WO2006080129A1 - 表示装置、液晶表示装置、及び表示装置の製造方法 - Google Patents

表示装置、液晶表示装置、及び表示装置の製造方法 Download PDF

Info

Publication number
WO2006080129A1
WO2006080129A1 PCT/JP2005/021018 JP2005021018W WO2006080129A1 WO 2006080129 A1 WO2006080129 A1 WO 2006080129A1 JP 2005021018 W JP2005021018 W JP 2005021018W WO 2006080129 A1 WO2006080129 A1 WO 2006080129A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
spare
display
display device
electrode
Prior art date
Application number
PCT/JP2005/021018
Other languages
English (en)
French (fr)
Inventor
Kazuma Hirao
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/722,818 priority Critical patent/US8730423B2/en
Publication of WO2006080129A1 publication Critical patent/WO2006080129A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136272Auxiliary lines

Definitions

  • Display device liquid crystal display device, and manufacturing method of display device
  • the present invention relates to a display device, a liquid crystal display device, and a method for manufacturing the display device, and more particularly to a disconnection correcting method for a matrix type liquid crystal display device.
  • a matrix-type display device has pixels that are the minimum unit of an image arranged in a matrix.
  • an active matrix liquid crystal display device having a switching element for each pixel can display a fine image and is widely used.
  • this active matrix type liquid crystal display device in order to supply a display signal to each of the pixels, a plurality of gate lines extending in parallel to each other and a plurality of source lines orthogonal to the plurality of gate lines are provided. And are provided. Therefore, in the active matrix liquid crystal display device, if a disconnection occurs in the display wiring of the gate line or the source line, the display signal from the drive circuit is not supplied to the display wiring of the disconnection position force. There is a problem that the quality deteriorates remarkably.
  • Patent Document 1 includes a spare wiring that can be connected to at least one of a gate line and a source line, and a gate line in which a disconnection occurs in the spare wiring.
  • a matrix display device that can be repaired even if a disconnection failure occurs by connecting at least one of the source line and the source line.
  • Patent Document 2 discloses a matrix type display device that improves display quality by compensating for a voltage drop due to routing of the spare wiring by interposing a buffer circuit in the spare wiring having the above-described configuration. Proposed and reproved.
  • Patent Documents 3 and 4 disclose improved techniques related to the buffer circuit.
  • FIG. 15 is an equivalent circuit diagram of a liquid crystal display device 150 in which the disconnection of the source line 102 can be corrected based on the contents described in Patent Documents 1 and 2.
  • the liquid crystal display device 150 includes a liquid crystal display panel 140 and a left side of the liquid crystal display panel 140.
  • a gate driver 109 provided on the side and a source driver 107 provided on the upper side of the liquid crystal display panel 140 are provided.
  • the liquid crystal display panel 140 includes an active matrix substrate and a counter substrate disposed so as to face each other, and a liquid crystal layer sandwiched between the two substrates.
  • a plurality of gate lines 101 are provided so as to extend in the horizontal direction in the figure, and a plurality of source lines 102 are provided in the vertical direction in the figure.
  • a thin film transistor (hereinafter abbreviated as TFT) 111 serving as a switching element is provided at each intersection between the gate line 101 and the source line 102.
  • TFT thin film transistor
  • the source driver 107 has an output amplifier 106 connected to each source line 102 and a buffer circuit 104. Further, in the upper side portion of the liquid crystal display panel 140, a first auxiliary wiring 103a that extends perpendicular to each source line 102 and is connected to the input side of the noffer circuit 104 in the source driver 107, and the output of the buffer circuit 104 A second auxiliary wiring 103b extending from the side through the upper side, the right side, and the lower side of the liquid crystal display panel 140 at a lower side portion of the liquid crystal display panel 140 so as to be orthogonal to the source lines 102; The
  • FIG. 6 is an equivalent circuit diagram showing a liquid crystal display device 150 that is manufactured.
  • the source line 102 is disconnected at the disconnection position XI, and is divided into a source line 102a above the disconnection position XI and a source line 102b below the disconnection position XI.
  • the source line 102a and the first spare wiring 103a are connected at the intersection A1, and the source line 102b and the second spare wiring 103b are connected at the intersection A2.
  • a contact hole is formed in the insulating film 119 by irradiating light energy 123 such as laser light to the crossing portions A1 and A2 of the glass substrate 120 side force.
  • the conductive line 102 and the spare wiring 103 may be electrically connected.
  • the noffer circuit 104 functions as an amplifier for amplifying a display signal for impedance conversion in the spare wiring 103 including the first spare wiring 103a and the second spare wiring 103b.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-23425
  • Patent Document 2 JP-A-8-171081
  • Patent Document 3 Japanese Patent Laid-Open No. 11-52928
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-221947
  • the magnitude of the capacity of the load between the normal source line 102 that is not disconnected by the defect correcting method as described above and the source lines 102a and 102b that are disconnected by the disconnection is small. The difference is taken into account.
  • FIG. 18 is an equivalent circuit diagram showing the capacitance applied to the source line 102 per pixel.
  • the capacitance applied to the source line 102 includes the liquid crystal capacitance Clc, the auxiliary capacitance Ccs, the parasitic capacitance Csg generated at the intersection with the gate line 101, and the pixel on the right side with respect to the source line 102.
  • the liquid crystal capacitor Clc and the auxiliary capacitor Ccs are connected and become a load only when the predetermined gate line 101 is selected and the TFT 111 is in the ON state.
  • the liquid crystal capacitance Clc and the auxiliary capacitance Ccs have a large load on one source line 102. It must be.
  • the remaining parasitic capacitances Csg, CsdA, and CsdB always exist regardless of the selection of the gate line 101, and therefore, a large load is applied to one source line 102.
  • one source line 102 takes as many parasitic capacitances Csg, CsdA, and CsdB force as the number of gate lines 101, for example, 768 in a liquid crystal display device having a resolution of XGA.
  • the magnitude of this parasitic capacitance is negligible for the display quality of the liquid crystal display device. Therefore, it is necessary that the output amplifier 106 and the buffer circuit 104 of the source driver 107 have enough capacity to cope with the magnitude of the parasitic capacitance that becomes the load.
  • the source line 102 is disconnected at the disconnection position XI away from the source driver 107, and as described above, the source line 102a above the disconnection position XI and the disconnection position
  • the number of parasitic capacitances Csg, CsdA, and CsdB that are loaded on the source line 102a is the parasitic capacitance Csg, CsdA that is loaded on the normal source line 102.
  • the load applied to the source line 102a above the disconnection position XI is not significantly different from the load applied to the normal source line 102.
  • the number of parasitic capacitances Csg, CsdA, and CsdB that are loaded on the source line 102b is considerably smaller than the number of parasitic capacitances Csg, CsdA, and CsdB that are loaded on the normal source line 102. Therefore, the load applied to the source line 102b below the disconnection position XI is extremely smaller than the load applied to the normal source line 102.
  • the source line 102 is disconnected at the disconnection position X2 very close to the source driver 107, and the source line 102c above the disconnection position X2
  • the load applied to the source line 102c is extremely smaller than the load applied to the normal source line 102.
  • the load applied to the source line 102d is not significantly different from the load applied to the normal source line 102.
  • the load is increased or decreased depending on the disconnection position, that is, the distribution of the parasitic capacitance serving as the load is changed.
  • FIG. 20 shows an output waveform W1 at the normal source line 102 and an output waveform W2 at the spare wiring 103 to which the disconnected source line 102 is connected because the source line 102 is disconnected. Is.
  • the source line 102 is connected by the power disconnection that sets the load of the output amplifier 106 and the buffer circuit 104 so that the normal source line 102 can be driven normally.
  • the divided source line (for example, the source line 102b) If the parasitic capacitance that becomes a load becomes extremely small at, the waveform overshoots or undershoots as shown in the output waveform W2 in FIG.
  • the overshoot and undershoot are low in resolution of the liquid crystal display device. If the charging time (one horizontal period) in each pixel is long, it is difficult to affect the display, but high resolution (such as U XGA) In this case, the charging time is shortened, and overshoot and undershoot cannot be ignored.
  • the resolution is further increased, the number of parasitic capacitances Csg, CsdA, and CsdB that become loads on one source line 102 also increases. The difference from the load applied to the source line 102b) also increases.
  • the present invention has been made in view of the strong point, and the purpose of the present invention is to provide a display in which when the display wiring is disconnected, the deterioration in display quality related to the disconnection position is suppressed. It is possible to correct the disconnection of wiring.
  • the present invention is provided with a spare capacitor for adjusting the signal waveform applied to the display wiring connected to the spare wiring.
  • the display device according to the present invention is connectable to a plurality of display wirings to which a signal voltage for display is applied and to at least one end of each of the plurality of display wirings.
  • a display device comprising a configured spare line and a buffer unit for impedance conversion in the spare line, the buffer line being connected to the display line. In this state, a reserve capacitor for adjusting a signal waveform applied to the display wiring is provided.
  • the spare wiring can be connected to at least one end side of the plurality of display wirings. Therefore, when any of the plurality of display wirings is disconnected, the spare wiring is disconnected.
  • the signal voltage for display is applied to the display wiring ahead of the disconnection position via the spare wiring.
  • the reserve wiring is provided with a reserve capacity for adjusting the signal waveform, the reserve capacity is appropriately applied according to the disconnection position to apply to the display line via the reserve line. The signal waveform for display to be displayed is adjusted, and the deterioration of display quality is suppressed.
  • the load applied to each display wiring that is disconnected due to the disconnection is disconnected, and the negative load applied to the normal display wiring.
  • the signal waveform for display applied to the display wiring via the spare wiring is adjusted to be equivalent to the load. For this reason, in the disconnected display wiring, the adjusted signal waveform is applied through the spare wiring, the notch section, and the spare capacity, so that the display quality equivalent to the normal display wiring is maintained.
  • the display wiring is disconnected, it is possible to correct the disconnection of the display wiring so that the deterioration of the display quality related to the disconnection position is suppressed.
  • the reserve capacitance may be configured by a first electrode and a second electrode arranged to face each other, and a first insulating film sandwiched between the first electrode and the second electrode. .
  • the first electrode may be connected to the spare wiring.
  • the broken display table is connected by connecting the disconnected display wiring and the reserve wiring.
  • the reserve capacity becomes functional for the display wiring.
  • the signal waveform for display applied to the divided display wiring is adjusted by the one spare capacitor.
  • the number of functional spare capacitors can be adjusted by disconnecting a predetermined number of connections between the first electrode of the spare capacitors and the spare wires as necessary. As a result, the load applied to the display wiring divided by the disconnection is adjusted, and the signal waveform for display applied to the display wiring through the spare wiring is adjusted.
  • the first electrode may be configured to be connectable to the spare wiring.
  • the first electrode constituting the spare capacity is configured to be connectable to the spare wiring, the disconnected display wiring and the spare wiring are connected and the spare capacity of the spare capacity is reduced.
  • the spare capacity becomes functional for the spare wiring and the display wiring.
  • the number of functional reserve capacitors can be adjusted by connecting a predetermined number of spare capacitor first electrodes and spare wires. As a result, the load applied to the display wiring divided by the disconnection is adjusted, and the signal waveform for display applied to the display wiring through the spare wiring is adjusted.
  • a plurality of the spare capacitors are provided, and at least one of the plurality of spare capacitors has the first electrode connected to the spare wiring and another spare capacitor of the plurality of spare capacitors.
  • the first electrode of the capacitor may be configured to be connectable to the spare wiring.
  • the first electrode of one spare capacity is used as the spare capacity. It is connected in advance to the wiring, and the first electrode of the other spare capacity is configured to be connectable to the spare wiring. In this way, it is possible to increase the connection state between the first electrode of the backup capacitor and the backup wiring.
  • the spare wiring is provided via the second insulating film with respect to the display wiring, and is connected to the display wiring by forming a contact hole in the second insulating film, respectively. It is possible to be configured. [0040] According to the above configuration, when any of the plurality of display wirings is disconnected, for example, by irradiating light energy to each intersection between the preliminary wiring and the display wiring. A part of the second insulating film is destroyed, and a contact hole is formed to connect the spare wiring and the display wiring. For this reason, by forming a contact hole in the second insulating film, a signal voltage for display is applied to the display wiring separated by the disconnection through the spare wiring.
  • the first electrode is provided with respect to the spare wiring via a third insulating film, and can be connected to the spare wiring by forming a contact hole in the third insulating film. It may be configured.
  • the spare wiring is composed of a first wiring on the input side of the buffer unit and a second wiring on the output side of the buffer unit, and the spare capacity is provided in the first wiring. It may be.
  • the display wiring is disconnected on the first wiring side, and the display wiring on the first wiring side is divided by the disconnection. Even if the load on the first wiring is reduced, it is possible to increase the reduced load by connecting the first electrode of the reserve capacitance provided on the first wiring to the first wiring. As a result, the load applied to the display wiring that has been disconnected due to disconnection is adjusted to be equal to the load applied to the normal display wiring that is not disconnected, and is applied to the display wiring via the spare wiring. The signal waveform for display is adjusted.
  • the spare wiring is configured by a first wiring on the input side of the buffer unit and a second wiring on the output side of the buffer unit, and the spare capacitance is provided in the second wiring. It may be.
  • the display wiring is Even if the load on the display wiring on the second wiring side that is disconnected due to the disconnection is reduced on the second wiring side, the first electrode of the spare capacity provided on the second wiring and the first electrode By connecting the two wirings, it is possible to increase the reduced load. As a result, the load applied to the display wiring that has been disconnected due to disconnection is adjusted to be equal to the load applied to the normal display wiring that is not disconnected, and is applied to the display wiring via the spare wiring. The signal waveform for display is adjusted.
  • the spare wiring is configured by a first wiring on the input side of the buffer unit and a second wiring on the output side of the buffer unit, and the spare capacity includes the first wiring and the first wiring. 2 Provided on both sides of the wiring.
  • the display wiring is disconnected on the first wiring side, and the first wiring that is divided by the disconnection is provided. Even if the load acting on the display wiring on the wiring side is reduced, the reduced load can be increased by connecting the first electrode of the reserve capacitance provided in the first wiring to the first wiring. Is possible.
  • the spare wiring provided on the second wiring By connecting the first electrode of the capacitor and the second wiring, the reduced load can be increased. As a result, the load applied to the display wiring that has been disconnected due to disconnection is more or less adjusted to the load applied to the normal display wiring that has not been disconnected. The signal waveform for display applied to the display wiring is adjusted.
  • the display wiring may be a source line to which a source signal is input.
  • a source line supplies a source signal such as a video signal to a pixel which is the minimum unit of an image.
  • the variation in voltage may reduce the display quality of the liquid crystal display device.
  • the present invention since it is possible to correct the disconnection of the display wiring that suppresses the deterioration of the display quality related to the disconnection position, even if the source line is disconnected as described above, it is related to the disconnection position. It is possible to correct the disconnection that suppresses the deterioration of display quality.
  • the plurality of display wirings are formed on a substrate, and the reserve capacitor is provided on the substrate. It may be.
  • a display area that contributes to display and a non-display area that is provided outside the display area and does not contribute to display may be provided, and the reserve capacity may be provided in the non-display area.
  • the disconnection of the display wiring is corrected without affecting the display quality.
  • the first insulating film, the second insulating film, and the third insulating film may be the same insulating film.
  • the first insulating film constituting the spare capacitor the second insulating film insulating between the display wiring and the spare wiring, and between the second electrode of the spare capacitance and the spare wiring.
  • the third insulating film can be formed by a gate insulating film that insulates between the gate electrode of the thin film transistor and the semiconductor layer. Therefore, the disconnection of the display wiring is corrected without adding a display device manufacturing process.
  • a plurality of pixels, a pixel electrode provided in each of the plurality of pixels and connected to the display wiring, to which a signal voltage is supplied, and the same insulating film are formed. And an auxiliary capacitor for holding the signal voltage.
  • the first insulating film constituting the spare capacitor, the second insulating film for insulating between the display wiring and the spare wiring, and the second electrode of the spare capacitor and the spare wiring are provided.
  • the third insulating film to be insulated and the auxiliary capacitance for holding the signal voltage applied to the pixel electrode at the time of image display for example, by the gate insulating film that insulates between the gate electrode of the thin film transistor and the semiconductor layer. It becomes possible to form. Therefore, add a display device manufacturing process. Instead, the disconnection of the display wiring is corrected.
  • One reserve capacity may be provided.
  • the first electrode constituting the reserve capacitance is connected to the reserve wiring in advance and the number of reserve capacitors is the same, so that the disconnected display wiring and By connecting the spare wiring, one spare capacity can be used for the disconnected display wiring. Therefore, the signal waveform for display applied to the divided display wiring is adjusted simply by connecting the broken display wiring and the spare wiring.
  • the display device is configured to be connectable to a plurality of display wirings to which a signal voltage for display is applied and at least one end side of the plurality of display wirings. And a buffer unit for impedance conversion in the spare wiring, wherein the spare wiring is connected to the display wiring. And a reserve capacitor for adjusting a signal waveform applied to the display wiring, wherein the reserve capacitor includes a first electrode and a second electrode arranged opposite to each other, the first electrode and A first insulating film sandwiched between the second electrodes, and any of the plurality of display wirings is disconnected, and the disconnected display wiring is connected to the spare wiring.
  • the first electrode is connected to the spare wiring It is characterized in that is.
  • the signal voltage for display is also connected to the display wiring ahead of the disconnection position via the spare wiring. Is marked. Then, since the first electrode of the reserve capacitor is connected to the spare wiring in order to adjust the signal waveform for display, the signal waveform applied to the display wire disconnected through the spare wire is adjusted. . Specifically, since the first electrode of the spare capacity is connected to the spare wiring, the load force that covers the display wiring that is disconnected by disconnection covers the normal display wiring that is not disconnected. The signal waveform applied to the display wiring via the spare wiring is adjusted in the same way as the load. For this reason, in the disconnected display wiring, the adjusted signal waveform is applied through the preliminary wiring, the notch section, and the standby capacitance, so that the display quality equivalent to that of the normal display wiring is maintained.
