WO2006068022A1 - ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法 - Google Patents

ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法 Download PDF

Info

Publication number
WO2006068022A1
WO2006068022A1 PCT/JP2005/023025 JP2005023025W WO2006068022A1 WO 2006068022 A1 WO2006068022 A1 WO 2006068022A1 JP 2005023025 W JP2005023025 W JP 2005023025W WO 2006068022 A1 WO2006068022 A1 WO 2006068022A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
iridium
diesel exhaust
combustion
Prior art date
Application number
PCT/JP2005/023025
Other languages
English (en)
French (fr)
Inventor
Shunji Kikuhara
Takeshi Yamashita
Hitoshi Kubo
Kazuto Itaya
Masahiro Sasaki
Original Assignee
Tanaka Kikinzoku Kogyo K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo K.K. filed Critical Tanaka Kikinzoku Kogyo K.K.
Priority to US10/586,548 priority Critical patent/US7875572B2/en
Priority to EP05816859.2A priority patent/EP1712278B1/en
Priority to CN200580004890.2A priority patent/CN1917957B/zh
Priority to JP2006522163A priority patent/JP4501012B2/ja
Publication of WO2006068022A1 publication Critical patent/WO2006068022A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/065Surface coverings for exhaust purification, e.g. catalytic reaction for reducing soot ignition temperature

Definitions

  • the present invention relates to a catalyst for treating diesel exhaust gas and a method for treating diesel exhaust gas. Specifically, the present invention relates to a catalyst capable of burning and removing particulate suspended matters contained in diesel exhaust gas, particularly carbon fine particles (soot) at a lower temperature than before.
  • exhaust gas discharged from diesel engines contains solid or liquid particulate suspended matter.
  • This particulate suspended matter is mainly composed of solid carbon particles, solid or liquid incombustible fuel hydrocarbon-based particles, and sulfides mainly composed of sulfur dioxide generated by combustion of sulfur in the fuel. It is configured.
  • a catalyst for burning particulate suspended matters a catalyst in which a noble metal such as platinum, palladium, rhodium or the like, or an oxide of such noble metal is supported as a catalyst component has been used.
  • the activation temperature (hereinafter sometimes referred to as combustion temperature) is as high as 500 ° C or higher.
  • combustion temperature is as high as 500 ° C or higher.
  • the sulfur disulfide contained in diesel exhaust gas is converted to sulfur trioxide and sulfuric acid mist, and particulate suspended matter is not removed.
  • exhaust gas purification was incomplete. Therefore, development of a catalyst suitable for the use is required for diesel exhaust gas treatment.
  • the applicant of the present application has proposed a catalyst described in Patent Document 1 as a catalyst that is active even at a low temperature of 500 ° C. or lower and can burn particulate suspended matter.
  • oxide particles which are catalyst carriers for supporting a catalyst component, are loaded with an oxide of alkali metal such as potassium instead of a noble metal as a catalyst component.
  • a catalyst capable of burning particulate suspended matter at a low combustion temperature can be obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-170483
  • the above-mentioned conventional diesel exhaust gas treatment catalyst has a certain result as compared with the activation purpose and the original purpose.
  • the activation temperature is lower. This is because the exhaust temperature from a diesel engine is 350 ° C or higher when the engine is operating under high load conditions, but the normal operating condition (for example, when a vehicle with a diesel engine is running in an urban area) Etc.) rarely exceed 300 ° C. Therefore, even if the catalyst is mounted, it may be insufficient for purifying exhaust gas in a normal operation state.
  • an object of the present invention is to provide a catalyst for treating diesel exhaust gas having a lower temperature than that of the prior art, specifically, an activation temperature of less than 350 ° C.
  • ceria-zircoua which is a complex oxide of ceria (cerium oxide: CeO) and zircoure (zirconium oxide: ZrO)
  • Or ceria which is a complex oxide of ceria and praseodymium oxide (Pr 2 O 3 or Pr 2 O 3).
  • oxide-based ceramic particles containing either praseodymium oxide or misalignment are preferred as the carrier, and have arrived at the present invention.
  • the present invention relates to a catalyst for combustion treatment of particulate suspended matters in diesel exhaust gas.
  • a combustion catalyst for treating diesel exhaust gas in which a noble metal or a noble metal oxide is supported as a catalyst component on a support made of oxide ceramic particles containing ceria zirconia or praseodymium ceria. .
  • the ceria in the carrier also has a direct combustion action on the particulate suspended matter, but as a more useful function, the ceria in the catalyst is in the form of particles on the catalyst by the oxygen storage-release action. It has an auxiliary function of supplying oxygen for burning suspended matters.
  • the use of the complex oxide form of ceria-zircoua or ceria-praseodymium oxide is more effective in heat resistance and sulfur poisoning resistance in the form of these complex oxides than in the case of ceria alone. Because there is.
  • the precious metal or precious metal oxide which is a catalyst component bears the action which the catalyst called combustion of particulate suspended solids should originally exhibit.
  • the oxide-based ceramic containing ceria-zirconia or ceria-praseodymium oxide as a support releases oxygen in the diesel exhaust gas atmosphere while releasing the noble metal or noble metal oxide.
  • Auxiliary functions are provided to promote the combustion of particulate suspended matter.
  • the content of ceria in the oxide ceramic particles constituting the support is preferably as high as possible. Specifically, it is preferable to contain 45% by weight or more of ceria with respect to the weight of the support. As described above, ceria has an action of supplying oxygen to burn particulate suspended matter at a low temperature, and even if it is less than 50% by weight, it has an effect of reducing the activation temperature. In this case, particulate suspended matter This is because it is difficult to completely burn. A more preferable range of the ceria content is 45 to 95% by weight.
  • this carrier is preferably one in which the balance other than ceria is zircoure or praseodymium oxide, but may contain other oxides. For example, alumina, silica, titania and the like may be included. In particular, a carrier further containing yttria and lanthanum oxide, which will be described later, exhibits preferable characteristics.
  • the present inventors have further added yttria (yttrium oxide: YO) or oxidized oxide to the ceria-zirconia or ceria-praseodymium oxide.
  • yttria yttrium oxide: YO
  • oxidized oxide to the ceria-zirconia or ceria-praseodymium oxide.
  • grains containing a tantalum was discovered. This carrier is also
  • the catalyst has an auxiliary function by oxygen storage-release action, and has improved heat resistance and sulfur poisoning resistance.
  • the heat resistance of the catalyst is further improved by containing yttria or lanthanum oxide. It is.
  • the content of ceria is as large as possible. Specifically, it is preferable that ceria is 45 to 95% by weight, and yttria or lanthanum oxide is 0 ⁇ :! to 15% by weight. Most preferably, the remainder other than ceria, yttria, and lanthanum oxide is composed of ceria-zircoua-yttria composite oxide or ceria-zircoua-lanthanum oxide composite oxide. However, other oxides may be included. For example, alumina, silica, titania and the like may be included.
  • the catalyst component supported on the support is preferably ruthenium, iridium, platinum or silver, which is preferably a noble metal.
  • Particularly preferred noble metal components are those containing ruthenium or iridium as a main component.
  • the activity is best when the carrier is ceria-zircoua or ceria-praseodymium oxide.
  • a carrier further containing yttria and lanthanum oxide (ceria, dinoleconia, yttria, and ceria praseodymium lanthanum oxide).
  • ceria zirconia yttria or preriaodymium lanthanum oxide as a carrier.
  • the catalyst component may be in the metal state of these noble metals, or may be one in which all or part of it is an oxide.
  • the amount of the noble metal (norretium, iridium, platinum, silver) supported is preferably in an appropriate range. This is because the purpose of low-temperature combustion is fully exhibited.
  • the supported amount of the catalyst component is preferably 0.1 to 10% by weight with respect to the weight of the carrier.
  • the lower limit of 0.1% by weight is the minimum supported amount for ensuring activity.
  • the upper limit of 10% by weight is a force that does not improve the activity (decrease in the activation temperature) even if it is supported any more.
  • a particularly preferable loading is 0.:! To 5% by weight.
  • a catalyst carrying ruthenium or iridium (hereinafter, sometimes simply referred to as a ruthenium catalyst or an iridium catalyst) is more than carrying these precious metals alone.
  • the one that additionally supports other precious metals is preferred.
  • the additional catalyst component is preferably a ruthenium catalyst, and thus iridium and / or silver.
  • the supported amount of iridium is preferably 1: 20-20: 1 with the ratio of the supported amount of ruthenium and the supported amount of iridium (ruthenium: iridium) being 1: 20-20: 1 (more preferably 1: 20-3: 1).
  • the ratio of the amounts of both metals supported is preferably 1: 1-10: 1, more preferably 1: 3-3: 1). If the amount of iridium and silver supported is less than the above ratio, the effect is not exhibited. On the other hand, if these loadings are too large, the catalytic properties of ruthenium, the main catalyst component, will be diluted.
  • iridium demonstrates an effect by addition of a small amount compared with silver.
  • a preferred additional catalyst component in the iridium catalyst is at least one of platinum, rhodium, ruthenium, palladium, and silver. Particularly preferred among these additional noble metals are platinum, rhodium and ruthenium.
  • the supported amount of platinum is preferably such that the ratio of the supported amount of iridium to the supported amount of platinum (iridium: platinum) is 1: 30-30: 1 (more preferably 1: 3-3 : 1).
  • the rhodium loading is preferably such that the ratio of the iridium loading to the rhodium loading (iridium: rhodium) is 1: 30-30: 1 (more preferably 1: 3 to 3: 1).
  • the supported amount of ruthenium is preferably such that the ratio of the supported amount of iridium to the supported amount of ruthenium (iridium: ruthenium) is 1:20 to 20: 1 (more preferably, 1: 3 to : 10: 1). As described above, this is because the effect of supporting an additional noble metal is exhibited and the characteristics of iridium as a main component are not deteriorated. Note that a plurality of these additional metals may be supported. For example, two kinds of noble metals, ruthenium and silver, may be additionally supported with respect to iridium.
  • the combustion catalyst according to the present invention can be produced by a simple method. Basically, metal species such as noble metal metal powder, noble metal oxide powder, colloidal particles, alkoxide and metal salt (nitrate, carbonate, sulfate, acetate, etc.) hydroxide, which are catalyst components, are used.
  • the catalyst containing the catalyst component can be obtained by impregnating the aqueous solution containing the oxide-based ceramic powder serving as a carrier, attaching a metal species to the surface of the ceramic powder, and then drying and further heat-treating. This is the same as the usual method for producing a catalyst.
  • a noble metal as a main component is supported on the support.
  • a mixed aqueous solution containing additional metal species may be used as the aqueous solution.
  • a catalyst on which a noble metal as a main component is supported may be manufactured first, and impregnated with an aqueous solution containing an additional catalyst component metal species, or vice versa.
  • the aqueous solution for supporting additional metals separately is the same as described above.
  • the catalyst according to the present invention is supported on an appropriate base material (a ceramic honeycomb such as alumina, zirconia, titania, silica, and zeolite, or a metallic base material such as a metal honeycomb) in actual use. Is preferred.
  • a powdered catalyst can be made into a slurry, and the base material can be immersed in this to form a catalyst layer on the surface of the base material.
  • the catalyst according to the present invention can also be used in a powder state. In this case, the catalyst can be used by filling a container in a powder state and allowing exhaust gas to pass through the container.
  • a catalyst layer on the substrate by a so-called wash coating method.
  • a substrate is immersed in an oxide ceramic slurry containing ceria (zirconia, praseodymium oxide, yttria, lanthanum oxide) serving as a carrier to form a ceramic layer (wash coat) on the surface.
  • the catalyst layer can be formed by dipping in an aqueous solution containing a metal species and attaching the metal species to the ceramic layer, followed by heat treatment.
  • the thickness of the washcoat is preferably 5 to 50 ⁇ m.
  • a catalyst layer made only of an oxide ceramic containing ceria may be formed on the base material by a wash coat method.
  • an oxide such as alumina, zirconia, titania, silica, zeolite and the like conventionally used in the wash coat method is formed as an underlayer, and an oxide ceramic layer according to the present invention is formed thereon to form a double layer.
  • An oxide layer may be formed, and a catalytic metal may be supported on the oxide layer.
