WO2006064835A1 - ディーゼルエンジンの排気浄化装置及び制御装置 - Google Patents

ディーゼルエンジンの排気浄化装置及び制御装置 Download PDF

Info

Publication number
WO2006064835A1
WO2006064835A1 PCT/JP2005/022938 JP2005022938W WO2006064835A1 WO 2006064835 A1 WO2006064835 A1 WO 2006064835A1 JP 2005022938 W JP2005022938 W JP 2005022938W WO 2006064835 A1 WO2006064835 A1 WO 2006064835A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpf
exhaust gas
micro
diesel engine
switching valve
Prior art date
Application number
PCT/JP2005/022938
Other languages
English (en)
French (fr)
Inventor
Manabu Sudo
Masayuki Ueda
Original Assignee
Depro Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Depro Corporation filed Critical Depro Corporation
Priority to EP05816829A priority Critical patent/EP1837490A1/en
Priority to JP2006548876A priority patent/JPWO2006064835A1/ja
Publication of WO2006064835A1 publication Critical patent/WO2006064835A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/007Storing data relevant to operation of exhaust systems for later retrieval and analysis, e.g. to research exhaust system malfunctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust emission control device for a diesel engine. Specifically, the present invention relates to an exhaust emission control device and a control device for a diesel engine that reduce emission of particulate matter (PM) mainly composed of carbon.
  • PM particulate matter
  • Patent Document 1 As an exhaust emission control device for a diesel engine using DPF, for example, (Patent Document 1) includes a first continuous regeneration type DPF disposed in an exhaust passage of the engine, and the first continuous regeneration type DPF.
  • a second continuous regeneration type DPF configured to have a capacity smaller than that of the first continuous regeneration type DPF and disposed in the upstream exhaust passage, and a bypass passage disposed so as to surround the outer periphery of the second continuous regeneration type DPF.
  • a control valve that opens and closes the bypass passage, and a control device that controls the control valve to close the bypass passage when the exhaust temperature region of the engine is a low temperature region lower than a predetermined temperature.
  • An exhaust emission control device for a configured diesel engine is disclosed.
  • the exhaust gas temperature is extremely low under conditions where the fuel injection amount is low, such as when idling, traveling downhill for a long time, or decelerating from high speed traveling. Therefore, when the exhaust gas passes through the second DPF, the second DPF having a small capacity is immediately cooled. For this reason, there was a problem that the purification performance could not be exhibited until the temperature of the second DPF rose even if the second DPF became the driving condition where the purification performance was required next. In addition, the temperature of the second DPF follows the change in the exhaust gas temperature sensitively, so that there is a problem that thermal distortion is likely to occur and durability is easily lowered.
  • Patent Document 2 an engine equipped with an exhaust treatment main catalyst for treating harmful substances.
  • an exhaust flow is circulated through the small exhaust passage, and the auxiliary catalyst connected to the small exhaust passage and the exhaust flow are contacted to process the exhaust flow.
  • An engine exhaust processing device that performs exhaust flow processing by contacting the main catalyst by circulating the entire exhaust flow through the switching valve to the main exhaust passage when the exhaust flow rate at high engine load is increased Is disclosed.
  • a switching valve is provided in the small exhaust passage or the main exhaust passage, and the switching valve is switched so that the exhaust flow is circulated to the small exhaust passage when the engine has a low exhaust flow rate.
  • the switching valve is configured to stop the flow of the exhaust air flow to the small exhaust passage and to distribute the entire exhaust flow to the main exhaust passage connected to the main catalyst. As a thing to switch.
  • this small exhaust passage is preferable because it can introduce high-temperature exhaust gas at a position as close as possible to the engine, so it is most preferable to connect it to the exhaust port of the engine. Due to the above restrictions, it is set as close to the engine as possible.
  • Patent Document 2 since the entire exhaust amount is guided to the auxiliary catalyst arranged in the vicinity of the engine when the engine is under a low load, it is effective in increasing the receiving temperature of the auxiliary catalyst. is there. However, on the other hand, since the temperature drops until the main catalyst is reached after leaving the auxiliary catalyst, the temperature condition of the main catalyst itself, which should play the most important role in function, deteriorates and the function can be sufficiently performed. There was a problem that disappeared. In addition, since the auxiliary catalyst is too close to the engine and directly receives a large temperature change of the engine exhaust, there is a problem of deterioration in durability due to its own thermal strain.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-3830
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-322909 Disclosure of the invention
  • the exhaust gas purification device for a diesel engine prevents the temperature of the micro DPF from following the temperature fluctuation of the exhaust gas exhausted from the diesel engine sensitively.
  • the purpose is to maintain the purification performance of the micro DPF while traveling and to prevent the micro DPF from being deformed by heat and the resulting deterioration in durability. It is also intended to suppress the temperature drop when exhaust gas flows from the micro DPF to the main DPF so that the main DPF functions optimally.
  • an object of the present invention is to provide an exhaust emission control device for a diesel engine in which both main DPF and micro DPF can optimally exhibit exhaust emission purification performance.
  • an exhaust gas purification apparatus for a diesel engine includes a micro DPF that collects and processes particulate matter contained in the exhaust gas of the diesel engine, and the micro DPF.
  • a bypass passage provided, a heat insulating layer provided between the bypass passage and the micro DPF, for suppressing heat conduction between the exhaust gas flowing through the bypass passage and the microphone port DPF, and an exhaust gas Has a switching valve for switching the flow path so as to flow through at least one of the micro DPF and the bypass passage.
  • the present invention provides the exhaust purification device for a diesel engine according to any one of the above, wherein the microphone DPF unit in which the micro DPF, the bypass passage, and the switching valve are integrated by a housing is configured.
  • the present invention is characterized in that in the exhaust gas purification apparatus for a diesel engine described above, an exhaust pipe connecting the microphone port DPF and the diesel engine is covered with a heat insulating material.
  • a main DPF is provided downstream of the micro DPF.
  • the main DPF is provided on the downstream side of the micro DPF, PM contained in the exhaust gas of the diesel engine can be reliably collected and processed. Furthermore, combustion heat is generated when a part of the exhaust gas PM is oxidized, and the temperature of the micro DPF rises, so the exhaust gas that has passed through the micro DPF 32 can also be oxidized in the main DPF. Temperature.
  • the present invention is characterized in that, in the exhaust purification device for a diesel engine described above, the microphone port DPF is provided at a position closer to the main DPF than the diesel engine.
  • the temperature of the micro DPF follows the temperature of the exhaust gas discharged from the diesel engine and the diesel engine sensitively. Is suppressed.
  • the cooling of the exhaust gas in the exhaust pipe to the micro DPF power main DPF is reduced, and the exhaust gas temperature at the main DPF inlet can be kept high.
  • a central axial force of the exhaust gas outlet of the microphone port DPF unit S is aligned with the central axis of the flow path of the main DPF.
  • a DPF unit is arranged.
  • the exhaust gas flow path from the micro DPF unit to the main DPF is close to a straight line, so that the exhaust gas passage resistance is reduced, and it is possible to suppress deterioration in engine performance. it can.
  • the present invention provides an exhaust emission control device for a diesel engine as described above.
  • Storage means for storing the opening degree data for controlling the switching valve to the opening degree corresponding to the depression amount of the accelerator pedal and the engine speed, and the depression amount of the accelerator pedal is detected.
  • a switching valve control means for controlling the switching valve so that the total amount or a large amount of the exhaust gas flows to the bypass passage when the engine is smaller than a first threshold value set in advance based on the opening degree data. It is characterized by that.
  • the switching valve when the amount of depression of the accelerator pedal is small, the switching valve is controlled so that all exhaust gas flows into the bypass passage or most of exhaust gas flows into the bypass passage.
  • the micro DPF can be prevented from being cooled when the temperature of the exhaust gas is extremely low.
  • the switching valve control means detects the depression amount of the accelerator pedal and the engine speed, and the depression amount of the accelerator pedal is determined by the opening amount.
  • the engine speed that is set in advance based on the opening degree data is greater than or equal to the first threshold and less than or equal to the second threshold. In this case, the switching valve is controlled so that all or a large amount of exhaust gas flows to the microphone port DPF.
  • the switching valve control means detects the depression amount of the accelerator pedal and the engine speed, and the engine speed is included in the opening degree data.
  • the accelerator pedal depression amount is larger than the second threshold value set in advance or larger than the second threshold value set in advance based on the opening degree data, most of the exhaust gas is caused to flow through the bypass passage. It is characterized by controlling the switching valve.
  • the present invention provides an exhaust gas purification apparatus for a diesel engine as described above, further comprising an exhaust temperature sensor for measuring a temperature of exhaust gas flowing into the microphone port DPF or the main DPF, and the switching valve control means includes an exhaust gas Information for controlling the switching valve is output based on the exhaust temperature input from the temperature sensor.
  • the exhaust temperature sensor for measuring the temperature of the exhaust gas flowing into the micro DPF or the main DPF is provided, and the switching valve control means is based on the exhaust temperature sensor input from the exhaust temperature sensor. Since the information for controlling the switching valve is output, the temperature of the exhaust gas can be controlled to a temperature sufficient for continuous regeneration of PM even when the environment such as the outside air temperature changes.
  • control device of the present invention includes a main DPF that collects and processes particulate matter contained in the exhaust of a diesel engine, a microphone port DPF provided on the upstream side of the main DPF, and the micro DPF.
  • a control device used in an exhaust emission control device for a diesel engine comprising: a bypass passage arranged in parallel with a DPF; and a switching valve that switches a flow path so that exhaust gas flows through at least one of the micro DPF and the bypass passage.
  • a switching valve control means for controlling the switching valve.
  • the switching valve when the amount of depression of the accelerator pedal is small, the switching valve is controlled so that all exhaust gas flows into the bypass passage or most of the exhaust gas flows into the bypass passage.
  • the micro DPF can be prevented from being cooled when the temperature of the exhaust gas is extremely low.
  • the switching valve control means detects the depression amount of the accelerator pedal and the engine speed, and the depression amount of the accelerator pedal is previously determined based on the opening degree data. Above the set first threshold and below the second threshold If the engine speed set in advance based on the opening data is greater than the first threshold and less than the second threshold, switch to allow all or a large amount of exhaust gas to flow to the micro DPF. It is characterized by controlling the valve.
  • the switching valve control means detects an amount of depression of an accelerator pedal and an engine speed, and the engine speed is preset based on the opening degree data.
  • the switching valve is configured to flow most of the exhaust gas into the bypass passage. It is characterized by controlling.
  • an exhaust emission control device for a diesel engine in which the temperature of the micro DPF does not follow the temperature change of the exhaust gas sensitively. The performance can be maintained, and the micro DPF can be prevented from being deformed by heat and its durability.
  • FIG. 1 is a perspective view showing the overall configuration of an exhaust emission control device for a diesel engine according to an embodiment (1).
  • FIG. 2 is a diagram showing an overall configuration of an exhaust emission control device for a diesel engine according to an embodiment (1).
  • FIG. 3 is a perspective view of an exhaust emission control device for a diesel engine according to Embodiment (1).
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 6 is a side view of the exhaust purification device for a diesel engine according to the embodiment (1).
  • FIG. 7] is a diagram showing opening degree data of the switching valve used in the exhaust purification device for a diesel engine according to the embodiment (1).
  • FIG. 8 is a longitudinal sectional view of a micro DPF unit according to Embodiment (2).
  • FIG. 9 is a side view of an exhaust emission control device for a diesel engine according to an embodiment (2).
  • FIG. 10] is a diagram showing opening degree data of a switching valve used in the exhaust gas purification apparatus for a diesel engine according to the embodiment (2).
  • FIG. 11 A longitudinal sectional view of a micro DPF unit according to Embodiment (3).
  • Embodiment (3) It is a side view showing another embodiment of an exhaust emission control device for a diesel engine.
  • FIG. 14 A diagram showing opening degree data of a switching valve used in the exhaust gas purification apparatus for a diesel engine according to the embodiment (3).
  • FIGS. 7 to 7 are diagrams showing an embodiment (1) of an exhaust emission control device for a diesel engine according to the present invention.
  • the exhaust purification device for a diesel engine includes a diesel engine 10 to be purified, and a micro DPF unit connected to the diesel engine 10 via an exhaust pipe 11A. 30 and a main DPF 60 connected to the micro DPF unit 30 via the exhaust pipe 11B.
  • the diesel engine 10 is provided with an intake manifold 12 for introducing fresh air into each cylinder of the diesel engine 10 and an exhaust manifold 14 through which exhaust gas after combustion discharged from each cylinder is passed.
  • An exhaust pipe 11A on the upstream side is connected to the exhaust manifold 14, and the exhaust gas is exhausted to the micro DPF unit 30 through the exhaust pipe 11A on the upstream side.
  • the upstream exhaust pipe 11A is covered with a heat insulating material so that the exhaust gas exhausted from the diesel engine 10 is not cooled.
  • the micro DPF unit 30 includes a cylindrical micro DPF 32, a bypass passage 33 spaced apart from the micro DPF 32 and having a substantially semi-cylindrical cross section, and a micro DPF 32. And a heat insulating layer 37 formed between the bypass passage 33 and a switching valve 34 for switching the flow path so that the exhaust gas flows through at least one of the microphone port DPF 32 or the bypass passage 33.
  • the micro DPF 32 and the bypass passage 33 are fitted and fixed to a housing 31A constituting an exhaust gas inlet and a housing 31B constituting an exhaust gas outlet, respectively, and are integrated.
  • the switching valve 34 is attached to the housing 31A via a tilt shaft 41.
  • Micro DPF32 is a relatively small amount of exhaust discharged when diesel engines are under low load.
  • CO, HC and NO contained in the atmosphere are oxidized and converted to CO, HO and NO
  • a casing 38A for protecting the micro DPF 32 is provided on the outer periphery of the micro DPF 32.
  • various materials such as metal and resin can be used. Usually, a metal having high heat resistance is used.
  • the micro DPF 32 is composed of an oxidation catalyst that oxidizes CO, HC, and N0 contained in the exhaust of the engine to convert them into CO, H2O, and N0, and a PM (particulate catalyst) contained in the exhaust.
  • DPF Diesel Particulate Filter
  • the bypass passage 33 is arranged in parallel with the micro DPF 32 and the heat insulating layer 37, and the exhaust gas that has passed through the bypass passage 33 is exhausted to the exhaust pipe 11B on the downstream side through the exhaust gas outlet.
  • the bypass passage 33 is constituted by a housing 38B having a substantially semicircular cross section.
  • a heat insulating layer 37 made of an air layer is provided between the micro DPF 32 and the bypass passage 33.
  • a heat insulating layer 37 made of an air layer is provided between the micro DPF 32 and the bypass passage 33.
  • the switching valve 34 tilts about the tilting shaft 41 and can change the opening degree. Then, based on an instruction from the control device 20, the micro DPF 32 and the bypass passage 33 are provided with a function of switching the exhaust flow path.
  • the exhaust gas that has passed through flows through the exhaust gas outlet 36 to the exhaust pipe 11B on the downstream side.
  • the exhaust gas that has passed through the micro DPF 32 and the bypass passage 33 flows through the exhaust gas outlet 36 to the exhaust pipe 11B on the downstream side.
  • the position of 34b of the switching valve 34 is such a position that 70 to 98 vol% of the total exhaust gas flow rate flows into the bypass passage, and 85 to 90 vol% of the total exhaust gas flow rate is bypassed. It is particularly preferable that the position be such that it flows into the passage.
  • the switching of the switching valve 34 is performed by an air cylinder 43 provided on a side surface of the housing 31 via a mounting plate 42 as shown in FIG.
  • a lever link 45 is attached and fixed to a tilting shaft 41 that tilts the switching valve 34 so as to rotate integrally with the tilting shaft 41.
  • the lever link 45 is attached via a connector 44 so as to be rotatable with respect to the piston of the air cylinder 43.
  • the tilting of the lever link 45 is limited by the stopper 46A and the stopper 46B provided on the mounting plate 42 so that the switching valve 34 does not tilt more than necessary.
  • the switching valve 34 is at the position 34a and the bypass passage 33 is closed.
  • the switching valve 34 is in the position 34b, and the bypass passage 33 is opened and the micro DPF 32 has a small amount of exhaust gas. It will be in a flowing state.
  • the stationary position of the switching valve 34 can be adjusted by adjusting the position of the stopper 46B.
  • the exhaust gas flowing into the micro DPF unit 30 is switched in flow path by the switching valve 34 at the exhaust gas inlet 35 and flows through at least one of the micro DPF 32 and the bypass passage 33.
  • the exhaust gas that has passed through at least one of the micro DPF 32 and the bypass passage 33 flows to the exhaust gas outlet 36.
  • the control device 20 that controls the opening degree of the switching valve 34 detects the depression amount (load) of the accelerator pedal for the driver to input information for controlling the output of the diesel engine, and the control device 20 And a rotation sensor 18 that reads a rotation angle of a crankshaft of a diesel engine and outputs a rotation angle signal (including an engine rotation number signal) to the control device 20.
  • the depression amount of the accelerator pedal is transmitted to a fuel injection device (not shown) so that the fuel injection amount supplied to the engine can be controlled.
  • the main DPF 60 is provided in the exhaust pipe 11B on the downstream side, and the exhaust gas that has passed through the micro DPF unit 30 flows in.
  • the main DPF60 oxidizes CO, HC and N0 contained in a large amount of exhaust gas discharged at high loads and high speeds of diesel engines to convert them into C0, H0 and NO, and continuously oxidizes PM. Large to process
  • the micro DPF unit 30 is provided at a position closer to the main DPF 60 than the diesel engine 10 is not provided directly below the diesel engine 10 so that heat conduction from the diesel engine 10 is suppressed.
  • the downstream exhaust pipe 11B is shorter than the upstream exhaust pipe 11A.
  • the micro DPF unit 30 has a central axial force of the exhaust gas outlet 36 of the micro DPF unit 30 and a central axis of the flow path of the main DPF 60, and a flow path center of the exhaust pipe 11B connecting the main DPF 60 and the micro DPF unit 30. It is arranged so as to be collinear with the axis. As a result, the exhaust gas flow path from the micro DPF unit 30 to the main DPF 60 becomes almost a straight line, so that it is possible to suppress deterioration in engine performance with low exhaust gas passage resistance.
  • the diesel engine exhaust gas purification device includes an intake air temperature sensor 22 that measures the intake air temperature of the engine, and a new intake that is drawn into the cylinder by restricting the intake air of the engine.
  • An intake throttle 24 that adjusts the amount of air and an exhaust throttle 26 that performs control to increase the exhaust gas amount returned to the cylinder by increasing the exhaust pressure by restricting the exhaust of the engine are provided.
  • the exhaust throttle 26 may be provided downstream of the micro DPF unit 30, or may be provided upstream or downstream of the main DPF 60.
  • the exhaust purification device for a diesel engine is obtained from the exhaust manifold 14 or the like.
  • An external EGR pipe 27 is provided to cool the exhaust gas and return it to the intake manifold 12 and the like, and the flow rate of the exhaust gas to be recirculated can be adjusted by an external EGR valve.
  • the exhaust gas purification device for a diesel engine includes an exhaust temperature sensor 28 for measuring the temperature of exhaust gas flowing into the micro DPF unit 30, and an exhaust temperature sensor 29 for measuring the temperature of exhaust gas flowing into the main DPF 60. And are provided.
  • the capacity (size) of the main DPF 60, the length of the exhaust pipe 11 to each DPF, the mounting position of the switching valve 34, and the like are also appropriately determined depending on the target vehicle type, engine configuration, and the like.
  • the microphone port DPF32 and the bypass passage 33 are arranged apart from each other, and the heat insulating layer 37 is provided between them, so that the bypass passage
  • the heat conduction between the exhaust gas flowing through 33 and the micro DPF 32 is suppressed, and the temperature of the micro DPF 32 is suppressed from following the temperature change of the exhaust gas flowing through the bypass passage 33.
  • the exhaust gas passing through the microphone port DPF 32 and the bypass passage 33 during low load operation where the temperature of the exhaust gas is low. It can be prevented from being cooled by outside air.
  • the thermal detriment to the peripheral equipment caused by the exhaust gas passing through the micro DPF 32 and the bypass passage 33 is prevented.
  • the micro DPF 32, the bypass passage 33, and the switching valve 34 are integrated by the housing 31, the entire surface area of the micro DPF unit 30 is reduced, and the micro air pressure is reduced by the outside air during low load operation when the exhaust gas temperature is low. It is possible to prevent the exhaust gas passing through the DPF unit 30 and the micro DPF unit 30 from being cooled. Further, during high load operation where the temperature of the exhaust gas is high, it is possible to prevent the thermal detrimental effects on the peripheral devices from the micro DPF unit 30 whose temperature has been increased by the exhaust gas passing therethrough. In addition, the integration reduces the size of the apparatus, thereby reducing the manufacturing cost and facilitating installation work and maintenance work.
  • the micro DPF unit 30 is exhausted from the diesel engine 10 and the 10 diesel engine because the upstream exhaust pipe 11A from the diesel engine 10 to the micro DPF unit is long and has a large heat capacity. Micro DPF with respect to exhaust gas temperature It is suppressed that the temperature of the knit 30 follows sensitively. Since the upstream exhaust pipe 11A is covered with a heat insulating material, cooling of the exhaust gas is prevented.
  • FIG. 7 shows opening degree data for controlling the switching valve 34 used in the exhaust gas purification device of the diesel engine shown in FIG. 4 to an opening degree corresponding to the accelerator pedal depression amount (engine load ratio) and the engine speed.
  • the opening degree data shown in the figure is stored in a storage means provided in the control device 20, and the control device 20 reads the accelerator pedal depression amount (%) input from the accelerator position sensor 16 (engine). Load ratio (%)) and the engine rotation speed (rpm) input from the rotation sensor 18, referring to the opening degree data stored in the storage means and outputting information for controlling the switching valve 34 And a switching valve control means.
  • the storage means for storing the opening degree data may be provided inside the control device 20, or may be provided outside the control device 20 so as to be communicable with the control device 20.
  • the switching valve control means in the control device 20 Outputs a control signal to the switching valve 34 so as to tilt the switching valve 34 to the position 34b.
  • the no-pass passage 33 is opened, most of the exhaust gas flows through the bypass passage 33, and a part of the exhaust gas flows into the micro DPF.
  • the switching valve control means in the control device 20 outputs a control signal to the switching valve 34 so as to tilt to the position of the switching valve 34a.
  • the bypass passage 33 is closed and the entire exhaust gas flows into the micro DPF 32.
  • the second threshold value a2 set in advance for the amount of depression of the accelerator pedal is a value that changes according to the engine speed as shown in FIG. 7, and the second threshold value a2 as the engine speed increases. a2 is also set to be large.
  • the control device If the accelerator pedal depression amount is greater than a preset second threshold value a2 or the engine speed is greater than a preset second threshold value b2, the control device The switching valve control means in the device 20 outputs a control signal to the switching valve 34 so as to tilt the switching valve 34 to the position 34b. Thereby, the bypass passage 33 is opened, most of the exhaust gas flows through the bypass passage 33, and a part of the exhaust gas flows into the micro DPF.
  • the switching valve control means in the control device 20 tilts the switching valve 34 to the position 34b, opens the bypass passage 33 and allows the exhaust gas to flow directly to the main DPF 60. Is output.
  • the switching valve control means in the control device 20 refers to the opening data of the switching valve, tilts the switching valve 34 to the position 34a, closes the bypass passage 33, and reduces the total amount of exhaust gas.
  • a control signal is output to the switching valve 34 so that it flows through the micro DPF 32.
  • the driving conditions such as the engine speed and the amount of depression of the accelerator pedal as described above correspond to constant speed driving or the like.
  • the entire exhaust gas flows to the micro DPF 32, and a part of the PM contained in the exhaust gas is continuously oxidized.
  • the switching valve 34 is switched to close the bypass passage 33 and the exhaust gas flow path is switched to the micro DPF 32, when the exhaust gas passage resistance increases and the engine exhaust pressure flows the exhaust gas through the bypass passage 33 Higher than. For this reason, the backflow of exhaust gas to the diesel engine 10 increases, the temperature of the exhaust gas rises, and the temperature of the exhaust gas flowing into the micro DPF 32 is a temperature at which PM can be continuously regenerated.
  • the throttle amount of the exhaust throttle 26 may be controlled in accordance with the amount of depression of the accelerator pedal or the engine speed.
  • the storage means stores the exhaust throttle so that the exhaust throttle 26 is throttled when the engine speed is lower than the predetermined speed and the accelerator pedal depression amount is smaller than the predetermined depression amount.
  • the throttle amount data is inputted, and the switching valve control means in the control device 20 inputs the depression amount of the accelerator pedal and the engine speed, refers to the throttle amount data of the exhaust throttle, and Information for controlling the aperture 26 may be output.
  • the exhaust throttle 26 is simultaneously reduced when the intake throttle 24 is throttled.
  • the exhaust pressure can be increased, and the amount of exhaust gas returned to the cylinder can be increased to ensure the exhaust temperature.
  • the driver depresses the accelerator pedal while the engine speed is 1500 rpm.
  • the penetration amount is further reduced to 2% or less, the depression amount of the accelerator pedal is smaller than the preset first threshold al.
  • the switching valve control means in the control device 20 refers to the opening data of the switching valve, and switches the switching valve 34 so as to open the bypass passage 33 again by tilting the switching valve 34 to the position 34b.
  • a control signal is output to the valve 34.
  • the traveling condition that is the amount of depression of the accelerator pedal as described above corresponds to idling, long downhill traveling, deceleration from high speed traveling, and the like.
  • the temperature of the exhaust gas is extremely low, but most of the exhaust gas flows through the bypass passage 33, reducing the inflow of exhaust gas to the micro DPF 32. Temperature drop is prevented.
  • the heat insulating layer 37 is provided between the bypass passage 33 and the micro DPF 32, the micro DPF 32 is prevented from being cooled by the exhaust gas passing through the bypass passage 33. Therefore, the purifying performance is maintained until the driving condition where the purifying performance is required for the microphone mouth DPF32 by returning the amount of depression of the accelerator pedal again.
  • the position of switch valve 34b is used both in the middle and high load states and in the very low load state, so the temperature of the micro DPF 32 is maintained in the middle and high load states, and in the very low load state.
  • the position is preferably such that the temperature drop of the micro DPF 32 is suppressed.
  • 70 to 98 vol% of the total exhaust gas flow rate flows to the bypass passage 33.
  • 85 to 90 vol% of the total exhaust gas flow rate flows to the bypass passage 33. preferable.
  • the switching valve control means preferably controls the switching valve 34 so as to hold the switched state for a predetermined time after the switching valve 34 is switched.
  • the switching valve 34 reacts sensitively to the amount of depression of the accelerator pedal or the engine speed, etc., and the switching operation is frequently performed. Can be prevented.
  • the time for maintaining the switched state is preferably 1 to 5 seconds, and more preferably 2 to 3 seconds.
  • the switching valve control means in the control device 20 controls the switching valve 34 based on the exhaust temperature input from the exhaust temperature sensors 28 and 29 for measuring the temperature of the exhaust flowing into the micro DPF 32 or the main DPF 60. Outputs control information and controls the exhaust temperature within a specified temperature range You may do it.
  • the switching valve control means may perform a process of shifting the opening data of the switching valve 34 in accordance with the exhaust gas temperature, or add or multiply a predetermined coefficient to the control information output to the switching valve 34. Processing may be performed.
  • an intake air temperature sensor 22 for measuring the intake air temperature of the diesel engine is provided in the intake manifold 12, etc., and the switching valve control means inputs from the intake air temperature sensor 22 in addition to the opening degree data of the switching valve 34.
  • Information for controlling the switching valve 34 may be output based on the intake air temperature.
  • the switching valve control means may perform a process of shifting the opening degree data of the switching valve according to the intake air temperature, or add or multiply a predetermined coefficient to the control information output to the switching valve 34. Processing may be performed.
  • the switching valve control means inputs the exhaust gas temperature or the intake air temperature to control the exhaust gas temperature, even if the exhaust gas temperature deviates from a stable use condition, the predetermined value is maintained. This makes it possible to maintain the exhaust temperature.
  • the exhaust pipes are usually set to dimensions that enhance exhaust efficiency by utilizing exhaust pulsation, but the main DPF60 If the micro DPF32 is placed close to the exhaust port in order to ensure that the temperature of the exhaust gas flowing into the exhaust pipe exceeds the specified temperature, there will be a problem that exhaust interference will occur or the bombing loss will increase and the exhaust efficiency will deteriorate. It is desirable to use the main DPF60 as much as possible in the operation region where the temperature of the exhaust gas reaching the DPF60 is high.
  • the temperature of the exhaust gas is extremely low during idling, when traveling on a long downhill or when decelerating from high speed traveling. Sometimes the cooling of the micro DPF32 is suppressed, and the purification performance is maintained until the next driving condition that requires the purification performance of the micro DPF32.
  • the position of the switching valve 34 is such that most of the exhaust gas is transferred to the bypass passage 33.
  • the micro DPF32 can be switched to two stages: the 34g position for flowing a small amount to the micro DPF32 and the 34f position for closing the micro DPF32 so that the entire exhaust gas flows to the bypass path 33. It is characterized by that.
  • the switching valve 34 When the switching valve 34 is at the position 34f, the exhaust gas is opened so that most of the exhaust gas flows to the micro DPF, and a part of the exhaust gas also flows on the bypass passage 33 side. Some are open. In this state, most of the exhaust gas flows into the micro D PF32, and CO, HC and NO contained in the exhaust gas are oxidized and CO, H 2 O
  • the exhaust gas that has passed through flows through the exhaust gas outlet 36 to the exhaust pipe 11B on the downstream side. Some exhaust gas passes through the bypass passage and is processed in the main DPF on the downstream side.
  • the switching valve 34 can be performed by an air cylinder 43 provided on the side surface of the housing 31 via a mounting plate 42 as shown in FIG.
  • the position of the stopper 46A is adjusted so that the tilting of the switching valve 34 stops at the position 34f. That is, when the piston of the air cylinder 43 is extended and the lever link 45 is in the position of the stopper 46A, the switching valve 34 is in the position 34f, so that much of the exhaust gas also flows into the micro DPF 32 and flows into the no-pass passage 33. Also, a small amount of exhaust gas flows.
  • FIG. 10 shows an opening for controlling the switching valve 34 used in the exhaust purification device of the diesel engine shown in FIG. 8 to an opening degree corresponding to the depression amount of the accelerator pedal (engine load ratio) and the engine speed. It is a figure which shows degree data.
  • the opening degree data of the switching valve 34 shown in FIG. 10 is stored in storage means provided in the control device 20 as in the above embodiment (1).
  • the configuration of the control device 20 is as described above. In accordance with Embodiment (1).
  • the switching valve control means in the control device 20 causes the switching valve 34 to tilt to the 34g position.
  • a control signal is output.
  • the bypass passage 33 is opened, most of the exhaust gas flows through the bypass passage 33, and a part of the exhaust gas flows into the micro DPF.
  • the switching valve control means in the control device 20 outputs a control signal to the switching valve 34 so as to tilt to the position of the switching valve 34f.
  • inflow of exhaust gas into the no-pass passage 33 is reduced, most of the exhaust gas flows into the micro DPF 32, and a part of the exhaust gas flows into the bypass passage 33.
  • the first threshold al and the second threshold a2 set in advance with respect to the depression amount of the accelerator pedal are the second threshold a2 ⁇ the first threshold al.
  • the first threshold value bl and the second threshold value b2 that are set in advance for the engine speed are also the second threshold value b2 ⁇ the first threshold value bl.
  • the second threshold value a2 set in advance for the amount of depression of the accelerator pedal is a value that changes according to the engine speed, as shown in FIG. 7, and the second threshold value a2 as the engine speed increases. a2 is also set to be large.
  • the control device 20 When the depression amount of the accelerator pedal is larger than the second preset threshold value a2 or the engine speed is larger than the second preset threshold value b2, the control device 20 The switching valve control means outputs a control signal to the switching valve 34 so as to tilt the switching valve 34 to the position 34b. Thereby, the bypass passage 33 is opened, most of the exhaust gas flows through the bypass passage 33, and a part of the exhaust gas flows into the micro DPF.
  • the switching valve control means in the control device 20 is the switching valve 34.
  • a control signal is output to the switching valve 34 so as to tilt to the position of 34g. Since the switching valve 34 is located at 34 g, most of the exhaust gas flows into the bypass passage 33 and a small amount of exhaust gas flows into the micro DPF 32.
  • the position of 34 g of the switching valve 34 is preferably a position where 70 to 98 vol% of the total exhaust gas flow rate flows to the bypass passage 33, and 85 to 90 vol% of the total exhaust gas flow rate is preferably the bypass passage 33. It is particularly preferred that the position be such that it flows into
  • the switching valve control means in the control device 20 refers to the opening data of the switching valve and outputs a control signal to the switching valve 34 so as to tilt the switching valve 34 to the position 34f. . Since the switching valve 34 is at the position 34f, most of the exhaust gas flows to the micro DPF 32, and a small amount of exhaust gas flows to the bypass passage 33.
  • the driving conditions such as the engine speed and the amount of depression of the accelerator pedal as described above correspond to constant speed driving or the like.
  • most of the exhaust gas flows to the micro DPF 32, and a part of the PM contained in the exhaust gas is continuously oxidized.
  • the switching valve 34 is switched so that most of the exhaust gas flows through the micro DPF 32, the exhaust gas passage resistance increases and the engine exhaust pressure becomes higher than when a large amount of exhaust gas flows through the bypass passage 33. For this reason, the backflow of exhaust gas to the diesel engine 10 increases, the temperature of the exhaust gas rises, and the temperature of the exhaust gas flowing into the microphone port DPF32 is a temperature at which PM can be continuously regenerated.
  • the position of 34f of the switching valve 34 is 10-15 vol% of the total exhaust gas flow rate, which is preferably a position where 2-30 vol% of the total exhaust gas flow rate flows into the bypass passage 33. A position that flows to the bypass passage 33 is particularly preferable.
  • the switching valve control means in the control device 20 refers to the opening degree data of the switching valve and tilts the switching valve 34 to the position 34g again, and most of the exhaust gas flows into the bypass passage 33. As described above, a control signal is output to the switching valve 34.
  • the traveling conditions such as the engine speed and the amount of depression of the accelerator depression pedal as described above can be seen in traveling conditions such as idling, long downhill traveling, and deceleration from high speed traveling.
  • the exhaust gas temperature is extremely low, but the temperature drop of the micro DPF 32 can be prevented by reducing the flow of the exhaust gas to the micro DPF 3 2.
  • the heat insulating layer 37 is provided between the bypass passage 33 and the micro DPF 32, the micro DPF 32 is prevented from being cooled by the exhaust gas passing through the bypass passage 33.
  • the exhaust gas when the changeover valve 34 is switched and the same effect as the embodiment (1) is obtained.
  • the increase in the passage resistance of the engine can be reduced, and the rise in engine exhaust pressure and the resulting extreme rise in exhaust gas temperature can be suppressed.
  • the position of the switching valve 34 is such that the total amount of exhaust gas is reduced to micro DPF3 2 Close the bypass passage 33 so that it flows to the position of 34c and bypass most of the exhaust gas. It is characterized in that it can be switched in three stages: a position 34d for flowing a small amount to the micro DPF 32 and a position 34e for closing the micro DPF 32 so that the entire exhaust gas flows to the bypass passage 33.
  • the switching valve 34 is performed by an air cylinder 43 provided on the side surface of the housing 31 via a mounting plate 42, as in the above embodiment (1).
  • the fixing plate 42 is provided with fixing plates 47A and 47B provided with holes.
  • a shaft 48 is provided on the 47A and 47B so as to be movable through the hole. At both ends of the shaft 48, stoppers 49A and 49B for restricting the movement of the shaft 48 are provided.
  • the shaft 48 has a spring 50A, 50B as a position adjusting member for adjusting the tilt of the lever link 45 at a position between the fixing plates 47A, 47B, and a fixing member that regulates the extension of each spring 50A, 50B. Nuts 51A and 51B are provided.
  • the lever link 45 is restricted from tilting by the elastic force of the springs 50A and 50B.
  • various elastic bodies such as rubber can be used.
  • FIG. 13 is a diagram showing another form of the switching means of the switching valve 34.
  • the switching of the switching valve 34 is performed by the air cylinder 43 as in the above embodiment.
  • one end of the spring 52 is attached to one end of the lever link 45 as a position adjusting member for adjusting the tilt of the lever link 45.
  • the other end of the spring 52 is fixed by a fixture 53.
  • the lever link 45 tilts, and the spring 52 extends to tilt to the position of the stopper 46A.
  • the lever link 45 is fixed at an intermediate position by the elastic force of the spring 52.
  • the switching valve 34 is at the position 34d, and the bypass passage 33 is opened, and a small amount of exhaust gas also flows through the microphone port DPF32.
  • the lever link 45 extends the spring 52 and tilts to the position of the stopper 46B. In this case, the switching valve 34 is at the position 34e, and the micro DPF 32 is closed.
  • the opening degree of the switching valve 34 can be changed by using, for example, a multistage air cylinder capable of switching the air supply pressure as the air cylinder.
  • FIG. 14 shows an opening degree for controlling the switching valve 34 used in the exhaust gas purification apparatus for the diesel engine shown in FIG. 11 to an opening degree corresponding to the accelerator pedal depression amount (engine load ratio) and the engine speed. It is a figure which shows data.
  • the opening degree data of the switching valve 34 shown in FIG. 14 is stored in the storage means provided in the control device 20 in the same manner as in the above embodiment (1).
  • the configuration of the control device 20 conforms to the above embodiment (1).
  • the switching valve control means in the control device 20 controls the switching valve 34 such that the switching valve 34 is tilted to the position 34d, the bypass passage 33 is opened, and the exhaust gas flows directly to the main DPF 60. Output a signal.
  • the switching valve is set so that a small amount of exhaust gas flows through the micro DPF 32 instead of flowing all exhaust into the main DPF 60 only. 34 mag. Even when the main DPF60 is used, a small amount of exhaust gas continues to flow through the micro DPF3 2 to maintain the micro DPF32 temperature at a predetermined temperature. Even in the case of switching, the micro DPF 32 can process PM continuously immediately after switching. Therefore, it is possible to continuously regenerate PM even when the driving situation suddenly changes.
  • the position of the switching valve 34d 34d is preferably a position where 70 to 98 vol% of the total exhaust gas flow flows to the bypass passage 33, and 85 to 90 vol% of the total exhaust gas flow rate is preferably the bypass passage.
  • a position that flows to 33 is particularly preferable.
  • the switching valve control means in the control device 20 refers to the opening data of the switching valve, tilts the switching valve 34 to the position 34c, closes the bypass passage 33, and reduces the total amount of exhaust gas.
  • a control signal is output to the switching valve 34 so that it flows through the micro DPF 32.
  • the driving conditions such as the engine speed and the amount of depression of the accelerator pedal as described above correspond to constant speed driving or the like.
  • the entire exhaust gas flows to the micro DPF 32, and a part of the PM contained in the exhaust gas is continuously oxidized.
  • the switching valve 34 is switched to close the bypass passage 33 and the exhaust gas flow path is switched to the micro DPF 32, the exhaust gas passage resistance increases and the engine exhaust pressure flows into the bypass passage 33. Higher than. For this reason, the backflow of exhaust gas to the diesel engine 10 increases, the temperature of the exhaust gas rises, and the temperature of the exhaust gas flowing into the micro DPF 32 is a temperature at which PM can be continuously regenerated.
  • the switching valve control means in the control device 20 refers to the opening degree data of the switching valve, tilts the switching valve 34 to the position 34e, closes the micro DPF 32, and opens the bypass passage 33.
  • a control signal is output to the switching valve 34.
  • the driving conditions such as the engine speed and the amount of depression of the accelerator depression pedal as described above can be seen in driving conditions such as idling, long downhill driving, and deceleration from high speed driving.
  • driving conditions such as idling, long downhill driving, and deceleration from high speed driving.
  • the exhaust gas temperature is extremely low, but the temperature drop of the micro DPF 32 can be prevented by completely stopping the flow of the exhaust gas to the micro DPF 3 2.
  • the heat insulating layer 37 is provided between the bypass passage 33 and the micro DPF 32, the micro DPF 32 is prevented from being cooled by the exhaust gas passing through the bypass passage 33.
  • the cooling of the micro DPF 32 is completely suppressed when the exhaust gas temperature is extremely low, such as when idling in a very low load state, when traveling on a long downhill, or when decelerating from high speed traveling. Therefore, the purifying performance is maintained until the driving condition that requires the purifying performance of the micro DPF 32 is reached by returning the amount of depression of the accelerator pedal again. In this operating condition, both PM and N0x are extremely small, so there is no need to purify with CR-DPF.
  • the idling that exhibits the same effect as the above embodiment (1) and is in an ultra-low load state.
  • the exhaust gas temperature is extremely low, such as when driving on a long downhill or when decelerating from high speed, the inflow of exhaust gas to the micro DPF32 is completely prevented. It is more reliably suppressed. Then, the purification performance is maintained until the next driving condition where the purification performance is required for the micro DPF32.
  • a cylindrical micro DPF 32 is provided at one end of a cylindrical housing 40 having a substantially elliptical cross section, and the separator 3 9 is provided close to the micro DPF 32.
  • the separator 3 9 is provided close to the micro DPF 32.
  • a heat insulating layer 37 is provided between the micro DPF 32 and the bypass passage 33 to suppress heat conduction from the bypass passage 33 to the micro DPF 32.
  • the force by which the micro DPF 32 and the separator 39 that forms the bypass passage 33 are in partial contact with each other.
  • Most of the surfaces of the micro DPF 32 that face the bypass passage 33 are provided with the heat insulation layer 37. Therefore, heat conduction between the micro DPF 32 and the bypass passage 33 is suppressed.
  • the same effect as that of the embodiment (1) is obtained, and the heat insulating layer 37 is interposed between the micro DPF 32 and the bypass passage 33. Accordingly, the micro DPF 32 is thermally shut off from the bypass passage 33 reliably, and the micro DPF 32 can be prevented from being cooled when the exhaust gas having a low temperature flows through the bypass passage 33.
  • a heat insulating layer 37 such as an air layer between the micro DPF 32 and the bypass passage 33, the space between the micro DPF 32 and the bypass passage is provided.
  • a heat insulating layer may be provided between the micro DPF 32 and the bypass passage 33 by using a heat insulating material for the housing of the micro DPF 32 or the bypass passage 33.
  • the exhaust emission control device for a diesel engine according to the present invention can reduce the emission of particulate matter (PM) emitted from a diesel engine used in an automobile such as a truck, and is preferably used.
  • PM particulate matter

Abstract

 本発明のディーゼル排ガス浄化装置は、ディーゼルエンジンから排出される排気ガスの温度変動に対してマイクロDPFの温度が敏感に追従することを防止し、走行中におけるマイクロDPFの浄化性能を維持するとともに、マイクロDPFの熱による変形やそれによる耐久性の低下を防ぐことを目的とする。ディーゼルエンジン10の排気ガスに含まれるパティキュレートマターを捕集して処理するマイクロDPF32と、マイクロDPF32と並設されたバイパス通路33と、バイパス通路33とマイクロDPF32との間に設けられて、バイパス通路33を流れる排気ガスとマイクロDPF32との間の熱伝導を抑制する断熱層37と、排気ガスがマイクロDPF32又はバイパス通路33の少なくとも一方を流れるように流路を切替える切替弁34と、を有するディーゼルエンジンの排気浄化装置を提供する。

Description

明 細 書
ディーゼルエンジンの排気浄化装置及び制御装置
技術分野
[0001] 本発明は、ディーゼルエンジンの排気浄化装置に係る。具体的には、特にカーボ ンを主成分とする粒子状物質 (PM)の排出を低減するディーゼルエンジンの排気浄 化装置並びに制御装置に関する。
背景技術
[0002] 近年、ディーゼルエンジンから排出される粒子状物質 (PM)、窒素酸化物(N〇x) 等の有害物質の低減が課題となっている。特に、粒子状物質の排出を低減すること は大きな課題となっており、ディーゼルパティキュレートフィルタ(DPF)等の排気浄 化装置が開発されている。
[0003] DPFを用いたディーゼルエンジンの排気浄化装置として、例えば、(特許文献 1)に は、エンジンの排気通路に配置された第 1の連続再生式 DPFと、該第 1の連続再生 式 DPFの容量より小さい容量に構成され上流側の排気通路に配設された第 2の連 続再生式 DPFと、該第 2の連続再生式 DPFの外周部を囲むように配置されるバイパ ス通路と、該バイパス通路を開閉する制御弁と、エンジンの排気温度領域が所定の 温度よりも低い低温領域である場合には該制御弁がバイパス通路を閉じるように制御 する制御装置と、を具備するよう構成されたディーゼルエンジンの排気浄化装置が開 示されている。
[0004] 上記排気浄化装置を用いた場合には、アイドリング時、長い下り坂の走行時や高速 走行からの減速時のように燃料噴射量が少ない状態が続く条件では排気ガス温度が 極端に低いため、排気ガスが第 2の DPFを通過するときに小さい容量の第 2の DPF は直ちに冷却されてしまう。このため、次に第 2の DPFに浄化性能が要求される走行 条件になっても第 2の DPFの温度が上昇するまでは浄化性能を発揮できないという 問題点があった。また、排気ガス温度の変化に対して、第 2の DPFの温度も敏感に 追従するため、熱的歪が生じやすく耐久性が低下しやすいという問題点があった。
[0005] また、 (特許文献 2)では、有害物質を処理する排気処理用の主触媒を備えたェン ジンにおいて、エンジンの低負荷時に於ける小排気流量時には、小排気通路に排気 流を流通し、この小排気通路に接続して設けた補助触媒と排気流とを接触して排気 流の処理を行うと共に、エンジンの高負荷時に於ける排気流量の増大時には、切換 弁を介して排気流の全量を主排気通路に流通させることにより主触媒と接触させて 排気流の処理を行うエンジン排気処理装置が開示されている。そして、この具体的手 段として小排気通路または主排気通路に切換弁を設け、エンジンの低負荷時に於け る小排気流量時には小排気通路側に排気流を流通させるように切換弁を切り替え、 また、エンジンが高出力、高負荷時の排気流量の増大時には、小排気通路への排 気流の流通を停止し、主触媒に接続した主排気通路に排気流の全量を流通させるよ うに切換弁を切り替えるものとしてレ、る。
[0006] さらに、(特許文献 2)では、この小排気通路はエンジンに出来るだけ近い位置が高 温の排気ガスを導入できるため好ましいので、エンジンの排気ポートに接続するのが 最も好ましいが、設計上の制約もあるため可能な限りエンジンに近い位置に設置する としている。
[0007] 上述のような(特許文献 2)の排気処理装置では、エンジン低負荷時に排気全量を エンジン近傍に配備された補助触媒に導くため、補助触媒の受け入れ温度を高くす る点では効果がある。し力しながら、その反面、補助触媒を出たあと主触媒に到達す るまでに温度低下が生じるので機能上最も重要な役割を果たすべき主触媒そのもの の温度条件が悪化して機能が十分果たせなくなる問題があった。また、補助触媒は エンジンに近過ぎてエンジン排気の大きな温度変化を直接受けるために自身の熱歪 による耐久性低下の問題があった。さらに、小排気通路と主排気通路への切替は排 気全量のオンオフ切替であったので、エンジン高負荷運転では補助触媒への流れ が止まるので周囲温度によって一旦著しく温度低下してしまい次の補助触媒使用開 始時に温度上昇が遅れて触媒機能がスムーズに働かない問題があった。これらの問 題の他にも、中間開度的な排気分配を行なえない上記装置では主触媒と補助触媒 の双方を満足させる総合的な最適設計を追及し難い欠点があった。
[0008] 特許文献 1 :特開 2003— 3830号公報
特許文献 2 :特開 2002— 322909号公報 発明の開示
発明が解決しょうとする課題
[0009] 上記従来の状況に鑑み、本発明のディーゼルエンジンの排気ガス浄化装置は、デ イーゼルエンジンから排出される排気ガスの温度変動に対してマイクロ DPFの温度 が敏感に追従することを防止し、走行中におけるマイクロ DPFの浄化性能を維持す るとともに、マイクロ DPFの熱による変形やそれによる耐久性の低下を防ぐことを目的 とする。また、マイクロ DPFからメイン DPFへ排気ガスが流入する際の温度低下を抑 制し、メイン DPFが最適に機能するようにすることを目的とする。そして、これによりメ イン DPF及びマイクロ DPFの両方が最適に排気浄化性能を発揮することが可能な ディーゼルエンジンの排気浄化装置を提供することを目的とする。
課題を解決するための手段
[0010] 上記課題を解決するため、本発明のディーゼルエンジンの排気ガス浄化装置は、 ディーゼルエンジンの排気ガスに含まれるパティキュレートマターを捕集して処理す るマイクロ DPFと、該マイクロ DPFと並設されたバイパス通路と、該バイパス通路と前 記マイクロ DPFとの間に設けられて、該バイパス通路を流れる排気ガスと前記マイク 口 DPFとの間の熱伝導を抑制する断熱層と、排気ガスが前記マイクロ DPF又は前記 バイパス通路の少なくとも一方を流れるように流路を切替える切替弁と、を有すること を特徴とする。
[0011] 上記構成によれば、バイパス通路を流れる排気ガスとマイクロ DPFとの間の熱伝導 が抑制されるので、バイパス通路を流れる排気ガスの温度変化に応じてマイクロ DPF の温度が追従することが抑制される。
[0012] また、本発明は、上記のいずれか記載のディーゼルエンジンの排気浄化装置にお いて、マイクロ DPFとバイパス通路と切替弁とがハウジングにより一体化されたマイク 口 DPFユニットを構成することを特徴とする。
[0013] 上記構成によれば、マイクロ DPFとバイパス通路と切替弁とをハウジング内に配置 し一体化するので、マイクロ DPFユニット全体の表面積が小さくなり、マイクロ DPFュ ニットと外気との熱伝導が抑制される。また、一体化されることで装置が小型化される ので製造コストが低減されるとともに取付作業、整備作業等が容易になる。 [0014] また、本発明は、上記記載のディーゼルエンジンの排気浄化装置において、マイク 口 DPFとディーゼルエンジンとを接続する排気管が断熱材によって被覆されたことを 特徴とする。
[0015] 上記構成によれば、ディーゼルエンジンからマイクロ DPFまでの排気管に断熱材が 被覆されているので、排気ガスの冷却が低減され、マイクロ DPF入口における排気 ガスの温度を高く維持することができる。
[0016] また、本発明は、上記のいずれか記載のディーゼルエンジンの排気浄化装置にお いて、マイクロ DPFより下流側にメイン DPFが設けられたことを特徴とする。
[0017] 上記構成によれば、マイクロ DPFの下流側にメイン DPFが設けられるので、ディー ゼルエンジンの排気ガス中に含まれる PMを確実に捕集し処理することができる。さら に、排気ガスの一部の PMが酸化処理される際に燃焼熱が生じ、マイクロ DPFの温 度が上昇するため、マイクロ DPF32を通過した排気ガスは、メイン DPFにおいても P Mを酸化処理可能な温度に維持される。
[0018] また、本発明は、上記記載のディーゼルエンジンの排気浄化装置において、マイク 口 DPFがディーゼルエンジンよりもメイン DPFに近い位置に設けられていることを特 徴とする。
[0019] 上記構成によれば、マイクロ DPFがディーゼルエンジンから離れた位置に設けられ るので、ディーゼルエンジン及びディーエルエンジンから排出される排気ガスの温度 に対してマイクロ DPFの温度が敏感に追従するのが抑制される。また、マイクロ DPF 力 メイン DPFまでの排気管における排気ガスの冷却が低減され、メイン DPF入口 における排気ガスの温度を高く維持することができる。
[0020] また、本発明は、上記記載のディーゼルエンジンの排気浄化装置において、マイク 口 DPFユニットの排気ガス出口の中心軸力 Sメイン DPFの流路中心軸と同一線上とな るように前記マイクロ DPFユニットが配置されたことを特徴とする。
[0021] 上記構成によれば、マイクロ DPFユニットからメイン DPFまでの排気ガスの流路が 直線に近くなるため、排気ガスの通過抵抗が小さくなり、エンジンの性能の低下を抑 制すること力 Sできる。
[0022] また、本発明は、上記のいずれか記載のディーゼルエンジンの排気浄化装置にお いて、アクセルペダルの踏み込み量及びエンジン回転数に応じた開度に切替弁を制 御するための開度データを記憶する記憶手段と、アクセルペダルの踏み込み量を検 出し、前記アクセルペダルの踏み込み量が前記開度データに基づき予め設定された 第 1の閾値より小さいときには、排気ガスの全量又は多くをバイパス通路に流すように 切替弁を制御する切替弁制御手段と、を有する制御装置を備えたことを特徴とする。
[0023] 上記構成によれば、アクセルペダルの踏み込み量が小さいときには、全排気ガスを バイパス通路に流す、又は排気ガスの多くをバイパス通路に流すように切替弁を制 御するようにしたので、排気ガスの温度が極端に低いときにマイクロ DPFが冷却され るのを防止することができる。
[0024] また、上記記載のディーゼルエンジンの排気浄化装置におレ、て、切替弁制御手段 は、アクセルペダルの踏み込み量及びエンジン回転数を検出し、前記アクセルぺダ ルの踏み込み量が前記開度データに基づき予め設定された第 1の閾値以上で第 2 の閾値以下であり、かつ前記開度データに基づき予め設定されたエンジン回転数が 第 1の閾値以上で第 2の閾値以下である場合には、排気ガスの全量又は多くをマイク 口 DPFに流すように切替弁を制御することを特徴とする。
[0025] 上記構成によれば、排気ガスの多ぐあるいは全量がマイクロ DPFに流れ込み、排 気ガス中の PMがマイクロ DPFにおいて連続酸化処理される。また、排気ガスの一部 の PMが酸化処理される際に生じる燃焼熱により、マイクロ DPFを通過した排気ガス は温度が維持されており、メイン DPFにおいても酸化処理することが可能となる。
[0026] また、本発明は、上記記載のディーゼルエンジンの排気浄化装置において、切替 弁制御手段は、アクセルペダルの踏み込み量及びエンジン回転数を検出し、前記ェ ンジン回転数が前記開度データに基づき予め設定された第 2の閾値より大きい、また は前記アクセルペダルの踏み込み量が前記開度データに基づき予め設定された第 2の閾値よりも大きいときには、排気ガスの多くをバイパス通路に流すように切替弁を 制御することを特徴とする。
[0027] 上記構成によれば、エンジン回転数が大きい、又はアクセルペダルの踏み込み量 が大きいために排気ガスの温度が高いときに、排気ガスの多くをバイパス通路に流す とともに排気ガスの一部をマイクロ DPFに流すように切替弁を制御するので、排気ガ スの多くがバイパス通路を通過してメイン DPFで処理されている際にもマイクロ DPF の温度が維持される。
[0028] また、本発明は、上記記載のディーゼルエンジンの排気浄化装置において、マイク 口 DPF又はメイン DPFに流入する排気ガスの温度を測定する排気温度センサを備 え、切替弁制御手段は、排気温度センサから入力した排気温度に基づいて切替弁 を制御する情報を出力することを特徴とする。
[0029] 上記構成によれば、マイクロ DPF又はメイン DPFに流入する排気ガスの温度を測 定する排気温度センサを備え、切替弁制御手段は、排気温度センサから入力した排 気温度センサに基づいて切替弁を制御する情報を出力するようにしたので、外気温 度等の環境が変化した場合であっても排気ガスの温度が PMの連続再生に十分な 温度に制御することが可能となる。
[0030] また、本発明の制御装置は、ディーゼルエンジンの排気に含まれるパティキュレート マターを捕集して処理するメイン DPFと、該メイン DPFの上流側に設けられたマイク 口 DPFと、該マイクロ DPFに並設されたバイパス通路と、排気ガスが前記マイクロ DP F又は前記バイパス通路の少なくとも一方を流れるように流路を切替える切替弁と、を 備えたディーゼルエンジンの排気浄化装置に用いられる制御装置であって、ァクセ ルペダルの踏み込み量及びエンジン回転数に応じた開度に前記切替弁を制御する 開度データを記憶する記憶手段と、アクセルペダルの踏み込み量を検出し、前記ァ クセルペダルの踏み込み量が前記開度データに基づき予め設定された第 1の閾値よ り小さいときには、排気ガスの全量又は多くをバイパス通路に流すように切替弁を制 御する切替弁制御手段と、を備えることを特徴とする。
[0031] 上記構成によれば、アクセルペダルの踏み込み量が小さいときには、全排気ガスを バイパス通路に流す、又は排気ガスの多くをバイパス通路に流すように切替弁を制 御するようにしたので、排気ガスの温度が極端に低いときにマイクロ DPFが冷却され るのを防止することができる。
[0032] また、本発明は、上記記載の制御装置において、切替弁制御手段は、アクセルぺ ダルの踏み込み量及びエンジン回転数を検出し、前記アクセルペダルの踏み込み 量が前記開度データに基づき予め設定された第 1の閾値以上で第 2の閾値以下で あり、かつ前記開度データに基づき予め設定されたエンジン回転数が第 1の閾値以 上で第 2の閾値以下である場合には、排気ガスの全量又は多くをマイクロ DPFに流 すように切替弁を制御することを特徴とする。
[0033] 上記構成によれば、排気ガスの多ぐあるいは全量がマイクロ DPFに流れ込み、排 気ガス中の PMがマイクロ DPFにおいて連続酸化処理される。また、排気ガスの一部 の PMが酸化処理される際に生じる燃焼熱により、マイクロ DPFを通過した排気ガス は温度が維持されており、メイン DPFにおいても酸化処理することが可能となる。
[0034] また、本発明は、上記記載の制御装置において、切替弁制御手段は、アクセルぺ ダルの踏み込み量及びエンジン回転数を検出し、前記エンジン回転数が前記開度 データに基づき予め設定された第 2の閾値より大きい、または前記アクセルペダルの 踏み込み量が前記開度データに基づき予め設定された第 2の閾値よりも大きいとき には、排気ガスの多くをバイパス通路に流すように切替弁を制御することを特徴とす る。
[0035] 上記構成によれば、エンジン回転数が大きい、又はアクセルペダルの踏み込み量 が大きいために排気ガスの温度が高いときに、排気ガスの多くをバイパス通路に流す とともに排気ガスの一部をマイクロ DPFに流すように切替弁を制御するので、排気ガ スの多くがバイパス通路を通過してメイン DPFで処理されている際にもマイクロ DPF の温度が維持される。
発明の効果
[0036] 本発明によれば、排気ガスの温度変化に対してマイクロ DPFの温度が過敏に追従 することのないディーゼルエンジンの排気浄化装置が提供されるので、走行中にお けるマイクロ DPFの浄化性能を維持することができるとともに、マイクロ DPFの熱によ る変形やそれによる耐久性の低下を防ぐことが可能となる。
図面の簡単な説明
[0037] [図 1]実施の形態(1)に係るディーセルエンジンの排気浄化装置の全体構成を示す 斜視図である。
[図 2]実施の形態(1)に係るディーゼルエンジンの排気浄化装置の全体構成を示す 図である。 [図 3]実施の形態(1)に係るディーゼルエンジンの排気浄化装置の斜視図である。
[図 4]図 3の A— A断面図である。
[図 5]図 4の B— B断面図である。
[図 6]実施の形態(1)に係るディーゼルエンジンの排気浄化装置の側面図である。 園 7]実施の形態(1)に係るディーゼルエンジンの排気浄化装置に用いる切替弁の 開度データを示す図である。
[図 8]実施の形態(2)に係るマイクロ DPFユニットの縦断面図である。
[図 9]実施の形態(2)に係るディーゼルエンジンの排気浄化装置の側面図である。 園 10]実施の形態(2)に係るディーゼルエンジンの排気浄化装置に用いる切替弁の 開度データを示す図である。
園 11]実施の形態(3)に係るマイクロ DPFユニットの縦断面図である。
園 12]実施の形態(3)に係るディーゼルエンジンの排気浄化装置の側面図である。 園 13]実施の形態(3)ディーゼルエンジンの排気浄化装置の別の形態を示す側面 図である。
園 14]実施の形態(3)に係るディーゼルエンジンの排気浄化装置に用いる切替弁の 開度データを示す図である。
園 15]実施の形態 (4)に係るディーゼルエンジンの排気浄化装置の横断面図である 符号の説明
10 ディーゼノレエンシ:
11 排気管
11A 上流側の排気管
11B 下流側の排気管
12 吸気マ二ホールド
14 排気マ二ホールド
16 ァクセノレポジション
18 回転センサ
20 制御装置 吸気温度センサ 吸気絞り 排気絞り 外部 EGR配管 排気温度センサ 排気温度センサ マイクロ DPFユニット ハウジング マイクロ DPF バイパス通路 切替弁
排気ガス入口 排気ガス出口 断熱層
A、 38B 筐体
セパレータ 筐体
傾動軸
取付板
エアシリンダ 連結具
レバーリンク ストッパ
固定板
ストッパ ノ^ネ
固定用ナット 52 バネ
53 固定具
60 メイン DPF
al、bl 第 1の閾値
a2、 b2 第 2の閾値
発明を実施するための最良の形態
[0039] 以下、本発明を実施するための最良の形態について詳細に説明する。図:!〜 7は、 本発明に係るディーゼルエンジンの排気浄化装置の実施の形態(1)を示す図である
[0040] 図 1、 2に示すように、ディーゼルエンジンの排気浄化装置には、排気を浄化する対 象となるディーゼルエンジン 10と、ディーゼルエンジン 10と排気管 11Aを介して接続 されたマイクロ DPFユニット 30と、マイクロ DPFユニット 30と排気管 11Bを介して接続 されたメイン DPF60と、を備える。
[0041] ディーゼルエンジン 10には、ディーゼルエンジン 10の各シリンダに新気を導入する 吸気マ二ホールド 12と、各シリンダから排出される燃焼後の排気を通す排気マニホ 一ルド 14が備えられる。排気マ二ホールド 14には、上流側の排気管 11Aが接続され ており排気ガスは、上流側の排気管 11Aを通してマイクロ DPFユニット 30に排気さ れる。なお、上流側の排気管 11Aは、ディーゼルエンジン 10から排気された排気ガ スが冷却されなレ、ように断熱材で被覆されてレ、る。
[0042] 図 3〜5に示すように、マイクロ DPFユニット 30は、円筒形状のマイクロ DPF32と、 マイクロ DPF32と離間して並設され、断面が略半円筒状であるバイパス通路 33と、 マイクロ DPF32及びバイパス通路 33の間に形成された断熱層 37と、排気ガスがマ イク口 DPF32又はバイパス通路 33の少なくとも一方を流れるように流路を切替える 切替弁 34と、を備える。そして、マイクロ DPF32及びバイパス通路 33は、排気ガス入 口を構成するハウジング 31Aと排気ガス出口を構成するハウジング 31Bに各々嵌め 付け固定され、一体化されている。また、切替弁 34は、ハウジング 31Aに傾動軸 41 を介して取付けられている。
[0043] マイクロ DPF32は、ディーゼルエンジンの低負荷時に排出される比較的少量の排 気に含まれる CO、 HC及び NOを酸化させて CO、 H O及び NOに転化させるとと
2 2 2
もに PMの一部を連続酸化処理する小型の CR— DPFである。マイクロ DPF32の外 周には、マイクロ DPF32を保護する筐体 38Aが設けられている。筐体 38Aの材質と しては、金属、樹脂等の種々のものを用いることができるが、通常は耐熱性の高い金 属が用いられる。
[0044] なお、マイクロ DPF32は、エンジンの排気中に含まれる CO、 HC及び N〇を酸化さ せて CO 、H O及び N〇に転化させる酸化触媒と、排気中に含まれる PM (パティキ
2 2 2
ュレート.マター)を捕集して処理する DPF (ディーゼル ·パティキュレート'フィルタ)と を 1つの容器に納めたものであるが、 DPFのみを単独で用いることも可能である。ま た、設計段階でマイクロ DPF32の容量 (大きさ)を決定する場合には、排気を処理す るディーゼルエンジンの排気温度特性と排気の流量に応じて決定するとよい。
[0045] そして、バイパス通路 33は、マイクロ DPF32と断熱層 37を介して並設されたもので あり、バイパス通路 33を通過した排気ガスは排気ガス出口を通して下流側の排気管 11Bへと排気される。なお、バイパス通路 33は、断面が略半円状である筐体 38Bに より構成されている。
[0046] また、マイクロ DPF32とバイパス通路 33との間には、空気層からなる断熱層 37が 設けられている。なお、本実施の形態のように空気層を設けることでマイクロ DPF32 とバイパス通路 33との間の熱伝導を抑制することは十分できるが、断熱材などを用い て熱伝導をより抑制することも可能である。
[0047] 切替弁 34は、傾動軸 41を中心として傾動し、開度を変えることが可能となっている 。そして、制御装置 20の指示に基づいて、マイクロ DPF32とバイパス通路 33とに排 気の流路を切り替える機能を備えてレ、る。
[0048] 図 4におレ、て、切替弁 34が 34aの位置にある場合は、バイパス通路 33が切替弁 34 により完全に閉じられている状態を表す。この状態では、排気ガスの全量がマイクロ DPF32に流入し、排気ガス中に含まれる CO、 HC及び N〇が酸化されて C〇、 H〇
2 2 及び N〇に転化されるとともに PMが連続酸化処理される。そして、マイクロ DPF32
2
を通過した排気ガスは排気ガス出口 36を通して下流側の排気管 11Bに流れる。
[0049] また、図 4において、切替弁 34が 34bの位置にある場合は、バイパス通路 33が開 放されている。そして、排気ガスの一部がマイクロ DPF32にも流れるように、一部開 放されている状態となっている。この状態では、マイクロ DPF32での排気ガスの通過 抵抗がバイパス通路 33よりも大きいため、排気ガスの多くはバイパス通路 33を通過 する。また、排気ガスの一部はマイクロ DPF32に流入し、排気ガス中に含まれる C〇 、 HC及び NOが酸化されて CO
2、 H O及び NOに転化されるとともに PMの一部が 2 2
連続酸化処理される。そして、マイクロ DPF32及びバイパス通路 33を通過した排気 ガスは排気ガス出口 36を通して下流側の排気管 11Bに流れる。なお、切替弁 34の 3 4bの位置としては、排気ガス全流量の 70〜98vol%がバイパス通路に流れるような 位置であることが好ましぐさらには排気ガス全流量の 85〜90vol%がバイパス通路 に流れるような位置であることが特に好ましい。
[0050] 切替弁 34の切り替えは、図 6に示すように、ハウジング 31の側面に取付板 42を介 して設けられたエアシリンダ 43により行なわれる。切替弁 34を傾動させる傾動軸 41 には、レバーリンク 45が傾動軸 41と回転一体となるように取付固定されている。そし て、レバーリンク 45は、エアシリンダ 43のピストンに対して回転可能となるように連結 具 44を介して取付けられている。これにより、エアシリンダ 43の伸縮動作によりレバ 一リンク 45及び傾動軸 41を介して、切替弁 34の傾動が操作される。
[0051] そして、レバーリンク 45の傾動は、切替弁 34が必要以上に傾動することがないよう に、取付板 42に設けられたストッパ 46A及びストッパ 46Bにより制限される。例えば、 エアシリンダ 43のピストンが伸張しレバーリンク 45がストッパ 46Aの位置となる場合に は切替弁 34は 34aの位置にあり、バイパス通路 33を閉じている状態となる。また、ェ ァシリンダ 43のピストンが縮退しレバーリンク 45がストッパ 46Bの位置にある場合に は、切替弁 34は 34bの位置にあり、バイパス通路 33を開放するとともにマイクロ DPF 32にも排気ガスが少量流れる状態となる。ストツバ 46Bの位置を調整することで切替 弁 34の静止位置を調整することができる。
[0052] マイクロ DPFユニット 30に流入した排気ガスは、排気ガス入口 35において切替弁 3 4によって流路を切替えられ、マイクロ DPF32とバイパス通路 33との少なくとも一方を 流れる。そして、マイクロ DPF32とバイパス通路 33との少なくとも一方を通過した排 気ガスは、排気ガス出口 36へと流れる。 [0053] また、切替弁 34の開度を制御する制御装置 20は、運転手がディーゼルエンジンの 出力を制御する情報を入力するためのアクセルペダルの踏み込み量 (負荷)を検出 して制御装置等に伝達するアクセルポジションセンサ 16と、ディーゼルエンジンのク ランクシャフトの回転角などを読み取って制御装置 20に対して回転角信号 (エンジン の回転数信号を含む)を出力する回転センサ 18とを備える。なお、アクセルペダルの 踏み込み量は、図示しない燃料噴射装置に伝達され、エンジンに供給される燃料噴 射量を制御することが可能となっている。
[0054] また、下流側の排気管 11Bにはメイン DPF60が設けられており、マイクロ DPFュニ ット 30を通過した排気ガスが流入する。メイン DPF60は、ディーゼルエンジンの高負 荷時および高速走行時に排出される多量の排気中に含まれる CO、 HC及び N〇を 酸化させて C〇、 H〇及び NOに転化させるとともに PMを連続酸化処理する大型
2 2 2
の CR— DPFである。
[0055] なお、マイクロ DPFユニット 30は、ディーゼルエンジン 10からの熱伝導が抑制され るように、ディーゼルエンジン 10の直下に設けるのではなぐディーゼルエンジン 10 よりもメイン DPF60に近い位置に設けている。具体的には、下流側の排気管 11Bが 上流側の排気管 11Aよりも短くなつている。また、マイクロ DPFユニット 30は、該マイ クロ DPFユニット 30の排気ガス出口 36の中心軸力 メイン DPF60の流路中心軸、 及びメイン DPF60とマイクロ DPFユニット 30とを接続する排気管 11Bの流路中心軸 、と同一線上となるように配置されている。これにより、マイクロ DPFユニット 30からメイ ン DPF60までの排気ガスの流路が直線に近くなるため、排気ガスの通過抵抗が小さ ぐエンジンの性能の低下を抑制することが可能となる。
[0056] また、ディーゼルエンジンの排気浄化装置には、上記 DPFの装置以外にも、ェンジ ンの吸気温度を測定する吸気温度センサ 22と、エンジンの吸気を絞ることによってシ リンダに吸入される新気の量を調節する吸気絞り 24と、エンジンの排気を絞ることに よって排圧を高くしてシリンダに戻す排気のガス量を増やす制御を行なう排気絞り 26 とが設けられている。なお、排気絞り 26は、マイクロ DPFユニット 30の下流に設けて もよレ、し、メイン DPF60の上流、又は下流に設けてもよい。
[0057] また、ディーゼルエンジンの排気浄化装置には、排気マ二ホールド 14等から取得し た排気を冷却して吸気マ二ホールド 12等に還流するための外部 EGR配管 27が設 けられており、再循環させる排気ガスの流量は外部 EGRバルブにより調整できるよう に構成されている。
[0058] また、ディーゼルエンジンの排気浄化装置には、マイクロ DPFユニット 30に流入す る排気の温度を測定する排気温度センサ 28と、メイン DPF60に流入する排気の温 度を測定する排気温度センサ 29とが設けられている。
[0059] なお、メイン DPF60の容量(大きさ)や、各 DPFまでの排気管 11の長さ、切替弁 34 の取付位置なども、対象となる車種やエンジンの構成などによって適宜決定する。
[0060] 上記実施の形態(1)におけるディーゼルエンジンの排気浄化装置においては、マ イク口 DPF32とバイパス通路 33とが離間して配置され、各々の間に断熱層 37が設け られるので、バイパス通路 33を流れる排気ガスとマイクロ DPF32との間の熱伝導を 抑制され、バイパス通路 33を流れる排気ガスの温度変化に応じてマイクロ DPF32の 温度が追従することが抑制される。また、マイクロ DPF32、ノくィパス通路 33と外部と の間の熱伝導が抑制されるので、排気ガスの温度が低い低負荷運転時において、マ イク口 DPF32及びバイパス通路 33を通過する排気ガスが外気により冷却されること を防止できる。また、排気ガスの温度が高い高負荷運転時においては、マイクロ DPF 32及びバイパス通路 33を通過する排気ガスが周辺機器に与える熱的な弊害が防止 される。
[0061] また、マイクロ DPF32とバイパス通路 33と切替弁 34とをハウジング 31により一体化 するので、マイクロ DPFユニット 30全体の表面積が小さくなり、排気ガスの温度が低 い低負荷運転時に外気によりマイクロ DPFユニット 30及びマイクロ DPFユニット 30を 通過する排気ガスが冷却されるのを防止できる。また、排気ガスの温度が高い高負 荷運転時には、通過する排気ガスにより温度が上昇したマイクロ DPFユニット 30が周 辺機器に与える熱的な弊害を防止できる。また、一体化されることで装置が小型化さ れるので製造コストが低減されるとともに取付作業、整備作業等が容易になる。
[0062] また、マイクロ DPFユニット 30がディーゼルエンジン 10からマイクロ DPFユニットま での上流側の排気管 11Aの長さが長く熱容量が大きいため、ディーゼルエンジン 10 及びディーエルエンジン 10力、ら排気される排気ガスの温度に対してマイクロ DPFュ ニット 30の温度が敏感に追従するのが抑制される。そして、上流側の排気管 11Aに は断熱材が被覆されてレ、るので、排気ガスの冷却が防止される。
[0063] また、マイクロ DPFユニット 30力もメイン DPF60までの下流側の排気管 11Bの長さ が短くなるので、下流側の排気管 11Bにおける排気ガスの冷却が低減され、メイン D PF60の入口における排気ガスの温度を高く維持することができる。
[0064] 以下、上記のディーゼルエンジンの排気浄化装置の制御について説明する。図 7 は、図 4に示したディーゼルエンジンの排気浄化装置に用いる切替弁 34をアクセル ペダルの踏み込み量 (エンジン負荷割合)及びエンジン回転数に応じた開度に制御 するための開度データを示す図である。
[0065] 同図に示す開度データは制御装置 20内に設けられた記憶手段に記憶されており 、制御装置 20は、アクセルポジションセンサ 16から入力したアクセルペダル踏み込 み量(%) (エンジンの負荷割合(%) )及び回転センサ 18から入力したエンジンの回 転数 (rpm)に基づいて、前記記憶手段に記憶されている開度データを参照し、切替 弁 34を制御する情報を出力する切替弁制御手段を備える。なお、開度データを記憶 する記憶手段は、制御装置 20の内部に設けてもよいし、制御装置 20の外部に独立 して設けて制御装置 20と通信可能に接続してもよい。
[0066] なお、図 7に示された開度データから分かるように、アクセルペダルの踏み込み量 が予め設定された第 1の閾値 alよりも小さい場合には、制御装置 20内の切替弁制御 手段は、切替弁 34を 34bの位置に傾動するように切替弁 34に対して制御信号を出 力する。これにより、ノくィパス通路 33は開放され、排気ガスの多くがバイパス通路 33 を流れ、排気ガスの一部がマイクロ DPFに流入する。
[0067] また、アクセルペダルの踏み込み量が第 1の閾値 al以上で第 2の閾値 a2以下であ り、かつエンジン回転数が第 1の閾値 bl以上で第 2の閾値 b2以下である場合には、 制御装置 20内の切替弁制御手段は切替弁 34aの位置に傾動するように切替弁 34 に対して制御信号を出力する。これにより、バイパス通路 33は閉鎖され、排気ガスの 全量がマイクロ DPF32に流入する。なお、アクセルペダルの踏み込み量について予 め設定された第 1の閾値 alと第 2の閾値 a2は、第 2の閾値 a2≥第 1の閾値 alとなつ ている。同様に、エンジン回転数について予め設定された第 1の閾値 blと第 2の閾値 b2につレヽても、第 2の閾値 b2≥第 1の閾値 blとなっている。また、アクセルペダルの 踏み込み量について予め設定された第 2の閾値 a2は、図 7に示すように、エンジン回 転数に応じて変化する値であり、エンジン回転数が大きくなるにつれ第 2の閾値 a2も 大きくなるように設定されてレ、る。
[0068] また、アクセルペダルの踏み込み量が予め設定された第 2の閾値 a2より大きレ、、ま たはエンジン回転数が予め設定された第 2の閾値 b2よりも大きい場合には、制御装 置 20内の切替弁制御手段は、切替弁 34を 34bの位置に傾動するように切替弁 34 に対して制御信号を出力する。これにより、バイパス通路 33は開放され、排気ガスの 多くがバイパス通路 33を流れ、排気ガスの一部がマイクロ DPFに流入する。
[0069] 具体的には、図 7に示すように、例えばエンジン回転数が 1500rpmの場合であつ て、運転手がアクセルペダルを 60%踏み込んでいる中回転、中負荷の運転状態で は、アクセルペダルの踏み込み量が予め設定された第 2の閾値 a2より大きくなつてい る。中回転、中負荷の運転状態では、排気ガスの温度がメイン DPF60において十分 に浄化できる温度に上昇している。したがって、制御装置 20内の切替弁制御手段は 、切替弁 34を 34bの位置に傾動し、バイパス通路 33を開放してメイン DPF60に直接 排気ガスを流すように、切替弁 34に対して制御信号を出力する。
[0070] この際、マイクロ DPF32の排気ガスの通過抵抗がバイパス通路 33よりも大きいため 、排気ガスの多くはバイパス通路 33を通過し、メイン DPF60において排気ガス中の PMは連続酸化処理される。また、排気ガスの一部は、マイクロ DPF32に流れ、同様 に排気ガス中の PMは連続酸化処理される。このように、メイン DPF60使用時にもマ イク口 DPF32に少量の排気を流し続けることによって、マイクロ DPF32の温度を所 定の温度に維持することが可能となる。このため、運転状況によって負荷が減少し、 マイクロ DPF32に排気の流れを切り替えた場合であっても、切替直後からマイクロ D PF32は PMを連続処理することが可能となり、運転状況が急に変化した場合であつ ても PMを連続再生することが可能となる。
[0071] 続いて、エンジン回転数が 1500rpmの運転状態で、運転手がアクセルペダルの踏 み込み量を更に 20%付近まで戻した場合には、アクセルペダルの踏み込み量が第 1の閾値 al以上で第 2の閾値 a2以下であり、かつエンジン回転数が第 1の閾値 bl以 上で第 2の閾値 b2以下となっている。この場合には、制御装置 20内の切替弁制御手 段は切替弁の開度データを参照して、切替弁 34を 34aの位置に傾動し、バイパス通 路 33を閉じて排気ガスの全量をマイクロ DPF32に流すように、切替弁 34に対して制 御信号を出力する。
[0072] 上記のようなエンジン回転数、アクセルペダル踏み込み量となる走行条件は、定速 走行時等にあたる。この状態では、排気ガスの全量がマイクロ DPF32に流れ、排気 ガス中に含まれる PMの一部が連続酸化処理される。また、切替弁 34を切替えてバ ィパス通路 33を閉じて、排気ガスの流路をマイクロ DPF32に切り替えるので、排気 ガスの通過抵抗が増大してエンジン排気圧力がバイパス通路 33に排気ガスを流す 場合よりも高くなる。このため、排気ガスのディーゼルエンジン 10への逆流が増大し て排気ガスの温度が上がり、マイクロ DPF32に流れ込む排気ガスの温度は PMを連 続再生可能な温度となっている。さらに、排気ガスの一部の PMが酸化処理される際 に燃焼熱が生じるため、マイクロ DPFの温度は上昇する。このため、マイクロ DPF32 を通過した排気ガスは、温度が維持されており、メイン DPFにおいても酸化処理する ことが可能となる。
[0073] なお、このとき排気絞り 26の絞り量も、アクセルペダルの踏み込み量又はエンジン の回転数に応じて絞り量を制御するようにしてもよい。その場合には、記憶手段に、 エンジンの回転数が所定の回転数よりも低ぐかつ、アクセルペダルの踏み込み量が 所定の踏み込み量よりも少ない場合に、排気絞り 26を絞るように排気絞りの絞り量デ ータを入力しておき、制御装置 20内の切替弁制御手段はアクセルペダルの踏み込 み量とエンジンの回転数とを入力して前記排気絞りの絞り量データを参照し、排気絞 り 26を制御する情報を出力するようにしてもよい。
[0074] これにより、吸気絞り 24を絞っても排気温度が所定の温度に到達しないようなアイド リング時等の低負荷低回転の運転領域においても、吸気絞り 24を絞ると同時に排気 絞り 26を絞ることによって排圧を高め、シリンダに戻す排気の量を多くして排気温度 を確保することが可能となっている。また、このようにして、より広い運転領域で排気に 含まれる PMを連続再生する処理を行なうことが可能となっている。
[0075] 続いて、エンジン回転数が 1500rpmの運転状態で、運転手がアクセルペダルの踏 み込み量を更に 2%以下まで戻した場合には、アクセルペダルの踏み込み量が予め 設定された第 1の閾値 alよりも小さくなつている。この場合には、制御装置 20内の切 替弁制御手段は切替弁の開度データを参照して、切替弁 34を再び 34bの位置に傾 動し、バイパス通路 33を開放するように、切替弁 34に対して制御信号を出力する。
[0076] 上記のようなアクセルペダルの踏み込み量となる走行条件は、アイドリング時、長い 下り坂走行時、高速走行からの減速時等にあたる。このような超低負荷状態におい ては、排気ガスの温度が極端に低レ、が、排気ガスの多くをバイパス通路 33に流し、 マイクロ DPF32への排気ガスの流入を減少させるので、マイクロ DPF32の温度低下 が防止される。また、バイパス通路 33とマイクロ DPF32との間には断熱層 37が設け られているので、バイパス通路 33を通過する排気ガスによるマイクロ DPF32の冷却 が防止される。したがって、再びアクセルペダルの踏み込み量を戻すなどしてマイク 口 DPF32に浄化性能が要求される走行条件になった時まで浄化性能が維持される こととなる。なお、この運転条件では PM、 NOx等が極めて少ないので DPFで浄化処 理する必要は無い。なお、切替弁 34の 34bの位置は、中'高負荷状態と超低負荷状 態の時に両用するので、中 ·高負荷状態時においてマイクロ DPF32の温度が維持さ れ、かつ超低負荷状態時において、マイクロ DPF32の温度低下が抑制されるような 位置であることが好ましい。具体的には、排気ガス全流量の 70〜98vol%がバイパス 通路 33に流れる位置であることが好ましぐ排気ガス全流量の 85〜90vol%がバイ パス通路 33に流れる位置であることが特に好ましい。
[0077] なお、切替弁制御手段は、切替弁 34が切り替わった後、切り替わった状態を所定 時間保持するように切替弁 34を制御することが好ましい。切替弁 34が切り替わった 後に切り替わった状態を所定時間保持することで、切替弁 34がアクセルペダルの踏 み込み量又はエンジンの回転数等に過敏に反応し、頻繁に切替動作が行われること を防止することができる。なお、切り替わった状態を保持する時間は、好ましくは 1〜5 秒であり、さらに好ましくは 2〜3秒である。
[0078] また制御装置 20内の切替弁制御手段は、マイクロ DPF32又はメイン DPF60に流 入する排気の温度を測定する排気温度センサ 28、 29から入力した排気温度に基づ いて、切替弁 34を制御する情報を出力し、排気温度を所定の温度範囲に制御する ようにしてもよい。この場合に切替弁制御手段は、排気温度に応じて切替弁 34の開 度データをずらす処理を行なってもよいし、切替弁 34に出力する制御情報に対して 所定の係数を加算又は乗算する処理を行なってもよい。
[0079] また、ディーゼルエンジンの吸気温度を測定する吸気温度センサ 22を吸気マニホ 一ルド 12等に備え、切替弁制御手段は、切替弁 34の開度データに加えて吸気温度 センサ 22から入力した吸気温度に基づいて、切替弁 34を制御する情報を出力する ようにしてもよい。この場合に切替弁制御手段は、吸気温度に応じて切替弁の開度 データをずらす処理を行なってもよいし、切替弁 34に出力する制御情報に対して所 定の係数を加算又は乗算する処理を行なってもよい。
[0080] このように、切替弁制御手段が排気温度又は吸気温度を入力して排気温度を制御 することによって、安定した使用条件から逸脱して排気の温度が変化した場合であつ ても、所定の排気温度を維持することが可能となる。
[0081] なお、多気筒の排気管が集合している場合には、排気の脈動を利用することによつ て排気効率を高める寸法に排気管を設定するのが常であるが、メイン DPF60に流入 する排気の温度を所定の温度以上に確保するためにマイクロ DPF32を排気ポート の近くに置くと排気干渉を生じたり、ボンビング損失が増大して排気効率が悪化する という不具合を生じるので、メイン DPF60に到達する排気の温度が高い運転領域で は、なるべくメイン DPF60を使用するのが望ましい。
[0082] 上記実施の形態(1)におけるディーゼルエンジンの排気浄化装置の制御によれば 、アイドリング時、長い下り坂の走行時や高速走行からの減速時のように排気ガスの 温度が極端に低い時にマイクロ DPF32の冷却が抑制され、次にマイクロ DPF32に 浄化性能が要求される走行条件になった時まで浄化性能が維持される。
[0083] 続いて、本発明の実施の形態(2)に係るディーゼルエンジンの排気浄化装置につ いて、図 8〜: 10に基づいて説明する。
[0084] 実施の形態(2)では、図 8に示すように、実施の形態(1)に係るディーゼルエンジン の排気浄化装置において、切替弁 34の位置が、排気ガスの多くをバイパス通路 33 に流し、少量をマイクロ DPF32へ流す 34gの位置と、排気ガスの全量をバイパス通 路 33に流すようにマイクロ DPF32を閉じる 34fの位置との二段階に切替えることがで きることを特徴とする。
[0085] そして、切替弁 34が 34fの位置にある場合は、排気ガスの多くがマイクロ DPFに流 れるように開放されており、またバイパス通路 33の側も排気ガスの一部が流れるよう に一部開放されている状態となっている。この状態では、排気ガスの多くがマイクロ D PF32に流入し、排気ガス中に含まれる C〇、 HC及び NOが酸化されて CO、 H O
2 2 及び N〇に転化されるとともに PMが連続酸化処理される。そして、マイクロ DPF32
2
を通過した排気ガスは排気ガス出口 36を通して下流側の排気管 11Bに流れる。また 、一部の排気ガスは、バイパス通路を通過して下流側のメイン DPFにおいて処理さ れる。
[0086] また、図 8において、切替弁 34が 34gの位置にある場合には、バイパス通路 33が 開放されている。そして、排気ガスの一部がマイクロ DPF32にも流れるように、一部 開放されている状態となっている。この状態では、マイクロ DPF32での排気ガスの通 過抵抗がバイパス通路 33よりも大きいため、排気ガスの多くはバイパス通路 33を通 過する。また、排気ガスの一部はマイクロ DPF32に流入し、排気ガス中に含まれる P Mの一部が連続酸化処理される。そして、マイクロ DPF32及びバイパス通路 33を通 過した排気ガスは排気ガス出口 36を通して下流側の排気管 11Bに流れる。
[0087] 続いて、この実施の形態(2)における切替弁 34の切り替えについて説明する。切 替弁 34は、上記実施の形態(1)と同様に、図 9に示すような、ハウジング 31の側面に 取付板 42を介して設けられたエアシリンダ 43により行なうことができる。なお、切替弁 34が 34fの位置にて傾動が停止するように、ストッパ 46Aの位置が調整されている。 すなわち、エアシリンダ 43のピストンが伸張しレバーリンク 45がストッパ 46Aの位置と なる場合に、切替弁 34が 34fの位置にあり、マイクロ DPF32にも排気ガスの多くが流 れ、ノ ィパス通路 33にも排気ガスが少量流れる状態となる。
[0088] 図 10は、図 8に示したディーゼノレエンジンの排気浄化装置に用いる切替弁 34をァ クセルペダルの踏み込み量 (エンジン負荷割合)及びエンジン回転数に応じた開度 に制御するための開度データを示す図である。
[0089] 図 10に示す切替弁 34の開度データは、上記実施の形態(1)と同様に制御装置 20 内に設けられた記憶手段に記憶されている。制御装置 20の構成については、上記 実施の形態(1)に準ずる。
[0090] なお、図 10に示された開度データから分かるように、アクセルペダルの踏み込み量
(エンジン負荷割合)が予め設定された第 1の閾値 alよりも小さい場合には、制御装 置 20内の切替弁制御手段は、切替弁 34を 34gの位置に傾動するように切替弁 34に 対して制御信号を出力する。これにより、バイパス通路 33は開放され、排気ガスの多 くがバイパス通路 33を流れ、排気ガスの一部がマイクロ DPFに流入する。
[0091] また、アクセルペダルの踏み込み量が第 1の閾値 al以上で第 2の閾値 a2以下であ り、かつエンジン回転数が第 1の閾値 bl以上で第 2の閾値 b2以下である場合には、 制御装置 20内の切替弁制御手段は切替弁 34fの位置に傾動するように切替弁 34 に対して制御信号を出力する。これにより、ノ ィパス通路 33への排気ガスの流入が 減少し、排気ガスの多くがマイクロ DPF32に流入し、排気ガスの一部がバイパス通 路 33に流れる。なお、アクセルペダルの踏み込み量について予め設定された第 1の 閾値 alと第 2の閾値 a2は、第 2の閾値 a2≥第 1の閾値 alとなっている。同様に、ェン ジン回転数について予め設定された第 1の閾値 blと第 2の閾値 b2についても、第 2 の閾値 b2≥第 1の閾値 blとなっている。また、アクセルペダルの踏み込み量につい て予め設定された第 2の閾値 a2は、図 7に示すように、エンジン回転数に応じて変化 する値であり、エンジン回転数が大きくなるにつれ第 2の閾値 a2も大きくなるように設 定されている。
[0092] また、アクセルペダルの踏み込み量が予め設定された第 2の閾値 a2より大きい、ま たはエンジン回転数が予め設定された第 2の閾値 b2よりも大きい場合には、制御装 置 20内の切替弁制御手段は、切替弁 34を 34bの位置に傾動するように切替弁 34 に対して制御信号を出力する。これにより、バイパス通路 33は開放され、排気ガスの 多くがバイパス通路 33を流れ、排気ガスの一部がマイクロ DPFに流入する。
[0093] 図 10に示すように、例えばエンジン回転数が 1500rpmの場合であって、運転者が アクセルペダルを 60%踏み込んでいる中回転、中負荷の運転状態では、、アクセル ペダルの踏み込み量が予め設定された第 2の閾値 a2より大きくなつている。中回転、 中負荷の運転状態では、排気ガスの温度がメイン DPF60において十分に浄化でき る温度に上昇している。したがって、制御装置 20内の切替弁制御手段は、切替弁 34 を 34gの位置に傾動するように、切替弁 34に対して制御信号を出力する。そして、切 替弁 34が 34gの位置にあるので排気ガスの多くはバイパス通路 33に流れ、少量の 排気ガスがマイクロ DPF32に流れることとなる。
[0094] メイン DPF60使用時にもマイクロ DPF32に少量の排気を流し続けることによって、 マイクロ DPF32の温度を所定の温度に維持することが可能となり、運転状況によって 負荷が減少し、マイクロ DPF32に排気の流れを切り替えた場合であっても、切替直 後からマイクロ DPF32は PMを連続処理することが可能となる。したがって、運転状 況が急に変化した場合であっても PMを連続再生することが可能となる。なお、切替 弁 34の 34gの位置としては、排気ガス全流量の 70〜98vol%がバイパス通路 33に 流れるような位置であることが好ましぐ排気ガス全流量の 85〜90vol%がバイパス 通路 33に流れるような位置であることが特に好ましい。
[0095] 続いて、エンジン回転数が 1500rpmの運転状態で、運転手がアクセルペダルの踏 み込み量を更に 20%付近まで戻した場合には、アクセルペダルの踏み込み量が第 1の閾値 al以上で第 2の閾値 a2以下であり、かつエンジン回転数が第 1の閾値 bl以 上で第 2の閾値 b2以下となっている。この場合には、制御装置 20内の切替弁制御手 段は切替弁の開度データを参照して、切替弁 34を 34fの位置に傾動するように切替 弁 34に対して制御信号を出力する。そして、切替弁 34が 34fの位置にあるので排気 ガスの多くはマイクロ DPF32に流れ、少量の排気ガスがバイパス通路 33に流れるこ ととなる。
[0096] 上記のようなエンジン回転数、アクセルペダル踏み込み量となる走行条件は、定速 走行時等にあたる。この状態では、排気ガスの多くがマイクロ DPF32に流れ、排気ガ ス中に含まれる PMの一部が連続酸化処理される。また、切替弁 34を切替えて排気 ガスの多くをマイクロ DPF32に流すので、排気ガスの通過抵抗が増大してエンジン 排気圧力がバイパス通路 33に多くの排気ガスを流す場合よりも高くなる。このため、 排気ガスのディーゼルエンジン 10への逆流が増大して排気ガスの温度が上がり、マ イク口 DPF32に流れ込む排気ガスの温度は PMを連続再生可能な温度となっている 。なお、切替弁 34の 34fの位置としては、排気ガス全流量の 2〜30vol%がバイパス 通路 33に流れるような位置であることが好ましぐ排気ガス全流量の 10〜15vol%が バイパス通路 33に流れるような位置であることが特に好ましい。
[0097] 続いて、エンジン回転数が 1500rpmの運転状態で、運転手がアクセルペダルの踏 み込み量を更に 2%以下まで戻した場合には、アクセルペダルの踏み込み量が予め 設定された第 1の閾値 alよりも小さくなつている。この場合には、制御装置 20内の切 替弁制御手段は切替弁の開度データを参照して、切替弁 34を再び 34gの位置に傾 動し、排気ガスの多くはバイパス通路 33に流れるように、切替弁 34に対して制御信 号を出力する。
[0098] 上記のようなエンジン回転数、アクセル踏み込みペダルの踏み込み量となる走行条 件は、アイドリング時、長い下り坂走行時や、高速走行からの減速時等の走行条件に 見られる。この状態では、排気ガス温度が極端に低いが、排気ガスのマイクロ DPF3 2への流れを少量とすることでマイクロ DPF32の温度低下を防止できる。また、バイ パス通路 33とマイクロ DPF32との間には断熱層 37が設けられているので、バイパス 通路 33を通過する排気ガスによるマイクロ DPF32の冷却が防止される。その結果、 超低負荷状態であるアイドリング時、長い下り坂走行時、高速走行からの減速時等の ように排気ガス温度が極端に低い時にマイクロ DPF32の冷却が完全に抑制される。 したがって、再びアクセルペダルの踏み込み量を戻すなどしてマイクロ DPF32に浄 化性能が要求される走行条件になった時まで浄化性能が維持されることとなる。なお 、この運転条件では PM、 N〇x共に極めて少ないので CR— DPFで浄化する必要は ハ、、レ ν
[0099] 本発明の実施の形態(2)におけるディーゼルエンジンの排気浄化装置によれば、 上記実施の形態(1)と同様の効果を奏するとともに、切替弁 34を切替えた際の、排 気ガスの通過抵抗の増大を低減することができ、エンジン排気圧力の上昇及びそれ による排気ガス温度の極端な上昇を抑制することができる。
[0100] 続いて、本発明の実施の形態(3)に係るディーゼルエンジンの排気浄化装置につ いて、図 11〜: 14に基づいて説明する。
[0101] 実施の形態(3)では、図 11に示すように、実施の形態(1)に係るディーゼルェンジ ンの排気浄化装置において、切替弁 34の位置が、排気ガスの全量をマイクロ DPF3 2に流すようにバイパス通路 33を閉じる 34cの位置と、排気ガスの多くをバイパス通 路 33に流し、少量をマイクロ DPF32へ流す 34dの位置と、排気ガスの全量をバイパ ス通路 33に流すようにマイクロ DPF32を閉じる 34eの位置との三段階に切替えること ができることを特徴とする。
[0102] 図 11において、切替弁 34が 34cの位置にある場合は、バイパス通路 33が閉鎖さ れている。この状態では、排気ガスの全量はマイクロ DPF32に流入し、排気ガス中 に含まれる PMの一部が連続酸化処理される。そして、マイクロ DPF32を通過した排 気ガスは排気ガス出口 36を通して下流側の排気管 11Bに流れる。
[0103] また、図 11において、切替弁 34が 34dの位置にある場合には、バイパス通路 33が 開放されている。そして、排気ガスの一部がマイクロ DPF32にも流れるように、一部 開放されている状態となっている。この状態では、マイクロ DPF32での排気ガスの通 過抵抗がバイパス通路 33よりも大きいため、排気ガスの多くはバイパス通路 33を通 過する。また、排気ガスの一部はマイクロ DPF32に流入し、排気ガス中に含まれる P Mの一部が連続酸化処理される。そして、マイクロ DPF32及びバイパス通路 33を通 過した排気ガスは排気ガス出口 36を通して下流側の排気管 11Bに流れる。
[0104] また、図 11において切替弁 34が 34eの位置にある場合には、マイクロ DPF32が完 全に閉じられている状態を表す。この状態では、排気ガスの全量がバイパス通路 33 に流入する。
[0105] 続いて、この実施の形態(3)における切替弁 34の切り替えについて説明する。切 替弁 34は、図 12に示すように、上記実施の形態(1)と同様に、ハウジング 31の側面 に取付板 42を介して設けられたエアシリンダ 43により行なわれる。
[0106] 取付板 42には、穴が設けられた固定板 47A、 47Bが取付けられており、各固定板
47A、 47Bには、軸 48が前記穴を連通し移動可能となるように設けられている。軸 4 8の両端には、軸 48の移動を制限するストッパ 49A、 49Bが設けられている。そして 、軸 48には、各固定板 47A、 47B間の位置に、レバーリンク 45の傾動を調整する位 置調整部材として、バネ 50A、 50Bと、各バネ 50A、 50Bの伸張を規制する固定用 ナット 51A、 51Bとが設けられている。バネ 50A、 50Bが有する弾性力により、レバー リンク 45の傾動が規制される。なお、位置調整部材として、パネを用いているがゴム 等の各種弾性体を用いることが可能である。 [0107] 例えば、エアシリンダ 43のピストンが伸張した場合、レバーリンク 45は傾動し、レバ 一リンク 45はストッパ 49Bが固定板 47Bに接触するまで傾動する。この場合、切替弁 34は 34cの位置にあり、バイパス通路 33を閉じている状態となる。エアシリンダ 43に 圧力がかかっていない場合には、レバーリンク 45はバネ 50Aとバネ 50Bの弾性力が 釣り合う位置まで傾動する。この場合、切替弁 34は 34dの位置にあり、バイパス通路 33を開放するとともにマイクロ DPF32にも排気ガスが少量流れる状態となる。また、 エアシリンダ 43のピストンが縮退した場合には、レバーリンク 45はストッパ 49Aが固 定板 47Aに接触するまで傾動する。この場合、切替弁 34は 34eの位置にあり、マイク 口 DPF32を閉じている状態となる。
[0108] また、図 13は、切替弁 34の切替え手段の別の形態を示す図である。この形態では 、切替弁 34の切り替えは上記形態と同様にエアシリンダ 43により行なわれる。そして 、この形態では、レバーリンク 45の傾動を調整する位置調整部材として、レバーリンク 45の一端にバネ 52の一端が取付けられている。バネ 52の他端は固定具 53により固 定されている。
[0109] この形態では、エアシリンダ 43のピストンが伸張した場合、レバーリンク 45は傾動し 、バネ 52を伸張してストッパ 46Aの位置まで傾動する。エアシリンダ 43に圧力がかか つていない場合には、レバーリンク 45はバネ 52の弾性力により中間位置で固定され る。この場合、切替弁 34は 34dの位置にあり、バイパス通路 33を開放するとともにマ イク口 DPF32にも排気ガスが少量流れる状態となる。また、エアシリンダ 43のピストン が縮退した場合には、レバーリンク 45はバネ 52を伸張してストッパ 46Bの位置まで傾 動する。この場合、切替弁 34は 34eの位置にあり、マイクロ DPF32を閉じている状態 となる。
[0110] なお、この形態においては、エアシリンダとして例えばエア供給圧力を切替えること ができる多段式のエアシリンダを用いることで、切替弁 34の開度を替えることも可能 である。
[0111] 図 14は、図 11に示したディーゼルエンジンの排気浄化装置に用いる切替弁 34を アクセルペダルの踏み込み量 (エンジン負荷割合)及びエンジン回転数に応じた開 度に制御するための開度データを示す図である。 [0112] 図 14に示す切替弁 34の開度データは、上記実施の形態(1)と同様に制御装置 20 内に設けられた記憶手段に記憶されている。制御装置 20の構成については、上記 実施の形態(1)に準ずる。
[0113] 図 14に示すように、例えばエンジン回転数が 1500rpmの場合であって、運転者が アクセルペダルを 60%踏み込んでいる中回転、中負荷の運転状態では、アクセルぺ ダルの踏み込み量が予め設定された第 2の閾値 a2より大きくなつている。排気ガスの 温度がメイン DPF60において十分に浄化できる温度に上昇している。したがって、 制御装置 20内の切替弁制御手段は、切替弁 34を 34dの位置に傾動し、バイパス通 路 33を開放してメイン DPF60に直接排気ガスを流すように、切替弁 34に対して制御 信号を出力する。
[0114] なお,ノ ィパス通路を開放してメイン DPF60に直接排気ガスを流している場合に、 全ての排気をメイン DPF60のみに流すのではなぐマイクロ DPF32にも少量の排気 が流れるように切替弁 34等を構成している。メイン DPF60使用時にもマイクロ DPF3 2に少量の排気を流し続けることによって、マイクロ DPF32の温度を所定の温度に維 持することが可能となり、運転状況によって負荷が減少し、マイクロ DPF32に排気の 流れを切り替えた場合であっても、切替直後からマイクロ DPF32は PMを連続処理 すること力 S可能となる。したがって、運転状況が急に変化した場合であっても PMを連 続再生することが可能となる。なお、切替弁 34の 34dの位置としては、排気ガス全流 量の 70〜98vol%がバイパス通路 33に流れるような位置であることが好ましぐ排気 ガス全流量の 85〜90vol%がバイパス通路 33に流れるような位置であることが特に 好ましい。
[0115] 続いて、エンジン回転数が 1500rpmの運転状態で、運転手がアクセルペダルの踏 み込み量を更に 20%付近まで戻した場合には、アクセルペダルの踏み込み量が第 1の閾値 al以上で第 2の閾値 a2以下であり、かつエンジン回転数が第 1の閾値 bl以 上で第 2の閾値 b2以下となっている。この場合には、制御装置 20内の切替弁制御手 段は切替弁の開度データを参照して、切替弁 34を 34cの位置に傾動し、バイパス通 路 33を閉じて排気ガスの全量をマイクロ DPF32に流すように、切替弁 34に対して制 御信号を出力する。 [0116] 上記のようなエンジン回転数、アクセルペダル踏み込み量となる走行条件は、定速 走行時等にあたる。この状態では、排気ガスの全量がマイクロ DPF32に流れ、排気 ガス中に含まれる PMの一部が連続酸化処理される。また、切替弁 34を切替えてバ ィパス通路 33を閉じて、排気ガスの流路をマイクロ DPF32に切り替えるので、排気 ガスの通過抵抗が増大してエンジン排気圧力がバイパス通路 33に排気ガスを流す 場合よりも高くなる。このため、排気ガスのディーゼルエンジン 10への逆流が増大し て排気ガスの温度が上がり、マイクロ DPF32に流れ込む排気ガスの温度は PMを連 続再生可能な温度となっている。
[0117] 続いて、エンジン回転数が 1500rpmの運転状態で、運転手がアクセルペダルの踏 み込み量を更に 2%以下まで戻した場合には、アクセルペダルの踏み込み量が予め 設定された第 1の閾値 alよりも小さくなつている。この場合には、制御装置 20内の切 替弁制御手段は切替弁の開度データを参照して、切替弁 34を 34eの位置に傾動し 、マイクロ DPF32を閉じてバイパス通路 33を開放するように、切替弁 34に対して制 御信号を出力する。
[0118] 上記のようなエンジン回転数、アクセル踏み込みペダルの踏み込み量となる走行条 件は、アイドリング時、長い下り坂走行時や、高速走行からの減速時等の走行条件に 見られる。この状態では、排気ガス温度が極端に低いが、排気ガスのマイクロ DPF3 2への流れを完全に止めることでマイクロ DPF32の温度低下を防止できる。また、バ ィパス通路 33とマイクロ DPF32との間には断熱層 37が設けられているので、バイパ ス通路 33を通過する排気ガスによるマイクロ DPF32の冷却が防止される。その結果 、超低負荷状態であるアイドリング時、長い下り坂走行時、高速走行からの減速時等 のように排気ガス温度が極端に低い時にマイクロ DPF32の冷却が完全に抑制される 。したがって、再びアクセルペダルの踏み込み量を戻すなどしてマイクロ DPF32に 浄化性能が要求される走行条件になった時まで浄化性能が維持されることとなる。な お、この運転条件では PM、 N〇x共に極めて少ないので CR— DPFで浄化する必要 は無い。
[0119] 本発明の実施の形態(3)におけるディーゼルエンジンの排気浄化装置によれば、 上記実施の形態(1)と同様の効果を奏するとともに、超低負荷状態であるアイドリン グ時、長い下り坂走行時や高速走行からの減速時のように排気ガス温度が極端に低 い時には、排気ガスのマイクロ DPF32への流入が完全に防止されるため、マイクロ D PF32の冷却がより確実に抑制される。そして、次にマイクロ DPF32に浄化性能が要 求される走行条件になった時まで浄化性能が維持される。
[0120] また、本発明の実施の形態 (4)について、図 15に基づいて説明する。
[0121] 実施の形態 (4)においては、断面が略楕円形で筒形の筐体 40の内部の一端に円 筒形状のマイクロ DPF32が設けられており、マイクロ DPF32に近接してセパレータ 3 9が並設され筐体 40の内部の他端にバイパス通路 33を形成される。そして、マイクロ DPF32とバイパス通路 33との間に、バイパス通路 33からマイクロ DPF32への熱伝 導を抑制するために断熱層 37が設けられている。
[0122] この実施の形態では、マイクロ DPF32とバイパス通路 33を形成するセパレータ 39 とが一部接触している力 マイクロ DPF32がバイパス通路 33と向き合う面の多くは断 熱層 37が設けられているので、マイクロ DPF32とバイパス通路 33との間の熱伝導は 抑制される。
[0123] 実施の形態 (4)に係るディーゼルエンジンの排気浄化装置によれば、上記実施の 形態(1)と同様の効果を奏するとともに、断熱層 37がマイクロ DPF32とバイパス通路 33との間に設けているので、マイクロ DPF32がバイパス通路 33から熱的に確実に 遮断され、温度の低い排気ガスがバイパス通路 33を流れる際にマイクロ DPF32が 冷却されるのを防止することができる。
[0124] なお、上記実施の形態(1)〜(4)においては、マイクロ DPF32とバイパス通路 33と の間に空気層等の断熱層 37を設けることで、マイクロ DPF32とバイパス通路との間 の熱伝導を抑制しているが、例えばマイクロ DPF32あるいはバイパス通路 33の筐体 に断熱材を用いることで、マイクロ DPF32とバイパス通路 33との間に断熱層を設ける 構成としても良い。
産業上の利用可能性
[0125] 本発明のディーゼルエンジンの排気浄化装置は、トラックなどの自動車に使用され るディーゼルエンジンから排出される粒子状物質 (PM)の排出を低減することが可能 であり、好適に用いられる。

Claims

請求の範囲
[1] ディーゼルエンジンの排気ガスに含まれるパティキュレートマターを捕集して処理 するマイクロ DPFと、
該マイクロ DPFと並設されたバイパス通路と、
該バイパス通路と前記マイクロ DPFとの間に設けられて、該バイパス通路を流れる 排気ガスと前記マイクロ DPFとの間の熱伝導を抑制する断熱層と、
排気ガスが前記マイクロ DPF又は前記バイパス通路の少なくとも一方を流れるよう に流路を切替える切替弁と、
を有するディーゼノレエンジンの排気浄化装置。
[2] 請求項 1記載のディーゼルエンジンの排気浄化装置において、マイクロ DPFとバイ パス通路と切替弁とがハウジングにより一体化されたマイクロ DPFユニットを構成する ことを特徴とするディーゼルエンジンの排気浄化装置。
[3] 請求項 1又は 2記載のディーゼルエンジンの排気浄化装置において、マイクロ DPF とディーゼルエンジンとを接続する排気管が断熱材によって被覆されたことを特徴と するディーゼルエンジンの排気浄化装置。
[4] 請求項 1又は 2記載のディーゼルエンジンの排気浄化装置において、マイクロ DPF より下流側にメイン DPFが設けられたことを特徴とするディーゼルエンジンの排気浄 化装置。
[5] 請求項 3記載のディーゼルエンジンの排気浄化装置において、マイクロ DPFより下 流側にメイン DPFが設けられたことを特徴とするディーゼルエンジンの排気浄化装置
[6] 請求項 4記載のディーゼルエンジンの排気浄化装置において、マイクロ DPF力 Sディ ーゼルエンジンよりもメイン DPFに近い位置に設けられていることを特徴とするディー ゼルエンジンの排気浄化装置。
[7] 請求項 5記載のディーゼルエンジンの排気浄化装置において、マイクロ DPF力 Sディ ーゼルエンジンよりもメイン DPFに近い位置に設けられていることを特徴とするディー ゼルエンジンの排気浄化装置。
[8] 請求項 4記載のディーゼルエンジンの排気浄化装置において、マイクロ DPFュニッ トの排気ガス出口の中心軸がメイン DPFの流路中心軸と同一線上となるように前記 マイクロ DPFユニットが配置されたことを特徴とするディーゼルエンジンの排気浄化 装置。
請求項 5記載のディーゼルエンジンの排気浄化装置におレ、て、マイクロ DPFュニッ トの排気ガス出口の中心軸がメイン DPFの流路中心軸と同一線上となるように前記 マイクロ DPFユニットが配置されたことを特徴とするディーゼルエンジンの排気浄化 装置。
請求項 6記載のディーゼルエンジンの排気浄化装置におレ、て、マイクロ DPFュニッ トの排気ガス出口の中心軸がメイン DPFの流路中心軸と同一線上となるように前記 マイクロ DPFユニットが配置されたことを特徴とするディーゼルエンジンの排気浄化 装置。
請求項 7記載のディーゼルエンジンの排気浄化装置におレ、て、マイクロ DPFュニッ トの排気ガス出口の中心軸がメイン DPFの流路中心軸と同一線上となるように前記 マイクロ DPFユニットが配置されたことを特徴とするディーゼルエンジンの排気浄化 装置。
請求項 1又は 2記載のディーゼルエンジンの排気浄化装置において、
アクセルペダルの踏み込み量及びエンジン回転数に応じた開度に切替弁を制御 するための開度データを記憶する記憶手段と、
アクセルペダルの踏み込み量を検出し、前記アクセルペダルの踏み込み量が前記 開度データに基づき予め設定された第 1の閾値より小さいときには、排気ガスの全量 又は多くをバイパス通路に流すように切替弁を制御する切替弁制御手段と、 を有する制御装置を備えたことを特徴とするディーゼルエンジンの排気浄化装置。 請求項 12記載のディーゼルエンジンの排気浄化装置において、切替弁制御手段 は、アクセルペダルの踏み込み量及びエンジン回転数を検出し、前記アクセルぺダ ルの踏み込み量が前記開度データに基づき予め設定された第 1の閾値以上で第 2 の閾値以下であり、かつ前記開度データに基づき予め設定されたエンジン回転数が 第 1の閾値以上で第 2の閾値以下である場合には、排気ガスの全量又は多くをマイク 口 DPFに流すように切替弁を制御することを特徴とするディーゼルエンジンの排気浄 化装置。
[14] 請求項 12記載のディーゼルエンジンの排気浄化装置において、切替弁制御手段 は、アクセルペダルの踏み込み量及びエンジン回転数を検出し、前記エンジン回転 数が前記開度データに基づき予め設定された第 2の閾値より大きい、または前記ァク セルペダルの踏み込み量が前記開度データに基づき予め設定された第 2の閾値より も大きいときには、排気ガスの多くをバイパス通路に流すように切替弁を制御すること を特徴とするディーゼルエンジンの排気浄化装置。
[15] 請求項 13記載のディーゼルエンジンの排気浄化装置において、切替弁制御手段 は、アクセルペダルの踏み込み量及びエンジン回転数を検出し、前記エンジン回転 数が前記開度データに基づき予め設定された第 2の閾値より大きい、または前記ァク セルペダルの踏み込み量が前記開度データに基づき予め設定された第 2の閾値より も大きいときには、排気ガスの多くをバイパス通路に流すように切替弁を制御すること を特徴とするディーゼルエンジンの排気浄化装置。
[16] 請求項 12記載のディーゼルエンジンの排気浄化装置において、マイクロ DPF又は メイン DPFに流入する排気ガスの温度を測定する排気温度センサを備え、切替弁制 御手段は、排気温度センサから入力した排気温度に基づいて切替弁を制御する情 報を出力することを特徴とするディーゼルエンジンの排気浄化装置。
[17] 請求項 13記載のディーゼルエンジンの排気浄化装置において、マイクロ DPF又は メイン DPFに流入する排気ガスの温度を測定する排気温度センサを備え、切替弁制 御手段は、排気温度センサから入力した排気温度に基づいて切替弁を制御する情 報を出力することを特徴とするディーゼルエンジンの排気浄化装置。
[18] 請求項 14記載のディーゼルエンジンの排気浄化装置において、マイクロ DPF又は メイン DPFに流入する排気ガスの温度を測定する排気温度センサを備え、切替弁制 御手段は、排気温度センサから入力した排気温度に基づいて切替弁を制御する情 報を出力することを特徴とするディーゼルエンジンの排気浄化装置。
[19] 請求項 15記載のディーゼルエンジンの排気浄化装置において、マイクロ DPF又は メイン DPFに流入する排気ガスの温度を測定する排気温度センサを備え、切替弁制 御手段は、排気温度センサから入力した排気温度に基づいて切替弁を制御する情 報を出力することを特徴とするディーゼルエンジンの排気浄化装置。
[20] ディーゼルエンジンの排気に含まれるパティキュレートマターを捕集して処理するメ イン DPFと、該メイン DPFの上流側に設けられたマイクロ DPFと、該マイクロ DPFに 並設されたバイパス通路と、排気ガスが前記マイクロ DPF又は前記バイパス通路の 少なくとも一方を流れるように流路を切替える切替弁と、を備えたディーゼルエンジン の排気浄化装置に用レ、られる制御装置であって、
アクセルペダルの踏み込み量及びエンジン回転数に応じた開度に前記切替弁を 制御するための開度データを記憶する記憶手段と、
アクセルペダルの踏み込み量を検出し、前記アクセルペダルの踏み込み量が前記 開度データに基づき予め設定された第 1の閾値より小さいときには、排気ガスの全量 又は多くをバイパス通路に流すように切替弁を制御する切替弁制御手段と、 を備えることを特徴とする制御装置。
[21] 請求項 20記載の制御装置において、切替弁制御手段は、アクセルペダルの踏み 込み量及びエンジン回転数を検出し、前記アクセルペダルの踏み込み量が前記開 度データに基づき予め設定された第 1の閾値以上で第 2の閾値以下であり、かつ前 記開度データに基づき予め設定されたエンジン回転数が第 1の閾値以上で第 2の閾 値以下である場合には、排気ガスの全量又は多くをマイクロ DPFに流すように切替 弁を制御することを特徴とする制御装置。
[22] 請求項 20又は 21記載の制御装置において、切替弁制御手段は、アクセルペダル の踏み込み量及びエンジン回転数を検出し、前記エンジン回転数が前記開度デー タに基づき予め設定された第 2の閾値より大きい、または前記アクセルペダルの踏み 込み量が前記開度データに基づき予め設定された第 2の閾値よりも大きいときには、 排気ガスの多くをバイパス通路に流すように切替弁を制御することを特徴とする制御 装置。
PCT/JP2005/022938 2004-12-14 2005-12-14 ディーゼルエンジンの排気浄化装置及び制御装置 WO2006064835A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05816829A EP1837490A1 (en) 2004-12-14 2005-12-14 Exhaust gas purification device and control device for diesel engine
JP2006548876A JPWO2006064835A1 (ja) 2004-12-14 2005-12-14 ディーゼルエンジンの排気浄化装置及び制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004362049 2004-12-14
JP2004-362049 2004-12-14

Publications (1)

Publication Number Publication Date
WO2006064835A1 true WO2006064835A1 (ja) 2006-06-22

Family

ID=36587891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022938 WO2006064835A1 (ja) 2004-12-14 2005-12-14 ディーゼルエンジンの排気浄化装置及び制御装置

Country Status (5)

Country Link
EP (1) EP1837490A1 (ja)
JP (1) JPWO2006064835A1 (ja)
KR (1) KR20070085768A (ja)
CN (1) CN100554655C (ja)
WO (1) WO2006064835A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510871A (ja) * 2011-03-28 2014-05-01 ハーヨットエス エミシオン テクノロジー ゲーエムベーハー ウント ツェーオー. カーゲー 排出ガス清浄化システムのための加熱モジュール
CN111495044A (zh) * 2020-04-18 2020-08-07 张宏 一种单元化自替换式废气高效过滤装置
JP2021008839A (ja) * 2019-06-28 2021-01-28 井関農機株式会社 作業車両

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921969B1 (fr) * 2007-10-05 2014-04-18 Renault Sas Dispositif de post-traitement des gaz d'echappement dispose dans une ligne d'echappement pour un moteur a combustion diesel
SE537084C2 (sv) * 2012-01-27 2014-12-30 D E C Marine Ab Ett avgasreningssystem och en anordning däri
SE536960C2 (sv) * 2012-12-20 2014-11-11 Scania Cv Ab Värmeväxlare med bypasskanaler
CN105986874B (zh) * 2014-11-18 2020-07-03 现代自动车株式会社 用于车辆排气净化系统的隔热装置
CN113464259B (zh) * 2020-10-30 2022-10-21 中国重型汽车集团有限公司 一种多段式尾气后处理控制方法
CN112879141B (zh) * 2021-02-26 2021-12-17 徐州徐工矿业机械有限公司 一种降低非道路移动机械大功率发动机烟度的后处理装置
KR102303706B1 (ko) * 2021-05-10 2021-09-23 에스티엑스엔진 주식회사 디젤산화촉매장치 및 디젤미립자 필터의 일체형 구조

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162315A (ja) * 1983-01-07 1984-09-13 カミンズ・エンジン・カンパニー・インコーポレイテッド エンジンの排ガスから炭素粒子を除去するための方法および装置
JPS6137417U (ja) * 1984-08-13 1986-03-08 トヨタ自動車株式会社 デイ−ゼル排気微粒子除去装置
JPS62150022A (ja) * 1985-12-25 1987-07-04 Mazda Motor Corp エンジンの排気浄化装置
JPH0544426A (ja) * 1991-08-19 1993-02-23 Nissan Motor Co Ltd デイーゼル機関の排気浄化装置
JPH0559929A (ja) * 1991-08-30 1993-03-09 Nissan Motor Co Ltd デイーゼル機関の排気浄化装置
JPH06178906A (ja) * 1990-07-16 1994-06-28 Cummins Engine Co Inc 粒状物トラップアッセンブリー及びその製造方法
JPH07109917A (ja) * 1993-10-13 1995-04-25 Toyota Motor Corp ディーゼル機関の排気浄化装置
JP2000073739A (ja) * 1998-09-03 2000-03-07 Isuzu Ceramics Res Inst Co Ltd 排気ガス処理装置
JP2002322909A (ja) 2001-04-26 2002-11-08 Koichi Hatamura エンジンの排気処理方法およびその装置
JP2003003830A (ja) 2001-06-20 2003-01-08 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625511A (en) * 1984-08-13 1986-12-02 Arvin Industries, Inc. Exhaust processor
JPH0627498B2 (ja) * 1986-06-09 1994-04-13 日産自動車株式会社 内燃機関の排気微粒子処理装置
DE3639936A1 (de) * 1986-11-22 1988-06-01 Flachglas Ag Anordnung fuer die befestigung einer kraftfahrzeugscheibe in der zarge einer kraftfahrzeugkarosserie
JP2567972B2 (ja) * 1990-06-06 1996-12-25 富士通株式会社 フリップフロップ回路及び半導体集積回路
KR19990083414A (ko) * 1998-04-27 1999-11-25 카와무라 히데오 배출가스정화장치및그제어방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162315A (ja) * 1983-01-07 1984-09-13 カミンズ・エンジン・カンパニー・インコーポレイテッド エンジンの排ガスから炭素粒子を除去するための方法および装置
JPS6137417U (ja) * 1984-08-13 1986-03-08 トヨタ自動車株式会社 デイ−ゼル排気微粒子除去装置
JPS62150022A (ja) * 1985-12-25 1987-07-04 Mazda Motor Corp エンジンの排気浄化装置
JPH06178906A (ja) * 1990-07-16 1994-06-28 Cummins Engine Co Inc 粒状物トラップアッセンブリー及びその製造方法
JPH0544426A (ja) * 1991-08-19 1993-02-23 Nissan Motor Co Ltd デイーゼル機関の排気浄化装置
JPH0559929A (ja) * 1991-08-30 1993-03-09 Nissan Motor Co Ltd デイーゼル機関の排気浄化装置
JPH07109917A (ja) * 1993-10-13 1995-04-25 Toyota Motor Corp ディーゼル機関の排気浄化装置
JP2000073739A (ja) * 1998-09-03 2000-03-07 Isuzu Ceramics Res Inst Co Ltd 排気ガス処理装置
JP2002322909A (ja) 2001-04-26 2002-11-08 Koichi Hatamura エンジンの排気処理方法およびその装置
JP2003003830A (ja) 2001-06-20 2003-01-08 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510871A (ja) * 2011-03-28 2014-05-01 ハーヨットエス エミシオン テクノロジー ゲーエムベーハー ウント ツェーオー. カーゲー 排出ガス清浄化システムのための加熱モジュール
JP2021008839A (ja) * 2019-06-28 2021-01-28 井関農機株式会社 作業車両
JP7234830B2 (ja) 2019-06-28 2023-03-08 井関農機株式会社 作業車両
CN111495044A (zh) * 2020-04-18 2020-08-07 张宏 一种单元化自替换式废气高效过滤装置

Also Published As

Publication number Publication date
JPWO2006064835A1 (ja) 2008-06-12
CN100554655C (zh) 2009-10-28
KR20070085768A (ko) 2007-08-27
EP1837490A1 (en) 2007-09-26
CN101080555A (zh) 2007-11-28

Similar Documents

Publication Publication Date Title
WO2006064835A1 (ja) ディーゼルエンジンの排気浄化装置及び制御装置
US9435237B2 (en) Exhaust-gas aftertreatment system
US7263824B2 (en) Exhaust gas aftertreatment device for an internal combustion engine
CN107762591B (zh) 用于使颗粒过滤器再生的装置以及方法
EP2032814B1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2011506817A (ja) 車両用内燃機関及びその制御方法
JP2008002351A (ja) 内燃機関の排気還流装置
WO2007066211A2 (en) Exhaust system of internal combustion engine
WO2005003536A1 (ja) ディーゼルエンジンの排気浄化装置並びに制御手段
JP4382771B2 (ja) 空気供給装置
JP2008008241A (ja) エンジンの制御装置
JP2008050946A (ja) 内燃機関の排気還流システム
JP2006242175A (ja) Pm連続再生装置およびpm連続再生方法
JP2005030284A (ja) 内燃機関の排気浄化装置
JPH0417710A (ja) エンジンの排気浄化装置
JP2008151103A (ja) 内燃機関の排気浄化システム
JP2005510652A (ja) 触媒を有する燃焼機関およびディーゼル・エンジン用の方法および装置
EP1445454A1 (en) Temperature control for an engine intake system
JP4400194B2 (ja) ディーゼルエンジンの排気浄化装置
JPS6019910A (ja) タ−ボ過給機付エンジン
JP4957374B2 (ja) 車両
JP2010133303A (ja) 過給機付内燃機関
JP2008038622A (ja) 内燃機関の排気浄化装置、及び方法
JP3248290B2 (ja) 内燃機関の排気浄化装置
JP2010059870A (ja) 内燃機関の過給装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006548876

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077012651

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580043037.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005816829

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005816829

Country of ref document: EP