  • the liquid crystal display device includes a plurality of signal voltages to which a display signal voltage is applied.
  • a display wiring a spare wiring configured to be connectable to both ends of at least one of the plurality of display wirings, and an interposer interposed in the spare wiring for impedance conversion in the spare wiring.
  • a liquid crystal display device including a buffer unit, and having a spare capacity for adjusting a signal waveform applied to the display wiring in a state where the spare wiring is connected to the display wiring. It is characterized by.
  • the display device as described above is particularly effective in a liquid crystal display device.
  • the difference between the load on normal source lines (display wiring) and the load on source lines (display wiring) separated by disconnection has been increased. This is a force that increases the overshoot and undershoot, and may deteriorate the display quality.
  • a plurality of display wirings to which a signal voltage for display is applied are connected to both ends of at least one of the plurality of display wirings.
  • the auxiliary wiring configured to be configured, a notch unit for impedance conversion in the auxiliary wiring, and the auxiliary wiring connected to the display wiring in the state where the auxiliary wiring is connected to the display wiring.
  • a spare capacitor for adjusting a signal waveform applied to the wiring, and the spare capacitor is disposed between the first electrode and the second electrode, and the first electrode and the second electrode arranged opposite to each other.
  • a disconnection wiring configured to detect the presence of the disconnection of the display wiring, wherein the first capacitance electrode is connected to the preliminary wiring in advance. Detection process and wire break detection Disconnection in extent to anda extent spare wire connection E for connecting the detected display wiring and the auxiliary wiring.
  • the disconnected display wiring and the spare wiring are connected in the spare wiring connecting step.
  • the spare capacity becomes operable with respect to the disconnected display wiring. Therefore, the load force that is applied to the display wiring that is disconnected due to disconnection is equal to the load that is applied to normal display wiring that is not disconnected, and the signal waveform applied to the display wiring via the spare wiring is adjusted. Is done.
  • the adjusted display signal is applied through the spare wiring, the buffer unit, and the spare capacity, so that the normal Display quality equivalent to that of display wiring is maintained. Therefore, when the display wiring is disconnected, it is possible to correct the disconnection of the display wiring while suppressing the deterioration of display quality related to the disconnection position.
  • a plurality of the spare capacitors may be provided, and a cutting step of cutting off the connection between the first electrode and the spare wiring may be provided for at least one of the plurality of spare capacitors.
  • the display wiring disconnected in the preliminary wiring connecting step and the spare wiring are connected to each other, so that the function can be performed with respect to the disconnected display wiring. It becomes possible to appropriately reduce the number of spare caps that have become used in the cutting process. For this reason, if there are multiple spare capacities provided in the spare wiring, the number of spare capacities is reduced to reduce the load that is applied to the display wiring that has been broken due to disconnection. It becomes possible to make it equivalent to the load that is hard on the wiring.
  • a disconnection position detection step for detecting a disconnection position in the display wiring detected in the disconnection wiring detection step is provided, and the number of the cutting processes is a number corresponding to the disconnection position detected in the disconnection position detection step.
  • the connection between the first electrode and the spare wiring may be cut off with respect to the spare capacity of minutes.
  • the disconnecting step some of the plurality of connections between the first electrode of the reserve capacitor and the reserve wiring are disconnected in accordance with the disconnection position detected in the disconnection position detecting step. Therefore, it becomes possible to correct the disconnection of the display wiring that suppresses the deterioration of display quality related to the disconnection position.
  • a plurality of display wirings to which a signal voltage for display is applied are connected to both ends of at least one of the plurality of display wirings.
  • the auxiliary wiring configured to be configured, a notch unit for impedance conversion in the auxiliary wiring, and the auxiliary wiring connected to the display wiring in the state where the auxiliary wiring is connected to the display wiring.
  • a spare capacitor for adjusting a signal waveform applied to the wiring, and the spare capacitor is disposed between the first electrode and the second electrode, and the first electrode and the second electrode arranged opposite to each other.
  • a disconnection wiring detection step for detecting the presence of the disconnection in the display wiring a preliminary wiring connection step for connecting the display wiring detected in the disconnection wiring detection step and the spare wiring, and the preliminary wiring It is characterized by comprising a spare capacitor connection step for connecting the first electrode of the capacitor and the spare wiring.
  • the display wiring and the spare wiring disconnected in the spare wiring connecting step are connected, and the first electrode of the spare capacitor and the spare wiring are connected in the spare capacitor connecting step.
  • the spare capacity becomes operable with respect to the disconnected display wiring.
  • the load applied to the display wiring that is disconnected due to disconnection is equivalent to the load that is applied to the normal display wiring that is not disconnected, and is applied to the display wiring via the spare wiring.
  • the signal waveform is adjusted.
  • the signal waveform with the adjusted waveform is applied to the disconnected display wiring via the spare wiring, the buffer unit, and the spare capacitance, so that the display quality equivalent to that of the normal display wiring is maintained. . Therefore, when the display wiring is disconnected, it is possible to correct the disconnection of the display wiring while suppressing the deterioration of the display quality related to the disconnection position.
  • a disconnection position detection step for detecting a disconnection position in the display wiring detected in the disconnection wiring detection step, and the reserve capacity connection step corresponds to the disconnection position detected in the disconnection position detection step.
  • the first electrode and the spare wiring may be connected to the spare capacitors of the same number.
  • the first electrode of the spare capacitor and the spare wiring are connected in accordance with the break position detected in the break position detection step. This makes it possible to correct the disconnection of the display wiring that suppresses the deterioration of display quality related to.
  • the spare wiring is provided with a spare capacitor for adjusting the signal waveform applied to the divided display wiring, any of the plurality of display wirings is disconnected.
  • the disconnected display wiring and the spare wiring are connected, and the spare capacity is appropriately operated according to the disconnection position.
  • the adjusted signal waveform is applied through the capacitor. The As a result, it is possible to correct the disconnection of the display wiring that suppresses the deterioration of the display quality related to the disconnection position of the display wiring.
  • FIG. 1 is an equivalent circuit diagram showing a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing one pixel of the liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a plan view showing a reserve capacity of the liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 5 is an equivalent circuit diagram showing a reserve capacity of the liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is an equivalent circuit diagram showing a liquid crystal display device in which a source line and a spare wiring according to Embodiment 1 of the present invention are connected.
  • FIG. 8 is a cross-sectional view showing a liquid crystal display device in which a spare wiring and a spare capacitor are connected according to Embodiment 1 of the present invention.
  • FIG. 9 is a plan view showing a general liquid crystal display device.
  • FIG. 10 is a plan view showing in detail a reserve capacity of the liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 11 is an equivalent circuit diagram showing a reserve capacity of the liquid crystal display device according to Embodiment 2 of the present invention.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • FIG. 13 is a plan view showing a liquid crystal display device according to Embodiment 3 of the present invention.
  • FIG. 14 is a plan view showing a liquid crystal display device according to Embodiment 4 of the present invention.
  • FIG. 15 is an equivalent circuit diagram showing a conventional liquid crystal display device.
  • FIG. 16 is an equivalent circuit diagram showing a conventional liquid crystal display device in which a source line and a spare line are connected by disconnection of a source line on the side opposite to the source driver.
  • FIG. 17 is a cross-sectional view showing a conventional liquid crystal display device in which a source line and a spare wiring are connected.
  • FIG. 18 is an equivalent circuit diagram showing the capacitance of the source line of a conventional liquid crystal display device.
  • FIG. 19 is an equivalent circuit diagram showing a conventional liquid crystal display device in which a source line and a spare wiring are connected by disconnection of a source line on the source driver side.
  • FIG. 20 is a waveform diagram showing waveforms of source lines and spare lines in a conventional liquid crystal display device.
  • a liquid crystal display device is taken as an example, and the power for explaining a source line as an example of a display wiring to be corrected for disconnection is not limited to this.
  • the liquid crystal display device 50 according to Embodiment 1 of the present invention will be described below.
  • FIG. 1 is an equivalent circuit diagram showing a liquid crystal display device 50 according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing one pixel of the liquid crystal display device 50, and
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • the liquid crystal display device 50 includes a liquid crystal display panel 40, a gate driver 9 provided on the left side of the liquid crystal display panel 40, and a source driver 7 provided on the upper side of the liquid crystal display panel 40. is doing.
  • the liquid crystal display panel 40 includes an active matrix substrate and a counter substrate that are arranged to face each other, and a liquid crystal layer 12 that is sandwiched between the two substrates.
  • a plurality of gate lines 1 are provided on a glass substrate 20 so as to extend in parallel to each other in the horizontal direction in FIG. 1, and a plurality of source lines 2 (display wirings) are illustrated.
  • the gate lines 1 are provided so as to be orthogonal to the gate lines 1 in the vertical direction.
  • capacitance lines 15 are provided between the gate lines 1 so as to extend in parallel with each other as shown in FIG.
  • a thin film transistor (TFT) 11 is provided as a switching element at each intersection between the gate line 1 and the source line 2.
  • each region surrounded by a pair of adjacent gate lines 1 and source lines 2 constitutes a pixel that is the minimum unit of an image.
  • pixel electrodes 18 are formed in a matrix along the gate line 1 and the source line 2, and a plurality of pixel electrodes 18 formed in the matrix form a display region as a whole.
  • the TFT 11 includes a gate electrode la protruding laterally from the gate line 1, a gate insulating film 19 provided so as to cover the gate electrode la, and the gate insulating film 19 A source electrode 2a projecting laterally from the source line 2, and a drain electrode 14 provided on the gate insulating film 19 so as to face the source electrode 2a.
  • the drain electrode 14 is extended to a region where the capacitor line 15 is disposed, and the extension is provided.
  • the auxiliary capacitor 27 is constituted by the portion, the capacitor line 15 and the gate insulating film 19 sandwiched between them.
  • a protective film 17 is provided so as to cover the source electrode 2a and the drain electrode 14.
  • a pixel electrode 18 is provided on the upper layer of the protective film 17.
  • the pixel electrode 18 is connected to the drain electrode 14 through a contact hole 16 formed in the protective film 17.
  • an alignment film (not shown) is provided above the pixel electrode 18.
  • Each gate line 1 is led out to a non-display area (the left side of the liquid crystal display panel 40) outside the display area of the active matrix substrate, and is connected to each output amplifier 8 in the gate driver 9. .
  • Each source line 2 is led out to a non-display area (upper side of the liquid crystal display panel 40) of the active matrix substrate and connected to each output amplifier 6 in the source driver 7.
  • the source driver 7 includes a notch unit 4 that functions as an amplifier for impedance conversion in the spare wiring 3 constituted by a first wiring 3a and a second wiring 3b described later.
  • the first wiring 3a for correcting the disconnection is connected to each source line 2 via the gate insulating film 19 (second insulating film). Is connected to the input side of the S buffer unit 4.
  • the second wiring 3b for correcting disconnection is orthogonal to each source line 2 via the gate insulating film 19 (second insulating film). One end thereof is connected to the output side of the buffer unit 4 via a non-display area (the right side and the upper side of the liquid crystal display panel 40) of the active matrix substrate.
  • first wiring 3a and the second wiring 3b are provided with a plurality of first spare capacitors 10a and second spare capacitors 10b that can be connected to each other.
  • five first reserve capacitors 10a are provided on the first wiring 3a so as to be connectable.
  • the first reserve capacitor 10a is sandwiched between the first electrode 10c and the second electrode 10d provided so as to be arranged to face each other, and the first electrode 10c and the second electrode 10d.
  • a gate insulating film 19 first insulating film. 6 is a cross-sectional view taken along the line VI-VI in FIG.
  • the first electrode 10c is an extended portion of the spare capacitor connection wiring 5 provided via the gate insulating film 19 (third insulating film) with respect to the first wiring 3a. According to this, since the gate insulating film 19 is sandwiched between the first electrode 10c of the first reserve capacitance 10a and the first wiring 3a, the first electrode 10c of the first reserve capacitance 10a It is not connected in advance to the first wiring 3 a constituting the wiring 3.
  • Each spare capacitor connection wiring 5 is provided so as to be orthogonal to the first wiring 3a via the gate insulating film 19 (third insulating film) as described above, and the intersecting portion is illustrated in FIG. As shown in Fig. 5 and Fig. 6, there are intersections C1 to C5.
  • the second electrode 10d is an extended portion of the common electrode wiring 21a connected to the common electrode 13 of the counter substrate described later via the common electrode transition point 21b.
  • the force second electrode 10d in which the second electrode 10d is connected to the common electrode 13 may be connected to the capacitor line 15 or grounded.
  • the second reserve capacitor 10b is only located at the lower side of the liquid crystal display panel 40, and the configuration thereof is the same as that of the first reserve capacitor 10a, and thus detailed description thereof is omitted.
  • the total capacity of the spare capacitors 10a and 10b provided in one spare wire 3 is calculated as one source as described later. It is preferable that the parasitic capacitance as a load on line 2 is about the same as or slightly smaller than the total capacitance.
  • the counter substrate has a multilayer laminated structure in which a color filter layer, an overcoat layer, a common electrode 13 and an alignment film are sequentially laminated on a glass substrate.
  • the color filter layer is provided with a colored layer of one color of red, green, and blue corresponding to each pixel, and a black matrix is provided as a light shielding film between the colored layers. .
  • the liquid crystal layer 12 is also composed of nematic liquid crystal material having electro-optical properties! RU
  • a signal voltage corresponding to the gate signal from the output amplifier 8 in the gate driver 9 passes through the gate line 1 and the gate electrode la.
  • the TFT 11 is turned on by being applied to the TFT 11, and at the same time, a signal voltage corresponding to the source signal (video signal) from the output amplifier 6 in the source driver 7 is supplied to the source line 2, the source electrode 2a, and the drain electrode.
  • a predetermined charge is written into the pixel electrode 18 by being applied to the pixel electrode 18 via 14.
  • a potential difference is generated between the pixel electrode 18 and the common electrode 13, and a predetermined voltage is applied to the liquid crystal capacitor formed of the liquid crystal layer 12 and the auxiliary capacitor 27.
  • an image is displayed by adjusting the transmittance of light incident from the outside by utilizing the change in the alignment state of the liquid crystal molecules according to the magnitude of the applied voltage.
  • the auxiliary capacitor 27 is provided in parallel with the liquid crystal capacitor in order to suppress the amount of fluctuation of the voltage applied to the liquid crystal capacitor formed of the liquid crystal layer 12.
  • the liquid crystal display panel of the present embodiment has a Cs on Common configuration.
  • the capacity of the auxiliary capacitor 27 depends on the thickness, dielectric constant, and area of the gate insulating film 19, and the size of a typical 15-inch XGA (1024 X RGB X 768) class liquid crystal display panel. In this case, it is about 100-200pFZmm2.
  • the liquid crystal display device 50 according to Embodiment 1 of the present invention is manufactured through an active matrix substrate manufacturing process, a counter substrate manufacturing process, a liquid crystal display panel manufacturing process, an inspection process, and a driver mounting process described below. And when a disconnection is detected in an inspection process, it manufactures through a disconnection correction process after an inspection process.
  • a metal film such as Ta or TaMo alloy is formed on the entire substrate of the glass substrate 20 by a notching method, and then photolithography (Phot 0 Engraving Process, hereinafter referred to as “PEP technology”), pattern formation is performed, and gate line 1, gate electrode la, capacitor line 15, first wiring 3a, second wiring 3b, and common electrode wiring 21a (second electrode 10d) Form.
  • PEP technology photolithography
  • an intrinsic amorphous silicon film (thickness of about 150 nm) and a phosphorus-doped n + amorphous silicon film (thickness of about 50 nm) are continuously formed on the entire substrate on the gate insulating film 19 by CVD.
  • a film is formed, and then an island pattern is formed on the gate electrode la by the PEP technique to form a semiconductor layer composed of an intrinsic amorphous silicon layer and an n + amorphous silicon layer.
  • a metal film such as Ti is formed on the entire substrate on which the semiconductor layer has been formed by sputtering, and then patterned by PEP technology. Then, the source line 2, the source electrode 2a, the drain electrode 14, and the reserve capacitor connection wiring 5 (first electrode 10c) are formed.
  • the semiconductor layer may be formed of an amorphous silicon film as described above.
  • a polysilicon film may be formed, or the amorphous silicon film and the polysilicon film may be subjected to laser annealing to improve crystallinity. Thereby, the moving speed of electrons in the semiconductor layer is increased, and the characteristics of the TFT 11 can be improved.
  • a silicon nitride film (thickness 3) is formed on the entire substrate on which the source line 2 and the like are formed by the CVD method.
  • the protective film 17 is formed.
  • a portion corresponding to the drain electrode 14 of the protective film 17 is removed by etching to form a contact hole 16.
  • a transparent conductive film (thickness of about 1000 A) made of an ITO (Indium Tin Oxide) film is formed on the entire substrate on the protective film 17 by a sputtering method, and then patterned by PEP technology. Then, the pixel electrode 18 is formed.
  • ITO Indium Tin Oxide
  • polyimide resin is printed on the entire substrate on the pixel electrode 18 with a thickness of 500 to L000A, and then baked and rubbed in one direction with a rotating cloth to form an alignment film. Form.
  • an active matrix substrate is manufactured.
  • a black matrix is formed by pattern formation using the P technique.
  • a red, green, or blue colored layer (about 2 m thick) is patterned to form one color filter layer. To do.
  • an acrylic resin is applied to the entire substrate on the color filter layer to form an overcoat layer.
  • an ITO film (about 1000 A thick) was formed on the entire substrate on the overcoat layer.
  • the common electrode 13 is formed.
  • polyimide resin is printed on the entire substrate on the common electrode 13 with a thickness of 500 to L000 A, and then baked and rubbed in one direction with a rotating cloth to be aligned. Form a film.
  • the counter substrate can be manufactured as described above.
  • the liquid crystal display panel manufacturing process will be described below.