  • the form of the substrate is not limited to the above honeycomb shape, and may be a granular or sheet shape. In addition, it can be used as a base material for filters such as fibers and wire mesh, and various PM filters for diesel exhaust.
  • filters such as fibers and wire mesh, and various PM filters for diesel exhaust.
  • the combustion catalyst for treating diesel exhaust gas according to the present invention has sufficient activity for the combustion of particulate suspended matter in the gas, and generates combustion at a low temperature around 300 ° C. Can be used.
  • the catalyst according to the present invention operates stably for a long period of time, and can burn particulate suspended matters, particularly carbon fine particles.
  • the step of collecting particulate suspended matter in diesel exhaust gas and combusting and removing the collected particulate suspended matter with the catalyst according to the present invention includes.
  • other exhaust gas treatment may be performed before and after the treatment step with the catalyst according to the present invention.
  • a process of reducing NO in exhaust gas to N2 may be performed before the treatment process with the catalyst of the present invention.
  • Example 1 4.5. 67 g of a 5% solution of noretenum nitrate solution was impregnated in 1 g of ceria monozinoleconia powder, dried, and then calcined at 500 ° C for 0.5 hours. A catalyst (ruthenium catalyst) in which ruthenium was supported on a ceria-zircoua support was obtained. The amount of ruthenium supported by this catalyst is 3% by weight.
  • Ratio 1 As a comparative example for confirming low temperature combustion of the catalyst according to Example 1, a combustion catalyst in which platinum particles were supported as catalyst particles on alumina particles as a carrier was manufactured. After dropping 0.59 g of a dinitrodiammine platinum solution with a platinum concentration of 8.476 wt% into 1. Og alumina powder, the catalyst was manufactured by heat treatment in the same manner as in the first embodiment (platinum supported amount). 5% by weight).
  • Combustion Performance by heating a mixed powder (carbon fine powder content: 5 wt%) obtained by mixing the combustion catalyst according to Example 1 and Comparative Example 1 and fine carbon powder to burn the fine carbon powder. It was investigated. The combustion performance was examined by the TG-DTA method (thermal mass differential thermal analysis). In the test, the final heating temperature is set to 600 ° C, and the specified temperature after reaching 600 ° C from the start of heating. The mass change of the mixed powder up to the time was followed and the amount of heat generated was measured. The combustion temperature was determined by determining the temperature at which clear mass loss and heat generation began to occur in the obtained TG-DTA curve. Table 1 shows the combustion start temperature of each catalyst.
  • Example 2 and Example 3 Here, with respect to Example 1, catalysts in which iridium and silver were additionally supported in addition to ruthenium as a catalyst metal were produced, and the combustion temperatures thereof were examined. Ruthenium catalyst prepared in Example 1 (Noreteniumu 3 wt 0/0) 2g, the Shioi ⁇ iridium solution 2g of iridium concentration 1.0 wt 0/0 by impregnating the ruthenium iridium catalyst (Example 2). The ruthenium-iridium catalyst lg of Example 2 was impregnated with a silver nitrate solution lg having a silver concentration of 3.0 wt% to obtain a ruthenium iridium silver catalyst (Example 3).
  • Example 2 For these catalysts, as in Example 1, mixed powder (carbon fine powder content: 5 wt%) mixed with the catalyst and carbon fine powder was heated to burn the carbon fine powder. TG- DTA The combustion performance was examined at. Here, in the same manner as in Example 1, in addition to the initial activity (combustion start temperature immediately after production), the combustion start temperature of the catalyst heated at 650 ° C. for a predetermined time was investigated, and its heat resistance was also examined. Table 2 shows the results.
  • Example 4 a catalyst was produced by supporting ceria zirconia as a support, oxide ceramics containing yttria, and iridium as a catalyst metal. 2g of iridium content 1.0g of salt and iridium solution was impregnated into lg ceria-dinoleconia-yttria powder (average particle size about 5 / m), dried and then at 500 ° C for 2 hours Baked. Thereafter, chlorine and impurities were washed, filtered and dried overnight at 120 ° C. to obtain a catalyst. The amount of iridium supported by this catalyst is 2% by weight.
  • Example 5 A catalyst was produced using ceria-zircoua-yttria as a carrier and platinum as a catalyst metal. 0.094 g of a dinitrodiammine platinum solution having a platinum concentration of 8.476% by weight was impregnated with 1 g of ceria-dinoleconia-yttria powder (average particle size of about 5 xm), dried, and then heated at 500 ° C. Baked for hours. Thereafter, chlorine and impurities were washed, filtered, and dried overnight at 120 ° C to obtain a catalyst. The amount of platinum supported by this catalyst is 0.8% by weight.
  • Example 4 For the catalysts produced in Example 4 and Example 5, as in Example 1, mixed powder (carbon fine powder content: 5 wt%) in which the catalyst and carbon fine powder were mixed was heated to produce carbon fine powder. Combustion performance was examined using TG-DTA after burning the powder. Table 3 shows the results.
  • Example 6 Next, according to the production process in Example 4, the amount of iridium supported was adjusted by adjusting the amount of salt-iridium solution used, and the amount of iridium supported was 0.5% by weight, 1%, 2%, 3%, 5%, 10%, and 20% iridium catalysts were produced. A combustion test was conducted on these catalysts in the same way to examine their performance. Table 4 shows the results.
  • Example 7 Here, a catalyst was produced using ceria zirconia yttria as a support, iridium as a catalyst metal, and silver as an additional noble metal. Impregnated lg ceria-dinoleconia-yttria powder (average particle size about 5 / m) with lg of iridium content 1.0% iridium iridium solution, dried, and then dried at 500 ° C for 2 hours Baked. Thereafter, chlorine and impurities were washed, filtered, and dried overnight at 120 ° C. to obtain an iridium catalyst. This iridium catalyst lg is impregnated with silver nitrate solution lg having a silver concentration of 3.0% by weight. A silver catalyst was used (iridium loading: 1% by weight, silver loading: 3% by weight).
  • Example 8 In the same manner as in Example 7, a catalyst was produced by supporting Ceria-Dinoreconia-yttria as a carrier, iridium as a catalyst metal, and rhodium as an additional noble metal.
  • Iridium catalyst produced in the same process as in Example 7 iridium supported amount: 1% by weight
  • 1 g was impregnated with 0.67 g of a rhodium nitrate solution having a mouthwater concentration of 3.0% by weight to obtain an iridium-rhodium catalyst.
  • Iridium loading 1 wt%
  • rhodium loading 0.2 wt%).
  • Example 9 A catalyst was produced by supporting ceria-zirconia-yttria as a carrier, iridium as a catalyst metal, and platinum as an additional metal.
  • An iridium catalyst produced in the same process as in Example 7 (iridium supported amount: 1 wt%) 1 ⁇ impregnated with 0.059 g of a dinitrodiamine platinum solution having a platinum concentration of 8.476 wt% (Iridium carrying amount: 1% by weight, platinum carrying amount: 0.5% by weight).
  • Example 10 A catalyst was produced by supporting ceria-zirconia-yttria as a carrier, iridium as a catalyst metal, and ruthenium as an additional metal.
  • Iridium catalyst produced in the same process as in Example 7 iridium supported amount: 1% by weight
  • lg was impregnated with 0.022 g of a 4.5% noretenium nitrate solution to give an iridium-ruthenium catalyst (iridium supported amount) : 1 weight 0/0, ruthenium weight:. 0 1 weight 0/0).
  • Example 1 Mixed powder (carbon fine powder content: 5 wt%) in which the catalyst and fine carbon powder were mixed was heated to produce carbon. Combustion performance was examined using TG-DTA after burning fine powder. Table 5 shows the results.
  • Example 11 Here, a catalyst was produced by using praseodymium lanthanum monoxide as a carrier and platinum as a catalyst metal. 0.094 g of platinum solution with platinum concentration of 8.476% by weight was impregnated with lg ceria-praseodymium oxide-lanthanum oxide powder (average particle size about 5 zm), dried, and then at 500 ° C for 2 hours. Baked. Thereafter, chlorine and impurities were washed, filtered and dried overnight at 120 ° C. to obtain a catalyst. The amount of platinum supported on this catalyst was 0.8% by weight.
  • Example 12 Next, a catalyst was prepared by supporting praseodymium lanthanum monoxide as a carrier and iridium as a catalyst metal.
  • An iridium-containing iridium salt solution having an iridium content of 1.0% was impregnated with lg ceria praseodymium lanthanum monoxide powder, dried, and calcined at 500 ° C. for 2 hours. Thereafter, chlorine and impurities were washed, filtered, and dried overnight at 120 ° C. to obtain a catalyst.
  • the amount of iridium supported was adjusted by adjusting the amount of iridium chloride used, and catalysts with iridium loading of 0.5%, 1%, 3%, 10% and 20% by weight were produced.
  • Example 2 For the produced catalyst, as in Example 1, mixed powder (carbon fine powder content: 5 wt%) in which the catalyst and fine carbon powder were mixed was heated to burn the fine carbon powder. Combustion performance was examined using DTA. Table 7 shows the results.
  • the start temperature of combustion can be further lowered by using iridium as the catalyst metal.
  • iridium as the catalyst metal.
  • those having a weight of 10% by weight or less were able to make the combustion start temperature less than 300 ° C., and particularly preferable results were obtained.
  • ⁇ M l ⁇ A catalyst was produced by using praseodymium ceria and zirconium oxide as a carrier, iridium as a catalyst metal, and silver as an additional noble metal. Iridium content 1.0. /.
  • the lg of iridium chloride solution lg was impregnated with lg ceria-zircoua-praseodymium oxide powder (average particle size about 5 / m), dried, and calcined at 500 ° C. for 2 hours. Thereafter, chlorine and impurities were washed, filtered, and dried at 120 ° C. to obtain an iridium catalyst.
  • Example 14 In the same manner as in Example 13, a catalyst was produced by supporting praseodymium ceria monozinoreconia monoxide as a carrier, iridium as a catalyst metal, and rhodium as an additional noble metal.
  • Iridium catalyst produced in the same process as in Example 7 iridium supported amount: 1% by weight
  • lg was impregnated with 0.067 g of a rhodium nitrate solution having a rhodium concentration of 3.0% by weight to obtain an iridium-rhodium catalyst (iridium (Supported amount: 1% by weight, Rhodium supported amount: 0.2% by weight).
  • ⁇ M l ⁇ A catalyst was prepared by supporting praseodymium ceria and zircoure monoxide as a support, iridium as a catalyst metal, and platinum as an additional metal.
  • Iridium catalyst produced in the same process as in Example 13 iridium supported amount: 1% by weight
  • Iridium catalyst produced in the same process as in Example 13 (iridium supported amount: 1% by weight) 1 ⁇ was impregnated with 0.059 g of a dinitrodiammine platinum solution having a platinum concentration of 8.476% by weight, and iridium-platinum catalyst. (Iridium loading: 1 wt%, platinum loading: 0.5 wt%).
  • a catalyst was produced by supporting iridium as a catalyst metal and ruthenium as an additional metal using ⁇ Ml ⁇ ceria-zircourea praseodymium as a carrier.
  • Iridium catalyst produced in the same process as in Example 13 iridium loading: 1% by weight
  • lg was impregnated with 0.022 g of a 4.5% ruthenium nitrate solution to give an iridium-ruthenium catalyst (iridium loading) : 1 wt%, ruthenium loading: 0.1 wt%).
  • Example 2 For the catalysts of Examples 12 to 15 produced as described above, as in Example 1, mixed powder (carbon fine powder content: 5% by weight) obtained by mixing the catalyst and fine carbon powder was heated to produce Combustion performance was examined using TG-DTA after burning fine powder. Table 8 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、ディーゼル排ガス中の粒子状浮遊物を燃焼処理するための触媒であって、セリア-ジルコニア又はセリア-酸化プラセオジムを含む酸化物系セラミック粒子からなる担体に、触媒成分として貴金属又は貴金属の酸化物が担持されてなるディーゼル排ガス処理用の燃焼触媒である。本発明においては、担持する貴金属に応じて、担体が更にイットリア又は酸化ランタンを含む酸化物系セラミック粒子を用いることが好ましい。本発明は、排ガス中の粒子状浮遊物の燃焼に対して十分な活性を有し、300°C付近の低温で燃焼を生じさせることができる。そして、長期間安定的に作動し、粒子状浮遊物、特に、炭素微粒子を燃焼することができる。  

Description

明 細 書
ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法 技術分野
[0001] 本発明は、ディーゼル排ガス処理用の触媒及びディーゼル排ガスの処理方法に関 する。詳しくはディーゼル排ガスに含有されている粒子状浮遊物、特に炭素微粒子( 煤)を従来より低温で燃焼除去可能な触媒に関する。
背景技術
[0002] ディーゼルエンジンより排出される排ガスには NOxのようなガス状物質に加えて、 固体又は液体の粒子状浮遊物が含有されている。この粒子状浮遊物は、主に固体 の炭素粒子と、固体又は液体の不燃燃料炭化水素系粒子と、燃料中の硫黄が燃焼 することにより発生した二酸化硫黄を主成分とした硫化物と、により構成されている。
[0003] かかる粒子状浮遊物は、その粒径が極めて細かいため、固体状であっても大気中 に浮遊しやすぐ人体へ取り込まれやすいという問題がある。また、排気ガス中の NO Xについては、ディーゼルエンジンの設計変更によってある程度低減できるのに対し 、粒子状浮遊物はエンジンの設計変更では十分に低減することができないことからよ り深刻な問題を有する。
[0004] 粒子状浮遊物の問題については、排ガス中からの除去によらざるを得なレ、が、その 方法としては、排気系にフィルターを設置して粒子状浮遊物を捕集し、このフィルタ 一を電気ヒーターで加熱することで捕集された粒子状浮遊物を燃焼させるものがある 。しかし、この方法では絶えずフィルターを高温に保持する必要があることから電力コ ストの上昇を招く。そこで、消費電力低減のためにフィルター表面に燃焼触媒を担持 させる手法が一般的となってレ、る。
[0005] 粒子状浮遊物を燃焼させるための触媒としては、従来から白金、パラジウム、ロジゥ ム等の貴金属又はこれら貴金属の酸化物を触媒成分として担持した触媒が用いられ ていたが、これら貴金属触媒の活性温度(以下、燃焼温度と称するときがある。)は 5 00°C以上と高い。そして、力かる高温域ではディーゼル排ガス中に含まれる二硫化 硫黄の三酸化硫黄、硫酸ミストへの転化が生じてしまい、粒子状浮遊物の除去はで きても排ガスの浄化は不完全となるという問題があった。そこで、ディーゼル排ガス処 理用にはその用途に応じた触媒の開発が求められる。
[0006] ここで、本願出願人は、 500°C以下の低温でも活性を有し粒子状浮遊物の燃焼が 可能な触媒として、特許文献 1記載の触媒を提案した。この触媒は、触媒成分を担持 する触媒担体である酸化物粒子に、触媒成分として貴金属に替えてカリウム等のァ ルカリ金属の酸化物を担持させるものであり、これにより 350〜400°C前後の低い燃 焼温度で粒子状浮遊物を燃焼可能な触媒とすることができる。
特許文献 1:特開 2001— 170483号公報
発明の開示
発明が解決しょうとする課題
[0007] 上記従来のディーゼル排ガス処理用触媒は、活性温度にぉレ、て当初の目的をタリ ァし、一応の成果を有する。し力 ながら、実際のディーゼルエンジンへの適用を考 慮すれば、活性温度はより低いことが望ましい。何故ならば、ディーゼルエンジンから の排気温度は、エンジンが高負荷状態で稼動しているときには 350°C以上となるもの の、通常の稼動状況 (例えば、ディーゼルエンジン搭載車両が市街地を走行する場 合等)においては 300°Cを超えることが少ない。従って、上記触媒を搭載しても通常 の稼動状態の排ガスを浄化するのには不十分となるおそれがある。
[0008] そこで、本発明は、従来よりも低い温度、具体的には 350°C未満の活性温度を有す るディーゼル排ガス処理用の触媒を提供することを目的とするものである。
課題を解決するための手段
[0009] 本発明者等は、上記課題を解決すべく鋭意検討を行い、触媒の構成要素である、 担体及び触媒成分の双方に対して改良を試みた。そして、担体に関する改良として 、希土類元素を含む複合酸化物の適用を検討したところ、セリア(酸化セリウム: CeO )とジルコユア(酸化ジルコニウム: Zr〇 )との複合酸化物であるセリア—ジルコユア、
2 2
又は、セリアと酸化プラセオジム(Pr O 又は Pr O )との複合酸化物であるセリア一
6 11 2 3
酸化プラセオジムのレ、ずれかを含む酸化物系セラミック粒子が担体として好ましレ、こ とを見出し、本発明に想到した。
[0010] 即ち、本発明は、ディーゼル排ガス中の粒子状浮遊物を燃焼処理するための触媒 であって、セリアージルコニァ又はセリア一酸化プラセオジムを含む酸化物系セラミツ ク粒子からなる担体に、触媒成分として貴金属又は貴金属の酸化物が担持されてな るディーゼル排ガス処理用の燃焼触媒である。
[0011] 本発明において、担体中のセリアは、粒子状浮遊物に対して直接の燃焼作用も一 応は有するが、それ以上に有用な機能として、酸素吸蔵—放出作用により触媒上の 粒子状浮遊物を燃焼するための酸素を供給するという補助的機能を有する。そして、 セリア—ジルコユア又はセリア—酸化プラセオジムの複合酸化物の形態を採用する のは、セリア単独の場合よりも、これら複合酸化物の形態の方が、耐熱性、耐硫黄被 毒性に優れた効果があるからである。尚、粒子状浮遊物の燃焼という触媒が本来発 揮すべき作用は、触媒成分である貴金属又は貴金属酸化物が担う。即ち、本発明に 係る触媒においては、担体であるセリア—ジルコニァ又はセリア—酸化プラセオジム を含む酸化物系セラミックがディーゼル排ガス雰囲気中の酸素を吸蔵しつつ放出し、 貴金属又は貴金属酸化物は、担体の補助的機能を受けて粒子状浮遊物の燃焼を 促進させるようになつている。
[0012] そして、担体を構成する酸化物セラミック粒子のセリアの含有量は、できるだけ多い 方が好ましぐ具体的には、担体重量に対して 45重量%以上のセリアを含有すること が好ましい。上記のように、セリアは、低温で粒子状浮遊物を燃焼させるために酸素 を供給する作用を有するものであり、 50重量%未満でも活性温度の低減効果はある 、この場合、粒子状浮遊物を完全に燃焼させることが困難となるからである。セリア 含有量のより好ましい範囲は、 45〜95重量%である。また、この担体は、セリア以外 の残部がジルコユア又は酸化プラセオジムであるものが好ましいが、それ以外の酸 化物を含んでいても良い。例えば、アルミナ、シリカ、チタニア等を含んでいても良い 。特に、後述するイットリア、酸化ランタンを更に含む担体は、好ましい特性を示す。
[0013] そして、本発明者等は、担体に関する他の改良として、上記セリア—ジルコニァ又 はセリア—酸化プラセオジムに、更に、イットリア(酸化イットリウム: Y〇)又は酸化ラ
2 3
ンタン (La O )を含む酸化物系セラミック粒子を含む担体を見出した。この担体も、
2 3
酸素吸蔵—放出作用による補助的機能を有し、耐熱性、耐硫黄被毒性が改良され ている。そして、イットリア又は酸化ランタンを含むことで触媒の耐熱性が更に改良さ れている。
[0014] この担体においても、セリアの含有量はできるだけ多い方が好ましい。具体的な構 成としては、セリアが 45〜95重量%であり、イットリア又は酸化ランタンが 0· :!〜 15重 量%とするのが好ましい。そして、セリア、イットリア、酸化ランタン以外の残部がジノレ コニァである、セリア—ジルコユア—イットリア複合酸化物又はセリア—ジルコユア— 酸化ランタン複合酸化物のみからなるものが最も好ましい。但し、それ以外の酸化物 を含んでいても良レ、。例えば、アルミナ、シリカ、チタニア等を含んでいても良い。
[0015] 以上説明した担体に対する改良に対し、担体上に担持される触媒成分は貴金属が 好ましぐルテニウム、イリジウム、白金、銀が好ましい。特に好ましい貴金属成分は、 ルテニウム、イリジウムを主成分とするものである。そして、触媒成分としてルテニウム を採用するときには、担体はセリア—ジルコユア又はセリア—酸化プラセオジムとした ときが最も活性に優れる。また、触媒成分としてイリジウムを採用するときには、担体と しては更にイットリア、酸化ランタンを含むもの(セリア一ジノレコニァ一イットリア又はセ リア一酸化プラセオジム酸化ランタン)を適用することが好ましい。更に、白金、銀に ついても、セリア一ジルコニァ一イットリア又はセリア一酸化プラセオジム酸化ランタン を担体とするのが好ましい。尚、触媒成分は、これら貴金属の金属状態のものでも良 いし、全部又は一部が酸化物となっているものでも良い。
[0016] 貴金属(ノレテニゥム、イリジウム、白金、銀)の担持量は、適切な範囲とすることが好 ましい。低温燃焼という目的を十分に発揮させるためである。具体的には、触媒成分 の担持量は、担体重量に対して 0. 1〜: 10重量%とするのが好ましい。下限値である 0. 1重量%は、活性を確保するための最低限の担持量である。一方、 10重量%の 上限については、これ以上担持しても活性の向上 (活性温度の低下)は見られない 力 である。特に好ましい担持量は、 0.:!〜 5重量%である。
[0017] そして、本発明に係る触媒において、ルテニウム又はイリジウムを担持した触媒 (以 下、単にルテニウム触媒、イリジウム触媒と称するときがある。)については、これらの 貴金属を単独で担持するより、更に、他の貴金属を追加的に担持させたものが好まし レ、。これにより、触媒活性の発現をより低温側にシフトさせることができ、燃焼温度を 低下させることができるからである。 [0018] この追加的な触媒成分の種類は、ルテニウム触媒にっレ、ては、イリジウム及び/又 は銀の適用が好ましい。この場合、イリジウムの担持量は、ルテニウムの担持量とイリ ジゥム担持量との比(ルテニウム:イリジウム)を、 1: 20-20: 1とするのが好ましレヽ(よ り好ましくは、 1:20〜3:1である)。また、銀については、両金属の担持量の比(ルテ 二ゥム:銀)を、 1:10〜10:1とするのが好ましいはり好ましくは、 1:3〜3:1である)。 イリジウム、銀の担持量が前記比率より少ない場合には、その効果を発揮しない。一 方、これら担持量が多すぎる場合、主たる触媒成分であるルテニウムの触媒特性が 希薄化されることとなる。尚、イリジウムは、銀に比べ少量の添加で効果を発揮する。
[0019] 一方、イリジウム触媒において好ましい追加的な触媒成分としては、白金、ロジウム 、ルテニウム、パラジウム、銀の少なくともいずれかである。これらの追加的貴金属の 中で特に好ましいのは、白金、ロジウム、ルテニウムである。この場合、白金の担持量 は、イリジウムの担持量と白金の担持量との比(イリジウム:白金)が 1: 30-30: 1とす るのが好ましい(より好ましくは、 1:3〜3:1である)。また、ロジウムの担持量は、イリジ ゥムの担持量とロジウムの担持量との比(イリジウム:ロジウム)が 1: 30-30: 1となるよ うにするのが好ましい(より好ましくは、 1:3〜3:1である)。更に、ルテニウムの担持量 は、イリジウムの担持量とルテニウムの担持量との比(イリジウム:ルテニウム)が 1:20 〜20:1となるようにするのが好ましい(より好ましくは、 1:3〜: 10:1である)。上記と同 様、追加的貴金属担持の効果を発揮させると共に、主成分となるイリジウムの特性を 低下させないようにするためである。尚、これら追加的金属は複数担持しても良ぐ例 えば、イリジウムに対して、ルテニウム及び銀の 2種の貴金属を追加的に担持しても 良い。
[0020] 本発明に係る燃焼触媒は簡易な方法で製造できる。基本的には、触媒成分となる 貴金属の、金属状粉末、貴金属酸化物の粉末、コロイド粒子、アルコキシドや、金属 塩 (硝酸塩、炭酸塩、硫酸塩、酢酸塩等)水酸化物といった金属種を含む水溶液に、 担体となる酸化物系セラミック粉を含浸させ、セラミック粉の表面に金属種を付着させ た後、乾燥させ、更に熱処理することで触媒成分が担持された触媒とすることができ 、これは通常の触媒の製造方法と同様である。
[0021] 尚、追加的な触媒成分の担持については、担体に主成分となる貴金属を担持する 際の水溶液として、追加的な金属の金属種を含む混合水溶液を用いても良レ、。また 、主成分となる貴金属が担持された触媒を先に製造して、これを追加的な触媒成分 の金属種を含む水溶液に含浸させても良いし、その逆でも良い。追加的金属を別々 に担持させる場合の水溶液は、上記同様、これらの金属状粉末、酸化物粉末、コロイ ド粒子、アルコキシドや、金属塩 (硝酸塩、炭酸塩、硫酸塩、酢酸塩等)、水酸化物と レ、つた金属種を含む水溶液が適用できる。
[0022] 本発明に係る触媒は、実際の使用に際して適当な基材(アルミナ、ジルコ二ァ、チ タニア、シリカ、ゼォライト等のセラミックハニカムや、メタルハニカム等の金属製基材) に支持させるのが好ましい。このとき、粉末状の触媒をスラリー化し、これに基材を浸 漬して基材表面に触媒層を形成させることができる。但し、本発明に係る触媒は、粉 末状態のまま使用することもできる。この場合、粉末状態の触媒を容器に充填し、こ れに排ガスを通過させるようにして利用できる。
[0023] また、金属基材を用いる場合には、いわゆるゥォッシュコート法により基材上に触媒 層を形成することが好ましい。このゥォッシュコート法では、担体となるセリア(ジルコニ ァ、酸化プラセオジム、イットリア、酸化ランタン)を含む酸化物系セラミックのスラリー に基材を浸漬してその表面にセラミック層(ゥォッシュコート)を形成させ、これを金属 種含有水溶液中に浸漬してセラミック層に金属種を付着させた後に熱処理を施して 触媒層を形成することができる。この場合のゥォッシュコートの厚さは 5〜50 μ mとす ることが好ましい。
[0024] 尚、本発明においては、ゥォッシュコート法により基材にセリア(ジルコニァ、酸化プ ラセオジム、イットリア、酸化ランタン)を含む酸化物系セラミックのみからなる触媒層を 形成しても良レ、。但し、従来からゥォッシュコート法で使用されるアルミナ、ジルコユア 、チタニア、シリカ、ゼォライト等の酸化物を下地層として形成し、この上に本発明に 係る酸化物系セラミックの層を形成して 2重の酸化物層を形成し、これに触媒金属を 担持させても良い。
[0025] 基材の形態については、上記ハニカム形状のものに限定されず、粒状、シート状の ものであっても良い。また、繊維、金網等のフィルター、各種のディーゼル排ガス用 P Mフィルターを基材としても良レ、。 発明の効果
[0026] 以上説明したように、本発明に係るディーゼル排ガス処理用の燃焼触媒はガス中 の粒子状浮遊物の燃焼に対して十分な活性を有し、 300°C付近の低温で燃焼を生 じさせることができる。本発明に係る触媒は、長期間安定的に作動し、粒子状浮遊物 、特に、炭素微粒子を燃焼することができる。
[0027] 本発明に係る触媒を用いたディーゼル排ガスの処理方法では、ディーゼル排ガス 中の粒子状浮遊物を捕集し、捕集した粒子状浮遊物を本発明に係る触媒により燃焼 除去する工程を含む。このとき、本発明に係る触媒による処理工程の前後において 他の排ガス処理を行っても良い。例えば、本発明の触媒による処理工程前に、排ガ ス中の NOを N2に還元する工程を行っても良レ、。このとき、本発明に係る触媒によ
2
る低温燃焼の効果がより高まる。但し、 NOは粒子状浮遊物の燃焼のための酸素源
2
とすることもでき、排ガス中に NOを存在させることにより燃焼速度を増加させることも
2
できるため、前段階での NOの還元処理は必ずしも必須ではない。
2
発明を実施するための最良の形態
[0028] 以下、本発明の好適と思われる実施の形態について説明する。
[0029] 実施例 1 : 4. 5%硝酸ノレテニゥム溶液 0. 67gを、 lgのセリア一ジノレコニァ粉末に含 浸させ、これを乾燥させた後、 500°Cで 0. 5時間焼成することで、セリア一ジルコユア 担体にルテニウムが担持された触媒 (ルテニウム触媒)を得た。この触媒のルテニゥ ム担持量は、 3重量%である。
[0030] 比 1:実施例 1に係る触媒の低温燃焼を確認すベぐ比較例として、担体である アルミナ粒子に触媒粒子として白金粒子を担持させた燃焼触媒を製造した。 白金濃 度が 8. 476重量%のジニトロジアンミン白金溶液 0. 59gを 1. Ogのアルミナ粉末に 摘下した後、第 1実施形態と同様、熱処理をすることで触媒を製造した(白金担持量 5重量%)。
[0031] 燃 実施例 1及び比較例 1に係る燃焼触媒と、炭素微粉末とを混合した混合 粉 (炭素微粉末含有量: 5重量%)を加熱して炭素微粉末を燃焼させて燃焼性能を 検討した。燃焼性能の検討は、 TG— DTA法 (熱質量 示差熱分析)により行った。 試験にあたっては、最終加熱温度を 600°Cとし、加熱開始から 600°C到達後の所定 時間までの混合粉の質量変化を追跡すると共に、発生する熱量を測定した。燃焼温 度の判定は、得られる TG— DTA曲線において、明瞭な質量減及び発熱がみられ 始めた温度を燃焼開始温度とした。表 1は、各触媒の燃焼開始温度を示す。
[表 1]
Figure imgf000009_0001
[0033] 表 1からわかるように、実施例 1に係る触媒は、燃焼開始温度が 323. 5°Cと目標で ある 350°C未満を十分クリアしている。一方、比較例 1では、炭素粉末の燃焼は生じ るものの、燃焼温度が 500°Cを超えていた。従って、本実施例に力かる触媒は、燃焼 温度の低温ィ匕に優れることが確認できた。
[0034] 実施例 2及び実施例 3:ここでは、実施例 1に対し、触媒金属としてルテニウムに加え てイリジウム、銀を追加的に担持した触媒を製造し、それらの燃焼温度について検討 した。実施例 1で製造したルテニウム触媒 (ノレテニゥム 3重量0 /0) 2gに、イリジウム濃度 1. 0重量0 /0の塩ィ匕イリジウム溶液 2gを含浸させてルテニウム イリジウム触媒とした( 実施例 2)。そして、この実施例 2のルテニウム—イリジウム触媒 lgに銀濃度 3. 0重量 %の硝酸銀溶液 lg含浸させてルテニウム イリジウム 銀触媒とした(実施例 3)。
[0035] これらの触媒についても、実施例 1と同様、触媒と炭素微粉末とを混合した混合粉( 炭素微粉末含有量: 5重量%)を加熱し、炭素微粉末を燃焼させ TG— DTAにて燃 焼性能を検討した。ここでは、実施例 1と同様、初期活性 (製造直後の燃焼開始温度 )に加えて、 650°Cで所定時間加熱した触媒についての燃焼開始温度を調査し、そ の耐熱性も検討した。表 2はその結果を示す。
[0036] [表 2] 加熱後
初期活性
試料 (加熱温度 X加熱時間)
(製造直後)
650¾ x 24時間 650。C x 48時間 実施例 2
309°C 310°C 31 2
(3¾Ru-1 % l r/Ce02-Zr02)
実施例 3
302°C 298°C 303°C (3%Ru-1 % l r-3%Ag/Ce02-Zr02)
[0037] この表 2で示される結果から、実施例 1に係る触媒に、イリジウム、銀を補助的に担 持させた触媒においては、燃焼開始温度 (初期活性)が 10〜20°C低下し、その特性 力はり改善されることが確認された。そして、これらの触媒は、耐熱性においても良好 であり、 650°Cで加熱された後の触媒についても低温活性を示し、加熱温度が長時 間となっても維持されることが確認された。
[0038] 実施例 4 :ここでは、担体としてセリアージルコニァに、更に、イットリアを含む酸化物 セラミックスを用レ、、触媒金属としてイリジウムを担持して触媒を製造した。イリジウム 含有率 1. 0%の塩ィ匕イリジウム溶液 2gを、 lgのセリア—ジノレコニァ—イットリア粉末( 平均粒径約 5 / m)に含浸させ、これを乾燥させた後、 500°Cで 2時間焼成した。その 後、塩素及び不純物の洗浄を行い、ろ過して 120°Cで一晩乾燥し触媒を得た。この 触媒のイリジウム担持量は、 2重量%である。
[0039] 実施例 5 :担体としてセリア一ジルコユア一イットリアを用い、触媒金属として白金を担 持して触媒を製造した。 白金濃度が 8. 476重量%のジニトロジアンミン白金溶液 0. 094gを、 lgのセリア—ジノレコニァ—イットリア粉末(平均粒径約 5 x m)に含浸させ、 これを乾燥させた後、 500°Cで 2時間焼成した。その後、塩素及び不純物の洗浄を 行レ、、ろ過して 120°Cで一晩乾燥し触媒を得た。この触媒の白金担持量は、 0. 8重 量%である。
[0040] 実施例 4、実施例 5で製造した触媒について、実施例 1と同様、触媒と炭素微粉末 とを混合した混合粉 (炭素微粉末含有量: 5重量%)を加熱し、炭素微粉末を燃焼さ せ TG— DTAにて燃焼性能を検討した。表 3はその結果を示す。
[0041] [表 3] 試料 燃焼開始温度
実施例 4
301 . 0¾
(2% l r/Ce02-Zr02-Yz03)
実施例 5
325. 0¾
(0. 8%Pt/Ce02-Zr02-Y203)
比較例 1
580. 2°C
(5%Pt/A I 203)
[0042] 表 3から、セリア—ジルコニァ—イットリアを担体とする実施例 4、実施例 5に係る触 媒におレ、ても、燃焼開始温度の低温ィ匕を図ることが確認できた。
[0043] 実施例 6 :次に、実施例 4における製造工程に従レ、、塩ィ匕イリジウム溶液の使用量を 調整してイリジウム担持量を調整し、イリジウム担持量が 0. 5重量%、 1重量%、 2重 量%、 3重量%、 5重量%、 10重量%、 20重量%のイリジウム触媒を製造した。そし て、これらの触媒について、同様に燃焼試験を行いその性能を検討した。表 4はその 結果を示す。
[0044] [表 4]
Figure imgf000011_0001
[0045] 表 4からわかるように、イリジウム担持量を変更しても活性温度の低温ィ匕の効果がみ られる。また、その担持量に関しては、 10重量%以下のものが特に好ましい結果が 得られた。
[0046] 実施例 7 :ここでは、担体としてセリア一ジルコニァ一イットリアを用い、触媒金属として イリジウムと、更に追加的貴金属として銀を担持して触媒を製造した。イリジウム含有 率 1. 0%の塩ィ匕イリジウム溶液 lgを、 lgのセリア—ジノレコニァ—イットリア粉末(平均 粒径約 5 / m)に含浸させ、これを乾燥させた後、 500°Cで 2時間焼成した。その後、 塩素及び不純物の洗浄を行い、ろ過して 120°Cで一晩乾燥しイリジウム触媒を得た。 そして、このイリジウム触媒 lgに銀濃度 3. 0重量%の硝酸銀溶液 lg含浸させてイリ ジゥム 銀触媒とした (イリジウム担持量:1重量%、銀担持量:3重量%)。
[0047] 実施例 8 :実施例 7と同様、担体としてセリア一ジノレコニァ一イットリアを用レ、、触媒金 属としてイリジウムと、追加的貴金属としてロジウムを担持して触媒を製造した。実施 例 7と同様の工程にて製造したイリジウム触媒 (イリジウム担持量: 1重量%) lgに、口 ジゥム濃度 3. 0重量%の硝酸ロジウム溶液 0. 67gを含浸させてイリジウム—ロジウム 触媒とした (イリジウム担持量: 1重量%、ロジウム担持量: 0. 2重量%)。
[0048] 実施例 9:セリア一ジルコニァ一イットリアを担体とし、触媒金属としてイリジウムと、追 加的金属として白金を担持して触媒を製造した。実施例 7と同様の工程にて製造した イリジウム触媒 (イリジウム担持量: 1重量%) 1§に、白金濃度 8. 476重量%のジニト ロジアンミン白金溶液 0. 059gを含浸させてイリジウム一白金触媒とした (イリジウム担 持量:1重量%、白金担持量: 0. 5重量%)。
[0049] 実施例 10:セリア一ジルコニァ一イットリアを担体とし、触媒金属としてイリジウムと、追 加的金属としてルテニウムを担持して触媒を製造した。実施例 7と同様の工程にて製 造したイリジウム触媒 (イリジウム担持量: 1重量%) lgに、 4. 5%硝酸ノレテニゥム溶液 0. 022gを含浸させてイリジウム—ルテニウム触媒とした (イリジウム担持量: 1重量0 /0 、ルテニウム担持量:0. 1重量0 /0)。
[0050] 以上製造した実施例 7〜実施例 10の触媒について、実施例 1と同様、触媒と炭素 微粉末とを混合した混合粉 (炭素微粉末含有量: 5重量%)を加熱し、炭素微粉末を 燃焼させ TG— DTAにて燃焼性能を検討した。表 5はその結果を示す。
[0051] [表 5]
栻料 燃焼開始温度
実施例 7
295.0°C
(1%lr-3%Ag/Ce02-Zr02-Y203)
実施例 8
296.0°C
(1%lr-0.2%Rh/Ce02-ZrO Y203)
実施例 9
290.0°C
(1 % 1 r-0.5%Pt/Ce02-ZrOz-Y203)
実施例 10
298.0。C
(1%lr-0.1%Ru/Ce02-Zr02-Y203)
比較例 1
580.2。C
(5%Pt/AI203)
[0052] 表 5からわかるように、実施例 7〜実施例 10のセリア—ジルコユア—イットリア担体 にイリジウムと追加的貴金属である銀、ロジウム、白金、ルテニウムを担持させた触媒 は、いずれも燃焼開始温度が 300°C未満となり良好な特性を示すことが確認できた。
[0053] 実施例 11:ここでは、担体としてセリア一酸化プラセオジム酸化ランタンを用レ、、触媒 金属として白金を担持して触媒を製造した。 白金濃度 8.476重量%のジニトロジァ ンミン白金溶液 0.094gを、 lgのセリア—酸化プラセオジム—酸化ランタン粉末(平 均粒径約 5 zm)に含浸させ、これを乾燥させた後、 500°Cで 2時間焼成した。その後 、塩素及び不純物の洗浄を行い、ろ過して 120°Cで一晩乾燥し触媒を得た。この触 媒の白金担持量は、 0.8重量%であった。
[0054] そして、製造した触媒について、実施例 1と同様、触媒と炭素微粉末とを混合した 混合粉 (炭素微粉末含有量: 5重量%)を加熱し、炭素微粉末を燃焼させ TG— DTA にて燃焼性能を検討した。表 6はその結果を示す。
[0055] [表 6] 試料 燃焼開始温度
実施例 11
320.0。C
(0, 8%Pt/Ce02-Pr6011-La203)
比較例 1
580.2°C
(5%Pt/AI203) [0056] 表 6からわかるように、担体としてセリア一酸化プラセオジム酸化ランタンを用いた触 媒においても、燃焼開始温度は 350°C未満となる。この点、同じ白金を触媒金属とす る比較例 1と比較して明確な燃焼温度低下の効果が確認できた。
[0057] 実施例 12 :次に、担体としてセリア一酸化プラセオジム酸化ランタンを用レ、、触媒金 属としてイリジウムを担持して触媒を製造した。イリジウム含有率 1. 0%の塩ィ匕イリジ ゥム溶液を、 lgのセリア一酸化プラセオジム酸化ランタン粉末に含浸させ、これを乾 燥させた後、 500°Cで 2時間焼成した。その後、塩素及び不純物の洗浄を行い、ろ過 して 120°Cで一晩乾燥し触媒を得た。ここでは、塩化イリジウムの使用量を調整して イリジウム担持量を調整し、イリジウム担持量が 0. 5重量%、 1重量%、 3重量%、 10 重量%、 20重量%の触媒を製造した。
[0058] そして、製造した触媒について、実施例 1と同様、触媒と炭素微粉末とを混合した 混合粉 (炭素微粉末含有量: 5重量%)を加熱し、炭素微粉末を燃焼させ TG - DTA にて燃焼性能を検討した。表 7はその結果を示す。
[0059] [表 7]
Figure imgf000014_0001
[0060] 表 7からわかるように、セリア一酸化プラセオジム酸化ランタンを担体とする触媒に おいて、イリジウムを触媒金属とすることでより燃焼開始温度を低下させることができ る。この場合において、イリジウムの担持量に関しては、 10重量%以下のものが燃焼 開始温度を 300°C未満とすることができ特に好ましい結果が得られた。
[0061] ^M l^:担体としてセリア一ジルコユア一酸化プラセオジムを用レ、、触媒金属とし てイリジウムと、更に追加的貴金属として銀を担持して触媒を製造した。イリジウム含 有率 1. 0。 /。の塩化イリジウム溶液 lgを、 lgのセリア—ジルコユア—酸化プラセオジム 粉末(平均粒径約 5 / m)に含浸させ、これを乾燥させた後、 500°Cで 2時間焼成した 。その後、塩素及び不純物の洗浄を行い、ろ過して 120°Cでー晚乾燥しイリジウム触 媒を得た。そして、このイリジウム触媒 lgに銀濃度 3. 0重量%の硝酸銀溶液 lg含浸 させてイリジウム 銀触媒とした (イリジウム担持量:1重量%、銀担持量:3重量%)。
[0062] 実施例 14 :実施例 13と同様、担体としてセリア一ジノレコニァ一酸化プラセオジムを用 レ、、触媒金属としてイリジウムと、追加的貴金属としてロジウムを担持して触媒を製造 した。実施例 7と同様の工程にて製造したイリジウム触媒 (イリジウム担持量: 1重量% ) lgに、ロジウム濃度 3. 0重量%の硝酸ロジウム溶液 0. 067g含浸させてイリジウム —ロジウム触媒とした (イリジウム担持量:1重量%、ロジウム担持量: 0. 2重量%)。
[0063] ^M l^:セリア一ジルコユア一酸化プラセオジムを担体とし、触媒金属としてイリジ ゥムと、追加的金属として白金を担持して触媒を製造した。実施例 13と同様の工程 にて製造したイリジウム触媒 (イリジウム担持量: 1重量%) 1§に、白金濃度 8. 476重 量%のジニトロジアンミン白金溶液 0. 059gを含浸させてイリジウム—白金触媒とした (イリジウム担持量: 1重量%、白金担持量: 0. 5重量%)。
[0064] ^M l ^セリア一ジルコユア一酸化プラセオジムを担体とし、触媒金属としてイリジ ゥムと、追加的金属としてルテニウムを担持して触媒を製造した。実施例 13と同様の 工程にて製造したイリジウム触媒 (イリジウム担持量: 1重量%) lgに、 4. 5%硝酸ル テニゥム溶液 0. 022gを含浸させてイリジウム一ルテニウム触媒とした (イリジウム担持 量:1重量%、ルテニウム担持量:0. 1重量%)。
[0065] 以上製造した実施例 12〜実施例 15の触媒について、実施例 1と同様、触媒と炭素 微粉末とを混合した混合粉 (炭素微粉末含有量: 5重量%)を加熱し、炭素微粉末を 燃焼させ TG— DTAにて燃焼性能を検討した。表 8はその結果を示す。
[0066] [表 8]
試料 燃焼開始温度
実施例 13
280.0。C
(1%lr-3%Ag/Ce02-Pr60i La203)
実施例 14
286.0°C
(1%lr-0.2%Rh/Ce02-Pr60i La203)
実施例 15
285.0°C
(1%lr-0.5%Pt/Ce02- r60i La203)
実施例 16
285.0¾
(1%lr-0.1%Ru/Ce02-Pr60 -La203)
比較例 1
580.2。C
(5%Pt/AI203) 表 8からわかるように、実施例 13〜実施例 16に係る、セリア—ジノレコニァ—酸化プ ラセオジム担体にイリジウムと追加的貴金属である銀、ロジウム、白金、ルテニウムを 担持させた触媒は、いずれも燃焼温度が 300°C未満となり、極めて良好な特性を示 すことが確認できた。

