted through the subject 9, and acquires a radiographic image. It is arranged in the irradiation range of radiation emitted from the source 12. For example, as shown in FIG.
  • the radiation image detector 5 is disposed between the subject 9 and the bed 13 on which the subject 9 is placed, but the radiation image detector 5 is disposed at this position.
  • a detector mounting port (not shown) for mounting the radiation image detector 5 is provided below the bed 13 so that the radiation image detector 5 is mounted in the detector mounting port. Also good.
  • the radiation image detector 5 is a flat panel type radiation image detector 5.
  • the structure of the radiation image detector 5 will be described with reference to FIGS. 2 and 3.
  • the radiation image detector 5 includes a casing 14 that protects the inside, and is configured to be portable as a force set.
  • An imaging panel 15 that converts irradiated radiation into an electrical signal is formed in layers inside the casing 14.
  • a light emitting layer (not shown) that emits light according to the intensity of the incident radiation is provided on the radiation irradiation side of the imaging panel 15.
  • the light emitting layer is generally called a scintillator layer.
  • a phosphor is a main component, and an electromagnetic wave having a wavelength of 300 nm to 800 nm based on incident radiation, that is, visible light is mainly used.
  • Ultraviolet light power Electromagnetic waves (light) over infrared light are output.
  • Phosphors used in the light emitting layer include, for example, those based on CaWO or the like, Csl:
  • T1 or Gd O S Tb, ZnS: Ag etc. with activated luminescent material in the matrix
  • the rare earth element is M, it is represented by the general formula of (Gd, M, Eu) O.
  • Csl: T1 and Gd O S: Tb are preferred over the high radiation absorption and emission efficiency to obtain high-quality images with low noise.
  • FIG. 3 is an equivalent circuit diagram of the photoelectric conversion unit for one pixel that constitutes the signal detection unit 151.
  • the configuration of the photoelectric conversion unit for one pixel includes a photodiode 152 and a thin film transistor (hereinafter referred to as "TFT") that extracts electrical energy accumulated in the photodiode 152 as an electrical signal by switching. 153).
  • TFT thin film transistor
  • the extracted electric signal is amplified by the amplifier 154 to a level that can be detected by the signal reading circuit 17.
  • the amplifier 154 is connected to a reset circuit (not shown) composed of a TFT 153 and a capacitor, and a reset operation for resetting the stored electrical signal is performed by turning on the TFT 153.
  • the photodiode 152 may be simply a photodiode having a regulation capacitance, or may include an additional capacitor in parallel so as to improve the dynamic range of the photodiode 152 and the photoelectric conversion unit.
  • FIG. 4 is an equivalent circuit diagram in which such photoelectric conversion units are two-dimensionally arranged, and between the pixels, the scanning line L1 and the signal line Lr are arranged to be orthogonal to each other.
  • a TFT 153 is connected to the photodiode 152, and one end of the photodiode 152 on the side to which the TFT 153 is connected is connected to the signal line Lr.
  • the other end of the photodiode 152 is connected to one end of an adjacent photodiode 152 arranged in each row and connected to a bias power source 155 through a common bias line Lb.
  • One end of the bias power source 155 is connected to the control unit 27, and a voltage is applied to the photodiode 152 through the bias line Lb according to an instruction from the control unit 27.
  • the TFTs 153 arranged in each row are connected to a common scanning line L 1, and the scanning line L 1 is connected to the control unit 27 via the scanning drive circuit 16.
  • the photodiodes 152 arranged in each column are connected to a signal readout circuit 17 that is connected to a common signal line Lr and controlled by the control unit 27.
  • an amplifier 154 In the signal readout circuit 17, an amplifier 154, a sample hold circuit 156, an analog multiplexer 157, and an AZD converter 158 are arranged on a common signal line Lr.
  • TFT153 is an inorganic semiconductor type used for liquid crystal displays and the like. Even if the machine semiconductor is used, it may be misaligned.
  • the photodiode 152 as the photoelectric conversion element is used is exemplified, but a solid-state imaging element other than the photodiode may be used as the photoelectric conversion element.
  • a pulse is sent to each photoelectric conversion element to scan and drive each photoelectric conversion element, and to each photoelectric conversion element A signal reading circuit 17 for reading the stored electric energy is arranged.
  • the radiation image detector 5 includes an image storage unit 18 that also has a rewritable read-only memory, such as a RAM (Random Access Memory) and a flash memory, and the image storage unit 18 includes an imaging panel.
  • the image signal output from 15 is stored.
  • the image storage unit 18 may be a built-in memory or a removable memory such as a memory card.
  • the radiation image detector 5 includes a plurality of driving units (for example, a scanning driving circuit 16, a signal reading circuit 17, a communication unit 24 (described later), an image storage unit 18, A rechargeable battery 21 is provided as a power supply source for supplying power to a charge amount detection unit (not shown), an indicator 25 (described later), an input operation unit 26 (described later), an imaging panel 15 and the like).
  • driving units for example, a scanning driving circuit 16, a signal reading circuit 17, a communication unit 24 (described later), an image storage unit 18,
  • a rechargeable battery 21 is provided as a power supply source for supplying power to a charge amount detection unit (not shown), an indicator 25 (described later), an input operation unit 26 (described later), an imaging panel 15 and the like).
  • rechargeable batteries such as a negative power battery, a nickel metal hydride battery, a lithium ion battery, a small sealed lead battery, and a lead storage battery can be applied. Further, instead of the rechargeable battery 21, a fuel cell may be applied.
  • a charging terminal 22 is formed at one end of the casing 14, and, for example, as shown in Fig. 1, the radiation image detector 5 is connected to a charging device 23 such as a cradle connected to an external power source. By attaching the terminal, a terminal (not shown) on the charging device 23 side and a terminal 22 on the casing 14 side are connected to charge the rechargeable battery 21.
  • the shape of the charging battery 21 as the power supply source is not limited to that illustrated in FIG. 2, and for example, a plate-shaped battery may be provided in parallel with the imaging panel 15. By making the battery into such a shape, the area of the imaging panel 15 can be increased, and the imageable area can be widened.
  • the radiation image detector 5 is provided with a communication unit 24 (see FIG. 5) that transmits and receives various signals to and from an external device such as the console 6.
  • the communication unit 24 is, for example, an imaging panel.
  • the image signal output from the console 15 is transferred to the console 6, and the shooting start signal that receives the console 6's power is received! /
  • an indicator 25 for displaying the charging status of the rechargeable battery 21 and various operation statuses is provided at one end of the surface of the housing 14, and the operator can check the rechargeable battery 21 of the radiation image detector 5. It will be possible to visually check the charging status.
  • an input operation unit 26 is provided on which an operator such as a radiologist inputs and sets imaging conditions, patient identification information, various instructions, and the like.
  • the contents that can also be input by the input operation unit 26 are not limited to those illustrated here.
  • the input operation unit 26 also functions as a selection setting unit that sets the operation state of the radiation image detector 5 in advance.
  • the operation state of the radiation image detector 5 includes “imaging ready state”, “imaging standby state”, and “imaging suspension state”.
  • the operation state after the charging is completed by the input operation unit 26 is selected and set to be an arbitrary operation state of “shooting ready state”, “shooting standby state”, and “shooting pause state”, or It is possible to select an operation state preliminarily associated with the operation state before the start of charging.
  • the imaging enabled state is a state in which all the driving units used for a series of imaging operations among the members constituting the radiation image detector 5 are operating, that is, power is supplied to all the driving units. It is in a state.
  • a drive unit used for such a series of photographing operations there are a scanning drive circuit 16, a signal readout circuit 17, a photodiode 152, a TFT 153, an image storage unit 18, and a communication unit 24.
  • initialization of image information in the image storage unit 18, accumulation of electric energy generated in accordance with the irradiated radiation in the photodiode 152, the scanning drive circuit 16 and the signal readout circuit 17 There are various operations such as reading of an electric signal in, and transfer of an image signal in the communication unit 24. In a state where photography is possible, a series of these photographing operations can be performed. In the initialization, the reset operation and idle reading operation in the imaging panel 15 are performed.
  • the shooting standby state includes a "first shooting standby mode” that consumes less power than the shooting enabled state and a "second shooting standby mode” that consumes less power than the first shooting standby mode. is there .
  • the first shooting standby mode and the second shooting mode are set.
  • the shadow standby mode can be selected, and one of these two modes can be selected!
  • the first shooting standby mode is a state in which power is supplied to all the drive units used for a series of shooting operations except for the signal readout circuit 17 that can be quickly started to a shooting ready state. This is a shooting standby state in which shooting can be performed immediately. Specifically, power is supplied to the scanning drive circuit 16, photodiode 152, TFT 153, image storage unit 18, communication unit 24, and control unit 28.
  • the image storage unit 18 which is a part related to image storage, the communication unit 24 and the control device 28 which are parts related to transfer of image information to the outside and reception of external force signals are transmitted.
  • the shooting standby state where power is supplied and at least some of the other drive units are in a state where the power supply amount is lower than normal and the power consumption is lower than in the first shooting standby mode. is there.
  • the second shooting standby mode is a state in which power is supplied only to the image storage unit 18, the communication unit 24, and the control device 28, and power consumption that cannot be taken immediately. This is a shooting standby state in a very low state.
  • the imaging pause state is a complete power saving state in which all power supply to each drive unit of the radiation image detector 5 is stopped.
  • the input operation unit 26 sets, as basic state setting means, which is a basic state selection setting means, the operating state of the radiation image detector 5 to be set to the imaging ready state or each imaging standby mode. I am able to do that.
  • the “basic state” is an operation state that is selected unless any setting change is made. For example, when the radiographic image detector 5 is used in a situation where the frequency of imaging is low, the second imaging standby mode is selected and set as the basic state, so that the power of the photodiode 152 or TFT 153 can be reduced. Members that deteriorate over time due to supply can be protected, and power can be saved.
  • the radiographable state or the first imaging standby mode is selected and set as the basic state. Electricity is supplied to the photodiode 152 and the TFT 153, which take time to start up, and it is possible to perform rapid and efficient photographing.
  • the radiation image detector 5 is connected to each drive unit by the rechargeable battery 21.
  • the power supply is performed. Therefore, it is preferable that the first shooting standby mode is selected and set as a basic state for realizing a quick and efficient shooting operation while suppressing power consumption. On the other hand, if you do not plan to shoot for a while, you can select the shooting pause mode as the basic status.
  • the input operation unit 26 sets the operation state of the radiation image detector 5 to the imaging enabled state after charging the rechargeable battery 21 as a post-condition setting unit which is a post-condition selection setting unit. It is possible to select and set whether to set the shooting standby mode or the shooting pause mode.
  • the “post-condition” refers to the state after the rechargeable battery 21 is charged. The post-condition can be set arbitrarily, so that it is possible to take a picture immediately after the rechargeable battery 21 is charged, It is possible to set the optimum operating state according to the time zone.
  • the content that can be input from the input operation unit 26 is not limited to the operation state selection setting, and that an operator such as a radiologist can input and set imaging conditions, patient identification information, and the like. Let's go out.
  • the radiation image detector 5 includes a control device 28 having a control unit 27 composed of, for example, a general-purpose CPU, ROM, RAM, etc. (all not shown), and the control unit 27 is stored in the ROM.
  • the predetermined program to be read is read out and expanded in the RAM work area, and the CPU executes various processes according to the program.
  • the radiation image detector 5 includes a charge amount detection unit (not shown), and the control unit 27 stores the charge status of the rechargeable battery 21 detected by the charge amount detection unit (for example, the voltage value of the rechargeable battery 21). ) Is sent as a signal, and the control unit 27 displays the charge amount of the rechargeable battery 21 on the indicator 25 based on the sent signal.
  • Such charge amount detection means may be one in which the control unit 27 detects the charge amount from the measurement result of a voltmeter that measures the voltage between both electrodes of the rechargeable battery 21,
  • the measurement result force of the voltmeter that measures the voltage between the electrodes may be a unit that detects the amount of charge by a unit independent of the control unit 27, or a drive unit that is supplied with power from the rechargeable battery 21 (for example, control Part 27) may be used to measure the voltage supplied and estimate the amount of charge from the supply voltage.
  • control Part 27 a drive unit that is supplied with power from the rechargeable battery 21
  • the control unit 27 determines that the charge amount of the rechargeable battery 21 falls below a predetermined level based on the detection result by the charge amount detection means and is required to be charged, the communication unit 24 is used. The signal to that effect is sent to the console 6. Furthermore, when the control unit 27 determines that charging is complete for the rechargeable battery 21 based on the detection result by the charge amount detection means, the control unit 27 sends a signal to that effect to the console 6 via the communication unit 24. It is designed to send. The charge amount of the rechargeable battery 21 should be sent to the console 6 via the communication unit 24 as needed.
  • the operating state of the radiation image detector 5 is transmitted from the control unit 27 to the console 6 via the communication unit 24 as needed.
  • the state storage unit 35 stores post-completion operation information regarding the operation state of the radiation image detector 5 after the charging or replacement of the rechargeable battery 21 is completed.
  • the state storage unit 35 is configured by a rewritable dedicated memory such as a flash memory.
  • the control unit 27 when the operation state (basic state or posterior state) of the radiation image detector 5 is selected and set by the input operation of the input operation unit 26 by the operator, the control unit 27 performs the selection setting.
  • the information regarding the operation state is stored in the state storage unit 35 as “post-completion operation information”.
  • the control unit 27 controls the operating state of each driving unit according to the post-completion operation information already stored in the state storage unit 35. .
  • the control unit 27 reads the post-completion operation information stored in the state storage unit 35 from the state storage unit 35, recognizes the operation state selected and set by the operator, and becomes the recognized operation state. In this way, the power supply from the rechargeable battery 21 to each drive unit is controlled to control the operating state of each drive unit.
  • Information input from the input operation unit 26 and signals received from the communication unit 24 are sent to the control unit 27, and the control unit 27 is configured to transmit each unit based on the transmitted signal. It is designed to control.
  • an instruction to select and set the shooting enabled state, the first shooting standby mode, the second shooting standby mode, and the shooting pause state is input from the input operation unit 26.
  • the input signal is sent to the control unit 27.
  • the control unit 27 recharges the rechargeable battery so that the basic state of the radiation image detector 5 and the posterior state after completion of charging become the operation state according to this input signal.
  • the power supply from 21 is controlled so that power is appropriately supplied to each drive unit of the radiation image detector 5.
  • the controller 27 sets the image so that the radiographic image detector 5 is in the second imaging standby mode, which is the operating state with the least power consumption, while the rechargeable battery 21 is being charged. Only the storage unit 18 and the communication unit 24 are supplied with power from the rechargeable battery 21 to control the operating state of each drive unit.
  • the imaging enabled state is further selected as the posterior state.
  • the communication unit 24 instructs the external device such as the console 6 to start shooting.
  • the second shooting standby mode is switched to the first shooting standby mode, and the shooting is ready.
  • the control unit 27 may control the power supply of the rechargeable battery 21 so as to supply each drive unit with the necessary power so that the power is switched stepwise. In this case, power may be supplied to all the drive units used for a series of shooting operations so that the second shooting standby mode can be switched directly to a shooting ready state instead of switching in stages.
  • the first shooting standby mode is set as the basic state from the input operation unit 26, the first state is selected when the shooting ready state is selected as the posterior state or when a shooting start signal is received.
  • the control unit 27 may control the power supply from the rechargeable battery 21 so that power is sequentially supplied to each drive unit so as to switch from the shooting standby mode to the shooting ready state.
  • control unit 27 drives the scanning drive circuit 16 to send a pulse to each photoelectric conversion element so as to scan and drive each photoelectric conversion element. Then, the signal is read out by the signal reading circuit 17 that reads out the electric energy accumulated in each photoelectric conversion element, and the read image signal is sent to the control unit 27.
  • the control unit 27 stores the transmitted image signal in the image storage unit 18. In addition, the image signal stored in the image storage unit 18 is appropriately sent to the console 6 via the communication unit 24.
  • the console 6 includes a control device 30 having a control unit 29 composed of, for example, a general-purpose CPU, ROM, RAM, etc. (all not shown).
  • the control unit 29 is a predetermined unit stored in the ROM. This program is read out and expanded in the RAM work area, and the CPU executes various processes according to the program.
  • the console 6 transmits signals to and from external devices such as an input operation unit 31 for inputting various instructions, a display unit 32 for displaying images and various messages, and the radiation image detector 5. Provide communication unit 33 etc. to send and receive.
  • the input operation unit 31 is configured with, for example, an operation panel, a keyboard, a mouse, or the like.
  • the input operation unit 31 is a control unit using, as an input signal, a key press signal or a mouse operation signal pressed by the operation panel or keyboard. Output to 29.
  • the display unit 32 is configured to include, for example, a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), and the like, and displays thumbnail images and the like according to instructions of a display signal output from the control unit 29. Various information such as radiation images and various information input from the input operation unit 31 is displayed!
  • CTR Cathode Ray Tube
  • LCD Liquid Crystal Display
  • the display unit 32 displays the charge amount of the rechargeable battery 21 of the radiation image detector 5 and the charge of the rechargeable battery 21.
  • Various information sent via the communication unit 24 of the radiographic image detector 5 such as whether the radiographic image detector 5 is completed or not is displayed.
  • the contents displayed on the display unit 32 are not limited to those exemplified here, and more information may be displayed. Also, not all of the examples shown here may be displayed, but at least one of these may be displayed.
  • the communication unit 33 communicates various information with the radiation image detector 5 via the base station 4 by a wireless communication method such as a wireless LAN.
  • a signal input from the input operation unit 31, a signal received from the outside via the communication unit 33, or the like is sent to the control unit 29. Furthermore, the control unit 29 performs predetermined image processing based on, for example, the radiation image information detected by the radiation image detector 5. As a result, a thumbnail image or a radiographic image desired by a doctor or the like can be obtained!
  • FIGS. 7 and 8 processing by the radiographic image detector 5 (see FIG. 7) and the console). It is divided into the processing by 6 (see Fig. 8).
  • the control unit 27 uses the post-completion operation information stored in the state storage unit 35 to determine that It recognizes whether the camera is ready for shooting, the shooting standby state, or the shooting pause state as the basic state (step SA1).
  • control unit 27 When the control unit 27 recognizes the basic state, the control unit 27 causes the charge amount detection unit to detect the charge amount of the rechargeable battery 21, and whether or not the charge amount of the rechargeable battery 21 is equal to or greater than a predetermined amount necessary for photographing or the like. (Step SA2). If it is determined that the charge amount of the rechargeable battery 21 is equal to or greater than the predetermined amount (step SA2; YES), the operating state of each drive unit is controlled according to the recognized basic state (step SAl lb, see later).
  • control unit 27 indicates that the charge amount of rechargeable battery 21 is less than the predetermined amount. Display on indicator 25 (step SA3) and send a signal to that effect to console 6 (step SA4).
  • control unit 27 repeatedly determines whether or not charging of the rechargeable battery 21 has been started based on the detection result by the charge amount detection means (step SA5). If it is determined that the battery 21 has been charged (step SA5; YES), the process proceeds to step SA6.
  • the operator charges the rechargeable battery 21 in response to the warning displayed by the indicator 25 (the radiographic image detector 5 is placed on the charging device 23), the terminal of the charging device 23 and the radiographic image are displayed. The terminal 22 of the detector 5 is electrically connected, and charging of the rechargeable battery 21 is started.
  • control unit 27 charges the rechargeable battery 21 only in the image storage unit 18 and the communication unit 24 so that the radiation image detector 5 enters the second imaging standby mode in which the power consumption is the lowest. Electric power is supplied to control the operating state of each drive unit (step SA6).
  • control unit 27 detects the charge amount of the rechargeable battery 21 by the charge amount detection means. It is repeatedly determined whether or not the charge amount of the rechargeable battery 21 has reached a predetermined amount and charging is completed (step SA7). If it is determined that the rechargeable battery 21 is fully charged (step SA7; YES), then A message to that effect is displayed on indicator 25 (step SA8), and a signal to that effect is sent to console 6 (step SA9).
  • the control unit 27 determines whether or not the a posteriori state of the radiation image detector 5 has been selected and set by the operator (step SA10).
  • the selection of the posterior state of the radiation image detector 5 is an operation that can be performed any time before the process of step SA10 is executed, and may be performed before the charging of the rechargeable battery 21 is started.
  • the charging may be performed while the rechargeable battery 21 is being charged, or may be performed after the charging of the rechargeable battery 21 is completed.
  • the posterior state is stored in the state storage unit 35 as operation information after completion.
  • step SAIO determines that the posterior state is selected and set as a result of the determination
  • step SAIO determines that the posterior state is selected and set as a result of the determination
  • step SA10 determines that the posterior state is not selected and set
  • step SA10 determines that the posterior state is not selected and set
  • step SA10 determines that the posterior state is not selected and set
  • step SA10 determines that the posterior state is not selected and set
  • step SA10 determines that the posterior state is not selected and set
  • the basic state is selected and set from the post-completion operation state stored in the state storage unit 35!
  • step SA1 lb power is supplied from the rechargeable battery 21 to each unit so that the recognized basic state is obtained, and the operating state of each drive unit is controlled
  • the control unit 27 supplies power from the rechargeable battery 21 to all the driving units used for a series of photographing operations. Supply.
  • the control unit 27 includes the scanning drive circuit 16, the photodiode 152, the TFT 153, the image storage unit 18, and the communication unit. Power is supplied from the rechargeable battery 21 to each component such as 24.
  • the control unit 27 supplies power from the rechargeable battery 21 to the image storage unit 18 and the communication unit 24. Like that.
  • the control unit 27 drives each drive from the rechargeable battery 21. Do not supply power to the unit.
  • a state storage unit 35 is provided in the console 6, and after completion of the operation information is stored in the state storage unit 35 in response to an operation input from the input operation unit 31 of the console 6, radiation detection is performed.
  • the control unit 27 of the detector 5 or the control unit 29 of the console 6 reads the operation information after completion from the state storage unit 35, and the control unit 27 of the radiation detector 5 receives the operation information after completion and receives the received completion information. It may be possible to recognize the operation state selected and set from the post-operation information and control the operation state of each drive unit so that the recognized operation state is obtained.
  • the control unit 27 performs the operation state of the radiation image detector 5 in addition to the operation state.
  • Various information such as the charge amount of the rechargeable battery 21 of the radiation image detector 5 is transmitted to the console 6 (step SA12).
  • the control unit 27 determines whether or not the operation state of the radiation image detector 5 is selected and set to the imaging enabled state, and the operation state of the radiation image detector 5 is actually in the imaging enabled state. (Step SA13), and if it is determined that the operation state of the radiation image detector 5 is now ready for imaging (Step SA13; YES), the stored image information is prepared for new imaging. Perform initialization such as reset and empty reading (step SA14). If the photographing is not possible (step SA13; NO), the process returns to step SA1.
  • the control unit 27 repeatedly determines whether or not the radiographic imaging has been started by the operator (step SA15), and if it is determined that the radiographic imaging has started as a result of the determination (step SA15). ; YES), the process proceeds to step SA16.
  • radiation imaging is actually started, radiation is irradiated from the radiation source 12, and the control unit 27 sends a pulse to each photoelectric conversion element by the scanning drive circuit 16 to scan and drive each photoelectric conversion element.
  • the image signal is acquired by reading out the electric energy accumulated in each photoelectric conversion element by the signal reading circuit 17 (step SA16).
  • control unit 27 After acquiring the image signal, the control unit 27 stores the image signal as the radiation image information of the subject 9 in the image storage unit 18, and transmits the stored image signal to the console 6 (step SA17). The series of processes of steps SA1 to SA17 are repeatedly executed. [0096] Subsequently, in console 6, control unit 29 receives the processing of step SA4 by control unit 27 of radiographic image detector 5 and receives a notification that the charge amount of rechargeable battery 21 is less than a predetermined amount. Judgment is made on whether or not the power (step SB1).
  • step SB1 determines that the charge amount of the rechargeable battery 21 is less than the predetermined amount (step SB1; YES)
  • the display unit 32 indicates that the rechargeable battery 21 needs to be charged.
  • the operator is warned by displaying on the screen (step SB2).
  • the charging amount of the rechargeable battery 21 is sent as a signal from the radiation image detector 5 to the console 6 as needed, and the control unit 29 displays the charged amount of the rechargeable battery 21 on the display unit 32 as needed based on the sent signal. Let's do it.
  • Step SBl the control unit 29 receives the processing of the above step SA9 by the control unit 27 of the radiation image detector 5 and determines whether or not it has received the message that the charging of the rechargeable battery 21 is completed. (Step SB3). As a result of the determination, if the control unit 29 determines that charging of the rechargeable battery 21 has been completed (step SB3; YES), the control unit 29 displays on the display unit 32 that charging of the rechargeable battery 21 has been completed ( Step SB4).
  • step SB 3 determines whether charging of the rechargeable battery 21 has not been received.
  • step SB5 determines whether various information has been received in addition to the operating state of the radiation image detector 5.
  • step SB6 determines that such various information has been received if the control unit 29 determines that such various information has been received.
  • step SB7 determines that an image signal has been received.
  • step SB8 determines that an image signal has been received
  • step SB8 executes predetermined image processing on the image signal
  • step SB9 A radiation image is acquired and the radiation image is displayed on the display unit 32 (step SB9).
  • control unit 29 receives the image signal and determines that the image signal is a bad error (step SB7; NO), and when the processes of steps SB2, SB4, SB6, and SB9 are completed, A series of processes from SB1 to step SB9 are repeatedly executed.
  • power is supplied to each unit so that the radiation image detector 5 is in the imaging ready state, the imaging standby state, and the imaging suspension state, and thus imaging is not performed immediately.
  • the photodiode 152 and the TFT 153 by preventing power supply to the photodiode 152 and the TFT 153, deterioration of the photodiode 152 and TFT 153 can be prevented, and the life of the radiation image detector 5 can be extended.
  • power since power is not supplied to the signal reading circuit 17 or the like that consumes a large amount of power in the shooting standby state or shooting pause state, power consumption can be reduced, and multiple shootings can be performed with a single charge.
  • the photodiode 152, TFT153, etc. that take time to start up again once the power supply is stopped.
  • the power is kept supplied, and the power supply is stopped only for the signal readout circuit 17 with high power consumption. For this reason, if the first shooting standby mode is set after the battery has been charged or replaced, the camera can immediately shift to the shooting state while reducing power consumption.
  • the second shooting standby mode power is supplied only to the minimum communication unit 24 and the like for receiving an external signal, and power is supplied. In this state, power supply to the photodiode 152, TFT 153, etc., which deteriorate with time, is stopped. For this reason, when the second shooting standby mode is set, the power consumption is minimized and the photodiode 152 and the TFT 153 are prevented from being deteriorated. Since it is possible to shift to a possible state, efficient shooting work can be performed.
  • the shooting standby mode is not limited to the two types illustrated here.
  • the photodiode 152 and TFT 153 which have the property of deteriorating over time, are all in standby mode for stopping the power supply, except for the image storage unit 18 and the communication unit 24. Stop, but once again stop power supply
  • It may be possible to select a plurality of types of modes such as an imaging standby mode in which power supply is started earlier than other components only for the photodiode 152 and the TFT 153 that require time to increase. Also, it may be possible to have only one of the two shooting standby modes exemplified in this embodiment.
  • the switching operation is set by the input operation unit 26 as selection setting means for selecting a shooting enabled state, various shooting standby states, and a shooting suspension state.
  • the selection setting means may be provided separately from the input operation unit 26! ,.
  • the selection setting means is not limited to the case where it is provided in the radiation image detector 5, and for example, the input operation unit 31 of the console 6 may function as the selection setting means. That is, the input operation unit 31 may set the basic state of the radiation image detector 5 as the basic state setting unit, or may set the operation state after charging as the posterior state setting unit.
  • the charging device 23 or the like may be provided with a selection setting means, and may function as a post-condition setting means for setting a post-condition after completion of charging.
  • an input operation unit in which an operator such as a radiation technician inputs and sets imaging conditions, patient identification information, various instructions, and the like outside the housing 14 of the radiation image detector 5.
  • the selection setting means is provided separately from the means for inputting the imaging conditions, as described above, the input operation section 31 of the console 6 or the like, the input operation section of the radiation image detector 5 is provided.
  • the radiation image detector 5 does not include the input operation unit 26 and may be configured!
  • both the basic state setting means for selecting and setting the basic state and the posterior state setting means for selecting and setting the posterior state are provided as the selection setting means.
  • the setting means may include only the basic state setting means or the posterior state setting means.
  • the selection setting means automatically operates the radiation image detector 5 after completion of charging or replacement depending on which time of day the charging or replacement of the rechargeable battery 21 is performed.
  • the state may be switched. That is, for example, if charging or replacement is performed in the daytime, the next shooting is likely to be performed immediately after the completion of charging or replacement, while shooting is not performed for a while at night. Probability is high.
  • the camera will be ready to shoot or be in the first shooting standby mode after charging or replacement, and from 6 pm to 6 am If the rechargeable battery 21 is to be charged or replaced by the time, be sure to set it in advance to enter the second shooting standby mode or shooting pause state after charging or replacement is complete.
  • the rechargeable battery 21 is provided as a power supply source.
  • the configuration of the power supply source is not limited to that illustrated here.
  • a replaceable use consisting of a manganese battery, an alkaline battery, an alkaline button battery, a lithium battery, a silver oxide battery, an air zinc battery, a nickel-cadmium battery, a mercury battery, a lead battery, etc. Try to have a discarded battery.
  • the rechargeable battery 21 is detachable from the housing 14, and when the rechargeable battery 21 is attached or detached, power is not supplied from the rechargeable battery 21 to each drive unit (non-energized state).
  • An energization mechanism may be provided.
  • Fig. 9 shows an example of the de-energization mechanism.
  • a rectangular opening 40 having a size capable of inserting the rechargeable battery 21 is formed in the casing 14, and a lid capable of covering the opening 40 is formed.
  • the body 41 is connected to the housing 14 via a hinge (not shown).
  • the lid 41 is openable and closable with respect to the opening 40 so that the rechargeable battery 21 can be replaced with another rechargeable battery 21 with the lid 41 open.
  • the rechargeable battery 21 is energized in conjunction with the opening / closing operation of the lid 41. That is, when the lid 41 is opened, the energization circuit between the rechargeable battery 21 and the control unit 27 is cut off, and no power is supplied from the rechargeable battery 21 to each drive unit (non-energized state) On the other hand, when the lid 41 covers the opening 40, the energization circuit between the lid 41 and the control unit 27 is connected, and power is supplied from the rechargeable battery 21 to each drive unit ( It is configured to be energized.
  • the operator replaces the battery or the rechargeable battery 21 with the radiation image detector for replacement. While the battery is being removed from 5, the radiation image detector 5 is powered off, and it is detected that the battery has been replaced and that the battery or rechargeable battery 21 has been installed in the radiation image detector 5. If this happens, it will move to the operating state set as the posterior state.
  • the photographing suspension state is selected as the posterior state by the selection setting means, after the replacement of the battery or the rechargeable battery 21 is completed and the battery or the rechargeable battery 21 is attached to the radiation image detector 5 In addition, the photographing suspension state in which the power supply to each driving unit is completely stopped is maintained.
  • whether or not the battery is removed is detected by, for example, a sensor or a mechanical switch provided at a contact portion of the battery or a lid of the storage portion for storing the battery, and the signal is controlled. It may be determined by being sent to part 27.
  • a switch for switching ON / OFF of the power supply may be provided in the case 14, and the power supply may be turned OFF by operating this switch.
  • the power supply ONZOFF may be switched by a signal from the console 6 or the like. In this way, when the power of the radiation image detector 5 is turned off during the battery replacement, the operation state is set as the post-condition when the battery replacement is completed. In this case, the posterior state may be set in advance. In this case, the basic state may be set in advance and the operation state may be shifted.
  • a spare power source may be provided in addition to these batteries!
  • the second shooting standby mode which is the operation state with the least power consumption during battery replacement, is entered, and after the battery replacement is completed, the operation state is set as the post-condition.
  • the basic state may be set in advance and the operation state may be shifted to.
  • the second shooting standby mode in which power is supplied from the rechargeable battery 21 only to the image storage unit 18 and the communication unit 24 is set.
  • the operating state of the radiation image detector 5 during charging of the rechargeable battery 21 is not limited to this. While the rechargeable battery 21 is charging, it is preferable to be in an operating state with low power consumption. It is preferable that the power consumption is only supplied to the drive unit that should maintain the limited power supply, and that it is in the operating state with the least power consumption.
  • the first shooting standby mode or the shooting ready state may be set during charging.
  • the operating state before charging may be maintained even during charging.
  • the operation state set as a post-condition may be set. That is, when charging is started, the operation state of the radiation image detector 5 is switched to the operation state set as the posterior state, and charging may be performed in this operation state.
  • the shooting pause state during charging may be set.
  • the charging device 23 can charge the radiation image detector 5 being charged.
  • the operation state may be selected and set.
  • the console 6 or the like may be configured to set the operation state of the radiation image detector 5 being charged.
  • a charging device such as a cradle is used to charge the rechargeable battery 21. Power is charged by receiving power from an external power source by connecting a cord to the terminal of the radiation image detector. You may be made to do. It is also possible to charge the battery with the rechargeable battery removed from the radiation image detector.
  • the radiographic imaging device 10 is operated by the imaging operation device 3, but the radiographic imaging device 10 may be configured to be operated by the console 6 or the like. In this case, it is possible to simplify the system configuration that does not require the photographing operation device 3 to be provided.
  • control unit 27 controls all parts of the radiation image detector 5 such as the scanning drive circuit 16, the signal readout circuit 17, the communication unit 24, etc. in addition to the power supply from the rechargeable battery 21.
  • each control part of the radiation image detector 5 such as the power supply from the rechargeable battery 21, the scanning drive circuit 16, the signal readout circuit 17, the communication part 24, etc. may be controlled by a separate control part. Good.
  • the second embodiment is a modification of the first embodiment, and differences from the first embodiment will be described below.
  • the operation state of the radiation image detector 5 includes an imageable state and an imaging standby state similar to the above, and can be switched and set in advance by operating the input operation unit 26. It becomes.
  • the radiation image detector 5 is to be set to any of these operating states can be selected and set to the external device isotropic force such as the input operation unit 26 and the console 6. Further, it may be set in advance so that the operation state is automatically switched according to the elapsed time since the shooting was performed. That is, after shooting, when a certain time elapses in that state, the first shooting standby mode may be set first, and when the certain time elapses in that state, the second shooting standby mode may be set. Further, for example, the operation state of the radiation image detector 5 may be automatically switched depending on which time zone of the day. In other words, there is a high possibility that shooting will be performed continuously during the daytime, whereas shooting is not performed for a while at night.
  • the first shooting standby mode is set between 6 pm and 6 pm until shooting starts, and the second is set between 6 pm and 6 am. Make sure that you can set the shooting standby mode in advance. Whether the radiation image detector 5 is in any of these operating states is transmitted from the control unit 27 to the console 6 via the communication unit 24 as needed.
  • the radiation image detector 5 is configured to store information on the operation state of the radiation image detector 5 immediately before the state storage unit 35 charges the rechargeable battery 21 as operation information after completion.
  • the operation state of the radiation image detector 5 is stored as information in the RAM of the control unit 27 as needed, but the terminal 22 of the radiation image detector 5 is connected to the terminal of the charging device 23 and is charged.
  • information on the operation state of the radiation image detector 5 immediately before charging the rechargeable battery 21 stored in the RAM is stored in the state storage unit 35 as operation information after completion. It becomes like this.
  • the control unit 27 determines that the charging of the rechargeable battery 21 is complete based on the detection result by the charge amount detecting means, the radiation image immediately before charging the rechargeable battery 21 is performed.
  • the post-completion operation information indicating the operation state of the detector 5 is read from the state storage unit 35 to recognize the operation state of the radiation image detector 5 immediately before charging the rechargeable battery 21, and the same operation state as the recognized operation state.
  • power is supplied from the rechargeable battery 21 to each drive unit of the radiation image detector 5 to control the operating state of each drive unit.
  • the control unit 27 determines the charge amount of the rechargeable battery 21. It is detected by the detection means, and it is determined whether or not the charge amount of the rechargeable battery 21 is greater than or equal to a predetermined amount necessary for shooting or the like (step SC1). If it is determined that the amount exceeds the predetermined amount (step SC1; YES), the operation state of each drive unit is controlled according to the stored operation state (step SCI la, see later).
  • step SC1 when it is determined that the charge amount of the rechargeable battery 21 is less than the predetermined amount (step SC1; NO), the control unit 27 displays on the indicator 25 that the charge amount of the rechargeable battery 21 is less than the predetermined amount. Then (step SC2), a signal to that effect is sent to the console 6 (step SC3).
  • the control unit 27 determines whether the operator uses the rechargeable battery based on the detection result by the charge amount detection means. It is repeatedly determined whether or not it has started charging (Step SC4) . If the operator determines that charging of the rechargeable battery 21 has been started (Step SC4; YES), the process of Step SC5 is performed. Transition. When the operator charges the rechargeable battery 21 in response to the warning displayed by the indicator 25 (the radiation image detector 5 is placed on the charging device 23), the terminal of the charging device 23 and the radiation image are displayed. The terminal 22 of the detector 5 is electrically connected and charging of the rechargeable battery 21 is started.
  • control unit 27 displays information on the operation state of the radiation image detector 5 (the operation state immediately before charging the rechargeable battery 21) stored in the RAM. After completion, it is stored in the state storage unit 35 as operation information (step SC5).
  • control unit 27 charges the rechargeable battery 21 only in the image storage unit 18 and the communication unit 24 so that the radiation image detector 5 enters the second imaging standby mode in which the power consumption is the lowest. Electric power is supplied to control the operating state of each drive unit (step SC6).
  • the control unit 27 causes the charge amount detection means to detect the charge amount of the rechargeable battery 21, and repeatedly determines whether or not the charge amount of the rechargeable battery 21 has reached a predetermined amount and charging is completed.
  • Step SC7 When it is determined that charging of the rechargeable battery 21 is complete (Step SC7; YES), that fact is displayed on the indicator 25 (Step SC8), and a signal to that effect is sent to the console 6 ( Step SC9).
  • the control unit 27 reads out post-completion operation information indicating the operation state of the radiation image detector 5 immediately before charging the rechargeable battery 21 from the state storage unit 35 and charges it. Recognize the operating state of the radiation detector 5 immediately before charging the battery 21 (step SC10), and supply the necessary power from the rechargeable battery 21 to each drive unit so that the operating state is the same as the recognized operating state. , Control the operating state of each drive (step SCl lb).
  • the control unit 27 performs all the driving units used for a series of imaging operations from the rechargeable battery 21. To supply power.
  • the control unit 27 includes the scanning drive circuit 16, the photodiode 152, the TFT 153, and the image storage unit. 18 Power is supplied from the rechargeable battery 21 to each drive unit such as the communication unit 24. Radiation image detector just before charging 5
  • the control unit 27 causes the image storage unit 18 and the communication unit 24 to supply power from the rechargeable battery 21.
  • step SC12 When the operation state of the radiation image detector 5 becomes the operation state immediately before the charging of the rechargeable battery 21, the control unit 27, in addition to the operation state of the radiation image detector 5, Various information such as the amount of charge of the rechargeable battery 21 is transmitted to the console 6 (step SC12).
  • control unit 27 is in the case where the operation state of the radiation image detector 5 immediately before charging is in a state where imaging is possible, and the operation state of the radiation image detector 5 is actually ready for imaging. If it is determined that the operation state of the radiation image detector 5 is now ready for imaging (step SC13; YES), it is stored for new imaging. Reset the current image information and perform initialization such as idle reading (step SC14). If the camera is not ready for shooting (step SC13; YES), the process returns to step SC1.
  • the control unit 27 repeatedly determines whether or not the radiography is started by the operator (step SC15), and if the result of the determination is that the radiography is started (step SC15). ; YES), the process proceeds to step SC16.
  • radiation imaging is actually started, radiation is irradiated from the radiation source 12, and the control unit 27 sends a pulse to each photoelectric conversion element by the scanning drive circuit 16 to scan and drive each photoelectric conversion element.
  • An image signal is obtained by reading out the electric energy accumulated in each photoelectric conversion element by the signal reading circuit 17 (step SC16).
  • control unit 27 stores the image signal in the image storage unit 18 as the radiation image information of the subject 9, and transmits the stored image signal to the console 6 (step SC17).
  • the series of processes in steps SC1 to SC17 are repeatedly executed.
  • control unit 29 receives the processing of step SC3 by control unit 27 of radiographic image detector 5 and receives a notification that the charge amount of rechargeable battery 21 is less than the predetermined amount. Judgment is made (step SD1). As a result of the determination, when the control unit 29 determines that the charge amount of the rechargeable battery 21 is less than the predetermined amount (step SD1; YES), the display unit indicates that the rechargeable battery 21 needs to be charged. Warn the operator by displaying on 32 ( Step SD2). The charging amount of the rechargeable battery 21 is sent as a signal from the radiation image detector 5 to the console 6 as needed, and the control unit 29 displays the charged amount of the rechargeable battery 21 on the display unit 32 as needed based on the sent signal. Let's do it.
  • Step SDl the control unit 29 receives the processing of step SC9 by the control unit 27 of the radiation image detector 5 and determines whether or not the charging of the rechargeable battery 21 has been received.
  • Step SD3 the control unit 29 determines that charging of the rechargeable battery 21 has been completed.
  • step SD4 the control unit 29 displays on the display unit 32 that charging of the rechargeable battery 21 has been completed.
  • step S D3 determines whether the charging of the rechargeable battery 21 has not been received.
  • step S D5 determines whether various information such as the charge amount of the rechargeable battery 21 of the radiation image detector 5 has been received.
  • step SD5 determines that the various information has been received
  • step SD6 the operation state of the radiation image detector 5 and the charge amount of the rechargeable battery 21 are appropriately displayed on the display unit 32.
  • step SD7 determines that an image signal has been received.
  • step SD8 determines that an image signal has been received
  • step SD8 executes predetermined image processing on the image signal (step SD8) and is desired by a thumbnail image, a doctor, or the like.
  • a radiation image is acquired, and the radiation image is displayed on the display unit 32 (step SD9).
  • control unit 29 receives the image signal, and also includes the case where it is determined (step SD7; NO).
  • steps SD2, SD4, SD6, and SD9 are completed, the above steps are performed. Each series of processes from step SD1 to step SD9 is executed repeatedly.

Abstract

 電池の充電又は交換が完了した後の動作状態に関する完了後動作情報を記憶する状態記憶部を有し、充電又は交換可能な電池を備え複数の駆動部に電力を供給する電力供給源と、前記電池の充電又は交換が完了する前に前記完了後動作情報を前記状態記憶部に記憶させ、前記電池の充電又は交換が完了した後に、前記状態記憶部に記憶されている前記完了後動作情報に応じ、前記各駆動部の稼動状態を制御する制御部と、を有する。

Description

明 細 書
放射線画像検出器及び放射線画像撮影システム
技術分野
[0001] 本発明は、放射線画像検出器及び放射線画像撮影システムに関するものである。
背景技術
[0002] 従来から、医療診断を目的とする放射線撮影分野にお!ヽては、被写体に放射線を 照射してその被写体を透過した放射線の強度分布を検出することにより、当該被写 体の放射線画像を得る放射線画像撮影システムが広く知られている。また、近年の 放射線画像撮影システムでは、多数の光電変換素子をマトリクス状に配した薄型平 板状の所謂「フラットパネルディテクタ(Hat Panel Detector) (以下「FPD」と称する。 ) 」という放射線画像検出器が開発 *使用されている。 FPDは、被写体を透過した放射 線を検出して電気信号に光電変換し、光電変換後の電気信号を画像処理することに より容易かつ迅速に被写体の放射線画像を得ることができるようになつている。
[0003] 前記放射線画像検出器は、システムの一部として所定位置に据え置かれる据置型 のものと、持ち運び自在の携帯型 (力セッテ型)のものとに大別され、運搬や取扱いの 容易性の見地から最近では力セッテ型の放射線画像検出器の利用が広く検討され ている。
[0004] このような力セッテ型の放射線画像検出器においては、放射線画像検出器を駆動 させるための電源を備える必要があり、内蔵型の電池や取り外し可能な電池等を備 える構成が考えられる。実際、電源として着脱可能な電池を備え、この電池を適宜新 しいものと交換することによって放射線画像検出器を繰り返し使用できるようにしたも のが知られている (例えば、特許文献 1参照)。
特許文献 1 :特開 2002— 181942号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、例えば、連続して撮影を行っている途中で電池を充電したり又は交 換したりする必要が生じた場合には、電池の充電又は交換が完了し次第次の撮影に 移行できるようにしておくことが撮影効率等の観点から望ましい。しかし、例えば、放 射線画像検出器を構成するフォトダイオードや薄膜トランジスタ (以下「TFT」と称す る。)等は、一旦電力供給を停止するとその後電力供給を再開してもすぐには、その 機能'動作が安定せず、再度撮影可能な状態にまで立ち上げるのに時間が掛かり、 放射線撮影ワークフロー全体の効率に影響することが判明した。
[0006] 他方で、常に放射線画像検出器の各部全体に電力を供給した状態を維持すると、 消費電力が増大し、特に外部電源力 電力を供給せずに内部の電池によって駆動 する放射線画像検出器においては、短期間しか駆動させることができず、作業効率 が落ち、放射線撮影ワークフロー全体の効率に影響することが判明した。
[0007] さらに、放射線画像検出器を構成する部材の中には、フォトダイオードや TFTのよ うに電力が供給されている状態では経時的に劣化していく部材がある。このため、例 えば、長期間撮影を行わな 、ような場合にこうした経時的に劣化して 、く部材に対し て電力供給状態を維持していると、これらの部材の劣化により放射線画像検出器の 寿命が短縮されてしまうと ヽぅ問題もある。
[0008] そこで、本発明は以上のような課題を解決するためになされたものであり、放射線 画像検出器及び放射線画像撮影システムにお 、て、放射線撮影ワークフロー全体 の効率を向上させ、かつ、放射線画像検出器の部材の寿命を長くすることを目的と する。
課題を解決するための手段
[0009] 放射線画像検出器は、
複数の動作状態を有し、照射された放射線を検出して放射線画像情報を得る放射 線画像検出器において、
充電又は交換可能な電池を備え複数の駆動部に電力を供給する電力供給源と、 前記電池の充電又は交換が完了した後の動作状態に関する完了後動作情報を記 憶する状態記憶部と、
前記電池の充電又は交換が完了した後に、前記状態記憶部に記憶されている前 記完了後動作情報に応じ、前記各駆動部の稼動状態を制御する制御部と、 を備えることを特徴として 、る。 [0010] 放射線画像撮影システムは、
複数の動作状態を有し、照射された放射線を検出して放射線画像情報を得る放射 線画像検出器と、
前記放射線画像検出器と通信可能なコンソールと、
を備え、
前記電池の充電又は交換が完了した後の動作状態に関する完了後動作情報を記 憶する状態記憶部を有し、
前記電池の充電又は交換が完了する前に前記完了後動作情報を前記状態記憶 部に記憶させるものであり、
前記放射線画像検出器が、
充電又は交換可能な電池を備え複数の駆動部に電力を供給する電力供給源と、 前記電池の充電又は交換が完了した後に、前記状態記憶部に記憶されている前 記完了後動作情報に応じ、前記各駆動部の稼動状態を制御する制御部と、 を有することを特徴として 、る。
これらの放射線画像検出器及び放射線画像撮影システムにぉ 、て、放射線撮影ヮ ークフロー全体の効率を向上させ、かつ、放射線画像検出器の部材の寿命を長くす る効果を奏する。
[0011] 上記放射線画像検出器及び放射線画像撮影システムにおいては、
前記制御部が、前記電池の充電又は交換を行う直前の動作状態に基づき、前記 完了後動作情報を前記状態記憶部に記憶させるのがよい。
この場合、電池の充電又は交換が完了した後に、放射線画像検出器の動作状態 が電池の充電又は交換を行う直前の動作状態に基づいた動作状態となるため、例え ば、撮影可能状態で電池を充電又は交換した場合には、その完了後、撮影可能状 態又は撮影待機状態となるように制御したり、撮影待機状態で電池を充電又は交換 した場合には、その完了後、撮影待機状態となるように制御したりするので、操作者 が放射線画像検出器の動作状態を把握して設定しなくても、電池の充電又は交換が 完了した後に、適切な動作状態に復帰するので、部材の劣化と消費電力の増大を抑 え、効率的な撮影作業を行うことができる効果を奏する。 [0012] 上記放射線画像検出器及び放射線画像撮影システムにお 、ては、 前記電池の充電又は交換が完了した後の動作状態を選択設定可能であり、前記 制御部が、選択設定された動作状態に基づき、前記完了後動作情報を前記状態記 憶部に記憶させるのがよい。
この場合、電池の充電又は交換が完了する前に、電池の充電又は交換が完了した 後の動作状態を選択設定して、電池の充電又は交換が完了後の動作状態を所望の 状態にすることができる。このため、部材の劣化と消費電力の増大を抑え、効率的な 撮影作業を行うことができる効果を奏する。
[0013] この場合にお!/、て、好ましくは、
前記電池の充電又は交換が完了した後の動作状態を、予め設定された動作状態 に設定することと、任意に設定することを選択でき、前記制御部が、その選択により、 予め設定された動作状態又は任意に設定された動作状態に基づき、前記完了後動 作情報を前記状態記憶部に記憶させるのがよい。
このとき、電池の充電又は交換が完了した後の動作状態を予め設定するか又は任 意に設定するかが選択可能であるので、例えば、電池の充電や交換の完了した後に 、予め設定された動作状態にしたり、電池の充電や交換の完了時刻が診察時間内 か否かといった時間的条件や残りの撮影オーダの多寡等に応じて任意に動作状態 を設定することができる。このため、放射線画像検出器を状況に応じて適切な動作状 態に復帰するので、部材の劣化と消費電力の増大を抑え、効率的な撮影作業を行う ことができる効果を奏する。
[0014] この場合において、更に好ましくは、
任意に設定される動作状態として、
放射線の検出が可能な撮影可能状態と、
前記各駆動部の少なくとも一部に対して電力供給しつつ前記撮影可能状態よりも 消費電力量の少な!ヽ撮影待機状態と、
前記各駆動部全てに対する電力供給を停止した撮影休止状態と、
を設定可能であるのがよ 、。
このとき、電池の充電又は交換の完了後の放射線画像検出器の動作状態として、 撮影可能状態、撮影待機状態、撮影休止状態があるので、電池の充電又は交換の 完了後の動作状態を状況に応じて適切な状態にでき、部材の劣化と消費電力の増 大を抑え、効率的な撮影作業を行うことができる効果を奏する。
[0015] 上記放射線画像検出器及び放射線画像撮影システムにお 、ては、
前記複数の動作状態は、
放射線の検出が可能な撮影可能状態と、
前記各駆動部の少なくとも一部に対して電力供給しつつ前記撮影可能状態よりも 消費電力量の少な!ヽ撮影待機状態と、
前記各駆動部全てに対する電力供給を停止した撮影休止状態と、
を含むのがよい。
この場合、放射線画像検出器の動作状態として、撮影可能状態、撮影待機状態、 撮影休止状態があるので、部材の劣化と消費電力の増大を抑えることができる効果 を奏する。
[0016] この場合にお!/、て、好ましくは、
前記撮影待機状態は、
消費電力量の異なる複数の撮影待機モードを有するのがよい。
このとき、撮影待機状態として、複数のモードを有しているので、動作状態をより適 切な状態にでき、部材の劣化と消費電力の増大を抑えることができる効果を奏する。 特に、フォトダイオードや TFT等は、一旦電力の供給を停止すると再度撮影に適した 状態に安定化させるのに時間を要する。他方で、これらは、電力が供給された状態 では経時的に劣化するという性質がある。したがって、短時間の休憩等を挟んで連続 的に撮影が行われるような撮影環境である場合にはフォトダイオードや TFTに対する 電力供給を停止しないことが好ましぐ長期間撮影が行われないような撮影環境であ る場合にはこれらに対する電力供給を停止することが好ましい。また、信号読出し回 路のように特に消費電力の多 、部材につ 、ては、なるべく電力供給を停止させて消 費電力を抑えることが好ましい。したがって、このような部材ごとの性質に応じて電力 の供給を切り替えることにより、より効率のよい撮影作業を行うことが可能となる。
[0017] この場合において、更に好ましくは、 前記制御部は、
前記電池の充電又は交換を行っている間、前記複数の撮影待機モードのうち最も 消費電力量の少な 、撮影待機モードとなるように前記各駆動部の稼動状態を制御 するのがよい。
このとき、電池の充電又は交換を行っている間は、撮影できない期間であるが、そ の間の消費電力量をより抑えることができるとともに、前記各駆動部全てに対する電 力供給を停止しているのではないので、電池の充電又は交換の完了後の立ち上がり を早くすることができ、かつ、部材の劣化と消費電力の増大を抑えることができる効果 を奏する。また、消費電力量を最小限に抑えたモードが、通信部には電力供給され ている状態にある場合、電池の充電や交換を行っている間も外部機器力 の信号を 受信して電池の充電又は交換後、すぐに次の撮影に移行するための制御を開始す ることも可能であり、作業効率の低減が抑えられる。
[0018] 上記放射線画像検出器及び放射線画像撮影システムにお 、ては、
前記電池は、
交換可能で、かつ、着脱時に非通電状態となるのがよい。
この場合、電池は交換時に非通電状態にあり、作業者は電池を交換する際に、作 業者が交換する電池により感電する危険に曝されること等を防ぐことができる。
[0019] 上記放射線画像検出器及び放射線画像撮影システムにお 、ては、
放射線画像検出器は、
照射された放射線を検出し、当該放射線を電気信号に変換して蓄積し、蓄積され た電気信号を読み出して放射線画像情報を取得する力セッテ型のフラットパネルディ テクタであるのがよい。
この場合、放射線画像検出器力力セッテ型 FPDであるため、撮影場所を選ばず容 易に持ち運ぶことが可能であり、撮影の自由度が向上するとともに、電池の充電又は 交換の完了後、動作状態を適切な状態にでき、部材の劣化と消費電力の増大を抑 えることができる効果を奏する。
発明の効果
[0020] 放射線画像検出器及び放射線画像撮影システムにお 、て、放射線撮影ワークフロ 一全体の効率を向上させ、かつ、放射線画像検出器の部材の寿命を長くする効果を 奏する。
図面の簡単な説明
[0021] [図 1]放射線画像撮影システムの一実施形態を例示する概略構成を示す図である。
[図 2]放射線画像検出器の要部構成を示す斜視図である。
[図 3]光電変換層を構成する光電変換部の 1画素分の等価回路構成図である。
[図 4]図 3に示す光電変換部を二次元に配列した等価回路構成図である。
[図 5]放射線画像検出器の要部構成を示すブロック図である。
[図 6]コンソールの要部構成を示すブロック図である。
[図 7]放射線画像撮影システムが作動した場合に放射線画像検出器で行われる処理 を経時的に示すフローチャートである。
[図 8]放射線画像撮影システムが作動した場合にコンソールで行われる処理を経時 的に示すフローチャートである。
[図 9]非通電機構の一例を示す図面である。
[図 10]実施形態 2に係る放射線画像撮影システムが作動した場合に放射線画像検 出器で行われる処理を経時的に示すフローチャートである。
[図 11]実施形態 2に係る放射線画像撮影システムが作動した場合にコンソールで行 われる処理を経時的に示すフローチャートである。
発明を実施するための最良の形態
[0022] 以下の説明は、発明を実施するために発明者が最良と認識して!/ヽる形態を示すも のであり、発明の範囲や、請求の範囲に用いられている用語を一見、断定又は定義 するような表現もあるが、これらは、あくまで、発明者が最良と認識している形態を特 定するための表現であり、発明の範囲や、請求の範囲に用いられている用語を特定 又は限定するものではない。
[0023] (実施形態 1)
以下、図 1から図 9を参照しながら本発明の実施の形態について説明する。
[0024] 図 1は、本発明に係る放射線画像検出器を適用した放射線画像撮影システムの一 実施形態の概略構成を示す図である。 [0025] 本実施形態による放射線画像撮影システム 1は、例えば、病院内で行われる放射 線画像撮影において適用されるシステムであり、図 1に示すように、撮影や患者に関 する各種の情報等を管理するサーバ 2と、放射線画像撮影に関する操作を行う撮影 操作装置 3と、例えば無線 LAN (Local Area Network)等の無線通信方式による通信 を行うための基地局 4と、放射線画像検出器 5を操作するとともに放射線画像検出器 5により検出された放射線画像の画像処理等を行うコンソール 6とがネットワーク 7を 通じて接続されている。
[0026] 撮影操作装置 3にはケーブル 8を介して、被写体 9である患者に放射線を照射して 放射線画像の撮影を行う放射線画像撮影装置 10が接続されて 、る。放射線画像撮 影装置 10及び放射線画像検出器 5は、例えば 1つの撮影室 11内に 1つずつ設置さ れており、撮影操作装置 3によって放射線画像撮影装置 10を操作し放射線画像検 出器 5によって放射線画像を検出することによって放射線画像情報を得ることができ るようになっている。なお、 1つの撮影室 11に複数の放射線画像検出器 5が備えられ ていてもよい。
[0027] ネットワーク 7は、当該システム専用の通信回線であっても良いが、システム構成の 自由度が低くなつてしまう等の理由のため、イーサネット (Ethernet ;登録商標)等の既 存の回線である方が好ましい。ネットワーク 7には、ここに例示したものの他、他の撮 影室 11の放射線画像撮影装置 10を操作する撮影操作装置 3や放射線画像検出器 5、コンソール 6が複数接続されていてもよい。
[0028] 撮影操作装置 3は、操作パネル等から構成され放射線画像撮影装置 10を操作す る、例えば撮影条件等の信号を入力する入力操作部、撮影条件等の情報や各種の 指示等を表示する表示部、及び放射線画像撮影装置 10に対して電力を供給する電 源部等 ( ヽずれも図示せず)を備えて構成されて!ヽる。
[0029] 放射線画像撮影装置 10は、撮影室 11の内部に配置され、放射線源 12を有してお り、この放射線源 12に管電圧が印加されることによって放射線が発生するようになつ ている。放射線源 12としては、例えば、放射線管が用いられ、放射線管は熱励起に よって生ずる電子を高電圧で加速して陰極に衝突させることで、放射線を発生するよ うになつている。 [0030] 放射線画像検出器 5は、放射線画像撮影装置 10の放射線源 12から照射されて被 写体 9を透過した放射線を検出して放射線画像を取得するものであり、撮影を行う際 に放射線源 12から照射される放射線の照射範囲に配置されるようになっている。放 射線画像検出器 5は、例えば、図 1に示すように、被写体 9と被写体 9を載置する寝 台 13との間に配置されるが、放射線画像検出器 5を配置する位置はこれに限定され ず、例えば、寝台 13の下方に放射線画像検出器 5を装着する検出器装着口(図示し ない)を設けて、放射線画像検出器 5がこの検出器装着口に装着されるようにしても よい。
[0031] 放射線画像検出器 5は、フラットパネル型の放射線画像検出器 5である。以下、図 2 及び図 3を用いて、放射線画像検出器 5の構造について説明する。
[0032] 図 2に示すように、放射線画像検出器 5は、内部を保護する筐体 14を備えており、 力セッテとして携帯可能に構成されて 、る。
[0033] 筐体 14の内部には、照射された放射線を電気信号に変換する撮像パネル 15が層 を成して形成されている。撮像パネル 15における放射線の照射面側には、入射され た放射線の強度に応じて発光を行う発光層(図示せず)が設けられている。
[0034] 発光層は、一般にシンチレータ層と呼ばれるものであり、例えば、蛍光体を主たる 成分とし、入射した放射線に基づいて、波長が 300nmから 800nmの電磁波、すな わち、可視光線を中心に紫外光力 赤外光にわたる電磁波 (光)を出力するようにな つている。
[0035] この発光層で用いられる蛍光体は、例えば、 CaWO等を母体とするものや、 Csl :
4
T1や Gd O S :Tb、 ZnS :Ag等の母体内に発光中心物質が付活されたものを用いる
2 2
ことができる。また、希土類元素を Mとしたとき、 (Gd, M, Eu) Oの一般式で示され
2 3
る蛍光体を用いることができる。特に、放射線吸収及び発光効率が高いことより Csl : T1や Gd O S :Tbが好ましぐこれらを用いることで、ノイズの低い高画質の画像を得
2 2
ることがでさる。
[0036] この発光層の放射線が照射される側の面と反対側の面には、発光層から出力され た電磁波 (光)を電気工ネルギ一に変換して蓄積し、蓄積された電気工ネルギ一に基 づく画像信号の出力を行う信号検出部 151が形成されて!ヽる。 [0037] ここで、撮像パネル 15の回路構成について説明する。図 3は、信号検出部 151を 構成する 1画素分の光電変換部の等価回路図である。
[0038] 図 3に示すように、 1画素分の光電変換部の構成は、フォトダイオード 152と、フォト ダイオード 152で蓄積された電気エネルギーをスイッチングにより電気信号として取り 出す薄膜トランジスタ (以下「TFT」と称する。) 153とから構成されている。取り出され た電気信号は、増幅器 154により信号読出し回路 17が検出可能なレベルにまで電 気信号を増幅するようになって 、る。
[0039] 増幅器 154には、 TFT153とコンデンサで構成された図示しないリセット回路が接 続されており、 TFT153にスィッチを入れることにより蓄積された電気信号をリセット するリセット動作が行われるようになつている。また、フォトダイオード 152は、単に規 制キャパシタンスを有した光ダイオードでもよ 、し、フォトダイオード 152と光電変換部 のダイナミックレンジを改良するように追加コンデンサを並列に含んでいるものでもよ い。
[0040] 図 4は、このような光電変換部を二次元に配列した等価回路図であり、画素間には 、走査線 L1と信号線 Lrが直交するように配設されている。前述のフォトダイオード 152 には、 TFT153が接続されており、 TFT153が接続されている側のフォトダイオード 1 52の一端は信号線 Lrに接続されている。一方、フォトダイオード 152の他端は、各行 に配された隣接するフォトダイオード 152の一端と接続されて共通のバイアス線 Lbを 通じてバイアス電源 155に接続されて 、る。
[0041] このバイアス電源 155の一端は制御部 27に接続され、制御部 27からの指示により バイアス線 Lbを通じてフォトダイオード 152に電圧が力かるようになっている。また各 行に配された TFT153は、共通の走査線 L1に接続されており、走査線 L1は走査駆動 回路 16を介して制御部 27に接続されている。同様に、各列に配されたフォトダイォ ード 152は、共通の信号線 Lrに接続されて制御部 27に制御される信号読み出し回 路 17に接続されている。
[0042] 信号読み出し回路 17には、増幅器 154、サンプルホールド回路 156、アナログマ ルチプレクサ 157、 AZD変 « 158が共通の信号線 Lr上に配されて 、る。
[0043] なお、 TFT153は、液晶ディスプレイ等に使用されている無機半導体系のもの、有 機半導体を用いたものの 、ずれであってもよ 、。
[0044] また、本実施形態では光電変換素子としてのフォトダイオード 152を用いた場合を 例示したが、光電変換素子はフォトダイオード以外の固体撮像素子を用いてもよい。
[0045] この信号検出部 151の側部には、図 2に示すように各光電変換素子にパルスを送 つて当該各光電変換素子を走査 ·駆動させる走査駆動回路 16と、各光電変換素子 に蓄積された電気エネルギーを読み出す信号読出し回路 17とが配されている。
[0046] また、放射線画像検出器 5は、 RAM (Random Access Memory)やフラッシュメモリ などの書き換え可能な読み出し専用メモリ等力もなる画像記憶部 18を備えており、画 像記憶部 18は、撮像パネル 15から出力された画像信号を記憶するようになっている 。画像記憶部 18は内蔵型のメモリでもよいし、メモリカード等の着脱可能なメモリでも よい。
[0047] また、放射線画像検出器 5には、放射線画像検出器 5を構成する複数の駆動部( 例えば、走査駆動回路 16、信号読出し回路 17、通信部 24 (後述)、画像記憶部 18 、充電量検出部(図示せず)、インジケータ 25 (後述)、入力操作部 26 (後述)、撮像 パネル 15など)に電力を供給する電力供給源として充電池 21が設けられている。
[0048] 充電池 21としては、例えば-力ド電池、ニッケル水素電池、リチウムイオン電池、小 型シール鉛電池、鉛蓄電池等の充電自在な電池を適用することができる。また、充 電池 21に代えて、燃料電池を適用してもよい。
[0049] 筐体 14の一端には充電用の端子 22が形成されており、例えば、図 1に示すように 、放射線画像検出器 5を外部電源と接続されるクレードル等の充電用装置 23に装着 することによって充電用装置 23側の端子(図示せず)と筐体 14側の端子 22とが接続 されて充電池 21の充電が行われるようになつている。なお、電力供給源としての充電 池 21の形状は、図 2に例示したものに限定されず、例えば、撮像パネル 15と平行し てプレート状の電池を設けるようにしてもよい。電池をこのような形状とすることにより、 撮像パネル 15の面積をより大きくすることができ、撮像可能領域を広くすることが可 能となる。
[0050] また、放射線画像検出器 5には、コンソール 6等の外部装置との間で各種信号の送 受信を行う通信部 24 (図 5参照)が設けられている。通信部 24は、例えば、撮像パネ ル 15から出力された画像信号をコンソール 6に転送したり、コンソール 6等力も送信さ れる撮影開始信号等を受信するようになって!/、る。
[0051] また、筐体 14の表面一端には、充電池 21の充電状況や各種の操作状況等を表示 するインジケータ 25が設けられており、操作者が放射線画像検出器 5の充電池 21の 充電状況等を目視にて確認することができるようになって 、る。
[0052] 筐体 14の外部には、放射線技師等の操作者が撮影条件や患者の識別情報や各 種の指示等を入力設定する入力操作部 26が設けられている。なお、入力操作部 26 力も入力することのできる内容は、ここに例示したものに限定されない。また、入力操 作部 26は、放射線画像検出器 5の動作状態を事前に設定する選択設定手段として も機能する。本実施形態においては、放射線画像検出器 5の動作状態として、「撮影 可能状態」、「撮影待機状態」、「撮影休止状態」がある。本実施の形態では、入力操 作部 26で充電完了後の動作状態を「撮影可能状態」、「撮影待機状態」、「撮影休止 状態」の任意の動作状態となるように選択設定するか、充電開始前の動作状態と予 め対応付けられた動作状態となるように選択することが可能である。
[0053] 撮影可能状態は、放射線画像検出器 5を構成する部材のうち、一連の撮影動作に 用いられる各駆動部全てが稼動している状態、すなわち、各駆動部全てに電力が供 給されている状態である。このような一連の撮影動作に用いられる駆動部としては、 走査駆動回路 16、信号読出し回路 17、フォトダイオード 152、 TFT153、画像記憶 部 18、通信部 24がある。また、一連の撮影動作には、画像記憶部 18における画像 情報の初期化、フォトダイオード 152における照射された放射線に応じて生成された 電気工ネルギ一の蓄積、走査駆動回路 16並びに信号読出し回路 17における電気 信号の読み取り、及び通信部 24における画像信号の転送等の各動作がある。撮影 可能状態では、これら一連の撮影動作を行なうことが可能となっている。なお、初期 化では、撮像パネル 15におけるリセット動作及び空読み動作が行われるようになって いる。
[0054] 撮影待機状態には、撮影可能状態よりも消費電力が少ない「第 1の撮影待機モード 」と、第 1の撮影待機モードよりも消費電力の少ない「第 2の撮影待機モード」とがある 。本実施形態では、当該撮影待機状態において、第 1の撮影待機モードと第 2の撮 影待機モードとが選択可能で、これら 2つのモードの ヽずれかを選択可能となって!/ヽ る。
[0055] 第 1の撮影待機モードは、撮影可能状態への迅速な立ち上げが可能な信号読出し 回路 17を除いて、一連の撮影動作に用いられる各駆動部全てに電力が供給されて いる状態であり、すぐに撮影を行うことが可能な状態にある撮影待機状態である。具 体的には、走査駆動回路 16、フォトダイオード 152、 TFT153、画像記憶部 18、通 信部 24、制御装置 28といった各部に対して電力が供給されている状態となる。
[0056] 第 2の撮影待機モードは、画像保存に関わる部分である画像記憶部 18と、外部へ の画像情報の転送、外部力 の信号受信に関わる部分である通信部 24と制御装置 28に電力が供給されていて、更に、それ以外の駆動部の少なくとも一部は、通常より 電力供給量が低い状態であり、第 1の撮影待機モードより消費電力の低い状態にあ る撮影待機状態である。最適な実施例としては、第 2の撮影待機モードは、画像記憶 部 18や通信部 24、制御装置 28のみに電力が供給されている状態であり、すぐには 撮影を行うことのできない消費電力の非常に低い状態にある撮影待機状態である。
[0057] 撮影休止状態は、放射線画像検出器 5の各駆動部に対する電力供給を全て停止 した、完全な省電力状態である。
[0058] 入力操作部 26は、基本状態の選択設定手段である基本状態設定手段として、放 射線画像検出器 5の動作状態を撮影可能状態、各撮影待機モードのうちどの状態と するかを設定することができるようになつている。ここで「基本状態」とは、何らかの設 定変更がなされない限り選択される動作状態である。例えば、撮影を行う頻度が低い 状況で放射線画像検出器 5が使用される場合には、基本状態として第 2の撮影待機 モードを選択設定しておくことによりフォトダイオード 152や TFT153のように電力の 供給により経時的に劣化していく部材を保護したり、省電力化を図ったりすることがで きる。これに対して、頻繁に撮影が行われるような状況で放射線画像検出器 5が使用 される場合には、撮影可能状態又は第 1の撮影待機モードを基本状態として選択設 定しておくことにより立ち上げに時間の力かるフォトダイオード 152や TFT153に電 力が供給された状態となり、迅速で効率のよい撮影を行うことが可能となる。
[0059] なお、本実施形態において、放射線画像検出器 5は充電池 21によって各駆動部 に対する電力供給を行うものである。したがって、消費電力量を抑えつつも迅速で効 率のよい撮影動作を実現するべぐ基本状態としては第 1の撮影待機モードが選択 設定されることが好ましい。一方、撮影予定がしばらくないような場合には基本状態と して撮影休止状態を選択できるようにしてもょ 、。
[0060] 更に、入力操作部 26は、事後状態の選択設定手段である事後状態設定手段とし て、充電池 21の充電後に放射線画像検出器 5の動作状態を撮影可能状態とするか 、いずれかの撮影待機モードとするか、又は撮影休止状態とするかを選択設定する ことができるようになつている。「事後状態」とは、充電池 21の充電後の状態をいい、 事後状態を任意に設定できることにより、充電池 21の充電後にすぐに撮影を行う予 定があるか等の状況や充電の行われる時間帯等に応じて最適な動作状態にしてお くことが可能となる。
[0061] なお、入力操作部 26から入力することのできる内容は動作状態の選択設定に限定 されず、その他、放射線技師等の操作者が撮影条件や患者の識別情報等を入力設 定することがでさるようにしてちょ 、。
[0062] 放射線画像検出器 5の機能的構成について図 5を用いて説明する。
放射線画像検出器 5は、例えば、汎用の CPU、 ROM, RAM等 (いずれも図示せ ず)から構成された制御部 27を有する制御装置 28を備えており、制御部 27は、 RO Mに格納される所定のプログラムを読み出して RAMの作業領域に展開し、当該プロ グラムに従って CPUが各種処理を実行するようになって 、る。
[0063] 放射線画像検出器 5は図示しない充電量検知手段を備えており、制御部 27には、 充電量検知手段によって検知された充電池 21の充電状況(例えば、充電池 21の電 圧値)が信号として送られるようになっており、制御部 27は、送られた信号に基づい て充電池 21の充電量等をインジケータ 25に表示させるようになつている。このような 充電量検知手段は、充電池 21の両電極間の電圧を測定する電圧計の測定結果か ら制御部 27が充電量を検知するものであってもよいし、充電池 21の両電極間の電 圧を測定する電圧計の測定結果力 制御部 27と独立したユニットが充電量を検知す るものであってもよいし、充電池 21から電力供給される駆動部(例えば、制御部 27) に供給される電圧を測定し、その供給電圧カゝら充電量を推測するものであってもよ 、 し、他の形態のものであってもよい。
[0064] また、制御部 27は、充電量検知手段による検知結果に基づいて、充電池 21の充 電量が低下して所定のレベル以下となり充電が必要と判断するときは、通信部 24を 介してその旨の信号をコンソール 6に送信させるようになつている。さらに、制御部 27 は、充電量検知手段による検知結果に基づ 、て充電池 21につ 、て充電が完了した と判断したときは、通信部 24を介してその旨の信号をコンソール 6に送信するように なっている。なお、充電池 21の充電量は、随時通信部 24を介してコンソール 6に送 信されるようにしてちょい。
[0065] また、放射線画像検出器 5がいかなる動作状態にあるかは、制御部 27により前記 通信部 24を介してコンソール 6に随時送信されるようになって!/ヽる。
[0066] また、状態記憶部 35は、充電池 21の充電又は交換が完了した後の放射線画像検 出器 5の動作状態に関する完了後動作情報を記憶する。状態記憶部 35は、フラッシ ュメモリなどの書き換え可能な専用メモリ等で構成されている。
[0067] 本実施形態では、操作者による入力操作部 26の入力操作で放射線画像検出器 5 の動作状態 (基本状態又は事後状態)が選択設定された場合に、制御部 27が、その 選択設定された動作状態に関する情報を「完了後動作情報」として当該状態記憶部 35に記憶させるようになつている。そして充電池 21の充電又は交換が完了した後に 、制御部 27が、状態記憶部 35に既に記憶されている完了後動作情報に応じ、各駆 動部の稼動状態を制御するようになっている。詳しくは、制御部 27は、状態記憶部 3 5に記憶済みの完了後動作情報を当該状態記憶部 35から読み出して操作者により 選択設定された動作状態を認識し、その認識した動作状態となるように充電池 21か ら各駆動部への電力供給を制御して各駆動部の稼動状態を制御するようになって!/、 る。
[0068] 制御部 27には、入力操作部 26から入力された情報や通信部 24から受信された信 号が送られるようになっており、制御部 27は、送られた信号に基づいて各部の制御を 行うようになっている。
[0069] 特に、本実施形態においては、入力操作部 26から撮影可能状態、第 1の撮影待機 モード、第 2の撮影待機モード及び撮影休止状態を選択設定する指示が入力される と入力信号が制御部 27に送られるようになっており、制御部 27は放射線画像検出器 5の基本状態や充電完了後の事後状態がこの入力信号に従った動作状態となるよう に充電池 21からの電力供給を制御して放射線画像検出器 5の各駆動部に適宜電力 を供給するようになっている。
[0070] なお、本実施形態において、制御部 27は、充電池 21の充電中、放射線画像検出 器 5が最も消費電力の少ない動作状態である第 2の撮影待機モードとなるように、画 像記憶部 18及び通信部 24のみに充電池 21から電力を供給し各駆動部の稼動状態 を制御するようになって 、る。
[0071] 例えば、入力操作部 26からの選択設定によって、放射線画像検出器 5の基本状態 が第 2の撮影待機モードに設定されているときに、さらに事後状態として撮影可能状 態が選択されたり、通信部 24がコンソール 6等の外部装置力 撮影開始を指示する 撮影開始信号を受信したりしたときは、第 2の撮影待機モードから第 1の撮影待機モ ードに、さらには撮影可能状態に段階的に切り替わるように、制御部 27が充電池 21 力もの電力供給を制御して各駆動部に必要な電力を供給させるようにしてもよい。こ の場合、段階的に切り替わるのではなぐ第 2の撮影待機モードから直接撮影可能状 態になるように一連の撮影動作に用いられる各駆動部全てに電力が供給されるよう にしてもよい。
[0072] また、入力操作部 26から基本状態として第 1の撮影待機モードが設定されていると きに、事後状態として撮影可能状態が選択されたり、撮影開始信号を受信したときは 、第 1の撮影待機モードから撮影可能状態に切り替わるように順次各駆動部に電力 が供給されるように制御部 27が充電池 21からの電力供給を制御するようにしてもよ い。
[0073] また、制御部 27は、走査駆動回路 16を駆動させて各光電変換素子にパルスを送り 当該各光電変換素子を走査 '駆動させるようになつている。そして、各光電変換素子 に蓄積された電気エネルギーを読み出す信号読出し回路 17によって読み出され、 読み出された画像信号は制御部 27に送られるようになつている。制御部 27は送られ た画像信号を画像記憶部 18に記憶させるようになつている。また、画像記憶部 18に 記憶された画像信号は通信部 24を介して適宜コンソール 6に送られるようになって ヽ る。
[0074] コンソール 6の機能的構成について図 6を用いて説明する。
コンソール 6は、例えば、汎用の CPU、 ROM, RAM等(いずれも図示せず)から構 成された制御部 29を有する制御装置 30を備えており、制御部 29は、 ROMに格納さ れる所定のプログラムを読み出して RAMの作業領域に展開し、当該プログラムに従 つて CPUが各種処理を実行するようになって 、る。
[0075] また、コンソール 6は、各種の指示等を入力する入力操作部 31、画像や各種のメッ セージ等を表示する表示部 32、放射線画像検出器 5等の外部装置との間で信号の 送受信を行う通信部 33等を備えて ヽる。
[0076] 入力操作部 31は、例えば、操作パネルやキーボードやマウス等力 構成されてお り、操作パネル又はキーボードで押下操作されたキーの押下信号やマウスによる操 作信号を入力信号として制御部 29に対して出力するようになっている。
[0077] 表示部 32は、例えば、 CRT (Cathode Ray Tube)や LCD (Liquid Crystal Display) 等を備えて構成されており、制御部 29から出力される表示信号の指示に従って、サ ムネイル画像等の放射線画像や入力操作部 31から入力された各種の情報等の各 種情報を表示するようになって!/、る。
[0078] 本実施形態において、表示部 32には、放射線画像検出器 5から送られた放射線画 像情報の他、放射線画像検出器 5の充電池 21の充電量や、充電池 21の充電が完 了したか否か、放射線画像検出器 5の動作状態等、放射線画像検出器 5の通信部 2 4を介して送られてくる各種の情報が表示されるようになっている。なお、表示部 32に 表示される内容はここに例示したものに限定されず、さらに多くの情報が表示される ようにしてもよい。また、ここに例示したすべてが表示されるものでなくてもよぐこれら のうち少なくとも 、ずれか一以上が表示されるようにしてもょ 、。
[0079] 通信部 33は、無線 LAN等の無線通信方式により、基地局 4を介して、放射線画像 検出器 5との間で各種情報の通信を行うものである。
[0080] 制御部 29には、入力操作部 31から入力された信号や通信部 33を介して外部から 受信した信号等が送られるようになつている。さらに制御部 29は、例えば、放射線画 像検出器 5により検出された放射線画像情報に基づいて所定の画像処理を行うこと によりサムネイル画像や医師等が所望する放射線画像を得るようになって!/ヽる。
[0081] 次に、図 7及び図 8を参照しながら、本実施形態に係る放射線画像撮影システム 1 の作用について説明する(下記では、放射線画像検出器 5による処理(図 7参照)とコ ンソール 6による処理(図 8参照)とに分けてそれぞれ説明している。 ) o
[0082] まず、放射線画像検出器 5では、放射線画像検出器 5の基本状態が選択設定され た状態において、制御部 27が、状態記憶部 35に記憶されている完了後動作情報か ら、その基本状態として撮影可能状態、撮影待機状態又は撮影休止状態のいずれ が選択設定されて ヽるかを認識する (ステップ SA1)。
[0083] 制御部 27は基本状態を認識したら、充電池 21の充電量を充電量検知手段に検知 させ、充電池 21の充電量が撮影等を行うのに必要な所定量以上であるか否かを判 断する (ステップ SA2)。その判断の結果、充電池 21の充電量が所定量以上であると 判断したら (ステップ SA2; YES)、認識した基本状態に従って各駆動部の稼動状態 を制御する (ステップ SAl lb、後述参照)。
[0084] 他方、ステップ SA2で充電池 21の充電量が所定量未満であると判断したら (ステツ プ SA2 ;NO)、制御部 27は、充電池 21の充電量が所定量未満である旨をインジケ ータ 25に表示させ (ステップ SA3)、その旨の信号をコンソール 6に送信する (ステツ プ SA4)。
[0085] その後、制御部 27は、充電量検知手段による検知結果に基づき、充電池 21の充 電を開始したか否かを繰り返し判断し (ステップ SA5)、その判断の結果、操作者が 充電池 21の充電を開始したと判断したら(ステップ SA5; YES)、ステップ SA6の処 理に移行する。ここで、インジケータ 25の表示による警告を受けて、操作者が充電池 21の充電を行う(放射線画像検出器 5を充電用装置 23に載置する)と、充電用装置 23の端子と放射線画像検出器 5の端子 22とが電気的に接続されて充電池 21の充 電が開始される。
[0086] 充電中、制御部 27は、放射線画像検出器 5が最も消費電力の少ない動作状態で ある第 2の撮影待機モードとなるように、画像記憶部 18及び通信部 24のみに充電池 21から電力を供給して各駆動部の稼動状態を制御する (ステップ SA6)。
[0087] この状態において、制御部 27は、充電池 21の充電量を充電量検知手段に検知さ せて充電池 21の充電量が所定量に達して充電が完了した力否かを繰り返し判断し( ステップ SA7)、充電池 21の充電が完了したと判断したら(ステップ SA7 ; YES)、そ の旨をインジケータ 25に表示させ (ステップ SA8)、その旨の信号をコンソール 6に送 信する (ステップ SA9)。
[0088] 充電池 21の充電が完了すると、制御部 27は、操作者により放射線画像検出器 5の 事後状態が選択設定されたか否かを判断する (ステップ SA10)。放射線画像検出器 5の事後状態の選択設定は、ステップ SA10の処理が実行される前であれば 、つで も可能な操作であり、充電池 21の充電開始前に行われてもよいし、充電池 21の充電 中に行われてもよいし、充電池 21の充電完了後におこなわれてもよい。放射線画像 検出器 5の事後状態の選択設定の操作が行われると、その事後状態が完了後動作 情報として状態記憶部 35に記憶される。
[0089] 制御部 27は、その判断の結果、事後状態が選択設定されていると判断した場合に は (ステップ SAIO ; YES)、状態記憶部 35に記憶された完了後動作状態力も選択 設定されている事後状態を認識し、その認識した事後状態になるように充電池 21か ら各部に電力を供給させる (ステップ SA1 la)。他方、制御部 27は、事後状態が選択 設定されていないと判断した場合には (ステップ SA10 ;NO)、状態記憶部 35に記憶 された完了後動作状態から選択設定されて!ヽる基本状態を認識し、その認識した基 本状態になるように充電池 21から各部に電力を供給させ、各駆動部の稼動状態を 制御する(ステップ SA1 lb)。
[0090] すなわち、基本状態又は事後状態として、撮影可能状態が選択設定されている場 合には、制御部 27は、一連の撮影動作に用いられる各駆動部全てに対して充電池 21から電力を供給する。基本状態又は事後状態として、撮影待機状態の第 1の撮影 待機モードが選択設定されている場合には、制御部 27は、走査駆動回路 16、フォト ダイオード 152、 TFT153、画像記憶部 18、通信部 24といった各部に対して充電池 21から電力を供給する。基本状態又は事後状態として、撮影待機状態の第 2の撮影 待機モードが選択設定されている場合には、制御部 27は、充電池 21から画像記憶 部 18及び通信部 24に電力が供給されるようにする。基本状態又は事後状態として、 撮影休止状態が選択設定されている場合には、制御部 27は、充電池 21から各駆動 部に電力を供給しないようにする。
[0091] なお、コンソール 6に状態記憶部 35を設けて、コンソール 6の入力操作部 31からの 操作入力に応じて、その状態記憶部 35に完了後動作情報が記憶される構成とし、 放射線検出器 5の制御部 27又はコンソール 6の制御部 29が、その状態記憶部 35か ら完了後動作情報を読み出して、放射線検出器 5の制御部 27が完了後動作情報を 受信し、受信した完了後動作情報から選択設定された動作状態を認識し、その認識 した動作状態となるように各駆動部の稼動状態を制御するようにしてもょ 、。
[0092] その後、放射線画像検出器 5の動作状態が予め選択設定された基本状態となるか 又は充電完了後の事後状態となると、制御部 27は、放射線画像検出器 5の動作状 態の他、放射線画像検出器 5の充電池 21の充電量等の各種情報をコンソール 6に 送信する (ステップ SA12)。
[0093] その後、制御部 27は、放射線画像検出器 5の動作状態が撮影可能状態に選択設 定されており、放射線画像検出器 5の動作状態が現に撮影可能状態になったか否か を判断し (ステップ SA13)、その判断の結果、放射線画像検出器 5の動作状態が現 に撮影可能状態になったと判断したら (ステップ SA13; YES)、新たな撮影に備えて 蓄積されている画像情報のリセット、空読み等の初期化作業を行う (ステップ SA14) 。撮影可能状態でなければ (ステップ SA13 ;NO)、ステップ SA1の処理に戻る。
[0094] その後、制御部 27は、操作者により放射線撮影が開始されたカゝ否かを繰り返し判 断し (ステップ SA15)、その判断の結果、放射線撮影が開始されたと判断したら (ス テツプ SA15 ;YES)、ステップ SA16の処理に移行する。実際に放射線撮影が開始 されると、放射線源 12から放射線が照射され、制御部 27は、走査駆動回路 16により 各光電変換素子にパルスを送って当該各光電変換素子を走査 '駆動させるとともに 、各光電変換素子に蓄積された電気エネルギーを信号読出し回路 17によって読み 出すことにより、画像信号を取得する (ステップ SA16)。
[0095] 画像信号を取得したら、制御部 27は、その画像信号を被写体 9の放射線画像情報 として画像記憶部 18に記憶し、その記憶した画像信号をコンソール 6に送信し (ステ ップ SA17)、上記ステップ SA1〜SA17の一連の各処理を繰り返し実行するように なっている。 [0096] 引き続き、コンソール 6では、制御部 29が、放射線画像検出器 5の制御部 27による 上記ステップ SA4の処理を受けて、充電池 21の充電量が所定量未満である旨を受 信した力否かを判断する (ステップ SB1)。その判断の結果、制御部 29は、充電池 21 の充電量が所定量未満である旨を受信したと判断したら (ステップ SB1; YES)、充 電池 21の充電が必要である旨を表示部 32に表示させる等して操作者に警告する( ステップ SB2)。なお、コンソール 6には充電池 21の充電量が信号として放射線画像 検出器 5から随時送られ、制御部 29が、送られた信号に基づいて充電池 21の充電 量を表示部 32に随時表示させるようにしてもょ 、。
[0097] 他方、充電池 21の充電量が所定量未満である旨を受信してはいないと判断したら
(ステップ SBl ;NO)、制御部 29は、放射線画像検出器 5の制御部 27による上記ス テツプ SA9の処理を受けて、充電池 21の充電が完了した旨を受信した力否かを判 断する (ステップ SB3)。その判断の結果、制御部 29は、充電池 21の充電が完了し た旨を受信したと判断したら (ステップ SB3 ; YES)、充電池 21の充電が完了した旨 を表示部 32に表示させる(ステップ SB4)。
[0098] 他方、充電池 21の充電が完了した旨を受信してはいないと判断したら (ステップ SB 3 ;NO)、制御部 29は、放射線画像検出器 5の制御部 27による上記ステップ SA12 の処理を受けて、放射線画像検出器 5の動作状態の他、放射線画像検出器 5の充 電池 21の充電量等の各種情報を受信したか否かを判断する (ステップ SB5)。その 判断の結果、制御部 29は、それら各種情報を受信したと判断したら (ステップ SB5 ; YES)、放射線画像検出器 5の動作状態や充電池 21の充電量等を表示部 32に適 宜表示させる(ステップ SB6)。
[0099] 他方、放射線画像検出器 5の動作状態や充電池 21の充電量等の各種情報を受信 してはいないと判断したら (ステップ SB5 ;NO)、制御部 29は、放射線画像検出器 5 の制御部 27による上記ステップ SA17の処理を受けて、画像信号を受信したか否か を判断する (ステップ SB7)。その判断の結果、制御部 29は、画像信号を受信したと 判断したら (ステップ SB7; YES)、その画像信号に対し所定の画像処理を実行して( ステップ SB8)サムネイル画像や医師等が所望する放射線画像を取得し、その放射 線画像を表示部 32に表示させる (ステップ SB9)。 [0100] そして制御部 29は、画像信号を受信して ヽな ヽと判断した場合 (ステップ SB7 ;NO )も含み、ステップ SB2, SB4, SB6, SB9の各処理を実行し終えると、上記ステップ SB1〜ステップ SB9の一連の各処理を繰り返し実行するようになっている。
[0101] 以上より、本実施形態によれば、放射線画像検出器 5が撮影可能状態、撮影待機 状態、撮影休止状態となるように各部に電力が供給されるため、すぐに撮影を行わな いときにはフォトダイオード 152、 TFT153に電力を供給しないようにすることにより、 フォトダイオード 152、 TFT153の劣化を防止し放射線画像検出器 5の長寿命化を 図ることもできる。また、撮影待機状態、撮影休止状態では消費電力の多い信号読 出し回路 17等に電力を供給しないので消費電力の低減を図り、 1回の充電で多数 回の撮影が可能となる。
[0102] さらに、撮影待機状態として 2つの撮影待機モードを有し、第 1の撮影待機モードで は、一旦電力供給を停止すると再度立ち上げるまでに時間の掛カるフォトダイオード 152や TFT153等には電力を供給したままとし、消費電力の多い信号読出し回路 1 7についてだけ電力供給を停止させるようになつている。このため、電池の充電又は 交換の完了後、第 1の撮影待機モードとすれば、消費電力を抑えつつすぐに撮影状 態に移行することができる。
[0103] 他方、第 2の撮影待機モードでは、外部からの信号を受信するための通信部 24等 最低限のものに対してのみ電力が供給されるようになっており、電力が供給された状 態では経時的に劣化するフォトダイオード 152や TFT153等に対する電力供給を停 止させるようになつている。このため、第 2の撮影待機モードとすれば、消費電力を最 低限に抑えフォトダイオード 152や TFT153の劣化を防止しつつ再度撮影を再開す るときには外部力 信号を送信することにより容易に撮影可能状態に移行させること ができるため、効率的な撮影作業を行うことができる。
[0104] なお、本実施形態にぉ ヽては、撮影待機状態として 2種類の撮影待機モードを選 択できるようにしたが、撮影待機モードはここに例示した 2種類に限定されず、例えば 、電力供給状態では経時的に劣化する性質をもつフォトダイオード 152及び TFT15 3につ 、てのみ電力供給を停止させる撮影待機モード、画像記憶部 18及び通信部 2 4以外に対しては全て電力供給を停止するが一旦電力供給を停止した後再度立ち 上げるまでに時間の力かるフォトダイオード 152及び TFT153についてのみ他の部 材よりも早く電力の供給を開始させる撮影待機モード等、さらに複数の種類のモード を選択できるようにしてもよい。また、本実施形態に例示した 2つの撮影待機モードの うち 、ずれか 1つのみを有するようにしてもょ 、。
[0105] また、本実施形態にお!ヽては、撮影可能状態、各種の撮影待機状態及び撮影休 止状態を選択する選択設定手段として入力操作部 26により切り替え設定を行うよう に構成したが、選択設定手段を入力操作部 26とは別個に設けるようにしてもよ!、。
[0106] また、選択設定手段は、放射線画像検出器 5に設けられている場合に限定されず、 例えば、コンソール 6の入力操作部 31が選択設定手段として機能するように構成して もよい。すなわち、入力操作部 31が基本状態設定手段として放射線画像検出器 5の 基本状態を設定し、又は事後状態設定手段として充電後の動作状態を設定するよう にしてもよい。また、充電用装置 23等に選択設定手段が設けられ、充電完了後の事 後状態を設定する事後状態設定手段として機能してもよ ヽ。
[0107] なお、本実施形態においては、放射線画像検出器 5の筐体 14の外部に放射線技 師等の操作者が撮影条件や患者の識別情報や各種の指示等を入力設定する入力 操作部 26を設けるようにしたが、前記のように選択設定手段を撮影条件等を入力す る手段とは別個に設ける場合や、コンソール 6の入力操作部 31等、放射線画像検出 器 5の入力操作部 26以外が選択設定手段として機能する場合には、放射線画像検 出器 5は入力操作部 26を備えな 、構成としてもよ!、。
[0108] また、本実施形態にぉ ヽては、選択設定手段として基本状態を選択設定する基本 状態設定手段と事後状態を選択設定する事後状態設定手段との両方を備えるものと したが、選択設定手段は、このうち基本状態設定手段又は事後状態設定手段のい ずれかのみを備えるものとしてもよ 、。
[0109] さらに、選択設定手段は、充電池 21の充電又は交換が行われるのが 1日のうちの どの時間帯であるかにより自動的に充電又は交換完了後の放射線画像検出器 5の 動作状態を切り替えるようにしてもよい。すなわち、例えば、充電又は交換が行われ るのが昼間であれば充電又は交換完了後にすぐに次の撮影が行われる可能性が高 いのに対して、夜間であればしばらく撮影が行われない可能性が高い。そこで、例え ば、午前 6時力も午後 6時までの間に充電池 21の充電又は交換が行われる場合に は、充電又は交換完了後に撮影可能状態又は第 1の撮影待機モードとなり、午後 6 時から午前 6時までの間に充電池 21の充電又は交換が行われる場合には、充電又 は交換完了後に第 2の撮影待機モード又は撮影休止状態となるように予め設定でき るようにしてちょい。
[0110] また、本実施形態においては、電力供給源として充電池 21を備えるものとしたが、 電力供給源の構成はここに例示したものに限定されない。例えば、充電池 21の替わ りに、マンガン電池、アルカリ電池、アルカリボタン電池、リチウム電池、酸化銀電池、 空気亜鉛電池、ニッケル ·カドミウム電池、水銀電池、鉛電池等からなる交換可能な 使!、捨ての電池を備えるようにしてもょ 、。
[0111] また、充電池 21が筐体 14に対し着脱自在で、かつ、当該充電池 21の着脱時に当 該充電池 21から各駆動部に電力が供給されない状態 (非通電状態)とさせる非通電 機構が具備されてもよい。
[0112] 非通電機構の一例を図 9に示す。図 9に示すように、当該非通電機構では、充電池 21を挿入可能な大きさを有する矩形状の開口部 40が筐体 14に形成されており、当 該開口部 40を被覆可能な蓋体 41がヒンジ(図示略)を介して筐体 14に連結されてい る。蓋体 41は開口部 40に対し開閉自在であり、蓋体 41を開放した状態において充 電池 21を他の充電池 21に交換することができるようになって 、る。
[0113] ここで、当該非通電機構では、充電池 21が蓋体 41の開閉動作に連動して通電さ れるようになっている。すなわち、蓋体 41が開放された状態では、充電池 21と制御 部 27との間の通電の回路が遮断され、充電池 21から各駆動部に電力が供給されな い状態 (非通電状態)となり、他方、蓋体 41が開口部 40を覆った状態では、蓋体 41 と制御部 27との間の通電の回路が接続され、充電池 21から各駆動部に電力が供給 される状態 (通電状態)となるように構成されて ヽる。
[0114] なお、電力供給源として前記のように交換可能な電池又は交換可能な充電池 21を 用いた場合には、例えば、操作者が交換のために電池又は充電池 21を放射線画像 検出器 5から取り出している間は放射線画像検出器 5の電源が OFFとなり、電池交 換が完了して放射線画像検出器 5に電池又は充電池 21が装着されたことが検知さ れると事後状態として設定されている動作状態に移行する。なお、この場合、選択設 定手段により事後状態として撮影休止状態が選択されているときには、電池又は充 電池 21の交換が完了して放射線画像検出器 5に電池又は充電池 21が装着された 後も各駆動部に対する電力供給が完全に停止した撮影休止状態が維持される。
[0115] この場合、電池が取り出された力どうかは、例えば、電池の接触部分や電池を収納 する収納部分の蓋部等に設けられたセンサや機械的なスィッチ等によって検知され 、信号が制御部 27に送られることにより判断されるようになっていてもよい。また、筐 体 14に電源の ONZOFFを切り替えるスィッチを設け、これを操作することにより電 源が OFFとなるようになつていてもよい。また、コンソール 6等からの信号によって電 源の ONZOFFが切り替えられるようになつていてもよい。なお、このように電池交換 中は放射線画像検出器 5の電源が OFFとなる場合には、電池交換の完了とともに事 後状態として設定されている動作状態に移行する。なお、事後状態が特に設定され て 、な 、場合には基本状態として予め設定されて 、る動作状態に移行するようにし てもよい。
[0116] さらに、このような交換可能な電池又は交換可能な充電池 21を用いた場合には、こ れらの電池の他に予備電源を備えるようにしてもよ!ヽ。予備電源を備える場合には、 例えば、電池交換中は最も消費電力の少ない動作状態である第 2の撮影待機モード となり、電池交換完了後には事後状態として設定されている動作状態に移行する。な お、この場合にも、事後状態が特に設定されていない場合には基本状態として予め 設定されて 、る動作状態に移行するようにしてもょ 、。このように交換可能な電池又 は交換可能な充電池 21の他に予備電源を備えることにより、電池又は充電池 21を 取り替えている間等も放射線画像検出器 5に少なくとも最低限の電力を供給すること が可能であり、画像記憶部 18に記憶されている画像情報が誤って消えてしまったり、 コンソール 6等の外部装置からの信号を受信できな 、状態となることがな!/、。
[0117] また、本実施形態においては、充電池 21の充電中は、画像記憶部 18及び通信部 24のみに充電池 21から電力が供給される第 2の撮影待機モードとなるようにしたが、 充電池 21の充電中における放射線画像検出器 5の動作状態はこれに限定されない 。充電池 21の充電中は、消費電力が少ない動作状態にある方が好ましぐ特に最低 限電力供給を維持しておくべき駆動部にのみ電力が供給されている最も消費電力の 少な 、動作状態であることが好ま U、。
ただ、例えば、使用状況等によっては、充電中に第 1の撮影待機モードや撮影可 能状態となるようにしてもよい。
[0118] また、例えば、使用状況等により、充電前の動作状態を維持しておく方が望ましい ような場合には、充電中も充電前の動作状態を維持するものとしてもよい。また、充電 中は事後状態として設定されている動作状態になるようにしてもよい。すなわち、充 電が開始されると放射線画像検出器 5の動作状態が事後状態として設定されている 動作状態に切り替わり、この動作状態のまま充電が行われるようにしてもよい。
さらに、事後状態として撮影休止状態が選択されているときは、充電中撮影休止状 態となるようにしてもよい。
[0119] なお、放射線画像検出器 5をクレードル等の充電用装置 23に載置することによって 充電を行う場合には、前記のようにこの充電用装置 23によって充電中の放射線画像 検出器 5の動作状態を選択設定できるようにしてもよい。また、コンソール 6等カも充 電中の放射線画像検出器 5の動作状態を設定できるようにしてもよい。
[0120] なお、前記のように電力供給源として交換可能な電池又は交換可能な充電池を備 える場合であって電池交換中に予備電源力 電力供給を受けることが可能な場合に も、電池交換中の放射線画像検出器 5の動作状態が第 2の撮影待機モードに限定さ れないことは同様である。
[0121] また、充電池 21の充電を行うためにクレードル等の充電用装置を用いるものとした 力 放射線画像検出器の端子にコードを接続することにより外部電源力 電力の供 給を受けて充電されるようにしてもよい。また、充電池を放射線画像検出器から取り 出した状態で充電を行う構成としてもょ ヽ。
[0122] また、本実施形態においては、充電中及び充電後に充電池 21から各駆動部に対 して電力を供給するとしたが、充電中又は充電後にお ヽて放射線画像検出器 5が図 示しない外部電源と接続されるクレードル等の充電用装置 23に載置されている場合 や、前記のように充電用の端子 22にコード等を介して外部電源と接続されている場 合には、これらの外部電源力 各駆動部に対して電力が供給されるようにしてもょ 、 [0123] また、本実施形態においては、放射線画像撮影装置 10を撮影操作装置 3によって 操作するものとしたが、放射線画像撮影装置 10をコンソール 6等によって操作するよ うに構成してもよい。この場合には、撮影操作装置 3を設ける必要がなぐシステム構 成を簡易化することができる。
[0124] また、本実施形態においては、制御部 27が、充電池 21からの電力供給の他、走査 駆動回路 16、信号読出し回路 17、通信部 24等、放射線画像検出器 5各部全てを制 御するものとしたが、充電池 21からの電力供給、走査駆動回路 16、信号読出し回路 17、通信部 24等、放射線画像検出器 5の各部をそれぞれ別個の制御部が制御する ようにしてもよい。
[0125] (実施形態 2)
次に、本発明の他の実施の形態について説明する。本実施形態 2は実施形態 1の 変形例であり、以下では、実施形態 1と相違する点を説明する。
[0126] 本実施形態においては、放射線画像検出器 5の動作状態として、上記と同様の撮 影可能状態と撮影待機状態とがあり、入力操作部 26を操作することにより予め切り替 え設定できるようになって 、る。
[0127] 放射線画像検出器 5をこれら各動作状態のうちその動作状態にしておくかは、前記 入力操作部 26やコンソール 6等の外部装置等力 選択設定することが可能となって いる。また、撮影が行われてからの経過時間によって自動的に動作状態が切り替えら れるように予め設定されていてもよい。すなわち、撮影が行われた後その状態で一定 時間が経過すると、まず第 1の撮影待機モードとなり、さらにその状態で一定時間が 経過すると第 2の撮影待機モードとなるようにしてもよい。また、例えば、 1日のうちの どの時間帯であるかにより自動的に放射線画像検出器 5の動作状態を切り替えるよう にしてもよい。すなわち、昼間であれば連続して撮影が行われる可能性が高いのに 対して、夜間であればしばらく撮影が行われない可能性が高い。そこで、例えば、午 前 6時力 午後 6時までの間であって撮影が開始されるまでの間は第 1の撮影待機モ ードとなり、午後 6時から午前 6時までの間は第 2の撮影待機モードとなるように予め 設定できるようにしてちょい。 [0128] 放射線画像検出器 5がこれら各動作状態のうちその動作状態にあるかは、制御部 2 7により前記通信部 24を介してコンソール 6に随時送信されるようになっている。
[0129] また、放射線画像検出器 5は、状態記憶部 35が充電池 21の充電を行う直前の放 射線画像検出器 5の動作状態に関する情報を完了後動作情報として記憶するように なって 、る。放射線画像検出器 5の動作状態は情報として随時制御部 27の RAM等 に保存されるようになって ヽるが、放射線画像検出器 5の端子 22が充電用装置 23の 端子と接続され、充電池 21の充電が開始されると、 RAMに記憶されている充電池 2 1の充電を行う直前の放射線画像検出器 5の動作状態に関する情報が完了後動作 情報として状態記憶部 35に記憶されるようになって 、る。
[0130] 制御部 27は、充電量検知手段による検知結果に基づ!/、て充電池 21につ 、て充電 が完了したと判断したときは、充電池 21の充電を行う直前の放射線画像検出器 5の 動作状態を示す完了後動作情報をこの状態記憶部 35から読み出して充電池 21の 充電直前の放射線画像検出器 5の動作状態を認識し、その認識した動作状態と同じ 動作状態となるように放射線画像検出器 5の各駆動部に充電池 21から電力を供給し 各駆動部の稼動状態を制御するようになっている。
[0131] 次に、図 10及び図 11を参照しながら、本実施形態に係る放射線画像撮影システム 1の作用について説明する(下記では、放射線画像検出器 5による処理(図 10参照) とコンソール 6による処理(図 11参照)とに分けてそれぞれ説明して 、る。)。
[0132] まず、放射線画像検出器 5では、放射線画像検出器 5の動作状態が情報として制 御部 27の RAMに保存された状態において、制御部 27が、充電池 21の充電量を充 電量検知手段に検知させ、充電池 21の充電量が撮影等を行うのに必要な所定量以 上であるか否かを判断し (ステップ SC1)、その判断の結果、充電池 21の充電量が所 定量以上であると判断したら (ステップ SC1; YES)、保存された動作状態に従って各 駆動部の稼動状態を制御する (ステップ SCI la、後述参照)。
[0133] 他方、充電池 21の充電量が所定量未満であると判断したら (ステップ SC1; NO)、 制御部 27は、充電池 21の充電量が所定量未満である旨をインジケータ 25に表示さ せ (ステップ SC2)、その旨の信号をコンソール 6に送信する(ステップ SC3)。
[0134] その後、制御部 27は、充電量検知手段による検知結果に基づき、操作者が充電池 21の充電を開始した力否かを繰り返し判断し (ステップ SC4)、その判断の結果、操 作者が充電池 21の充電を開始したと判断したら (ステップ SC4 ; YES)、ステップ SC 5の処理に移行する。ここで、インジケータ 25の表示による警告を受けて、操作者が 充電池 21の充電を行う(放射線画像検出器 5を充電用装置 23に載置する)と、充電 用装置 23の端子と放射線画像検出器 5の端子 22とが電気的に接続されて充電池 2 1の充電が開始される。
[0135] 充電池 21の充電が開始されると、制御部 27は、 RAMに記憶されている放射線画 像検出器 5の動作状態 (充電池 21の充電を行う直前の動作状態)に関する情報を完 了後動作情報として状態記憶部 35に記憶する (ステップ SC5)。
[0136] 充電中、制御部 27は、放射線画像検出器 5が最も消費電力の少ない動作状態で ある第 2の撮影待機モードとなるように、画像記憶部 18及び通信部 24のみに充電池 21から電力を供給し各駆動部の稼動状態を制御する (ステップ SC6)。
[0137] この状態において、制御部 27は、充電池 21の充電量を充電量検知手段に検知さ せて充電池 21の充電量が所定量に達して充電が完了した力否かを繰り返し判断し( ステップ SC7)、充電池 21の充電が完了したと判断したら(ステップ SC7 ; YES)、そ の旨をインジケータ 25に表示させ (ステップ SC8)、その旨の信号をコンソール 6に送 信する (ステップ SC9)。
[0138] 充電池 21の充電が完了すると、制御部 27は、充電池 21の充電を行う直前の放射 線画像検出器 5の動作状態を示す完了後動作情報を状態記憶部 35から読み出して 充電池 21の充電直前の放射線検出器 5の動作状態を認識し (ステップ SC10)、そ の認識した動作状態と同じ動作状態になるように充電池 21から各駆動部に必要な電 力を供給させ、各駆動部の稼動状態を制御する (ステップ SCl lb)。
[0139] すなわち、充電を行う直前の放射線画像検出器 5の動作状態が撮影可能状態であ る場合には、制御部 27は、充電池 21から一連の撮影動作に用いられる各駆動部全 てに対して電力を供給させる。充電を行う直前の放射線画像検出器 5の動作状態が 撮影待機状態の第 1の撮影待機モードである場合には、制御部 27は、走査駆動回 路 16、フォトダイオード 152、 TFT153、画像記憶部 18、通信部 24といった各駆動 部に対して充電池 21から電力を供給させる。充電を行う直前の放射線画像検出器 5 の動作状態が撮影待機状態の第 2の撮影待機モードである場合には、制御部 27は 、画像記憶部 18及び通信部 24に対して充電池 21から電力を供給させる。
[0140] その後、放射線画像検出器 5の動作状態が充電池 21の充電を行う直前の動作状 態となると、制御部 27は、放射線画像検出器 5の動作状態の他、放射線画像検出器 5の充電池 21の充電量等の各種情報をコンソール 6に送信する(ステップ SC12)。
[0141] その後、制御部 27は、充電を行う直前の放射線画像検出器 5の動作状態が撮影 可能状態であった場合であって、放射線画像検出器 5の動作状態が現に撮影可能 状態になった力否かを判断し (ステップ SC13)、その判断の結果、放射線画像検出 器 5の動作状態が現に撮影可能状態になったと判断したら (ステップ SC13; YES)、 新たな撮影に備えて蓄積されている画像情報のリセット、空読み等の初期化作業を 行う(ステップ SC14)。撮影可能状態でなければ (ステップ SC13 ; YES)、ステップ S C1の処理に戻る。
[0142] その後、制御部 27は、操作者により放射線撮影が開始されたカゝ否かを繰り返し判 断し (ステップ SC15)、その判断の結果、放射線撮影が開始されたと判断したら (ス テツプ SC15 ;YES)、ステップ SC16の処理に移行する。実際に放射線撮影が開始 されると、放射線源 12から放射線が照射され、制御部 27は、走査駆動回路 16により 各光電変換素子にパルスを送って当該各光電変換素子を走査 '駆動させるとともに 、各光電変換素子に蓄積された電気エネルギーを信号読出し回路 17によって読み 出すことにより、画像信号を取得する (ステップ SC16)。
[0143] 画像信号を取得したら、制御部 27は、その画像信号を被写体 9の放射線画像情報 として画像記憶部 18に記憶し、その記憶した画像信号をコンソール 6に送信し (ステ ップ SC17)、上記ステップ SC1〜SC17の一連の各処理を繰り返し実行するようにな つている。
[0144] 引き続き、コンソール 6では、制御部 29が、放射線画像検出器 5の制御部 27による 上記ステップ SC3の処理を受けて、充電池 21の充電量が所定量未満である旨を受 信した力否かを判断する (ステップ SD1)。その判断の結果、制御部 29は、充電池 2 1の充電量が所定量未満である旨を受信したと判断したら (ステップ SD1; YES)、充 電池 21の充電が必要である旨を表示部 32に表示させる等して操作者に警告する( ステップ SD2)。なお、コンソール 6には充電池 21の充電量が信号として放射線画像 検出器 5から随時送られ、制御部 29が、送られた信号に基づいて充電池 21の充電 量を表示部 32に随時表示させるようにしてもょ 、。
[0145] 他方、充電池 21の充電量が所定量未満である旨を受信してはいないと判断したら
(ステップ SDl ;NO)、制御部 29は、放射線画像検出器 5の制御部 27による上記ス テツプ SC9の処理を受けて、充電池 21の充電が完了した旨を受信したか否かを判 断する (ステップ SD3)。その判断の結果、制御部 29は、充電池 21の充電が完了し た旨を受信したと判断したら (ステップ SD3 ; YES)、充電池 21の充電が完了した旨 を表示部 32に表示させる(ステップ SD4)。
[0146] 他方、充電池 21の充電が完了した旨を受信してはいないと判断したら (ステップ S D3 ;NO)、制御部 29は、放射線画像検出器 5の制御部 27による上記ステップ SC1 2の処理を受けて、放射線画像検出器 5の動作状態の他、放射線画像検出器 5の充 電池 21の充電量等の各種情報を受信したか否かを判断する (ステップ SD5)。その 判断の結果、制御部 29は、それら各種情報を受信したと判断したら (ステップ SD5 ; YES)、放射線画像検出器 5の動作状態や充電池 21の充電量等を表示部 32に適 宜表示させる(ステップ SD6)。
[0147] 他方、放射線画像検出器 5の動作状態や充電池 21の充電量等の各種情報を受信 してはいないと判断したら (ステップ SD5 ;NO)、制御部 29は、放射線画像検出器 5 の制御部 27による上記ステップ SC17の処理を受けて、画像信号を受信したか否か を判断する (ステップ SD7)。その判断の結果、制御部 29は、画像信号を受信したと 判断したら (ステップ SD7; YES)、その画像信号に対し所定の画像処理を実行して ( ステップ SD8)サムネイル画像や医師等が所望する放射線画像を取得し、その放射 線画像を表示部 32に表示させる (ステップ SD9)。
[0148] そして制御部 29は、画像信号を受信して 、な 、と判断した場合 (ステップ SD7 ;N O)も含み、ステップ SD2, SD4, SD6, SD9の各処理を実行し終えると、上記ステツ プ SD1〜ステップ SD9の一連の各処理を繰り返し実行するようになっている。
産業上の利用可能性
[0149] 医療診断を目的とする放射線撮影分野にお!ヽて、被写体の放射線画像を得るの に好適に利用することができる。

Claims

請求の範囲
[1] 複数の動作状態を有し、照射された放射線を検出して放射線画像情報を得る放射 線画像検出器において、
充電又は交換可能な電池を備え複数の駆動部に電力を供給する電力供給源と、 前記電池の充電又は交換が完了した後の動作状態に関する完了後動作情報を記 憶する状態記憶部と、
前記電池の充電又は交換が完了した後に、前記状態記憶部に記憶されている前 記完了後動作情報に応じ、前記各駆動部の稼動状態を制御する制御部と、 を備えることを特徴とする放射線画像検出器。
[2] 前記制御部は、前記電池の充電又は交換を行う直前の動作状態に基づき、前記 完了後動作情報を前記状態記憶部に記憶させることを特徴とする請求の範囲第 1項 に記載の放射線画像検出器。
[3] 前記電池の充電又は交換が完了した後の動作状態を選択設定可能であり、 前記制御部は、選択設定された動作状態に基づき、前記完了後動作情報を前記 状態記憶部に記憶させることを特徴とする請求の範囲第 1項に記載の放射線画像検 出器。
[4] 前記電池の充電又は交換が完了した後の動作状態を、予め設定された動作状態 に設定することと、任意に設定することを選択でき、前記制御部は、その選択により、 予め設定された動作状態又は任意に設定された動作状態に基づき、前記完了後動 作情報を前記状態記憶部に記憶させることを特徴とする請求の範囲第 3項に記載の 放射線画像検出器。
[5] 任意に設定される動作状態として、
放射線の検出が可能な撮影可能状態と、
前記各駆動部の少なくとも一部に対して電力供給しつつ前記撮影可能状態よりも 消費電力量の少な!ヽ撮影待機状態と、
前記各駆動部全てに対する電力供給を停止した撮影休止状態と、
を設定可能であることを特徴とする請求の範囲第 4項に記載の放射線画像検出器
[6] 前記複数の動作状態は、
放射線の検出が可能な撮影可能状態と、
前記各駆動部の少なくとも一部に対して電力供給しつつ前記撮影可能状態よりも 消費電力量の少な!ヽ撮影待機状態と、
前記各駆動部全てに対する電力供給を停止した撮影休止状態と、
を含むことを特徴とする請求の範囲第 1項に記載の放射線画像検出器。
[7] 前記撮影待機状態は、
消費電力量の異なる複数の撮影待機モードを有することを特徴とする請求の範囲 第 6項に記載の放射線画像検出器。
[8] 前記制御部は、
前記電池の充電又は交換を行っている間、前記複数の撮影待機モードのうち最も 消費電力量の少な 、撮影待機モードとなるように前記各駆動部の稼動状態を制御 することを特徴とする請求の範囲第 7項に記載の放射線画像検出器。
[9] 前記電池は、
交換可能で、かつ、着脱時に非通電状態となることを特徴とする請求の範囲第 1項 〜第 8項のいずれか 1項に記載の放射線画像検出器。
[10] 照射された放射線を検出し、当該放射線を電気信号に変換して蓄積し、蓄積され た電気信号を読み出して放射線画像情報を取得する力セッテ型のフラットパネルディ テクタであることを特徴とする請求の範囲第 1項〜第 8項のいずれか 1項に記載の放 射線画像検出器。
[11] 複数の動作状態を有し、照射された放射線を検出して放射線画像情報を得る放射 線画像検出器と、
前記放射線画像検出器と通信可能なコンソールと、
を備え、
前記電池の充電又は交換が完了した後の動作状態に関する完了後動作情報を記 憶する状態記憶部を有し、
前記電池の充電又は交換が完了する前に前記完了後動作情報を前記状態記憶 部に記憶させるものであり、 前記放射線画像検出器が、
充電又は交換可能な電池を備え複数の駆動部に電力を供給する電力供給源と、 前記電池の充電又は交換が完了した後に、前記状態記憶部に記憶されている前 記完了後動作情報に応じ、前記各駆動部の稼動状態を制御する制御部と、 を有することを特徴とする放射線画像撮影システム。
[12] 前記制御部は、前記電池の充電又は交換を行う直前の動作状態に基づき、前記 完了後動作情報を前記状態記憶部に記憶させることを特徴とする請求の範囲第 11 項に記載の放射線画像撮影システム。
[13] 前記電池の充電又は交換が完了した後の動作状態を選択設定可能であり、
前記制御部は、選択設定された動作状態に基づき、前記完了後動作情報を前記 状態記憶部に記憶させることを特徴とする請求の範囲第 11項に記載の放射線画像 撮影システム。
[14] 前記電池の充電又は交換が完了した後の動作状態を、予め設定された動作状態 に設定することと、任意に設定することを選択でき、前記制御部は、その選択により、 予め設定された動作状態又は任意に設定された動作状態に基づき、前記完了後動 作情報を前記状態記憶部に記憶させることを特徴とする請求の範囲第 13項に記載 の放射線画像撮影システム。
[15] 任意に設定される動作状態として、
放射線の検出が可能な撮影可能状態と、
前記各駆動部の少なくとも一部に対して電力供給しつつ前記撮影可能状態よりも 消費電力量の少な!ヽ撮影待機状態と、
前記各駆動部全てに対する電力供給を停止した撮影休止状態と、
を設定可能であることを特徴とする請求の範囲第 14項に記載の放射線画像撮影シ ステム。
[16] 前記複数の動作状態は、
放射線の検出が可能な撮影可能状態と、
前記各駆動部の少なくとも一部に対して電力供給しつつ前記撮影可能状態よりも 消費電力量の少な!ヽ撮影待機状態と、 前記各駆動部全てに対する電力供給を停止した撮影休止状態と、 を含むことを特徴とする請求の範囲第 11項に記載の放射線画像撮影システム。
[17] 前記撮影待機状態は、
消費電力量の異なる複数の撮影待機モードを有することを特徴とする請求の範囲 第 16項に記載の放射線画像撮影システム。
[18] 前記制御部は、
前記電池の充電又は交換を行っている間、前記複数の撮影待機モードのうち最も 消費電力量の少な 、撮影待機モードとなるように前記各駆動部の稼動状態を制御 することを特徴とする請求の範囲第 17項に記載の放射線画像撮影システム。
[19] 前記電池は、
交換可能で、かつ、着脱時に非通電状態となることを特徴とする請求の範囲第 11 項〜第 18項のいずれか 1項に記載の放射線画像撮影システム。
[20] 前記放射線画像検出器は、
照射された放射線を検出し、当該放射線を電気信号に変換して蓄積し、蓄積され た電気信号を読み出して放射線画像情報を取得する力セッテ型のフラットパネルディ テクタであることを特徴とする請求の範囲第 11項〜第 18項のいずれか 1項に記載の 放射線画像撮影システム。
PCT/JP2005/014838 2004-09-16 2005-08-12 放射線画像検出器及び放射線画像撮影システム WO2006030593A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-269974 2004-09-16
JP2004269974A JP2007333381A (ja) 2004-09-16 2004-09-16 放射線検出器
JP2005-023643 2005-01-31
JP2005023643A JP2007333383A (ja) 2005-01-31 2005-01-31 放射線画像検出器及び放射線画像撮影システム
JP2005023659A JP2007333384A (ja) 2005-01-31 2005-01-31 放射線画像検出器及び放射線画像撮影システム
JP2005-023659 2005-01-31

Publications (1)

Publication Number Publication Date
WO2006030593A1 true WO2006030593A1 (ja) 2006-03-23

Family

ID=36032922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014838 WO2006030593A1 (ja) 2004-09-16 2005-08-12 放射線画像検出器及び放射線画像撮影システム

Country Status (2)

Country Link
US (1) US7365337B2 (ja)
WO (1) WO2006030593A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046315A (ja) * 2008-08-22 2010-03-04 Konica Minolta Medical & Graphic Inc 放射線画像生成システム及び放射線画像検出器
JP2010154897A (ja) * 2008-12-26 2010-07-15 Fujifilm Corp 放射線画像撮影システム及び放射線検出カセッテの充電方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030592A1 (ja) * 2004-09-16 2006-03-23 Konica Minolta Medical & Graphic, Inc. 放射線検出器及び放射線画像撮影システム
JPWO2006080377A1 (ja) * 2005-01-31 2008-06-19 コニカミノルタエムジー株式会社 放射線画像検出器及び放射線画像撮影システム
US7834325B2 (en) * 2006-03-24 2010-11-16 Fujifilm Corporation Radiation image information capturing apparatus and method of detecting temperature of amplifier thereof
US7482595B1 (en) * 2006-03-31 2009-01-27 General Electric Company Digital radiography detector assembly with access opening
JP4868926B2 (ja) * 2006-04-21 2012-02-01 キヤノン株式会社 放射線撮像装置
US7495226B2 (en) 2006-05-26 2009-02-24 Carestream Health, Inc. Compact and durable encasement for a digital radiography detector
JP5224726B2 (ja) * 2006-07-10 2013-07-03 キヤノン株式会社 放射線画像撮影装置及びその制御方法
JP2008119018A (ja) * 2006-11-08 2008-05-29 Konica Minolta Medical & Graphic Inc 放射線画像撮影システム及び放射線画像検出装置
US7638773B2 (en) * 2007-07-23 2009-12-29 Fujifilm Corporation Cassette
US8194823B2 (en) * 2007-07-24 2012-06-05 Fujifilm Corporation X-ray image capturing and interpretation system with cassette and mobile X-ray image capturing apparatus
US7764765B2 (en) * 2007-07-24 2010-07-27 Fujifilm Corporation Cassette and mobile X-ray image capturing apparatus
EP2022393A3 (en) * 2007-07-30 2011-03-02 FUJIFILM Corporation Radiation detecting cassette and medical system
JP2009053661A (ja) * 2007-07-30 2009-03-12 Fujifilm Corp 放射線検出カセッテ及び医療システム
US7935931B2 (en) * 2007-08-10 2011-05-03 Fujifilm Corporation Radiation image capturing system
US7593507B2 (en) * 2007-08-16 2009-09-22 Fujifilm Corporation Radiation image capturing system and method of setting minimum transmission radio-field intensity in such radiation image capturing system
US20090129547A1 (en) * 2007-11-16 2009-05-21 General Electric Company Portable dual-mode digital x-ray detector and methods of operation of same
JP2009125133A (ja) * 2007-11-20 2009-06-11 Asano Dental Inc 歯科医療支援システム及び歯科医療支援用x線センサ
JP4945467B2 (ja) * 2008-01-28 2012-06-06 富士フイルム株式会社 放射線変換器用クレードル
JP5438903B2 (ja) * 2008-01-28 2014-03-12 富士フイルム株式会社 放射線検出装置及び放射線画像撮影システム
JP2009181001A (ja) * 2008-01-31 2009-08-13 Fujifilm Corp 放射線変換器
JP4954923B2 (ja) * 2008-03-07 2012-06-20 富士フイルム株式会社 放射線撮像装置及びクレードル
JP2010051523A (ja) * 2008-08-28 2010-03-11 Fujifilm Corp 可搬型放射線画像形成装置及び放射線画像管理装置
US8779907B2 (en) * 2009-08-31 2014-07-15 General Electric Company Multifunctional switch and detector assembly for a medical imaging system including the same
JP5854580B2 (ja) * 2009-11-24 2016-02-09 キヤノン株式会社 X線撮影装置及び制御方法
JP5371850B2 (ja) * 2010-03-24 2013-12-18 富士フイルム株式会社 放射線撮影システム、コンソール、及びプログラム
JP5657491B2 (ja) * 2011-08-31 2015-01-21 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影プログラム、及び放射線画像撮影方法
JP2013076679A (ja) * 2011-09-30 2013-04-25 Fujifilm Corp 放射線画像検出装置、放射線画像検出方法およびプログラム
US8569709B1 (en) * 2012-06-05 2013-10-29 Carestream Health, Inc. Radiographic imaging apparatus and methods including stable power down
JP6291829B2 (ja) * 2013-12-13 2018-03-14 コニカミノルタ株式会社 可搬型放射線画像撮影装置および放射線画像撮影システム
US10772589B2 (en) 2014-09-23 2020-09-15 Samsung Electronics Co., Ltd. Receiving device and X-ray imaging apparatus having the same
KR102089370B1 (ko) * 2014-09-23 2020-03-16 삼성전자주식회사 수납장치 및 이를 구비하는 엑스선 촬영기기
JP6251147B2 (ja) * 2014-09-29 2017-12-20 富士フイルム株式会社 電子カセッテおよび電子カセッテの作動方法
JP6614784B2 (ja) * 2015-03-27 2019-12-04 キヤノン株式会社 放射線撮影システム、制御方法およびプログラム
JP7087435B2 (ja) * 2018-02-19 2022-06-21 コニカミノルタ株式会社 放射線画像撮影装置及び放射線画像撮影システム
US11484281B2 (en) * 2019-05-10 2022-11-01 Konica Minolta, Inc. Radiation image imaging apparatus, electronic device, wireless communication system, and storage medium
KR20210056181A (ko) 2019-11-08 2021-05-18 삼성전자주식회사 모바일 엑스선 디텍터, 모바일 엑스선 디텍터를 포함하는 엑스선 영상 장치, 및 그 동작 방법
JP2022073245A (ja) * 2020-10-30 2022-05-17 富士フイルム株式会社 制御装置、放射線検出器、制御方法、及び制御プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165142A (ja) * 2000-08-11 2002-06-07 Canon Inc 画像撮影装置及び画像撮影装置の制御方法
JP2002200064A (ja) * 2000-12-28 2002-07-16 Canon Inc 撮影装置、撮影システム、撮影方法、及び記憶媒体
JP2003018033A (ja) * 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd Fm多重データ受信方法およびその装置と車載オーディオ装置
JP2003042976A (ja) * 2001-08-02 2003-02-13 Toshiba Corp 放射線撮影装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227927A (en) * 1986-05-21 1993-07-13 Canon Kabushiki Kaisha Recording and/or reproducing apparatus adapted to minimized electrical energy consumption
JPH04109547A (ja) * 1990-08-30 1992-04-10 Sharp Corp メモリデータ保護装置
US7289602B1 (en) * 1995-06-23 2007-10-30 Science Applications International Corporation Portable, digital X-ray apparatus for producing, storing, and displaying electronic radioscopic images
US5877501A (en) * 1996-11-26 1999-03-02 Picker International, Inc. Digital panel for x-ray image acquisition
US6344652B1 (en) * 1999-01-13 2002-02-05 Fuji Photo Film Co., Ltd. Radiation detecting cassette
JP2003224703A (ja) * 2002-01-31 2003-08-08 Konica Corp 画像読み取り装置及び画像読み取り方法
US6924486B2 (en) * 2002-10-03 2005-08-02 Schick Technologies, Inc. Intraoral sensor having power conservation features
US7072443B2 (en) * 2002-10-03 2006-07-04 Schick Technologies, Inc. Intraoral image sensor
US7239685B2 (en) * 2004-03-22 2007-07-03 Petrick Scott W System and method for reducing power consumption in digital radiography detectors
JP2007127414A (ja) * 2004-07-21 2007-05-24 Konica Minolta Medical & Graphic Inc 放射線画像検出器及び放射線画像撮影システム
WO2006030592A1 (ja) * 2004-09-16 2006-03-23 Konica Minolta Medical & Graphic, Inc. 放射線検出器及び放射線画像撮影システム
JP4604741B2 (ja) * 2005-01-31 2011-01-05 コニカミノルタエムジー株式会社 カセッテ型放射線画像検出器
US7261465B2 (en) * 2005-12-31 2007-08-28 Butzine Jonathan M Park sensor mechanism for portable digital X-ray detector on mobile digital radiography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165142A (ja) * 2000-08-11 2002-06-07 Canon Inc 画像撮影装置及び画像撮影装置の制御方法
JP2002200064A (ja) * 2000-12-28 2002-07-16 Canon Inc 撮影装置、撮影システム、撮影方法、及び記憶媒体
JP2003018033A (ja) * 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd Fm多重データ受信方法およびその装置と車載オーディオ装置
JP2003042976A (ja) * 2001-08-02 2003-02-13 Toshiba Corp 放射線撮影装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046315A (ja) * 2008-08-22 2010-03-04 Konica Minolta Medical & Graphic Inc 放射線画像生成システム及び放射線画像検出器
JP2010154897A (ja) * 2008-12-26 2010-07-15 Fujifilm Corp 放射線画像撮影システム及び放射線検出カセッテの充電方法

Also Published As

Publication number Publication date
US20060054829A1 (en) 2006-03-16
US7365337B2 (en) 2008-04-29

Similar Documents

Publication Publication Date Title
WO2006030593A1 (ja) 放射線画像検出器及び放射線画像撮影システム
JPWO2006080377A1 (ja) 放射線画像検出器及び放射線画像撮影システム
US7751529B2 (en) Radiation image radiographing system
JP4715844B2 (ja) 放射線画像撮影システム
JP5239623B2 (ja) 放射線画像生成システム及び放射線画像検出器
JP5609863B2 (ja) 放射線画像検出システム
WO2006095453A1 (ja) 放射線画像検出器及び放射線画像撮影システム
EP1921466A2 (en) Radiation image radiographing system and radiation image detecting apparatus
WO2006103791A1 (ja) カセッテ型放射線画像検出器及び放射線画像検出システム
JP2006250728A (ja) 放射線画像検出器及び放射線画像撮影システム
JP4940919B2 (ja) 放射線画像撮影システム
JP2006247137A (ja) 放射線画像撮影システム
JP4552672B2 (ja) 放射線画像検出器及び放射線画像撮影システム
JP2006247138A (ja) 放射線画像撮影システム
JP2006208303A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2006208306A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2007333384A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2006250729A (ja) 放射線画像検出器及び放射線画像撮影システム
JP4682650B2 (ja) 放射線画像検出器及び放射線画像撮影システム
JP5707869B2 (ja) 放射線画像撮影システム
JP2006247141A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2007333383A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2011019661A (ja) 放射線画像検出装置及び放射線画像検出システム
JP5088440B2 (ja) 放射線画像撮影システム
JP2007333382A (ja) 放射線検出器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP