WO2006051664A1 - 赤外線透過性カバー - Google Patents

赤外線透過性カバー Download PDF

Info

Publication number
WO2006051664A1
WO2006051664A1 PCT/JP2005/018649 JP2005018649W WO2006051664A1 WO 2006051664 A1 WO2006051664 A1 WO 2006051664A1 JP 2005018649 W JP2005018649 W JP 2005018649W WO 2006051664 A1 WO2006051664 A1 WO 2006051664A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
infrared
base layer
multilayer film
dielectric multilayer
Prior art date
Application number
PCT/JP2005/018649
Other languages
English (en)
French (fr)
Inventor
Takashi Hashiguchi
Akira Miyaguchi
Original Assignee
Tokai Optical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Optical Co., Ltd. filed Critical Tokai Optical Co., Ltd.
Priority to CN200580038563.9A priority Critical patent/CN101057341B/zh
Priority to EP05790663A priority patent/EP1837920B8/en
Priority to US11/667,568 priority patent/US20080316594A1/en
Priority to KR1020077011684A priority patent/KR101158821B1/ko
Priority to AT05790663T priority patent/ATE547811T1/de
Publication of WO2006051664A1 publication Critical patent/WO2006051664A1/ja
Priority to US13/670,127 priority patent/US20130063810A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present invention relates to an infrared-transparent cover, for example, to a highly decorative infrared-transparent cover attached to an infrared signal port that inputs and outputs infrared signals.
  • Infrared signals are used for remote control such as short distance wireless data communication (for example, IrDA standard) between electronic devices, and power-on Z-off and volume change of household electric appliances such as TVs and VTRs.
  • short distance wireless data communication for example, IrDA standard
  • IrDA standard short distance wireless data communication
  • power-on Z-off and volume change of household electric appliances such as TVs and VTRs.
  • An infrared signal is received by an infrared light receiving element provided in a receiver or transceiver.
  • the infrared light receiving element detects not only an infrared signal but also visible light.
  • a black or dark, near infrared transparent resin window plate is attached to the infrared signal port of the conventional receiver or transmitter.
  • a black or dark resin window prevents malfunction of the light receiving element due to external light such as visible light. Black or dark resin windows may also be attached to the transmitter's infrared signal port.
  • the black or dark resin window has a function to hide the inside of the transmitter, receiver and transceiver as if it were invisible.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-226805
  • a conventional black or dark resin window board has a force S that does not match the appearance of electronic devices and electrical devices. It was a design limitation to design the equipment to make the black or dark grease window inconspicuous!
  • the double-sided pressure-sensitive adhesive sheet described in Patent Document 1 has a dark appearance color that absorbs visible light. For this reason, it has the same disadvantages as the black resin window.
  • Manufacturing a resin window panel having an arbitrary appearance color involves adding a coloring agent to a transparent resin plate.
  • a coloring agent to a transparent resin plate.
  • the resin window for the infrared signal port must be infrared transparent. It has been difficult to produce a resin window with any appearance color while maintaining infrared transparency and shielding against visible light.
  • An object of the present invention is to provide an infrared-transparent cover for electronic devices having any appearance color.
  • the infrared-transparent cover of the present invention is provided with an infrared-transparent base layer, and a dielectric multilayer film laminated on one surface of the base layer and reflecting infrared light-transparent and visible light. Equipped with
  • the present invention further provides an electronic device comprising a housing having an opening, an infrared detection element housed in the housing, and the infrared transparent cover attached to the housing to close the opening. Do.
  • the infrared ray transmitting cover is formed by ion-assisted deposition, plasma CVD, or low temperature film formation of a dielectric multilayer film reflecting infrared rays and visible light on one surface of an infrared ray transmitting base layer. Manufacturing process.
  • the cover of an embodiment further includes a hard coat-treated undercoating layer laminated between the dielectric multilayer film and the base layer, and the dielectric multilayer film serves as an outer surface of the cover. Function.
  • the base layer has a laminated first surface of the dielectric multilayer film and a second surface opposite to the first surface, and the cover is An anti-reflection film laminated on the second surface of the base layer is further provided, and the dielectric multilayer film and the anti-reflection film function as an inner side surface and an outer side surface of the cover, respectively.
  • the base layer has two surfaces, and the dielectric multilayer film is laminated on the two surfaces of the base layer.
  • the base layer includes a light-scattering textured region formed on at least a portion of the surface.
  • the interface between the base layer and the dielectric multilayer film is a curved surface.
  • the interface between the base layer and the dielectric multilayer film is a convex surface.
  • the cover is attached to an infrared signal port of an electronic device, and the cover is an outer side exposed to the outside of the electronic device, and an inner side disposed inside the electronic device.
  • the base layer is colorless and transparent, and has a first surface near the inner side surface of the cover and a second surface near the outer side surface of the cover, and the dielectric multilayer film is the base layer A black layer laminated to the dielectric multi-layer film, the black layer blocking infrared light transmission and blocking transmission of visible light, and the second surface of the base layer And a diffusion layer stacked on the
  • the base layer is colorless and transparent, and has a first surface close to the inner surface of the cover and a second surface close to the outer surface of the cover, and the dielectric multilayer film Is laminated on the first surface of the base layer, and the cover is further formed of an information printing layer laminated on the dielectric multilayer film, and an infrared ray transparent or laminated layer on the information printing layer. And a black layer blocking transmission of visible light, and a diffusion layer laminated on the second surface of the base layer.
  • the information printing layer is a single layer.
  • the base layer is colorless and transparent, and has a first surface close to the inner side surface of the cover and a second surface close to the outer side surface of the cover; An information-printed layer laminated between the first surface of the base layer and the dielectric multilayer film, and a black layer laminated on the dielectric multilayer film for preventing transmission of infrared light and visible light. And a diffusion layer laminated on the second surface of the base layer.
  • the information print layer includes a plurality of layers.
  • the base layer is an infrared-transparent dark base layer, and has a first surface close to the inner side surface of the cover and a second surface close to the outer side surface of the cover, A dielectric multilayer film is formed on the second surface of the dark base layer, and the cover further includes a protective layer laminated on the dielectric multilayer film.
  • the base layer is colorless and transparent, and has a first surface close to the inner side surface of the cover and a second surface close to the outer side surface of the cover, and the dielectric multilayer film A black layer formed on the second surface of the base layer, the cover being laminated on the first surface of the base layer, the black layer being infrared-transparent and blocking transmission of visible light; And a protective layer laminated on the collector multilayer film.
  • the dielectric multilayer film selectively reflects visible light in a specific wavelength range.
  • the dielectric multilayer film mainly transmits visible light having a wavelength excluding the specific wavelength range.
  • the cover of an embodiment has an appearance color except black.
  • FIG. 1 is a cross-sectional view of the infrared transparent cover of the present invention.
  • FIG. 2 Explanatory drawing of the Fresnel reflection in the transparent base layer of the cover of FIG.
  • FIG. 3 A cross-sectional view of the portable information terminal with the cover of FIG. 1 attached.
  • FIG. 5 is a cross-sectional view of the infrared-transparent cover according to the first embodiment of the present invention.
  • FIG. 8 Reflection spectrum and transmission spectrum of the cover of Example 2.
  • FIG. 9 is a cross-sectional view of an infrared-transparent cover according to a second embodiment of the present invention.
  • FIG. 10 A cross-sectional view of an infrared-transparent cover according to a third embodiment of the present invention.
  • FIG. 11 A cross-sectional view of an infrared-transparent cover according to a fourth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of an infrared-transparent cover according to a fifth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of the infrared ray permeable cover according to the sixth embodiment of the present invention.
  • FIG. 14 The reflection spectrum of the cover of Example 3 which changes according to the incident angle.
  • FIG. 15 is a cross-sectional view of the infrared ray permeable cover according to the seventh embodiment of the present invention.
  • FIG. 16 Reflection spectrum and transmission spectrum of the dielectric multilayer film of the cover of FIG.
  • FIG. 17 Transmission spectrum of the black layer of the cover of FIG.
  • FIG. 18 A plan view and a cross-sectional view of an infrared transmitting cover according to an eighth embodiment of the present invention.
  • FIG. 19 (a) is a view for explaining the reflected light of the cover of the comparative example.
  • (B) is a front view of the cover of a comparative example.
  • FIG. 20 Front view of the cover of FIG.
  • FIG. 21 is a plan view and a cross-sectional view of an infrared-transparent cover according to a ninth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of the infrared ray permeable cover according to the tenth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view of the infrared transmissive cover according to the eleventh embodiment of the present invention.
  • FIG. 24 is a perspective view of an electronic device provided with the infrared ray transmitting cover of the present invention.
  • FIG. 25 The perspective view of the infrared rays permeable cover of a modification.
  • the power bar 1 is attached to a transmitter or receiver that transmits an infrared signal in one direction, and a transceiver that transmits the infrared signal in two directions.
  • the "outside surface” and the “inside surface (back surface)" of each layer are respectively attached to the outside and inside of the electronic device. Point to the near surface.
  • the upper side of FIG. 1 is the outer surface of the cover 1 and each layer, and the lower side is the inner surface of the cover 1 and each layer.
  • the cover 1 has an infrared transmitting base layer 2, and an infrared transmitting and visible light reflecting dielectric multilayer film 3 formed on the outer surface of the base layer 2.
  • the outer surface 3a of the dielectric multilayer film 3 is exposed to the outside of the infrared ray signal port.
  • the inner surface of the base layer 2 is disposed inside the infrared signal port.
  • the outer surface 2b of the base layer 2 and air are used as Fresnel reflection. Approximately 4% of the incident light is reflected at the interface SA of the surface and the interface SB between the inner surface 2a and the air, respectively. Thus, about 92% of the incident light is transmitted through the base layer 2.
  • FIG. 3 shows the portable information terminal 4 attached with the cover 1 of FIG.
  • the cover 1 is attached to the opening (infrared signal port) 5a formed in the case 5 of the portable information terminal 4 .
  • the upper side of FIG. 3 is the outer surface of the cover 1 and each layer, and the lower side is the inner surface of the cover 1 and each layer.
  • Part of the incident light IL is reflected by the outer surface of the cover 1 (reflected light ra).
  • Part of the incident light IL is reflected by the inner surface of the cover 1 (reflected light rb).
  • a part of the incident light IL passes through the cover 1 and is reflected by a component 6 such as a light receiving element provided in the housing 5 (reflected light rc).
  • Incident light IL is ambient light such as indoor lighting and sunlight.
  • the reflected light m is a reflected light of visible light in a specific wavelength range in the incident light IL.
  • Curve 7 in Fig. 4 (a) shows the spectral reflection characteristics of the reflected light m.
  • the horizontal and vertical axes in Fig. 4 (a) to (e) indicate the wavelength and reflectance, respectively.
  • the reflected light rb is reflected by the interface between the inner side surface 2 a of the base layer 2 and the air, and the light emitted from the outer side surface 3 a of the cover 1 is there.
  • Curve 8 in Fig. 4 (b) shows the spectral reflection characteristics of the reflected light rb.
  • the reflected light rc is light which is reflected by the component 6 and is emitted from the outer side surface 3 a of the cover 1 among the incident light IL transmitted through the dielectric multilayer film 3 and the base layer 2.
  • Curve 9 in Fig. 4 (c) shows the dif- ferential light reflection characteristics of the reflected light rc. In order to simplify the explanation, the spectral reflection characteristics of the surface of part 6 are assumed to be flat and ignored.
  • the cover 1 appears in a color (exterior color) according to a combined spectrum of the reflected light ra, the reflected light rb, and the reflected light rc.
  • the thick curve 10 in Fig. 4 (d) is a synthetic spectrum of the reflected light ra, the reflected light rb and the reflected light rc, and is the spectral reflection characteristic of the entire cover 1.
  • the cover 1 has an appearance color according to the curve 10. From FIG. 4 (d), it can be seen that the contrast ratio of the appearance color of the force bar 1 improves as the intensity (light amount) of the reflected light rb and the reflected light rc decreases.
  • cover 1 in which the inner surface 2a of the base layer 2 is painted black by applying the infrared ray transmitting visible light absorbing dark paint to the inner surface 2a of the base layer 2, the light reaching the inner surface 2a is It is absorbed by the paint.
  • the intensities of the reflected light rb and the reflected light rc from the inner side surface 2a are approximately zero, and the appearance color of the cover 1 is substantially determined according to the color of the reflected light m at the outer side surface 3a.
  • cover 1 has an appearance color with a large contrast ratio as shown by curve 7 in FIG. 4 (a), and if reflected light ra is green, cover 1 has a green color with a large appearance color contrast ratio. It looks like
  • the cover 1 looks like an inconspicuous color with a small appearance color contrast ratio.
  • a curve 11 of FIG. 4 (e) shows a spectral distribution of the transmitted light emitted from the inner side surface 2a through the dielectric multilayer 3 and the base layer 2 in the incident light IL.
  • the infrared signal E 1 output from another electronic device passes through the cover 1.
  • an infrared signal E 2 generated by a light emitting element such as an infrared light emitting diode housed in the housing 5 passes through the cover 1.
  • the infrared signal E 2 is incident on the inner side surface 2 a of the cover 1 and emitted from the outer side surface 3 a of the cover 1.
  • the reflection of the incident light IL at the interface between the inner surface 2 a of the base layer 2 and the air is referred to as “with back surface reflection”.
  • the fact that the incident light IL is not reflected at the interface and the reflected light rb is negligibly small is referred to as "no back surface reflection”.
  • the portable information terminal 22 as an electronic device uses an infrared signal (for example, an infrared ray having a wavelength near 850 nm) to perform information transfer and information exchange with other electronic devices in a tableless manner. It has a transceiver. Infrared communication is performed, for example, in accordance with the IrDA standard.
  • the cover 21 closes an opening (infrared signal port) 22 a formed in the housing of the portable information terminal 22.
  • the lower side of FIG. 5 is the outer surface of the cover 21 and each layer, and the upper side is the inner surface of the cover 21 and each layer.
  • the cover 21 is provided with an infrared transmitting base layer 23 and an infrared transmitting and visible light reflective dielectric multilayer film 24 formed on the outer surface of the base layer 23.
  • the base layer 23 is made of, for example, a resin material such as polycarbonate and acrylic resin. Resins other than polycarbonate and acrylic resin may be used as long as they have transparency to infrared rays. The following is an example of the base layer 23.
  • a colorless and transparent material which is a semi-transparent layer having a satin finish (matted outer surface or inner surface).
  • Dispersed milky white layer of scattering material scattering particles
  • a colorless and transparent material which is a layer formed by forming an opaque layer by applying or printing an infrared-transparent dark paint on the inner surface thereof
  • the layer of (1) is used as the base layer 23.
  • the dielectric multilayer film 24 is formed by alternately laminating a thin film made of a low refractive material and a thin film made of a high refractive index material.
  • thin film materials are two or three metal compounds selected from metal oxides and metal fluorides.
  • the dielectric multilayer film 24 has infrared transparency.
  • the dielectric multilayer film 24 has spectral reflection characteristics in the visible range, which reflects light of a desired color such as blue or yellow.
  • infrared transparency means the property of transmitting infrared rays with high transmittance.
  • the transceiver of the portable information terminal 22 has a light emitting element 25 such as an infrared light emitting diode for generating and outputting an infrared signal, a light receiving element 26 for receiving infrared light, and an infrared ray transmitting property attached to the infrared signal port. And a cover 21.
  • the light emitting element 25 and the light receiving element 26 are disposed close to the back surface 23 a of the base layer 23 of the force bar 21. Description and illustration of a focusing optical system that may be placed in front of a light emitting / receiving element, and a composite element that emits and receives light with one element are omitted.
  • Infrared signal 30 emitted from light emitting element 25 passes through cover 21 and is emitted to the outside.
  • the infrared signal 30 corresponds to the infrared signal E2 of FIG.
  • An infrared ray signal 31 incident from the outside passes through the cover 21 and is received by the light receiving element 26.
  • the infrared signal 31 corresponds to the infrared signal E1 of FIG.
  • a portion of the visible light 32 incident on the cover 21 is reflected by the dielectric multilayer film 24 and emitted to the outside as a reflected light 33.
  • the visible light 32 and the reflected light 33 correspond to the incident light IL and the reflected light ra shown in FIG. 3, respectively.
  • the remaining part of the visible light 32 passes through the dielectric multilayer film 24 and the base layer 23, a part of which is reflected by the back surface 23a of the base layer 23 and is emitted to the outside of the cover 21 as reflected light rb shown in FIG. Be done.
  • the cover 21 includes an infrared transmitting base layer 23 and an infrared transmitting and visible light reflective dielectric multilayer film 24 laminated on the outer surface of the base layer 23. Visible region of dielectric multilayer film 24 By appropriately selecting the spectral reflection characteristics of the above, the dielectric multilayer film 24 can reflect light having a color adjusted to a desired color while maintaining infrared transparency. A cover 21 having an optional appearance color can be obtained while maintaining the infrared transparency. Therefore, the cover 21 has an excellent design and can improve the freedom of design of the electronic device.
  • the cover 21 attached to the housing of the electronic device has a desired decorative effect.
  • the dielectric multilayer film 24 has spectral reflection characteristics of reflecting light of a desired color while maintaining the transparency of infrared light.
  • the cover 21 has an appearance color (color of reflected light) according to the combined spectral characteristics of the dielectric multilayer film 24 and the base layer 23 with respect to visible light.
  • the cover 21 is a dielectric multilayer film 24. It has a mixed appearance color of a strongly reflected blue reflected light, a weak component other than blue (red and green) reflected by the back surface 23a of the base layer 23, and the reflected light.
  • the cover 21 has an excellent design, and can improve the freedom of design of the electronic device.
  • the dielectric multilayer film 24 designed to reduce the Fresnel reflection of the base layer 23 to near infrared light is laminated on the base layer 23, the transmissivity of near infrared rays is improved compared to the case of the base layer 23 alone. Do.
  • the dielectric multilayer film 24 also has the same anti-reflection effect as the anti-reflection film on the infrared signals 30, 31.
  • the dielectric multilayer film 24 itself reduces the reflection of the infrared signals 30, 31 at the outer side surface (the interface SA in FIG. 2) of the substrate 23 by about 4%. Accordingly, the loss of the infrared signals 30, 31 due to the reflection on the outer surface of the substrate 23 is reduced.
  • Example 1 The cover of Example 1 will be described with reference to FIG. 6, FIG. 7, Table 1, and Table 2.
  • the cover of Example 1 has the same layer structure as the cover 21 shown in FIG. 5, and has a base layer 23 made of acrylic resin and a dielectric multilayer film that has infrared transparency and reflects blue light 24.
  • the dielectric multi-layer film 24 is an eight layer in which a film material (ZrO) of a high refractive index material and a film material (SiO 2) of a low refractive index material are alternately laminated on the outer surface of the base layer 23 made of acrylic resin. Composed of thin film layers Be The dielectric multilayer film 24 reflects light having a central wavelength c.
  • the central wavelength c is related to the color of the reflected light, ie the color of the cover.
  • the eight layers constituting the dielectric multilayer film 24 of Example 1 are designed to reflect light having a center wavelength c of 495 nm, that is, blue light.
  • Example 1 Blue reflection, central wavelength; l c: 495 nm, number of dielectric multilayer films: 8
  • FIG. 6 shows the spectral reflection characteristics and the spectral transmission characteristics of the dielectric multilayer film 24 in Example 1.
  • a curve 40 shows the spectral reflection characteristic (reflectance R) in the case of “without back surface reflection”.
  • Curve 41 shows the spectral transmission characteristic (transmission factor T) in the case of “without back surface reflection”.
  • a curve 42 shows the spectral reflection characteristic (reflectance R) in the case of “with back surface reflection”.
  • a curve 43 shows the spectral transmission characteristic (reflectance T) in the case of “with back surface reflection”.
  • Curves 40 and 42 indicate that the reflectance of infrared rays around 900 m m is very low and the transmittance of the infrared rays is very low in both cases of “without back surface reflection” and “with back surface reflection”. Show that! In both cases of “no back surface reflection” and “with back surface reflection”, the transmittance of light in the wavelength region where the reflectance of light in the wavelength region around 500 nm (blue light) is as high as about 70% is 30 It shows that it is about%. This reflectance can be adjusted appropriately.
  • FIG. 7 is a chromaticity diagram of the xy Y color system. Y in Table 2 indicates the brightness of the reflected light.
  • the dielectric multilayer film 24 has a function to transmit near infrared light (infrared light) around 900 nm at about 100%, high! /, Transmittance, and light around 495 nm for visible light ( It has a function to reflect blue light at a reflectance of about 70%.
  • the cover of Example 1 provided with the dielectric multilayer film 24 has a blue appearance color (reflected light) while maintaining the transparency of infrared light.
  • the cover of Example 2 has the same structure as the cover 21 of FIG. 5, and comprises a base layer 23 made of acrylic resin and a dielectric multilayer film 24 that reflects yellow light.
  • the dielectric multilayer film 24 is a seven-layer thin film in which a film material of high refractive index material (ZrO 2) and a film of low refractive index material (SiO 2) are alternately laminated.
  • the central wavelength c of the dielectric multilayer film 24 is set to the wavelength of reflected yellow light (600 nm).
  • Example 2 Yellow reflection, center wavelength band c: 600 nm, number of dielectric multilayer films: 7
  • a curve 50 shows the spectral reflection characteristic (reflectance R) in the case of “without back surface reflection”.
  • a curve 51 shows the spectral transmission characteristic (transmission factor T) in the case of “without back surface reflection”.
  • a curve 52 shows the spectral reflection characteristic (reflectance R) in the case of “with back surface reflection”.
  • a curve 53 shows the spectral transmission characteristic (transmittance T) in the case of “with back surface reflection”.
  • Curves 50 and 52 in FIG. 8 indicate that the reflectance of infrared light near 900 nm is very low and the transmittance of infrared light is extremely high for both “without back surface reflection” and “with back surface reflection”.
  • the reflectance for light in the wavelength range around 600 nm is as high as about 70% in all cases of “high”, “no back reflection” and “with back reflection”. It shows that the transmissivity of area light is about 30%.
  • Table 4 shows chromaticity coordinate values of reflected light of the dielectric multilayer film 24 in the second embodiment.
  • the color of the reflected light of the dielectric multilayer film 24 can be divided from the chromaticity coordinate values (x, y) and the xy chromaticity diagram shown in FIG.
  • the dielectric multilayer film 24 has a function to transmit near infrared light (infrared light) near 900 nm at almost 100% with high V and transmittance, and light around 600 nm for visible light (yellow Light) with a reflectivity of approximately 70%. Therefore, the cover of Example 2 provided with the dielectric multilayer film 24 has a yellow appearance color while maintaining infrared transparency.
  • FIG. 9 An infrared transmitting cover 21A according to a second embodiment of the present invention will be described with reference to FIG.
  • the lower side of FIG. 9 is the outer surface of the cover 21A and each layer, and the upper side is the inner surface of the cover 21A and each layer.
  • the cover 21 A differs from the cover 21 of the first embodiment in that the cover 21 A is different from the cover 21 of the first embodiment in that the base treatment layer 27 hard-coated is provided between the dielectric multilayer film 24 and the base layer 23 in the first embodiment. It is
  • the base layer 23 is coated with the base treatment layer 27 to be hard-coated, and the dielectric multilayer film 24 is formed on the base treatment layer 27.
  • the dielectric multilayer film 24 is also prevented from peeling off the base layer 23, and the surface hardness of the base layer 23 is also improved, and the durability of the cover 21 A is improved.
  • FIG. 10 An infrared transmitting cover 21B according to a third embodiment of the present invention will be described with reference to FIG.
  • the lower side of FIG. 10 is the outer surface of the cover 21B and each layer, and the upper side is the inner surface of the cover 21B and each layer.
  • the cover 21 B of the second embodiment includes a dielectric multilayer film 24 laminated on the inner side surface of the base layer 23.
  • the reflection of infrared rays at both interfaces of the base layer 23 is reduced by about 4% (total of about 8%) by the antireflective film 28 and the dielectric multilayer film 24. Therefore, the loss of the infrared signal can be reduced.
  • the cover 21B has a clearer appearance color and can enhance the decoration of the infrared signal port.
  • the cover 21B can enhance the decoration of the infrared signal port for a long time.
  • FIG. 11 An infrared transmitting cover 21C according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the lower side of FIG. 11 is the outer surface of the cover 21C and each layer, and the upper side is the inner surface of the cover 21C and each layer.
  • the cover 21 C includes a dielectric multilayer film 24 stacked on the outer surface of the base layer 23 and a dielectric multilayer film 29 stacked on the inner surface of the base layer 23.
  • the cover 21C has an appearance color of a composite color of the color of the reflected light 33 reflected by the dielectric multilayer film 24 and the color of the reflected light 33 3 ′ reflected at the interface between the dielectric multilayer film 29 and the base layer 23.
  • the outer dielectric multilayer film 24 is designed to reflect blue light 33 while having infrared transparency, and to reflect yellow light 33 ′ while having infrared transparency.
  • the inner dielectric multilayer film 29 can be designed.
  • the cover 21 C has a mixed appearance color of blue and yellow, and has excellent design and high! Decorative effect.
  • the base layer that transmits infrared rays and blocks visible light can be formed from a resin material in which a material that blocks light in a specific wavelength range, such as an absorbent, a paint, or an ink, is kneaded.
  • a dielectric thin film layer may be formed on the inner surface of the base layer to reflect light in the visible full wavelength range and unwanted infrared wavelength range on the specific short wavelength side to block those light beams. so Can. In this case, it is possible to block the light of the wavelength adjusted easily and precisely with high accuracy as compared with mixing the material for blocking the light.
  • FIG. 12 An infrared signal transmissive cover 21D according to a fifth embodiment of the present invention will be described with reference to FIG.
  • the lower side of FIG. 12 is the outer surface of the cover 21D and each layer, and the upper side is the inner surface of the cover 21D and each layer.
  • a ground glass surface (a textured area) 23 A for scattering light rays is formed on part or all of the outer surface of the transparent base layer 23 made of acrylic resin.
  • the other configuration is the same as that of the first embodiment.
  • the textured area 23A scatters the infrared rays and reduces the directivity of the infrared rays, but the cover 21
  • the light receiving element 26 is disposed close to the base layer 23 inside D, it can be used limitedly.
  • the textured region 23A produces scattered light of whitish translucent color (milky white) when observed in a visible light castle.
  • the cover 21D has the color of the reflected light of the dielectric multilayer film 24 and the matte area 2
  • the base layer 23 has a translucent appearance like a ground glass. Therefore, when the cover 21D is attached to the electronic device, the inside of the electronic device can not be seen.
  • the cover 21D can be attached to an infrared receiving port of a home electric appliance such as a TV or a VTR.
  • a home electric appliance such as a TV or a VTR.
  • an infrared signal (infrared in the wavelength range for remote control) for remotely controlling the power on / off and volume control of the home appliance is received by the home appliance through the power bar 21D.
  • FIG. 13 An infrared transmitting cover 21E according to a sixth embodiment of the present invention will be described with reference to FIG.
  • the upper side of FIG. 13 is the outer surface of the cover 21E and each layer, and the lower side is the inner surface of the cover 21E and each layer.
  • the cover 21 E is laminated on the base layer 60 having a curved outer surface and the outer surface of the base layer 60. And a dielectric multilayer film 61.
  • An example of base layer 60 is a semi-cylindrical or dome having a convex outer surface.
  • the appearance color of the cover 21E differs depending on the viewing angle. For example, when the angle of the incident light IL with respect to the normal of the cover 21E is 0 °, the color of the reflected light raO (0 degree reflection) reflected by the outer surface of the dielectric multilayer film 61 and the incident angle of 20 ° The color of the reflected light ra20 (20 degrees reflection) in the case and the color of the reflected light ra40 (40 degrees reflection) in the case of an incident angle of 40 ° are different from each other. Therefore, the cover 21E looks iridescent and has a sense of luxury.
  • Example 3 of the cover 21E of the sixth embodiment will be described with reference to FIG. 14, FIG. 7, Table 5 and Table 6.
  • the cover 21E of Example 3 has the same structure as the cover of Example 2 shown in Table 2 except that the base layer has a curved surface. Therefore, the cover 21E of Example 3 has infrared transparency and reflects yellow light.
  • Example 3 Yellow reflection, center wavelength ⁇ c: 600 nm, number of dielectric multilayer films: 7
  • FIG. 14 shows the spectral reflection characteristics of the cover 21E of the third embodiment.
  • Curve 70 shows the spectral reflectance spectrum of the reflected light raO at 0 degree reflection.
  • Curve 71 is the spectral response of the 20-degree reflected light ra20 Indicates a shooting spectrum.
  • Curve 72 shows the spectral reflectance spectrum of the reflected light ra40 with a 40 degree reflection. In all cases, there is no back surface reflection.
  • Table 6 shows chromaticity coordinate values representing colors of the reflected light raO, ra20, and ra40 of Example 3. All In the case of "no back surface reflection". From the chromaticity coordinate values (x, y) and the xy chromaticity diagram shown in FIG. 7, the chromaticity represented by the chromaticity coordinate values, that is, the color of the reflected light of the dielectric multilayer film 24 can be known.
  • the cover 21E has an appearance color that varies depending on the viewing angle, while maintaining the transmittance to infrared light near 900 nm close to 100%. Specifically, the color of the reflected light changes continuously to a slightly greenish yellow as the angle of the incident light IL is 0 ° or 40 °. Turn By this change in appearance color, the cover 21 can have an improved sense of quality and an excellent design, and can improve the degree of freedom in the design of the electronic device.
  • the optical characteristics of the cover 21E change depending on the incident angle also in the wavelength region of the infrared signal. However, as shown in FIG. 14, the change in optical characteristics in the infrared region is slight, and the transmittance to the infrared signals El and E2 does not substantially decrease.
  • FIG. 15 An infrared transmitting cover 21F according to a seventh embodiment of the present invention will be described with reference to FIG.
  • the lower side of FIG. 15 is the outer surface of the cover 21F and each layer, and the upper side is the inner surface of the cover 21F and each layer.
  • the cover 21 F is formed on the inner surface of the transparent base layer 23 having infrared ray permeability and visible light permeability, the dielectric multilayer film 24 formed on the inner surface of the base layer 23, and the dielectric multilayer film 24. It comprises a black layer 91 having infrared transparency and blocking transmission of visible light, and a diffusion layer 90 formed on the outer surface of the transparent base layer 23.
  • a curve 92 in FIG. 16 shows the spectral transmission characteristics of the dielectric multilayer film 24.
  • the dielectric multilayer film 24 has high transmittance to blue, red and infrared light.
  • the force bar 21F including the dielectric multilayer film 24 reflects yellow light (see curve 93).
  • a curve 94 in FIG. 17 shows the spectral transmission characteristics of the black layer 91.
  • One wavelength range of the infrared signal is shown in FIG. 16 and FIG.
  • the diffusion layer 90 prevents the black layer 91 from being observed through the dielectric multilayer film 24.
  • the diffusion layer 90 suppresses reflection, averages incident light from the outside, and scatters reflected light from the dielectric multilayer film 24.
  • visible light that is reflected by the dielectric multilayer film 24 and directed to the observer is relatively increased. Therefore, the reflected light power S of the dielectric multilayer film 24 can be easily seen outside the cover 21F, and in the present embodiment, the force bar 21F can have a clear appearance color (yellow).
  • Diffusion layer 90 is formed by, for example, the outer surface of transparent base layer 23 as shown in the textured area 23A of FIG. It may be a roughened layer by physical or chemical treatment in contact with it, or it may be a layer laminated by printing or coating on the outer surface of the base layer 23.
  • the transparent base layer 23 is made of a resin such as an acrylic resin having low adhesion to the dielectric multilayer film 24, a hard coat-treated undercoating layer is laminated on the inner surface of the base layer 23. It is also good.
  • diffusion layer 90 has the function of scattering the reflected light of dielectric multilayer film 24.
  • the black layer 91 is observed. Therefore, the cover 21F does not look dark and has a clear appearance color (yellow reflection color) according to the color of the reflected light of the dielectric multilayer film 24.
  • FIG. 18 is a plan view of the cover 21G and a cross-sectional view of the cover 21G along line C-C.
  • the lower side of FIG. 18 is the outer surface of the cover 21G and each layer, and the upper side is the inner surface of the cover 21G and each layer.
  • the cover 21 ⁇ / b> G includes a transparent base layer 23 having an infrared ray transmitting property and a visible light transmitting property, a dielectric multilayer film 24 formed on the inner side surface of the base layer 23, and an infrared ray transmitting layer formed on the inner side surface of the dielectric multilayer film 24.
  • Layer 91 which has the property of blocking the transmission of visible light
  • a diffusion layer 90 formed on the outer surface of the transparent base layer 23, and an information printing layer formed between the dielectric multilayer film 24 and the black layer 91.
  • the information print layer 95 prints information such as characters, images and patterns.
  • the other configuration is the same as the cover 21F of FIG.
  • FIG. 18 shows the B character 112 printed with white ink.
  • the characters 112 are actually printed on the inner surface of the dielectric multilayer film 24 in reverse (mirror image). Print out the images and patterns.
  • the transparent base layer 23 is made of a resin such as an acrylic resin having low adhesion to the dielectric multilayer film 24, a hard coat-treated undercoating layer is laminated on the inner surface of the base layer 23. It is also good.
  • the permeability of the dielectric multilayer film 24 to visible light is adjusted so that information such as characters, images and patterns formed on the information printing layer 95 can be viewed on the outside of the cover 21G.
  • the layer configuration of the dielectric multilayer film 24 is adjusted such that the dielectric multilayer film 24 selectively allows transmission of visible light in a specific wavelength range.
  • the viewer of the cover 21G can see the yellow background area 111 by the reflected light of the dielectric multilayer film 24 and the white B character 112 in the background area 111. Therefore, the cover 21G has an excellent design, and can improve the freedom of design of the electronic device.
  • diffusion layer 90 has the function of scattering the reflected light of dielectric multilayer film 24.
  • the visible light reflected by the dielectric multilayer film 24 toward the viewer is relatively increased, and the external force of the cover 21G is also a clear appearance color according to the color of the reflected light of the dielectric multilayer film 24 (yellow While the black layer 91 is observed, the As shown in FIG. 19 a, the cover 100 of the comparative example without the diffusion layer is disposed on the front of the dark object 105, the light source 106 is disposed diagonally in front of the cover 100, and the observer 107 is on the front of the cover 100.
  • the black layer 91 is observed by the observer through the semitransparent dielectric multilayer film 24 which is not disturbed by the reflected light of the dielectric multilayer film 24. Also, the light beam scattered by the information print layer 95 is observed by the observer 107. Therefore, as shown in FIG. 19b, to the observer of the cover 100 of the comparative example, white characters 102 are visible in the dark background area 101, and the reflection color of the dielectric multilayer film 24 is hardly visible.
  • the amount of haze (cloudiness value) of the diffusion layer 90 is determined to such an extent that the decrease in the visibility of the characters 112 is not impaired.
  • the cover 21G can display information such as characters, images and patterns in a clear colored background area (in this example, a yellow reflected color).
  • the information printing layer 95 is a printed single layer of information such as bright characters, images and patterns. Following the information printing layer 95 is easy. Therefore, the power bar 21 G that displays information such as the character 112 can be easily manufactured.
  • the cover 21 G having the appearance including the clear colored background area 111 and the characters 112 has an excellent design and can improve the design freedom of the electronic device.
  • FIG. 21 shows a plan view of the cover 21H and a cross-sectional view of the cover 21H along the line D--D.
  • the difference between the cover 21 H and the cover 21 G shown in FIG. 18 is that the dielectric multilayer film 24 and the information print layer 95 are interchanged.
  • the lower side of FIG. 21 is the outer surface of the cover 21H and each layer, and the upper side is the inner surface of the cover 21H and each layer.
  • the cover 21 H includes a transparent base layer 23, an information printing layer 95 formed on the inner side surface of the transparent base layer 23, a dielectric multilayer film 24 laminated on the transparent base layer 23 and the information printing layer 95, and a dielectric multilayer film 24. And a diffusion layer 90 formed on the outer surface of the base layer 23.
  • An example of the information printing layer 95 is a single layer including information such as characters, images and patterns printed directly on the inner surface of the base layer 23.
  • the cover 21H has an excellent design, and can improve the freedom of design of the electronic device.
  • the haze amount (cloudiness value) of the diffusion layer 90 is determined to such an extent that the decrease in the visibility of the characters 112 is not impaired.
  • the cover 21H can display information such as characters, images and patterns in a clear colored background area (in this example, a yellow reflected color).
  • the information printing layer 95 is a printed single layer of information such as bright characters, images and patterns. Following the information printing layer 95 is easy. It is easy to change the color of the information printing layer 95 or use multiple colors. Therefore, the cover 21H for displaying information such as the characters 112 can be easily manufactured.
  • the cover 21 H having an appearance including the clear colored background area 111 and the characters 112 has an excellent design, and can improve the design freedom of the electronic device.
  • FIG. 22 An infrared-transparent cover 211 according to a tenth embodiment of the present invention will be described with reference to FIG.
  • the lower side of FIG. 22 is the outer surface of the cover 211 and each layer, and the upper side is the inner surface of the cover 211 and each layer.
  • the cover 211 has a dark-colored and infrared-transparent base layer 23 B, a dielectric multilayer film 24 formed on the outer surface of the base layer 23 B, and a protective layer 96 formed on the outer surface of the dielectric multilayer film 24. Prepare for.
  • the protective layer 96 may be formed by spraying, dipping, sputtering, vacuum evaporation or the like, which has both antifouling properties and sliding properties, such as hardening by hard coating, water repellent coating and the like. Can.
  • the protective layer 96 can improve the slipperiness and stain resistance of the outer surface of the cover 211.
  • the protective layer 96 formed by vacuum evaporation of an organosilicon-based water repellent is preferable because it has a very thin and uniform thickness.
  • the infrared transmitting dark base layer 23 B is made of a resin such as acrylic resin having low adhesion to the dielectric multilayer film 24, a base treatment layer hard coated on the outer surface of the base layer 23 B is laminated. Good luck.
  • the protective layer 96 prevents deterioration of the dielectric multilayer film 24 due to abrasion, sebum, etc., the durability of the cover 211 is improved.
  • the vacuum evaporation method can form, for example, a thin protective layer 96 of 10 nm or less. Therefore
  • the influence of the protective layer 96 on the generation of interference color and the spectral characteristics of the dielectric multilayer film 24 is extremely small.
  • FIG. 23 An infrared transmitting cover 21J according to an eleventh embodiment of the present invention will be described with reference to FIG.
  • the lower side of FIG. 23 is the outer surface of the cover 21J and each layer, and the upper side is the inner surface of the cover 21J and each layer.
  • the difference between the cover 21 J and the cover 211 of FIG. 22 is that the transparent base layer 23 is used instead of the infrared transparent dark base layer 23 B, and the inner surface of the transparent base layer 23 is infrared transparent and acceptable. It is a point that a black layer 91 is formed to block transmission of an optical ray! Other configurations and effects are the same as the cover 211 of FIG.
  • a method of manufacturing the cover 21 according to the first embodiment will be described as an example. This manufacturing method is applicable to manufacturing covers other than the cover 21 of the first embodiment. This manufacturing method has a softening point It is suitable for the manufacture of covers comprising a relatively low material base layer which is formed relatively low.
  • the method of manufacturing the infrared transmissive cover includes the following steps.
  • An infrared-transmissive and visible-light-reflective dielectric multilayer film 24 is formed on the outer surface of the infrared-transmissive base layer 23 by a low-temperature film formation technique.
  • the low temperature deposition technique is a technique for forming a thin film by maintaining the base layer at a temperature below the softening point. Examples of low temperature deposition techniques are IAD (ion-assisted deposition), plasma CVD, and sputtering (sputtering).
  • Resin materials such as polycarbonate and acrylic resin used for the base layer 23 have a low softening temperature.
  • the base layer 23 is generally heated to 200 ° C. to 300 ° C. Therefore, it is difficult to form the dielectric multilayer film 24 on the base layer 23 made of a low softening point material such as resin by the usual vacuum evaporation method.
  • the dielectric multilayer film 24 is formed on the outer surface of the base layer 23 by a low temperature deposition technique such as IAD (ion-assisted deposition), plasma CVD, or sputtering (sputtering), so the softening point temperature is low.
  • a dielectric multilayer film 24 having desired spectral characteristics can be formed on the base layer 23 made of a resin material.
  • FIG. 24 shows a portable information terminal 80 as an electronic device.
  • the portable information terminal 80 includes a housing attached with an infrared ray transparent cover 81, an operation key 82, and a display unit 83.
  • the cover 81 has the structure described in the above embodiment and examples.
  • the following effects can be obtained.
  • the portable information terminal 80 is provided with an infrared transmitting cover 81 capable of obtaining an arbitrary appearance color.
  • an infrared transmitting cover 81 capable of obtaining an arbitrary appearance color.
  • the base layers 23, 60 may be any of (1) to (5) described above.
  • the cover can be given an appearance color according to the choice of base layer.
  • the transparent base layer 23 of the first to fourth embodiments and the transparent base layer 60 of the sixth embodiment may be changed to a milky white base layer.
  • the color of reflected light from the dielectric multilayer film 24 (dielectric multilayer film 61 in the sixth embodiment) (reflected color) is added with the color of reflected light from the milky white base layer (milky white). can get.
  • a pearl-like lustrous texture can be obtained and a high-class feeling can be imparted.
  • the base layer 23 of the first to fourth embodiments and the base layer 60 of the sixth embodiment may be changed to the (4) dark base layer or (5) opaque base layer described above.
  • the color (reflected color) of the reflected light by the dielectric multilayer film 24 (the dielectric multilayer film 61 in the sixth embodiment) can be made clearer, and the infrared transparency in the state of being attached to the electronic device It also has the effect of hiding the inside of the cover.
  • the inner surface of the base layer 23 may be textured instead of the outer surface of the transparent base layer 23 being textured. Also in this case, the effect of the fifth embodiment is maintained.
  • a resin material such as polycarbonate having a low soft softening point temperature or an acrylic resin is used as the base layer 23, and the low temperature film forming technology A dielectric multilayer film 24 was formed on the surface 23.
  • the base layer is made of a high soft melting point material such as glass
  • the dielectric multilayer film may be formed on the base layer by a method other than the low temperature film forming technique, for example, a normal vacuum evaporation method. it can.
  • the dielectric multilayer film 24 of Example 1 shown in Table 1 is a laminate of eight thin films configured to obtain a blue appearance color.
  • the dielectric multilayer film 24 may be formed by laminating eight thin films so as to obtain an appearance color other than blue, for example, a yellow appearance color.
  • the number of thin films is not limited to eight.
  • the dielectric multilayer films 24 of Examples 2 and 3 shown in Tables 3 and 5 are a laminate of seven thin films configured to obtain a yellow appearance color.
  • the dielectric multilayer film 24 may be formed by laminating seven thin films so as to obtain an appearance color other than yellow, for example, a blue appearance color.
  • the number of thin films is not limited to seven.
  • the information printing layer 95 may be composed of a plurality of printed layers of characters, images and patterns.
  • the cover of each embodiment is not limited to a flat plate and a curved plate, and can have various shapes.
  • the shape of the cover can be modified to match the appearance of the electronic device.
  • a cover 21K shown in FIG. 25 is a three-dimensional cap having a side wall. Cover 21 K may also be equipped with mounting claws for engaging electronic devices.
  • the deposition material such as ZrO.sub.2, SiO.sub.
  • each layer can be appropriately changed according to the desired appearance color of the cover.
  • the cover can have an appearance color such as blue, light blue, green, yellow, pink, red, and silver.
  • the infrared transparent cover of the present invention is not limited to the portable information terminal 80, but is various electronic devices such as desktop computers, notebook computers, digital cameras, etc., and it is possible to use electronic devices provided with an infrared transparent cover. It is applicable.
  • the cover of the present invention can be used for a surveillance camera using an image sensor such as a CCD and a CMOS.
  • a surveillance camera detects near infrared rays. It is desirable that surveillance cameras be installed in stores without prominence. Therefore, the surveillance camera can be housed and used in a housing having a photographing window attached with the cover of the present invention.
  • a calculator, a watch and a power generation device are known as electronic devices provided with a solar cell.
  • Such electronic devices are relatively wide and include a light receiving surface of a light receiving area.
  • the light of the main emission radio wave length received by the light receiving surface enters a solar cell disposed in the housing of the electronic device.
  • the decorativeness of the light receiving surface can be improved by attaching the cover of the present invention to the light receiving surface.

Abstract

赤外線透過性カバー(21)は、赤外線透過性の基層(23)と、基層(23)に積層された赤外線透過性の誘電体多層膜(24)とを備える。誘電体多層膜(24)が特定波長域の可視光線を選択的に反射することで、光学特性を有する。カバーは当該特定波長域に応じた外観色を有する。一実施形態のカバーは、青色、黄色または緑色のような黒色以外の外観色を有し、携帯情報端末のような電子機器の赤外線信号ポートの装飾性を向上させることができる。

Description

明 細 書
赤外線透過性カバー
技術分野
[0001] 本発明は、赤外線透過性カバーに関し、例えば、赤外線信号を入出力する赤外線 信号ポートに取り付けられる、装飾性の高い赤外線透過性カバーに関する。
背景技術
[0002] 電子機器間の短距離無線データ通信 (例えば IrDA規格)や、 TVや VTR等の家 庭用電気製品の電源オン Zオフや音量変更等の遠隔操作において、赤外線信号が 使用される。
[0003] 赤外線信号は受信機または送受信機に設けられた赤外線受光素子に受信される 。一般的に赤外線受光素子は赤外線信号だけでなく可視光線も検出する。可視光 線のような外乱光が受光素子に入射するのを防ぐために、従来の受信機または送受 信機の赤外線信号ポートには黒色もしくは暗色で近赤外線透過性の榭脂窓板が取 り付けられる。黒色もしくは暗色の榭脂窓板によって、可視光線のような外光による受 光素子の誤動作が防止される。黒色もしくは暗色の榭脂窓板は送信機の赤外線信 号ポートにも取り付けられることがある。黒色もしくは暗色の榭脂窓板は、送信機、受 信機及び送受信機の内部が見えな!/、ように隠す機能を有する。
[0004] 可視光線を遮蔽し赤外線を透過する両面粘着シートを用いて、透明榭脂板を赤外 線信号ポートに取り付ける技術が開示されている (特許文献 1参照)。
特許文献 1:特開 2002— 226805号公報
発明の開示
[0005] 従来の黒色もしくは暗色の榭脂窓板は電子機器や電気機器の外観にそぐわないこ と力 Sある。黒色もしくは暗色の榭脂窓板を目立たなせな!/ヽように機器を設計するのは 、設計の制限であった。
[0006] 特許文献 1に記載の両面粘着シートは、可視光線を吸収する暗色の外観色を有す る。このため、黒色の榭脂窓板の短所と同じ短所を有する。
[0007] 任意の外観色を有する榭脂窓板を製造することは、透明榭脂板に着色剤を添加し たり、透明榭脂板を着色塗料で塗装することによって原理的には可能である。しかし 、赤外線信号ポート用の榭脂窓板は赤外線透過性でなければならない。赤外線透 過性と可視光に対する遮蔽性を維持しつつ、任意の外観色を有する榭脂窓板を製 造することは困難であった。
[0008] 本発明の目的は、任意の外観色を有する、電子機器用の赤外線透過性カバーを 提供することにある。
[0009] 上記目的を達成するために、本発明の赤外線透過性カバーは赤外線透過性の基 層と、前記基層の一表面に積層され、赤外線透過性で可視光線を反射する誘電体 多層膜とを備える。
[0010] 本発明は更に、開口を有する筐体と、前記筐体に収容された赤外線検出素子と、 前記筐体に取り付けられて前記開口を塞ぐ前記赤外線透過性カバーとを備える電子 機器を提供する。
[0011] 前記赤外線透過性カバーは、赤外線透過性の基層の一表面に、赤外線透過性で 可視光線を反射する誘電体多層膜を、イオンアシスト蒸着、プラズマ CVD、またはス ノ ッタリングで低温成膜する工程によって製造される。
[0012] 一実施形態のカバーは、前記誘電体多層膜と前記基層との間に積層された、ハー ドコート処理された下地処理層を更に備え、前記誘電体多層膜は前記カバーの外側 面として機能する。
[0013] 一実施形態では、前記基層は、前記誘電体多層膜の積層された第 1の表面と、前 記第 1の表面の反対の第 2の表面とを有し、前記カバーは、前記基層の前記第 2の 表面に積層された反射防止膜を更に備え、前記誘電体多層膜及び前記反射防止膜 は前記カバーの内側面及び外側面としてそれぞれ機能する。
[0014] 一実施形態では、前記基層は 2つの表面を有し、前記誘電体多層膜は、前記基層 の前記 2つの表面に積層されて 、る。
[0015] 一実施形態では、前記基層は、前記表面の少なくとも一部に形成された、光線を散 乱させる梨地領域を含む。
[0016] 一実施形態では、前記基層と前記誘電体多層膜との界面は曲面である。
[0017] 一実施形態では、前記基層と前記誘電体多層膜との界面は凸面である。 [0018] 一実施形態では、前記カバーは電子機器の赤外線信号ポートに取り付けられ、前 記カバーは、前記電子機器の外側に露出する外側面と、前記電子機器の内側に配 置される内側面とを有し、前記基層は無色透明であり、前記カバーの内側面に近い 第 1の表面と、前記カバーの外側面に近い第 2の表面とを有し、前記誘電体多層膜 は前記基層の前記第 1の表面に積層されており、前記カバーは更に、前記誘電体多 層膜に積層され、赤外線透過性で可視光線の透過を阻止する黒色層と、前記基層 の前記第 2の表面に積層された拡散層とを備える。
[0019] 一実施形態では、前記基層は無色透明であり、前記カバーの内側面に近い第 1の 表面と、前記カバーの外側面に近い第 2の表面とを有し、前記誘電体多層膜は前記 基層の前記第 1の表面に積層されており、前記カバーは更に、前記誘電体多層膜上 に積層された情報印刷層と、前記情報印刷層上に積層された、赤外線透過性でか つ可視光線の透過を阻止する黒色層と、前記基層の前記第 2の表面に積層された 拡散層とを備える。
[0020] 一実施形態では、前記情報印刷層は単一の層である。
[0021] 一実施形態では、前記基層は無色透明であり、前記カバーの内側面に近い第 1の 表面と、前記カバーの外側面に近い第 2の表面とを有し、前記カバーは、前記基層 の前記第 1の表面と前記誘電体多層膜との間に積層された情報印刷層と、前記誘電 体多層膜上に積層された、赤外線透過性でかつ可視光線の透過を阻止する黒色層 と、前記基層の前記第 2の表面に積層された拡散層とを更に備える。
[0022] 一実施形態では、前記情報印刷層は複数の層を含む。
[0023] 一実施形態では、前記基層は赤外線透過性の暗色基層であり、前記カバーの内 側面に近い第 1の表面と、前記カバーの外側面に近い第 2の表面とを有し、前記誘 電体多層膜は前記暗色基層の前記第 2の表面に形成されており、前記カバーは前 記誘電体多層膜上に積層された保護層を更に備える。
[0024] 一実施形態では、前記基層は無色透明であり、前記カバーの内側面に近い第 1の 表面と、前記カバーの外側面に近い第 2の表面とを有し、前記誘電体多層膜は前記 基層の前記第 2の表面に形成されており、前記カバーは前記基層の前記第 1の表面 に積層された、赤外線透過性でかつ可視光線の透過を阻止する黒色層と、前記誘 電体多層膜上に積層された保護層とを更に備える。
[0025] 一実施形態では、前記誘電体多層膜は、特定波長域の可視光線を選択的に反射 する。
[0026] 一実施形態では、前記誘電体多層膜は、前記特定波長域を除く波長を有する可 視光線を主に透過させる。
[0027] 一実施形態のカバーは黒色を除く外観色を有する。
図面の簡単な説明
[0028] [図 1]本発明の赤外線透過性カバーの断面図。
[図 2]図 1のカバーの透明基層におけるフレネル反射の説明図。
[図 3]図 1のカバーの取り付けられた携帯型情報端末の断面図。
[図 4] (a)は図 3のカバーの外側面の反射光のスぺクトノレ、 (b)図 3のカバーの内側面 の反射光のスペクトル、 (c)は図 3の携帯型情報端末の内部部品の反射光のスぺタト ル、(d)は(b)と(c)の合成スペクトル、(e)は図 3のカバーを透過した光のスペクトル
[図 5]本発明の第 1実施形態に係る赤外線透過性カバーの断面図。
[図 6]実施例 1のカバーの反射スペクトル及び透過スペクトル。
[図 7]xy色度図。
[図 8]実施例 2のカバーの反射スペクトル及び透過スペクトル。
[図 9]本発明の第 2実施形態に係る赤外線透過性カバーの断面図。
[図 10]本発明の第 3実施形態に係る赤外線透過性カバーの断面図。
[図 11]本発明の第 4実施形態に係る赤外線透過性カバーの断面図。
[図 12]本発明の第 5実施形態に係る赤外線透過性カバーの断面図。
[図 13]本発明の第 6実施形態に係る赤外線透過性カバーの断面図。
[図 14]入射角度に応じて変化する実施例 3のカバーの反射スペクトル。
[図 15]本発明の第 7実施形態に係る赤外線透過性カバーの断面図。
[図 16]図 15のカバーの誘電体多層膜の反射スペクトル及び透過スペクトル。
[図 17]図 15のカバーの黒色層の透過スペクトル。
[図 18]本発明の第 8実施形態に係る赤外線透過性カバーの平面図及び断面図。 [図 19] (a)は比較例のカバーの反射光を説明するための図。(b)は比較例のカバー の正面図。
[図 20]図 18のカバーの正面図。
[図 21]本発明の第 9実施形態に係る赤外線透過性カバーの平面図及び断面図。
[図 22]本発明の第 10実施形態に係る赤外線透過性カバーの断面図。
[図 23]本発明の第 11実施形態に係る赤外線透過性カバーの断面図。
[図 24]本発明の赤外線透過性カバーを備えた電子機器の斜視図。
[図 25]変更例の赤外線透過性カバーの斜視図。
発明を実施するための最良の形態
[0029] 以下、本発明の実施形態に従う赤外線透過性カバーを説明する。各実施形態の説 明において、類似の部材には同一の符号を付して説明を簡略にする。
[0030] まず、図 1を参照して、本発明の赤外線透過性カバー 1の基本構造を説明する。力 バー 1は、赤外線信号を単方向で伝送する送信機や受信機、及び赤外線信号を双 方向で伝送する送受信機に取り付けられる。
[0031] 本明細書において、各層の「外側面」及び「内側面 (裏面)」は、カバーが赤外線信 号ポートを有する電子機器に取り付けられたときに、その電子機器の外部及び内部 にそれぞれ近い側の表面を指す。具体的には、図 1の上側がカバー 1及び各層の外 側面であり、下側がカバー 1及び各層の内側面である。
[0032] カバー 1は赤外線透過性の基層 2と、基層 2の外側面に形成された、赤外線透過性 で可視光反射性の誘電体多層膜 3とを有する。誘電体多層膜 3の外側面 3aは赤外 線信号ポートの外側に露出する。基層 2の内側面は赤外線信号ポートの内側に配置 される。
[0033] 図 2に示すように、屈折率が 1. 5の基層 2が空気中に配置され、その基層 2による 光の吸収が無視できる場合、フレネル反射として基層 2の外側面 2bと空気との界面 S A、及び、内側面 2aと空気との界面 SBにおいて、入射光の約 4%がそれぞれ反射す る。したがって、入射光の約 92%が基層 2を透過する。
[0034] 図 3は、図 1のカバー 1の取り付けられた携帯型情報端末 4を示す。カバー 1は、携 帯型情報端末 4の筐体 5に形成された開口(赤外線信号ポート) 5aに取り付けられる 。図 3の上側がカバー 1及び各層の外側面であり、下側がカバー 1及び各層の内側 面である。入射光 ILの一部はカバー 1の外側面で反射される(反射光 ra)。入射光 IL の一部はカバー 1の内側面で反射される (反射光 rb)。入射光 ILの一部はカバー 1を 透過して、筐体 5内に設けられた受光素子等の部品 6で反射される(反射光 rc)。入 射光 ILは室内照明及び太陽光などの環境光である。
[0035] 反射光 mは、入射光 ILのうち、特定波長域の可視光線の反射光である。図 4 (a)の 曲線 7は反射光 mの分光反射特性を示す。図 4 (a)〜 (e)の横軸及び縦軸は波長及 び反射率をそれぞれ示す。
[0036] 反射光 rbは、誘電体多層膜 3を透過した入射光 ILのうち、基層 2の内側面 2aと空 気との界面で反射されて、カバー 1の外側面 3aから出射した光である。図 4 (b)の曲 線 8は反射光 rbの分光反射特性を示す。
[0037] 反射光 rcは、誘電体多層膜 3と基層 2を透過した入射光 ILのうち、部品 6で反射さ れて、カバー 1の外側面 3aから出射した光である。図 4 (c)の曲線 9は反射光 rcの分 光反射特性を示す。説明を簡略化するために、部品 6の表面の分光反射特性は平 坦であると仮定し、無視する。
[0038] カバー 1は、反射光 ra、反射光 rb、及び反射光 rcとの合成スペクトルに応じた色 (外 観色)で見える。図 4 (d)の太い曲線 10は、反射光 ra、反射光 rb及び反射光 rcの合 成スペクトルであり、カバー 1全体の分光反射特性である。カバー 1は曲線 10に応じ た外観色を有する。図 4 (d)から、反射光 rbと反射光 rcの強度 (光量)が低いほど、力 バー 1の外観色のコントラスト比が向上することが分かる。
[0039] 例えば、基層 2の内側面 2aに赤外線透過性で可視光吸収性の暗色塗料を塗布し て基層 2の内側面 2aを黒色に塗装したカバー 1では、内側面 2aに到達した光はその 塗料で吸収される。この場合、内側面 2aからの反射光 rbと反射光 rcの強度はほぼ 0 であり、カバー 1の外観色は外側面 3aでの反射光 mの色に応じてほぼ決まる。例え ば、カバー 1は、図 4 (a)の曲線 7で示すような、コントラスト比の大きい外観色を有し、 反射光 raが緑色であれば、カバー 1は、外観色コントラスト比の大きい緑色に見える。
[0040] 一方、内側面 2aの黒色の塗装を剥がしたカバーの場合、反射光 rbと反射光 rcと反 射光 mの合成スペクトルを有する反射光(図 4 (d)の太い曲線 10)が出射される。この 反射光は白に近い色に見える。よって、カバー 1は、外観色コントラスト比の小さい、 目立たない色に見える。
[0041] 図 4 (e)の曲線 11は、入射光 ILのうち、誘電体多層膜 3及び基層 2を透過して、内 側面 2aから出射した透過光のスペクトル分布を示す。
[0042] 図 3に示すように、別の電子機器から出力された赤外線信号 E1はカバー 1を透過 する。
[0043] 図 3に示すように、筐体 5内に収容された赤外線発光ダイオード等の発光素子によ つて生成された赤外線信号 E2はカバー 1を透過する。赤外線信号 E2は、カバー 1の 内側面 2aに入射し、カバー 1の外側面 3aから出射される。
[0044] 基層 2の内側面 2aと空気との界面において、入射光 ILが反射することを「裏面反射 有り」と言う。その界面において、入射光 ILが反射しないこと及び反射光 rbが無視で きる程度に小さいことを「裏面反射無し」と言う。
[0045] (第 1実施形態)
本発明の第 1実施形態に係る赤外線透過性カバー 21を図 5を参照して説明する。
[0046] 電子機器としての携帯型情報端末 22は、赤外線信号 (例えば、 850nm付近の波 長を有する赤外線)を使って、他の電子機器との間で情報転送や情報交換をケープ ルレスで行う送受信機を備える。赤外線通信は例えば IrDA規格に従って行なわれ る。カバー 21は、携帯型情報端末 22の筐体に形成された開口(赤外線信号ポート) 22aを塞ぐ。図 5の下側がカバー 21及び各層の外側面であり、上側がカバー 21及び 各層の内側面である。
[0047] カバー 21は、赤外線透過性の基層 23と、基層 23の外側面に形成され、赤外線透 過性で可視光反射性の誘電体多層膜 24とを備える。
[0048] 基層 23は、例えば、ポリカーボネイト及びアクリル榭脂等の榭脂材料製である。通 信用赤外線に対する透過性を有して ヽれば、ポリカーボネイト及びアクリル榭脂以外 の榭脂を使用してもよい。以下は基層 23の例である。
(1)平滑な外側面及び内側面を有する、無色透明な材料から形成された層
(2)無色透明な材料カゝら形成された層であって、梨地面 (つや消し処理された外側 面又は内側面)を有する半透明な層 (3)散乱物質 (散乱粒子)の分散された乳白色の層
(4)赤外線透過性の暗色層
(5)無色透明な材料カゝら形成された層であって、その内側面に赤外線透過性の暗色 塗料を塗布または印刷することで不透明にされた層
第 1実施形態では、(1)の層が基層 23として使用される。
[0049] 誘電体多層膜 24は、低屈折材料製の薄膜と高屈折率材料製の薄膜とを交互に積 層して形成される。薄膜の材料の例は、金属酸ィ匕物及び金属弗化物カゝら選択された 2種類或いは 3種類の金属化合物である。誘電体多層膜 24は赤外線透過性を有す る。誘電体多層膜 24は、青色或いは黄色のような所望の色の光を反射する、可視域 の分光反射特性を有する。本明細書において、赤外線透過性は、赤外線を高い透 過率で透過させる特性を意味する。
[0050] 携帯型情報端末 22の送受信機は、赤外線信号を生成し出力する赤外線発光ダイ オードのような発光素子 25と、赤外線を受光する受光素子 26と、赤外線信号ポート に取り付けられる赤外線透過性カバー 21とを含む。発光素子 25と受光素子 26は力 バー 21の基層 23の裏面 23aに近接して配置される。受発光素子に前置される場合 のある集光光学系や、投受光を一つの素子で行う複合素子の説明と図示は省略した
[0051] 発光素子 25から出射される赤外線信号 30は、カバー 21を透過し、外部へ放射さ れる。赤外線信号 30は、図 3の赤外線信号 E2に相当する。外部から入射する赤外 線信号 31は、カバー 21を透過し、受光素子 26に受光される。赤外線信号 31は、図 3の赤外線信号 E1に相当する。カバー 21に入射する可視光線 32の一部は、誘電 体多層膜 24で反射され、反射光 33として外部へ出射される。可視光線 32及び反射 光 33は図 3に示す入射光 IL、反射光 raにそれぞれ相当する。
[0052] 可視光線 32の残りは、誘電体多層膜 24及び基層 23を透過し、その一部は基層 2 3の裏面 23aで反射され、図 3に示す反射光 rbとしてカバー 21の外部に出射される。
[0053] 第 1実施形態によれば、以下の作用効果が得られる。
[0054] カバー 21は、赤外線透過性の基層 23と、基層 23の外側面に積層された、赤外線 透過性で可視光反射性の誘電体多層膜 24とを備える。誘電体多層膜 24の可視域 の分光反射特性を適宜選択することで、誘電体多層膜 24は赤外線透過性を保持し つつ、所望の色に調節された色を有する光を反射することができる。赤外線透過性を 保持しつつ任意の外観色を有するカバー 21を得ることができる。よって、カバー 21 は優れた意匠を有し、電子機器の設計上の自由度を向上させることができる。
[0055] 誘電体多層膜 24は所望の色に調整された色の光を反射するので、電子機器の筐 体に取り付けられたカバー 21は所望の装飾効果を有する。
[0056] 誘電体多層膜 24は赤外線の透過性を保持しつつ、所望の色の光を反射する分光 反射特性を有する。これにより、カバー 21は、可視光線に対しては、誘電体多層膜 2 4と基層 23の合成分光特性に応じた外観色 (反射光の色)を有する。
[0057] 例えば、基層 23が「裏面反射有り」の構成を有し、誘電体多層膜 24が青色の光を 最も強く反射する分光反射特性を持つ場合、カバー 21は、誘電体多層膜 24で強く 反射された青色の反射光と、基層 23の裏面 23aで反射された青色以外の成分 (赤色 及び緑色)の弱 、反射光との混合した外観色を有する。
[0058] 誘電体多層膜 24の可視域の分光反射特性を適宜変更することにより、赤外線の透 過性を保持しつつ、任意の色の外観色を得ることができる。よって、カバー 21は優れ た意匠を有し、電子機器の設計上の自由度を向上させることができる。
[0059] 近赤外線光に対する基層 23のフレネル反射を低減するように設計された誘電体多 層膜 24が基層 23に積層されているので、基層 23単独の場合よりも近赤外線の透過 率は向上する。これにより、誘電体多層膜 24は赤外線信号 30, 31に対して反射防 止膜と同様の反射防止効果を併せ持つ。誘電体多層膜 24自体により、基板 23の外 側面(図 2の界面 SA)での赤外線信号 30, 31の反射は 4%程度低減される。したが つて、基板 23の外側面での反射による赤外線信号 30, 31の損失は低減される。
[0060] (実施例 1)
実施例 1のカバーを図 6、図 7、表 1、及び表 2を参照して説明する。
[0061] 実施例 1のカバーは図 5に示すカバー 21と同じ層構造を有し、アクリル榭脂製の基 層 23と、赤外線透過性を有し青色の光を反射する誘電体多層膜 24とを備える。誘 電体多層膜 24は、アクリル榭脂製の基層 23の外側面に、高屈折率材料の膜物質 (Z rO )と低屈折率材料の膜物質 (SiO )とを交互に積層した 8層の薄膜層から構成さ れる。誘電体多層膜 24は、中心波長え cを有する光を反射する。中心波長え cは、 反射光の色、すなわち、カバーの色に関連する。実施例 1の誘電体多層膜 24を構成 する 8つの層は、 495nmの中心波長え cを有する光、すなわち、青色の光を反射す るように設計されている。
[0062] [表 1] 実施例 1:青色反射、中心波長; l c : 495nm、誘電体多層膜数 : 8
Figure imgf000012_0001
図 6は実施例 1における誘電体多層膜 24の分光反射特性及び分光透過特性を示 す。図 6において、曲線 40は「裏面反射無し」の場合における分光反射特性 (反射率 R)を示す。曲線 41は「裏面反射無し」の場合における分光透過特性 (透過率 T)を示 す。図 6において、曲線 42は「裏面反射有り」の場合における分光反射特性 (反射率 R)を示す。曲線 43は「裏面反射有り」の場合における分光透過特性 (反射率 T)を示 す。
[0063] 曲線 40, 42は、「裏面反射無し」及び「裏面反射有り」のいずれの場合にも、 900η m付近の赤外線の反射率が非常に低 、こと、及び同赤外線の透過率が非常に高!、 ことを示す。「裏面反射無し」及び「裏面反射有り」のいずれの場合にも、 500nm付近 の波長域の光 (青色の光)の反射率が 70%程度と高ぐその波長域の光の透過率が 30%程度であることを示す。この反射率は適宜調整することができる。
[0064] 実施例 1の誘電体多層膜 24の反射光の色を説明する。表 2の色度座標値 (x、 y)と 、図 7に示す xy色度図とから、誘電体多層膜 24の反射光の色が分かる。図 7は、 xy Y表色系の色度図である。表 2における Yは、反射光の明るさを示している。
[表 2] 実施例 1の色度
Figure imgf000013_0001
表 2の色度座標値 (x=0. 23, y=0. 34)によって特定される色度は、図 7におけ る A点の色度 (青色)である。
[0066] 実施例 1によれば、以下の作用効果が得られる。
[0067] 誘電体多層膜 24は、 900nm付近の赤外線の光(赤外線)を 100%に近!、高!/、透 過率で透過させる機能と、可視光線に対しては 495nm付近の光 (青色の光)を 70% 程度の反射率で反射させる機能とを併せ持つ。誘電体多層膜 24を備えた実施例 1 のカバーは、赤外線の透過性を保持しつつ、青色の外観色 (反射光)を有する。
[0068] (実施例 2)
実施例 2のカバーは図 5のカバー 21と同じ構造を有し、アクリル榭脂製の基層 23と 、黄色の光を反射する誘電体多層膜 24とを備える。誘電体多層膜 24は高屈折率材 料の膜物質 (ZrO )と低屈折率材料の膜物質 (SiO )とを交互に積層した 7層の薄膜
2 2
層から構成される。誘電体多層膜 24の中心波長え cは、黄色の反射光の波長(600 nm)でめる。
[0069] [表 3] 実施例 2:黄色反射、中心波長ス c: 600nm,誘電体多層膜数: 7
Figure imgf000014_0001
実施例 2における誘電体多層膜 24の分光反射特性及び分光反射特性を図 8に示 す。図 8において、曲線 50は「裏面反射無し」の場合における分光反射特性 (反射率 R)を示す。曲線 51は「裏面反射無し」の場合における分光透過特性 (透過率 T)を示 す。曲線 52は「裏面反射有り」の場合における分光反射特性 (反射率 R)を示す。曲 線 53は「裏面反射有り」の場合における分光透過特性 (透過率 T)を示す。
[0070] 図 8の曲線 50, 52は、「裏面反射無し」及び「裏面反射有り」のいずれの場合にも、 900nm付近の赤外線の反射率が非常に低 ヽこと、赤外線の透過率が非常に高!、こ と、「裏面反射無し」及び「裏面反射有り」のいずれの場合にも、 600nm付近の波長 域の光 (黄色の光)についての反射率は約 70%と高ぐその波長域の光の透過率が 約 30%であることを示す。
[0071] 表 4は実施例 2における誘電体多層膜 24の反射光の色度座標値を示す。色度座 標値 (x、 y)と、図 7に示す xy色度図とから、誘電体多層膜 24の反射光の色が分力る
[0072] [表 4] 実施例 2の色度
Figure imgf000015_0001
表 4に示す色度座標値 (x=0. 47, y=0. 46)によって特定される色度は、図 7に おける B点の色度 (黄色)である。
[0073] 実施例 2によれば、以下の作用効果が得られる。
[0074] 誘電体多層膜 24は、 900nm付近の赤外線の光 (赤外線)をほぼ 100%に近 、高 V、透過率で透過させる機能と、可視光線に対しては 600nm付近の光 (黄色の光)を 約 70%の反射率で反射させる機能とを併せ持つ。したがって、誘電体多層膜 24を 備えた実施例 2のカバーは、赤外線透過性を保持しつつ、黄色の外観色を有する。
[0075] (第 2実施形態)
本発明の第 2実施形態に係る赤外線透過性カバー 21Aを図 9を参照して説明する 。図 9の下側がカバー 21A及び各層の外側面であり、上側がカバー 21A及び各層の 内側面である。
[0076] カバー 21Aは、第 1実施形態において、誘電体多層膜 24と基層 23との間にハード コート処理された下地処理層 27を備える点にお ヽて第 1実施形態のカバー 21と異な つている。
[0077] 一般に、ポリメチルメタタリレート(PMMA)等のアクリル榭脂は、誘電体膜と密着し にくい。そこで、基層 23にハードコート処理を施す下地処理層 27をコーティングし、 その下地処理層 27上に誘電体多層膜 24が形成される。誘電体多層膜 24が基層 23 力も剥がれるのが防止され、、基層 23の表面硬度も向上して、カバー 21Aの耐久性 が向上する。
[0078] (第 3実施形態)
本発明の第 3実施形態に係る赤外線透過性カバー 21Bを図 10を参照して説明す る。図 10の下側がカバー 21B及び各層の外側面であり、上側がカバー 21B及び各 層の内側面である。 [0079] 第 2実施形態のカバー 21Bは、基層 23の内側面に積層された誘電体多層膜 24と
、基層 23の外側面に積層された反射防止膜 28とを備える。
[0080] 反射防止膜 28と誘電体多層膜 24によって、基層 23の両界面における赤外線の反 射はそれぞれ 4%程度 (合計 8%程度)低減される。したがって、赤外線信号の損失 を低減することができる。
[0081] 反射防止膜 28が基層 23の外側面での反射を低減するので、図 3に示す反射光 m に含まれる誘電体多層膜 24の可視反射光のコントラスト比は向上し、より強調された 色の光が反射される。よって、カバー 21Bは、より明確な外観色を有し、赤外線信号 ポートの装飾性を高めることができる。
[0082] 誘電体多層膜 24は基層 23の内側面に設けられているので、誘電体多層膜 24に 傷が付きにくい。カバー 21Bは長期にわたり赤外線信号ポートの装飾性を高めること ができる。
[0083] (第 4実施形態)
本発明の第 4実施形態に係る赤外線透過性カバー 21Cを図 11を参照して説明す る。図 11の下側がカバー 21C及び各層の外側面であり、上側がカバー 21C及び各 層の内側面である。
[0084] カバー 21Cは、基層 23の外側面に積層された誘電体多層膜 24と、基層 23の内側 面に積層された誘電体多層膜 29とを備える。カバー 21Cは、誘電体多層膜 24で反 射された反射光 33の色と、誘電体多層膜 29と基層 23の界面で反射された反射光 3 3 'の色との合成色の外観色を有する。
[0085] 例えば、赤外線透過性を有しつつ青色の光 33を反射するように外側の誘電体多 層膜 24を設計し、赤外線透過性を有しつつ黄色の光 33'を反射するように内側の誘 電体多層膜 29を設計することができる。この場合、カバー 21Cは青色と黄色の混ざ つた外観色を有し、優れた意匠性と高!ヽ装飾効果とを有する。
[0086] 赤外線透過性で可視光線を遮断する基層は、吸収材、塗料、またはインクのような 特定波長域の光線を遮断する材料を混練した榭脂材料から形成することができる。 これに代えて、可視全波長域及び特定の短波長側の不要な赤外波長域の光線を反 射する誘電体薄膜層を基層の内側面に形成して、それらの光線を遮断することがで きる。この場合、光線を遮断するための材料を混連するのに比べ、容易にまた精密に 調整された波長の光線を高精度に遮断することができる。
[0087] (第 5実施形態)
本発明の第 5実施形態に係る赤外線信号透過性カバー 21Dを図 12を参照して説 明する。図 12の下側がカバー 21D及び各層の外側面であり、上側がカバー 21D及 び各層の内側面である。
[0088] カバー 21Dでは、アクリル榭脂製の透明基層 23の外側面の一部または全部に、光 線を散乱させる摺りガラス面 (梨地領域) 23Aが形成されている。他の構成は、第 1実 施形態のものと同じである。
[0089] 梨地領域 23Aは赤外線を散乱させて、赤外線の指向性を低下させるが、カバー 21
Dの内側において基層 23に近接して受光素子 26が配置されている場合に、限定的 に利用することができる。
[0090] 梨地領域 23Aにより、可視光城で観察した場合、白っぽい半透明な色 (乳白色)の 散乱光が生成される。カバー 21Dは、誘電体多層膜 24の反射光の色と、梨地領域 2
3Aの白っぽい半透明な散乱光の色との混ざった、真珠のような光沢を持つ外観色を 有する。
[0091] 透明基層 23の外側面が梨地加工されていることで、基層 23は摺りガラスのような半 透明の外観を有する。そのため、カバー 21Dを電子機器に取り付けたとき、電子機 器の内部は見えない。
[0092] カバー 21Dは TVや VTR等の家庭用電気製品の赤外線受光ポートに取り付けて 使用することができる。この場合、家庭用電気製品の電源のオンオフ及び音量調節 等を遠隔制御するための赤外線信号 (リモートコントローラ用波長域の赤外線)は力 バー 21Dを通して家庭用電気製品に受信される。
[0093] (第 6実施形態)
本発明の第 6実施形態に係る赤外線透過性カバー 21Eを図 13を参照して説明す る。図 13の上側がカバー 21E及び各層の外側面であり、下側がカバー 21E及び各 層の内側面である。
[0094] カバー 21Eは、曲面状の外側面を有する基層 60と、基層 60の外側面に積層され た誘電体多層膜 61とを備える。基層 60の例は、凸状の外側面を有する、半円筒また はドームである。
[0095] 第 6実施形態によれば、以下の作用効果が得られる。
[0096] カバー 21Eの外観色は見る角度に応じて異なる。例えば、カバー 21Eの法線に対 する入射光 ILの角度が 0° である場合、誘電体多層膜 61の外側面で反射した反射 光 raO (0度反射)の色と、入射角 20° の場合における反射光 ra20 (20度反射)の色 と、入射角 40° の場合における反射光 ra40 (40度反射)の色は互いに異なる。した がって、カバー 21Eは玉虫色に見え、高級感を有する。
[0097] (実施例 3)
第 6実施形態のカバー 21Eの実施例 3を、図 14、図 7、表 5及び表 6を参照して説 明する。
[0098] 表 3に示すように、実施例 3のカバー 21Eは、基層が曲面を有する点を除き、表 2に 示す実施例 2のカバーと同じ構造を有する。したがって、実施例 3のカバー 21Eは、 赤外線透過性を有し、黄色の光を反射する。
[0099] [表 5] 実施例 3:黄色反射、中心波長 λ c: 600nm,誘電体多層膜数: 7
湾曲基層を使用
Figure imgf000018_0001
図 14は、実施例 3のカバー 21Eの分光反射特性を示す。曲線 70は 0度反射の反 射光 raOの分光反射スペクトルを示す。曲線 71は 20度反射の反射光 ra20の分光反 射スぺクトルを示す。曲線 72は 40度反射の反射光 ra40の分光反射スぺクトルを示 す。全て「裏面反射無し」の場合である。
[0100] 図 14の曲線 70, 71, 72において、 900nm付近の赤外線(IrDA用及びリモートコ ントローラ用の波長域の赤外線)に対する反射率が非常に低いことと、誘電体多層膜 の吸収が無視できる程度に少ないことから、同赤外線の透過率が非常に高いことが 分かる。
[0101] 図 14の曲線 70, 71, 72から、入射角度に応じて、最大反射率の可視光線の波長 が変化すること、すなわち、反射光の色が異なることが分力る。
[0102] 表 6は、実施例 3の反射光 raO, ra20, ra40の色を表わす色度座標値を示す。全て 「裏面反射無し」の場合である。この色度座標値 (x、 y)と、図 7に示す xy色度図とか ら、その色度座標値が表わす色度、つまり誘電体多層膜 24の反射光の色が分かる。
[0103] [表 6]
Figure imgf000019_0001
反射光 raOの色度座標値 (x=0. 47, y=0. 46)によって特定される色度は、図 7 における B点の色度 (黄色)である。反射光 ra20の色度座標値 (x=0. 46, y=0. 4 8)によって特定される色度は、図 3における B20の点の色度 (黄色)である。反射光 r a40の色度座標値 (x=0. 4, y=0. 49)によって特定される色度は、図 7における B 40の点の色度 (黄色)である。
[0104] 実施例 3によれば、以下の作用効果が得られる。
[0105] カバー 21Eは、 900nm付近の赤外線に対する透過率を 100%近くに維持しつつ、 見る角度によって異なる外観色を有する。具体的には、反射光の色は、入射光 ILの 角度が 0度力も 40度に向力 につれて、黄色力もやや緑力かった黄色に連続的に変 化する。この外観色の変化により、カバー 21は、向上された高級感及び優れた意匠 を有し、電子機器の設計上の自由度を向上させることができる。
[0106] カバー 21Eの光学特性は、赤外線信号の波長領域においても、入射角度に応じて 変化する。しかし、図 14に示すように、赤外域での光学特性の変化はわずかであり、 赤外線信号 El, E2に対する透過性は実質的に低下しない。
[0107] (第 7実施形態)
本発明の第 7実施形態に係る赤外線透過性カバー 21Fを図 15を参照して説明す る。図 15の下側がカバー 21F及び各層の外側面であり、上側がカバー 21F及び各 層の内側面である。
[0108] カバー 21Fは、赤外線透過性及び可視光透過性を有する透明基層 23と、基層 23 の内側面に形成された誘電体多層膜 24と、誘電体多層膜 24の内側面に形成された 赤外線透過性を有し可視光線の透過を阻止する黒色層 91と、透明基層 23の外側 面に形成された拡散層 90とを備える。
[0109] 図 16の曲線 92は誘電体多層膜 24の分光透過特性を示す。誘電体多層膜 24は 青色、赤色、及び赤外線に対して高い透過率を有する。誘電体多層膜 24を含む力 バー 21Fは、黄色の光を反射する(曲線 93参照)。
[0110] 図 17の曲線 94は黒色層 91の分光透過特性を示す。赤外線信号の一波長範囲が 図 16および図 17に示されている。
[0111] 拡散層 90は、誘電体多層膜 24を透かして黒色層 91が観察されるのを防止する。
拡散層 90のないカバーでは、そのカバーの外面に面した暗い景色や人が誘電体多 層膜 24に映り込むと、誘電体多層膜 24の色 (反射光の色)が見えにくくなり、その力 バーが観察者には黒っぽく見える。すなわち、観察者に観察される入射光が減少す る。第 7実施形態のカバー 21Fでは、拡散層 90が映り込みを抑制し、外部からの入 射光を平均化し、かつ誘電体多層膜 24からの反射光を散乱させる。これにより、誘 電体多層膜 24で反射して観察者に向う可視光線が相対的に増加する。よって、誘 電体多層膜 24の反射光力 Sカバー 21Fの外部で見えやすくなり、本実施形態では力 バー 21Fは鮮明な外観色 (黄色)を有することができる。
[0112] 拡散層 90は、例えば、図 12の梨地領域 23Aのように、透明基層 23の外側面を直 接に物理又は化学処理して粗面化した層であってもよぐまたは、基層 23の外側面 に印刷または塗布により積層した層であってもよい。
[0113] 透明基層 23が、誘電体多層膜 24との密着性の低いアクリル榭脂等の榭脂製であ る場合、基層 23の内側面にハードコート処理された下地処理層を積層してもよい。
[0114] 第 7実施形態によれば、以下の作用効果が得られる。
[0115] 拡散層 90は入射光を平均化する作用に加え、誘電体多層膜 24の反射光を散乱さ せる作用を有する。これにより、誘電体多層膜 24の反射光がカバー 21Fの外部から 観察されやすぐ黒色層 91は観察されに《なる。よって、カバー 21Fは黒っぽく見え ず、誘電体多層膜 24の反射光の色に応じた鮮明な外観色 (黄色の反射色)を有する
[0116] (第 8実施形態)
本発明の第 8実施形態に係る赤外線透過性カバー 21Gを図 18を参照して説明す る。図 18は、カバー 21Gの平面図及びカバー 21Gの C— C線に沿った断面図である
[0117] 図 18の下側がカバー 21G及び各層の外側面であり、上側がカバー 21G及び各層 の内側面である。カバー 21Gは、赤外線透過性及び可視光透過性を有する透明基 層 23と、基層 23の内側面に形成された誘電体多層膜 24と、誘電体多層膜 24の内 側面に形成された赤外線透過性を有し可視光線の透過を阻止する黒色層 91と、透 明基層 23の外側面に形成された拡散層 90と、誘電体多層膜 24と黒色層 91の間に 形成された情報印刷層 95とを備える。情報印刷層 95には、文字、画像及び模様の ような情報が印刷される。それ以外の構成は図 15のカバー 21Fと同じである。
[0118] 情報印刷層 95の例は、誘電体多層膜 24の内側面に直接に印刷された単層である 。図 18には、白色のインクで印刷された Bの文字 112が示される。文字 112は実際に は逆版 (鏡像)で誘電体多層膜 24の内側面に印刷される。画像及び模様を印刷して ちょい。
[0119] 透明基層 23が、誘電体多層膜 24との密着性の低いアクリル榭脂等の榭脂製であ る場合、基層 23の内側面にハードコート処理された下地処理層を積層してもよい。
[0120] 第 8実施形態によれば、以下の作用効果が得られる。 [0121] 情報印刷層 95に形成された文字、画像及び模様などの情報をカバー 21Gの外部 力 見ることができるように、可視光線に対する誘電体多層膜 24の透過性が調整さ れる。例えば、誘電体多層膜 24が特定波長域の可視光の透過を選択的に許容する ように、誘電体多層膜 24の層構成が調整される。図 20に示すように、カバー 21Gの 観察者は、誘電体多層膜 24の反射光による黄色の背景領域 111と、背景領域 111 の中に白色の Bの文字 112とを見ることができる。よって、カバー 21Gは優れた意匠 を有し、電子機器の設計上の自由度を向上させることができる。
[0122] 拡散層 90は入射光を平均化する作用に加え、誘電体多層膜 24の反射光を散乱さ せる作用を有する。これにより、誘電体多層膜 24で反射して観察者に向う可視光線 が相対的に増加して、カバー 21Gの外部力も誘電体多層膜 24の反射光の色に応じ た鮮明な外観色 (黄色の反射色)が観察される一方で、黒色層 91は観察されに《な る。図 19aに示すように、拡散層の無い比較例のカバー 100が暗色の物体 105の正 面に配置され、カバー 100の斜め前方に光源 106が配置され、観察者 107がカバー 100の正面にいる場合、黒色層 91は誘電体多層膜 24の反射光に邪魔されることな ぐ半透過性の誘電体多層膜 24を介して観察者に観測される。また、情報印刷層 95 で散乱された光線が観察者 107に観察される。そのため、図 19bに示すように、比較 例のカバー 100の観察者には、暗い背景領域 101中に白い文字 102が見え、誘電 体多層膜 24の反射色はほとんど見えな 、。
[0123] 拡散層 90のヘイズ量 (曇価)は、文字 112の視認度の低下を損なわない程度に決 められる。これにより、カバー 21Gは、鮮明な色の背景領域 (本例では黄色の反射色 )の中に文字、画像及び模様のような情報を表示することができる。
[0124] 情報印刷層 95は、明色の文字、画像及び模様のような情報の印刷された単層であ る。情報印刷層 95の追カ卩は簡単である。よって、文字 112のような情報を表示する力 バー 21Gは簡単に製造することができる。
[0125] 鮮明な色の背景領域 111と文字 112とを含む外観を有するカバー 21Gは、優れた 意匠を有し、電子機器の設計上の自由度を向上させることができる。
[0126] (第 9実施形態)
本発明の第 9実施形態に係る赤外線透過性カバー 21Hを図 21を参照して説明す る。図 21は、カバー 21Hの平面図及び D— D線に沿ったカバー 21Hの断面図を示 す。
[0127] カバー 21Hと図 18に示すカバー 21Gとの差異は、誘電体多層膜 24と情報印刷層 95を入れ替えた点にある。
[0128] 図 21の下側がカバー 21H及び各層の外側面であり、上側がカバー 21H及び各層 の内側面である。カバー 21Hは、透明基層 23と、透明基層 23の内側面に形成され た情報印刷層 95と、透明基層 23及び情報印刷層 95上に積層された誘電体多層膜 24と、誘電体多層膜 24に積層された黒色層 91と、基層 23の外側面に形成された拡 散層 90とを備える。情報印刷層 95の例は、基層 23の内側面に直接に印刷された文 字、画像及び模様のような情報を含む単層である。
[0129] 第 9実施形態によれば、以下の作用効果が得られる。
[0130] 情報印刷層 95に形成された情報は、拡散層 90、透明基層 23を透して直接見るこ とができる。図 20に示すように、カバー 21Hの観察者は、明るい黄色の背景領域 11 1の中に Bの文字 112を見ることができる。よって、カバー 21Hは優れた意匠を有し、 電子機器の設計上の自由度を向上させることができる。
[0131] 拡散層 90のヘイズ量 (曇価)は、文字 112の視認度の低下を損なわない程度に決 められる。これにより、カバー 21Hは、鮮明な色の背景領域 (本例では黄色の反射色 )の中に文字、画像及び模様のような情報を表示することができる。
[0132] 情報印刷層 95は、明色の文字、画像及び模様のような情報の印刷された単層であ る。情報印刷層 95の追カ卩は簡単である。情報印刷層 95の色を変えたり、複数の色を 使うことは容易である。よって、文字 112のような情報を表示するカバー 21Hは簡単 に製造することができる。
[0133] 鮮明な色の背景領域 111と文字 112とを含む外観を有するカバー 21Hは、優れた 意匠を有し、電子機器の設計上の自由度を向上させることができる。
[0134] (第 10実施形態)
本発明の第 10実施形態に係る赤外線透過性カバー 211を図 22を参照して説明す る。図 22の下側がカバー 211及び各層の外側面であり、上側がカバー 211及び各層 の内側面である。 [0135] カバー 211は、暗色でかつ赤外線透過性の基層 23Bと、基層 23Bの外側面に形成 された誘電体多層膜 24と、誘電体多層膜 24の外側面に形成された保護層 96とを備 える。
[0136] 保護層 96は、ハードコートなどによる硬質化、撥水コートなどのように防汚性と滑り 性を合わせ持つものをスプレー法、浸漬法、スパッタ法、真空蒸着法などで形成する ことができる。保護層 96はカバー 211の外面の滑り性及び防汚性を向上させることが できる。有機珪素系撥水剤を真空蒸着によって形成された保護層 96は極めて薄く均 一な厚みを有するので好まし 、。
[0137] 赤外透過暗色基層 23Bが、誘電体多層膜 24との密着性の低いアクリル榭脂等の 榭脂製である場合、基層 23Bの外側面にハードコート処理された下地処理層を積層 してちよい。
[0138] 保護層 96は、誘電体多層膜 24の擦傷、皮脂等による劣化を防ぐので、カバー 211 の耐久性は向上する。
[0139] 真空蒸着法は例えば、 lOnm以下の薄い保護層 96を形成することができる。よって
、保護層 96による干渉色の発生や誘電体多層膜 24の分光特性への影響は極めて 小さい。
[0140] (第 11実施形態)
本発明の第 11実施形態に係る赤外線透過性カバー 21Jを図 23を参照して説明す る。図 23の下側がカバー 21J及び各層の外側面であり、上側がカバー 21J及び各層 の内側面である。
[0141] カバー 21Jと図 22のカバー 211との差異は、赤外透過暗色基層 23Bの代わりに透 明基層 23が使用されている点と、透明基層 23の内側面に赤外線透過性でかつ可 視光線の透過を阻止する黒色層 91が形成されて!ヽる点である。他の構成及び作用 効果は図 22のカバー 211と同じである。
[0142] (赤外線透過性カバーの製造方法)
次に、本発明に係る赤外線透過性カバーの製造方法を説明する。一例として、第 1 実施形態に係るカバー 21の製造方法を説明する。この製造方法は第 1実施形態の カバー 21以外のカバーを製造するのに適用可能である。この製造方法は、軟化点 の比較的低い材料カゝら形成された基層を含むカバーの製造に適している。
[0143] 赤外線透過性カバーの製造方法は、次の工程を含む。
[0144] 赤外線透過性の基層 23の外側面に、赤外線透過性で可視光反射性の誘電体多 層膜 24を低温成膜技術により形成する。低温成膜技術は、基層を軟化点以下の温 度に維持して薄膜を形成する技術である。低温成膜技術の例は、 IAD (イオンアシス ト蒸着)、プラズマ CVD、及びスパッタ形成 (スパッタリング)である。
[0145] 一実施形態に係る赤外線透過性カバーの製造方法によれば、以下の作用効果が 得られる。
[0146] 基層 23に用いるポリカーボネイト及びアクリル榭脂等の榭脂材料は軟ィ匕点温度が 低い。通常の真空蒸着法では、誘電体多層膜 24を基層 23に密着させるには、基層 23を通常 200°C〜300°Cに加熱する。そのため、通常の真空蒸着法により、榭脂な どの低軟化点材料製の基層 23上に誘電体多層膜 24を形成するのは難しい。本実 施形態では、誘電体多層膜 24を、基層 23の外側面に IAD (イオンアシスト蒸着)、プ ラズマ CVD、スパッタ形成 (スパッタリング)等の低温蒸着技術により形成するので、 軟化点温度が低い榭脂材料製の基層 23上に、所望の分光特性を有する誘電体多 層膜 24を形成することができる。
[0147] (赤外線透過性カバーを備えた電子機器)
次に、本発明に係る赤外線透過性カバーを備えた電子機器の一実施形態を図 24 を参照して説明する。
[0148] 図 24は、電子機器としての携帯型情報端末 80を示す。携帯型情報端末 80は、赤 外線透過性カバー 81の取り付けられた筐体、操作キー 82、及び表示部 83を備える 。カバー 81は、上記の実施形態及び実施例で説明した構造を有する。
[0149] 一実施形態に係る赤外線透過性カバーを備えた電子機器によれば、以下の作用 効果が得られる。
[0150] 携帯型情報端末 80は、任意の外観色を得ることができる赤外線透過性カバー 81 を備えている。カバー 81の外観色を携帯型情報端末 80の筐体の色に応じて変えた り、或いは、その筐体の色をカバー 81の外観色に応じて変えることで、優れた意匠を 有し、設計上の自由度の向上した携帯型情報端末 80が得られる。 [0151] 上記の実施形態は以下のように変更してもよ!/、。
[0152] 基層 23, 60は、上述した(1)〜(5)のいずれであってもよい。基層の選択に応じた 外観色をカバーに付与することができる。例えば、第 1〜第 4実施形態の透明基層 2 3と第 6実施形態の透明基層 60を、乳白色の基層に変更してもよい。この場合、誘電 体多層膜 24 (第 6実施形態では誘電体多層膜 61)による反射光の色 (反射色)に、 乳白色の基層からの反射光の色 (乳白色)が加えられた外観色が得られる。これによ り、真珠のような光沢を持つ質感が得られ、高級感を付与することができる。
[0153] 第 1〜第 4実施形態の基層 23と第 6実施形態の基層 60を、上述した (4)暗色の基 層或いは(5)不透明な基層に変更してもよい。この場合、誘電体多層膜 24 (第 6実施 形態では誘電体多層膜 61)による反射光の色 (反射色)をより明瞭にすることができ るとともに、電子機器に取り付けた状態で赤外線透過性カバー内部を隠す効果も得 られる。
[0154] 図 12に示す第 5実施形態において、透明基層 23の外側面を梨地加工する代わり に、基層 23の内側面を梨地加工してもよい。この場合にも、第 5実施形態の効果は 維持される。
[0155] 赤外線透過性カバーの製造方法では、基層 23として軟ィ匕点温度の低いポリカーボ ネイト、アクリル榭脂等の榭脂材料 (低軟ィ匕点材料)を用い、低温成膜技術によって 基層 23上に誘電体多層膜 24を形成した。しかし、基層がガラス等の高軟ィ匕点材料 製である場合には、その基層上に誘電体多層膜を、低温成膜技術以外の方法、例 えば通常の真空蒸着法により形成することができる。
[0156] 表 1に示す実施例 1の誘電体多層膜 24は青色の外観色を得られるように構成され た 8つの薄膜の積層体である。誘電体多層膜 24は、青色以外の外観色、例えば黄 色の外観色が得られるように 8つの薄膜を積層して形成されてもよい。薄膜の数は 8 に限定されない。
[0157] 表 3、 5に示す実施例 2、 3の誘電体多層膜 24は黄色の外観色を得られるように構 成された 7つの薄膜の積層体である。誘電体多層膜 24は、黄色以外の外観色、例え ば青色の外観色が得られるように 7つの薄膜を積層して形成されてもよい。薄膜の数 は 7に限定されない。 [0158] 図 18に示す第 8実施形態および図 21に示す第 9実施形態において、情報印刷層 95は文字、画像及び模様の印刷された複数層から構成されてもよ!、。
[0159] 各実施形態のカバーは平板及び湾曲した板に限られず、種々の形状を有すること ができる。カバーの形状は電子機器の外観に適合するように変更することができる。 例えば図 25に示すカバー 21Kは側壁を有する立体的なキャップである。カバー 21 Kは電子機器に係合する取り付け爪を備えてもょ ヽ。
[0160] 当業者であれば、誘電体多層膜を形成するための ZrO , SiOなどの蒸着物質の
2 2
種類及び各層の膜厚等を、所望のカバーの外観色に応じて適宜変更することができ る。誘電体多層膜に応じて、カバーは、青、水色、緑、黄、ピンク、赤、及びシルバー 等の外観色を有することができる。
[0161] 本発明の赤外線透過性カバーは、携帯型情報端末 80に限らず、デスクトップコン ピュータ、ノートコンピュータ、デジタルカメラ等の各種の電子機器であって、赤外線 透過性カバーを備えた電子機器に適用可能である。
[0162] 例えば、本発明のカバーは、 CCD及び CMOS等のイメージセンサを利用した監視 カメラに使用することができる。監視カメラは近赤外線を検出する。監視カメラは目立 つことなく店舗に設置するのが望まれる。そこで、監視カメラを、本発明のカバーの取 り付けられた撮影窓を有する筐体に収納して使用することができる。
[0163] 太陽電池を備えた電子機器として、電卓、腕時計及び発電装置が知られて ヽる。こ のような電子機器は比較的広!、受光面積の受光面を含む。受光面で受光した主発 電波長の光は電子機器の筐体内に配置された太陽電池に入射する。主発電波長が 赤外域にある場合、受光面に本発明のカバーを取り付けることにより、受光面の装飾 性を向上させることができる。

Claims

請求の範囲
[1] 赤外線透過性カバーであって、
赤外線透過性の基層と、
前記基層の一表面に積層され、赤外線透過性で可視光線を反射する誘電体多層膜 とを備える赤外線透過性カバー。
[2] 前記誘電体多層膜と前記基層との間に積層された、ハードコート処理された下地処 理層を更に備え、前記誘電体多層膜は前記カバーの外側面として機能することを特 徴とする請求項 1に記載の赤外線透過性カバー。
[3] 前記基層は、前記誘電体多層膜の積層された第 1の表面と、前記第 1の表面の反対 の第 2の表面とを有し、前記カバーは、前記基層の前記第 2の表面に積層された反 射防止膜を更に備え、前記誘電体多層膜及び前記反射防止膜は前記カバーの内 側面及び外側面としてそれぞれ機能することを特徴とする請求項 1に記載の赤外線 透過性カバー。
[4] 前記基層は 2つの表面を有し、前記誘電体多層膜は、前記基層の前記 2つの表面に 積層されて ヽることを特徴とする請求項 1に記載の赤外線透過性カバー。
[5] 前記基層は、前記表面の少なくとも一部に形成された、光線を散乱させる梨地領域 を含むことを特徴とする請求項 1に記載の赤外線透過性カバー。
[6] 前記基層と前記誘電体多層膜との界面は曲面であることを特徴とする請求項 1に記 載の赤外線透過性カバー。
[7] 前記基層と前記誘電体多層膜との界面は凸面である請求項 6に記載の赤外線透過 性カバー。
[8] 前記カバーは、電子機器の赤外線信号ポートに取り付けられ、前記カバーは、前記 電子機器の外側に露出する外側面と、前記電子機器の内側に配置される内側面と を有し、
前記基層は無色透明であり、前記カバーの内側面に近い第 1の表面と、前記カバ 一の外側面に近い第 2の表面とを有し、
前記誘電体多層膜は前記基層の前記第 1の表面に積層されており、
前記カバーは更に、 前記誘電体多層膜に積層され、赤外線透過性で可視光線の透過を阻止する黒色 層と、
前記基層の前記第 2の表面に積層された拡散層とを備えることを特徴とする請求項 1に記載の赤外線透過性カバー。
[9] 前記基層は無色透明であり、前記カバーの内側面に近い第 1の表面と、前記カバー の外側面に近い第 2の表面とを有し、
前記誘電体多層膜は前記基層の前記第 1の表面に積層されており、
前記カバーは更に、
前記誘電体多層膜上に積層された情報印刷層と、
前記情報印刷層上に積層された、赤外線透過性でかつ可視光線の透過を阻止す る黒色層と、
前記基層の前記第 2の表面に積層された拡散層とを備えることを特徴とする請求項 1に記載の赤外線透過性カバー。
[10] 前記情報印刷層は単一の層であることを特徴とする請求項 9に記載の赤外線透過性 カバー。
[11] 前記基層は無色透明であり、前記カバーの内側面に近い第 1の表面と、前記カバー の外側面に近い第 2の表面とを有し、前記カバーが、
前記基層の前記第 1の表面と前記誘電体多層膜との間に積層された情報印刷層と 前記誘電体多層膜上に積層された、赤外線透過性でかつ可視光線の透過を阻止 する黒色層と、
前記基層の前記第 2の表面に積層された拡散層とを更に備えることを特徴とする請 求項 1に記載の赤外線透過性カバー。
[12] 前記情報印刷層は複数の層を含むことを特徴とする請求項 9または 11に記載の赤 外線透過性カバー。
[13] 前記基層は赤外線透過性の暗色基層であり、前記カバーの内側面に近い第 1の表 面と、前記カバーの外側面に近い第 2の表面とを有し、
前記誘電体多層膜は前記暗色基層の前記第 2の表面に形成されており、 前記カバーが前記誘電体多層膜上に積層された保護層を更に備えることを特徴とす る請求項 1に記載の赤外線透過性カバー。
[14] 前記基層は無色透明であり、前記カバーの内側面に近い第 1の表面と、前記カバー の外側面に近い第 2の表面とを有し、
前記誘電体多層膜は前記基層の前記第 2の表面に形成されており、
前記カバーが前記基層の前記第 1の表面に積層された、赤外線透過性でかつ可 視光線の透過を阻止する黒色層と、
前記誘電体多層膜上に積層された保護層とを更に備えることを特徴とする請求項 1 に記載の赤外線透過性カバー。
[15] 前記誘電体多層膜は、特定波長域の可視光線を選択的に反射することを特徴とす る請求項 1に記載の赤外線透過性カバー。
[16] 前記誘電体多層膜は、前記特定波長域を除く波長を有する可視光線を主に透過さ せることを特徴とする請求項 15に記載の赤外線透過性カバー。
[17] 黒色を除く外観色を有することを特徴とする請求項 15に記載の赤外線透過性カバー
[18] 開口を有する筐体と、
前記筐体に収容された赤外線検出素子と、
前記筐体に取り付けられて前記開口を塞ぐ、請求項 1〜 17のいずれか一項に記載 の赤外線透過性カバーとを備えた電子機器。
[19] 赤外線透過性の基層の一表面に、赤外線透過性で可視光線を反射する誘電体多 層膜を、イオンアシスト蒸着、プラズマ CVD、またはスパッタリングで低温成膜するェ 程を備える赤外線透過性カバーの製造方法。
PCT/JP2005/018649 2004-11-04 2005-10-07 赤外線透過性カバー WO2006051664A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200580038563.9A CN101057341B (zh) 2004-11-12 2005-10-07 红外线透射盖子
EP05790663A EP1837920B8 (en) 2004-11-12 2005-10-07 Infrared-transmitting cover
US11/667,568 US20080316594A1 (en) 2004-11-12 2005-10-07 Infrared-Transmitting Cover
KR1020077011684A KR101158821B1 (ko) 2004-11-12 2005-10-07 적외선 투과성 커버
AT05790663T ATE547811T1 (de) 2004-11-12 2005-10-07 Infrarotsendende abdeckung
US13/670,127 US20130063810A1 (en) 2004-11-04 2012-11-06 Infrared-transmitting cover

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-328906 2004-11-04
JP2004328906 2004-11-12
JP2005-117090 2005-04-14
JP2005117090A JP4122010B2 (ja) 2004-11-12 2005-04-14 赤外線受発光部

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/670,127 Continuation-In-Part US20130063810A1 (en) 2004-11-04 2012-11-06 Infrared-transmitting cover

Publications (1)

Publication Number Publication Date
WO2006051664A1 true WO2006051664A1 (ja) 2006-05-18

Family

ID=36336347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018649 WO2006051664A1 (ja) 2004-11-04 2005-10-07 赤外線透過性カバー

Country Status (6)

Country Link
US (1) US20080316594A1 (ja)
EP (1) EP1837920B8 (ja)
JP (1) JP4122010B2 (ja)
KR (1) KR101158821B1 (ja)
AT (1) ATE547811T1 (ja)
WO (1) WO2006051664A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031352A1 (ja) * 2007-09-04 2009-03-12 Sharp Kabushiki Kaisha 赤外線信号受信ユニット及び電子装置
KR100888835B1 (ko) 2006-11-24 2009-03-17 후지쯔 가부시끼가이샤 휴대 단말 장치
WO2015182277A1 (ja) * 2014-05-27 2015-12-03 富士フイルム株式会社 着色組成物、膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子および赤外線センサ
CN105450298A (zh) * 2014-08-22 2016-03-30 艾笛森光电股份有限公司 多向光学定位方法及其装置
WO2017042980A1 (ja) * 2015-09-11 2017-03-16 オリンパス株式会社 蛍光観察装置および蛍光観察内視鏡装置

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922889B2 (ja) * 2006-11-06 2012-04-25 パナソニック株式会社 光空間伝送を行う光空間伝送システム及びそれに用いられる光送信器
JP2008229095A (ja) * 2007-03-22 2008-10-02 Topcon Corp 眼科装置
JP2009233905A (ja) * 2008-03-26 2009-10-15 Tokai Kogaku Kk 光学プラスチック物品
JP5358793B2 (ja) * 2008-08-20 2013-12-04 東海光学株式会社 赤外線通信用光学物品及びその製造方法並びに赤外線通信用受光部
JP5286624B2 (ja) * 2009-09-04 2013-09-11 東海光学株式会社 赤外線通信用光学プラスチック物品の製造方法
JP5741283B2 (ja) * 2010-12-10 2015-07-01 旭硝子株式会社 赤外光透過フィルタ及びこれを用いた撮像装置
TW201228061A (en) * 2010-12-24 2012-07-01 Au Optronics Corp Photovoltaic cell module
JP5712627B2 (ja) * 2011-01-18 2015-05-07 ミツミ電機株式会社 指紋検出装置及び指紋検出装置の製造方法
US9071740B1 (en) 2011-10-28 2015-06-30 Google Inc. Modular camera system
EP2897795B9 (en) * 2012-09-20 2020-10-28 Swissinso SA Laminated glazing with coloured reflection and high solar transmittance suitable for solar energy systems
US11745473B2 (en) 2012-09-20 2023-09-05 Kromatix SA Laminated glazing with coloured reflection and high solar transmittance, and solar energy systems employing the same
JP2014071295A (ja) 2012-09-28 2014-04-21 Tokai Kogaku Kk 赤外線受発光用光学物品及び赤外線受発光部
US20140272217A1 (en) * 2013-03-18 2014-09-18 Apple Inc. Methods and structures for thermal management in an electronic device
CN106133583B (zh) * 2014-03-26 2019-07-16 依视路国际公司 用于增强现实的方法和系统
ES2703207T3 (es) * 2014-04-10 2019-03-07 Csem Centre Suisse Delectronique Et De Microtechnique Sa Cubiertas de transmisión de infrarrojos
US20170033250A1 (en) * 2014-04-10 2017-02-02 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Solar photovoltaic module
JP6503739B2 (ja) * 2015-01-06 2019-04-24 日本電気株式会社 通信装置、計測システム及び筐体
DE102015100091A1 (de) 2015-01-07 2016-07-07 Rodenstock Gmbh Schichtsystem und optisches Element mit einem Schichtsystem
WO2016117452A1 (ja) * 2015-01-19 2016-07-28 旭硝子株式会社 光学装置および光学部材
CA2973953C (en) * 2015-01-20 2020-08-04 Performance Indicator, Llc Covert information viewing system and method of covert information processing
US9544485B2 (en) 2015-05-27 2017-01-10 Google Inc. Multi-mode LED illumination system
US9554063B2 (en) 2015-06-12 2017-01-24 Google Inc. Using infrared images of a monitored scene to identify windows
US9454820B1 (en) 2015-06-12 2016-09-27 Google Inc. Using a scene illuminating infrared emitter array in a video monitoring camera for depth determination
US9386230B1 (en) 2015-06-12 2016-07-05 Google Inc. Day and night detection based on one or more of illuminant detection, lux level detection, and tiling
DE102015014938A1 (de) 2015-11-18 2017-05-18 Daimler Ag Tankmulde für ein Fahrzeug
US10288476B2 (en) * 2015-12-21 2019-05-14 Apple Inc. Ambient light sensor window coatings for electronic devices
KR102626262B1 (ko) 2016-01-21 2024-01-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광학 위장 필터들
WO2017127734A1 (en) 2016-01-21 2017-07-27 3M Innovative Properties Company Optical camouflage filters
JP6574894B2 (ja) * 2016-03-18 2019-09-11 三菱電機株式会社 空気調和機および室内機
JP6836329B2 (ja) * 2016-03-31 2021-02-24 日本テレビ放送網株式会社 演奏装置及び演奏支援システム
TWI616068B (zh) * 2016-06-20 2018-02-21 抵抗陽光干擾之光通訊裝置
KR102516344B1 (ko) * 2016-06-21 2023-04-03 삼성전자주식회사 커버 윈도우 및 이를 포함하는 전자 장치
WO2018052057A1 (ja) * 2016-09-15 2018-03-22 豊田合成 株式会社 近赤外線センサ用カバー
US10466395B1 (en) * 2016-09-21 2019-11-05 Apple Inc. Systems with matte infrared-transparent layers
US11525949B2 (en) 2016-10-20 2022-12-13 3M Innovative Properties Company Device optical window camouflage
US10180615B2 (en) * 2016-10-31 2019-01-15 Google Llc Electrochromic filtering in a camera
WO2018129076A1 (en) 2017-01-04 2018-07-12 3M Innovative Properties Company Color compensating optical filters
DE102017203105B4 (de) 2017-02-27 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verglasungseinheit, Verfahren zu deren Herstellung und deren Verwendung
CN110892295B (zh) * 2017-07-26 2022-09-02 3M创新有限公司 光学掩蔽滤光器
JP7057487B2 (ja) * 2017-09-20 2022-04-20 Agc株式会社 光学装置および光学部材
JP6812936B2 (ja) * 2017-09-22 2021-01-13 豊田合成株式会社 近赤外線センサ用カバー装置
JP6872472B2 (ja) * 2017-11-30 2021-05-19 株式会社ファルテック ライダーカバー
CN108200246B (zh) * 2018-01-15 2019-11-26 维沃移动通信有限公司 移动终端
US10948640B2 (en) 2018-03-13 2021-03-16 Viavi Solutions Inc. Sensor window with a set of layers configured to a particular color and associated with a threshold opacity in a visible spectral range wherein the color is a color-matched to a surface adjacent to the sensor window
US11009636B2 (en) * 2018-03-13 2021-05-18 Viavi Solutions Inc. Sensor window to provide different opacity and transmissivity at different spectral ranges
US10845508B2 (en) * 2018-05-31 2020-11-24 Microsoft Technology Licensing, Llc Optical stack including embedded diffuse surface
JP2020016736A (ja) * 2018-07-25 2020-01-30 株式会社ファルテック ライダーカバー
JP7242261B2 (ja) * 2018-11-14 2023-03-20 豊田合成株式会社 赤外線透過カバー
US11463167B1 (en) * 2019-12-16 2022-10-04 Facebook Technologies, Llc IR transmissive visible-light barriers and devices including the same
US11914177B2 (en) 2020-03-16 2024-02-27 Nitto Denko Corporation Optical filter, method for manufacturing same, and optical module
KR20220154705A (ko) 2020-03-16 2022-11-22 닛토덴코 가부시키가이샤 광학 필터, 그 제조 방법 및 광학 모듈
JP7009677B1 (ja) * 2020-03-16 2022-01-26 日東電工株式会社 光学フィルタ、その製造方法および光学モジュール
KR20220155310A (ko) 2020-03-16 2022-11-22 닛토덴코 가부시키가이샤 광학 필터, 그 제조 방법 및 광학 모듈
EP3885801A1 (en) * 2020-03-25 2021-09-29 Ams Ag An interference filter, optical device and method of manufacturing an interference filter
WO2023008087A1 (ja) * 2021-07-30 2023-02-02 日東電工株式会社 赤外線セキュリティシステム、赤外線発光制御システムおよび意匠ユニット
EP4345515A1 (en) 2022-09-27 2024-04-03 Freshape SA A porous layer that is at least partially transparent to ir light but which has reduced transmittance for visible light

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398601A (ja) * 1986-10-16 1988-04-30 Toshiba Corp エツジ・フイルタ
WO1994009392A1 (en) * 1992-10-16 1994-04-28 The Dow Chemical Company All-polymeric cold mirror
JP2000314807A (ja) * 1999-04-30 2000-11-14 Nippon Shinku Kogaku Kk 可視光線遮断赤外線透過フィルター
JP2000352612A (ja) * 1999-06-11 2000-12-19 Stanley Electric Co Ltd 多層膜フィルタ
JP2002226805A (ja) 2001-02-06 2002-08-14 Dainippon Ink & Chem Inc 両面粘着シート
JP2003004942A (ja) * 2001-06-19 2003-01-08 Hashimoto Forming Ind Co Ltd 赤外線センサーカバー及びこれを用いた赤外線センサーユニット
JP2004053719A (ja) * 2002-07-17 2004-02-19 Matsushita Electric Works Ltd 赤外線透過フィルター

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103585A (en) * 1963-09-10 Radiation shielding for infrared detectors
US2852980A (en) * 1948-12-27 1958-09-23 Schroder Hubert Infra-red transmitting mirror
US3695743A (en) * 1970-03-16 1972-10-03 James Zelman M Optical reflector
US3645601A (en) * 1970-11-03 1972-02-29 Bausch & Lomb Reflector for specularly reflecting visible radiation and diffusely reflecting heat radiation
US3770958A (en) * 1972-01-05 1973-11-06 Honeywell Inc Infrared radiation detection by a matched system
US4271358A (en) * 1979-11-13 1981-06-02 Frank Schwarz Selective infrared detector
JPS62213283A (ja) * 1986-03-14 1987-09-19 Seiko Epson Corp 太陽電池
JPH0786568B2 (ja) * 1987-03-25 1995-09-20 東芝ライテック株式会社 光源装置
JPH077129B2 (ja) * 1987-06-25 1995-01-30 松下電工株式会社 超狭帯域光学多層膜
JPH058502U (ja) * 1991-07-23 1993-02-05 日本ビクター株式会社 赤外線透過フイルタ
US5408100A (en) * 1991-12-24 1995-04-18 Hughes Missile Systems Company Chromatic radiance attenuator
DE69325283T2 (de) * 1992-10-29 1999-11-04 Minnesota Mining & Mfg Formbarer reflektierender multischichtenkörper
JP3276215B2 (ja) * 1993-07-30 2002-04-22 日本写真印刷株式会社 前面パネルと前面パネル用転写材
JP2000066149A (ja) * 1998-08-21 2000-03-03 Seiko Epson Corp ミラーコート付きサングラス
JP2001110577A (ja) * 1999-10-08 2001-04-20 Asahi National Lighting Co Ltd 赤外線リモコン式蛍光灯器具
JP3646930B2 (ja) * 2001-07-30 2005-05-11 日産自動車株式会社 赤外線センサーカバーおよびこれを用いた赤外線センサーユニット
US7206125B2 (en) * 2003-11-10 2007-04-17 Therma-Wave, Inc. Infrared blocking filter for broadband Optical metrology
CN101127837A (zh) * 2006-08-16 2008-02-20 鸿富锦精密工业(深圳)有限公司 影像模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398601A (ja) * 1986-10-16 1988-04-30 Toshiba Corp エツジ・フイルタ
WO1994009392A1 (en) * 1992-10-16 1994-04-28 The Dow Chemical Company All-polymeric cold mirror
JP2000314807A (ja) * 1999-04-30 2000-11-14 Nippon Shinku Kogaku Kk 可視光線遮断赤外線透過フィルター
JP2000352612A (ja) * 1999-06-11 2000-12-19 Stanley Electric Co Ltd 多層膜フィルタ
JP2002226805A (ja) 2001-02-06 2002-08-14 Dainippon Ink & Chem Inc 両面粘着シート
JP2003004942A (ja) * 2001-06-19 2003-01-08 Hashimoto Forming Ind Co Ltd 赤外線センサーカバー及びこれを用いた赤外線センサーユニット
JP2004053719A (ja) * 2002-07-17 2004-02-19 Matsushita Electric Works Ltd 赤外線透過フィルター

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888835B1 (ko) 2006-11-24 2009-03-17 후지쯔 가부시끼가이샤 휴대 단말 장치
WO2009031352A1 (ja) * 2007-09-04 2009-03-12 Sharp Kabushiki Kaisha 赤外線信号受信ユニット及び電子装置
WO2015182277A1 (ja) * 2014-05-27 2015-12-03 富士フイルム株式会社 着色組成物、膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子および赤外線センサ
JPWO2015182277A1 (ja) * 2014-05-27 2017-04-20 富士フイルム株式会社 着色組成物、膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子および赤外線センサ
TWI660238B (zh) * 2014-05-27 2019-05-21 富士軟片股份有限公司 著色組成物、彩色濾光片、固體攝像元件及紅外線感測器
CN105450298A (zh) * 2014-08-22 2016-03-30 艾笛森光电股份有限公司 多向光学定位方法及其装置
CN105450298B (zh) * 2014-08-22 2017-12-19 扬州艾笛森光电有限公司 多向光学定位方法及其装置
WO2017042980A1 (ja) * 2015-09-11 2017-03-16 オリンパス株式会社 蛍光観察装置および蛍光観察内視鏡装置

Also Published As

Publication number Publication date
US20080316594A1 (en) 2008-12-25
EP1837920A1 (en) 2007-09-26
KR20070084497A (ko) 2007-08-24
JP4122010B2 (ja) 2008-07-23
KR101158821B1 (ko) 2012-07-03
EP1837920B1 (en) 2012-02-29
EP1837920A4 (en) 2009-03-18
ATE547811T1 (de) 2012-03-15
EP1837920B8 (en) 2012-04-18
JP2006165493A (ja) 2006-06-22

Similar Documents

Publication Publication Date Title
WO2006051664A1 (ja) 赤外線透過性カバー
CN101057341B (zh) 红外线透射盖子
CN206179425U (zh) 电子设备
US10953635B2 (en) Laminated glazing with coloured reflection and high solar transmittance suitable for solar energy systems
US20130063810A1 (en) Infrared-transmitting cover
CN110933888B (zh) 壳体组件、壳体组件的制备方法及电子设备
CN105873760B (zh) 透明层状元件
TWI376317B (en) Decorative plates for casing and casing
TWI353567B (en) Protective plate for a display of an electronic de
TWI637328B (zh) 一種傳感器組件和終端
CN110838262B (zh) 盖板组件、盖板组件的制备方法及电子设备
CN100565248C (zh) 新型抗反射导电膜
CN103813667B (zh) 用于便携式终端的窗构件及其制造方法
CN112305654A (zh) 电子设备中的纹理化玻璃层
JP6763402B2 (ja) 反射型透明スクリーン
JP2001249221A (ja) 透明積層体とその製造方法およびプラズマデイスプレイパネル用フイルタ
JP2010243436A (ja) 赤外線センサ機器
JP2010201644A (ja) 装飾体及びその製造方法
KR20180116566A (ko) 적층 시스템
CN103770393B (zh) 一种窗膜
CN108845469A (zh) 一种颜色可任意定制的电致变色器件及应用
JP5262039B2 (ja) 光学薄膜積層体
TW200931977A (en) Monitoring of coated substrate imaging
JP2010201652A (ja) 装飾体及びその製造方法
TW202120323A (zh) 積層體

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580038563.9

Country of ref document: CN

Ref document number: 2005790663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077011684

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005790663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11667568

Country of ref document: US