Claims

請求の範囲
[I] ディーゼル排ガス中の粒子状浮遊物を燃焼処理するための触媒であって、
セリア—ジルコユア又はセリア—酸化プラセオジムを含む酸化物系セラミック粒子か らなる担体に、
触媒成分として貴金属又は貴金属の酸化物が担持されてなるディーゼル排ガス処 理用の燃焼触媒。
[2] 担体中のセリアの含有量力 ¾5〜95重量%である請求項 1記載のディーゼル排ガス 処理用の燃焼触媒。
[3] 担体は、更に、イットリア又は酸化ランタンを含む酸化物系セラミック粒子である請求 項 1又は請求項 2載のディーゼル排ガス処理用の燃焼触媒。
[4] 担体中のセリアの含有量が 45〜95重量%であり、担体中のイットリア又は酸化ランタ ンの含有量が 0.:!〜 15重量%である請求項 3記載のディーゼル排ガス処理用の燃 焼触媒。
[5] 触媒成分である貴金属は、ルテニウムである請求項 1〜請求項 4のいずれ力 1項記 載のディーゼル排ガス処理用の燃焼触媒。
[6] ルテニウムの担持量が、担体重量に対して 0. 1〜: 10重量%である請求項 5項記載 のディーゼル排ガス処理用の燃焼触媒。
[7] 触媒成分である貴金属は、イリジウムである請求項 1〜請求項 4のいずれ力、 1項記載 のディーゼル排ガス処理用の燃焼触媒。
[8] イリジウムの担持量力 担体重量に対して 0. 1〜: 10重量%である請求項 7項記載の ディーゼル排ガス処理用の燃焼触媒。
[9] 触媒成分である貴金属は、白金又は銀である請求項 1〜請求項 4のいずれ力 4項記 載のディーゼル排ガス処理用の燃焼触媒。
[10] 白金又は銀の担持量が、担体重量に対して 0. 1〜: 10重量%である請求項 9項記載 のディーゼル排ガス処理用の燃焼触媒。
[II] 触媒成分は、更に、イリジウム及び/又は銀を含む請求項 5又は請求項 6記載のディ 一ゼル排ガス処理用の燃焼触媒。
[12] ルテニウムの担持量とイリジウムの担持量との比(ノレテニゥム:イリジウム)が、 1 : 20〜 20: 1である請求項 11記載のディーゼル排ガス処理用の燃焼触媒。
[13] ルテニウムの担持量と銀の担持量との比(ノレテニゥム:銀)が、 1 : 10〜: 10 : 1である請 求項 11記載のディーゼノレ排ガス処理用の燃焼触媒。
[14] 触媒成分は、更に、白金、ロジウム、ルテニウム、パラジウム、銀の少なくともいずれか を含む請求項 7又は請求項 8記載のディーゼル排ガス処理用の燃焼触媒。
[15] イリジウムの担持量と白金の担持量との比(イリジウム:白金)が、 1 : 30〜30 : 1である 請求項 14記載のディーゼル排ガス処理用の燃焼触媒。
[16] イリジウムの担持量とロジウムの担持量との比(イリジウム:ロジウム) 、 1: 30-30: 1 である請求項 11記載のディーゼル排ガス処理用の燃焼触媒。
[17] 担体は、金属基材表面にゥォッシュコート法により形成されたものである請求項 1〜1
6のいずれ力、 1項に記載のディーゼノレ排ガス処理用の燃焼触媒。
[18] ディーゼル排ガス中の粒子状浮遊物を捕集し、捕集した粒子状浮遊物を請求項:!〜
17のいずれ力 1項に記載の触媒により燃焼除去する工程を含むディーゼノレ排ガスの 燃焼処理方法。
PCT/JP2005/023025 2004-12-20 2005-12-15 ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法 WO2006068022A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/586,548 US7875572B2 (en) 2004-12-20 2005-12-15 Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
EP05816859.2A EP1712278B1 (en) 2004-12-20 2005-12-15 Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
CN200580004890.2A CN1917957B (zh) 2004-12-20 2005-12-15 柴油机排气处理用的燃烧催化剂以及柴油机排气的处理方法
JP2006522163A JP4501012B2 (ja) 2004-12-20 2005-12-15 ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004367724 2004-12-20
JP2004-367724 2004-12-20

Publications (1)

Publication Number Publication Date
WO2006068022A1 true WO2006068022A1 (ja) 2006-06-29

Family

ID=36601622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023025 WO2006068022A1 (ja) 2004-12-20 2005-12-15 ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法

Country Status (6)

Country Link
US (1) US7875572B2 (ja)
EP (1) EP1712278B1 (ja)
JP (1) JP4501012B2 (ja)
KR (2) KR20070057071A (ja)
CN (1) CN1917957B (ja)
WO (1) WO2006068022A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043442A1 (ja) * 2005-10-06 2007-04-19 Mitsui Mining & Smelting Co., Ltd. パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
JP2007296518A (ja) * 2006-04-07 2007-11-15 Honda Motor Co Ltd 排ガス浄化触媒および排ガス浄化装置
JP2009034661A (ja) * 2006-11-08 2009-02-19 Nissan Motor Co Ltd Pm酸化触媒
WO2009025173A1 (ja) * 2007-08-22 2009-02-26 Honda Motor Co., Ltd. 排ガス浄化触媒及びこれを用いた排ガス浄化装置
JP2009078224A (ja) * 2007-09-26 2009-04-16 Denso Corp パティキュレートマター燃焼用触媒の製造方法
JP2009255004A (ja) * 2008-04-18 2009-11-05 Mitsui Mining & Smelting Co Ltd パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
JP2010005580A (ja) * 2008-06-30 2010-01-14 Agc Seimi Chemical Co Ltd 排気ガス浄化用触媒
WO2010041741A1 (ja) * 2008-10-09 2010-04-15 本田技研工業株式会社 排ガス浄化装置
EP1911507B1 (en) * 2006-10-05 2011-10-12 Ibiden Co., Ltd. Honeycomb structured body
JPWO2015087780A1 (ja) * 2013-12-09 2017-03-16 株式会社キャタラー 排ガス浄化用触媒
WO2018055893A1 (ja) * 2016-09-20 2018-03-29 パナソニックIpマネジメント株式会社 粒子状物質燃焼触媒及び粒子状物質燃焼触媒フィルタ

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326573A (ja) * 2005-04-27 2006-12-07 Mazda Motor Corp ディーゼルパティキュレートフィルタ
JP4835193B2 (ja) 2006-02-20 2011-12-14 マツダ株式会社 ディーゼルパティキュレートフィルタ
KR100776981B1 (ko) * 2006-06-23 2007-11-21 건국대학교 산학협력단 표면 연마가 가능한 이리듐 산화물 복합재료 수소 이온 전극 및 그 제조방법
US8486238B2 (en) * 2006-06-23 2013-07-16 Konkuk University Industrial Cooperation Corp. Surface renewable iridium oxide-glass or ceramic composite hydrogen ion electrode
JP2008188542A (ja) * 2007-02-06 2008-08-21 Mitsubishi Heavy Ind Ltd 排ガス処理用触媒、その製造方法および排ガス処理方法
DE502008003166D1 (de) * 2007-02-23 2011-05-26 Basf Se Verfahren zur selektiven methanisierung von kohlenmonoxid
WO2008135581A1 (de) * 2007-05-08 2008-11-13 Basf Se Iridium-katalysatoren für umsetzung von kohlenwasserstoffen in gegenwart von wasserdampf und insbesondere für die dampfdealkylierung von alkyl-substituierten aromatischen kohlenwasserstoffen
JP4849034B2 (ja) * 2007-08-08 2011-12-28 マツダ株式会社 触媒付パティキュレートフィルタ
KR101451463B1 (ko) 2007-08-20 2014-10-21 파커-한니핀 코포레이션 능동적 디젤 미립자 필터 재생을 위한 디젤 투여 시스템
US8568675B2 (en) 2009-02-20 2013-10-29 Basf Corporation Palladium-supported catalyst composites
US8304366B2 (en) 2010-11-24 2012-11-06 Ford Global Technologies, Llc System for remediating emissions and method of use
GB201021887D0 (en) * 2010-12-21 2011-02-02 Johnson Matthey Plc Oxidation catalyst for a lean burn internal combustion engine
US9155999B2 (en) 2011-10-10 2015-10-13 Hyundai Motor Company Non-PGM catalyst for burning carbon soot, and filtration filter and exhaust gas post-processing apparatus using the same
US9108155B2 (en) 2011-10-10 2015-08-18 Hyundai Motor Company Non-PGM catalyst for burning carbon soot, and filtration filter and exhaust gas post-processing apparatus using the same
CN107405605A (zh) * 2015-03-19 2017-11-28 巴斯夫公司 具有负载在无氧化铝的层中的钯的汽车催化剂
EP3072589A1 (de) * 2015-03-26 2016-09-28 Basf Se Katalysator und Verfahren zur selektiven Methanisierung von Kohlenmonoxid
FR3039079B1 (fr) * 2015-07-23 2020-04-03 Psa Automobiles Sa. Filtre a particules catalyse
CN111167472A (zh) * 2020-02-20 2020-05-19 内蒙古科技大学 一种白云鄂博氧化矿复合氧化物催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214744A (ja) * 1988-07-01 1990-01-18 Nippon Shokubai Kagaku Kogyo Co Ltd 排ガス浄化用触媒
JPH10151348A (ja) * 1996-11-22 1998-06-09 Toyota Central Res & Dev Lab Inc 酸化触媒
JP2000176282A (ja) * 1998-12-16 2000-06-27 Toyota Central Res & Dev Lab Inc リーン排ガス浄化用触媒
JP2001104780A (ja) * 1999-10-07 2001-04-17 Matsushita Electric Ind Co Ltd 有機ハロゲン化合物分解用触媒および有機ハロゲン化合物を含む排ガスの処理方法
JP2001170483A (ja) * 1999-12-17 2001-06-26 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒
JP2002221022A (ja) * 2001-01-25 2002-08-09 Toyota Motor Corp ディーゼルパティキュレートフィルタ及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2584388B1 (fr) * 1985-07-03 1991-02-15 Rhone Poulenc Spec Chim Composition a base d'oxyde cerique, sa preparation et ses utilisations
CA1319141C (en) * 1987-11-07 1993-06-15 Makoto Horiuchi Exhaust gas purification catalyst
GB9018409D0 (en) * 1990-08-22 1990-10-03 Ici Plc Catalysts
FR2670400B1 (fr) * 1990-12-13 1993-04-02 Inst Francais Du Petrole Procede de preparation de catalyseurs multimetalliques.
JP2628798B2 (ja) * 1991-03-14 1997-07-09 エヌ・イーケムキャット株式会社 耐熱性に優れた排気ガス浄化用触媒及びその製造方法
US6107240A (en) * 1997-03-26 2000-08-22 Engelhard Corporation Catalyst composition containing an intimately mixed oxide of cerium and praseodymium
US6492297B1 (en) 2000-09-15 2002-12-10 Engelhard Corporation Catalyst composition for purifying exhaust gas
US6455182B1 (en) * 2001-05-09 2002-09-24 Utc Fuel Cells, Llc Shift converter having an improved catalyst composition, and method for its use
JP3845274B2 (ja) 2001-06-26 2006-11-15 ダイハツ工業株式会社 排ガス浄化用触媒
JP2003135970A (ja) * 2001-11-01 2003-05-13 Nissan Motor Co Ltd 排気ガス浄化用触媒
GB0227582D0 (en) 2002-11-27 2002-12-31 Johnson Matthey Plc Reforming catalyst
JP2006326573A (ja) * 2005-04-27 2006-12-07 Mazda Motor Corp ディーゼルパティキュレートフィルタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214744A (ja) * 1988-07-01 1990-01-18 Nippon Shokubai Kagaku Kogyo Co Ltd 排ガス浄化用触媒
JPH10151348A (ja) * 1996-11-22 1998-06-09 Toyota Central Res & Dev Lab Inc 酸化触媒
JP2000176282A (ja) * 1998-12-16 2000-06-27 Toyota Central Res & Dev Lab Inc リーン排ガス浄化用触媒
JP2001104780A (ja) * 1999-10-07 2001-04-17 Matsushita Electric Ind Co Ltd 有機ハロゲン化合物分解用触媒および有機ハロゲン化合物を含む排ガスの処理方法
JP2001170483A (ja) * 1999-12-17 2001-06-26 Tanaka Kikinzoku Kogyo Kk ディーゼル排ガス処理用の燃焼触媒
JP2002221022A (ja) * 2001-01-25 2002-08-09 Toyota Motor Corp ディーゼルパティキュレートフィルタ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1712278A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043442A1 (ja) * 2005-10-06 2007-04-19 Mitsui Mining & Smelting Co., Ltd. パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
JP2007296518A (ja) * 2006-04-07 2007-11-15 Honda Motor Co Ltd 排ガス浄化触媒および排ガス浄化装置
EP1911507B1 (en) * 2006-10-05 2011-10-12 Ibiden Co., Ltd. Honeycomb structured body
JP2009034661A (ja) * 2006-11-08 2009-02-19 Nissan Motor Co Ltd Pm酸化触媒
WO2009025173A1 (ja) * 2007-08-22 2009-02-26 Honda Motor Co., Ltd. 排ガス浄化触媒及びこれを用いた排ガス浄化装置
JP2009045584A (ja) * 2007-08-22 2009-03-05 Honda Motor Co Ltd 排ガス浄化触媒及びこれを用いた排ガス浄化装置
US8544261B2 (en) 2007-08-22 2013-10-01 Honda Motor Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification apparatus using the exhaust gas purification catalyst
JP2009078224A (ja) * 2007-09-26 2009-04-16 Denso Corp パティキュレートマター燃焼用触媒の製造方法
JP2009255004A (ja) * 2008-04-18 2009-11-05 Mitsui Mining & Smelting Co Ltd パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
JP2010005580A (ja) * 2008-06-30 2010-01-14 Agc Seimi Chemical Co Ltd 排気ガス浄化用触媒
WO2010041741A1 (ja) * 2008-10-09 2010-04-15 本田技研工業株式会社 排ガス浄化装置
JPWO2010041741A1 (ja) * 2008-10-09 2012-03-08 本田技研工業株式会社 排ガス浄化装置
JPWO2015087780A1 (ja) * 2013-12-09 2017-03-16 株式会社キャタラー 排ガス浄化用触媒
WO2018055893A1 (ja) * 2016-09-20 2018-03-29 パナソニックIpマネジメント株式会社 粒子状物質燃焼触媒及び粒子状物質燃焼触媒フィルタ

Also Published As

Publication number Publication date
JPWO2006068022A1 (ja) 2008-06-12
EP1712278A1 (en) 2006-10-18
US20080229731A1 (en) 2008-09-25
US7875572B2 (en) 2011-01-25
EP1712278B1 (en) 2017-08-16
KR20070057071A (ko) 2007-06-04
CN1917957B (zh) 2014-07-30
CN1917957A (zh) 2007-02-21
KR20080033554A (ko) 2008-04-16
EP1712278A4 (en) 2010-10-13
JP4501012B2 (ja) 2010-07-14
KR100903468B1 (ko) 2009-06-18

Similar Documents

Publication Publication Date Title
WO2006068022A1 (ja) ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法
JP4144898B2 (ja) パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
JP4911893B2 (ja) 層状触媒複合体
JP4019357B2 (ja) 排気ガス浄化用触媒粉末の製造方法及び排気ガス浄化触媒の製造方法
JPH11506698A (ja) ディーゼルエンジン排ガス浄化触媒
JPWO2013136821A1 (ja) 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
JP3988202B2 (ja) 排気ガス浄化用触媒
EP1722889A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
EP1742733A1 (en) Exhaust gas purifying catalyst and production process thereof
JP6748590B2 (ja) 排ガス浄化用触媒
JP2007144290A (ja) 排ガス浄化触媒及び排ガス浄化触媒の製造方法
JPH08131830A (ja) 排ガス浄化用触媒
JP3766568B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JP4324018B2 (ja) ディーゼル排ガス処理用の燃焼触媒及びディーゼル排ガスの処理方法
JP3835436B2 (ja) 排ガス浄化方法及び排ガス浄化用触媒
JP3872153B2 (ja) 排ガス浄化用触媒
CN115066293A (zh) 柴油机氧化催化剂
JP5524820B2 (ja) パティキュレート燃焼触媒、その製造方法、パティキュレートフィルター及びその製造方法
JP5211671B2 (ja) 排ガス浄化フィルタ
JP2001046870A (ja) 排気ガス浄化用触媒及び排気ガス浄化システム
JP4106762B2 (ja) 排気ガス浄化用触媒装置及び浄化方法
JP3503073B2 (ja) デイーゼルエンジン排ガス浄化用触媒
JP2002177788A (ja) 排気ガス浄化用触媒及びその製造方法
JP4805031B2 (ja) 排ガス浄化触媒、その製造方法及び使用方法
JPH0957103A (ja) 耐熱性排ガス浄化用触媒及びその製造方法及びそれを用いた排ガス浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006522163

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10586548

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067015618

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580004890.2

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2005816859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005816859

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005816859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE