WO2006057173A1 - 高周波スイッチモジュール - Google Patents

高周波スイッチモジュール Download PDF

Info

Publication number
WO2006057173A1
WO2006057173A1 PCT/JP2005/020814 JP2005020814W WO2006057173A1 WO 2006057173 A1 WO2006057173 A1 WO 2006057173A1 JP 2005020814 W JP2005020814 W JP 2005020814W WO 2006057173 A1 WO2006057173 A1 WO 2006057173A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
port
transmission
transmission signal
frequency
Prior art date
Application number
PCT/JP2005/020814
Other languages
English (en)
French (fr)
Inventor
Shinya Watanabe
Koji Furutani
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to EP05806313A priority Critical patent/EP1720261B1/en
Priority to JP2006547726A priority patent/JPWO2006057173A1/ja
Priority to DE602005011577T priority patent/DE602005011577D1/de
Publication of WO2006057173A1 publication Critical patent/WO2006057173A1/ja
Priority to US11/668,570 priority patent/US7756488B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2250/00Indexing scheme relating to dual- or multi-band filters

Definitions

  • the present invention relates to a high-frequency switch module that switches between transmission and reception of a communication signal of a specific frequency, and more particularly to a high-frequency switch module that uses a FET switch.
  • Patent Document 1 includes a high-frequency switch module as shown in FIG.
  • FIG. 7 is a block diagram showing the configuration of a conventional high-frequency switch module.
  • the conventional high-frequency switch module has a transmission port RF101 for receiving a transmission signal of the first communication signal (first transmission signal) and a transmission signal of the second communication signal (second transmission signal), and receiving the first communication signal.
  • First reception port RF102 that outputs a signal (first reception signal)
  • second reception port RF103 that outputs a reception signal (second reception signal) of a second communication signal, first and second transmission signals to the antenna
  • a FET switch SWIOO having an antenna port ANTO that inputs and outputs the first received signal and the second received signal is provided.
  • the FET switch SW100 a semiconductor, in particular, a FET switch is used, and many GeAs switches are used at present.
  • the conventional high-frequency switch module has the first and second transmission signals.
  • a low-pass filter LPF201 that attenuates the higher harmonics is connected to the transmission port RF 101, a band-pal filter BPF301 that passes the fundamental wave of the first reception signal is connected to the first reception port RF102, and the fundamental wave of the second reception signal
  • the band pal filter BPF302 that passes through is connected to the second receiving port RF202.
  • Patent Document 1 JP 2002-185356 A
  • a transmission signal is input to a transmission signal input terminal TX1 connected to the transmission port RF 101 of the FET switch SW100 via a low-pass filter LPF201.
  • This transmission signal is usually amplified and input by the power amplifier PA connected to the previous stage.
  • higher harmonics are generated for the fundamental frequency fo of the transmission signal, and the fundamental frequency fo is transmitted. Input with signal.
  • the low-pass filter LPF201 of the high-frequency switch module shown in FIG. 7 is set to attenuate the high-order harmonics, the high-order harmonics of the transmission signal input to the FET switch SW100 are suppressed. be able to.
  • the low-pass filter LPF201 is composed of a low-pass filter that attenuates the second harmonic (2'fo) at the fundamental frequency and a low-pass filter that attenuates the third harmonic (3 • fo) at the fundamental frequency fo. This suppresses these second and third harmonics.
  • the FET switch SW100 when the FET switch SW100 is formed of a GaAs switch, when a high-frequency transmission signal is input, harmonic distortion occurs in the FET switch SW100 and the port is equally doubled. Harmonics such as harmonics and triple harmonics are output.
  • the low-pass filter LPF201 when the low-pass filter LPF201 is viewed from the transmission port RF101 at the harmonic frequency, the impedance is close to infinity, the open state is established, and the harmonics generated by the FET switch SW100 are on the transmission port RF101 side of the low-pass filter LPF201. The signal is totally reflected at the end and input to the FET switch SW100. As a result, if the first harmonic is “X” and the increase in harmonics due to total reflection is “ ⁇ ”, the antenna port ⁇ 0 will output “ ⁇ + ⁇ ” harmonics.
  • an object of the present invention is to provide a miniaturized high-frequency switch module that suppresses harmonic distortion while using a FET switch such as a GaAs switch and the like.
  • the present invention includes a transmission input port to which a transmission signal is input, a reception output port for outputting a reception signal, and an antenna port for outputting a transmission signal to an antenna or inputting an antenna power reception signal,
  • a high-frequency switch module having an FET switch that connects the antenna port to a transmission input port or a reception output port and a filter that is connected to the transmission input port and attenuates higher-order harmonics of the transmission signal.
  • Phase setting means is provided between the transmission input port of the FET switch and the filter to change the impedance of higher harmonics when the filter direction is viewed from the transmission input port in a direction approaching 0.
  • the phase setting means By the phase setting means, the Smith chart position of the impedance of the second harmonic or third harmonic of the transmission signal when the filter direction is viewed from the transmission input port is arranged in the vicinity of impedance 0. As! /
  • the phase setting means causes the impedance of the high-order harmonic including the second harmonic and the third harmonic when viewed from the transmission input port to approach 0 instead of being infinite. Therefore, the harmonics from the transmission input port of the FET switch easily flow to the ground of the filter, and the harmonics are dispersed and not totally reflected. For this reason, the amount of harmonics returning to the FET switch is suppressed, and the harmonics output from the FET switch antenna port are reduced.
  • the high-frequency switch module of the present invention is characterized in that the phase setting means is formed by a transmission line of electrical length that does not substantially change the absolute value of the impedance of the fundamental wave of the transmission signal.
  • the absolute value of the impedance relative to the fundamental wave of the transmission signal is not changed by the phase setting means (transmission line), so transmission loss of the transmission signal (fundamental wave) by this transmission line does not occur.
  • the high frequency switch module of the present invention is characterized in that the electrical length is less than 1Z4 of the wavelength of the second harmonic.
  • the Smith chart position of the second harmonic and third harmonic impedance of the transmission signal is impedance Arranged to sandwich 0! It is characterized by reciting.
  • the Smith chart positions of the second harmonic and the third harmonic impedance of the transmission signal sandwich the impedance 0 when the filter direction is viewed from the transmission input port. are arranged as follows.
  • the high-frequency switch module of the present invention is characterized in that a low-pass filter including a second-order or third-order harmonic frequency in a stop band is used as a filter.
  • the high frequency switch module of the present invention is a low-pass filter including a first low-pass filter including a second harmonic frequency of a transmission signal in a stop band and a third harmonic frequency of the transmission signal as a stop band. And a second low-pass filter.
  • the high frequency switch module of the present invention inputs and outputs a plurality of communication signals each using a specific frequency band as a transmission signal and a reception signal, and switches the FET switch. Are provided with a reception output port at least for each communication signal.
  • the transmission input port is provided with the phase adjusting means, thereby suppressing harmonics.
  • the high-frequency switch module of the present invention is characterized in that there are a plurality of transmission input ports, and a phase setting means is connected to each of these transmission input ports.
  • each phase setting means is set according to the harmonics of the transmission signal input to each transmission input port, so that no matter which transmission input port is input, Harmonic distortion is suppressed.
  • the high-frequency switch module of the present invention includes:
  • the first phase setting means having a changing phase condition and the second transmission input port are connected to the third transmission signal and the fourth communication signal when viewed from the second transmission input port.
  • harmonics generated by the transmission signals are transmitted by the first phase setting means. Since the signal is partially transmitted and dispersed in the filter direction, the harmonics re-input to the first transmission input port of the FET switch are suppressed, and the harmonics output from the FET switch antenna port are lower than before. Also decreases. Also, the transmission signal input to the second transmission input port For both the third transmission signal and the fourth transmission signal, the harmonics from each transmission signal are partially passed through the filter direction and dispersed by the second phase setting means. Harmonics that are re-input to the transmission input port are suppressed, and harmonics that are output from the FET switch antenna port are reduced. In this way, for communication signals that use four different frequency bands, the harmonics generated by the FET switch are suppressed even for transmission signals that are V and shifted.
  • the high-frequency switch module of the present invention is characterized in that the FET switch, the filter, and the phase setting means are integrally formed by a laminated body in which a plurality of dielectric layers are laminated.
  • the high-frequency switch module of the present invention is characterized in that the filter and the phase setting means are formed in the stack.
  • the high-frequency switch module is miniaturized by being integrally formed by the laminated body. Furthermore, the size can be further reduced by incorporating the filter and the phase setting means in the laminate.
  • the harmonics output from the transmission input port due to the harmonic distortion generated by the FET switch can easily flow to the filter input side filter ground. Therefore, the harmonics are dispersed and not totally reflected, and the amount of harmonics returning to the FET switch is suppressed. As a result, the harmonics output from the antenna port of the FET switch are reduced more than before. That is, a high-frequency switch module with few harmonics can be configured.
  • a high-frequency switch module that reduces only high-order harmonics that does not affect transmission loss of the fundamental wave of a transmission signal can be realized with a simple structure.
  • the high frequency switch module that suppresses the harmonic and suppresses the overall loss. Can be configured.
  • the harmonics can be further suppressed by placing the Smith chart positions of the second harmonic and third harmonic impedance of the transmitted signal in such a manner that the impedance 0 is sandwiched between them.
  • the second-order harmonic is suppressed by the first low-pass filter, and the third-order by the second low-pass filter. Harmonics are suppressed, harmonics originally input to the transmission port are suppressed, and a high-frequency switch module can be configured in which one layer of harmonics is further suppressed.
  • each transmission input port is provided with the phase adjusting means, so that the number of types of communication signals can be increased. Regardless of the communication signal, a high-frequency switch module that suppresses harmonic distortion can be configured.
  • the elements constituting the high-frequency switch module are integrated in a laminated body, the above-described high-frequency switch module that suppresses higher harmonics can be formed in a small size.
  • FIG. 1 is a block diagram showing a configuration of a high-frequency switch module according to a first embodiment.
  • FIG. 2 is a Smith chart showing frequency characteristics of impedance as seen from the FET switcher and the transmission signal input terminal Txl side.
  • FIG. 3 is a Smith chart showing frequency characteristics of impedance as seen from the FET switcher and the transmission signal input terminal Txl side.
  • FIG. 4 is a block diagram showing a configuration of a high-frequency switch module according to a second embodiment.
  • 5 is a stacking diagram of the high-frequency switch module shown in FIG.
  • FIG. 6 is a stacking diagram of the high-frequency switch module shown in FIG.
  • FIG. 7 is a block diagram showing a configuration of a conventional high-frequency switch module.
  • FIG. 1 is a block diagram showing the configuration of the high-frequency switch module of this embodiment.
  • a GSM850MHZ transmission signal or a GSM900MHZ transmission signal is input from the transmission signal input terminal Txl
  • a GSM850 MHz reception signal is output from the reception signal output terminal Rxl
  • a GSM900MHZ reception signal is received from the reception signal output terminal Rx2.
  • the output high-frequency switch module will be explained.
  • FET switch SW10 consisting of GaAs switch is an antenna input / output port ANT0 connected to the antenna ANT, and RF input / output port RF11, which inputs / outputs GSM85 OMHz signal transmission / reception signal and GSM900MHZ signal transmission / reception signal!
  • the FET switch SW10 includes a drive voltage input terminal to which a drive voltage is input and a control signal input terminal to which a control signal used for switch switching control is input.
  • the antenna input / output port ANTO is connected to one of RF11 to RF13 ports according to the input control signal.
  • the transmission signal input terminal Txl is connected to the RF11 port
  • the reception signal output terminals Rxl and Rx2 are connected to the RF12 port and the RF13 port, respectively.
  • signal input port RF1 2 port and RF13 port correspond to “received signal output port” respectively.
  • the phase setting element L1 consisting of a transmission line is connected to the RF11 port of the FET switch SW10.
  • the end of the phase setting element L1 facing the RF11 port is a low-pass filter. LPF20 is connected.
  • the electrical length of the phase setting element L1 is set to a length of approximately 1Z4 of the wavelength of the transmission signal for the transmission signal to be transmitted, that is, the GSM850MHz transmission signal and the GSM900MHz transmission signal.
  • the electrical length of the phase setting element L1 is “A” and the wavelength of the transmission signal is “e”
  • the length is set to satisfy 0 ⁇ A and ⁇ 4.
  • the wavelength of the transmission signal may be slightly different between the GSM850 MHz transmission signal and the GSM900 MHz transmission signal.
  • the wavelength of the GSM8 50 MHz transmission signal having a long wavelength is set to the “e”.
  • the phase setting element L1 as the transmission line corresponds to the “phase setting means” of the present invention.
  • the low-pass filter LPF20 includes two low-pass filters LPF21a and LPF21b having different frequency characteristics (attenuation characteristics), and is connected in order of the low-pass filter LPF21a and the low-pass filter LPF21b from the phase setting element L1 side.
  • the low-pass filter LPF21a has a fundamental frequency of the GSM850MHZ transmission signal in the passband, twice the fundamental frequency in the stopband, and a fundamental frequency of the GSM900MHz transmission signal in the passband. Has a frequency characteristic in which the frequency is twice in the stopband.
  • the low-pass filter LPF21b has at least the fundamental frequency of the GSM850MHZ transmission signal in the passband, has a frequency three times the fundamental frequency in the stopband, and has at least the fundamental frequency of the GSM900MHZ transmission signal in the passband.
  • the lever has a frequency characteristic in which a frequency three times the fundamental frequency exists in the stopband.
  • the transmission signal input terminal Txl connected to the preceding stage amplifier PA (not shown) is connected to the end of the low-pass filter LPF20 on the side facing the phase setting element L1.
  • the RF12 port of the FET switch SW10 is connected to a bandpass filter BPF30 in which the frequency of the GSM850MHz reception signal exists in the passband.
  • the reception signal output terminal Rxl is connected to this bandpass filter BPF30.
  • a bandpass filter BPF40 in which the frequency of the GSM900MHZ received signal exists in the passband is connected to the RF13 port of the switch circuit SW10, and the received signal output terminal Rx2 is connected to this bandpass filter BPF40.
  • GSM transmission signals GSM850MHZ transmission signal and the high frequency switch module of this embodiment
  • GSM900MHz transmission signals GSM900MHz transmission signals
  • the harmonics output from the RF11 port are transmitted to the phase setting element L1.
  • the following conditional force is also set to a predetermined electrical length.
  • This electrical length is the phase change by transmitting the harmonic of the GSM transmission signal output from the RF11 port through the phase setting element L1, and the low pass filter LP F20 side was seen from the RF11 port with respect to this harmonic.
  • This is the electrical length that changes the impedance by a predetermined amount in the 0 direction even at infinite force.
  • the low-pass filter LPF20 side changes from the open state to the short state.
  • the low-pass filter LPF21a for the second harmonic and the low-pass filter LPF2 lb for the third harmonic are connected in series!
  • a predetermined electric length is set only by the phase setting element L1
  • the third harmonic is set by the phase setting element L1 and the transmission line of the low-pass filter LPF21a.
  • the optimum electrical length “A” is set in consideration of the impedance to the second harmonic and the impedance to the third harmonic.
  • the harmonic wavelength is set to about 1Z4 or less (0 ⁇ ⁇ / ⁇ ).
  • FIG. Figure 2 shows the transmission signal input from the FET switch.
  • This is an impedance chart looking at the power terminal Txl side, where (a) shows the configuration of the present embodiment, that is, the case where the phase setting element L1 is provided, and (b) shows the conventional configuration, that is, the case where the phase setting element L1 is not provided. Show.
  • the solid line (thick line) in the figure indicates the impedance locus.
  • ml in the figure indicates the 820 MHz point that is the frequency of the GSM850 MHz transmission signal
  • m2 indicates the 920 MHz point that is the frequency of the GSM9 OOMHz transmission signal
  • mi in the figure is the second harmonic of the GSM850 MHz transmission signal.
  • Fig. 3 is an impedance chart when the FET switch force is viewed from the transmission signal input terminal Txl side. (A) shows the Smith chart position of the impedance of the 2nd harmonic 2fo and 3rd harmonic 3fo.
  • FIG. 3 shows the case where the impedance charts of the 2nd harmonic 2fo and 3rd harmonic 3fo are placed so that the impedance 0 is sandwiched between them.
  • ml 1 to ml 4 are defined with the same contents as FIG.
  • the phase setting element L1 is not inserted between the RF11 port and the low pass filter LPF20, the frequency of the second harmonic of the GSM850MHZ transmission signal and the second harmonic of the GSM900MHZ transmission signal Impedance at infinite frequency becomes infinite.
  • the low pass filter LPF20 is viewed from the RF11 port, it is in the open state, and the double harmonics of the GSM850MHz transmission signal and the GSM900MHz transmission signal are totally reflected.
  • the third harmonic reflected to the RF1 1 port is also increased.
  • the harmonics output from the RF11 port are totally reflected. A part of it does not return to the RF11 port, but is transmitted to the low pass filter LPF20 side.
  • the harmonics (including the second and third harmonics) transmitted to the low pass filter LPF20 are guided to the ground and do not return to the RF11 port.
  • the electrical length of the phase setting element L1, which also has the transmission line force is made longer than that of Fig. 2 (a), and closer to the vicinity of impedance 0 on the Smith chart.
  • the magnitude “ ⁇ ” of the reflected harmonic can be surely made smaller (j8 ⁇ ) than the magnitude “ ⁇ ” of the reflected harmonic of the conventional high-frequency switch module.
  • the electrical length of the phase setting element L1, which also has the transmission line force is made longer than that of FIG. 3 (a), the second harmonic is set near the impedance 0, and the second order.
  • the magnitude of this reflected harmonic “ ⁇ ” is more reliably set to the reflected harmonics of the conventional high frequency switch module. It is possible to make it more / J than the wave size “ ⁇ ” (j8 ⁇ ).
  • phase setting element L1 even if the phase setting element L1 is inserted between the RF11 port and the low-pass filter LPF20, the fundamental frequency of the GSM850 MHz transmission signal and the fundamental wave of the GSM900MH ⁇ transmission signal The frequency of this is almost the same as before the phase setting element L1 is inserted. For this reason, the phase setting element L1 does not adversely affect the transmission of the fundamental wave.
  • the harmonics output from the RF12 port and the RF13 port are transmitted to the bandpass filters BPF30 and BPF40 and attenuated, and thus do not return to the RF12 port and the RF13 port.
  • the magnitude of the reflected harmonics returning to the FET switch SW10 is smaller than that of the conventional high-frequency switch module (FIG. 7), which is likely to be provided with the phase setting element L1.
  • the magnitude of the harmonics output to the antenna input / output port ANTO is “X +
  • the harmonics output to the antenna are reduced, and the transmission characteristics are improved.
  • the phase setting element L1 is set so that the impedance changes only with respect to the harmonics, only the phase changes with respect to the fundamental wave of the GSM transmission signal, and the impedance hardly changes. .
  • the fundamental wave of the GSM transmission signal is transmitted with almost no attenuation.
  • FIG. 4 a high frequency switch module according to the second embodiment will be described with reference to FIGS. 4 to 6.
  • FIG. 4 is a block diagram showing the configuration of the high-frequency switch module of this embodiment.
  • a GSM850MHZ transmission signal or GSM900MHz transmission signal is input from the transmission signal input terminal Txl
  • a GSM180 ⁇ ⁇ transmission signal or GSM 1900MHz transmission signal is input from the transmission signal input terminal Tx2
  • a reception signal output terminal Rx 1 GSM850MHz reception signal is output
  • GSM900MHz reception signal is output from the reception signal output terminal Rx2
  • GSM1800MHZ reception signal is output from the reception signal output terminal Rx3
  • the reception signal output terminal Rx4 power also outputs the GSM1900MHZ reception signal.
  • the high-frequency switch module will be described.
  • the FET switch SW50 which is a GaAs switch, is an RF that inputs / outputs either the antenna input / output port ANTO connected to the antenna ANT, the GSM850MHz signal transmission / reception signal, the GSM900MHz signal, the GSM 1800MHz signal transmission / reception signal, or the GSM1900 MHz signal.
  • Input / output ports RF61 to RF66 (hereinafter simply referred to as “RF61 port” to “RF66 port”).
  • the FET switch SW50 includes a drive voltage input port to which a drive voltage is input and a control signal input port to which a control signal used for switch switching control is input, and is input to the control signal input port.
  • the antenna input / output port ANTO is connected to the RF61 port to RF66 port.
  • the RF61 port corresponds to the “first transmission port” of the present invention
  • the RF62 port corresponds to the “second transmission port” of the present invention.
  • the RF63 port corresponds to the “first receiving port” of the present invention
  • the RF64 port corresponds to the “second receiving port” of the present invention
  • the RF65 port corresponds to the “third receiving port” of the present invention.
  • the RF66 port corresponds to the “fourth reception port” of the present invention.
  • a phase setting element GL1 composed of a transmission line is connected to the RF61 port of the FET switch SW50, and a low-pass filter LPF71 is connected to the end of the phase setting element GL1 facing the RF61 port.
  • the electrical length of the phase setting element GL1 is set to a length of about 1Z4 of the wavelength of the transmission signal for the transmission signal to be transmitted, that is, the GSM850MHz transmission signal and the GSM900MHz transmission signal. In other words, if the electrical length of the phase setting element L1 is “A” and the wavelength of the transmission signal is “Yes”, 0 ⁇ A plus Z4 is satisfied.
  • the wavelength of the transmission signal is set to GSM850MHZ transmission signal and G
  • the wavelength of the GSM850MHZ transmission signal having a long wavelength is set to the “ ⁇ ”.
  • the phase setting element G L1 as the transmission line corresponds to the “first phase setting means” of the present invention.
  • the low-pass filter LPF71 is connected to the low-pass filter LPF72, and this low-pass filter LPF72 is connected to the transmission signal input terminal Txl.
  • the connection point between the low-pass filter LPF71 and the low-pass filter LPF72 is connected to the ground via the capacitor GCu2. Connected (grounded).
  • the low-pass filter LPF71 has an inductor GLtl having one end connected to the phase setting element GL1 and the other end connected to the low-pass filter LPF72, which also has a transmission line force, a capacitor GCcl connected in parallel to the inductor GLtl, an inductor A capacitor GCul inserted between the GLtl phase setting element GL1 side and the ground.
  • This low-pass filter LPF71 is attenuated by the inductor GLtl and capacitors GCcl and GCul so that the second harmonic frequency of the GSM850MHz transmission signal and GSM900MHz transmission signal exists in the stopband and the fundamental frequency exists in the passband. Is set.
  • the low-pass filter LPF72 has an inductor GLt2 that has one end connected to the low-pass filter LPF71 and the other end connected to the transmission signal input terminal Txl, and this inductor.
  • a capacitor GCc2 connected in parallel to the Kuta GLt2.
  • This low-pass filter LPF 72 uses the inductor GLt2 and capacitor GCc2 so that the third harmonic frequency of the GSM850MHz transmission signal and GSM900MHZ transmission signal exists in the stopband and the fundamental frequency exists in the passband. Attenuation characteristics are set.
  • the capacitor GCu3 (shown in parentheses in FIG. 4) inserted between the transmission signal input terminal Txl side of the inductor GLt2 and the ground is installed in the low pass filter LPF72 for impedance adjustment. Hey.
  • the phase setting element DL1 made of a transmission line is connected to the RF62 port of the FET switch SW50, and the low-pass filter LPF81 is connected to the end of the phase setting element DL1 facing the RF62 port.
  • the electrical length of the phase setting element DL1 is set to a length of about 1Z4 of the wavelength of the transmission signal for the transmission signal to be transmitted, that is, the GSM1800MHz transmission signal and the GSM1900MHz transmission signal. In other words, if the electrical length of the phase setting element L1 is “B” and the wavelength of the transmission signal is “E”, 0 ⁇ B and Z4 are satisfied.
  • the length is set.
  • the wavelength of the transmission signal is GSM1800MHZ transmission signal
  • the wavelength of the GSM1800 MHz transmission signal having a long wavelength is set to the “e”.
  • this transmission line is phase setting
  • the element DL 1 corresponds to the “second phase setting means” of the present invention.
  • the low-pass filter LPF81 is connected to the low-pass filter LPF82, and the low-pass filter LPF82 is connected to the transmission signal input terminal Tx2.
  • the connection point between the low-pass filter LPF81 and the low-pass filter LPF82 is connected to the ground via the capacitor DCu2. Connected (grounded).
  • the low-pass filter LPF81 has one end connected to the phase setting element DL1 and the other end connected to the low-pass filter LPF82.
  • the inductor DLt1 also has a transmission line force, and the capacitor DCcl connected in parallel to the inductor DLtl.
  • a capacitor DCul inserted between the phase setting element DL1 side of the inductor DLtl and the ground.
  • This low-pass filter LPF81 is attenuated by the inductor DLtl and capacitors DCcl and DCul so that the second harmonic frequency of the GSM1800MHz transmission signal and GSM1900MHz transmission signal exists in the stopband and the fundamental frequency exists in the passband. The characteristic is set.
  • the low-pass filter LPF82 has one end connected to the low-pass filter LPF81 and the other end connected to the transmission signal input terminal Tx2, an inductor DLt2 that is a transmission line, and a capacitor DCc2 connected in parallel to the inductor DLt2. And a capacitor DCu3 inserted between the transmission signal input terminal Tx2 side of the inductor DLt2 and the ground.
  • This low-pass filter LPF82 uses the inductor DLt2 and capacitors DCc2 and DCu2 so that the third harmonic frequency of the GSM180 OMHz transmission signal and GSM 1900MHz transmission signal exists in the stopband and the fundamental frequency exists in the passband. Attenuation characteristics are set.
  • the bandpass filter BPF91 where the frequency of the GSM850MHz reception signal exists in the passband is connected to the RF63 port of the FET switch SW50, and the reception signal output terminal Rxl is connected to this bandpass filter BPF91.
  • a bandpass filter BPF92 in which the frequency of the GSM900MHz reception signal exists in the passband is connected to the RF64 port of the FET switch SW50, and the reception signal output terminal Rx2 is connected to this bandpass filter BPF92.
  • the RF65 port of the FET switch SW50 is connected with a bandpass filter BPF93 in which the frequency of the GS M1800MHZ reception signal exists in the passband, and the reception signal output terminal Rx3 is connected to this bandpass filter BPF93.
  • the RF66 port of FET switch SW50 is connected to a bandpass filter BPF94 where the frequency of the GSM1900MHz reception signal exists in the passband, and the reception signal output terminal Rx4 is connected to this bandpass filter BPF94.
  • the operation during transmission of the GSM850MHZ transmission signal and the GSM900MHZ transmission signal (hereinafter collectively referred to as the first group GSM transmission signal) in the high-frequency switch module of the present embodiment will be described. Note that these two transmission signals are not input simultaneously, but only one of the transmission signals is input.
  • the GSM850MHZ signal corresponds to the “first communication signal” of the present invention
  • the GSM900MHZ signal corresponds to the “second communication signal” of the present invention.
  • the FET switch SW50 When a control signal for conducting the RF61 port and the antenna input / output port ANTO is input to the control signal input port of the FET switch SW50, the FET switch SW50 connects the RF61 port and the antenna input / output port ANTO. Conduct.
  • the low-pass filter LPF72 attenuates the third harmonic input together with the fundamental wave of the first group GSM transmission signal.
  • the second harmonic input with the fundamental wave of the first group GSM transmission signal is attenuated by the filter LPF71 and input to the RF61 port via the phase setting element GL1.
  • harmonic distortion occurs due to the nonlinearity of the GaAs switch, and to each port (RF61 port to RF66 port and antenna input / output port ANTO).
  • the harmonics of a predetermined size “Y” are output evenly.
  • the harmonic output from the RF61 port is transmitted to the phase setting element GL1.
  • the phase setting element GL1 is set to the following condition force and a predetermined electric length.
  • the electrical length is the phase change of the first group GSM transmission signal output from the RF61 port by transmitting it through the phase setting element GL1, and the low-pass filter LPF71 from the RF61 port to this harmonic.
  • the electrical length that changes the impedance seen from the LPF72 side by a predetermined amount from infinity to zero.
  • the low-pass filter LPF71, LPF72 side changes to the direction in which the open state force also becomes a short state.
  • phase setting element GL1 changes the impedance of the second harmonic of the first group GSM transmission signal by a predetermined amount, and the element values (inductances) of the elements constituting the phase setting element GL 1 and the low-pass filter LPF71 , Capacitance), set the electrical length of the phase setting element GL1 so that the impedance of the third harmonic of the first group GSM transmission signal is changed by a predetermined amount.
  • the harmonics output from the RF61 port are totally reflected and returned to the RF61 port, but a part thereof is transmitted to the low-pass filters LPF71 and LPF72.
  • the harmonics (including the second and third harmonics) transmitted to the low-pass filters LPF71 and LPF72 are guided to ground and do not return to the RF61 port side.
  • the magnitude of the harmonic returning to the RF61 port is “y”
  • “ ⁇ ⁇ ” is obtained when the magnitude of the return harmonic in the conventional high-frequency switch module is “ ⁇ ”.
  • the harmonics output from the RF62 port to the RF66 port are transmitted to the circuit consisting of the low-pass filter LPF82 and the low-pass filter LPF81 and the bandpass filters BPF91 to 94 and attenuated. Hardly returns.
  • the magnitude of the reflected harmonics returning to the FET switch SW50 is smaller than that of the conventional high-frequency switch module (Fig. 7), which is the same as when the phase setting element GL1 is installed.
  • the magnitude of the harmonics output to the antenna input / output port ANTO is ⁇ + ⁇ ”, which is smaller than the harmonic magnitude“ ⁇ + ⁇ ”of the conventional high-frequency switch module (Fig. 7).
  • the harmonics output to the antenna are reduced, and the transmission characteristics are improved.
  • the phase setting element GL1 is set so that the impedance changes only for the target harmonic, only the phase changes for the fundamental wave of the first group GSM transmission signal, and the impedance is almost the same. There is no change.
  • the operation during transmission of the GSM1800MHZ transmission signal and the GSM1900MHZ transmission signal (hereinafter collectively referred to as the second group GSM transmission signal) in the high-frequency switch module of the present embodiment will be described. Note that these two transmission signals are not input simultaneously, but only one of the transmission signals is input. Furthermore, neither the GSM850 MHz transmission signal nor the GSM9090 ⁇ transmission signal mentioned above is input at the same time.
  • the GSM1800MHZ signal corresponds to the “third communication signal” of the present invention, and the GSM1900MHZ signal corresponds to the “fourth communication signal” of the present invention.
  • the harmonic output from the RF61 port is transmitted to the phase setting element DL1.
  • the phase setting element DL1 is set to a predetermined electrical length from the following conditions.
  • This electrical length refers to the phase change of the second group GSM transmission signal output from the RF62 port by transmitting it with the phase setting element DL1, and the RF62 port.
  • the low-pass filter LPF81, LPF82 side changes in a direction in which the open state force also becomes a short state.
  • phase setting element DL1 changes the impedance of the second harmonic of the second group GSM transmission signal by a predetermined amount, and the element values (inductance, element) of the elements constituting the phase setting element DL1 and the low-pass filter LPF81 are changed.
  • the electrical length of the phase setting element DL1 is set so that the impedance of the third harmonic of the second group GSM transmission signal is changed by a predetermined amount.
  • the harmonics output from the RF62 port are totally reflected and returned to the RF62 port, but a part thereof is transmitted to the low-pass filters LPF81 and LPF82.
  • the harmonics (including the second and third harmonics) transmitted to the low-pass filters LPF81 and LPF82 are guided to ground and do not return to the RF62 port side. That is, assuming that the magnitude of the harmonic returning to the RF62 port is “ ⁇ ”, “ ⁇ ⁇ ” is obtained when the magnitude of the return harmonic in the conventional high-frequency switch module is “ ⁇ ”.
  • the harmonics output from the RF61 port are transmitted to the circuit composed of the lowpass filter LPF72 and the lowpass filter LPF71 and attenuated, and the harmonics output from the RF63 port to RF66 port force are also bandpass filters BPF91 to LPF94. Since it is transmitted and attenuated, it hardly returns to the RF61 port, RF63 port to RF66 port.
  • the magnitude of the reflected harmonics returning to the FET switch SW50 is smaller than that of the conventional high-frequency switch module (Fig. 7), which is the same as when the phase setting element DL1 is installed.
  • the magnitude of the harmonics output to the antenna input / output port ANTO is ⁇ + ⁇ , which is smaller than the harmonics magnitude “ ⁇ + ⁇ ” of the conventional high-frequency switch module (Fig. 7).
  • the harmonics output to the antenna are reduced, and the transmission characteristics are improved. Also, since the phase setting element DL1 is set so that the impedance changes only with respect to the harmonics, only the phase changes with respect to the fundamental wave of the second group GSM transmission signal, and the impedance changes almost.
  • Table 1 shows the second harmonic and third harmonic of each GSM transmission signal with respect to the input power in each high frequency switch module of this embodiment and the conventional high frequency switch module. The ratio is expressed in decibels, and the unit of each numerical value is [dBc]. “Invention a” in Table 1 corresponds to FIG. 2 (a), “Invention c” corresponds to FIG. 3 (a), and “Invention d” corresponds to FIG. 3 (b). .
  • the ratio of the harmonics to the input power in each GSM transmission signal is reduced (the decibel value is increased). can do. That is, harmonics included in the output transmission signal can be reduced.
  • the third harmonic is below the standard value of 70 dBc (GSM 1800 MHz transmission signal: 67. 05 dBc, GSM1900 MHz transmission signal: 67.
  • the standard values are satisfied (GSM1800MHZ transmission signal: 71.42 dBc, GSM1900 MHz transmission signal: 71.48 dBc;).
  • the standard value is satisfied by using the configuration of “present invention c” of the present embodiment (GSM 1800 MHz transmission signal: 70.62 dBBc, GSM1900 MHz transmission signal: 72.13 dBc).
  • the configuration of the "present invention d” of the present embodiment satisfies the standard value (GSM 1800 MHz transmission signal: 72. 62dBc, G SM1900MHz transmission signal: 70.
  • the phase setting element When the filter input direction is viewed from the transmission input port, the Smith chart position of the second harmonic or third harmonic of the transmission signal is placed near the impedance 0 to attenuate the higher harmonics. be able to.
  • the harmonics of the four GSM transmission signals that use different frequency bands are suppressed.
  • the fundamental wave is hardly attenuated. Is transmitted.
  • the high-frequency switch module is not increased in size and is realized with a simple structure.
  • FIGS. 5 and 6 are stacked views of the high-frequency switch module of this embodiment.
  • FIGS. 5 and 6 are views of the dielectric layers (1) to (28) of the multilayer high-frequency switch module of this embodiment as viewed from above in the order of the dielectric layers (29). What is present is the back surface of the dielectric layer (28), that is, the bottom surface of the high-frequency switch module.
  • These symbols shown in FIGS. 5 and 6 correspond to the symbols of the respective elements shown in FIG.
  • 1 represents a laminate
  • 2 represents a cavity
  • 3 represents a through hole.
  • Through holes 3 are represented by symbols, but the circles of the same diameter shown in the figure all indicate through holes.
  • the laminate 1 is formed by laminating the dielectric layer (1) to the dielectric layer (18) in order from the top with the dielectric layer (1) as the uppermost layer.
  • the uppermost dielectric layer (1) to dielectric layer (11) has a square hole with a predetermined length at one side in the center, and the dielectric layers (1) to (11) are stacked. Thus, the cavity 2 and the cavity 2 are formed.
  • FET switch SW50 is installed in this cavity 2!
  • the top surface of the FET switch SW50 and the wire bonding wire connected to the top surface do not protrude from the top surface force of the multilayer body 1, and the FET switch SW50 is built in the multilayer body 1.
  • the uppermost dielectric layer (1) to dielectric layer (6) are only provided with holes, and no electrode pattern is formed.
  • pad electrodes for wire bonding are formed on the respective terminal electrodes of the FET switch SW50. These pad electrodes and the respective terminal electrodes of the FET switch SW50 are connected by wire bonding, The
  • a ground electrode GND is formed on the dielectric layer (12) and the dielectric layer (13).
  • the ground electrode GND also serves as the counter electrode for capacitors DCul and Gcul.
  • capacitor DCcl On the dielectric layer (14), the counter electrodes of the capacitors DCcl and Gccl are formed, and transmission lines to be the inductors DL1 and GL1 are formed.
  • capacitor DCcl, Gcc
  • the counter electrode 1 also serves as the counter electrode for capacitors DCul and Gcul.
  • the counter electrodes of the capacitors DCcl and GCcl are formed on the dielectric layer (15).
  • the counter electrode of the capacitor DCcl also serves as the counter electrode of the capacitor DCc2, and the capacitor GCc
  • the counter electrode 1 also serves as the counter electrode of the capacitor GCc2.
  • the dielectric layer (19) to dielectric layer (22) have four layers of inductors DLtl, DLt2, GLtl, G
  • a ground electrode GND is formed on the dielectric layer (26), and this ground electrode GND also serves as a counter electrode for the capacitors DCu2, GCu2, and DCu3.
  • a ground electrode GND is formed on the top surface of the dielectric layer (28).
  • GND also serves as the counter electrode for capacitor DCu3.
  • the back side of the dielectric layer (28) (Fig.
  • the dielectric layer (29) in Fig. 6 has a ground electrode GND and various external connection electrodes.
  • These electrode patterns are electrically connected to each other through through holes 3 to form the circuit shown in FIG.
  • the high-frequency switch module can be realized by a single laminated body. Thereby, a high frequency switch module can be formed small.
  • the FET switch SW50 is built in the stacked body, but it may be mounted on the surface of the stacked body. Also, bump connection may be made using a force flip chip type FET switch in which the FET switch and the laminate are connected by wire bonding. Further, each circuit element constituting the high-frequency switch module is connected to each dielectric layer surface. The electrodes are formed on the surface, but mounting type inductors and capacitors may be used.

Abstract

 FETからなるFETスイッチ(SW10)は、アンテナに接続するアンテナ入出力ポート(ANT0)を、送信信号入力端子(Tx1)に接続するポート(RF11)、2つの受信信号出力端子(Rx1),(Rx2)にそれぞれ接続するポート(RF12)およびポート(RF13)のいずれかに切り替えて接続させる。送信信号入力端子(Tx1)から送信信号が入力され、ポート(RF11)からFETスイッチ(SW10)に入力されると、高調波歪みが発生して送信信号入力端子(Tx1)側に出力される。ポート(RF11)に接続された位相設定素子(L1)は、ポート(RF11)から入力側を見た場合の高調波のインピーダンスをオープン状態からショート方向に変化させて、高調波を分散させる。これにより、ポート(RF11)に戻る高調波は抑制される。

Description

明 細 書
高周波スィッチモジュール
技術分野
[0001] この発明は、特定周波数の通信信号の送受信を切り替える高周波スィッチモジュ ール、特に FETスィッチを用いた高周波スィッチモジュールに関するものである。 背景技術
[0002] 現在、携帯電話等の無線通信方式には複数の仕様が存在し、例えばヨーロッパで はマルチバンドの GSM方式が採用されている。 GSM方式では使用する周波数帯が 異なる複数の通信信号 (送受信信号)が存在し、各周波数帯としては 850MHz帯、 および 900MHz帯が存在する。さらには、 1800MHz帯や 1900MHz帯も存在する 。このようなそれぞれに異なる周波数帯を利用する複数の通信信号を 1つのアンテナ で送受信する場合、目的とする周波数帯の通信信号以外は不要となり、さらには、 1 つ通信信号であっても送信時には受信信号は不要となり、受信時には送信信号が 不要となる。このため、 1つのアンテナで送受信を行う場合には、目的とする通信信 号の送信信号を伝送する経路や目的とする通信信号の受信信号を伝送する経路を 切り替える必要があり、この切り替えに FETスィッチを用いた高周波スィッチモジユー ルが各種考案されている (例えば、特許文献 1参照。 ) o
[0003] 特許文献 1には、図 7に示すような高周波スィッチモジュールが備えられている。
図 7は従来の高周波スィッチモジュールの構成を示すブロック図である。 従来の高周波スィッチモジュールは、第 1通信信号の送信信号 (第 1送信信号)と 第 2通信信号の送信信号 (第 2送信信号)とが入力される送信ポート RF101、第 1通 信信号の受信信号 (第 1受信信号)を出力する第 1受信ポート RF102、第 2通信信号 の受信信号 (第 2受信信号)を出力する第 2受信ポート RF103、アンテナに対して第 1、第 2送信信号、第 1受信信号、および第 2受信信号の入出力を行うアンテナポート ANTO、を有する FETスィッチ SWIOOを備えている。この FETスィッチ SW100とし ては、半導体、特に FETからなるスィッチが用いられ、現状では多ぐ GeAsスィッチ が用いられている。そして、従来の高周波スィッチモジュールは、第 1、第 2送信信号 の高調波を減衰するローノ スフィルタ LPF201を送信ポート RF 101に接続し、第 1 受信信号の基本波を通過するバンドパルフィルタ BPF301を第 1受信ポート RF102 に接続し、第 2受信信号の基本波を通過するバンドパルフィルタ BPF302を第 2受信 ポート RF202に接続している。
特許文献 1 :特開 2002— 185356公報
発明の開示
発明が解決しょうとする課題
[0004] 前述のような高周波スィッチモジュールでは、 FETスィッチ SW100の送信ポート R F 101にローパスフィルタ LPF201を介して接続された送信信号入力端子 TX1へ送 信信号が入力される。この送信信号は通常前段に接続されたパワーアンプ PAにより 増幅されてカゝら入力されるが、この増幅の際に送信信号の基本周波数 foに対する高 次高調波が発生して基本周波数 foの送信信号とともに入力される。ここで、図 7に示 す高周波スィッチモジュールのローパスフィルタ LPF201を、前記高次高調波を減 衰させる設定にしておけば、 FETスィッチ SW100に入力される送信信号の高次高 調波を抑制することができる。例えば、ローパスフィルタ LPF201を、基本周波数お の 2次高調波(2'fo)を減衰させるローパスフィルタと、基本周波数 foの 3次高調波(3 •fo)を減衰させるローパスフィルタと、から構成することで、これら 2次高調波および 3 次高調波が抑制される。
[0005] しかしながら、 FETスィッチ SW100が GaAsスィッチで形成されている場合、高周 波の送信信号が入力されると FETスィッチ SW100で高調波歪みが発生して各ポー トに対して均等に 2倍高調波や 3倍高調波等の高調波が出力される。この時、前記高 調波の周波数において送信ポート RF101からローパスフィルタ LPF201を見るとィ ンピーダンスが無限大に近 、オープン状態となり、 FETスィッチ SW100で発生した 高調波がローパスフィルタ LPF201の送信ポート RF 101側端で全反射して FETスィ ツチ SW100に入力される。この結果、最初の高調波を「X」、全反射による高調波の 増加分を「α」とすると、アンテナポート ΑΝΤ0からは「Χ+ひ」の高調波が出力されて しまう。
[0006] このような高調波を抑制するには、高調波の発生しにくい GaAsスィッチを用いれば よいのだろうが、現実には高調波の発生しにくい GaAsスィッチは存在しない。また、 ダイオードスィッチによるスィッチ回路を用いれば、高調波は発生し難いが、それぞ れの通信信号の送受信の切り替えに対して少なくとも各 2個のダイオードが必要であ り、さらにこれらダイオードに負荷する回路が必要であるので、高周波スィッチモジュ ールを小型化することができない。また、ダイオードスィッチを複数利用することで消 費電力が増加し、さらには応答速度が低下してしまう。特に FETスィッチのポート数 が増加するとこの影響を受けやすい。
[0007] したがって、この発明の目的は、 GaAsスィッチ等の FETスィッチを用いながらも高 調波歪みを抑制して、小型化された高周波スィッチモジュールを提供することにある 課題を解決するための手段
[0008] この発明は、送信信号が入力される送信入力ポート、受信信号を出力する受信出 力ポート、および、アンテナへ送信信号を出力するまたはアンテナ力 受信信号を入 力するアンテナポートを備え、該アンテナポートを送信入力ポートまたは受信出力ポ ートに切り替えて接続する FETスィッチと、送信入力ポートに接続され、送信信号の 高次高調波を減衰させるフィルタと、を備えた高周波スィッチモジュールにお 、て、
FETスィッチの送信入力ポートとフィルタとの間に、送信入力ポートからフィルタ方 向を見た場合の高次高調波のインピーダンスを 0へ近づく方向に変化させる位相設 定手段を備え、
当該位相設定手段によって、送信入力ポートからフィルタ方向を見た場合における 送信信号の 2次高調波または 3次高調波のインピーダンスのスミスチャート位置がィ ンピーダンス 0の近傍に配置されて 、ることを特徴として!/、る。
[0009] この構成では、位相設定手段により、送信入力ポートからフィルタ方向を見た場合 の 2次高調波や 3次高調波を含む高次高調波のインピーダンスが無限大ではなく 0 へ近づく位相となるので、 FETスィッチの送信入力ポートからの高調波がフィルタの アースに流れ易くなり、高調波が分散されて全反射しない。このため、 FETスィッチ に戻る高調波量が抑制されて、 FETスィッチのアンテナポートから出力される高調波 が従来よりも減少する。 [0010] また、この発明の高周波スィッチモジュールは、送信信号の基本波のインピーダン スの絶対値を実質的に変化させない電気長の伝送線路により位相設定手段を形成 することを特徴としている。
この構成では、位相設定手段 (伝送線路)によって送信信号の基本波に対するイン ピーダンスの絶対値の変化がな ヽので、この伝送線路による送信信号 (基本波)の伝 送損失は発生しない。
[0011] また、この発明の高周波スィッチモジュールは、電気長を 2次高調波の波長の 1Z4 未満にすることを特徴として 、る。
[0012] この構成では、具体的に電気長を 2次高調波の波長の 1Z4未満にすることで、高 調波が抑制されるとともにモジュール全体の損失が抑制される。
[0013] また、この発明の高周波スィッチモジュールは、位相設定手段によって、送信入力 ポートからフィルタ方向を見た場合における送信信号の 2次高調波と 3次高調波のィ ンピーダンスのスミスチャート位置がインピーダンス 0を挟むように配置されて!ヽること を特徴としている。
[0014] この構成では、具体的な設定方法の一例として、送信入力ポートからフィルタ方向 を見た場合における送信信号の 2次高調波と 3次高調波のインピーダンスのスミスチ ヤート位置がインピーダンス 0を挟むように配置される。
[0015] また、この発明の高周波スィッチモジュールは、フィルタに 2次または 3次高調波の 周波数を阻止域に含むローパスフィルタを用いることを特徴として ヽる。
[0016] この構成では、前段のパワーアンプから高調波が伝送されても、ローパスフィルタで 抑制される。
[0017] また、この発明の高周波スィッチモジュールは、ローノ スフィルタとして、送信信号 の 2次高調波の周波数を阻止域に含む第 1ローパスフィルタと、送信信号の 3次高調 波の周波数を阻止域に含む第 2ローパスフィルタと、を含むことを特徴として 、る。
[0018] この構成では、前段のパワーアンプから高調波が伝送されても、第 1ローパスフィル タで 2次高調波が抑制され、第 2ローパスフィルタで 3次高調波が抑制される。
[0019] また、この発明の高周波スィッチモジュールは、それぞれに特定の周波数帯を送信 信号および受信信号で利用する通信信号を複数入出力して切り替え、 FETスィッチ に少なくとも通信信号毎に受信出力ポートを備えることを特徴としている。
[0020] この構成では、複数の通信信号を入出力する高周波スィッチモジュールであっても 、送信入力ポートに位相調整手段が備えられることで、高調波が抑制される。
[0021] また、この発明の高周波スィッチモジュールは、送信入力ポートが複数あり、これら の送信入力ポート毎に位相設定手段が接続されていることを特徴としている。
[0022] この構成では、各送信入力ポートに入力される送信信号の高調波に応じて各位相 設定手段が設定されることで、いずれの送信入力ポートに送信信号が入力されたとし ても、高調波歪みが抑制される。
[0023] また、この発明の高周波スィッチモジュールは、
第 1周波数帯を利用する第 1通信信号の送信信号と第 2周波数帯を利用する第 2 通信信号の送信信号とが入力される第 1送信入力ポート、第 3周波数帯を利用する 第 3通信信号の送信信号と第 4周波数帯を利用する第 4通信信号の送信信号とが入 力される第 2送信入力ポート、第 1通信信号の受信信号を出力する第 1受信出力ポ ート、第 2通信信号の受信信号を出力する第 2受信出力ポート、第 3通信信号の受信 信号を出力する第 3受信出力ポート、および第 4通信信号の受信信号を出力する第 4受信出力ポートを FETスィッチに備えるとともに、
第 1送信入力ポートに接続し、第 1送信入力ポートから見た場合の第 1通信信号の 送信信号および第 2通信信号の送信信号の高次高調波のインピーダンスが無限大 力 0へ近づく方向で変化する位相条件を備えた第 1の位相設定手段と、第 2送信入 力ポートに接続し、該第 2送信入力ポートから見た場合の第 3通信信号の送信信号 および第 4通信信号の送信信号の高次高調波のインピーダンスが無限大力 0へ近 づく方向で変化する位相条件を備えた第 2の位相設定手段と、を備えたことを特徴と している。
[0024] この構成では、第 1送信入力ポートに入力される送信信号が第 1送信信号であって も第 2送信信号であっても、各送信信号による高調波が第 1の位相設定手段により部 分的にフィルタ方向に通過されて分散されるので、 FETスィッチの第 1送信入力ポー トに再入力される高調波が抑制されて、 FETスィッチのアンテナポートから出力され る高調波が従来よりも減少する。また、第 2送信入力ポートに入力される送信信号が 第 3送信信号であっても第 4送信信号であっても、各送信信号による高調波が第 2位 相設定手段により部分的にフィルタ方向に通過されて分散されるので、 FETスィッチ の第 2送信入力ポートに再入力される高調波が抑制されて、 FETスィッチのアンテナ ポートから出力される高調波が従来よりも減少する。このように、 4つの異なる周波数 帯を使用する通信信号に対して、 V、ずれの送信信号であっても FETスィッチにより発 生する高調波が抑制される。
[0025] また、この発明の高周波スィッチモジュールは、 FETスィッチ、フィルタ、および位 相設定手段は、複数の誘電体層を積層してなる積層体により一体形成されてなるこ とを特徴としている。
[0026] また、この発明の高周波スィッチモジュールは、フィルタおよび位相設定手段を積 層体内に形成することを特徴としている。
[0027] この構成では、高周波スィッチモジュールが積層体により一体形成されることで小 型化される。さら〖こ、フィルタおよび位相設定手段が積層体に内蔵されることで、より 一層小型化される。
発明の効果
[0028] この発明によれば、位相設定手段を設置することで、 FETスィッチにより発生した高 調波歪みにより送信入力ポートから出力される高調波が送信入力側のフィルタのァ ースに流れ易くなり、高調波が分散されて全反射せず、 FETスィッチに戻る高調波 量が抑制される。この結果、 FETスィッチのアンテナポートから出力される高調波を 従来よりも低減する。すなわち、高調波の少ない高周波スィッチモジュールを構成す ることがでさる。
[0029] また、この構成によれば、送信信号の基本波の伝送損失に影響を与えることなぐ 高次高調波のみを低減する高周波スィッチモジュールを簡素な構造で実現すること ができる。
[0030] また、この発明によれば、具体的に電気長を 2次高調波の波長の 1Z4未満にする ことで、高調波が抑制されるとともに全体の損失が抑制される高周波スィッチモジュ ールを構成することができる。
[0031] また、この発明によれば、さらに具体的に送信入力ポートからフィルタ方向を見た場 合における送信信号の 2次高調波と 3次高調波のインピーダンスのスミスチャート位 置を、インピーダンス 0を挟むように配置することで、より高調波を抑制することができ る。
[0032] また、この発明によれば、基本波の送信信号とともに前段のパワーアンプから高調 波が伝送されても、ローパスフィルタで抑制され、元々送信入力ポートに入力される 高調波を抑制し、より一層高調波を抑制した高周波スィッチモジュールを構成するこ とがでさる。
[0033] また、この発明によれば、基本波の送信信号とともに前段のパワーアンプから高調 波が伝送されても、第 1ローパスフィルタで 2次高調波が抑制され、第 2ローパスフィ ルタで 3次高調波が抑制され、元々送信ポートに入力される高調波を抑制し、より一 層高調波を抑制した高周波スィッチモジュールを構成することができる。
[0034] また、この発明によれば、複数の通信信号を入出力する高周波スィッチモジュール であっても、各送信入力ポートにそれぞれ位相調整手段が備えられているので、通 信信号の種類数によらず、どの通信信号であっても高調波歪みを抑制した高周波ス イッチモジュールを構成することができる。
[0035] また、この発明によれば、 4つの異なる周波数帯を使用する通信信号に対して、 V、 ずれの送信信号に対しても高調波を抑制する高周波スィッチモジュールを構成する ことができる。
[0036] また、この発明によれば、高周波スィッチモジュールを構成する各要素が積層体で 一体化されるので、前述の高調波を抑制する高周波スィッチモジュールを小型に形 成することができる。
図面の簡単な説明
[0037] [図 1]第 1の実施形態の高周波スィッチモジュールの構成を示すブロック図である。
[図 2]FETスィッチカゝら送信信号入力端子 Txl側を見たインピーダンスの周波数特 性を示すスミスチャートである。
[図 3]FETスィッチカゝら送信信号入力端子 Txl側を見たインピーダンスの周波数特 性を示すスミスチャートである。
[図 4]第 2の実施形態の高周波スィッチモジュールの構成を示すブロック図である。 [図 5]図 4に示した高周波スィッチモジュールの積層図である。
[図 6]図 4に示した高周波スィッチモジュールの積層図である。
[図 7]従来の高周波スィッチモジュールの構成を示すブロック図である。
符号の説明
[0038] 1一積層体
2—キヤビティ
3—スノレーホ一ノレ
発明を実施するための最良の形態
[0039] 本発明の第 1の実施形態に係る高周波スィッチモジュールについて図 1、図 2、図 3 を参照して説明する。
図 1は本実施形態の高周波スィッチモジュールの構成を示すブロック図である。 なお、本実施形態の説明では送信信号入力端子 Txlから GSM850MHZ送信信 号または GSM900MHZ送信信号を入力し、受信信号出力端子 Rxlから GSM850 MHz受信信号を出力し、受信信号出力端子 Rx2から GSM900MHZ受信信号を出 力する高周波スィッチモジュールにつ 、て説明する。 GaAsスィッチからなる FETス イッチ SW10は、アンテナ ANTに接続するアンテナ入出力ポート ANT0と、 GSM85 OMHz信号の送受信信号、 GSM900MHZ信号の送受信信号の!/、ずれかを入出力 する RF入出力ポート RF11, RF12, RF13 (以下、単に「RF11ポート」、「RF12ポ 一ト」、「RF13ポート」と称す。)と、を備える。また、 FETスィッチ SW10は、図示しな いが、駆動電圧が入力される駆動電圧入力端子と、スィッチ切り替え制御に用いる制 御信号が入力される制御信号入力端子とを備え、制御信号入力端子に入力される 制御信号により、アンテナ入出力ポート ANTOを RF11ポート〜 RF13ポートのいず れかに導通する。なお、本実施形態では、 RF11ポートに送信信号入力端子 Txlが 接続され、 RF12ポート、 RF13ポートのそれぞれに受信信号出力端子 Rxl, Rx2が 接続されているので、 RF 11ポートが本発明の「送信信号入力ポート」に相当し、 RF1 2ポート、 RF13ポートがそれぞれ「受信信号出力ポート」に相当する。
[0040] FETスィッチ SW10の RF11ポートには、伝送線路からなる位相設定素子 L1が接 続されており、位相設定素子 L1の RF11ポートと対向する側の端部はローパスフィル タ LPF20が接続されている。位相設定素子 L1の電気長は、伝送する送信信号すな わち GSM850MHz送信信号および GSM900MHz送信信号に対して、送信信号 の波長の略 1Z4の長さに設定されている。言い換えれば、位相設定素子 L1の電気 長を「A」として、送信信号の波長を「え」すると、 0<Aく λ Ζ4を満たす長さに設定さ れている。ここで、送信信号の波長えは GSM850MHz送信信号と GSM900MHz 送信信号とで若干異なる力 殆どかわらないとしてよぐ例えば、波長の長い GSM8 50MHz送信信号の波長を前記「え」に設定する。そして、この伝送線路である位相 設定素子 L1が本発明の「位相設定手段」に相当する。
[0041] ローパスフィルタ LPF20は、それぞれに異なる周波数特性 (減衰特性)を有する 2 つのローパスフィルタ LPF21aとローパスフィルタ LPF21bとを備え、位相設定素子 L 1側からローパスフィルタ LPF21a、ローパスフィルタ LPF21bの順に接続されて!、る 。ローパスフィルタ LPF21aは GSM850MHZ送信信号の基本周波数が通過域に存 在してこの基本周波数の 2倍の周波数が阻止域に存在し、且つ GSM900MHz送信 信号の基本周波数が通過域に存在してこの基本周波数の 2倍の周波数が阻止域に 存在する周波数特性を有する。また、ローパスフィルタ LPF21bは GSM850MHZ送 信信号の少なくとも基本周波数が通過域に存在してこの基本周波数の 3倍の周波数 が阻止域に存在し、且つ GSM900MHZ送信信号の少なくとも基本周波数が通過域 に存在してこの基本周波数の 3倍の周波数が阻止域に存在する周波数特性を有す る。
[0042] ローパスフィルタ LPF20の位相設定素子 L1に対向する側の端部は、前段のパヮ 一アンプ PA (図示せず)に接続する送信信号入力端子 Txlが接続されている。
[0043] FETスィッチ SW10の RF12ポートには、 GSM850MHz受信信号の周波数が通 過域内に存在するバンドパスフィルタ BPF30が接続されており、このバンドパスフィ ルタ BPF30に受信信号出力端子 Rxlが接続されている。また、スィッチ回路 SW10 の RF13ポートには、 GSM900MHZ受信信号の周波数が通過域内に存在するバン ドパスフィルタ BPF40が接続されており、このバンドパスフィルタ BPF40に受信信号 出力端子 Rx2が接続されて 、る。
[0044] 次に、本実施形態の高周波スィッチモジュールでの GSM850MHZ送信信号およ び GSM900MHz送信信号(以下、総称して「GSM送信信号」と称す。)の伝送時の 動作について説明する。なお、これら 2つの送信信号は同時には入力されず、一方 の送信信号のみが入力される。
[0045] FETスィッチ SW10の制御信号入力端子に RF11ポートとアンテナ入出力ポート A NT0とを導通するための制御信号が入力されると、 FETスィッチ SW10は RF11ポ ートとアンテナ入出力ポート ANTOとを導通させる。この状態で、送信信号入力端子 Txlに GSM送信信号が入力されると、ローパスフィルタ LPF20で GSM送信信号の 基本波とともに入力される 2次高調波および 3次高調波が減衰されて、位相設定素子 L1を介して RF11ポートに入力される。
[0046] FETスィッチ SW10に GSM送信信号入力されると、 GaAsスィッチの非線形性から 高調波歪みが発生して、各ポート(RF11ポート、 RF12ポート、 RF13ポート、および アンテナ入出力ポート ANTO)へ均等に所定の大きさ「X」の高調波が出力される。
[0047] RF11ポートから出力された高調波は位相設定素子 L1に伝送される。ここで、位相 設定素子 L1は以下に示す条件力も所定の電気長に設定されている。この電気長と は、 RF11ポートから出力された GSM送信信号の高調波を位相設定素子 L1で伝送 することで位相変化させて、この高調波に対して RF11ポートからローパスフィルタ LP F20側を見たインピーダンスを無限大力も 0方向へ所定量変化させる電気長である。 これにより、 RF11ポートから見るとローパスフィルタ LPF20側がオープン状態からシ ョート状態となる方向に変化する。
[0048] ところで、本実施形態のように、 2次高調波用のローパスフィルタ LPF21aと 3次高 調波用のローパスフィルタ LPF2 lbとが直列に接続されて!、る場合、 2次高調波に対 しては位相設定素子 L1のみで所定の電気長を設定し、 3次高調波に対しては位相 設定素子 L1とローパスフィルタ LPF21aの伝送線路とにより設定する。すなわち、 2 次高調波に対するインピーダンスと 3次高調波に対するインピーダンスとを考慮して 最適な電気長「A」を設定する。
[0049] このような条件のもとで、さらに他の損失要因を考慮して、具体的には高調波の波 長の 1Z4程度もしくはそれ未満 (0< Α< λ /Α)とするとよい。
[0050] これをスミスチャートに示すと図 2のようになる。図 2は FETスィッチから送信信号入 力端子 Txl側を見たインピーダンスチャートであり、 (a)が本実施形態の構成すなわ ち位相設定素子 L1が有る場合を示し、 (b)が従来の構成すなわち位相設定素子 L1 が無い場合を示す。図中の実線 (太線)がインピーダンスの軌跡を示す。また、図中 の mlは GSM850MHz送信信号の周波数である 820MHz点を示し、 m2は GSM9 OOMHz送信信号の周波数である 920MHz点を示し、図中の mi lは GSM850MH z送信信号の 2倍高調波の周波数である 1650MHz点を示し、 ml2は GSM900M Hz送信信号の 2倍高調波の周波数である 1830MHz点を示し、図中の ml 3は GS M850MHz送信信号の 3倍高調波の周波数である 2470MHz点を示し、 ml4は G SM900MHZ送信信号の 3倍高調波の周波数である 2750MHz点を示す。そして、 本データは位相設定素子 L 1の電気長 Aを GSM850MHz送信信号の波長の約 1 Z 4の長さにした場合の結果である。また、図 3も同様に FETスィッチ力も送信信号入 力端子 Txl側を見たインピーダンスチャートであり、 (a)は 2次高調波 2foや 3次高調 波 3foのインピーダンスのスミスチャート位置を、インピーダンス 0の近傍に配置する 場合を示し、 (b)は 2次高調波 2foと 3次高調波 3foのインピーダンスのスミスチャート 位置を、インピーダンス 0を挟むように配置する場合を示す。なお、図 3においても、 ml l〜ml4は図 2と同じ内容で定義されている。
図 2 (b)に示すように、位相設定素子 L1が RF11ポートとローパスフィルタ LPF20と の間に挿入されていないと、 GSM850MHZ送信信号の 2倍高調波の周波数および GSM900MHZ送信信号の 2倍高調波の周波数におけるインピーダンスが無限大と なる。これは、 RF11ポートからローパスフィルタ LPF20を見るとオープン状態である こと示しており、 GSM850MHz送信信号および GSM900MHz送信信号の 2倍高 調波は全反射することを示す。また、 GSM850MHZ送信信号および GSM900MH z送信信号の 3倍高調波の周波数においても高いインピーダンスを有するので、 RF1 1ポートに反射される 3倍高調波も大きくなる。
一方、図 2 (a)に示すように、位相設定素子 L1が揷入されていると、 GSM850MH z送信信号および GSM900MHZ送信信号の 2倍高調波、 3倍高調波の周波数にお けるインピーダンス力 スミスチャート上で時計回りに無限大力 0方向へ約 1Z4周 だけ回転する。このようにインピーダンスが変化することにより、 RF11ポートからロー パスフィルタ LPF20側を見てもオープン状態ではなくなる。このため、それぞれの送 信信号の 2倍高調波および 3倍高調波のいずれもがローパスフィルタ LPF20側に一 部が漏れ出して分散される。
[0051] これにより、本実施形態の構成、すなわち RF11ポートと送信側のローパスフィルタ LPF20との間に位相設定素子 L1を挿入することで、 RF11ポートから出力された高 調波は全反射して RF11ポートに戻るのではなぐその一部がローパスフィルタ LPF2 0側に伝送される。そして、ローパスフィルタ LPF20に伝送された高調波(2次高調波 および 3次高調波を含む)はアースに導かれて RF11ポートには戻らない。
[0052] これにより、 RF11ポートに反射して戻る高調波 (反射高調波)の大きさを「 とする と、この反射高調波の大きさ「 β」は従来の高周波スィッチモジュールの反射高調波 の大きさ「 α」よりも確実に小さくなる( j8く α )。
[0053] また、図 3 (a)のように、伝送線路力もなる位相設定素子 L1の電気長を図 2 (a)のも のより長くし、スミスチャート上でインピーダンス 0の近傍へさらに近づけることにより、 この反射高調波の大きさ「 β」を従来の高周波スィッチモジュールの反射高調波の大 きさ「 α」よりも確実に小さく( j8く α )させることができる。同様に、図 3 (b)のように、 伝送線路力もなる位相設定素子 L1の電気長を図 3 (a)のものより長くし、 2次高調波 をインピーダンス 0の近傍にしつつ、且つ 2次高調波と 3次高調波のインピーダンスの スミスチャート位置を、インピーダンス 0を挟むように酉己置することにより、さらに確実に この反射高調波の大きさ「 β」を従来の高周波スィッチモジュールの反射高調波の大 きさ「 α」よりも/ J、さく( j8 < α )させることができる。
[0054] ここで、図 2に示すように、位相設定素子 L1を RF11ポートとローパスフィルタ LPF2 0との間に挿入しても、 GSM850MHz送信信号の基本波の周波数と GSM900MH ζ送信信号の基本波の周波数とは、位相設定素子 L1を挿入する前とインピーダンス が殆ど変化しない。このため、位相設定素子 L1は基本波の伝送に対して悪い影響 を与えない。
[0055] 一方、 RF12ポートおよび RF13ポートから出力された高調波はバンドパスフィルタ BPF30, BPF40に伝送されて減衰されるので RF12ポートおよび RF13ポートには 戻らない。 [0056] 従って、 FETスィッチ SW10に戻る反射高調波の大きさは、位相設定素子 L1が設 置されて ヽな 、従来の高周波スィッチモジュール(図 7)よりも小さくなる。この結果、 アンテナ入出力ポート ANTOに出力される高調波の大きさは、「X+ |8」となり、従来 の高周波スィッチモジュール(図 7)の高調波の大きさ「Χ+ α」よりも小さくなる。
[0057] このように、本実施形態の構成を用いることにより、アンテナに出力される高調波が 低減されて送信特性が改善される。また、位相設定素子 L1は高調波に対してのみィ ンピーダンスが変化する設定がされているので、 GSM送信信号の基本波に対しては 位相が変化するのみで、インピーダンスは殆ど変化することがない。この結果、 GSM 送信号の基本波は殆ど減衰されることなく伝送される。すなわち、 GSM送信信号の 高調波のみを抑制して、基本波に損失を殆ど生じさせることなく伝送する高周波スィ ツチモジュールを構成することができる。
[0058] 次に、第 2の実施形態に係る高周波スィッチモジュールについて図 4〜図 6を参照 して説明する。
図 4は本実施形態の高周波スィッチモジュールの構成を示すブロック図である。 なお、本実施形態の説明では送信信号入力端子 Txlから GSM850MHZ送信信 号または GSM900MHz送信信号を入力し、送信信号入力端子 Tx2から GSM180 ΟΜΗζ送信信号または GSM 1900MHz送信信号を入力し、受信信号出力端子 Rx 1力 GSM850MHz受信信号を出力し、受信信号出力端子 Rx2から GSM900M Hz受信信号を出力し、受信信号出力端子 Rx3から GSM1800MHZ受信信号を出 力し、受信信号出力端子 Rx4力も GSM1900MHZ受信信号の出力を行う高周波ス イッチモジュールについて説明する。 GaAsスィッチである FETスィッチ SW50は、ァ ンテナ ANTに接続するアンテナ入出力ポート ANTOと、 GSM850MHz信号の送 受信信号、 GSM900MHz信号、 GSM 1800MHz信号の送受信信号、 GSM1900 MHz信号のいずれかを入出力する RF入出力ポート RF61〜RF66 (以下、単に「R F61ポート」〜「RF66ポート」と称す。)と、を備える。また、 FETスィッチ SW50は、図 示しないが、駆動電圧が入力される駆動電圧入力ポートと、スィッチ切り替え制御に 用いる制御信号が入力される制御信号入力ポートとを備え、制御信号入力ポートに 入力される制御信号により、アンテナ入出力ポート ANTOを RF61ポート〜 RF66ポ ートのいずれかに導通する。なお、 RF61ポートが本発明の「第 1送信ポート」に相当 し、 RF62ポートが本発明の「第 2送信ポート」に相当する。また、 RF63ポートが本発 明の「第 1受信ポート」に相当し、 RF64ポートが本発明の「第 2受信ポート」に相当し 、 RF65ポートが本発明の「第 3受信ポート」に相当し、 RF66ポートが本発明の「第 4 受信ポート」に相当する。
[0059] FETスィッチ SW50の RF61ポートには、伝送線路からなる位相設定素子 GL1が 接続されており、位相設定素子 GL1の RF61ポートと対向する側の端部はローパス フィルタ LPF71が接続されている。位相設定素子 GL1の電気長は、伝送する送信 信号すなわち GSM850MHz送信信号および GSM900MHz送信信号に対して、 送信信号の波長の略 1Z4の長さに設定されている。言い換えれば、位相設定素子 L1の電気長を「A」として、送信信号の波長を「え 」すると、 0<Aくえ Z4を満たす
A A
長さに設定されている。ここで、送信信号の波長え は GSM850MHZ送信信号と G
A
SM900MHz送信信号とで若干異なる力 例えば、波長の長い GSM850MHZ送 信信号の波長を前記「 λ」に設定する。そして、この伝送線路である位相設定素子 G L1が本発明の「第 1の位相設定手段」に相当する。
[0060] ローパスフィルタ LPF71はローパスフィルタ LPF72に接続し、このローパスフィルタ LPF72が送信信号入力端子 Txlに接続しており、ローパスフィルタ LPF71とローバ スフィルタ LPF72との接続点はキャパシタ GCu2を介してグランドに接続 (接地)され ている。
[0061] ローパスフィルタ LPF71は、一方端が位相設定素子 GL1に接続し、他方端がロー パスフィルタ LPF72に接続する伝送線路力もなるインダクタ GLtlと、このインダクタ GLtlに並列接続されたキャパシタ GCclと、インダクタ GLtlの位相設定素子 GL1 側とグランドとの間に挿入されたキャパシタ GCulと、を備える。このローパスフィルタ LPF71は、これらインダクタ GLtl、キャパシタ GCcl, GCulにより GSM850MHz 送信信号および GSM900MHz送信信号の 2次高調波の周波数が阻止域に存在し 、基本波の周波数が通過域に存在するように減衰特性が設定されて ヽる。
[0062] ローパスフィルタ LPF72は、一方端がローパスフィルタ LPF71に接続し、他方端が 送信信号入力端子 Txlに接続する伝送線路カゝらなるインダクタ GLt2と、このインダ クタ GLt2に並列接続されたキャパシタ GCc2と、を備える。このローパスフィルタ LPF 72は、これらインダクタ GLt2、キャパシタ GCc2により GSM850MHz送信信号およ び GSM900MHZ送信信号の 3次高調波の周波数が阻止域に存在し、基本波の周 波数が通過域に存在するように減衰特性が設定されている。なお、ここで、ローパス フィルタ LPF72にはインピーダンス調整のために、インダクタ GLt2の送信信号入力 端子 Txl側とグランドとの間に挿入されたキャパシタ GCu3 (図 4の()内に示す。 )を 設置してちょい。
[0063] FETスィッチ SW50の RF62ポートには、伝送線路からなる位相設定素子 DL1が 接続されており、位相設定素子 DL1の RF62ポートと対向する側の端部はローパス フィルタ LPF81が接続されている。位相設定素子 DL1の電気長は、伝送する送信 信号すなわち GSM1800MHz送信信号および GSM1900MHz送信信号に対して 、送信信号の波長の略 1Z4の長さに設定されている。言い換えれば、位相設定素 子 L1の電気長を「B」として、送信信号の波長を「え 」すると、 0< Bくえ Z4を満た
B B
す長さに設定されている。ここで、送信信号の波長え は GSM1800MHZ送信信号
B
と GSM1900MHZ送信信号とで若干異なる力 例えば、波長の長い GSM1800M Hz送信信号の波長を前記「え 」に設定する。そして、この伝送線路である位相設定
B
素子 DL 1が本発明の「第 2の位相設定手段」に相当する。
[0064] ローパスフィルタ LPF81はローパスフィルタ LPF82に接続し、このローパスフィルタ LPF82が送信信号入力端子 Tx2に接続しており、ローパスフィルタ LPF81とローバ スフィルタ LPF82との接続点はキャパシタ DCu2を介してグランドに接続 (接地)され ている。
[0065] ローパスフィルタ LPF81は、一方端が位相設定素子 DL1に接続し、他方端がロー パスフィルタ LPF82に接続する伝送線路力もなるインダクタ DLt 1と、このインダクタ DLtlに並列接続されたキャパシタ DCclと、インダクタ DLtlの位相設定素子 DL1 側とグランドとの間に挿入されたキャパシタ DCulと、を備える。このローノ スフィルタ LPF81は、これらインダクタ DLtl、キャパシタ DCcl, DCulにより GSM1800MHz 送信信号および GSM1900MHz送信信号の 2次高調波の周波数が阻止域に存在 し、基本波の周波数が通過域に存在するように減衰特性が設定されて ヽる。 [0066] ローパスフィルタ LPF82は、一方端がローパスフィルタ LPF81に接続し、他方端が 送信信号入力端子 Tx2に接続する伝送線路カゝらなるインダクタ DLt2と、このインダ クタ DLt2に並列接続されたキャパシタ DCc2と、インダクタ DLt2の送信信号入力端 子 Tx2側とグランドとの間に挿入されたキャパシタ DCu3と、を備える。このローパスフ ィルタ LPF82は、これらインダクタ DLt2、キャパシタ DCc2, DCu2により GSM180 OMHz送信信号および GSM 1900MHz送信信号の 3次高調波の周波数が阻止域 に存在し、基本波の周波数が通過域に存在するように減衰特性が設定されて ヽる。
[0067] FETスィッチ SW50の RF63ポートには、 GSM850MHz受信信号の周波数が通 過域内に存在するバンドパスフィルタ BPF91が接続されており、このバンドパスフィ ルタ BPF91に受信信号出力端子 Rxlが接続されている。また、 FETスィッチ SW50 の RF64ポートには、 GSM900MHz受信信号の周波数が通過域内に存在するバン ドパスフィルタ BPF92が接続されており、このバンドパスフィルタ BPF92に受信信号 出力端子 Rx2が接続されている。また、 FETスィッチ SW50の RF65ポートには、 GS M1800MHZ受信信号の周波数が通過域内に存在するバンドパスフィルタ BPF93 が接続されており、このバンドパスフィルタ BPF93に受信信号出力端子 Rx3が接続 されている。また、 FETスィッチ SW50の RF66ポートには、 GSM1900MHz受信信 号の周波数が通過域内に存在するバンドパスフィルタ BPF94が接続されており、こ のバンドパスフィルタ BPF94に受信信号出力端子 Rx4が接続されている。
[0068] 次に、本実施形態の高周波スィッチモジュールでの GSM850MHZ送信信号およ び GSM900MHZ送信信号(以下、総称して第 1群 GSM送信信号)の伝送時の動 作について説明する。なお、これら 2つの送信信号は同時には入力されず、一方の 送信信号のみが入力される。また、ここで、 GSM850MHZ信号が本発明の「第 1通 信信号」に相当し、 GSM900MHZ信号が本発明の「第 2通信信号」に相当する。
[0069] FETスィッチ SW50の制御信号入力ポートに RF61ポートとアンテナ入出力ポート ANTOとを導通するための制御信号が入力されると、 FETスィッチ SW50は RF61ポ ートとアンテナ入出力ポート ANTOとを導通させる。この状態で、送信信号入力端子 Txlに第 1群 GSM送信信号が入力されると、ローパスフィルタ LPF72で第 1群 GS M送信信号の基本波とともに入力される 3次高調波が減衰されて、さらにローバスフ ィルタ LPF71で第 1群 GSM送信信号の基本波とともに入力される 2次高調波が減衰 されて、位相設定素子 GL1を介して RF61ポートに入力される。
[0070] FETスィッチ SW50に第 1群 GSM送信信号入力されると、 GaAsスィッチの非線形 性から高調波歪みが発生して、各ポート (RF61ポート〜 RF66ポート、およびアンテ ナ入出力ポート ANTO)へ均等に所定の大きさ「Y」の高調波が出力される。
[0071] RF61ポートから出力された高調波は位相設定素子 GL1に伝送される。
[0072] ここで、位相設定素子 GL1は以下に示す条件力 所定の電気長に設定されている 。この電気長とは、 RF61ポートから出力された第 1群 GSM送信信号の高調波を位 相設定素子 GL1で伝送することで位相変化させて、この高調波に対して RF61ポー トからローパスフィルタ LPF71, LPF72側を見たインピーダンスを無限大から 0方向 へ所定量変化させる電気長である。これにより、 RF61ポートから見るとローパスフィ ルタ LPF71, LPF72側がオープン状態力もショート状態となる方向に変化する。こ の際、位相設定素子 GL1のみで、第 1群 GSM送信信号の 2次高調波のインピーダ ンスを所定量変化させ、位相設定素子 GL 1とローパスフィルタ LPF71を構成する各 素子の素子値 (インダクタンス、キャパシタンス)とで第 1群 GSM送信信号の 3次高調 波のインピーダンスを所定量変化させるように位相設定素子 GL1の電気長を設定す る。
[0073] これにより、 RF61ポートから出力された高調波は全反射して RF61ポートに戻るので はなぐその一部がローパスフィルタ LPF71, LPF72側に伝送される。そして、ロー パスフィルタ LPF71, LPF72に伝送された高調波(2次高調波および 3次高調波を 含む)はアースに導かれて RF61ポート側には戻らない。すなわち、 RF61ポートに戻 る高調波の大きさを「y」とすると、従来の高周波スィッチモジュールにおける戻り高 調波の大きさを「α」とした場合に、「γ < α」となる。
[0074] 一方、 RF62ポート〜 RF66ポートから出力された高調波はローパスフィルタ LPF8 2およびローパスフィルタ LPF81からなる回路と、バンドパスフィルタ BPF91〜94に 伝送されて減衰されるので RF62ポート〜 RF66ポートには殆ど戻らない。
[0075] 従って、 FETスィッチ SW50に戻る反射高調波の大きさは、位相設定素子 GL1が 設置されて!ヽな 、従来の高周波スィッチモジュール(図 7)よりも小さくなる。この結果 、アンテナ入出力ポート ANTOに出力される高調波の大きさは、 Γγ+ γ」となり、従 来の高周波スィッチモジュール(図 7)の高調波の大きさ「Υ+ α」よりも小さくなる。
[0076] このように、本実施形態の構成を用いることにより、アンテナに出力される高調波が 低減されて送信特性が改善される。また、位相設定素子 GL1は目的とする高調波に 対してのみインピーダンスが変化する設定がされているので、第 1群 GSM送信信号 の基本波に対しては位相が変化するのみで、インピーダンスは殆ど変化することがな い。
[0077] 次に、本実施形態の高周波スィッチモジュールでの GSM1800MHZ送信信号お よび GSM1900MHZ送信信号(以下、総称して第 2群 GSM送信信号)の伝送時の 動作について説明する。なお、これら 2つの送信信号は同時には入力されず、一方 の送信信号のみが入力される。さらに、前述の GSM850MHz送信信号や GSM90 ΟΜΗζ送信信号とも同時に入力されない。また、ここで、 GSM1800MHZ信号が本 発明の「第 3通信信号」に相当し、 GSM1900MHZ信号が本発明の「第 4通信信号」 に相当する。
[0078] FETスィッチ SW50の制御信号入力端子に RF62ポートとアンテナ入出力ポート A NTOとを導通するための制御信号が入力されると、 FETスィッチ SW50は RF62ポ ートとアンテナ入出力ポート ANTOとを導通させる。この状態で、送信信号入力端子 Tx2に第 2群 GSM送信信号が入力されると、ローパスフィルタ LPF82で第 2群 GS Μ送信信号の基本波とともに入力される 3次高調波が減衰されて、さらにローバスフ ィルタ LPF81で第 2群 GSM送信信号の基本波とともに入力される 2次高調波が減衰 されて、位相設定素子 DL 1を介して RF62ポートに入力される。
[0079] FETスィッチ SW50に第 2群 GSM送信信号入力されると、 GaAsスィッチの非線形 性から高調波歪みが発生して、各ポート (RF61ポート〜 RF66ポート、およびアンテ ナ入出力ポート ANTO)へ均等に所定の大きさ「Z」の高調波が出力される。
[0080] RF61ポートから出力された高調波は位相設定素子 DL1に伝送される。
[0081] ここで、位相設定素子 DL1は以下に示す条件から所定の電気長に設定されている 。この電気長とは、 RF62ポートから出力された第 2群 GSM送信信号の高調波を位 相設定素子 DL1で伝送することで位相変化させて、この高調波に対して RF62ポー トからローパスフィルタ LPF81, LPF82側を見たインピーダンスを無限大から 0方向 へ所定量変化させる電気長である。これにより、 RF62ポートから見るとローパスフィ ルタ LPF81, LPF82側がオープン状態力もショート状態となる方向に変化する。こ の際、位相設定素子 DL1のみで、第 2群 GSM送信信号の 2次高調波のインピーダ ンスを所定量変化させ、位相設定素子 DL1とローパスフィルタ LPF81を構成する各 素子の素子値 (インダクタンス、キャパシタンス)とで第 2群 GSM送信信号の 3次高調 波のインピーダンスを所定量変化させるように、位相設定素子 DL1の電気長を設定 する。
[0082] これにより、 RF62ポートから出力された高調波は全反射して RF62ポートに戻るので はなぐその一部がローパスフィルタ LPF81, LPF82側に伝送される。そして、ロー パスフィルタ LPF81, LPF82に伝送された高調波(2次高調波および 3次高調波を 含む)はアースに導かれて RF62ポート側には戻らない。すなわち、 RF62ポートに戻 る高調波の大きさを「 δ」とすると、従来の高周波スィッチモジュールにおける戻り高 調波の大きさを「α」とした場合に、「δ < α」となる。
[0083] 一方、 RF61ポートから出力された高調波はローパスフィルタ LPF72およびローバ スフィルタ LPF71からなる回路に伝送されて減衰され、 RF63ポート〜 RF66ポート 力も出力された高調波はバンドパスフィルタ BPF91〜LPF94に伝送されて減衰され るので RF61ポート、 RF63ポート〜 RF66ポートには殆ど戻らない。
[0084] 従って、 FETスィッチ SW50に戻る反射高調波の大きさは、位相設定素子 DL1が 設置されて!ヽな 、従来の高周波スィッチモジュール(図 7)よりも小さくなる。この結果 、アンテナ入出力ポート ANTOに出力される高調波の大きさは、 Γζ+ δ」となり、従来 の高周波スィッチモジュール(図 7)の高調波の大きさ「Ζ+ α」よりも小さくなる。
[0085] このように、本実施形態の構成を用いることにより、アンテナに出力される高調波が 低減されて送信特性が改善される。また、位相設定素子 DL1は高調波に対してのみ インピーダンスが変化する設定がされているので、第 2群 GSM送信信号の基本波に 対しては位相が変化するのみで、インピーダンスは殆ど変化することがな!、。
[0086] 表 1は本実施形態の各高周波スィッチモジュールと従来の高周波スィッチモジユー ルとにおける入力電力に対する各 GSM送信信号の 2倍高調波および 3倍高調波の 比をデシベルで表したものであり、各数値の単位は [dBc]である。また、表 1中の「本 発明 a」が図 2 (a)に対応し、「本発明 c」が図 3 (a)に対応し、「本発明 d」が図 3 (b)に 対応する。
[表 1]
Figure imgf000021_0001
[0088] 表 1に示すように、本実施形態の構成 (位相設定素子を用いた構成)とすることで、 各 GSM送信信号における入力電力に対する高調波の比を小さく(デシベル値を大 きく)することができる。すなわち、出力される送信信号に含まれる高調波を低減する ことができる。特に、 GSM1800送信信号および GSM1900送信信号では、従来の 構成を用 ヽると 3倍高調波が規格値である 70dBcを下回る(GSM 1800MHz送信 信号: 67. 05dBc、 GSM1900MHz送信信号: 67. 15dBc)力 本実施形態の「本 発明 a」の構成を用いることにより規格値を満足する(GSM1800MHZ送信信号: 71 . 42dBc、 GSM1900MHz送信信号: 71. 48dBc;)。また、本実施形態の「本発明 c 」の構成を用いることにより規格値を満足する(GSM 1800MHz送信信号: 70. 62d Bc、 GSM1900MHz送信信号: 72. 13dBc)。また、本実施形態の「本発明 d」の構 成を用いることにより規格値を満足する(GSM1800MHZ送信信号: 72. 62dBc、 G SM1900MHz送信信号: 70. 53dBc) Gこのように、位相設定素子によって、送信 入力ポートからフィルタ方向を見た場合における送信信号の 2次高調波または 3次高 調波のインピーダンスのスミスチャート位置を、インピーダンス 0の近傍に配置させる ことにより、高次高調波を減衰させることができる。
[0089] 以上のように、本実施形態の構成を用いることで、それぞれに異なる周波数帯を利 用する 4つの GSM送信号の高調波は抑制される力 基本波は殆ど減衰されることな く伝送される。すなわち、各 GSM送信信号の高調波のみを抑制して、基本波に損失 を殆ど生じさせることなく伝送する高周波スィッチモジュールを構成することができる [0090] この際、位相調整量を設定した伝送線路のみで高調波を抑制するので、高周波ス イッチモジュールが大型化せず、且つ簡素な構造で実現される。
[0091] 次に、図 4に示した高周波スィッチモジュールの積層体の構造について図 5,図 6を 参照して説明する。
図 5、図 6は本実施形態の高周波スィッチモジュールの積層図である。図 5、図 6は 、本実施形態の積層体型高周波スィッチモジュールの各誘電体層 (1)〜(28)を順 に上から見た図であり、誘電体層(29)をして示しているものは誘電体層(28)の裏面 、すなわち、高周波スィッチモジュールの底面である。これら図 5、図 6に示す記号は 図 4に示した各素子の記号に対応する。また、図 5、図 6において 1は積層体、 2はキ ャビティ、 3はスルーホールを表す。スルーホール 3は代表のものに記号を付したが、 図に示されて 、る同径の円形は全てスルーホールを示す。
[0092] 積層体 1は、誘電体層 (1)を最上層として、番号順に上から順に誘電体層 (1)〜誘 電体層 (18)を積層することにより形成される。最上層の誘電体層 (1)〜誘電体層 (1 1)は中央に一辺が所定長さで正方形の孔が形成されており、誘電体層(1)〜(11) が積層されることでこれらの孔カゝらキヤビティ 2が形成される。そして、このキヤビティ 2 内に FETスィッチ SW50が設置されて!、る。 FETスィッチ SW50の天面およびこの 天面に接続されたワイヤボンディングのワイヤは積層体 1の天面力 突出しておらず 、 FETスィッチ SW50が積層体 1に内蔵された形状になっている。最下層の誘電体 層(28)の裏面(図 6における誘電体層(29) )には、グランド電極 GNDを含む外部接 続用電極が形成されており、これらの電極によりこの高周波スィッチモジュールは外 部の回路基板に実装される。
[0093] 最上層の誘電体層 (1)〜誘電体層 (6)には孔が設けられるのみで電極パターンは 形成されていない。
誘電体層(7)には FETスィッチ SW50の各端子電極にワイヤボンディングするため のパッド電極が形成されており、これら各パッド電極と FETスィッチ SW50の各端子 電極とをワイヤボンディングにより接続して 、る。
誘電体層(8)〜誘電体層 (11)にはスルーホール 3のみが形成さている。
[0094] 誘電体層(12)、誘電体層 (13)にはグランド電極 GNDが形成されており、このダラ ンド電極 GNDはキャパシタ DCul, Gculの対向電極を兼ねている。
誘電体層(14)にはキャパシタ DCcl, Gcclの対向電極が形成されるとともに、イン ダクタ DL1, GL1となる伝送線路が形成されている。ここで、キャパシタ DCcl, Gcc
1の対向電極はキャパシタ DCul, Gculの対向電極を兼ねている。
誘電体層(15)にはキャパシタ DCcl, GCclの対向電極が形成されており、キャパ シタ DCclの対向電極はキャパシタ DCc2の対向電極を兼ねており、キャパシタ GCc
1の対向電極はキャパシタ GCc2の対向電極を兼ねている。
誘電体層(16)にはキャパシタ DCc2, GCc2の対向電極が形成されている。
[0095] 誘電体層(17)、誘電体層(18)にはスルーホール 3のみが形成されている。
誘電体層(19)〜誘電体層(22)には 4層に亘りインダクタ DLtl, DLt2, GLtl, G
Lt2が形成されている。
誘電体層(23)、誘電体層(24)にはスルーホール 3のみが形成されている。
誘電体層(25)にはキャパシタ DCu2, GCu2の対向電極が形成されている。
誘電体層(26)にはグランド電極 GNDが形成されており、このグランド電極 GNDは キャパシタ DCu2, GCu2, DCu3の対向電極を兼ねている。
誘電体層 (27)にはキャパシタ DCu3の対向電極が形成されている。
[0096] 誘電体層(28)の天面にはグランド電極 GNDが形成されており、このグランド電極
GNDはキャパシタ DCu3の対向電極を兼ねている。また、誘電体層(28)の裏面(図
6における誘電体層(29) )にはグランド電極 GNDと各種外部接続電極が形成されて いる。
これらの電極パターンはスルーホール 3により層間の導通がされており、図 4に示す 回路が形成されている。
[0097] このような構成とすることで、高周波スィッチモジュールを単体の積層体で実現する ことができる。これにより、高周波スィッチモジュールを小型に形成することができる。
[0098] なお、前述の説明では、 FETスィッチ SW50が積層体内に内蔵される構造を示し たが、積層体表面に実装しても良い。また、 FETスィッチと積層体との接続をワイヤ ボンディングで行った力 フリップチップ型の FETスィッチを用いてバンプ接続しても よい。さらには、高周波スィッチモジュールを構成する各回路素子を、各誘電体層表 面に形成された電極で構成したが、実装型のインダクタおよびキャパシタを用いても よい。

Claims

請求の範囲
[1] 送信信号が入力される送信入力ポート、受信信号を出力する受信出力ポート、およ び、アンテナへ前記送信信号を出力するまたは前記アンテナから前記受信信号を入 力するアンテナポートを備え、該アンテナポートを送信入力ポートまたは受信出力ポ ートに切り替えて接続する FETスィッチと、
前記送信入力ポートに接続され、前記送信信号の高次高調波を減衰させるフィル タと、を備えた高周波スィッチモジュールにおいて、
前記 FETスィッチの送信入力ポートと前記フィルタとの間に、前記送信入力ポート 力 前記フィルタ方向を見た場合の前記高次高調波のインピーダンスを 0に近づく方 向に変化させる位相設定手段を備え、
該位相設定手段によって、前記送信入力ポートから前記フィルタ方向を見た場合 における前記送信信号の 2次高調波または 3次高調波のインピーダンスのスミスチヤ ート位置力 インピーダンス 0の近傍に配置されて 、ることを特徴とする高周波スイツ チモジユーノレ。
[2] 前記位相設定手段は、前記送信信号の基本波のインピーダンスの絶対値を実質 的に変化させない電気長の伝送線路により形成される請求項 1に記載の高周波スィ ッテモシュ1 ~~ノレ。
[3] 前記電気長は前記 2次高調波の波長の 1Z4未満の長さである請求項 2に記載の 高周波スィッチモジユーノレ。
[4] 前記位相設定手段によって、前記送信入力ポートから前記フィルタ方向を見た場 合における前記送信信号の 2次高調波と 3次高調波のインピーダンスのスミスチヤ一 ト位置力 インピーダンス 0を挟むように配置されている請求項 1〜3のいずれかに記 載の高周波スィッチモジュール。
[5] 前記フィルタは前記 2次または 3次高調波の周波数を阻止域に含むローパスフィル タである請求項 1〜4のいずれかに記載の高周波スィッチモジュール。
[6] 前記ローパルフィルタは、前記送信信号の 2次高調波の周波数を阻止域に含む第
1ローパスフィルタと、前記送信信号の 3次高調波の周波数を阻止域に含む第 2ロー パスフィルタと、を備えることを特徴とする請求項 5に記載の高周波スィッチモジユー ル。
[7] それぞれに特定の周波数帯を送信信号および受信信号で利用する通信信号を複 数入出力し、
前記 FETスィッチは、少なくとも前記通信信号毎に受信出力ポートを備える請求項 1〜6のいずれかに記載の高周波スィッチモジュール。
[8] 前記送信入力ポートが複数あり、該送信入力ポート毎に前記位相設定手段が接続 されている請求項 7に記載の高周波スィッチモジュール。
[9] 第 1周波数帯を利用する第 1通信信号の送信信号と第 2周波数帯を利用する第 2 通信信号の送信信号とが入力される第 1送信入力ポート、第 3周波数帯を利用する 第 3通信信号の送信信号と第 4周波数帯を利用する第 4通信信号の送信信号とが入 力される第 2送信入力ポート、前記第 1通信信号の受信信号を出力する第 1受信出 力ポートと、前記第 2通信信号の受信信号を出力する第 2受信出力ポート、および、 前記第 3通信信号の受信信号を出力する第 3受信出力ポートと、前記第 4通信信号 の受信信号を出力する第 4受信出力ポート、を備える FETスィッチと、
前記第 1送信入力ポートに接続し、該第 1送信入力ポートから見た場合の前記第 1 通信信号の送信信号および第 2通信信号の送信信号の高次高調波のインピーダン スが無限大力 0へ近づく方向で変化する位相条件を備えた第 1の位相設定手段と 前記第 2送信入力ポートに接続し、該第 2送信入力ポートから見た場合の前記第 3 通信信号の送信信号および第 4通信信号の送信信号の高次高調波のインピーダン スが無限大力 0へ近づく方向で変化する位相条件を備えた第 2の位相設定手段と を備えた請求項 8に記載の高周波スィッチモジュール。
[10] 前記 FETスィッチ、前記フィルタ、および前記位相設定手段は、複数の誘電体層を 積層してなる積層体により一体形成された請求項 1〜9のいずれかに記載の高周波 スィッチモジユーノレ。
[11] 前記フィルタおよび前記位相設定手段は前記積層体内に形成されて ヽる請求項 1 0に記載の高周波スィッチモジュール。
PCT/JP2005/020814 2004-11-25 2005-11-14 高周波スイッチモジュール WO2006057173A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05806313A EP1720261B1 (en) 2004-11-25 2005-11-14 High frequency switch module
JP2006547726A JPWO2006057173A1 (ja) 2004-11-25 2005-11-14 高周波モジュール
DE602005011577T DE602005011577D1 (de) 2004-11-25 2005-11-14 Hochfrequenzschaltmodul
US11/668,570 US7756488B2 (en) 2004-11-25 2007-01-30 High-frequency switch module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004340585 2004-11-25
JP2004-340585 2004-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/668,570 Continuation US7756488B2 (en) 2004-11-25 2007-01-30 High-frequency switch module

Publications (1)

Publication Number Publication Date
WO2006057173A1 true WO2006057173A1 (ja) 2006-06-01

Family

ID=36497911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020814 WO2006057173A1 (ja) 2004-11-25 2005-11-14 高周波スイッチモジュール

Country Status (8)

Country Link
US (1) US7756488B2 (ja)
EP (2) EP1720261B1 (ja)
JP (4) JPWO2006057173A1 (ja)
KR (1) KR100845491B1 (ja)
CN (1) CN100517996C (ja)
AT (2) ATE490604T1 (ja)
DE (2) DE602005025165D1 (ja)
WO (1) WO2006057173A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072434A (ja) * 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd 送受信装置とこれを用いた電子機器
WO2008075551A1 (ja) 2006-12-21 2008-06-26 Murata Manufacturing Co., Ltd. 高周波スイッチ回路
WO2012121037A1 (ja) * 2011-03-04 2012-09-13 株式会社村田製作所 高周波スイッチモジュール
WO2012153800A1 (ja) * 2011-05-12 2012-11-15 株式会社村田製作所 高周波スイッチモジュール及び無線通信装置
WO2020153285A1 (ja) * 2019-01-23 2020-07-30 株式会社村田製作所 高周波フロントエンド回路及び通信装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755681B2 (en) 2007-09-26 2017-09-05 Intel Mobile Communications GmbH Radio-frequency front-end and receiver
JP5026246B2 (ja) * 2007-12-25 2012-09-12 サムソン エレクトロ−メカニックス カンパニーリミテッド. 高周波スイッチ回路
WO2009157283A1 (ja) * 2008-06-25 2009-12-30 株式会社村田製作所 高周波モジュール
CN102138285B (zh) * 2008-09-01 2014-11-19 株式会社村田制作所 高频开关模块
JP5625453B2 (ja) 2009-05-26 2014-11-19 株式会社村田製作所 高周波スイッチモジュール
CN101841447A (zh) * 2010-04-02 2010-09-22 北京恒光创新科技股份有限公司 一种总线带宽适配装置及方法
JP5304811B2 (ja) 2011-02-14 2013-10-02 株式会社村田製作所 高周波モジュール
WO2013047358A1 (ja) * 2011-09-26 2013-04-04 株式会社村田製作所 高周波モジュール
JP2013106128A (ja) * 2011-11-11 2013-05-30 Taiyo Yuden Co Ltd フロントエンドモジュール
JP5677499B2 (ja) 2013-04-11 2015-02-25 太陽誘電株式会社 高周波回路モジュール
US10050609B2 (en) 2016-10-05 2018-08-14 Samsung Electro-Mechanics Co., Ltd. Antenna switch circuit with improved harmonic suppression characteristic
CN107947805B (zh) * 2016-10-12 2020-11-10 株式会社村田制作所 匹配电路
CN106452398B (zh) * 2016-10-14 2023-05-23 上海旻艾半导体有限公司 Hub模块
JP2018067752A (ja) * 2016-10-17 2018-04-26 株式会社村田製作所 通信モジュール
KR102489781B1 (ko) 2016-11-18 2023-01-17 삼성전기주식회사 노이즈 억제 특성을 개선한 고주파 스위치 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086026A (ja) * 1999-09-14 2001-03-30 Sony Corp アンテナ切り換え回路及びそれを用いた通信装置
JP2004112160A (ja) * 2002-09-17 2004-04-08 Hitachi Metals Ltd 高周波回路
JP2004135316A (ja) * 2002-09-17 2004-04-30 Hitachi Metals Ltd 高周波部品及び高周波モジュール並びにこれらを用いた通信機
JP2004140696A (ja) * 2002-10-18 2004-05-13 Hitachi Metals Ltd 高周波スイッチ回路およびこれを用いたアンテナスイッチモジュール、アンテナスイッチ積層モジュールならびに通信装置
JP2004253953A (ja) * 2003-02-19 2004-09-09 Hitachi Metals Ltd アンテナスイッチ回路及びこれを用いたアンテナスイッチモジュール並びに通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032521A (ja) * 1996-07-17 1998-02-03 Murata Mfg Co Ltd デュプレクサ
US5661093A (en) * 1996-09-12 1997-08-26 Applied Materials, Inc. Method for the stabilization of halogen-doped films through the use of multiple sealing layers
JP2002064301A (ja) 1999-03-18 2002-02-28 Hitachi Metals Ltd トリプルバンド用高周波スイッチモジュール
JP2001111362A (ja) * 1999-10-06 2001-04-20 Nec Corp 高調波処理回路及びそれを用いた高電力効率増幅回路
DE50014116D1 (de) 2000-04-07 2007-04-12 Infineon Technologies Ag Frontendschaltung für Mobilfunk-Handgeräte
DE10053205B4 (de) * 2000-10-26 2017-04-13 Epcos Ag Kombinierte Frontendschaltung für drahtlose Übertragungssysteme
JP2002330035A (ja) * 2001-05-01 2002-11-15 Pioneer Electronic Corp D級アンプ出力用ローパスフィルタ
CN1309178C (zh) * 2001-08-10 2007-04-04 日立金属株式会社 高通滤波器和多频带天线开关电路、使用它们的通信仪器
US7076216B2 (en) 2002-09-17 2006-07-11 Hitachi Metals, Ltd. High-frequency device, high-frequency module and communications device comprising them
US7187945B2 (en) * 2004-04-30 2007-03-06 Nokia Corporation Versatile antenna switch architecture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086026A (ja) * 1999-09-14 2001-03-30 Sony Corp アンテナ切り換え回路及びそれを用いた通信装置
JP2004112160A (ja) * 2002-09-17 2004-04-08 Hitachi Metals Ltd 高周波回路
JP2004135316A (ja) * 2002-09-17 2004-04-30 Hitachi Metals Ltd 高周波部品及び高周波モジュール並びにこれらを用いた通信機
JP2004140696A (ja) * 2002-10-18 2004-05-13 Hitachi Metals Ltd 高周波スイッチ回路およびこれを用いたアンテナスイッチモジュール、アンテナスイッチ積層モジュールならびに通信装置
JP2004253953A (ja) * 2003-02-19 2004-09-09 Hitachi Metals Ltd アンテナスイッチ回路及びこれを用いたアンテナスイッチモジュール並びに通信装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072434A (ja) * 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd 送受信装置とこれを用いた電子機器
WO2008075551A1 (ja) 2006-12-21 2008-06-26 Murata Manufacturing Co., Ltd. 高周波スイッチ回路
JP4433087B2 (ja) * 2006-12-21 2010-03-17 株式会社村田製作所 高周波スイッチ回路
JPWO2008075551A1 (ja) * 2006-12-21 2010-04-08 株式会社村田製作所 高周波スイッチ回路
US7812687B2 (en) 2006-12-21 2010-10-12 Murata Manufacturing Co., Ltd. High-frequency switching circuit module
KR101048337B1 (ko) * 2006-12-21 2011-07-14 가부시키가이샤 무라타 세이사쿠쇼 고주파 스위칭 회로
WO2012121037A1 (ja) * 2011-03-04 2012-09-13 株式会社村田製作所 高周波スイッチモジュール
US9065506B2 (en) 2011-03-04 2015-06-23 Murata Manufacturing Co., Ltd. High-frequency switch module
JP5837045B2 (ja) * 2011-03-04 2015-12-24 株式会社村田製作所 高周波スイッチモジュール
WO2012153800A1 (ja) * 2011-05-12 2012-11-15 株式会社村田製作所 高周波スイッチモジュール及び無線通信装置
JP5672375B2 (ja) * 2011-05-12 2015-02-18 株式会社村田製作所 高周波スイッチモジュール及び無線通信装置
WO2020153285A1 (ja) * 2019-01-23 2020-07-30 株式会社村田製作所 高周波フロントエンド回路及び通信装置
US11677427B2 (en) 2019-01-23 2023-06-13 Murata Manufacturing Co., Ltd. Radio-frequency front-end circuit and communication apparatus

Also Published As

Publication number Publication date
US7756488B2 (en) 2010-07-13
CN1947345A (zh) 2007-04-11
EP2019494A1 (en) 2009-01-28
EP1720261B1 (en) 2008-12-10
DE602005025165D1 (de) 2011-01-13
JP2009005399A (ja) 2009-01-08
KR20070045146A (ko) 2007-05-02
JP2009213152A (ja) 2009-09-17
EP2019494B1 (en) 2010-12-01
EP1720261A1 (en) 2006-11-08
CN100517996C (zh) 2009-07-22
DE602005011577D1 (de) 2009-01-22
KR100845491B1 (ko) 2008-07-10
US20070123175A1 (en) 2007-05-31
EP1720261A4 (en) 2007-02-28
JPWO2006057173A1 (ja) 2008-06-05
JP4337944B2 (ja) 2009-09-30
JP4466788B2 (ja) 2010-05-26
ATE417410T1 (de) 2008-12-15
JP2008301525A (ja) 2008-12-11
ATE490604T1 (de) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4337944B2 (ja) 高周波スイッチモジュール
JP5316544B2 (ja) 高周波回路、高周波部品、及びマルチバンド通信装置
EP2037577B1 (en) Filter module and communication apparatus
US9083394B2 (en) High-frequency switch module
US9941859B2 (en) Ladder-type filter, duplexer, and module
JP2008306758A (ja) 高周波モジュール
EP2487802B1 (en) High-frequency module
JPWO2005046070A1 (ja) 高周波モジュール
JP4735773B2 (ja) 高周波モジュール
JP5778423B2 (ja) Lcフィルタおよび高周波スイッチモジュール
JP2008034980A (ja) 複合高周波部品
JP2008048450A (ja) 高周波モジュール

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547726

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005806313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580012186.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067021236

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005806313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11668570

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11668570

Country of ref document: US