  • one of the active matrix substrate and the counter substrate manufactured as described above is provided with a sealing material that also has thermosetting epoxy grease, etc., by screen printing, lacking the liquid crystal inlet portion. It is applied to the frame pattern, and a spherical spacer made of plastic or silica having a diameter corresponding to the thickness of the liquid crystal layer 12 is sprayed on the other substrate.
  • the active matrix substrate and the counter substrate are bonded together, and the sealing material is cured to produce an empty liquid crystal display panel.
  • the liquid crystal display panel 40 is manufactured as described above.
  • a gate test signal having a pulse voltage of +15 V with a bias voltage of 10 V, a period of 16.7 msec, and a nore width of sec is input to each gate line 1 to turn on all TFTs 11.
  • a source detection signal with a potential of ⁇ 2 V whose polarity is inverted every 16.7 msec is input to each source line 2, and ⁇ 2 V is applied to the pixel electrode 18 via the source electrode 2 a and the drain electrode 14 of each TFT 11. Write the charge corresponding to.
  • a common electrode inspection signal having a DC potential of IV is input to the common electrode 13.
  • the disconnection correction process includes a spare wiring connection process and a spare capacity connection process described below.
  • a glass substrate is formed on both the intersection Al between the source line 2a and the spare wiring 3a divided at the disconnection position X, and the intersection A2 between the source line 2b and the spare wiring 3b divided at the disconnection position X.
  • a contact hole is formed in the gate insulating film 19 at each intersection by irradiating light energy such as laser light from the 20 side.
  • the source lines 2a and 2b separated by the disconnection are connected to the spare wiring 3 (first wiring 3a and second wiring 3b), and the first wiring 3a is connected to the source line 2b ahead of the disconnection position X.
  • a signal voltage corresponding to the source signal is applied through the notch unit 4 and the second wiring 3b.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 5, and is a cross-sectional view in which the contact hole 22 is formed at the intersection C3.
  • the first spare capacitor 10a becomes operable with respect to the source line 2a that is disconnected due to disconnection. Therefore, the load force applied to the source line 2a divided by the disconnection is equal to the load applied to the normal source line 2, and the signal waveform applied to the source line 2a is adjusted.
  • the load applied to the source line 2 below the disconnection position (XI) is considerably smaller than the load applied to the normal source line 2, so the second wiring 3b and the first wiring constituting the spare wiring 2 Connect the first electrode 10c of the reserve capacitor 10b so that the load applied to the source line 2 below the disconnection position (XI) is approximately the same as the load applied to the normal source line 2.
  • FIG. 9 shows that the liquid crystal display panel 40 is equally divided into six regions A to F along the source line 2. It is a schematic diagram.
  • the number of the liquid crystal display panels 40 to be equally divided is preferably equal to the number of the first reserve capacity 10a (second reserve capacity 10b) plus one. In this embodiment, since there are five first reserve capacities 1 Oa, they are divided into six equal parts.
  • connection procedure of the first reserve capacitor 10a and the second reserve capacitor 10b according to a specific disconnection position will be described below.
  • the size of the capacitance per one of the first reserve capacitance 10a (second reserve capacitance 10b) Is set to about 20 pF, no matter where the source line 2 is disconnected, by executing the connection procedure (a) to (f) described above, Applying load force Equal to the load applied to a normal source line 2 that is not disconnected, the signal waveform corresponding to the source signal applied to the source line 2 via the spare wiring 3 is adjusted. For this reason, the adjusted signal waveform is applied to the disconnected source line via the spare wiring (first wiring 3a and second wiring 3b), the noffer section 4 and the spare capacitance (10a and 10b).
  • the display quality equivalent to that of the normal source line 2 is maintained without overshooting or undershooting the waveform in the spare wiring.
  • the disconnection of the source line 2 is corrected and the disconnection is corrected.
  • a line-corrected liquid crystal display panel 40 is produced.
  • the gate dryer 9 and the source driver 7 are mounted on the liquid crystal display panel 40 that has become non-defective in the inspection process and the liquid crystal display panel 40 that has become non-defective after the disconnection correction process.
  • the liquid crystal display device 50 of the present invention is manufactured as described above.
  • FIG. 10 is a plan view showing in more detail the region where the reserve capacitance is arranged in the liquid crystal display device 50 of the present embodiment. More specifically, the configuration of the present invention is applied to a 15 inch 0/8 (1024 1 ⁇ 8 76 8) liquid crystal display panel, and is a plan view showing between source drivers 7.
  • the number of output amplifiers 6 in one source driver 7, that is, the number of outputs of the source driver 7 is 384, and eight source drivers 7 are mounted.
  • the distance between the source drivers 7 is about 10 mm and the wiring area is about 3 mm as shown in FIG.
  • the size of the capacitance formed by sandwiching an insulated film (gate insulating film) between is about 100 ⁇ 200 pFZmm 2. Assuming that the magnitude of the capacitance and 125PFZmm 2, or if there is an area of about 0. 4 mm angle to form a capacity of 20 pF.
  • the spare capacitance connection wiring 5 formed in the same layer as the source line 2 and the first electrode 10 c of the spare capacitance are 5 One is arranged.
  • the size of the first electrode 10c is about 0.4 mm square as described above.
  • the overlapping portion of the common electrode wiring 21a formed in the same layer as the gate line 1 with the first electrode 10c is the second electrode 10d.
  • Each source line 2 is formed in the same layer as the gate line 1 in the terminal region through a contact hole (not shown) formed in the gate insulating film 19 near the boundary between the wiring region and the terminal region. It is connected to each formed source line terminal portion 2b.
  • the liquid crystal display device 50 of the present invention since it can be connected to the spare wiring (3a and 3b) force source line 2, when one of the plurality of source lines 2 is disconnected, By connecting the disconnected source lines (2a and 2b) to the spare wiring (3a and 3b), the disconnection force and the source line 2b are also connected to the previous source line 2b via the spare wiring (3a and 3b). According to source signal A signal voltage is applied. Furthermore, since the first electrode 10c constituting the spare capacity (10a and 10b) is configured to be connectable to the spare wiring (3a and 3b), the first electrode 10c of the spare capacity (1 Oa and 10b) and the spare electrode By connecting the wiring (3a and 3b), the spare capacity can be used for the spare wiring and the display wiring. At this time, if necessary, connect the first electrode 10c of the spare capacity (10a and 10b) and the spare wiring (3a and 3b) in a predetermined number, so that the number of functional spare capacity (10a and 10b) can be increased. Can be adjusted.
  • the process of connecting the source lines (2a and 2b) separated by the disconnection and the spare wirings (3a and 3b) can be performed in the same process or in a continuous process. Will be more reliable.
  • the display divided by the disconnection is displayed. T ⁇ ⁇
  • the connection of the spare wiring and the spare wiring t ⁇ ⁇ The record of the spare wiring connection process becomes unknown at the stage of making the spare capacity functional (preliminary capacity connection process). There is a risk of uncertainty.
  • Embodiment 2 of the Invention may be configured as follows for the first embodiment.
  • the same parts as those in FIGS. 1 to 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first electrodes 10c of the plurality of first reserve capacitors 10a and the second reserve capacitors 10b can be connected to the first wires 3a and the second wires 3b constituting the reserve wires, respectively.
  • the first electrode 10c of the plurality of first reserve capacitors 10a and second reserve capacitors 10b is not connected to the reserve wiring in advance.
  • a first electrode 10c of a plurality of first reserve capacitors 10a and second reserve capacitors 10b is connected in advance to the first wire 3a and the second wire 3b. Since the remaining configuration is substantially the same as that of the first embodiment, detailed description thereof is omitted.
  • FIG. 11 is a plan view showing the configuration of the first wiring 3a and the first reserve capacitor 10a, and corresponds to FIG. 5 described in the first embodiment.
  • FIG. 12 is a cross-sectional view along the line XII-XII in FIG.
  • liquid crystal display device for example, five first reserve capacitors 10a are provided for the first wiring 3a as shown in FIG.
  • the first reserve capacitor 10a is sandwiched between the first electrode 10e and the second electrode 10f provided so as to be arranged to face each other, and the first electrode 10e and the second electrode 10f.
  • Gate insulating film 19 first insulating film.
  • the first electrode 10e is an extended portion of the first wiring 3a constituting the spare wiring.
  • the second electrode 10f is an extended portion of the common electrode wiring 21c provided so as to overlap the first electrode 10e via the gate insulating film 19. According to this, since the first electrode 10e of the first reserve capacitor 10a and the first wiring 3a are integrated, the first electrode 10e of the first reserve capacitor 10a is used as the first wire 3a constituting the reserve wiring in advance. Connected to
  • the first wiring 3a is branched into five, each branched end is a first electrode 10e, and the branched group portions are cut portions B1 to B5, respectively.
  • the common electrode wiring 21c is a portion connected to the common electrode 13 of the counter substrate through the common electrode transition point 21b.
  • the second reserve capacitor 10b is located only at the lower side of the liquid crystal display panel 40, and Is the same as that of the first reserve capacity 10a, and detailed description thereof is omitted.
  • the liquid crystal display device 50 according to Embodiment 2 of the present invention is manufactured through an active matrix substrate manufacturing process, a counter substrate manufacturing process, a liquid crystal display panel manufacturing process, an inspection process, and a driver mounting process described below. And when a disconnection is detected in an inspection process, it manufactures through a disconnection correction process after an inspection process.
  • a metal film such as Ta or TaMo alloy is formed on the entire substrate on the glass substrate 20 by a notching method, and then patterned by the PEP technique. Then, the gate line 1, the gate electrode la, the capacitor line 15, the first wiring 3a (second electrode 10e) and the second wiring 3b (first electrode 10e) are formed.
  • a silicon nitride film (having a thickness of about 400 nm) or the like is formed by CVD on the entire substrate on which the gate line 1 and the like are formed, thereby forming a gate insulating film 19.
  • an intrinsic amorphous silicon film (thickness of about 150 nm) and a phosphorus-doped n + amorphous silicon film (thickness of about 50 nm) are continuously formed on the entire substrate on the gate insulating film 19 by a CVD method.
  • a film is formed, and then an island pattern is formed on the gate electrode la by the PEP technique to form a semiconductor layer composed of an intrinsic amorphous silicon layer and an n + amorphous silicon layer.
  • a metal film such as Ti is formed on the entire substrate on which the semiconductor layer has been formed by sputtering, and then patterned by PEP technology. Then, the source line 2, the source electrode 2a, the drain electrode 14, and the common electrode wiring 21c (second electrode 10f) are formed.
  • the semiconductor layer may be formed of an amorphous silicon film as described above, a polysilicon film may be formed, or an amorphous silicon film and a polysilicon film may be formed.
  • the crystallinity may be improved by laser annealing. Thereby, the moving speed of electrons in the semiconductor layer is increased, and the characteristics of the TFT 11 can be improved.
  • a silicon nitride film (thickness 3) is formed on the entire substrate on which the source line 2 and the like are formed by the CVD method.
  • the protective film 17 is formed.
  • the contact hole 16 is formed by etching away the portion corresponding to the drain electrode 14 of the protective film 17.
  • a transparent conductive film (thickness of about 1000 A) made of ITO (Indium Tin Oxide) film is formed on the entire substrate on the protective film 17 by sputtering, and then patterned by PEP technology. Then, the pixel electrode 18 is formed.
  • ITO Indium Tin Oxide
  • polyimide resin is printed on the entire substrate on the pixel electrode 18 with a thickness of 500-: L000A, then baked and rubbed in one direction with a rotating cloth, and the alignment film Form.
  • an active matrix substrate is manufactured.
  • the disconnection correcting process includes a preliminary wiring connecting process and a cutting process described below.
  • the spare wiring connection step is substantially the same as that of the first embodiment, and thus the description thereof is omitted.
  • the source line 2 is disconnected at the same position as the disconnection position in the first embodiment, it is close to the disconnection position X force source driver 7, and therefore the source line 2b below the disconnection position X is applied. Since the load is disconnected, it is not much different from the load applied to the normal source line 2. Therefore, the connection between the second wiring 3b constituting the spare wiring and the first electrode 10e of the second spare capacitance 10b is not performed. Cut off I refuse.
  • the load applied to the source line 2a above the disconnection position X is a normal source line.
  • At least one of the cut portions B1 to B5 shown in FIG. 11 is irradiated with light energy 23 such as laser light as shown in FIG. Destroy part 1st wiring 3a.
  • light energy 23 such as laser light as shown in FIG. Destroy part 1st wiring 3a.
  • the first spare capacity 10a and the second spare capacity 10b that are made to function with respect to the first wiring 3a and the second wiring 3b constituting the spare wiring 3, respectively, are used in the same manner as in the first embodiment. 9 will be used for explanation.
  • the first electrodes 10c of the backup capacitors 10a and 10b are configured to be connectable to the backup wiring 3 (the first wiring 3a and the second wiring 3b).
  • the backup wiring 3 the first wiring 3a and the second wiring 3b.
  • the disconnection correcting step can be simplified, and damage to the wiring pattern in the vicinity of the portion where the light energy is irradiated can be suppressed.
  • the liquid crystal display device 50 of the present invention since it can be connected to the spare wiring (3a and 3b) force source line 2, when any of the plurality of source lines 2 is disconnected.
  • the disconnection force and the source line 2b are also connected to the previous source line 2b via the spare wiring (3a and 3b).
  • a signal voltage corresponding to the source signal is applied.
  • the first electrode 10c constituting the spare capacity (10a and 10b) is connected in advance to the spare wiring (3a and 3b), the disconnected source lines (2a and 2b) are connected to the spare wiring.
  • the spare capacity (10a and 10b) becomes operable with respect to the disconnected source lines (2a and 2b).
  • a predetermined number of connections between the first electrode 10c of the spare capacitors (10a and 10b) and the spare wires (3a and 3b) are disconnected as necessary.
  • the number of functional reserve capacities (10a and 10b) can be adjusted.
  • the load applied to the source lines (2a and 2b) separated by the disconnection is adjusted, and the load corresponding to the source signal applied to the source lines (2a and 2b) via the spare wiring (3a and 3b) is adjusted.
  • the signal waveform can be adjusted. Accordingly, it is possible to correct the disconnection of the source line 2 in which the deterioration of display quality related to the disconnection position of the source line 2 is suppressed.
  • the present invention may be configured as follows for the first and second embodiments.
  • the reserve capacitors 10a and 10b are provided on the liquid crystal display panel 40 (active matrix substrate). However, in this embodiment, the reserve capacitors 10 are provided on the source substrate. The plate 25 is provided.
  • FIG. 13 is a plan view showing a liquid crystal display device 50a according to Embodiment 3 of the present invention.
  • the liquid crystal display device 50a includes a liquid crystal display panel 40, a gate driver 9 provided on the left side of the liquid crystal display panel 40, a gate substrate 24 provided on the left side of the gate driver 9, and its liquid crystal display.
  • Source driver 7 provided on the upper side of panel 40, source substrate 25 provided on the upper side of source driver 7, and FPC 26 provided between gate substrate 2 and source substrate 25! / Speak.
  • the gate substrate 24 is an element substrate for inputting a signal to the gate driver 9
  • the source substrate 25 is an element substrate for inputting a signal to the source driver 7.
  • the FPC 26 is a flexible printed circuit in which various wiring layers are sandwiched between polyimide films.
  • the spare wiring 3 (the second wiring 3b in the first and second embodiments) is displayed on the liquid crystal display via the source substrate 25, the FPC 26, the gate substrate 24, and the gate driver 9 from the output side of the notch section. It extends to the lower part of the panel 40.
  • a spare capacity 10 is provided in the spare wiring 3 in the source substrate 25. Therefore, the signal waveform corresponding to the source signal applied to the source line 2 through the auxiliary wiring 3 is adjusted by making the auxiliary capacitor 10 operable in accordance with the disconnection position in the source line 2. It is possible to suppress the deterioration of display quality.
  • the reserve capacitor 10 is provided on the source substrate 25.
  • the reserve capacitor 10 may be provided on the gate substrate 24.
  • the gate substrate 24 and the source substrate may be provided. It is provided on both sides of 25.
  • the present invention may be configured as follows for the first and second embodiments.
  • the reserve capacitors 10a and 10b are provided on the liquid crystal display panel 40 (active matrix substrate). However, in this embodiment, the reserve capacitor 10 is provided on the source substrate 25. It has been.
  • FIG. 14 is a plan view showing a liquid crystal display device 50b according to Embodiment 4 of the present invention.
  • the liquid crystal display device 50b is provided on the left side of the liquid crystal display panel 40 and the liquid crystal display panel 40.
  • the gate driver 9 is provided, a source driver 7 provided on the upper side of the liquid crystal display panel 40, and a source substrate 25a provided on the upper side of the source driver 7.
  • the source substrate 25a is an element substrate for inputting signals to the gate driver 9 and the source driver 7.
  • the spare wiring 3 (second wiring 3b in the first and second embodiments) passes through the source substrate 25a and each gate driver 9 from the output side of the notch section, and is on the lower side of the liquid crystal display panel 40. It extends to.
  • a spare capacitor 10 is provided in the spare wiring 3 in the source substrate 25a. Therefore, by appropriately operating the reserve capacitor 10 according to the disconnection position in the source line 2, the signal waveform corresponding to the source signal applied to the source line 2 via the reserve line 3 can be adjusted, and the display Degradation can be suppressed.
  • the spare wiring (3a and 3b) can be connected to the source line 2, and thus any one of the plurality of source lines 2 can be connected. Is disconnected, by connecting the disconnected source lines (2a and 2b) to the spare wiring (3a and 3b), the spare wiring (3a and 2b) is connected to the source line 2b ahead of the disconnection position. A signal voltage corresponding to the source signal is applied via 3b). Since the spare wiring (3a and 3b) is provided with a spare capacity (10a and 10b) for adjusting the signal waveform, it is necessary to make the spare capacity functional in accordance with the disconnection position. As a result, the signal waveform corresponding to the source signal applied to the display wiring via the preliminary wiring (3a and 3b) is adjusted, and deterioration of display quality can be suppressed.
  • the substrate (source substrate) provided with the reserve capacitor 10 is a substrate different from the active matrix substrate, and therefore, the reserve capacitor connection step, It is difficult to perform the preliminary wiring connection step simultaneously or continuously. This is because it is difficult to detect where on the source line 2 the disconnection position is once the source line 2 is corrected. That is, when the disconnection is corrected for the source line 2, it is only necessary to connect how much spare capacity (10a and 10b) to the spare wiring (3a and 3b) of which liquid crystal display panel 40 because the disconnection is corrected. It becomes difficult to identify the power of.
  • Embodiment 1 described above a liquid crystal display device having a type of reserve capacitance in which the first electrode of the reserve capacitance is not connected in advance to the reserve wiring will be described.
  • the liquid crystal display device having the type of spare capacity in which the first electrode of the reserve capacity is connected in advance to the spare wiring has been described, the liquid crystal display device of the present invention can be used even if both types of spare capacity are mixed. Good.
  • the present invention can correct the disconnection of the source line that suppresses the deterioration of display quality related to the disconnection position of the source line, the matrix type liquid crystal display device used for TV, monitor, etc. Useful for.

Abstract

 ソース信号に応じた信号電圧が印加される複数のソース線(2)と、それら複数のソース線(2)の少なくとも1つの両端部に対して、接続可能に構成された断線修正用の第1配線(3a)及び第2配線(3b)と、第1配線(3a)及び第2配線(3b)との間に介設され、第1配線(3a)及び第2配線(3b)におけるインピーダンス変換のためのバッファ部(4)とを備えた液晶表示装置であって、ソース線(2a)及び(2b)に第1配線(3a)及び第2配線(3b)が接続された状態で、ソース線(2a)及び(2b)に印加されるソース信号に応じた信号波形を調整するための予備容量(10a)及び(10b)を備えている。

Description

明 細 書
表示装置、液晶表示装置、及び表示装置の製造方法
技術分野
[0001] 本発明は、表示装置、液晶表示装置及び表示装置の製造方法に関し、特に、マト リクス型の液晶表示装置の断線修正方法に関するものである。
背景技術
[0002] マトリクス型の表示装置は、画像の最小単位である画素がマトリクス状に配列したも のである。特に、画素毎にスイッチング素子を有するアクティブマトリクス型の液晶表 示装置は、精細な画像を表示することができ、広く利用されている。
[0003] このアクティブマトリクス型の液晶表示装置では、上記各画素に表示用信号を供給 するために、相互に平行に延びる複数のゲート線と、それら複数のゲート線と直交す る複数のソース線とが設けられている。そのため、アクティブマトリクス型の液晶表示 装置において、ゲート線やソース線の表示用配線に断線が発生すると、駆動回路か らの表示用信号がその断線位置力 先の表示用配線に供給されないので、表示品 位が著しく悪ィ匕するという問題がある。
[0004] この問題を解決するために、例えば、特許文献 1には、ゲート線及びソース線のうち の少なくとも一方に対して接続可能に予備配線を備え、その予備配線に断線が発生 したゲート線及びソース線のうちの少なくとも一方を接続することで、断線不良が生じ ても修復可能なマトリクス型表示装置が提案されて ヽる。
[0005] さらに、特許文献 2では、上記のような構成の予備配線にバッファ回路を介在させる ことにより、予備配線の引き回しによる電圧降下を補償して、表示品位を向上させた マトリクス型表示装置が提案されて ヽる。
[0006] また、特許文献 3及び 4には、上記バッファ回路に関する改良技術が開示されてい る。
[0007] 図 15は、特許文献 1及び 2に記載された内容に基づいて、ソース線 102の断線を 修正可能とした液晶表示装置 150の等価回路図である。
[0008] この液晶表示装置 150は、液晶表示パネル 140と、その液晶表示パネル 140の左 辺に設けられたゲートドライバ 109と、その液晶表示パネル 140の上辺に設けられた ソースドライバ 107とを有している。液晶表示パネル 140は、互いに対向するように配 置されたアクティブマトリクス基板及び対向基板と、それら両基板に挟持された液晶 層とを備えている。上記アクティブマトリクス基板では、複数のゲート線 101が図中の 横方向に、複数のソース線 102が図中の縦方向に、それぞれ延びるように設けられ ている。そして、ゲート線 101とソース線 102との各交差部分には、スイッチング素子 である薄膜トランジスタ(以下、 TFTと省略する) 111が設けられている。また、ソース ドライバ 107は、各ソース線 102に接続された出力アンプ 106と、バッファ回路 104と を有している。さらに、液晶表示パネル 140の上辺部分において、各ソース線 102に 直交するように延び、ソースドライバ 107内のノッファ回路 104の入力側に接続され た第 1の予備配線 103aと、バッファ回路 104の出力側から、液晶表示パネル 140の 上辺、右辺及び下辺を経由して、液晶表示パネル 140の下辺部分において、各ソー ス線 102に直交するように延びる第 2の予備配線 103bとが設けられて 、る。
[0009] 図 16は、ソース線 102に断線が発生したため、ソース線 102 (102a及び 102b)と 予備配線 103 (第 1予備配線 103a及び第 2予備配線 103b)とを接続して欠陥が修 正された液晶表示装置 150を示す等価回路図である。
[0010] 図 16では、ソース線 102が断線位置 XIで断線して、断線位置 XIよりも上側のソー ス線 102aと、断線位置 XIよりも下側のソース線 102bとに分断されている。そして、ソ ース線 102aと第 1予備配線 103aとが交差部分 A1で接続されていると共に、ソース 線 102bと第 2予備配線 103bとが交差部分 A2で接続されている。この接続には、図 17に示すように、ガラス基板 120側力 各交差部分 A1及び A2にレーザー光等の光 エネルギー 123を照射することにより、絶縁膜 119にコンタクトホールを形成して、ソ ース線 102と予備配線 103とを導通させればよい。これにより、断線位置 XIよりも下 側にあるソース線 102bには、ソースドライノ 107内の出力アンプ 106からの表示のた めの信号が、ソース線 102aの上側の一部分、及び接続箇所 (交差部分) Al、第 1予 備配線 103a、バッファ回路 104、第 2予備配線 103b、及び接続箇所 (交差部分) A 2を介して供給される。これによつて、表示配線に断線が発生しても、駆動回路力ゝらの 表示用信号が断線位置カゝら先の表示用配線にも供給されるので、断線が修正される 。ここで、ノッファ回路 104は、第 1予備配線 103a及び第 2予備配線 103bからなる 予備配線 103におけるインピーダンス変換のために、表示用信号を増幅するアンプ として機能するものである。
特許文献 1:特開平 3 - 23425号公報
特許文献 2:特開平 8— 171081号公報
特許文献 3:特開平 11― 52928号公報
特許文献 4:特開 2002— 221947号公報
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、上記のような欠陥修正方法では断線していない正常なソース線 102 と、断線により分断されたソース線 102a及び 102bとの間において、負荷となる容量 の大きさの違 、が考慮されて 、な 、。
[0012] 以下に、上記容量の大きさの違いについて、詳細に説明する。
[0013] 図 18は、画素 1つ当たりのソース線 102にかかる容量を示す等価回路図である。
[0014] 図 18に示すように、ソース線 102にかかる容量は、液晶容量 Clc、補助容量 Ccs、 ゲート線 101との交差部分に発生する寄生容量 Csg、ソース線 102に対して右側に ある画素の TFT111のドレイン電極との間に発生する寄生容量 CsdA、及びソース 線 102に対して左側にある画素の TFTl 11のドレイン電極との間に発生する寄生容 量 CsdBなどである。
[0015] ここで、上記液晶容量 Clc及び補助容量 Ccsは、所定のゲート線 101が選択され、 TFT111が ON状態であるときにのみ接続されて負荷となる。ここで、通常のァクティ ブマトリクス型の液晶表示装置では、常に 1本のゲート線 101し力選択されないので、 上記液晶容量 Clc及び補助容量 Ccsは、 1本のソース線 102に対して大きな負荷とな らない。一方、残りの寄生容量 Csg、 CsdA及び CsdBは、ゲート線 101の選択の有 無にかかわらず常に存在するので、 1本のソース線 102に対して大きな負荷となる。 すなわち、 1本のソース線 102には、寄生容量 Csg、 CsdA及び CsdB力 ゲート線 10 1の本数分だけ、例えば、解像度が XGAの液晶表示装置では、 768本分だけかかる ことになる。この寄生容量の大きさは、液晶表示装置の表示品位に対して無視できる ものではないので、ソースドライバ 107の出力アンプ 106及びバッファ回路 104は、こ の負荷となる寄生容量の大きさに対応できるだけの能力を持たせておく必要がある。
[0016] ところが、実際の液晶表示装置では、ソース線 102の断線力 どこで発生するか分 からない。
[0017] 例えば、図 16に示すように、ソース線 102がソースドライバ 107から離れた断線位 置 XIで断線して、上述のように、断線位置 XIよりも上側のソース線 102aと、断線位 置 XIよりも下側のソース線 102bとに分断された場合、ソース線 102aで負荷となる寄 生容量 Csg、 CsdA及び CsdBの個数は、正常なソース線 102で負荷となる寄生容量 Csg、 CsdA及び CsdBの個数と比べて大差がない。そのため、断線位置 XIよりも上 側のソース線 102aに力かる負荷は、正常なソース線 102にかかる負荷と大差がない ことになる。一方、ソース線 102bで負荷となる寄生容量 Csg、 CsdA及び CsdBの個 数は、正常なソース線 102で負荷となる寄生容量 Csg、 CsdA及び CsdBの個数と比 ベてかなり少なくなる。そのため、断線位置 XIよりも下側のソース線 102bに力かる負 荷は、正常なソース線 102にかかる負荷と比較して極めて小さくなる。
[0018] また、上記と同様に考えると、図 19に示すように、ソース線 102がソースドライバ 10 7に極めて近い断線位置 X2で断線して、断線位置 X2よりも上側のソース線 102cと、 断線位置 X2よりも下側のソース線 102dとに分断された場合には、ソース線 102cに かかる負荷は、正常なソース線 102にかかる負荷と比べて極めて小さくなる。一方、ソ ース線 102dに力かる負荷は、正常なソース線 102にかかる負荷と比べて大差がな ヽ ことになる。
[0019] このように、断線して分断されたソース線では、その断線位置によって負荷が大小し てしまう、すなわち、負荷となる寄生容量の配分が変わってしまう。
[0020] 図 20は、正常なソース線 102での出力波形 W1と、ソース線 102の断線のため、そ の断線したソース線 102が接続された予備配線 103での出力波形 W2とを示したもの である。
[0021] ソースドライバ 107では、上述したように、正常なソース線 102を正常に駆動できる ように、出力アンプ 106及びバッファ回路 104の負荷を設定している力 断線によつ てソース線 102が分断され、その分断されたソース線 (例えば、上記ソース線 102b) において負荷となる寄生容量が極端に少なくなると、図 20の出力波形 W2のように波 形がオーバーシュート又はアンダーシュートしてしまう。
[0022] このオーバーシュート、アンダーシュートの程度が大き 、と、液晶層に対して、正常 なソース線 102よりも過剰な電圧がかかり、例えば、ノーマリーホワイトの液晶表示装 置の場合には、その断線の発生したソース線 102に沿って画素が暗くなつて黒線の ように見え、また、ノーマリーブラックの液晶表示装置の場合には、その断線の発生し たソース線 102に沿って画素が明るくなつて輝線のように見え、表示品位が悪化して しまうという問題があった。
[0023] また、このオーバーシュートやアンダーシュートは、液晶表示装置の解像度が低ぐ 各画素での充電時間(1水平期間)が長ければ表示に影響しにくいが、高解像度 (U XGA等)の場合には、充電時間が短くなり、オーバーシュートやアンダーシュートが 無視できなくなる。さらに高解像度になると、 1本のソース線 102において負荷となる 寄生容量 Csg、 CsdA及び CsdBの数も増えるため、正常なソース線 102にかかる負 荷と断線により分断されたソース線 (例えば、上記ソース線 102b)にかかる負荷との 差も大きくなる。
[0024] また、液晶表示装置が大画面化した場合には、寄生容量 Csg、 CsdA及び CsdBを 構成する面積が大きくなるので、上記と同様に、正常なソース線 102にかかる負荷と 断線により分断されたソース線 102にかかる負荷との差もいつそう大きくなる。
[0025] このように、近年の液晶表示装置の高解像度化及び大画面化に伴 、、正常なソー ス線に力かる負荷と断線により分断されたソース線に力かる負荷との差は益々大きく なり、オーバーシュートやアンダーシュートの増大によって表示品位が悪ィ匕する傾向 にある。
[0026] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、表示用 配線が断線した際に、その断線位置に関係なぐ表示品位の低下が抑制される表示 用配線の断線修正を可能〖こすることにある。
課題を解決するための手段
[0027] 本発明は、上記目的を達成するために、予備配線に接続された表示用配線に印加 される信号波形を調整するための予備容量を備えるようにしたものである。 [0028] 具体的に、本発明に係る表示装置は、表示のための信号電圧が印加される複数の 表示用配線と、上記複数の表示用配線の少なくとも 1つの両端側に対して接続可能 に構成された予備配線と、上記予備配線に介設され、上記予備配線におけるインピ 一ダンス変換のためのバッファ部とを備えた表示装置であって、上記表示用配線に 上記予備配線が接続された状態で、上記表示用配線に印加される信号波形を調整 するための予備容量を備えていることを特徴とする。
[0029] 上記の構成によれば、予備配線が複数の表示用配線の少なくとも 1つの両端側に 対して接続可能なので、複数の表示用配線の何れかが断線した際には、その断線し た表示用配線と予備配線とを接続することにより、断線位置カゝら先の表示用配線にも 予備配線を介して、表示のための信号電圧が印加されることになる。そして、その予 備配線には、信号波形を調整するため予備容量が設けられているので、断線位置に 合わせて適宜、予備容量を機能させることにより、予備配線を介して表示用配線に印 加される表示のための信号波形が調整され、表示品位の低下が抑制される。
[0030] 具体的には、予備配線に対して予備容量を機能させることにより、断線により分断さ れた各表示用配線にかかる負荷が、断線して 、な 、正常な表示用配線にかかる負 荷と同等になって、予備配線を介して表示用配線に印加される表示のための信号波 形が調整される。そのため、断線した表示用配線では、予備配線、ノ ッファ部及び予 備容量を介して、上記調整された信号波形が印加されるので、正常な表示用配線と 同等の表示品位が維持される。これにより、表示用配線が断線した際に、その断線 位置に関係なぐ表示品位の低下が抑制される表示用配線の断線修正が可能にな る。
[0031] 上記予備容量は、互いに対向して配置された第 1電極及び第 2電極と、該第 1電極 及び第 2電極の間に挟持された第 1絶縁膜とにより構成されていてもよい。
[0032] 上記の構成によれば、第 1電極と第 2電極との間の第 1絶縁膜で電荷を保持するこ とが可能になるので、この第 1絶縁膜から構成された予備容量によって、断線により 分断された表示用配線に力かる負荷、つまり、分断された表示用配線に印加される 表示のための信号波形が調整される。
[0033] 上記第 1電極は、上記予備配線に接続されていてもよい。 [0034] 上記の構成によれば、予備容量を構成する第 1電極が、予め、予備配線に接続さ れているので、断線した表示用配線と予備配線とを接続することにより、断線した表 示用配線に対して、予備容量が機能可能な状態になる。そして、予備容量が 1つの みであるときには、その 1つの予備容量によって、分断した表示用配線に印加される 表示のための信号波形が調整される。また、予備容量が複数であるときには、必要に 応じて、予備容量の第 1電極と予備配線との接続を所定数だけ切断することにより、 機能可能な予備容量の個数が調整される。これにより、断線により分断された表示用 配線にカゝかる負荷が調整され、予備配線を介して表示用配線に印加される表示のた めの信号波形が調整される。
[0035] 上記第 1電極は、上記予備配線に接続可能に構成されていてもよい。
[0036] 上記の構成によれば、予備容量を構成する第 1電極が、予備配線に接続可能に構 成されているので、断線した表示用配線と予備配線とを接続すると共に、予備容量の 第 1電極と予備配線とを接続することにより、予備配線及び表示用配線に対して、予 備容量が機能可能な状態になる。また、必要に応じて、予備容量の第 1電極と予備 配線とを所定数だけ接続することにより、機能可能な予備容量の個数が調整される。 これにより、断線により分断された表示用配線に力かる負荷が調整され、予備配線を 介して表示用配線に印加される表示のための信号波形が調整される。
[0037] 上記予備容量を複数備え、上記複数の予備容量のうちの少なくとも 1つは、上記第 1電極が、上記予備配線に接続されていると共に、上記複数の予備容量のうちの他 の予備容量の第 1電極は、上記予備配線に接続可能に構成されていてもよい。
[0038] 上記の構成によれば、例えば、予備配線のノ ッファ部の入力側及び出力側にそれ ぞれ 1つずつ予備容量が設けらている場合、一方の予備容量の第 1電極が予備配 線に対して予め接続されると共に、他方の予備容量の第 1電極が予備配線に対して 接続可能に構成される。このように、予備容量の第 1電極と予備配線との接続状態の ノ リエーシヨンを増やすことが可能になる。
[0039] 上記予備配線は、上記表示用配線に対して第 2絶縁膜を介して設けられていると 共に、上記第 2絶縁膜にそれぞれコンタクトホールを形成することにより、上記表示用 配線に接続可能に構成されて 、てもよ 、。 [0040] 上記の構成によれば、複数の表示用配線の何れかが断線した際には、例えば、予 備配線と表示用配線との各交差部分に、光エネルギーを照射することにより、その部 分の第 2絶縁膜が破壊されて、予備配線と表示用配線とを導通させるコンタクトホー ルが形成される。そのため、第 2絶縁膜にコンタクトホールを形成することにより、断線 により分断された表示用配線には、予備配線を介して、表示のための信号電圧が印 加される。
[0041] 上記第 1電極は、上記予備配線に対して第 3絶縁膜を介して設けられていると共に 、上記第 3絶縁膜にコンタクトホールを形成することにより、上記予備配線に接続可 能に構成されていてもよい。
[0042] 上記の構成によれば、予備容量の第 1電極と予備配線との交差部分に、例えば、 光エネルギーを照射することにより、その部分の第 3絶縁膜が破壊されて、第 1電極と 予備配線とを導通させるコンタクトホールが形成される。そのため、第 3絶縁膜にコン タクトホールを形成することにより、予備配線に対して予備容量を機能させることが可 會 になる。
[0043] 上記予備配線は、上記バッファ部の入力側である第 1配線と、上記バッファ部の出 力側である第 2配線とにより構成され、上記予備容量は、上記第 1配線に設けられて いてもよい。
[0044] 上記の構成によれば、予備容量が第 1配線に設けられているので、表示用配線が 第 1配線側で断線して、その断線により分断された第 1配線側の表示用配線にかか る負荷が小さくなつたとしても、第 1配線に設けられた予備容量の第 1電極と第 1配線 とを接続することによって、その小さくなつた負荷を大きくすることが可能になる。これ により、断線により分断された表示用配線に力かる負荷が、断線していない正常な表 示用配線に力かる負荷と同等に調整されて、予備配線を介して表示用配線に印加さ れる表示のための信号波形が調整される。
[0045] 上記予備配線は、上記バッファ部の入力側である第 1配線と、上記バッファ部の出 力側である第 2配線とにより構成され、上記予備容量は、上記第 2配線に設けられて いてもよい。
[0046] 上記の構成によれば、予備容量が第 2配線に設けられているので、表示用配線が 第 2配線側で断線して、その断線により分断された第 2配線側の表示用配線にかか る負荷が小さくなつたとしても、第 2配線に設けられた予備容量の第 1電極と第 2配線 とを接続することによって、その小さくなつた負荷を大きくすることが可能になる。これ により、断線により分断された表示用配線に力かる負荷が、断線していない正常な表 示用配線に力かる負荷と同等に調整されて、予備配線を介して表示用配線に印加さ れる表示のための信号波形が調整される。
[0047] 上記予備配線は、上記バッファ部の入力側である第 1配線と、上記バッファ部の出 力側である第 2配線とにより構成され、上記予備容量は、上記第 1配線及び上記第 2 配線の双方に設けられて 、てもよ 、。
[0048] 上記の構成によれば、予備容量が第 1配線及び第 2配線の双方に設けられている ので、表示用配線が第 1配線側で断線して、その断線により分断された第 1配線側の 表示用配線に力かる負荷が小さくなつたとしても、第 1配線に設けられた予備容量の 第 1電極と第 1配線とを接続することによって、その小さくなつた負荷を大きくすること が可能になる。また、表示用配線が第 2配線側で断線して、その断線により分断され た第 2配線側の表示用配線に力かる負荷力 S小さくなつたとしても、第 2配線に設けら れた予備容量の第 1電極と第 2配線とを接続することによって、その小さくなつた負荷 を大きくすることが可能になる。これにより、断線により分断された表示用配線にかか る負荷が、断線していない正常な表示用配線に力かる負荷に対して、よりいつそう同 等に調整されて、予備配線を介して表示用配線に印加される表示のための信号波 形が調整される。
[0049] 上記表示用配線は、ソース信号が入力されるソース線であってもよい。
[0050] 例えば、液晶表示装置にぉ 、て、ソース線は、画像の最小単位である画素に映像 信号等のソース信号を供給するものであるので、そのソース線に印加されるソース信 号の電圧のばらつきは、液晶表示装置の表示品位を低下させる恐れがある。しかし がら、本発明では、断線位置に関係なぐ表示品位の低下が抑制される表示用配線 の断線修正が可能であるので、上記のように、ソース線が断線したとしても、その断線 位置に関係なぐ表示品位の低下が抑制される断線修正が可能である。
[0051] 上記複数の表示用配線は、基板に形成され、上記予備容量は、上記基板に設けら れていてもよい。
[0052] 上記の構成によれば、予備容量と表示用配線とが同一の基板に設けられているの で、断線により分断された表示用配線と予備配線とを接続する工程と、予備配線に 対して予備容量を機能可能な状態にする工程とを同一の工程、又は連続した工程で 行うことが可能になり、断線の修正がより確実になる。一方、予備容量と表示用配線と が別々の基板に設けられている場合には、断線を検出した後、その断線により分断さ れた表示用配線と予備配線とを接続したと!ヽぅ記録が、予備容量を機能可能な状態 にする工程を行う段階で、不明となり易ぐ断線の修正が不確実となる恐れがある。
[0053] 表示に寄与する表示領域と、該表示領域の外側に設けられて表示に寄与しない非 表示領域とを備え、上記予備容量は、上記非表示領域に設けられていてもよい。
[0054] 上記の構成によれば、予備容量が表示に寄与しない非表示領域に設けられている ので、表示品位に影響を与えずに、表示用配線の断線が修正される。
[0055] 上記第 1絶縁膜、上記第 2絶縁膜及び上記第 3絶縁膜は、同一の絶縁膜であって ちょい。
[0056] 上記の構成によれば、予備容量を構成する第 1絶縁膜、表示用配線と予備配線と の間を絶縁する第 2絶縁膜、及び予備容量の第 2電極と予備配線との間を絶縁する 第 3絶縁膜を、例えば、薄膜トランジスタのゲート電極と半導体層との間を絶縁するゲ ート絶縁膜により形成することが可能になる。そのため、表示装置の製造工程を追加 せずに、表示用配線の断線が修正される。
[0057] 複数の画素と、上記複数の画素にそれぞれ設けられると共に上記表示用配線に接 続され、信号電圧が供給される画素電極と、上記同一の絶縁膜により形成され、上 記画素電極における上記信号電圧を保持するための補助容量とを備えて ヽてもよ ヽ
[0058] 上記の構成によれば、予備容量を構成する第 1絶縁膜、表示用配線と予備配線と の間を絶縁する第 2絶縁膜、予備容量の第 2電極と予備配線との間を絶縁する第 3 絶縁膜、及び画像表示の際に画素電極に印加される信号電圧を保持するための補 助容量を、例えば、薄膜トランジスタのゲート電極と半導体層との間を絶縁するゲート 絶縁膜により形成することが可能になる。そのため、表示装置の製造工程を追加せ ずに、表示用配線の断線が修正される。
[0059] 上記予備容量を 1つ備えていてもよい。
[0060] 上記の構成によれば、予備容量を構成する第 1電極が、予め、予備配線に接続さ れていると共に、その予備容量の個数力^つであるので、断線した表示用配線と予備 配線とを接続することにより、断線した表示用配線に対して、 1つの予備容量が機能 可能な状態になる。そのため、断線した表示用配線と予備配線とを接続するだけで、 分断した表示用配線に印加される表示のための信号波形が調整される。
[0061] また、本発明に係る表示装置は、表示のための信号電圧が印加される複数の表示 用配線と、上記複数の表示用配線の少なくとも 1つの両端側に対して、接続可能に 構成された予備配線と、上記予備配線に介設され、上記予備配線におけるインピー ダンス変換のためのバッファ部とを備えた表示装置であって、上記表示用配線に上 記予備配線が接続された状態で、上記表示用配線に印加される信号波形を調整す るための予備容量を備え、上記予備容量は、互いに対向して配置された第 1電極及 び第 2電極と、該第 1電極及び第 2電極の間に挟持された第 1絶縁膜とにより構成さ れ、上記複数の表示用配線の何れかが断線しており、上記断線した表示用配線と上 記予備配線とが接続されていると共に、上記予備配線に、上記第 1電極が接続され ていることを特徴とする。
[0062] 上記の構成によれば、断線した表示用配線と予備配線とが接続されているので、 断線位置カゝら先の表示用配線にも予備配線を介して、表示のための信号電圧が印 カロされる。そして、その予備配線には、表示用の信号波形を調整するため予備容量 の第 1電極が接続されているので、予備配線を介して断線した表示用配線に印加さ れる信号波形が調整される。具体的には、予備配線に対して予備容量の第 1電極が 接続されているので、断線により分断された表示用配線にカゝかる負荷力 断線してい ない正常な表示用配線にカゝかる負荷と同等になって、予備配線を介して表示用配線 に印加される信号波形が調整される。そのため、断線した表示用配線では、予備配 線、ノ ッファ部及び予備容量を介して、上記調整された信号波形が印加されるので、 正常な表示用配線と同等の表示品位が維持される。
[0063] また、本発明に係る液晶表示装置は、表示のための信号電圧が印加される複数の 表示用配線と、上記複数の表示用配線の少なくとも 1つの両端側に対して、接続可 能に構成された予備配線と、上記予備配線に介設され、上記予備配線におけるイン ピーダンス変換のためのバッファ部とを備えた液晶表示装置であって、上記表示用 配線に上記予備配線が接続された状態で、上記表示用配線に印加される信号波形 を調整するための予備容量を備えていることを特徴とする。
[0064] 以上のような表示装置は、液晶表示装置において特に有効である。液晶表示装置 は、近年、高解像度化及び大画面化に伴い、正常なソース線 (表示用配線)にかか る負荷と断線により分断されたソース線 (表示用配線)にかかる負荷との差が益々大 きくなり、オーバーシュートやアンダーシュートの増大によって、表示品位が悪化する 恐れがある力 である。
[0065] また、本発明に係る表示装置の製造方法は、表示のための信号電圧が印加される 複数の表示用配線と、上記複数の表示用配線の少なくとも 1つの両端側に対して、 接続可能に構成された予備配線と、上記予備配線に介設され、上記予備配線にお けるインピーダンス変換のためのノッファ部と、上記表示用配線に上記予備配線が 接続された状態で、上記表示用配線に印加される信号波形を調整するための予備 容量とを備え、上記予備容量は、互いに対向して配置された第 1電極及び第 2電極と 、該第 1電極及び第 2電極の間に挟持された第 1絶縁膜とにより構成され、上記予備 容量の第 1電極が上記予備配線に予め接続された表示装置の製造方法であって、 上記表示用配線の断線の存在を検出する断線配線検出工程と、上記断線配線検出 工程で断線が検出された表示用配線と上記予備配線とを接続する予備配線接続ェ 程とを備えることを特徴とする。
[0066] 上記の方法によれば、予備容量を構成する第 1電極が、予め、予備配線に接続さ れているので、予備配線接続工程において、断線した表示用配線と予備配線とを接 続することにより、断線した表示用配線に対して、予備容量が機能可能な状態となる 。そのため、断線により分断された表示用配線に力かる負荷力 断線していない正常 な表示用配線に力かる負荷と同等になって、予備配線を介して表示用配線に印加さ れる信号波形が調整される。これにより、断線した表示用配線では、予備配線、バッ ファ部及び予備容量を介して、上記調整された表示用信号が印加されるので、正常 な表示用配線と同等の表示品位が維持される。従って、表示用配線が断線した際に 、その断線位置に関係なぐ表示品位の低下が抑制される表示用配線の断線修正 が可能になる。
[0067] 上記予備容量は、複数設けられ、上記複数の予備容量のうちの少なくとも 1つの予 備容量に対し、上記第 1電極と上記予備配線との接続を切断する切断工程を備えて ちょい。
[0068] 上記の方法によれば、予備容量が複数であるので、予備配線接続工程で断線した 表示用配線と予備配線とを接続することで断線した表示用配線に対して機能可能な 状態となった予備容量の個数を、切断工程において適宜減らすことが可能になる。 そのため、予備配線に設けられた予備容量の複数である場合には、その予備容量の 個数を減らすことにより、断線により分断された表示用配線に力かる負荷を、断線して いない正常な表示用配線に力かる負荷と同等にすることが可能になる。
[0069] 上記断線配線検出工程で検出された表示用配線における断線位置を検出する断 線位置検出工程を備え、上記切断工程は、上記断線位置検出工程で検出された断 線位置に応じた個数分の上記予備容量に対し、上記第 1電極と上記予備配線との接 続を切断してもよい。
[0070] 上記の方法によれば、切断工程では、断線位置検出工程において検出された断 線位置に合わせて、予備容量の第 1電極と予備配線との複数の接続のうちの幾つか を切断することになるので、断線位置に関係なぐ表示品位の低下が抑制される表示 用配線の断線修正が可能になる。
[0071] また、本発明に係る表示装置の製造方法は、表示のための信号電圧が印加される 複数の表示用配線と、上記複数の表示用配線の少なくとも 1つの両端側に対して、 接続可能に構成された予備配線と、上記予備配線に介設され、上記予備配線にお けるインピーダンス変換のためのノッファ部と、上記表示用配線に上記予備配線が 接続された状態で、上記表示用配線に印加される信号波形を調整するための予備 容量とを備え、上記予備容量は、互いに対向して配置された第 1電極及び第 2電極と 、該第 1電極及び第 2電極の間に挟持された第 1絶縁膜とにより構成され、上記予備 容量の第 1電極が上記予備配線に予め接続されていない表示装置の製造方法であ つて、上記表示用配線の断線の存在を検出する断線配線検出工程と、上記断線配 線検出工程で断線が検出された表示用配線と上記予備配線とを接続する予備配線 接続工程と、上記予備容量の第 1電極と上記予備配線とを接続する予備容量接続 工程を備えることを特徴とする。
[0072] 上記の方法によれば、予備配線接続工程で断線した表示用配線と予備配線とを接 続すると共に、予備容量接続工程で予備容量の第 1電極と予備配線とを接続するこ とにより、断線した表示用配線に対して、予備容量が機能可能な状態となる。そのた め、断線により分断された表示用配線に力かる負荷が、断線していない正常な表示 用配線にカゝかる負荷と同等になって、予備配線を介して表示用配線に印加される信 号波形が調整される。これにより、断線した表示用配線には、予備配線、バッファ部 及び予備容量を介して、波形が調整された信号波形が印加されるので、正常な表示 用配線と同等の表示品位が維持される。従って、表示用配線が断線した際に、その 断線位置に関係なぐ表示品位の低下が抑制される表示用配線の断線修正が可能 になる。
[0073] 上記断線配線検出工程で検出された表示用配線における断線位置を検出する断 線位置検出工程を備え、上記予備容量接続工程は、上記断線位置検出工程で検 出された断線位置に応じた個数分の上記予備容量に対し、上記第 1電極と上記予備 配線とを接続してもよい。
[0074] 上記の方法によれば、予備容量接続工程では、断線位置検出工程において検出 された断線位置に合わせて、予備容量の第 1電極と予備配線とを接続することになる ので、断線位置に関係なぐ表示品位の低下が抑制される表示用配線の断線修正 が可能になる。
発明の効果
[0075] 本発明によれば、予備配線に、分断された表示用配線に印加される信号波形を調 整するための予備容量が設けられているので、複数の表示用配線の何れかが断線 した際には、その断線した表示用配線と予備配線とを接続すると共に、断線位置に 合わせて適宜、予備容量を機能させることにより、断線により分断された表示用配線 には、予備配線及び予備容量を介して、調整された信号波形が印加されることにな る。これにより、表示用配線の断線位置に関係なぐ表示品位の低下が抑制される表 示用配線の断線修正を行うことができる。
図面の簡単な説明
[図 1]図 1は、本発明の実施形態 1に係る液晶表示装置を示す等価回路図である。
[図 2]図 2は、本発明の実施形態 1に係る液晶表示装置の 1つの画素を示す平面図 である。
[図 3]図 3は、図 2中の III— III線に沿った断面図である。
[図 4]図 4は、本発明の実施形態 1に係る液晶表示装置の予備容量を示す平面図で ある。
[図 5]図 5は、本発明の実施形態 1に係る液晶表示装置の予備容量を示す等価回路 図である。
[図 6]図 6は、図 5中の VI— VI線に沿った断面図である。
[図 7]図 7は、本発明の実施形態 1に係るソース線と予備配線とが接続された液晶表 示装置を示す等価回路図である。
[図 8]図 8は、本発明の実施形態 1に係る予備配線と予備容量とが接続された液晶表 示装置を示す断面図である。
[図 9]図 9は、一般的な液晶表示装置を示す平面図である。
[図 10]図 10は、本発明の実施形態 1に係る液晶表示装置の予備容量を詳細に示す 平面図である。
[図 11]図 11は、本発明の実施形態 2に係る液晶表示装置の予備容量を示す等価回 路図である。
[図 12]図 12は、図 11中の XII— XII線に沿った断面図である。
[図 13]図 13は、本発明の実施形態 3に係る液晶表示装置を示す平面図である。
[図 14]図 14は、本発明の実施形態 4に係る液晶表示装置を示す平面図である。
[図 15]図 15は、従来の液晶表示装置を示す等価回路図である。
[図 16]図 16は、ソースドライバと反対側のソース線の断線により、ソース線と予備配線 とが接続された従来の液晶表示装置を示す等価回路図である。
[図 17]図 17は、ソース線と予備配線とが接続された従来の液晶表示装置を示す断面 図である。
[図 18]図 18は、従来の液晶表示装置のソース線の容量を示す等価回路図である。
[図 19]図 19は、ソースドライバ側のソース線の断線により、ソース線と予備配線とが接 続された従来の液晶表示装置を示す等価回路図である。
[図 20]図 20は、従来の液晶表示装置におけるソース線及び予備配線の波形を示す 波形図である。
符号の説明
[0077] 1 ゲート線
2 ソース線
3 予備配線 (表示用配線)
3a 第 1配線
3b 第 2配線
4 バッファ部
5 予備容量接続配線
10 予備容量
10a 第 1予備容量
10b 第 2予備容量
10c 第 1電極
10d 第 2電極
16, 22 コンタクトホーノレ
18 画素電極
19 ゲート絶縁膜 (第 1絶縁膜、第 2絶縁膜、第 3絶縁膜)
20 ガラス基板
27 補助容量
40 液晶表示パネル
50, 50a, 50b 液晶表示装置
発明を実施するための最良の形態
[0078] 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下、実施形態では 、本発明に係る表示装置として液晶表示装置を例に挙げ、断線を修正する対象の表 示用配線として、ソース線を例に説明する力 本発明は、これに限定されるものでは ない。
[0079] 《発明の実施形態 1》
以下に、本発明の実施形態 1に係る液晶表示装置 50について説明する。
[0080] 図 1は、本発明の実施形態 1に係る液晶表示装置 50を示す等価回路図である。ま た、図 2は、液晶表示装置 50の 1つの画素を示す平面図であり、図 3は、図 2中の III III線に沿った断面図である。
[0081] この液晶表示装置 50は、液晶表示パネル 40と、その液晶表示パネル 40の左辺に 設けられたゲートドライバ 9と、その液晶表示パネル 40の上辺に設けられたソースドラ ィバ 7とを有している。
[0082] 液晶表示パネル 40は、互いに対向するように配置されたアクティブマトリクス基板及 び対向基板と、それら両基板間に挟持された液晶層 12とを有している。
[0083] 上記アクティブマトリクス基板は、ガラス基板 20上に、複数のゲート線 1が図 1中の 横方向に相互に平行に延びるように設けられ、複数のソース線 2 (表示用配線)が図 1中の縦方向に各ゲート線 1と直交するように設けられている。ここで、図 1には図示さ れていないが、各ゲート線 1の間には図 2に示すように、容量線 15が相互に平行に 延びるように設けられている。そして、ゲート線 1とソース線 2との各交差部分には、ス イッチング素子として薄膜トランジスタ (TFT) 11が設けられて 、る。
[0084] ここで、隣り合う一対のゲート線 1及びソース線 2に囲われる各領域が画像の最小単 位である画素を構成している。そして、各画素には、ゲート線 1及びソース線 2に沿つ て、画素電極 18がマトリクス状に形成され、そのマトリクス状に形成された複数の画素 電極 18が全体で表示領域を構成して 、る。
[0085] TFT11は、図 2に示すように、ゲート線 1から側方に突出したゲート電極 laと、その ゲート電極 laを覆うように設けられたゲート絶縁膜 19と、そのゲート絶縁膜 19上に設 けられ、ソース線 2から側方に突出したソース電極 2aと、同じくゲート絶縁膜 19上にソ ース電極 2aに対畤するように設けられたドレイン電極 14とを備えて 、る。
[0086] このドレイン電極 14は、容量線 15が配設された領域まで延設され、その延設された 部分と、容量線 15と、それらの間に挟持されたゲート絶縁膜 19とによって補助容量 2 7を構成している。
[0087] また、ソース電極 2a及びドレイン電極 14を覆うように保護膜 17が設けられている。
そして、その保護膜 17の上層には画素電極 18が設けられている。ここで、画素電極 18は、保護膜 17に形成されたコンタクトホール 16を介してドレイン電極 14に接続さ れている。さらに、画素電極 18の上層には配向膜 (不図示)が設けられている。
[0088] 各ゲート線 1は、アクティブマトリクス基板の表示領域の外側の非表示領域 (液晶表 示パネル 40の左辺側)に引き出され、ゲートドライバ 9内の各出力アンプ 8に接続さ れている。
[0089] 各ソース線 2は、アクティブマトリクス基板の非表示領域 (液晶表示パネル 40の上辺 側)に引き出され、ソースドライバ 7内の各出力アンプ 6に接続されている。
[0090] また、ソースドライバ 7内には、後述する第 1配線 3a及び第 2配線 3bにより構成され た予備配線 3におけるインピーダンス変換のアンプとして機能するノ ッファ部 4を備え ている。
[0091] さらに、アクティブマトリクス基板の非表示領域 (液晶表示パネル 40の上辺部分)に は、断線修正用の第 1配線 3aがゲート絶縁膜 19 (第 2絶縁膜)を介して各ソース線 2 に直交するように設けられ、その一方端力 Sバッファ部 4の入力側に接続されて!、る。 そして、アクティブマトリクス基板の非表示領域 (液晶表示パネル 40の下辺部分)に は、断線修正用の第 2配線 3bがゲート絶縁膜 19 (第 2絶縁膜)を介して各ソース線 2 に直交するように設けられ、その一方端がアクティブマトリクス基板の非表示領域 (液 晶表示パネル 40の右辺及び上辺部分)を経由してバッファ部 4の出力側に接続され ている。
[0092] また、第 1配線 3a及び第 2配線 3bには、複数の第 1予備容量 10a及び第 2予備容 量 10bがそれぞれ接続可能に設けられている。
[0093] 第 1配線 3aには、例えば、図 5に示すように、 5つの第 1予備容量 10aが接続可能 に設けられている。
[0094] 第 1予備容量 10aは、図 6に示すように、互いに対向に配置するように設けられた第 1電極 10c及び第 2電極 10dと、それら第 1電極 10c及び第 2電極 10dに挟持された ゲート絶縁膜 19 (第 1絶縁膜)とにより構成されている。なお、図 6は、図 5中の VI— VI 線に沿った断面図である。
[0095] 第 1電極 10cは、第 1配線 3aに対してゲート絶縁膜 19 (第 3絶縁膜)を介して設けら れた予備容量接続配線 5の延設部分である。これによれば、第 1予備容量 10aの第 1 電極 10cと第 1配線 3aとの間には、ゲート絶縁膜 19が挟持されているので、第 1予備 容量 10aの第 1電極 10cは、予備配線 3を構成する第 1配線 3aに予め接続されてい ない。
[0096] 各予備容量接続配線 5は、第 1配線 3aに対して上述ようにゲート絶縁膜 19 (第 3絶 縁膜)を介して直交するように設けられ、その交差している部分が図 5及び図 6に示す ように、交差部分 C1〜C5となっている。
[0097] 第 2電極 10dは、図 4に示すように、後述する対向基板の共通電極 13に対して共通 電極転移点 21bを介して接続された共通電極配線 21aの延設部分である。なお、本 実施形態では、第 2電極 10dが共通電極 13に接続されている力 第 2電極 10dは、 容量線 15に接続されていたり、接地されていてもよい。
[0098] 第 2予備容量 10bは、液晶表示パネル 40の下辺部分に位置するだけで、その構成 が第 1予備容量 10aと同様なので、その詳細な説明を省略する。
[0099] ここで、 1本の予備配線 3 (第 1配線 3a及び第 2配線 3b)に設けられた予備容量 10a 及び 10bの容量の大きさの合計は、後述するように、 1本のソース線 2において負荷と なる寄生容量の総容量の大きさと同程度、或いは、それよりも僅かに小さい程度がよ い。
[0100] 上記対向基板は、図示していないが、ガラス基板上に、カラーフィルタ一層、ォー バーコート層、共通電極 13及び配向膜が順に積層された多層積層構造になってい る。
[0101] 上記カラーフィルタ一層には、各画素に対応して赤、緑及び青のうちの 1色の着色 層が設けられ、各着色層の間には遮光膜としてブラックマトリクスが設けられている。
[0102] 液晶層 12は、電気光学特性を有するネマチック液晶材料力も構成されて!、る。
[0103] このような構成の液晶表示装置 50では、各画素において、ゲートドライバ 9内の出 力アンプ 8からのゲート信号に応じた信号電圧がゲート線 1及びゲート電極 laを介し て TFT11に印加されることにより、 TFT11がオン状態となり、それと同時に、ソースド ライバ 7内の出力アンプ 6からのソース信号(映像信号)に応じた信号電圧がソース線 2、ソース電極 2a及びドレイン電極 14を介して画素電極 18に印加されることにより、 画素電極 18に所定の電荷が書き込まれる。このとき、画素電極 18と共通電極 13との 間では、電位差が生じることになり、液晶層 12からなる液晶容量、及び補助容量 27 に所定の電圧が印加される。そして、液晶表示装置 50では、その印加電圧の大きさ に応じて液晶分子の配向状態が変わることを利用して、外部から入射する光の透過 率を調整することにより、画像が表示される。
[0104] ここで、補助容量 27は、液晶層 12からなる液晶容量に印加される電圧の変動量を 抑制するために、液晶容量に対して並列に設けられている。なお、本実施形態の液 晶表示パネルは、 Cs on Commonの構成である。また、補助容量 27の容量の大 きさは、ゲート絶縁膜 19の厚さ、誘電率及び面積に依存し、一般的な 15インチの XG A (1024 X RGB X 768)クラスの液晶表示パネルの場合には、 100〜200pFZmm 2程度となる。
[0105] 次に、本発明の実施形態 1に係る液晶表示装置 50の製造方法について、一例を 挙げて説明する。
[0106] 本発明の実施形態 1に係る液晶表示装置 50は、以下に説明するアクティブマトリク ス基板作製工程、対向基板作製工程、液晶表示パネル作製工程、検査工程、ドライ バ実装工程を経て製造され、そして、検査工程で断線が検出された場合には、検査 工程の後の断線修正工程を経て製造される。
[0107] くアクティブマトリクス基板作製工程 >
以下に、アクティブマトリクス基板作製工程について、説明する。
[0108] まず、ガラス基板 20上の基板全体に、 Ta、 TaMo合金等カゝらなる金属膜 (厚さ 100 0〜2000A)をスノッタリング法により成膜し、その後、フォトリソグラフィー技術 (Phot 0 Engraving Process,以下、「PEP技術」と称する)によりパターン形成して、ゲート線 1、ゲート電極 la、容量線 15、第 1配線 3a、第 2配線 3b、及び共通電極配線 21a (第 2電極 10d)を形成する。
[0109] 次!、で、ゲート線 1等が形成された基板全体に、 CVD (Chemical Vapor Deposition )法により窒化シリコン膜 (厚さ 400nm程度)等を成膜し、ゲート絶縁膜 19を形成する
[0110] 次いで、ゲート絶縁膜 19上の基板全体に、 CVD法により真性アモルファスシリコン 膜 (厚さ 150nm程度)と、リンがドープされた n+アモルファスシリコン膜 (厚さ 50nm 程度)とを連続して成膜し、その後、 PEP技術によりゲート電極 la上に島状にパター ン形成して、真性ァモルファスシリコン層と n +ァモルファスシリコン層からなる半導体 層を形成する。
[0111] 続いて、半導体層が形成された基板全体に、 Ti等カゝらなる金属膜 (厚さ 1000〜20 00 A)をスパッタリング法により成膜し、その後、 PEP技術によりパターン形成して、ソ ース線 2、ソース電極 2a、ドレイン電極 14及び予備容量接続配線 5 (第 1電極 10c)を 形成する。
[0112] ここで、半導体層は、上記のようにアモルファスシリコン膜により形成させてもよいが
、ポリシリコン膜を成膜させてもよぐまた、アモルファスシリコン膜及びポリシリコン膜 にレーザーァニール処理を行って結晶性を向上させてもよい。これにより、半導体層 内の電子の移動速度が速くなり、 TFT11の特性を向上させることができる。
[0113] さらに、ソース線 2等が形成された基板全体に、 CVD法により窒化シリコン膜 (厚さ 3
000 A程度)等を成膜して、保護膜 17を形成する。
[0114] 次いで、保護膜 17のドレイン電極 14に対応する部分をエッチング除去して、コンタ タトホール 16を形成する。
[0115] 続いて、保護膜 17上の基板全体に、 ITO (Indium Tin Oxide)膜からなる透明導電 膜 (厚さ 1000 A程度)をスパッタリング法により成膜し、その後、 PEP技術によりバタ ーン形成して、画素電極 18を形成する。
[0116] 最後に、画素電極 18上の基板全体に、ポリイミド榭脂を厚さ 500〜: L000Aで印刷 し、その後、焼成して、回転布にて 1方向にラビング処理を行って、配向膜を形成す る。
[0117] 以上のようにして、アクティブマトリクス基板が作製される。
[0118] く対向基板作製工程〉
以下に、対向基板作製工程について、説明する。 [0119] まず、ガラス基板上に、 Cr薄膜、又は黒色顔料を含有する榭脂を成膜した後、 PE
P技術によりパターン形成して、ブラックマトリクスを形成する。
[0120] 次いで、ブラックマトリクスの間のそれぞれに、顔料分散法等を用いて、赤、緑及び 青の何れかの着色層(厚さ 2 m程度)をパターン形成してカラーフィルタ一層を形 成する。
[0121] 次いで、カラーフィルタ一層上の基板全体に、アクリル榭脂を塗布してオーバーコ 一ト層を形成する。
[0122] 続いて、オーバーコート層上の基板全体に、 ITO膜 (厚さ 1000 A程度)を成膜して
、共通電極 13を形成する。
[0123] 最後に、共通電極 13上の基板全体に、ポリイミド榭脂を厚さ 500〜: L000 Aで印刷 し、その後、焼成して、回転布にて 1方向にラビング処理を行って、配向膜を形成す る。
[0124] 上記のようにして、対向基板を作製することができる。
[0125] <液晶表示パネル作製工程 >
以下に、液晶表示パネル作製工程について、説明する。
[0126] まず、上述のようにして作製されたアクティブマトリクス基板及び対向基板のうちの 一方に、スクリーン印刷により、熱硬化性エポキシ榭脂等力もなるシール材料を液晶 注入口の部分を欠 、た枠状パターンに塗布し、他方の基板に液晶層 12の厚さに相 当する直径を持ち、プラスチック又はシリカからなる球状のスぺーサーを散布する。
[0127] 次 、で、アクティブマトリクス基板と対向基板とを貼り合わせ、シール材料を硬化さ せて、空の液晶表示パネルを作製する。
[0128] 最後に、空の液晶表示パネルに、減圧法により液晶材料を注入した後、液晶注入 口に UV硬化榭脂を塗布し、 UV照射により、液晶材料を封止する。これによつて、液 晶層 12が形成される。
[0129] 以上のようにして、液晶表示パネル 40が作製される。
[0130] <検査工程 (断線配線検出工程及び断線位置検出工程) >
以下に、上述のようにして作製された液晶表示パネル 40の検査工程について、説 明する。 [0131] 例えば、各ゲート線 1にバイアス電圧 10V、周期 16. 7msec,ノ レス幅 sec の + 15 Vのパルス電圧のゲート検査信号を入力して全ての TFT11をオン状態にす る。さらに、各ソース線 2に 16. 7msecごとに極性が反転する ± 2Vの電位のソース検 查信号を入力して、各 TFT11のソース電極 2a及びドレイン電極 14を介して画素電 極 18に ± 2Vに対応した電荷を書き込む。同時に、共通電極 13に直流で IVの電 位の共通電極検査信号を入力する。
[0132] このとき、画素電極 18と共通電極 13との間で構成される液晶容量に電圧が印加さ れ、その画素電極 18で構成する画素が点灯状態になり、ノーマリーホワイトモード( 電圧無印加時に白表示)では、白表示から黒表示となる。
[0133] また、断線が発生したソース線に沿った画素では、その画素電極 18に所定の電荷 が書き込むことができず、非点灯 (輝点)となる。これにより、図 7に示すようなソース線 2の断線位置 Xが検出される。
[0134] <断線修正工程 >
断線修正工程は、以下に説明する予備配線接続工程と、予備容量接続工程とを 備えている。
〜予備配線接続工程〜
以下に、予備配線接続工程について説明する。
[0135] 断線位置 Xで分断されたソース線 2aと予備配線 3aとの交差部分 Al、及び断線位 置 Xで分断されたソース線 2bと予備配線 3bとの交差部分 A2の双方に、ガラス基板 2 0側からレーザー光等の光エネルギーを照射して、各交差部分のゲート絶縁膜 19に コンタクトホールを形成する。これにより、断線により分断されたソース線 2a及び 2bと 、予備配線 3 (第 1配線 3a及び第 2配線 3b)とが接続され、断線位置 Xから先のソース 線 2bには、第 1配線 3a、ノ ッファ部 4及び第 2配線 3bを介して、ソース信号に応じた 信号電圧が印加されることになる。
〜予備容量接続工程〜
以下に、予備容量接続工程について説明する。
[0136] ここで、断線位置 Xは、ソースドライバ 7に近い位置にあるので、断線位置 Xよりも下 側のソース線 2bに力かる負荷は、断線して 、な 、正常なソース線 2にかかる負荷と比 ベて大差がないので、予備配線を構成する第 2配線 3bと第 2予備容量 10bの第 1電 極 10cとは接続しない。一方、断線位置 Xよりも上側のソース線 2aに力かる負荷は、 正常なソース線 2にかかる負荷と比べてかなり小さくなるので、予備配線を構成する 第 1配線 3aと第 1予備容量 10aの第 1電極 10cとを接続して、断線位置 Xよりも上側 のソース線 2aに力かる負荷力 正常なソース線 2にかかる負荷と同程度になるように する。
[0137] 具体的には、図 5に示す交差部分 C1〜C5の少なくとも 1つに対して、図 8に示すよ うにガラス基板 20側からレーザー光等の光エネルギー 23を照射することにより、ゲー ト絶縁膜 19を破壊して、その照射部分のゲート絶縁膜 19にコンタクトホール 22を形 成する。これにより、断線により第 1配線 3aと予備容量接続配線 5とが接続される。な お、図 8は、図 5中の VIII— VIII線に沿った断面図であり、交差部分 C3にコンタクトホ ール 22が形成された断面図である。
[0138] こうすることによって、断線により分断されたソース線 2aに対して、第 1予備容量 10a が機能可能な状態となる。そのため、断線により分断されたソース線 2aに力かる負荷 力 正常なソース線 2にかかる負荷と同等になって、ソース線 2aに印加される信号波 形が調整される。
[0139] また、背景技術の説明で用いた図 16の断線位置 XIのように、ソース線 2がソースド ライバ 7から離れた位置 XIで断線した場合には、上述の断線位置 Xの場合とは反対 に、断線位置 (XI)よりも上側のソース線 2にかかる負荷は、断線してない正常なソー ス線 2にかかる負荷と比べて大差がないので、予備配線を構成する第 1配線 3aと第 1 予備容量 10aの第 1電極 10cとは接続しない。一方、断線位置 (XI)よりも下側のソ ース線 2にかかる負荷は、正常なソース線 2にかかる負荷と比べてかなり小さくなるの で、予備配線を構成する第 2配線 3bと第 2予備容量 10bの第 1電極 10cとを接続して 、断線位置 (XI)よりも下側のソース線 2にかかる負荷が、正常なソース線 2にかかる 負荷と同程度になるようにする。
[0140] 次に、予備配線 3を構成する第 1配線 3a及び第 2配線 3bに対して、それぞれ機能 させる第 1予備容量 10a及び第 2予備容量 10bの個数について、説明する。
[0141] 図 9は、液晶表示パネル 40をソース線 2に沿って 6つの領域 A〜領域 Fに等分した 模式図である。
[0142] ここで、液晶表示パネル 40を等分する個数は、第 1予備容量 10a (第 2予備容量 10 b)の個数に 1を加えた数で等分するのが好ましい。本実施形態では、第 1予備容量 1 Oaが 5つあるので、 6等分している。
[0143] 以下に、具体的な断線位置による第 1予備容量 10a及び第 2予備容量 10bの接続 要領について説明する。
[0144] (a)領域 Aでソース線 2が断線した場合、第 1配線 3aには 5つの第 1予備容量 10aを 接続して、第 2配線 3bには、 1つの第 2予備容量 10bも接続しない。
[0145] (b)領域 Bでソース線 2が断線した場合、第 1配線 3aには 4つの第 1予備容量 10aを 接続して、第 2配線 3bには、 1つの第 2予備容量 10bを接続する。
[0146] (c)領域 Cでソース線 2が断線した場合、第 1配線 3aには 3つの第 1予備容量 10aを 接続して、第 2配線 3bには、 2つの第 2予備容量 10bを接続する。
[0147] (d)領域 Dでソース線 2が断線した場合、第 1配線 3aには 2つの第 1予備容量 10a を接続して、第 2配線 3bには、 3つの第 2予備容量 10bを接続する。
[0148] (e)領域 Eでソース線 2が断線した場合、第 1配線 3aには 1つの第 1予備容量 10aを 接続して、第 2配線 3bには、 4つの第 2予備容量 10bを接続する。
[0149] (f)領域 Fでソース線 2が断線した場合、第 1配線 3aには 1つの第 1予備容量 10aも 接続せず、第 2配線 3bには、 5つの第 2予備容量 10bを接続する。
[0150] ここで、 1本のソース線 2で負荷となる寄生容量の大きさが 120pFである場合には、 第 1予備容量 10a (第 2予備容量 10b)の 1つ当たりの容量の大きさを 20pF程度に設 定しておけば、ソース線 2のどの位置で断線が発生しても、上述の接続要領 (a)〜(f )を実行することにより、断線により分断されたソース線に力かる負荷力 断線してい ない正常なソース線 2にかかる負荷と同等になって、予備配線 3を介してソース線 2に 印加されるソース信号に応じた信号波形が調整される。そのため、断線したソース線 では、予備配線 (第 1配線 3a及び第 2配線 3b)、ノ ッファ部 4及び予備容量(10a及 び 10b)を介して、上記調整された信号波形が印加されるので、従来のように、予備 配線における波形がオーバーシュート、アンダーシュートすることなぐ正常なソース 線 2と同等の表示品位が維持される。これにより、ソース線 2の断線修正がなされ、断 線修正された液晶表示パネル 40が作製される。
[0151] また、実際には、ソース線 2だけでなぐ予備配線 3 (第 1配線 3a及び第 2配線 3b) にも若干の寄生容量が存在するので、第 1予備容量 10a及び第 2予備容量 10bの容 量の大きさの各合計は、 1本の正常なソース線 2で負荷となる寄生容量の大きさから 第 1配線 3a及び第 2配線 3bに力かる寄生容量の大きさの分だけをそれぞれ引いたも のであるのが望ましい。
[0152] さらに、上記の例では、予備配線 3を構成する第 1配線 3a及び第 2配線 3bに、それ ぞれ 5つの第 1予備容量 10a及び第 2予備容量 10bが接続される場合を例示したが 、第 1予備容量 10a及び第 2予備容量 10bが 1つである場合でも、液晶表示パネル 4 0を 2つの領域に等分して、上記の同様に予備容量を適宜接続すればよ!、。
[0153] <ドライバ実装工程 >
以下に、ドライバ実装工程について説明する。
[0154] 上記検査工程で良品となった液晶表示パネル 40、及び断線修正工程で断線修正 されて良品となった液晶表示パネル 40に対して、ゲートドライノ 9及びソースドライバ 7を実装する。
[0155] 以上のようにして、本発明の液晶表示装置 50が製造される。
[0156] ここで、図 10は、本実施形態の液晶表示装置 50の予備容量が配置された領域を より詳細に示した平面図である。具体的には、 15ィンチの 0八(1024 1^}8 76 8)の液晶表示パネルに本発明の構成を適応したものであり、各ソースドライバ 7間を 示した平面図である。
[0157] この液晶表示装置 50では、 1つのソースドライバ 7内の出力アンプ 6の個数、すなわ ち、ソースドライバ 7の出力数が 384個で、ソースドライバ 7が 8個実装されている。こ の場合、ソースドライバ 7の間の距離は、図 10に示すように、 10mm程度、配線領域 は 3mm程度になる。
[0158] そして、一般的な 15インチ 0八(1024 1^}8 768)の液晶表示パネルの1本の ソース線 2の寄生容量は lOOpF程度なので、仮に、 1本のソース線 2の寄生容量を 1 20pFとした場合、 1本の第 1配線 3aに配置される予備容量 10aを 5つすると、予備容 量 10aの 1つ当たりの最適な容量の大きさは、 20pFとなる。 [0159] また、一般的な 15インチの XGA (1024 X RGB X 768)クラスの液晶表示パネルで は、ゲート線と同一層に形成される電極とソース線と同一層に形成される電極との間 に挟持される絶縁膜 (ゲート絶縁膜)によって形成される容量の大きさは、 100〜200 pFZmm2程度である。仮に、この容量の大きさを 125pFZmm2とすると、 20pFの容 量を形成する為には 0. 4mm角程度の面積があればよい。
[0160] 図 10では、ゲート線 1と同一層に形成された第 1配線 3aに沿って、ソース線 2と同一 層に形成された予備容量接続配線 5及び予備容量の第 1電極 10cが 5つ配置されて いる。この第 1電極 10cの大きさは、上記のように 0. 4mm角程度である。なお、ゲート 線 1と同一層に形成された共通電極配線 21aのうちの第 1電極 10cとの重なり部分が 第 2電極 10dとなる。また、各ソース線 2は、配線領域と端子領域との境界付近のゲー ト絶縁膜 19に形成されたコンタクトホール (不図示)を介して、端子領域においてゲ ート線 1と同一の層に形成された各ソース線端子部 2bに接続されている。
[0161] また、図 10は、共通電極配線 21aと予備容量の第 1電極 10cとのサイズ比を、実際 の液晶表示パネルに近似させて描画しているので、予備容量の第 1電極 10cは共通 電極配線 21a上に面積的にも容易に形成できることが示唆される。
[0162] さらに、液晶表示パネルのサイズが大きくなると、ソース線の 1本当たりの寄生容量 も大きくなる。そうなると、必要とする予備容量の容量の大きさも大きくなり、それに比 例して予備容量用の電極を形成する面積も大きくなる。し力 一般的には、液晶表示 パネルのサイズが大きくなると、それに伴って配線領域も大きくなるので、予備容量用 の電極を面積的に配置できなくなることは考えにくい。
[0163] それとは反対に、液晶表示パネルのサイズが小さい場合には、配線領域も小さくな る力 ソース線の 1本当たりの寄生容量も小さくなるので、必要とする予備容量の容量 も小さくなる。そのため、予備容量用の電極を面積的に配置できなくなることは考えに くい。
[0164] 以上説明したように本発明の液晶表示装置 50では、予備配線(3a及び 3b)力 ソ ース線 2に対して接続可能なので、複数のソース線 2の何れかが断線した際には、そ の断線したソース線(2a及び 2b)と予備配線(3a及び 3b)とを接続することにより、断 線位置力も先のソース線 2bにも予備配線(3a及び 3b)を介して、ソース信号に応じた 信号電圧が印加されることになる。さらに、予備容量(10a及び 10b)を構成する第 1 電極 10cが、予備配線(3a及び 3b)に接続可能に構成されているので、予備容量(1 Oa及び 10b)の第 1電極 10cと予備配線(3a及び 3b)とを接続することにより、予備配 線及び表示用配線に対して、予備容量が機能可能な状態になる。このとき、必要に 応じて、予備容量(10a及び 10b)の第 1電極 10cと予備配線(3a及び 3b)とを所定数 だけ接続することにより、機能可能な予備容量(10a及び 10b)の個数を調整すること ができる。
[0165] これにより、断線により分断されたソース線(2a及び 2b)にかかる負荷を調整するこ とができ、予備配線(3a及び 3b)を介してソース線(2a及び 2b)に印加されるソース信 号に応じた信号波形を調整することができる。従って、ソース線 2の断線位置に関係 なぐ表示品位の低下が抑制されるソース線 2の断線修正を行うことができる。
[0166] また、予備容量(10a及び 10b)がアクティブマトリクス基板に設けられているので、 断線により分断されたソース線(2a及び 2b)と予備配線(3a及び 3b)とを接続するェ 程 (予備配線接続工程)と、予備配線 (3a及び 3b)に対して予備容量を機能可能な 状態にする工程 (予備容量接続工程)とを同一の工程、又は連続した工程で行うこと ができ、断線の修正がより確実になる。これとは反対に、後述する実施形態 3及び 4 のように、予備容量がアクティブマトリクス基板と別の基板に設けられて ヽる場合には 、断線を検出した後、その断線により分断された表示用配線と予備配線とを接続した t ヽぅ予備配線接続工程の記録が、予備容量を機能可能な状態にする工程 (予備容 量接続工程)を行う段階で、不明となり易ぐ断線の修正が不確実となる恐れがある。
[0167] さらに、予備容量(10a及び 10b)が表示に寄与しない非表示領域に設けられてい るので、表示品位に影響を与えずに、ソース線 2の断線を修正することができる。
[0168] また、予備容量(10a及び 10b)を構成する第 1絶縁膜、ソース線 2と予備配線(3a 及び 3b)との間を絶縁する第 2絶縁膜、予備容量(10a及び 10b)の第 2電極 10dと予 備配線 (3a及び 3b)との間を絶縁する第 3絶縁膜、及び補助容量 27を構成する絶縁 膜が、それぞれゲート絶縁膜 19により形成されているので、製造工程を追加せずに 、ソース線 2の断線を修正することができる。
[0169] 《発明の実施形態 2》 本発明は、上記実施形態 1について、以下のような構成としてもよい。なお、以下の 各実施形態では図 1〜図 10と同じ部分については同じ符号を付して、その詳細な説 明を省略する。
[0170] 上記実施形態 1では、予備配線を構成する第 1配線 3a及び第 2配線 3bに対して、 複数の第 1予備容量 10a及び第 2予備容量 10bの第 1電極 10cがそれぞれ接続可能 に設けられていた、つまり、複数の第 1予備容量 10a及び第 2予備容量 10bの第 1電 極 10cが、予備配線に予め接続されていなカゝつた力 本実施形態では、予備配線を 構成する第 1配線 3a及び第 2配線 3bに対して、複数の第 1予備容量 10a及び第 2予 備容量 10bの第 1電極 10cが予め接続されている。そして、それ以外の構成につい ては、実施形態 1と実質的に同じであるので詳細な説明を省略する。
[0171] 図 11は、第 1配線 3aと第 1予備容量 10aとの構成を示す平面図であり、実施形態 1 で説明した図 5に対応するものである。そして、図 12は、図 11中の XII— XII線に沿つ た断面図である。
[0172] 本実施形態に係る液晶表示装置では、第 1配線 3aに対して、図 11に示すように、 例えば、 5つの第 1予備容量 10aが設けられている。
[0173] 第 1予備容量 10aは、図 12に示すように、互いに対向に配置するように設けられた 第 1電極 10e及び第 2電極 10fと、それら第 1電極 10e及び第 2電極 10fに挟持された ゲート絶縁膜 19 (第 1絶縁膜)とにより構成されている。
[0174] 第 1電極 10eは、予備配線を構成する第 1配線 3aの延設部分である。
[0175] 第 2電極 10fは、第 1電極 10eに対してゲート絶縁膜 19を介して重なるように設けら れた共通電極配線 21cの延設部分である。これによれば、第 1予備容量 10aの第 1 電極 10eと第 1配線 3aとが一体であるので、第 1予備容量 10aの第 1電極 10eは、予 め予備配線を構成する第 1配線 3aに接続されて ヽる。
[0176] 第 1配線 3aは、図 11に示すように 5つに分岐し、各分岐した末端が第 1電極 10eに なり、分岐する基の部分がそれぞれ切断部分 B1〜B5になっている。
[0177] 共通電極配線 21cは、対向基板の共通電極 13に対して共通電極転移点 21bを介 して接続された部分である。
[0178] また、第 2予備容量 10bは、液晶表示パネル 40の下辺部分に位置するだけで、そ の構成が第 1予備容量 10aと同様なので、その詳細な説明を省略する。
[0179] 次に、本発明の実施形態 2に係る液晶表示装置 50の製造方法について説明する
[0180] 本発明の実施形態 2に係る液晶表示装置 50は、以下に説明するアクティブマトリク ス基板作製工程、対向基板作製工程、液晶表示パネル作製工程、検査工程、ドライ バ実装工程を経て製造され、そして、検査工程で断線が検出された場合には、検査 工程の後の断線修正工程を経て製造される。
[0181] なお、対向基板作製工程、液晶表示パネル作製工程、検査工程及びドライバ実装 工程については、実施形態 1と実質的に同一であるので、詳細な説明を省略する。
[0182] くアクティブマトリクス基板作製工程 >
以下に、アクティブマトリクス基板作製工程について、説明する。
[0183] まず、ガラス基板 20上の基板全体に、 Ta、 TaMo合金等カゝらなる金属膜 (厚さ 100 0〜2000A)をスノッタリング法により成膜し、その後、 PEP技術によりパターン形成 して、ゲート線 1、ゲート電極 la、容量線 15、第 1配線 3a (第 2電極 10e)及び第 2配 線 3b (第 1電極 10e)を形成する。
[0184] 次いで、ゲート線 1等が形成された基板全体に、 CVD法により窒化シリコン膜 (厚さ 400nm程度)等を成膜し、ゲート絶縁膜 19を形成する。
[0185] 次いで、ゲート絶縁膜 19上の基板全体に、 CVD法により真性アモルファスシリコン 膜 (厚さ 150nm程度)と、リンがドープされた n+アモルファスシリコン膜 (厚さ 50nm 程度)とを連続して成膜し、その後、 PEP技術によりゲート電極 la上に島状にパター ン形成して、真性ァモルファスシリコン層と n +ァモルファスシリコン層からなる半導体 層を形成する。
[0186] 続いて、半導体層が形成された基板全体に、 Ti等カゝらなる金属膜 (厚さ 1000〜20 00 A)をスパッタリング法により成膜し、その後、 PEP技術によりパターン形成して、ソ ース線 2、ソース電極 2a、ドレイン電極 14及び共通電極配線 21c (第 2電極 10f)を形 成する。
[0187] ここで、半導体層は、上記のようにアモルファスシリコン膜により形成させてもよいが 、ポリシリコン膜を成膜させてもよぐまた、アモルファスシリコン膜及びポリシリコン膜 にレーザーァニール処理を行って結晶性を向上させてもよい。これにより、半導体層 内の電子の移動速度が速くなり、 TFT11の特性を向上させることができる。
[0188] さらに、ソース線 2等が形成された基板全体に、 CVD法により窒化シリコン膜 (厚さ 3
000 A程度)等を成膜して、保護膜 17を形成する。
[0189] 次いで、保護膜 17のドレイン電極 14に対応する部分をエッチング除去して、コンタ タトホール 16を形成する。
[0190] 続いて、保護膜 17上の基板全体に、 ITO (Indium Tin Oxide)膜からなる透明導電 膜 (厚さ 1000 A程度)をスパッタリング法により成膜し、その後、 PEP技術によりバタ ーン形成して、画素電極 18を形成する。
[0191] 最後に、画素電極 18上の基板全体に、ポリイミド榭脂を厚さ 500〜: L000Aで印刷 し、その後、焼成して、回転布にて 1方向にラビング処理を行って、配向膜を形成す る。
[0192] 以上のようにして、アクティブマトリクス基板が作製される。
[0193] アクティブマトリクス基板作製工程で作製されたアクティブマトリクス基板と、実施形 態 1に説明した対向基板作製工程で作製された対向基板とを貼り合わせた後、液晶 材料を注入して液晶表示パネルが作製される。その後、実施形態 1に説明した検査 工程が行われ、検査工程で断線が検出された場合には、以下の断線修正工程が行 われる。
[0194] <断線修正工程 >
断線修正工程は、以下に説明する予備配線接続工程と、切断工程とを備えている
[0195] なお、予備配線接続工程については、実施形態 1と実質的に同じであるため、その 説明を省略する。
〜切断工程〜
実施形態 1の断線位置 と同様な位置でソース線2が断線した場合には、断線位置 X力ソースドライバ 7に近い位置にあるので、断線位置 Xよりも下側のソース線 2bにか 力る負荷は、断線して 、な 、正常なソース線 2にかかる負荷と比べて大差がな 、ので 、予備配線を構成する第 2配線 3bと第 2予備容量 10bの第 1電極 10eとの接続を切 断する。一方、断線位置 Xよりも上側のソース線 2aに力かる負荷は、正常なソース線
2にかかる負荷と比べてかなり小さくなるので、予備配線を構成する第 1配線 3aと第 1 予備容量 10aの第 1電極 10cとの接続は切断しない。
[0196] 具体的には、図 11に示す切断部分 B1〜B5の少なくとも 1つに対して、図 8に示す ようにガラス基板 20側力もレーザー光等の光エネルギー 23を照射して、その照射部 分の第 1配線 3aを破壊する。これによつて、断線位置 Xよりも上側のソース線 2aにか かる負荷が、正常なソース線 2にかかる負荷と同程度になり、ソース線 2aに印加され る信号波形が調整される。
[0197] 次に、予備配線 3を構成する第 1配線 3a及び第 2配線 3bに対して、それぞれ機能 させる第 1予備容量 10a及び第 2予備容量 10bの使い分けについて、実施形態 1と 同様に図 9を用いて説明する。
[0198] 以下に、具体的な断線位置による第 1予備容量 10a及び第 2予備容量 10bの切断 要領について説明する。
[0199] (a)領域 Aでソース線 2が断線した場合、第 1配線 3aについては、何も処理を行わ ず、第 2配線 3bについては、切断部分 B1で切断する。
[0200] (b)領域 Bでソース線 2が断線した場合、第 1配線 3aについては、切断部分 B5で切 断して、第 2配線 3bについては、切断部分 B2で切断する。
[0201] (c)領域 Cでソース線 2が断線した場合、第 1配線 3aについては、切断部分 B4で切 断し、第 2配線 3bについては、切断部分 B3で切断する。
[0202] (d)領域 Dでソース線 2が断線した場合、第 1配線 3aについては、切断部分 B3で 切断し、第 2配線 3bについては、切断部分 B4で切断する。
[0203] (e)領域 Eでソース線 2が断線した場合、第 1配線 3aについては、切断部分 B2で切 断し、第 2配線 3bについては、切断部分 B5で切断する。
[0204] (f)領域 Fでソース線 2が断線した場合、第 1配線 3aについては、切断部分 B1で切 断し、第 2配線 3bについては、何も処理を行わない。
[0205] このように、上述の切断要領 (a)〜(f)を実行することにより、断線により分断された ソース線に力かる負荷力 断線していない正常なソース線 2にかかる負荷と同等にな つて、予備配線 3を介してソース線 2に印加されるソース信号に応じた信号波形が調 整される。
[0206] 上記実施形態 1では、予備容量 10a及び 10bの各第 1電極 10cが予備配線 3 (第 1 配線 3a及び第 2配線 3b)に対して接続可能に構成されていたので、例えば、第 1配 線 3aに 3つの予備容量 10aを機能可能にする場合には、図 5に示す交差部分 Cl〜 C5のうちの 3つの箇所に光エネルギーを照射する必要があった力 本実施形態では 、図 11に示す切断部分 B1〜B5のうちの B4のみに光エネルギーを照射すればよい 。このように、本実施形態によれば、光エネルギーを照射する箇所を減らすことができ る。これにより、上記断線修正工程を簡略化でき、また、光エネルギーを照射する箇 所付近の配線パターンの損傷を抑制することができる。
[0207] 以上説明したように本発明の液晶表示装置 50では、予備配線(3a及び 3b)力 ソ ース線 2に対して接続可能なので、複数のソース線 2の何れかが断線した際には、そ の断線したソース線(2a及び 2b)と予備配線(3a及び 3b)とを接続することにより、断 線位置力も先のソース線 2bにも予備配線(3a及び 3b)を介して、ソース信号に応じた 信号電圧が印加されることになる。さらに、予備容量(10a及び 10b)を構成する第 1 電極 10cが、予め、予備配線(3a及び 3b)に接続されているので、断線したソース線 (2a及び 2b)と予備配線とを接続することにより、断線したソース線(2a及び 2b)に対 して、予備容量(10a及び 10b)が機能可能な状態になる。また、予備容量(10a及び 10b)が複数であるときには、必要に応じて、予備容量(10a及び 10b)の第 1電極 10 cと予備配線 (3a及び 3b)との接続を所定数だけ切断することにより、機能可能な予 備容量(10a及び 10b)の個数を調整することができる。これにより、断線により分断さ れたソース線(2a及び 2b)に力かる負荷が調整され、予備配線(3a及び 3b)を介して ソース線(2a及び 2b)に印加されるソース信号に応じた信号波形を調整することがで きる。従って、ソース線 2の断線位置に関係なぐ表示品位の低下が抑制されるソー ス線 2の断線修正を行うことができる。
[0208] 《発明の実施形態 3》
本発明は、上記実施形態 1及び 2について、以下のような構成としてもよい。
[0209] 上記実施形態 1及び 2では、予備容量 10a及び 10bが液晶表示パネル 40 (ァクティ ブマトリクス基板)上に設けられていたが、本実施形態では、予備容量 10がソース基 板 25に設けられている。
[0210] 図 13は、本発明の実施形態 3に係る液晶表示装置 50aを示す平面図である。
[0211] 液晶表示装置 50aは、液晶表示パネル 40と、その液晶表示パネル 40の左辺に設 けられたゲートドライバ 9と、ゲートドライバ 9に左辺に設けられたゲート基板 24と、そ の液晶表示パネル 40の上辺に設けられたソースドライバ 7と、ソースドライバ 7の上辺 に設けられたソース基板 25と、ゲート基板 2とソース基板 25との間に設けられた FPC 26とを有して!/ヽる。
[0212] ゲート基板 24は、ゲートドライバ 9に信号を入力するための素子基板であり、ソース 基板 25は、ソースドライバ 7に信号を入力するための素子基板である。
[0213] FPC26は、種々の配線層がポリイミドフィルムに挟持されたフレキシブルプリント配 線基板(Flexible Printed Circuit)である。
[0214] ここで、予備配線 3 (実施形態 1及び 2における第 2配線 3b)は、ノ ッファ部の出力 側からソース基板 25、 FPC26及びゲート基板 24、ゲートドライバ 9を経由して、液晶 表示パネル 40の下辺部分に延びている。そして、ソース基板 25内の予備配線 3に予 備容量 10が設けられている。そのため、ソース線 2における断線位置に合わせて適 宜、予備容量 10を機能可能な状態にすることにより、予備配線 3を介してソース線 2 に印加されるソース信号に応じた信号波形を調整することができ、表示品位の低下を 抑帘 Uすることができる。
[0215] なお、本実施形態では、予備容量 10がソース基板 25に設けられていたが、予備容 量 10は、ゲート基板 24に設けられていてもよぐさらには、ゲート基板 24及びソース 基板 25の双方に設けられて 、てもよ 、。
[0216] 《発明の実施形態 4》
本発明は、上記実施形態 1及び 2について、以下のような構成としてもよい。
[0217] 上記実施形態 1及び 2では、予備容量 10a及び 10bが液晶表示パネル 40 (ァクティ ブマトリクス基板)上に設けられていたが、本実施形態では、予備容量 10がソース基 板 25に設けられている。
[0218] 図 14は、本発明の実施形態 4に係る液晶表示装置 50bを示す平面図である。
[0219] 液晶表示装置 50bは、液晶表示パネル 40と、その液晶表示パネル 40の左辺に設 けられたゲートドライバ 9と、その液晶表示パネル 40の上辺に設けられたソースドライ バ 7と、ソースドライバ 7の上辺に設けられたソース基板 25aとを有している。
[0220] ソース基板 25aは、ゲートドライバ 9及びソースドライバ 7に信号を入力するための素 子基板である。
[0221] ここで、予備配線 3 (実施形態 1及び 2における第 2配線 3b)は、ノ ッファ部の出力 側からソース基板 25a及び各ゲートドライバ 9を経由して、液晶表示パネル 40の下辺 部分に延びている。そして、ソース基板 25a内の予備配線 3に予備容量 10が設けら れている。そのため、ソース線 2における断線位置に合わせて適宜、予備容量 10を 機能させることにより、予備配線 3を介してソース線 2に印加されるソース信号に応じ た信号波形を調整することができ、表示品位の低下を抑制することができる。
[0222] 以上説明したように、本発明の液晶表示装置 50、 50a及び 50bでは、予備配線(3 a及び 3b)が、ソース線 2に対して接続可能なので、複数のソース線 2の何れかが断 線した際には、その断線したソース線(2a及び 2b)と予備配線(3a及び 3b)とを接続 することにより、断線位置カゝら先のソース線 2bにも予備配線(3a及び 3b)を介して、ソ ース信号に応じた信号電圧が印加されることになる。そして、その予備配線(3a及び 3b)には、信号波形を調整するため予備容量(10a及び 10b)が設けられているので 、断線位置に合わせて適宜、予備容量を機能可能な状態にすることにより、予備配 線(3a及び 3b)を介して表示用配線に印加されるソース信号に応じた信号波形が調 整され、表示品位の低下を抑制することができる。
[0223] また、本実施形態及び上記実施形態 3では、予備容量 10が設けられた基板 (ソー ス基板)が、アクティブマトリクス基板とは別の基板であるので、上記予備容量接続ェ 程と、上記予備配線接続工程とを同時に、或いは、連続して行うことが難しい。これは 、ソース線 2をー且修正してしまうと、断線位置がソース線 2上のどこにあるのかを検 出することが困難であるからである。すなわち、ー且ソース線 2に断線修正を行うと、 断線が修正されたゆえに、どの液晶表示パネル 40の予備配線(3a及び 3b)にどれ だけの予備容量(10a及び 10b)を接続すればよいの力識別するのが困難になる。
[0224] さらに、上記実施形態 1では、予備容量の第 1電極が予備配線に予め接続されて いないタイプの予備容量を有する液晶表示装置を説明し、上記実施形態 2では、予 備容量の第 1電極が予備配線に予め接続されているタイプの予備容量を有する液晶 表示装置を説明したが、本発明の液晶表示装置は、それら両方のタイプの予備容量 が混在していてもよい。
産業上の利用可能性
以上説明したように、本発明は、ソース線の断線位置に関係なぐ表示品位の低下 が抑制されるソース線の断線修正を行うことができるので、 TV、モニターなどに用い られるマトリクス型液晶表示装置について有用である。

Claims

請求の範囲
[1] 表示のための信号電圧が印加される複数の表示用配線と、
上記複数の表示用配線の少なくとも 1つの両端側に対して接続可能に構成された 予備配線と、
上記予備配線に介設され、上記予備配線におけるインピーダンス変換のためのバ ッファ部とを備えた表示装置であって、
上記表示用配線に上記予備配線が接続された状態で、上記表示用配線に印加さ れる信号波形を調整するための予備容量を備えていることを特徴とする表示装置。
[2] 請求項 1に記載された表示装置において、
上記予備容量は、互いに対向して配置された第 1電極及び第 2電極と、該第 1電極 及び第 2電極の間に挟持された第 1絶縁膜とにより構成されていることを特徴とする 表示装置。
[3] 請求項 2に記載された表示装置において、
上記第 1電極は、上記予備配線に接続されていることを特徴とする表示装置。
[4] 請求項 2に記載された表示装置において、
上記第 1電極は、上記予備配線に接続可能に構成されていることを特徴とする表 示装置。
[5] 請求項 2に記載された表示装置において、
上記予備容量を複数備え、
上記複数の予備容量のうちの少なくとも 1つは、上記第 1電極が、上記予備配線に 接続されて 、ると共に、上記複数の予備容量のうちの他の予備容量の第 1電極は、 上記予備配線に接続可能に構成されていることを特徴とする表示装置。
[6] 請求項 2に記載された表示装置において、
上記予備配線は、上記表示用配線に対して第 2絶縁膜を介して設けられて ヽると 共に、上記第 2絶縁膜にそれぞれコンタクトホールを形成することにより、上記表示用 配線に接続可能に構成されていることを特徴とする表示装置。
[7] 請求項 6に記載された表示装置において、
上記第 1電極は、上記予備配線に対して第 3絶縁膜を介して設けられていると共に 、上記第 3絶縁膜にコンタクトホールを形成することにより、上記予備配線に接続可 能に構成されていることを特徴とする表示装置。
[8] 請求項 1に記載された表示装置において、
上記予備配線は、上記バッファ部の入力側である第 1配線と、上記バッファ部の出 力側である第 2配線とにより構成され、
上記予備容量は、上記第 1配線に設けられていることを特徴とする表示装置。
[9] 請求項 1に記載された表示装置において、
上記予備配線は、上記バッファ部の入力側である第 1配線と、上記バッファ部の出 力側である第 2配線とにより構成され、
上記予備容量は、上記第 2配線に設けられて ヽることを特徴とする表示装置。
[10] 請求項 1に記載された表示装置において、
上記予備配線は、上記バッファ部の入力側である第 1配線と、上記バッファ部の出 力側である第 2配線とにより構成され、
上記予備容量は、上記第 1配線及び上記第 2配線の双方に設けられていることを 特徴とする表示装置。
[11] 請求項 1に記載された表示装置において、
上記表示用配線は、ソース信号が入力されるソース線であることを特徴とする表示 装置。
[12] 請求項 1に記載された表示装置において、
上記複数の表示用配線は、基板に形成され、
上記予備容量は、上記基板に設けられて!/ヽることを特徴とする表示装置。
[13] 請求項 1に記載された表示装置において、
表示に寄与する表示領域と、該表示領域の外側に設けられて表示に寄与しない非 表示領域とを備え、
上記予備容量は、上記非表示領域に設けられて!/ヽることを特徴とする表示装置。
[14] 請求項 7に記載された表示装置において、
上記第 1絶縁膜、上記第 2絶縁膜及び上記第 3絶縁膜は、同一の絶縁膜であること を特徴とする表示装置。
[15] 請求項 14に記載された表示装置において、
複数の画素と、
上記複数の画素にそれぞれ設けられると共に上記表示用配線に接続され、信号電 圧が供給される画素電極と、
上記同一の絶縁膜により形成され、上記画素電極における上記信号電圧を保持す るための補助容量とを備えていることを特徴とする表示装置。
[16] 請求項 3に記載された表示装置において、
上記予備容量を 1つ備えていることを特徴とする表示装置。
[17] 表示のための信号電圧が印加される複数の表示用配線と、
上記複数の表示用配線の少なくとも 1つの両端側に対して、接続可能に構成され た予備配線と、
上記予備配線に介設され、上記予備配線におけるインピーダンス変換のためのバ ッファ部とを備えた表示装置であって、
上記表示用配線に上記予備配線が接続された状態で、上記表示用配線に印加さ れる信号波形を調整するための予備容量を備え、
上記予備容量は、互いに対向して配置された第 1電極及び第 2電極と、該第 1電極 及び第 2電極の間に挟持された第 1絶縁膜とにより構成され、
上記複数の表示用配線の何れかが断線しており、
上記断線した表示用配線と上記予備配線とが接続されていると共に、 上記予備配線に、上記第 1電極が接続されていることを特徴とする表示装置。
[18] 表示のための信号電圧が印加される複数の表示用配線と、
上記複数の表示用配線の少なくとも 1つの両端側に対して、接続可能に構成され た予備配線と、
上記予備配線に介設され、上記予備配線におけるインピーダンス変換のためのバ ッファ部とを備えた液晶表示装置であって、
上記表示用配線に上記予備配線が接続された状態で、上記表示用配線に印加さ れる信号波形を調整するための予備容量を備えていることを特徴とする液晶表示装 置。
[19] 表示のための信号電圧が印加される複数の表示用配線と、
上記複数の表示用配線の少なくとも 1つの両端側に対して、接続可能に構成され た予備配線と、
上記予備配線に介設され、上記予備配線におけるインピーダンス変換のためのバ ッファ咅と、
上記表示用配線に上記予備配線が接続された状態で、上記表示用配線に印加さ れる信号波形を調整するための予備容量とを備え、
上記予備容量は、互いに対向して配置された第 1電極及び第 2電極と、該第 1電極 及び第 2電極の間に挟持された第 1絶縁膜とにより構成され、
上記予備容量の第 1電極が上記予備配線に予め接続された表示装置の製造方法 であって、
上記表示用配線の断線の存在を検出する断線配線検出工程と、
上記断線配線検出工程で断線が検出された表示用配線と上記予備配線とを接続 する予備配線接続工程とを備えることを特徴とする表示装置の製造方法。
[20] 請求項 19に記載された表示装置の製造方法において、
上記予備容量は、複数設けられ、
上記複数の予備容量のうちの少なくとも 1つの予備容量に対し、上記第 1電極と上 記予備配線との接続を切断する切断工程を備えることを特徴とする表示装置の製造 方法。
[21] 請求項 20に記載された表示装置の製造方法において、
上記断線配線検出工程で検出された表示用配線における断線位置を検出する断 線位置検出工程を備え、
上記切断工程は、上記断線位置検出工程で検出された断線位置に応じた個数分 の上記予備容量に対し、上記第 1電極と上記予備配線との接続を切断することを特 徴とする表示装置の製造方法。
[22] 表示のための信号電圧が印加される複数の表示用配線と、
上記複数の表示用配線の少なくとも 1つの両端側に対して、接続可能に構成され た予備配線と、 上記予備配線に介設され、上記予備配線におけるインピーダンス変換のためのバ ッファ咅と、
上記表示用配線に上記予備配線が接続された状態で、上記表示用配線に印加さ れる信号波形を調整するための予備容量とを備え、
上記予備容量は、互いに対向して配置された第 1電極及び第 2電極と、該第 1電極 及び第 2電極の間に挟持された第 1絶縁膜とにより構成され、
上記予備容量の第 1電極が上記予備配線に予め接続されていない表示装置の製 造方法であって、
上記表示用配線の断線の存在を検出する断線配線検出工程と、
上記断線配線検出工程で断線が検出された表示用配線と上記予備配線とを接続 する予備配線接続工程と、
上記予備容量の第 1電極と上記予備配線とを接続する予備容量接続工程を備える ことを特徴とする表示装置の製造方法。
請求項 22に記載された表示装置の製造方法において、
上記断線配線検出工程で検出された表示用配線における断線位置を検出する断 線位置検出工程を備え、
上記予備容量接続工程は、上記断線位置検出工程で検出された断線位置に応じ た個数分の上記予備容量に対し、上記第 1電極と上記予備配線とを接続することを 特徴とする表示装置の製造方法。
PCT/JP2005/021018 2005-01-27 2005-11-16 表示装置、液晶表示装置、及び表示装置の製造方法 WO2006080129A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/722,818 US8730423B2 (en) 2005-01-27 2005-11-16 Display device, liquid crystal display device, and method for producing a display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-020203 2005-01-27
JP2005020203A JP2008058337A (ja) 2005-01-27 2005-01-27 表示装置、液晶表示装置、及び表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2006080129A1 true WO2006080129A1 (ja) 2006-08-03

Family

ID=36740163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021018 WO2006080129A1 (ja) 2005-01-27 2005-11-16 表示装置、液晶表示装置、及び表示装置の製造方法

Country Status (3)

Country Link
US (1) US8730423B2 (ja)
JP (1) JP2008058337A (ja)
WO (1) WO2006080129A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021075A1 (ja) * 2008-08-20 2010-02-25 シャープ株式会社 表示装置及びその製造方法、並びにアクティブマトリクス基板
CN102301408A (zh) * 2009-02-13 2011-12-28 夏普株式会社 显示装置及其制造方法、以及有源矩阵基板

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216204B2 (ja) 2006-10-31 2013-06-19 株式会社半導体エネルギー研究所 液晶表示装置及びその作製方法
FR2920908B1 (fr) * 2007-09-07 2012-07-27 Thales Sa Dispositif de visualisation comportant un ecran a cristaux liquides a affichage securise
US8858528B2 (en) 2008-04-23 2014-10-14 Ncontact Surgical, Inc. Articulating cannula access device
US8390606B2 (en) 2008-10-07 2013-03-05 Sharp Kabushiki Kaisha Display device, method for manufacturing same, and active matrix substrate
WO2012056497A1 (ja) * 2010-10-28 2012-05-03 パナソニック株式会社 アクティブマトリクス基板の検査方法
JP5770266B2 (ja) 2011-04-08 2015-08-26 シャープ株式会社 表示装置
TW201421304A (zh) * 2012-11-22 2014-06-01 Ibm 修補觸控面板之方法、修補組件、及觸控面板
CN110352452B (zh) * 2017-02-28 2021-09-28 夏普株式会社 配线基板和显示装置
US20190079362A1 (en) * 2017-09-14 2019-03-14 HKC Corporation Limited Display panel and repair method thereof
CN109324454B (zh) * 2018-09-30 2020-10-16 惠科股份有限公司 一种显示面板和显示装置
US11460726B2 (en) 2020-06-30 2022-10-04 Sharp Kabushiki Kaisha Liquid crystal display device with improved broken source line correction
CN111857435B (zh) * 2020-07-28 2024-04-19 京东方科技集团股份有限公司 一种触控显示面板及其测试方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355729A (ja) * 1991-06-03 1992-12-09 Matsushita Electric Ind Co Ltd 液晶表示装置用アレイ基板の製造方法
JPH10123545A (ja) * 1996-10-15 1998-05-15 Advanced Display:Kk 液晶表示装置の表示パネル
JP2001100229A (ja) * 1999-09-28 2001-04-13 Nec Corp 液晶表示装置およびその断線補修方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023425A (en) * 1960-10-19 1962-03-06 John B Illo Apparatus for receiving and treating waste materials
US4355729A (en) * 1981-01-15 1982-10-26 Maguire Daniel J Single service childproof closure
US5268678A (en) 1989-06-20 1993-12-07 Sharp Kabushiki Kaisha Matrix-type display device
JPH0323425A (ja) 1989-06-20 1991-01-31 Sharp Corp マトリクス型表示装置
JP3272558B2 (ja) 1994-12-19 2002-04-08 シャープ株式会社 マトリクス型表示装置
JPH1152928A (ja) 1997-08-06 1999-02-26 Mitsubishi Electric Corp 液晶駆動装置
JP2002196352A (ja) * 2000-12-07 2002-07-12 Koninkl Philips Electronics Nv 予備配線を有する液晶表示装置
JP2002221947A (ja) 2001-01-26 2002-08-09 Sharp Corp マトリクス型表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355729A (ja) * 1991-06-03 1992-12-09 Matsushita Electric Ind Co Ltd 液晶表示装置用アレイ基板の製造方法
JPH10123545A (ja) * 1996-10-15 1998-05-15 Advanced Display:Kk 液晶表示装置の表示パネル
JP2001100229A (ja) * 1999-09-28 2001-04-13 Nec Corp 液晶表示装置およびその断線補修方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021075A1 (ja) * 2008-08-20 2010-02-25 シャープ株式会社 表示装置及びその製造方法、並びにアクティブマトリクス基板
JP5149967B2 (ja) * 2008-08-20 2013-02-20 シャープ株式会社 表示装置
RU2479045C1 (ru) * 2008-08-20 2013-04-10 Шарп Кабусики Кайся Устройство отображения
CN102301408A (zh) * 2009-02-13 2011-12-28 夏普株式会社 显示装置及其制造方法、以及有源矩阵基板
CN102301408B (zh) * 2009-02-13 2013-09-25 夏普株式会社 显示装置及其制造方法、以及有源矩阵基板

Also Published As

Publication number Publication date
JP2008058337A (ja) 2008-03-13
US8730423B2 (en) 2014-05-20
US20070285595A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
WO2006080129A1 (ja) 表示装置、液晶表示装置、及び表示装置の製造方法
JP3418653B2 (ja) アクティブマトリクス型液晶表示装置
US7224032B2 (en) Electronic device, display device and production method thereof
JP4405557B2 (ja) アクティブマトリクス基板、表示装置、テレビジョン装置、アクティブマトリクス基板の製造方法、及び表示装置の製造方法
KR100719423B1 (ko) 액티브 매트릭스 기판 및 표시 장치
JP5064500B2 (ja) アクティブマトリクス基板、液晶パネル、液晶表示ユニット、液晶表示装置、テレビジョン受像機
US20160085123A1 (en) Liquid crystal display
US20070252146A1 (en) Liquid crystal display and defect repairing method for same
WO2006064832A1 (ja) アクティブマトリクス基板、アクティブマトリクス基板の製造方法、表示装置、液晶表示装置およびテレビジョン装置
WO2006064789A1 (ja) 液晶表示装置および液晶表示装置の欠陥修正方法
US20060187370A1 (en) Substrate for display device and display device equipped therewith
US6781659B2 (en) Liquid crystal display device, pixels repair method thereof, and drive method thereof
US6985194B2 (en) Matrix array substrate
JPH07230104A (ja) アクティブマトリクス型表示素子及びその製造方法
JPH1039333A (ja) アクティブマトリクス型表示装置およびその欠陥修正方法
US20040125256A1 (en) Liquid crystal display device
US6072559A (en) Active matrix display device having defect repair extension line beneath each pixel
US8446539B2 (en) Display panel and display apparatus
US7330221B2 (en) Thin film transistor array substrate and repairing method thereof
RU2441263C1 (ru) Подложка активной матрицы, панель жидкокристаллического дисплея, оборудованная ею, и способ производства подложки активной матрицы
JP2001305586A (ja) 液晶表示装置、その画素修正方法及びその駆動方法
JP3418684B2 (ja) アクティブマトリクス型液晶表示装置
JP3418683B2 (ja) アクティブマトリクス型液晶表示装置
JP2007025281A (ja) 液晶表示装置
JPH05297407A (ja) アクティブマトリクス型基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11722818

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11722818

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05806633

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5806633

Country of ref document: EP