WO2006049164A1 - 結像光学レンズユニット、及び光学レンズホルダー - Google Patents

結像光学レンズユニット、及び光学レンズホルダー Download PDF

Info

Publication number
WO2006049164A1
WO2006049164A1 PCT/JP2005/020103 JP2005020103W WO2006049164A1 WO 2006049164 A1 WO2006049164 A1 WO 2006049164A1 JP 2005020103 W JP2005020103 W JP 2005020103W WO 2006049164 A1 WO2006049164 A1 WO 2006049164A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical lens
lens holder
resin
central axis
molded
Prior art date
Application number
PCT/JP2005/020103
Other languages
English (en)
French (fr)
Inventor
Kozo Tada
Masahiro Arai
Shingo Hayashibe
Original Assignee
Citizen Miyota Co., Ltd.
Shinshu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Miyota Co., Ltd., Shinshu University filed Critical Citizen Miyota Co., Ltd.
Priority to JP2006542399A priority Critical patent/JPWO2006049164A1/ja
Publication of WO2006049164A1 publication Critical patent/WO2006049164A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles

Definitions

  • the present invention relates to an imaging optical lens unit and an optical lens holder.
  • a camera module includes an image sensor such as an image sensor that also has a CCD and a CMOS force, and is used as an image pickup means for a mobile phone and a small electronic still camera.
  • an image sensor such as an image sensor that also has a CCD and a CMOS force
  • the factory is also demanding high image quality from the camera module. For this reason, the number of pixels in the image sensor provided in the camera module is increasing.
  • the camera module is configured by combining an imaging optical lens unit with an imaging sensor.
  • the optical lens holder for positioning the lens is molded with a resin so that the imaging optical lens unit is made inexpensive. Adopting the above configuration meets the demands of the factory.
  • the imaging optical lens unit is composed of a plurality of lenses.
  • the concentricity of the optical axis of each lens is required to be several microns or less, and the optical axial force of each lens.
  • Imaging optical lens unit The optical axis must be tilted within a few minutes.
  • the lens diameter of recent imaging optical lens units is becoming smaller, and accordingly, the lens barrel (optical lens holder) of the imaging optical lens unit is also required to have a small shape error. ing. Along with this, moldability for achieving precise shapes is also required for the resin used in injection molding.
  • the resin is a structural material
  • the mechanical strength and rigidity of the resin itself are often insufficient.
  • an additive typified by glass fiber is mixed with the resin to increase the strength. And ensure rigidity.
  • the glass fiber has a diameter of several micrometers or more and a length of several hundred micrometers. Therefore, when viewed from a microscopic viewpoint, the glass fiber is regarded as a large composition, and when it is viewed in micrometer units, the formed resin molding cannot be regarded as homogeneous.
  • FIG. 19 shows a micrograph of a material formed by kneading glass fibers in PC (polycarbonate). As shown in FIG. 19, it is observed that the periphery of the glass fiber is insufficiently filled with resin.
  • the glass fiber added to the resin flows while being rubbed with the mold during molding.
  • the mold is usually formed using an iron-based material. For this reason, the flow velocity becomes small in a narrow portion where the frictional force with the glass fiber is large. It is pointed out that accurate transfer of the fine shape of the mold is difficult because of the poor fluidity at the time of injection molding, which is difficult to fill in a minute space.
  • the design of thin-walled molded products also determines the functional and space demands, so that the design cannot be easily changed because of forces such as deformation, sink marks, and filling defects.
  • a disk-shaped or cylindrical shaped body is symmetrical with respect to the central axis, and such a member that is symmetrical with respect to the central axis is not used.
  • the above-described deformation has a great influence and becomes a big obstacle when combining them.
  • the injection molding conditions of the optical lens holder and the lens, and the change of the mold including the gate position are changed.
  • efforts are made to improve the shape accuracy of the unit as much as possible.
  • Molded lens is light Assembling is done by pushing into the lens holder. Accordingly, the imaging optical lens unit obtained by combining the lens and the optical lens holder satisfies the target performance.
  • the occurrence of a certain degree of defect is permitted at the stage of the manufacturing process of the optical lens or the optical lens holder alone, and the inspection is performed at the stage of the imaging optical lens unit formed by combining the optical lens and the optical lens holder. Therefore, good / bad judgment is made. After each single unit is manufactured, it is at best only to manage the rotational position of the lens around the optical axis.
  • the molded product has a molding quality that is higher than the current molding technology level, and it takes time and money to correct the mold and determine the molding conditions.
  • the conventional imaging optical lens unit is caused by factors caused by fluidity due to the additive added to the fat, thermal expansion coefficient and thermal conductivity of the fat itself. Yo Therefore, there is a problem in terms of molding accuracy when the optical lens holder is injection molded.
  • the formation accuracy of the optical lens holder causes an axial shift in the central axes of the plurality of lenses, and affects the alignment of the central axes of the plurality of lenses required for the imaging optical lens unit. It will also be.
  • the carbon nanofiber is a high aspect ratio carbon fiber having a diameter of submicrometer and a length of several tens of microns. It has been confirmed that carbon nanofibers have high strength just by being thin and long, and have extremely high cutting resistance against bending, and are not broken or cut even when bent at an acute angle.
  • the carbon nanofiber is as high as metal and has thermal conductivity. In addition, it is thermally stable and has the property that it is not denatured at all in the temperature range used for molding the resin. Furthermore, since it is composed of almost pure carbon atoms, it does not contaminate the resin or cause chemical changes.
  • the longitudinal elastic modulus of a mixture of resin and carbon nanofibers injection molded is
  • Non-Patent Document 1 Morinobu Endo “Back of the field, the tip of science.” Bunya 2004, page 99-1
  • Non-Patent Document 2 Proceedings of the Japan Society of Mechanical Engineers (No03-ll) Materials Mechanics Division Lectures 111-112 Disclosure of the invention
  • the present invention solves the above-mentioned conventional problems, and in the imaging optical lens unit, the fluidity caused by the additive added to the resin, the thermal expansion coefficient, the heat conductivity of the resin itself.
  • the purpose is to improve the accuracy of the shape by eliminating the problem of the accuracy of injection molding of the optical lens holder due to the factors caused by the properties.
  • the present invention relates to an aspect of an optical lens unit and an aspect of an optical lens holder.
  • the present invention can be applied to a plurality of modes of the optical lens unit and the optical lens holder.
  • the present invention includes, as a plurality of forms, a first form that improves the shape accuracy of an optical lens holder by injection molding, a second form that suppresses distortion that occurs during injection formation in a disc-shaped or cylindrical optical lens holder. And a plurality of labels in the optical lens holder. There is a third form that easily adjusts the center axis.
  • the first embodiment of the present invention includes two or more optical lenses and an optical lens holder for relatively positioning and fixing each of the optical lenses.
  • Each optical lens includes a vertical reference plane that is perpendicular to the lens optical axis and a concentric reference plane that is parallel to the lens optical axis and has a concentric central axis.
  • the optical lens holder includes a vertical seating surface and a concentric reference wall.
  • the vertical seating surfaces are perpendicular to the central axis and parallel to each other, abutting the vertical reference surface of the optical lens, and the concentric reference wall has a central axis parallel to the central axis and concentric, and the concentric reference surface of the optical lens holder It has a hole shape with a diameter smaller than the straight diameter.
  • the optical lens holder is molded with resin and contains carbon nanofibers in the form of multilayer tubes having a diameter of 80 to 300 nanometers and a length of 1 to 200 microns as additives. .
  • the content of this content is in the range of 1 to 20% by weight.
  • the resin material constituting the optical lens holder can be a thermoplastic resin material, for example, polybutylene terephthalate.
  • the carbon nanofiber is a high aspect ratio carbon fiber having a diameter of submicrometer and a length of several tens of microns. It has been confirmed that carbon nanofibers have a high tensile strength just by being thin and long, have extremely high resistance to bending, and do not break or cut when bent at an acute angle. It is also known to have high thermal conductivity similar to metals. In addition, it is thermally stable in the temperature range used for molding the resin, and does not cause chemical modification of the resin.
  • Carbon nanofibers can be dispersed throughout a very fine resin compared to glass fibers.
  • Table 1 shows the conditions for injection molding of a molding material in which 5% by weight of VGCF (carbon nanofiber) is mixed with a mixed material of PBT and PC, and VGCF is not added. ⁇ Mixed material of PBT and PC The conditions for injection molding are shown.
  • the injection molding apparatus used is an injection molding apparatus of a type in which a screw is measured and filled in a mold with a plunger, and TR18S3 manufactured by Sodick Plastic Co. is used.
  • Table 1 shows that the molding material in which 5% by weight of VGCF is kneaded has good flowability with low PV switching pressure and maximum filling pressure.
  • the molding material in which 5% by weight of VGCF is kneaded has a back pressure of less than half, which means that the molding material was smoothly filled in the mold and the fluidity was improved.
  • Figure 1 shows the measurement data showing the relationship between the mixing ratio of VGCF and fluidity in PBT
  • Table 2 shows the numerical values.
  • the fluidity is evaluated by holding pressure. In the measurement, the pressure value at the screw position (10 mm) just before the end of molding is used as the holding pressure.
  • the temperature of the resin during molding can be transferred quickly to the entire molded product, and a more uniform temperature distribution can be expected. Less deformation is expected. As a result, the shape accuracy of the thin cylindrical portion for positioning the lens is improved.
  • Fig. 2 shows a fracture surface of a material formed by mixing 5% by weight of VGCF with PBT.
  • the image example in Fig. 2 (a) has a magnification of 7000x
  • the image example in Fig. 2 (b) has a magnification of 5000x.
  • the white thread-like object force SVGCF can be confirmed to be uniformly dispersed.
  • FIG. 3 shows the surface of a molded product formed of a material obtained by kneading VGCF in PBT.
  • FIG. 3 shows the same magnification as FIG. In the surface image shown in Figure 3,
  • CD VGCF cannot be confirmed. Note that the diagonal streaks in the image are the transfer of machining marks remaining on the mold surface, the granular structure is the effect of dust adhering to the mold, and the center line is the weld line.
  • the carbon nanofiber has high tensile strength, and it is expected that the mechanical strength is improved according to the amount mixed with the resin.
  • FIG. 4 and FIG. 5 are graphs obtained by measuring the Young's modulus of a material obtained by mixing carbon nanofibers with PBT (polybutylene terephthalate) and PC (polycarbonate).
  • FIG. 4 shows the kneading ratio up to 5 wt%
  • FIG. 5 shows the case where the kneading ratio is 5 wt% to 20 wt%.
  • Table 3 shows Young's modulus values.
  • the Young's modulus of PC increases almost in proportion to the amount of VGCF (carbon nanofiber).
  • the Young's modulus of a material that is 5% by weight of VGCF mixed with PBT is 3. lGPa. This Young's modulus is about the same as that of PBT mixed with about 5% glass fiber.
  • the carbon nanofibers have a linear expansion coefficient that decreases in proportion to the amount mixed with the resin. Therefore, the shrinkage when taking out the molded product from the mold is small, and it can be taken out in a colder state than normal molding. Generally, since the rigidity of the resin is higher as the temperature is lower, the deformation of the molded product due to internal stress can be suppressed by taking out the molded product at a lower temperature.
  • FIG. 6 is a graph obtained by measuring the linear expansion of a material obtained by mixing carbon nanofibers with PBT (polybutylene terephthalate). The amount of linear expansion decreases with the amount of VGCF (carbon nanofiber).
  • the measured specimen length is 10mm and the temperature range is 20 ° C ⁇ 140 ° C.
  • the material kneaded with VGCF has the same mechanical properties as 5 to 10% by weight of glass fiber, and also has glass fiber! ⁇ . Due to its properties, it can realize injection molding that can be filled quickly and has little deformation at high temperatures.
  • the imaging optical lens unit and its optical lens holder by applying carbon nanofibers to the imaging optical lens unit and its optical lens holder, it has good fluidity, high thermal conductivity, and high tensile strength. Due to strength and low linear expansion coefficient, molding can be performed with better shape accuracy compared to conventional molds made of a resin material, and the lens can be positioned at a position close to the design value. Quality is obtained. [0075] Further, defects generated in the inspection after assembly are reduced, and improvement in profitability can be expected. In addition, with a device capable of position control with 6 degrees of freedom for each lens, the best lens position is determined while taking a picture or chart, and the lens is fixed by a method such as adhesion. Therefore, the lens position can be fixed with a simpler device.
  • the carbon nanofiber has high thermal conductivity. Due to this high thermal conductivity, the completed imaging optical lens unit has the advantage that heat can be quickly uniformized, the generation of thermal stress can be suppressed, and it is resistant to thermal shock, leading to improved environmental resistance. .
  • the carbon nanofiber is much thinner than the glass fiber and does not hinder the flow of the resin in the mold if the amount mixed with the resin is set appropriately.
  • the microstructure of the mold of the imaging optical lens unit can be filled, so that a fine and detailed design is possible, the accuracy of the molding wall thickness can be increased, and the smaller and more precise.
  • a simple imaging optical lens unit can be designed.
  • the shape accuracy can be improved.
  • the optical lens holder has a disk-like or cylindrical shape, and this shape surrounds the injection molding resin injection gate around the central axis.
  • the inner wall is provided with a continuous or equiangular interval.
  • the disc-shaped or cylindrical optical lens holder is symmetric about the central axis.
  • the gate arrangement is such that the resin flows radially from the center of the injection molded part, the resin is directed from the center to the outer periphery. After flowing, it is assumed that it flows in the direction parallel to the central axis at the outer periphery.
  • the flow of the radial force resin outward from the center of the injection molded part is continuously or equiangularly spaced on the inner wall surrounding the central axis of the optical lens holder. This is realized by the gate arrangement.
  • the resin flows symmetrically with respect to the central axis of the disc-shaped or cylindrical optical lens holder.
  • the occurrence of nonuniformity of the resin is suppressed, and as a result, the occurrence of molding distortion is also reduced.
  • the gate arrangement described above can be realized by adopting the above-described carbon nanofiber as an additive to be added to the resin.
  • the size of the gate opening for injecting the resin into mold cavities with poor fluidity due to the glass fiber additive cannot be set small (for example, 0.2 mm).
  • the gate opening size can be made small and arranged radially.
  • the molding accuracy is improved, and the center of the circle inscribed in the cylindrical inner diameter of the actually molded barrel Can be close to the design center of the lens barrel.
  • the shape of the deformation that occurs is expected to be symmetric about the central axis, and when the lens is pushed into the optical lens holder, the center of the lens is close to the center of the inscribed circle, The lens can be positioned correctly.
  • the second embodiment of the present invention can be applied not only to the optical lens holder but also to injection-molded parts.
  • this injection-molded part it is an injection-molded part molded with a resin, and the resin contains at least one kind of additive, and the additive has a diameter of 80 nanometers or more.
  • It is a carbon nanofiber in the form of a multi-layer tube with a length of 300 nanometers or less and a length of 1 micrometer or more and 200 micrometers or less. It has a shape and is configured to have injection molding resin injection gates on the inner wall that surrounds the central axis of the injection molded part, either continuously or at equiangular intervals. According to the second embodiment, it is possible to suppress the deformation of the disk-shaped or cylindrical shaped body.
  • the third embodiment relates to an optical lens holder, which is a cylindrical optical lens holder that accommodates a disk-shaped optical lens therein.
  • the molded part shall be a resin containing carbon nanofibers in the form of multi-layer tubes having a diameter of 80 to 300 nanometers and a length of 1 to 200 microns as an additive.
  • the longitudinal elastic modulus and the linear expansion coefficient of the molded member are set to be smaller than the longitudinal elastic modulus and the linear expansion coefficient of the molded member for molding the optical lens.
  • the longitudinal elastic modulus of the molded part shall be in the range of 1.6 GPa to 3. lGPa, and the linear expansion coefficient of the molded part shall be in the range of 5 X 10-5 to 9 X 10 5 [mZm.k]. Therefore, it can be set according to the longitudinal elastic modulus and linear expansion coefficient of the optical lens.
  • VGCF carbon nanofibers
  • PP polypropylene
  • the linear expansion coefficient can be obtained by kneading 1 to 7% by weight of VGCF (carbon nanofiber) in PBT (polybutylene terephthalate).
  • Polyolefin resin is a material often used for the resin optical lens.
  • the material has a transverse elastic modulus of 1.7 GPa to 3. lGPa.
  • the linear expansion coefficient is 6 ⁇ 10 ⁇ 5 to 9 ⁇ 10 ⁇ 5 [/ ⁇ k].
  • the lower limit of 1.6 GPa of the longitudinal elastic modulus of the molded member described above is equivalent to this value, based on the lower limit of 1.7 GPa of the longitudinal elastic modulus of the optical lens made of polyolefin olefin resin. Set a value smaller than the value.
  • the upper limit of 3. lGPa of the longitudinal elastic modulus of the molded part is based on 3. lGPa, which is the upper limit of the longitudinal elastic modulus of the optical lens made of polyolefin resin, and is equal to this value, but smaller than this value. Determined by This value is obtained, for example, a 5 wt 0/0 Mix things VGCF in PBT.
  • the elastic modulus of ordinary reinforcing grade obtained by mixing glass fiber with about 20% by weight is 6GPa, which is larger than that of optical lenses.
  • the elastic coefficient is adjusted from 1.7 GPa to 3. lGPa using a VGCF kneaded material, a flexible optical lens holder whose rigidity is less than half that of the material containing glass fiber can be obtained. Can be made.
  • the linear expansion coefficient of the optical lens holder equal to or less than the linear expansion coefficient of the optical lens, the optical lens performance can be improved.
  • the linear expansion coefficient of the material of the optical lens holder lower than the linear expansion coefficient of the optical lens material, the expanded optical lens can be held by tightening in a high temperature environment.
  • a material having a low coefficient of linear expansion has high rigidity even at a high temperature. Therefore, when the linear expansion coefficient of the optical lens holder is significantly different from the linear expansion coefficient of the optical lens that decreases, the optical lens expands more than the optical lens holder. Therefore, the expansion of the optical lens is strongly suppressed by the optical lens holder, and the optical lens is stressed and deformed. If the stress is within the yield stress, the deformation will be restored upon return to normal temperature, but if the stress exceeds the yield stress, the deformation may not be restored upon return to normal temperature.
  • a uniform shape can be obtained with good fluidity, high thermal conductivity, high tensile strength, and low linear expansion coefficient obtained by using carbon nanofibers as an additive.
  • the optical lens holder can be injection molded, and the longitudinal elastic modulus and linear expansion coefficient are equal to or less than that of the optical lens, so that flexibility when fitting the optical lens can be provided. .
  • the inner diameter portion of the optical lens holder is deformed so as to follow the outer diameter portion of the optical lens due to its flexibility, and the deviation between the central axis of the optical lens holder and the central axis of the optical lens is suppressed. Can do. As a result, when a plurality of lenses are combined, the amount of deviation of the central axis of each lens is reduced, and deterioration in quality as an imaging optical lens unit is suppressed.
  • the central axes of the plurality of lenses can be easily aligned in the optical lens holder.
  • the fluidity resulting from the additive added to the resin, the thermal expansion coefficient, the thermal conductivity of the resin itself eliminates the problem of molding accuracy when the optical lens holder is injection-molded due to the factors caused by this, and increases the shape accuracy.
  • Fig. 1 shows measured data showing the relationship between the mixing ratio of VGCF and fluidity in PBT.
  • Fig. 2 is an image showing a fracture surface of a PBT molded from a material in which 5% by weight of VGCF is kneaded.
  • FIG. 3 is an image showing the surface of a PBT molded with a material in which VGCF is kneaded.
  • Fig. 4 is a measurement graph of Young's modulus of a material in which carbon nanofibers are mixed with PBT or PC.
  • Fig. 5 is a measurement graph of Young's modulus of a material in which carbon nanofibers are mixed with PBT.
  • Figure 6 is a measurement graph of the amount of linear expansion of a material in which carbon nanofibers are mixed with PBT.
  • FIG. 7 is a diagram showing a cross-sectional view along the optical axis of the imaging optical lens unit.
  • FIG. 8 is a cross-sectional perspective view of a cylindrical injection molded part.
  • FIG. 9 is a cross-sectional perspective view of a cylindrical injection molded part.
  • Fig. 10 shows the direction of the central axis showing the flow of resin when molding a cylindrical injection molded part. It is sectional drawing of a direction.
  • FIG. 11 is a cross-sectional view in the direction perpendicular to the central axis showing the flow of resin when molding a cylindrical injection molded part.
  • FIG. 12 is a perspective view of a disk-shaped injection molded part.
  • FIG. 13 is a diagram for explaining a configuration example according to the second embodiment of the present invention.
  • FIG. 14 is a diagram showing the variation in thickness at each measurement location according to each molding condition.
  • FIG. 15 is a view for explaining an assembled state in which an optical lens is fitted into the optical lens holder of the present invention.
  • FIG. 16 is a view of the force in the central axis direction of the optical lens holder.
  • FIG. 17 is a view of the optical lens in which the axial force is also seen.
  • FIG. 18 is a view for explaining an assembled state in which an optical lens is fitted in a conventional optical lens holder.
  • FIG. 19 is a photomicrograph of a material formed by kneading glass fiber in PC (polycarbonate).
  • the first form relates to a form for improving the shape accuracy of the optical lens holder by injection molding.
  • FIG. 7 shows a cross-sectional view along the optical axis of the imaging optical lens unit.
  • the imaging optical lens unit includes optical lenses 1 to 3 and an optical lens holder 4.
  • the optical lenses 1 to 3 are attached so that each optical axis coincides with the optical axis of the optical lens holder 4.
  • the optical axis 8 in a matched state is indicated by a one-dot chain line.
  • the optical lenses 1 to 3 are fixed to the optical lens holder 4 with adhesives 5 to 7.
  • the optical lens holder 4 has a cylindrical shape, and the optical lenses 1 to 3 have a flat disk shape.
  • FIG. 8 shows the components of the imaging optical lens unit separated from each other and arranged in a cross-section along the optical axis in order to see the components easily.
  • Each optical lens includes a vertical reference plane perpendicular to the lens optical axis and a concentric reference plane having a central axis parallel to the lens optical axis.
  • the optical lens 1 includes a vertical reference surface 15 perpendicular to the lens optical axis 8 and a concentric reference surface 16 having a central axis parallel to the lens optical axis 8 and the optical lens 2 includes the lens optical axis.
  • 8 has a vertical reference surface 17 perpendicular to 8 and a concentric reference surface 18 having a central axis parallel to and concentric with the lens optical axis 8
  • the optical lens 3 has a vertical reference surface 19 perpendicular to the lens optical axis 8 and the lens light.
  • Concentric reference plane 20 having a central axis parallel to axis 8 and concentric.
  • the optical lens holder 4 has a vertical seating surface that is perpendicular to the central axis 8 and parallel to each other and abuts against the vertical reference surface of the optical lens in order to position the optical lenses 1 to 3.
  • a hole-shaped concentric reference wall having a central axis parallel to the central axis 8 and having a diameter smaller than the diameter of the concentric reference surface of the optical lens.
  • the optical lens holder 4 includes a vertical seating surface 9 that contacts the vertical reference surface 15 of the optical lens 1, a vertical seating surface 11 that contacts the vertical reference surface 17 of the optical lens 2, and the vertical of the optical lens 3.
  • Each of the vertical seating surfaces 13 is in contact with the reference surface 19, and has a concentric reference wall 10 corresponding to the concentric reference surface 16 of the optical lens 1 and a concentric reference wall 12 corresponding to the concentric reference surface 18 of the optical lens 2.
  • concentric reference walls 14 corresponding to the concentric reference surface 20 of the optical lens 3.
  • FIGS. 7 and 8 the optical axes of the optical lens holder and the optical lens are shown as a common optical axis 8 on the assumption that the optical axes coincide with each other.
  • Each of the optical lens 1, the optical lens 2, and the optical lens 3 has an aspherical shape of lens action.
  • This aspherical shape is a portion indicated by a curved line in FIGS. Since the aspheric shape itself is not directly related to the present invention, the description is omitted.
  • the vertical reference plane and concentric reference plane of each lens are assumed to be correct with respect to the optical axis.
  • FIGS. 7 and 8 detailed shapes such as lens surface shapes and chamfers that are not directly related to the description of the present invention, and spacers are omitted.
  • the optical lens holder 4 contains at least one additive.
  • As an additive use V-shaped VGCF and carbon nanofibers in the shape of a multilayer tube with a diameter of 80 to 300 nanometers and a length of 1 to 200 micrometer.
  • the kneading ratio is in the range of 1 to 20% by weight, and it is added to the resin and molded.
  • Mechanical rigidity is improved by mixing carbon nanofibers with rosin.
  • PBT has the property that the proportion of VGCF increases from 1 wt% to about 50 wt%, and the linear expansion coefficient can be reduced while ensuring fluidity. Suitable for holding barrel material.
  • the holder of the imaging optical lens unit formed of a resin material mixed with carbon nanofibers is a conventional holder. It can exhibit better performance than the holder molded by this method.
  • the second form relates to a form for suppressing molding distortion of a disk-shaped or cylindrical shaped body such as an optical lens holder.
  • a disk-shaped or cylindrical injection-molded part will be described as an example.
  • an optical lens holder that holds a disk-shaped optical lens is suitable.
  • FIG. 9 is a cross-sectional perspective view of a cylindrical injection molded part.
  • the injection-molded part 21 is a cylindrical body having a cylindrical wall portion concentrically as the central axis 23.
  • the cylindrical body includes a gate 22 for injecting a resin to be injection molded.
  • the gate 22 shown in FIG. 9 is formed continuously or equiangularly in an annular shape on the inner wall on one end side of the cylindrical body.
  • Fig. 10 is a cross-sectional view showing the flow of resin when molding a cylindrical injection-molded part, and shows the flow of resin including the central axis.
  • the arrow 24 in FIG. 10 indicates the flow of the grease.
  • the grease injected from the gate 22 flows radially from the center toward the outer periphery, reaches the outer wall portion of the cylindrical body, and then reaches the central axis 23. It flows along the direction and forms the cylindrical wall part of the cylindrical body.
  • the cylindrical body has a cylindrical opening formed at a central portion passing through the central axis 23.
  • the optical lens is held on the inner wall portion of the opening.
  • FIG. 11 is a cross-sectional view showing the flow of resin when molding a cylindrical injection-molded part, and shows the flow in a direction orthogonal to the central axis.
  • the arrow 25 in FIG. 11 indicates the direction in which the grease flows, and the grease injected from the gate (not shown in FIG. 11) flows radially in the direction of the arrow 25 from the center toward the outer periphery.
  • the gate 22 is disposed in a thin strip shape so as to draw a circle on the inner wall of the injection molded part 21. Since the gate 22 is symmetric with respect to the central axis 23 of the injection-molded part 21, the flow direction of the grease indicated by the arrows 24 and 25 in FIGS. Filled in.
  • FIG. 12 is a perspective view of a disk-shaped injection molded part.
  • the disk-shaped injection-molded part 26 has a substantially annular or donut shape with a central axis 28 as the center, and an opening is formed in the central portion through which the central axis 28 passes.
  • the optical lens is held on the inner wall portion of the opening.
  • the injection molded part 26 has a gate 27 on the inner wall portion of the opening.
  • the resin injected from the gate 27 flows radially from the center side toward the outer periphery.
  • the gate 27 is disposed on the inner wall of the injection-molded component 26 in a thin strip shape at equiangular intervals around the central axis 28. Since the gate 27 is axisymmetric with respect to the central axis 28 of the injection-molded part 26, the grease flows and fills in the direction indicated by the grease flow arrow 29 in FIG.
  • the injection molded resin injection gate is continuously or equiangularly spaced so as to surround the central axis of the injection molded part. By arranging it on the inner wall, it is possible to fill the resin by flowing the axillary axisymmetrically with respect to the central axis.
  • the carbon nanofiber 1 exhibits high fluidity when kneaded at about 1% by weight, but improvement in rigidity and heat resistance can be realized by devising the kneading ratio. However, if the carbon nanofiber kneading ratio exceeds 10% by weight, the fluidity deteriorates. Therefore, the range of 3 to LO weight% is preferable, and an appropriate kneading ratio considering the balance between strength and fluidity. Set.
  • the second embodiment of the present invention is particularly effective when the injection-molded part is small and sufficient space is not available for installing the resin injection gate, and is a disk-shaped or cylindrical injection-molded part. Injection molding is possible even when the thickness of the cross section of the gate provided on the inner wall of the product is 0.2 mm or less.
  • FIG. 13 is a diagram for explaining a configuration example according to the second embodiment of the present invention. Here, an example of a thin part having a thickness of 0.18 mm is shown. The numbers in FIG. 13 indicate the measurement points where the thickness variation is measured.
  • Table 4 shows the molding conditions for injection molding
  • Table 5 shows the variation in thickness at each measurement location according to each molding condition.
  • FIG. 14 illustrates the results of Table 5.
  • the injection speed increases as the fluidity of the resin improves.
  • the measurement examples No. 3 to No. 5 even if the injection pressure is increased, if the flow velocity is low, the viscosity increases due to heat dissipation and a good flow cannot be obtained, so the thickness decreases.
  • the third mode relates to a mode in which the central axes of a plurality of lenses are easily aligned in the optical lens holder.
  • FIG. 15 is a view for explaining an assembled state in which the optical lens is fitted into the optical lens holder of the present invention.
  • FIG. 18 shows an assembled state in which an optical lens is fitted into a conventional optical lens holder.
  • a resin kneaded with VGCF is used as a material for the optical lens holder.
  • the optical lens holder 40 includes an inner diameter portion 41, and the outer diameter portion 44 of the optical lens 43 is fitted into the inner diameter portion 41. It should be noted that the center axis 42 of the optical lens holder 40 and the center axis 45 of the optical lens 43 do not always coincide with each other, and an axis deviation occurs.
  • circle 49 represents the ideal circle of the virtual.
  • FIG. 16 is a diagram showing the central axial force of the optical lens holder.
  • the optical lens holder 31 includes an inner diameter portion 32 and a central shaft 33.
  • FIG. 17 is a view of the optical lens viewed from the central axis direction, and is fitted into the optical lens holder 31.
  • the optical lens 34 includes an outer diameter portion 35 of the lens and a central axis 36 of the lens.
  • FIG. 18 shows an assembled state in which an optical lens is fitted into a conventional optical lens holder.
  • the inner diameter portion 37 of the optical lens holder 31 and the outer diameter portion 35 of the optical lens 34 are both deformed.
  • the optical lens 34 is fitted into the optical lens holder 31.
  • Fig. 5 is a conventional assembly state diagram in which the optical lens 34 is fitted in the optical lens holder 31 and the force in the central axial direction is also seen.
  • 37 is a slightly deformed inner diameter portion of the optical lens holder 31, and 38 is a slightly deformed outer diameter portion of the optical lens 34. 16 to 18, the deviation from the virtual ideal circle 39 is drawn with emphasis.
  • the shape accuracy of the optical lens holder is improved by injection molding with a material in which carbon nanofibers are kneaded with a resin, but FIG. As shown in Fig. 17, the error of several micrometers cannot be completely eliminated.
  • the optical lens 34 is inserted into the optical lens holder 31 as shown in FIG. 35 is deformed and the center axis 36 is offset from the center axis 33 of the optical lens holder 31.
  • the central axis 36 of each lens is slightly shifted, resulting in a problem that the quality of the imaging optical lens unit is greatly deteriorated.
  • the elastic modulus of the material mixed with about 20% by weight of glass fiber is 6GPa.
  • This elastic modulus is a normal reinforced grade.
  • the stiffness represented by the numerical value of the elastic modulus is higher than the stiffness of an optical lens made of polyolefin resin. If a low-rigidity optical lens is installed in such a high-rigidity optical lens holder, the optical lens side will absorb the misalignment of the central axis. The characteristics may deteriorate.
  • the rigidity is less than half of the material containing glass fiber. It is possible to make a flexible optical lens holder with the same elastic modulus as that of an optical lens made of polyolefin resin.
  • Polyolefin resin is a material frequently used for resin optical lenses.
  • the longitudinal elastic modulus of the material is 1.7 GPa to 3.
  • lGPa and the linear expansion coefficient is 6 X 10-5 to 9X10-5.
  • the longitudinal elastic modulus is about 3. lGPa, and the linear expansion coefficient is 6.6 X 10 — It is about 5th power. This value is close to that of a normal optical lens.
  • the longitudinal elastic modulus of a certain grade of polyolefin resin is 2.lGPa, and the linear expansion coefficient is 7 ⁇ 10 to the fifth power.
  • the longitudinal elastic modulus is 2.7 GPa, which can be closer to the optical lens.
  • VGCF has high fluidity when kneaded at about 1% by weight.
  • a kneading ratio it is possible to improve rigidity and heat resistance.
  • an appropriate mixing ratio will be adopted in consideration of rigidity and fluidity. For example, about 1 to 7% by weight is preferable.
  • Carbon nanofibers are much thinner and more flexible than glass fibers, and in order to increase the fluidity of the resin, the flow of the resin is fast and smooth even in narrow channels. Therefore, the accuracy of molding wall thickness is higher than that of conventional grease.
  • the elastic coefficient can be made at least equal to that of the optical lens to make the optical lens holder flexible and uniform. it can.
  • the inner diameter portion 41 of the optical lens holder 40 is the same as the optical lens 4.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Lens Barrels (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 光学レンズホルダーを、直径80ナノメートル以上300ナノメートル以下、長さ1ミクロンメートル以上200ミクロンメートル以下の多層チューブ形状のカーボンナノファイバーを添加物として含有する樹脂で成形し、この含有物の含有割合は1~20重量%の範囲とする。これによって、結像光学レンズユニットにおいて、樹脂に加える添加物に起因する流動性や、樹脂自体が持つ熱膨張率、熱伝導性に起因する要因による、光学レンズホルダーを射出成形する際の形成精度の問題を解消して、形状精度を高め、また、複数のレンズの中心軸の軸ズレを防いで、複数のレンズの中心軸の軸合わせを容易とする。

Description

明 細 書
結像光学レンズユニット、及び光学レンズホルダー
技術分野
[0001] 本発明は、結像光学レンズユニット、及び光学レンズホルダーに関する。
背景技術
[0002] カメラモジュールは CCDや CMOS力も構成されるイメージセンサなどの撮像センサ 一を備え、携帯電話や小型電子スチルカメラの撮像手段として採用されている。近年 、このカメラモジュールは小型化や低価格ィ匕が進む一方で、巿場はカメラモジュール に高い撮影画質も求めている。そのため、カメラモジュールが備える撮像センサーの 画素数は増加してきている。
[0003] カメラモジュールは、撮像センサーに結像光学レンズユニットを組み合わせることで 構成される。
[0004] このカメラモジュールの小型化は、結像光学レンズユニットが備えるレンズを薄くし、 積層する構造とすることで進めて 、る。
[0005] また、非球面榭脂レンズを採用することによって高画質と低価格の両方に対応する こともされている。さらに、そのレンズを位置決めする光学レンズホルダーを榭脂成形 することで結像光学レンズユニットを安価として 、る。上記の構成を採用することで巿 場の要求に対応している。
[0006] 通常、結像光学レンズユニットは複数のレンズで構成される。このような結像光学レ ンズユニットにお 、ては、それぞれのレンズの相対的な位置関係が設計した位置に あるかどうかが非常に重要であることが知られている。このレンズの位置関係は、光学 設計ツールによってシミュレーションを行うことができる。
[0007] 前述したように、複数のレンズで構成される結像光学レンズユニットにお 、ては、そ れぞれのレンズが相対的に設計した位置にあるかどうかが非常に重要である。しかし 、従来の榭脂成形のレンズホルダーは、レンズの位置決め部品として十分な精度を 持っていない。通常の射出成形の寸法精度は、数 mmの大きさの小型部品成形では せいぜい 10〜20ミクロンメートル程度である。また、幾何公差精度、例えば平面度に 関しても同レべノレである。
[0008] ところが、レンズの設計上の要求からは、各レンズの光学軸の同心度は数ミクロンメ 一トル以下であることが求められ、かつ、それぞれのレンズの光学軸力 結像光学レ ンズユニットの光学軸と数分以内の傾きでなければならないことが求められる。
[0009] 最近の結像光学レンズユニットのレンズ径は小さくなつてきており、これに伴って、 結像光学レンズユニットの鏡筒(光学レンズホルダー)についても、形状誤差が小さ いことが要求されている。これに伴って、射出成形に用いられる榭脂についても、精 密な形状を実現するための成形性が求められる。
[0010] 例えば、直径 3mmのレンズの傾きを 7分以内にしたい場合は、レンズ直径の両端 で 6. 4ミクロンメートル以内の高さの差しか許されない。
[0011] これは、一般的な設備で通常の成形材料を使用して成形した場合においては達成 することが難しい数値である。
[0012] また、榭脂を構造材料とした場合、榭脂そのものの機械強度や剛性では不足な場 合が多ぐほとんどの場合、ガラスファイバーを代表とする添加物を榭脂に混ぜて強 度や剛性を確保している。
[0013] 通常、ガラスファイバーの直径は数ミクロンメートル以上であり、長さは数百ミクロンメ 一トルある。そのため、微視的な視点で見た場合には、ガラスファイバ一は大きな構 成物と見なされ、ミクロンメートル単位で見たとき、生成された榭脂成形物は均質とは 見なせない。
[0014] 図 19は、 PC (ポリカーボネート)にガラスファイバーを混練して成形された材料の顕 微鏡写真を示している。図 19に示すように、ガラスファイバーの周辺には、榭脂の充 填が不足して 、ることが観察される。
[0015] 榭脂に添加されたガラスファイバ一は、成形時に金型とこすれながら流動する。金 型は、通常、鉄系の材料を使用して形成される。そのため、ガラスファイバーとの摩擦 力は大きぐ狭い部分では流動速度が小さくなる。細密な空間には充填しにくぐ射 出成形時の流動性の悪さも手伝って、金型の微細な形状に対する正確な転写が困 難であることが指摘されて 、る。
[0016] 本発明が対象とする結像光学レンズユニットのような小型の部品においては、成形 品の薄肉部分を形成する金型の流路部分は狭い。このように狭い流路部分は、榭脂 の流れが相当に悪くなり、榭脂量が少なくなる。榭脂量が少ない部分は冷却速度が 速くなるため、他の部分との間で冷えかたに差が生じる。この冷却状態の差異は、変 形やヒケの原因となる。
[0017] 例えば、冷却が進むと榭脂の粘度が高くなる。粘度が高い流路部分では、榭脂を 流動させるために射出圧力が浪費される。そのため、粘度が高い流路部分とその下 流側との間では、大きな圧力勾配が生じる。この大きな圧力勾配によって、結果的に 流動末端部分に十分な圧力が伝わらなくなり、榭脂の充填不良や気泡などの不良の 発生要因となる。このように、榭脂の流動性は成形精度の一要因と成っている。
[0018] 薄肉の成形品の設計は、機能的'スペース的な要求力も決まるものであるため、変 形やヒケ、充填不良などがある力 と言って、簡単に設計変更することはできない。
[0019] また、通常、射出成形では、生産性と金型からの離型性を確保するために、実際の 工程では、榭脂が冷え切る前に取り出している。
[0020] 榭脂は熱膨張率が高いため、不均一な冷却速度は体積変化の不均一につながる 。この不均一な体積変化は、成形品に内部応力を発生させることになる。したがって 、成形品が完全に冷える前に金型から取り出した場合、前記した内部応力が解放さ れる。このとき、高温の榭脂の剛性は低いため、解放された内部応力によって成形品 は無視できな 、量で変形することがある。
[0021] また、一般に榭脂は熱伝導性が悪いため、強度が不足する高温での成形中や、取 り出し直後において、冷えて縮まる量や方向に不均一が生じやすぐ好ましくない変 形やそりの原因となる。
[0022] 本発明が対象とする光学レンズホルダーのように、その形状が円盤状あるいは円筒 状の形状体は中心軸に対して対称であり、このような中心軸に対して対称な部材で は前記した変形は大きく影響し、これらを組み合わせる際に大きな支障となる。
[0023] したがって、従来の結像光学レンズユニットおいては、光学レンズホルダーとレンズ の良 、位置関係を見つけるために、光学レンズホルダーやレンズの射出成形条件や 、ゲート位置を含む金型の変更、修正をカットアンドトライ方式で繰り返すことによって 、できるだけ単体での形状精度を高める努力がされている。成形されたレンズは、光 学レンズホルダーに押し込むようにして組み立てが行われる。これによつて、レンズと 光学レンズホルダーとを組み合わせることで得られる結像光学レンズユニットが、目 標とする性能を満足するようにして 、る。
[0024] つまり、光学レンズや光学レンズホルダーの単体の製造工程の段階ではある程度 の不良の発生を容認し、光学レンズと光学レンズホルダーとを組み合わせて成る結 像光学レンズユニットの段階で検査することで、良不良の判定を行っている。各単体 が製造された後には、せいぜいレンズの光軸回りの回転位置を管理する程度に過ぎ ない。
[0025] 光学レンズホルターの鏡筒を製造する成形技術にお!ヽて考慮される解決策の一つ としては、温度差や圧力勾配が大きくなる前に、できるだけ速く樹脂の充填を完了す ることが挙げられる。
[0026] また、他の解決策としては、光学レンズホルダーの成形精度によらずに、レンズの 組立方法を工夫することで相対位置精度を確保することも考えられる。この場合には 、絵やチャートを撮影して得られる撮像画像を参照し、 6自由度の位置制御可能な装 置で各レンズの良好な位置を定め、その位置で接着などの方法によってレンズを固 定する。このレンズの組み立て方法によれば、部品の形状精度に依存しないため、 光学レンズホルダーはレンズの位置決め部品として求められる厳しい精度要求を考 慮しなくてょ ヽと 、う利点がある。
[0027] しかし、上記の方法は、数枚のレンズを摂動させながら最良の位置を探す必要があ るため、組立に相当な時間がかかり、また必要とする設備価格も高価になる。そのた め、採算面から見て好ましい方法でなぐ現実的でない。
[0028] また、成形の作業自体は簡単となるが、組み立てに要する機械的な基準面や穴に はやはり高い形状精度が必要とされるため、全体的には必ずしも作業が容易となると は限らない。
[0029] いずれにしても、成形品が現在の成形技術水準以上の成形品質であることが前提 であり、金型の修正と成形条件の決定までに時間と費用が力かる。
[0030] したがって、上記したように、従来の結像光学レンズユニットは、榭脂に加える添カロ 物に起因する流動性や、榭脂自体が持つ熱膨張率、熱伝導性に起因する要因によ つて、光学レンズホルダーを射出成形する際の成形精度の点で問題を有して 、る。
[0031] また、この光学レンズホルダーの形成精度は、複数のレンズの中心軸に軸ズレを生 じさせ、結像光学レンズユニットに求められる複数のレンズの中心軸の軸合わせに影 響を与えることにもなる。
[0032] 今後、画素数の増加と小型化に伴って、ますます複数レンズに求められる相対位 置精度は厳しくなることが予想される。そのため、従来の結像光学レンズユニットにお ける上記問題はより深刻となり、多くの無駄が発生し、経済的な損失が増大するおそ れがある。
[0033] 一方、上記したガラスファイバーの添加物に対して、最近、榭脂にカーボンナノファ ィバーを混ぜることにより、成形品の品質を向上させることが提案されている。
[0034] カーボンナノファイバ一は、サブミクロンメートルの直径を持ち長さが数十ミクロンメ 一トルである高アスペクト比の炭素繊維である。カーボンナノファイバ一は単に細く長 いだけでなぐ高い強度を持ち、さらに屈曲に対しては極めて高い切断耐性を持ち、 鋭角に折り曲げても破断'切断しな 、ことが確認されて 、る。
[0035] また、カーボンナノファイバ一は金属並に高 、熱伝導性を持って 、ることが知られ ている。また、熱的にも安定であり、榭脂の成形で使用する温度範囲では全く変性し ないという特性を有している。さらに、ほぼ純粋な炭素原子のみで構成されているた め、榭脂を汚染したり、化学変化を招いたりすることもない。
[0036] また、榭脂に適度な量を混ぜた材料は射出成形時に高い流動性を持つことが知ら れており、これらの性質を生力して榭脂成形材料への添加物としての用途が期待さ れている (非特許文献 1参照)。
[0037] 例えば、榭脂にカーボンナノファイバーを混ぜて射出成形したものの縦弾性係数は
、そのカーボンナノファイバーの重量比率に沿ってほぼ線形に増加することが実験に よって確認されて 、る(非特許文献 2の Fig.3参照)。
[0038] 非特許文献 1 :遠藤守信著 「野原の奥、科学の先。」文屋 2004年 第 99頁〜第 1
04頁
非特許文献 2 :日本機械学会 (No03-ll)材料力学部門講演会講演論文集 第 111 項〜第 112項 発明の開示
発明が解決しょうとする課題
[0039] 榭脂にカーボンナノファイバーを適切な量を混練した材料を用いて射出成形するこ とで、流動性や熱伝導性を向上させ、これにより、前記した問題点を解決することが 期待される。
[0040] しかしながら、添加物として単にカーボンナノファイバーを用いただけでは、成形歪 みを完全に無くすることは不可能であり、実際には、形状精度を高く維持しつつ、発 生する形状の歪みを抑制するように、射出成形の諸条件を制御する必要がある。
[0041] 例えば、光学レンズホルダーのように円盤状あるいは円筒状の形状体を射出成形 するにより生成するには、種々の問題が予想される。従来のガラスファイバー混練榭 脂では、添加物であるガラスファイバーの影響で流動性が悪いため、金型キヤビティ に榭脂を注入するゲート開口サイズを小さく(例えば 0. 2mm)することができず、望 ましいゲート配置を実現することが困難である。
[0042] そこで、本発明は前記した従来の問題点を解決し、結像光学レンズユニットにおい て、榭脂に加える添加物に起因する流動性や、榭脂自体が持つ熱膨張率、熱伝導 性に起因する要因による、光学レンズホルダーを射出成形する際の形成精度の問題 を解消して、形状精度を高めることを目的とする。
[0043] また、複数のレンズの中心軸の軸ズレを防ぎ、結像光学レンズユニットに求められる 複数のレンズの中心軸の軸合わせを容易とすることを目的とする。
課題を解決するための手段
[0044] 本発明は、光学レンズユニットの態様、及び光学レンズホルダーの態様にお!ヽて、 前記した榭脂の添加物による流動性、榭脂の射出成形時の熱膨張率、熱伝導率に 起因して生じる問題点を解決する。
[0045] 本発明は、光学レンズユニット及び光学レンズホルダーの態様における複数の形 態に適用することができる。
[0046] 本発明は、この複数の形態として、射出成形による光学レンズホルダーの形状精度 を向上させる第 1の形態、円盤状あるいは円筒状の光学レンズホルダーに射出形成 時に生じる歪みを抑制する第 2の形態、及び光学レンズホルダーにお 、て複数のレ ンズの中心軸を容易に合わせる第 3の形態がある。
[0047] 本発明の第 1の形態は、 2枚以上の光学レンズと、この光学レンズのそれぞれを相 対的に位置決めし固定するための光学レンズホルダーを備える。
[0048] 各光学レンズは、レンズ光軸に垂直である垂直基準面と、前記レンズ光軸と平行か つ同心な中心軸を持つ同心基準面を備える。
[0049] 一方、光学レンズホルダーは垂直座面と同心基準壁とを備える。垂直座面は、中心 軸に垂直かつ互いに平行で、光学レンズの垂直基準面と当接し、同心基準壁は、中 心軸と平行かつ同心な中心軸を持ち、かつ光学レンズホルダーの同心基準面の直 径より小さい直径を持つ穴形状である。
[0050] そして、光学レンズホルダーは榭脂で成形され、直径 80ナノメートル以上 300ナノ メートル以下、長さ 1ミクロンメートル以上 200ミクロンメートル以下の多層チューブ形 状のカーボンナノファイバーを添加物として含有する。この含有物の含有割合は 1〜 20重量%の範囲である。
[0051] 光学レンズホルダーを構成する榭脂材料は熱可塑性の榭脂材料とすることができ、 例えば、ポリブチレンテレフタレートとすることができる。
[0052] カーボンナノファイバ一は、サブミクロンメートルの直径を持ち長さが数十ミクロンメ 一トルである高アスペクト比の炭素繊維である。カーボンナノファイバ一は単に細く長 いだけでなぐ高い引張強度を持ち、さらに屈曲にたいしても極めて高い耐性を持ち 、鋭角に折り曲げても破断 '切断しないことが確認されている。また、金属並に高い熱 伝導性を持っていることも知られている。また、榭脂の成形で使用する温度範囲では 熱的にも安定であり、榭脂に化学的な変性を引き起こすこともない。
[0053] 本発明の第 1の形態では、上記の性質を持つカーボンナノファイバーを混ぜた榭 脂を成形材料として射出成形することによって、以下の効果を得る。
[0054] カーボンナノファイバ一は、ガラスファイバーに比較して非常に細ぐ榭脂にくまなく 分散することが可能である。
[0055] 榭脂に混ぜる量を適切に設定することにより、榭脂の金型内での流動が妨げられる ことなぐ薄肉部分にも高速に充填することができる。
[0056] [表 1] PBT/PC PBT/PC +VQCF 5 %
VP切換圧力(Kg,/cni2 ) 2381 21 10
最高充填圧 (Kg, cm 2 ) 2440 2173
背圧(Kg/ om2) 2. 9 1. 4
スクリュ一回転 (rpm) 172. 1 172. 1
[0057] 上記表 1は、 PBTと PCの混合材料に VGCF (カーボンナノファイバー)を 5重量% 混練した成形材料の射出成形時の条件と、 VGCFを添加しな ヽ PBTと PCの混合材 料を射出成形するときの条件を示して ヽる。
[0058] なお、使用した射出成形装置はスクリュー計量してプランジャーで金型に充填する タイプの射出成形装置であり、ソディックプラスチック社の TR18S3を用いている。
[0059] 両者とも射出速度 'ノズル温度などは同じ設定にしている。表 1は、 VGCFを 5重量 %混練した成形材料は P— V切換圧力、最高充填圧力が低ぐ流動性が良いことを 示している。また、 VGCFを 5重量%混練した成形材料は背圧が半分以下であり、こ のことは成形材料が金型内にスムーズに充填されたことを示し、流動性が改善される
[0060] また、 VGCFの混練割合と流動性との関係は、測定により以下のデータを取得して いる。図 1は PBTに VGCFの混練割合と流動性との関係を示す測定データであり、 表 2はその数値を示している。なお、ここでは、流動性を保圧によって評価している。 測定では、保圧として、成形終了直前のスクリュー位置(10mm)での圧力値を用い ている。
[0061] [表 2] 混練比率 [wt%] 圧力 [kgf/cm— 2 ]
0 1032
1 494
3 582
5 667
10 740
15 878
20 1124 [0062] 測定データから、 PBTのみの材料の圧力は高ぐ VGCFの混練によって急減し、 V
GCF量の増加に従って高くなる傾向を示している。
[0063] さらに、カーボンナノファイバーの高い熱伝導性により、成形時の榭脂温度は速や かに成形品全体に伝熱し、より均一な温度分布が期待でき、冷却速度の不均一によ る変形が少ないことが期待される。その結果、レンズを位置決めする円筒状の薄肉部 分の形状精度が向上 mする。
[0064] 図 2は PBTに VGCFを 5重量%混練した材料で成形されたものの破断面を示して いる。図 2 (a)の画像例は倍率が 7000倍であり、図 2 (b)の画像例は倍率が 5000倍 である。画像中で白い糸状の物体力 SVGCFであり、均一分散している状態を確認す ることがでさる。
[0065] また、図 3は PBTに VGCFを混練した材料で成形された成形物の表面を示してい る。なお、図 3は、前記した図 19と同じ倍率で示している。図 3に示す表面画像では、
CD VGCFを確認することはできない。なお、画像中の斜めのスジは、金型表面に残る加 工痕を転写したものであり、粒状構造は金型に付着するゴミによる影響であり、中央 の線はウエルドラインである。
[0066] また、カーボンナノファイバ一は、高い引張強度を持ち、榭脂に混ぜた量に応じて 機械的強度が向上することが期待される。
[0067] 図 4と図 5は、 PBT (ポリブチレンテレフタレート)と PC (ポリカーボネート)にカーボン ナノファイバーを混ぜた材料のヤング率を測定したグラフである。図 4は混練割合が 5 重量%までを示し、図 5は混練割合が 5重量%〜20重量%の場合を示して 、る。
[0068] また、表 3はヤング率の値を示している。
[表 3]
Elastic Modu l us
VQCF [ t%]
0 2. 50 2. 30
1 2. 72 3. 20
3 2. 95 3. 20
5 3, 22 3. 10 [0069] これにより、 PBTは VGCF (カーボンナノファイバー)を 1重量0 /0含有することでヤン グ率が 50重量%増加し、その後 5重量%までほぼ一定の値を維持した後、再び増加 する。
[0070] また、 PCは VGCF (カーボンナノファイバー)の量にほぼ比例してヤング率は増加 する。なお、 PBTに VGCFを 5重量%混ぜた材料のヤング率は、 3. lGPaである。こ のヤング率は、 PBTに 5重量%程度のガラスファイバーを混ぜた材料と同程度である
[0071] また、カーボンナノファイバ一は、榭脂に混ぜた量に比例して線膨張率が低下する ことが知られている。そのため、成形品を金型から取り出す際の収縮は小さぐ通常 の成形より冷えた状態で取り出すことが可能である。一般的に榭脂の剛性は温度が 低い程高いため、より低温で成形品を取り出すことによって、内部応力による成形品 の変形を抑制することができる。
[0072] 図 6は PBT (ポリブチレンテレフタレート)にカーボンナノファイバーを混ぜた材料の 線膨張量を測定したグラフである。線膨張量は VGCF (カーボンナノファイバー)の量 に応じて小さくなつている。なお、測定した試験片長さは 10mm、温度範囲は 20°C〜 140°Cである。線膨張率は、縦軸の読み 111) / (140でー20° X試験片長さ(10 000) mで与えられ、 PBTに VGCFを 5重量%混ぜた材料の線膨張率は、 80Z1 20 X 10000 = 6. 6 X 10— 5乗 [mZm'k]となる。これは、 PBTに 10重量0 /0程度の ガラスファイバーを混ぜた材料と同等である。
[0073] VGCFを混練した材料は、ガラスファイバーを 5〜10重量%いれたものと同等の機 械的性質を持つと共に、ガラスファイバーを!、れな ヽ材料以上の流動性を持って!/ヽ る。その性質により、速く充填が可能でかつ高温での変形が少ない射出成形を実現 できるものである。
[0074] 以上のように、本発明の第 1の形態は、結像光学レンズユニット及びその光学レン ズホルダーにカーボンナノファイバーを適用することにより、その良好な流動性、高い 熱伝導性、高い引張強度、低い線膨張率によって、従来の榭脂材料で成形されたホ ルダ一に比較して良好な形状精度で成形でき、レンズを設計値に近 ヽ位置に位置 決めできることになり、良好な画像品質が得られる。 [0075] さらに、組立後の検査で発生する不良が減少し採算性の向上が期待できる。また、 それぞれのレンズ毎に 6自由度の位置制御が可能な装置によって、絵やチャートを 撮影しながら最も良く映るレンズ位置を決定し、接着などの方法によってレンズを固 定するといつた、従来要していた作業を不要とすることができ、より簡単な装置でレン ズ位置を固定することができるようになる。
[0076] また、カーボンナノファイバ一は、高い熱伝導性を持つ。この高い熱伝導性により、 完成した結像光学レンズユニットは熱が速やかに均一化し、熱応力の発生を押さえる ことができ、熱衝撃に強い性質となり、耐環境性の向上につながるという利点もある。
[0077] カーボンナノファイバ一は、ガラスファイバーに比較して非常に細ぐまた樹脂に混 ぜる量を適切に設定すれば樹脂の金型内での流動を妨げない。これにより、結像光 学レンズユニットの金型の微細構造部分にも充填が可能となるため、微細で詳細な 設計が可能になり、成形肉厚の精度を高めることができ、より小型で精密な結像光学 レンズユニットの設計ができるという利点もある。
[0078] 榭脂の流動性とカーボンナノファイバーを混ぜる範囲の関係は、榭脂材料によって 差はあるが、 10重量%前後を越えると流動性は低下する。剛性と強度はカーボンナ ノファイバーを混ぜる量に比例して向上するため、強さが欲しい場合は量を多くし、 流動性を優先する場合は少なめに設定しバランスをとる。
[0079] 上記したように、第 1の形態によれば、形状精度を向上させることができる。
次に、本発明の第 2の形態は、第 1の形態において、光学レンズホルダーを円盤状 又は円筒状の形状体とし、この形状体は、射出成形榭脂注入用ゲートを、中心軸を 取り囲む内壁に連続的又は等角度間隔で備える構成とする。
[0080] 円盤状あるは円筒状の光学レンズホルダーは中心軸について対称である。この光 学レンズホルダーを射出成形によって成形する場合、射出成形部品の中心から外に 向かって放射状に榭脂を流す形状のゲート配置とした場合には、榭脂は中心から外 周に向力つて流れた後、外周部において中心軸と平行の方向に流れると想定される
[0081] 本発明の第 2の形態では、射出成形部品の中心から外に向力 放射状の樹脂の流 れを、光学レンズホルダーの中心軸を取り囲む内壁に連続的又は等角度間隔で配 列するゲート配置によって実現する。
[0082] このゲート配置により、榭脂は円盤状あるは円筒状の光学レンズホルダーの中心軸 について対称に流動する。その結果、少なくとも中心軸まわりで見たとき、榭脂の不 均一の発生は抑制され、結果的に成形歪みの発生も小さく抑えられる。
[0083] 上記したゲート配置は、榭脂に添加する添加物として前記したカーボンナノフアイ バーを採用することで可能となる。従来のガラスファイバー混練榭脂では、添加物で あるガラスファイバーの影響で流動性が悪ぐ金型キヤビティに榭脂を注入するゲート 開口サイズを小さく(例えば 0. 2mm)設定することができず、円盤状や円筒状の部 品の中心軸を含む位置力も放射状にゲート配置することは困難であるが、本発明の ようにカーボンナノファイバーを 1〜20重量0 /0の範囲の含有割合で榭脂に含有させ ることで、ゲート開口サイズを小径とし、放射状に配置することができる。
[0084] 光学レンズを保持する光学レンズホルダー (鏡筒)を本発明のゲート配置により成 形することによって成形精度が高まり、実際に成形された鏡筒の円筒内径に内接す る円の中心を鏡筒の設計上の中心に近くすることができる。また、発生する変形の形 状についても、中心軸について対称であることが期待され、光学レンズホルダーにレ ンズを押し込んだ際に、そのレンズの中心は内接円の中心に近いところに収まり、レ ンズを正しく位置決めすることができる。
[0085] また、本発明の第 2の形態は、光学レンズホルダーに限らず射出成形部品に適応 することができる。この射出成形部品の形態によれば、榭脂で成形される射出成形部 品であって、前記榭脂は、少なくとも 1種類以上の添加物を含有し、この添加物は、 直径 80ナノメートル以上 300ナノメートル以下、長さ 1ミクロンメートル以上 200ミクロ ンメートル以下の多層チューブ形状のカーボンナノファイバーであり、その割合は 1 〜20重量%の範囲である榭脂であり、円盤状または円筒状の形状であり、射出成形 榭脂注入用のゲートを、射出成形部品の中心軸を取り囲む内壁に連続的又は等角 度間隔で備える構成とする。第 2の形態によれば、円盤状又は円筒状の形状体の成 形歪みを抑制することができる。
[0086] 次に、第 3の形態は光学レンズホルダーに関し、円盤形状の光学レンズを内部に収 納する円筒形状の光学レンズホルダーである。この光学レンズホルダーを成形する 成形部材は、直径 80ナノメートル以上 300ナノメートル以下、長さ 1ミクロンメートル以 上 200ミクロンメートル以下の多層チューブ形状のカーボンナノファイバーを添加物と して含有する榭脂とする。さらに、成形部材の縦弾性率及び線膨張率を、光学レンズ を成形する成形部材の縦弾性率及び線膨張率よりも小さく設定する。成形部材の縦 弾性率は、 1. 6GPa〜3. lGPaの範囲とし、成形部材の線膨張率は、 5 X 10の— 5 乗〜 9 X 10の 5乗 [mZm.k]の範囲とすることで、光学レンズが持つ縦弾性率及 び線膨張率に合わせて設定することができる。
[0087] なお、 PP (ポリプロピレン)にカーボンナノファイバー(VGCF)を混練した場合、縦 弾性係数は混練比率 1重量%あたり 0. 2GPaずつ上昇することが知られている。 PP の素材の弾性率は 1. 4GPa程度であるため、 VGCFを 5重量%程度混練した場合 には材料の縦弹'性率は 2. 4GPaとなる。
[0088] また、成形材料は PBT (ポリブチレンテレフタレート)に VGCF (カーボンナノフアイ バー)を 1〜7重量%混練することで、上記線膨張率を得ることができる。
[0089] 榭脂光学レンズに多く使用される材料に、ポリオフィレン樹脂がある。その材料の横 弾性係数は 1. 7GPa〜3. lGPaである。線膨張率は、 6 X 10の— 5乗〜 9 X 10の— 5乗 [ / · k]である。
[0090] 上記した成形部材の縦弾性率の下限の 1. 6GPaは、ポリオフィレン榭脂から成る光 学レンズの縦弾性率の下限の 1. 7GPaを基準とし、この値に同等であるがこの値より も小さな値で定める。また、成形部材の縦弾性率の上限の 3. lGPaはポリオフィレン 榭脂から成る光学レンズの縦弾性率の上限の 3. lGPaを基準とし、この値に同等で あるがこの値よりも小さな値で定める。この値は、例えば、 PBTに VGCFを 5重量0 /0 混ぜることで得られる。
[0091] PCにガラスファイバーを混練して強化する場合、ガラスファイバーを 20重量%程度 混ぜて得られる、通常の強化グレードの弾性係数は 6GPaであり、光学レンズよりも大 きな弾性係数となる。これに対して、材料に VGCFを混練した榭脂を使って、弾性係 数を 1. 7GPa〜3. lGPaに調整すれば、剛性がガラスファイバー入りの材料の半分 以下の柔軟な光学レンズホルダーを作ることができる。かつ、ポリオフィレン樹脂で作 られたレンズと弾性係数を揃えることが可能となる。 [0092] また、光学レンズホルダーの線膨張率を光学レンズの線膨張率以下で同等程度と することによって、光学レンズ性能を向上させることができる。一般に、光学レンズホ ルダ一の材料の線膨張率を光学レンズの材料の線膨張率よりも低く設定しておくこと で、高温環境において、膨張した光学レンズを締め付けることで保持することができ る。
[0093] 一般に、線膨張率の低い材料は高温においても剛性が高い。そのため、光学レン ズホルダーの線膨張率を低ぐ光学レンズの線膨張率と大きく異なる場合には、光学 レンズは光学レンズホルダーよりも膨張する程度が高い。そのため、光学レンズの膨 張は光学レンズホルダーで強く抑制され、光学レンズに応力が発生し変形することに なる。応力が降伏応力内である場合であれば常温復帰時に変形が復元するが、応 力が降伏応力を超えた場合には常温復帰時に変形が復元しないおそれがある。
[0094] また、逆に、光学レンズホルダーの線膨張率が光学レンズの材料の線膨張率よりも 大きい場合には、高温時に光学レンズホルダーと光学レンズとの間に隙間が生じると いう大きな問題が発生する。そこで、光学レンズホルダーの線膨張率を光学レンズの 線膨張率以下で同等程度とすることで、光学レンズに復元不能と成らない程度の保 持力を得ると共に、高温時においても光学レンズを確実に保持することができる。
[0095] 本発明の第 3の形態によれば、カーボンナノファイバーを添加物とすることで得られ る、良好な流動性、高い熱伝導性、高い引張強度、低い線膨張率によって均一な形 状の光学レンズホルダーを射出成形することができ、また、縦弾性係数及び線膨張 率を光学レンズと同等でそれ以下とすることで、光学レンズを嵌め込む際の柔軟性を 持たせることができる。
[0096] また、光学レンズホルダーの内径部は、その柔軟性によって光学レンズの外径部に 倣うように変形し、光学レンズホルダーの中心軸と光学レンズの中心軸とのずれを抑 制することができる。これによつて、複数のレンズを組み合わせる場合、それぞれのレ ンズの中心軸がずれる量を小さくし、結像光学レンズユニットとしての品質の低下を 抑える。
[0097] また、縦弾性係数を近い数値にすることによって、設計上において、光学レンズと 光学レンズホルダーとを一体的に扱うことが可能となり、高品質なレンズユニットの開 発が可能となる。さらには、線膨張率を近い数値にすることによって、結像光学レンズ ユニットの挙動が予想しやすくなり、さらに高品質なレンズユニットの開発が可能とな る。
[0098] 第 3の形態によれば、光学レンズホルダーにおいて複数のレンズの中心軸を容易 に合わせることができる。
発明の効果
[0099] 以上の説明から明らかなように、本発明によれば、結像光学レンズユニットにおいて 、榭脂に加える添加物に起因する流動性や、榭脂自体が持つ熱膨張率、熱伝導性 に起因する要因による、光学レンズホルダーを射出成形する際の成形精度の問題を 解消して、形状精度を高めることができる。
[0100] また、本発明によれば、複数のレンズの中心軸の軸ズレを防ぎ、結像光学レンズュ ニットに求められる複数のレンズの中心軸の軸合わせを容易とすることができる。 図面の簡単な説明
[0101] [図 1]図 1は PBTに VGCFの混練割合と流動性との関係を示す測定データである。
[図 2]図 2は PBTに VGCFを 5重量%混練した材料で成形されたものの破断面を示 す画像である。
[図 3]図 3は PBTに VGCFを混練した材料で成形されたものの表面を示す画像であ る。
[図 4]図 4は PBT又は PCにカーボンナノファイバーを混ぜた材料のヤング率の測定 グラフである。
[図 5]図 5は PBTにカーボンナノファイバーを混ぜた材料のヤング率の測定グラフで ある。
[図 6]図 6は PBTにカーボンナノファイバーを混ぜた材料の線膨張量の測定グラフで ある。
[図 7]図 7は結像光学レンズユニットの光軸に沿った断面図を示す図である。
[図 8]図 8は円筒状の射出成形部品の断面斜視図である。
[図 9]図 9は円筒状の射出成形部品の断面斜視図である。
[図 10]図 10は円筒状の射出成形部品を成形する際の樹脂の流れを示す中心軸方 向の断面図である。
圆 11]図 11は円筒状の射出成形部品を成形する際の樹脂の流れを示す中心軸と直 交する方向の断面図である。
[図 12]図 12は円盤状の射出成形部品の斜視図である。
圆 13]図 13は本発明の第 2の形態による構成例を説明するための図である。
[図 14]図 14は各成形条件による各測定箇所での厚みのばらつきを示す図である。
[図 15]図 15は本発明の光学レンズホルダーに光学レンズを嵌め込んだ組立状態を 説明するための図である。
[図 16]図 16は光学レンズホルダーの中心軸方向力も見た図である。
[図 17]図 17は光学レンズを中心軸方向力も見た図である。
[図 18]図 18は従来の光学レンズホルダーに光学レンズを嵌め込んだ組立状態を説 明するための図である。
[図 19]図 19は PC (ポリカーボネート)にガラスファイバーを混練して成形された材料 の顕微鏡写真である。
符号の説明
1 光学レンズ
2 光学レンズ
3 光学レンズ
4 光学レンズホルダ
5 接着剤
6 接着剤
7 接着剤
8 光軸
9 垂直座面
10 同心基準壁
11 垂直座面
12 同心基準壁
13 垂直座面 同心基準壁 垂直基準面
|PJ 、 φ[¾ 垂直基準面 同 'し、 準 It] 垂直基準面
|FjJ 、 [¾ 射出成形部品 ゲート
中心軸
樹脂フロー矢印 榭脂フロー矢印 射出成形部品 ゲート
中心軸
樹脂フロー矢印 光学レンズホルダー 内径部
中心軸
光学レンズ 外径部
中心軸
光学レンズ内径部 レンズ外径部 円
光学レンズホルダー 内径部
中心軸 43 光学レンズ
44 外径部
45 中心軸
49 円
発明を実施するための最良の形態
[0103] 以下、図面を用いて本発明を実施するための最良な形態における結像光学レンズ ユニット、及び光学レンズホルダーについて、図を参照しながら第 1〜第 3の実施の 形態を詳細に説明する。
[0104] はじめに、本発明の結像光学ユニットの第 1の実施の形態について図 7,図 8を用 いて説明する。第 1の形態は、射出成形による光学レンズホルダーの形状精度を向 上させる形態に関する。
[0105] 図 7は、結像光学レンズユニットの光軸に沿った断面図を示している。図 7において 、結像光学レンズユニットは、光学レンズ 1〜3と光学レンズホルダー 4を備える。光学 レンズ 1〜3は、各光軸が光学レンズホルダー 4の光軸と一致するように取り付けられ る。図では、一致した状態の光軸 8を一点鎖線で示している。各光学レンズ 1〜3は 光学レンズホルダー 4に対して接着剤 5〜7によって固定される。なお、光学レンズホ ルダー 4は円筒形状であり、光学レンズ 1〜3は平たい円板形状である。
[0106] 図 8は、結像光学レンズユニットの構成部品をわ力りやすく見るために、それぞれの 部品を分離して並べ、光軸に沿った断面で図示している。
[0107] 各光学レンズは、レンズ光軸に垂直である垂直基準面と、レンズ光軸と平行で同心 な中心軸を持つ同心基準面を備える。
[0108] 例えば、光学レンズ 1はレンズ光軸 8に垂直な垂直基準面 15と、レンズ光軸 8と平 行で同心な中心軸を持つ同心基準面 16を備え、光学レンズ 2はレンズ光軸 8に垂直 な垂直基準面 17と、レンズ光軸 8と平行で同心な中心軸を持つ同心基準面 18を備 え、光学レンズ 3はレンズ光軸 8に垂直な垂直基準面 19と、レンズ光軸 8と平行で同 心な中心軸を持つ同心基準面 20を備える。
[0109] 一方、光学レンズホルダー 4は、各光学レンズ 1〜3を位置決めするために、その中 心軸 8に垂直かつ互いに平行で、光学レンズの垂直基準面と当接する垂直座面と、 中心軸 8と平行で同心な中心軸を持ち、かつ光学レンズの同心基準面の直径より小 さい直径を持つ穴形状の同心基準壁とを備える。
[0110] 例えば、光学レンズホルダー 4は、光学レンズ 1の垂直基準面 15と当接する垂直座 面 9と、光学レンズ 2の垂直基準面 17と当接する垂直座面 11と、光学レンズ 3の垂直 基準面 19と当接する垂直座面 13の各垂直座面を備え、光学レンズ 1の同心基準面 16に対応する同心基準壁 10と、光学レンズ 2の同心基準面 18に対応する同心基準 壁 12と、光学レンズ 3の同心基準面 20に対応する同心基準壁 14の各同心基準壁を 備える。
[0111] なお、図 7,図 8では、光学レンズホルダーと光学レンズの各光軸は光軸が一致して いるものとして、共通する光軸 8で示している。
[0112] 光学レンズ 1、光学レンズ 2、光学レンズ 3は、それぞれレンズ作用の非球面形状を 備えている。この非球面形状は、図 7, 8において湾曲した線で示した部分である。な お、非球面形状そのものは本発明に直接関係しないため、説明を省略する。また、そ れぞれのレンズの垂直基準面と同心基準面は、光軸に対して正しくできているものと する。また、図 7,図 8において、本発明の説明に直接関係しないレンズ面形状や面 取りなどの詳細な形状、スぺーサの類は省略して図示してある。
[0113] 光学レンズホルダー 4は、少なくとも 1種類以上の添加物を含有する。添加物として 、直径 80ナノメートル以上 300ナノメートル以下、長さ 1ミクロンメートル以上 200ミクロ ンメートル以下の多層チューブ形状の、 Vヽゎゆる VGCFと!ヽぅカーボンナノファイバ 一を用いる。その混練割合は 1〜20重量%の範囲とし、榭脂に添加して成形される。 榭脂にカーボンナノファイバーを混ぜることにより、機械的な剛性が向上する。
[0114] カーボンナノファイバ一は、ガラス繊維に比較して非常に細いため、ガラスファイバ 一では転写できな!/、数ミクロンの微細な金型表面を転写することができる。剛性が高 ぐ転写性に優れているため、金型の形状を正確に再現することができ、光学レンズ それぞれを設計した位置に保持するための基準面と基準壁を再現することが容易と なる。また、流動性を損ねないため、低温で射出成形することが可能となり、冷却速 度が速く時間が力からないため、生産性に優れている。
[0115] 機械的な剛性の向上は微量であっても、流動性や縦弾性率や線膨張率などの他 の機械的性質の向上は期待でき、混練するカーボンナノファイバーの重量%に応じ て増加する。カーボンナノファイバーを混練する適正な範囲は、前記した図 1, 2の縦 弾性率 (ヤング率)のグラフで得られる特性と、線膨張率のグラフで得られる特性から 、 1重量%程度から 20重量%とすることができる。
[0116] 一方、一般的なガラスファイバーを添加して得られる下位グレードに対応する特性 を基準とする場合には、カーボンナノファイバーを 3重量%程度から 20重量%までの 範囲が相当する。
[0117] ここで、成形精度を確保するためには流動性については高いことが求められ、線膨 張率については低いことが求められる。そこで、流動性を損ねず、かつ低線膨張率を 得られる 3〜10重量%の範囲が好適である。
[0118] 特に PBTは VGCFの割合が 1重量%から剛性が 50重量%程度向上する性質があ り、流動性を確保しながら線膨張率の低減を図ることが可能であるため、光学レンズ を保持する鏡筒材料に適して ヽる。
[0119] なお、結像光学レンズユニットの使用環境として高温環境が想定される場合は、流 動性を多少犠牲にして VGCFの割合を増やすことによって鏡筒に機械的な強さを増 加させ、高温環境下での使用に耐えるように設定することができる。
[0120] 以上のように、本発明の結像光学ユニットの第 1の実施の形態によれば、カーボン ナノファイバーを混ぜた榭脂材料で成形された結像光学レンズユニットのホルダーは 、従来の方法で成形されたホルダーより優れた性能を発揮できるものである。
[0121] 次に、本発明の結像光学ユニットの第 2の実施の形態について図 9〜図 12を用い て説明する。第 2の形態は、光学レンズホルダー等の円盤状又は円筒状の形状体の 成形歪みを抑制する形態に関する。以下では、円盤状又は円筒状の射出成形部品 を例として説明するが、この射出成形部品の適用としては、円盤状の光学レンズを保 持する光学レンズホルダーが好適である。
[0122] 図 9は円筒状の射出成形部品の断面斜視図である。射出成形部品 21は、中心軸 2 3として同心円状に筒状の壁部を有する円筒状体である。円筒状体は、射出成形す る榭脂を注入するゲート 22を備える。図 9に示すゲート 22は、円筒状体の一方の端 部側の内壁に環状に連続的にあるいは等角度間隔で形成される。 [0123] 図 10は、円筒状の射出成形部品を成形する際の樹脂の流れを示す断面図であり 、中心軸を含む樹脂の流れを示している。図 10中の矢印 24は榭脂の流れを示し、ゲ ート 22から注入された榭脂は、中心から外周に向かって放射状に流れ、円筒状体の 外壁部分に至った後、中心軸 23方向に沿って流れ、円筒状体の円筒壁部分を成形 する。
[0124] 円筒状体は中心軸 23を通る中心部分に筒状の開口部が形成される。円筒状体を 光学レンズホルダーに適用した場合には、この開口部の内壁部分に光学レンズを保 持する。
[0125] 図 11は、円筒状の射出成形部品を成形する際の樹脂の流れを示す断面図であり 、中心軸と直交する方向の流れを示している。図 11中の矢印 25は榭脂の流れる方 向を示し、ゲート(図 11には示していない)から注入された榭脂は、中心から外周に 向かって矢印 25の方向に放射状に流れる。
[0126] ここで、ゲート 22は射出成形部品 21の内壁に円を描くように薄い帯状に配置され ている。ゲート 22は射出成形部品 21の中心軸 23の軸対称であるため、図 10及び図 11において、矢印 24, 25で示される榭脂の流れる方向は、中心軸 23からみて対称 に流動し金型内に充填される。
[0127] 図 12は、円盤状の射出成形部品の斜視図である。図 12において、円盤状の射出 成形部品 26は中心軸 28を中心として、ほぼ円環状あるいはドーナツ状の形状であり 、中心軸 28が通る中心部分に開口部が形成されている。円盤状体を光学レンズホル ダ一に適用した場合には、この開口部の内壁部分に光学レンズを保持する。
[0128] 射出成形部品 26は、開口部の内壁部分にゲート 27を有する。このゲート 27から注 入された榭脂は、中心カゝら外周方向に向かって放射状に流れる。
[0129] ゲート 27は、射出成形部品 26の内壁に、中心軸 28を中心として等角度間隔で薄 い帯状に配置されている。ゲート 27は射出成形部品 26の中心軸 28に軸対称である ため、榭脂は図 12中の榭脂フロー矢印 29で示した向きに中心軸 28からみて対称流 動し充填される。
[0130] 円盤状であるため、中心軸 28方向の寸法 (厚み方向)は小さい。そのため、厚み方 向の流れについては均一であると見なすことができる。 [0131] カーボンナノファイバーを混練した榭脂で成形される射出成形部品において、射出 成形榭脂注入用のゲートを、中心軸を取り囲むように、連続的、または等角度間隔で 、射出成形部品の内壁に配置することにより、中心軸に軸対称に榭脂を流動させて 充填させることができる。
[0132] また、中心軸まわりで見たとき、榭脂が不均一に充填されたり、榭脂が不均一に冷 却されるといった状態を低減し、結果的に成形歪みの発生を小さく抑えるという効果 が期待できる。
[0133] 第 1の形態と同様に、カーボンナノファイバ一は 1重量%程度の混練で高い流動性 を示すが、混練割合を工夫することによって剛性の向上や耐熱性の向上を実現でき る。ただし、カーボンナノファイバーの混練割合が 10重量%を越えると流動性は悪く なるため、好ましくは 3〜: LO重量%の範囲が好適であり、強さと流動性のバランスを 考えた適切な混練割合を設定する。
[0134] 本発明の第 2の形態は、特に、射出成形部品が小型で榭脂注入ゲートの設置に充 分なスペースが得られない場合に有効であり、円盤状あるいは円筒状の射出成形部 品の内壁に設けるゲートの断面の中心軸方向の厚みが 0. 2mm以下になるような場 合でも射出成形が可能である。
[0135] ゲートを薄くすることで、射出成形後にゲートランナーと射出成形部品の切り離しが 容易となり、切断による歪の発生が少なくなる効果が期待できる。
[0136] 図 13は、本発明の第 2の形態による構成例を説明するための図である。ここでは、 0. 18mmの厚みの薄肉部品の例を示している。図 13中の番号は、厚みのばらつき を測定する測定箇所を示して 、る。
[0137] 以下の表 4は射出成形の成形条件を示し、表 5は各成形条件による各測定箇所で の厚みのばらつきを示して 、る。
[0138] [表 4] inn度 [ C] 身 ϊ出 α¾度 射出圧力 保圧時間 冷却時間 材料供給
ノス'ル 金型 L匪/ s] EMPa] [S] [S3 量 [mm]
No. 1 260 260 80 300. 84 16. 23 1000 10 フ
No. 2 260 260 80 382. 06 8, 11 1000 10 7
No. 3 260 260 80 198. 55 28. 41 1000 10 フ
No. 4 260 260 130 152. 82 16. 23 1. 5 10 フ
No. 5 260 260 100 152. 82 16. 23 1. 5 5 7
[0139] [表 5]
厚みばらつき [mm]
Figure imgf000025_0001
[0140] また、図 14は表 5の結果を図示している。
[0141] 表 4,表 5及び図 14に示す No. 1及び No. 2の測定例は、射出速度が高いほど厚 み寸法のばらつきが少な 、ことを示して 、る。
[0142] また、 No. 1及び No. 2の測定例では、射出速度は榭脂の流動性が良くなると向上 する。一方、 No. 3〜No. 5の測定例では、射出圧力を上げても、流動速度が小さい 場合には放熱により粘度が増大して良好な流れが得られないため、厚みが減少する
[0143] 次に、本発明の結像光学レンズユニットの第 3の実施の形態について図 15〜図 18 を用いて説明する。第 3の形態は、光学レンズホルダーにおいて複数のレンズの中 心軸を容易に合わせる形態に関する。
[0144] 中心軸に軸対称に高精度で成形された円盤状や円筒状の部品であっても、他の 円盤状や円筒状の部品を組み合わせると、それぞれの中心軸が微妙にずれてしま い、想定した精度が得られない場合がある。結像光学レンズユニットでは、数ミクロン メートルの位置精度の変動が光学性能に大きく影響する。そのため、上記した中心 軸のずれは、結像光学レンズユ ットにとって大きな問題となる。
[0145] 図 15は本発明の光学レンズホルダーに光学レンズを嵌め込んだ組立状態を説明 するための図である。なお、図 18は、従来の光学レンズホルダーに光学レンズを嵌 め込んだ組立状態を示して 、る。
[0146] ここでは、光学レンズホルダーの材料として VGCFを混練した榭脂を使用している。
光学レンズホルダー 40は内径部 41を備え、この内径部 41内に光学レンズ 43の外形 部 44が嵌め込まれる。なお、光学レンズホルダー 40の中心軸 42と光学レンズ 43の 中心軸 45とは必ずしも一致せず、軸ずれが発生している。なお、ここで、円 49は仮 想の理想的な円を示して 、る。
[0147] 中心軸に軸対称に高精度で成形された光学レンズホルダーにレンズを嵌め込む場 合を、図 16〜図 18を用いて説明する。
[0148] 図 16は、光学レンズホルダーの中心軸方向力も見た図である。図 16において、光 学レンズホルダー 31は内径部 32と中心軸 33を備えている。一方、図 17は光学レン ズを中心軸方向から見た図であり、光学レンズホルダー 31に嵌め込まれる。光学レ ンズ 34はレンズの外径部 35とレンズの中心軸 36を備えている。
[0149] 図 18は、従来の光学レンズホルダーに光学レンズを嵌め込んだ組立状態を示して おり、光学レンズホルダー 31の内径部 37及び光学レンズ 34の外径部 35は共に変 形することにより、光学レンズホルダー 31に光学レンズ 34が嵌め込まれる。
[0150] 光学レンズホルダー 31に光学レンズ 34を嵌め込んだものを中心軸方向力も見た従 来の組立状態図である。 37は光学レンズホルダー 31の少し変形した内径部, 38は 光学レンズ 34の少し変形した外径部である。なお、図 16〜図 18では、仮想の理想 的な円 39からの偏差を強調して描 、てある。
[0151] 前記した本発明の第 1、 2の形態に示したように、榭脂にカーボンナノファイバーを 混練した材料で射出成形することで光学レンズホルダーの形状精度は向上するが、 図 16,図 17に示すように数ミクロンメートルの誤差を完全になくすことはできない。
[0152] 光学レンズホルダー 31の剛性が光学レンズ 34の剛性よりも高い場合には、光学レ ンズ 34を光学レンズホルダー 31に嵌め込むと、図 17に示すように、光学レンズ 34の 外径部 35は変形し、中心軸 36は光学レンズホルダー 31の中心軸 33からずれてしま [0153] 複数のレンズを組み合わせる場合には、各レンズの中心軸 36が微妙にずれること になり、結像光学レンズユニットとしての品質が大きく低下するという問題が生ずる。
[0154] PCにガラスファイバーを混練して強化する場合、ガラスファイバーを 20重量%程度 混ぜた材料の弾性係数は 6GPaとなる。この弾性係数は通常の強化グレードである。 この弾性係数の数値で表される剛性は、ポリオフィレン樹脂で作られた光学レンズの 剛性よりも高くなる。このような剛性の高い光学レンズホルダー内に、剛性の低い光 学レンズを組み込むと、中心軸の位置ずれを光学レンズ側で吸収することになるため 、光学レンズの内部応力が発生して、光学特性が劣化するおそれがある。
[0155] 一方、本発明の形態において、榭脂に VGCFを混練した生成材料を使って、弾性 係数を 1. 7GPa〜3. lGPaに調整すれば、剛性をガラスファイバー入りの材料の半 分以下とする柔軟な光学レンズホルダーを作ることができ、さらに、ポリオフィレン榭 脂で作られた光学レンズと弾性係数を揃えることが可能となる。
[0156] ポリオフィレン榭脂は榭脂光学レンズに多く使用される材料である。その材料の縦 弾性係数は 1. 7GPa〜3. lGPaであり、線膨張率は 6 X 10のー5乗〜 9 X 10のー5 乗である。
[0157] PBT (ポリブチレンテレフタレート)に VGCFを 5重量%混練した榭脂で成形した光 学レンズホルダーにおいては、縦弾性係数は 3. lGPa程度になり、線膨張率は 6. 6 X 10の— 5乗程度である。この数値は、通常の光学レンズに近い値である。例えば ポリオフィレン樹脂の或るグレードの縦弾性係数は 2. lGPaであり、線膨張率は 7 X 10の— 5乗である。 PCに VGCFを 1重量%混ぜた場合には、縦弾性係数は 2. 7GP aとなり、光学レンズにより近づけることができる。
[0158] VGCFは 1重量%程度の混練で高い流動性を示す力 混練割合を工夫することに よって剛性の向上や耐熱性の向上を実現できる。ただし、 20重量%を越えると流動 性は悪くなることが知られており、剛性と流動性を考慮して適切な混練割合を採用す る。例えば、 1重量%〜7重量%程度が好適である。
[0159] カーボンナノファイバ一は、ガラスファイバーに比較して非常に細ぐまた柔軟であり 、榭脂の流動性を高めるため、狭い流路でも榭脂の流動が高速でかつスムーズであ るため、成形肉厚の精度が従来の榭脂に比較して高 、。
[0160] さらに、上記したように、カーボンナノファイバーの混練割合を調整することによって 弾性係数を光学レンズよりも低く少なくとも同等とすることで、光学レンズホルダーを 柔軟でかつ均一な形状とすることができる。
[0161] これによつて、図 15において、光学レンズホルダー 40の内径部 41は、光学レンズ 4
3の外径部 44に倣うようにして、図 18の場合よりも大きく変形する。
[0162] したがって、光学レンズ 43側の変形を抑制し、光学レンズホルダー 40側を変形さ せることで、光学レンズ 43の光学特性の劣化を防ぐと共に、中心軸 42と中心軸 45と のずれを抑制する。
[0163] 複数のレンズを組み合わせる場合、それぞれのレンズの中心軸 45がずれる量が小 さくなるため、結像光学レンズユニットとしての品質の低下は少ない。
[0164] また、光学レンズホルダーと光学レンズの弾性係数を近い数値にすることによって、 光学レンズホルダーと光学レンズの設計上において一体的に扱うことが可能となり、 高品質な結像光学レンズユニットの開発が可能となる。
[0165] さらに、光学レンズホルダーと光学レンズの線膨張率を近い数値にすることによって
、結像光学レンズユニットの挙動が予想しやすくなり、さらに高品質な結像光学レンズ ユニットの開発が可能となる。

Claims

請求の範囲
[1] 2枚以上の光学レンズと、該光学レンズのそれぞれを相対的に位置決めし固定する ために成形された光学レンズホルダーを備え、
前記光学レンズのそれぞれは、レンズ光軸に垂直である垂直基準面と、前記レンズ 光軸と平行かつ同心な中心軸を持つ同心基準面を備え、
前記光学レンズホルダーは、その中心軸に垂直かつ互!、に平行で前記垂直基準 面と当接する垂直座面と、前記中心軸と平行かつ同心な中心軸を持ち、かつ前記同 心基準面の直径より小さい直径を持つ穴形状の同心基準壁とを備え、
前記光学レンズホルダーは榭脂で成形され、直径 80ナノメートル以上 300ナノメー トル以下、長さ 1ミクロンメートル以上 200ミクロンメートル以下の多層チューブ形状の カーボンナノファイバーを添加物として含有し、
当該含有物の含有割合は 1〜20重量%の範囲であることを特徴とする結像光学レ ンズュニット。
[2] 請求の範囲第 1項記載の結像光学レンズユニットにおいて、
前記光学レンズホルダーを構成する榭脂材料を熱可塑性の榭脂材料としたことを 特徴とする、結像光学レンズユニット。
[3] 請求の範囲第 2項記載の結像光学レンズユニットにお 、て、
前記光学レンズホルダーを構成する熱可塑性の榭脂材料をポリブチレンテレフタレ ートとしたことを特徴とする結像光学レンズユニット。
[4] 請求の範囲第 2項又は第 3項記載の結像光学レンズユニットにお 、て、
前記光学レンズホルダーは円盤状又は円筒状の形状体であり、
当該形状体は、射出成形榭脂注入用ゲートを、中心軸を取り囲む内壁に連続的又 は等角度間隔で備えることを特徴とする結像光学レンズユニット。
[5] 2枚以上の光学レンズと、当該光学レンズを相対的に位置決めし固定する結像光 学レンズユニットの光学レンズホルダーにお 、て、
当該光学レンズホルダーは、その中心軸に垂直かつ互いに平行な垂直座面と、前 記中心軸と平行かつ同心な中心軸を持ち、レンズの直径より小さい直径を持つ穴形 状の同心基準壁とを備え、 前記光学レンズホルダーは榭脂で成形され、直径 80ナノメートル以上 300ナノメー トル以下、長さ 1ミクロンメートル以上 200ミクロンメートル以下の多層チューブ形状の カーボンナノファイバーを添加物として含有し、
当該含有物の含有割合は 1〜20重量%の範囲であることを特徴とする結像光学レ ンズユニットの光学レンズホノレダー。
[6] 請求の範囲第 5項記載の光学レンズホルダーにお 、て、
前記ホルダーを構成する榭脂材料を熱可塑性の榭脂材料としたことを特徴とする、 結像光学レンズユニットの光学レンズホルダー。
[7] 請求の範囲第 6項記載の光学レンズホルダーにお 、て、
前記光学レンズホルダーを構成する熱可塑性の榭脂材料をポリブチレンテレフタレ ートとしたことを特徴とする、結像光学レンズユニットの光学レンズホルダー。
[8] 請求の範囲第 6項又は第 7項記載の光学レンズホルダーにお 、て、
前記光学レンズホルダーは円盤状又は円筒状の形状体であり、
当該形状体は、射出成形榭脂注入用ゲートを、中心軸を取り囲む内壁に連続的又 は等角度間隔で備えることを特徴とする結像光学レンズユニットの光学レンズホルダ
[9] 円盤形状の光学レンズを内部に収納する円筒形状の光学レンズホルダーであって 当該光学レンズホルダーを成形する成形部材は、直径 80ナノメートル以上 300ナ ノメートル以下、長さ 1ミクロンメートル以上 200ミクロンメートル以下の多層チューブ 形状のカーボンナノファイバーを添加物として含有する榭脂であり、
当該成形部材の縦弾性率及び Z又は線膨張率は、前記光学レンズを成形する成 形部材の縦弾性率及び Z又は線膨張率よりもそれぞれ小さ ヽことを特徴とする、光 学レンズホノレダ一。
[10] 請求の範囲第 9項記載の光学レンズホルダーにお 、て、
前記成形部材の縦弾性率は、 1. 7GPa〜3. lGPaの範囲であることを特徴とする 、光学レンズホルダー。
[11] 請求の範囲第 9項記載の光学レンズホルダーにおいて、 前記成形部材の線膨張率は、 5 X 10の— 5乗〜 9 X 10の— 5乗 [mZm.k]の範囲 であることを特徴とする、光学レンズホルダー。
[12] 請求の範囲第 9項記載の光学レンズホルダーにお 、て、
成形材料は PBT (ポリブチレンテレフタレート)にカーボンナノファイバーを 1〜7重 量%混練したものであることを特徴とする光学レンズホルダー。
[13] 榭脂で成形される射出成形部品であって、前記榭脂は、少なくとも 1種類以上の添 加物を含有し、当該添加物は、直径 80ナノメートル以上 300ナノメートル以下、長さ 1 ミクロンメートル以上 200ミクロンメートル以下の多層チューブ形状のカーボンナノファ ィバーであり、その割合は 1〜20重量%の範囲である榭脂であり、
円盤状または円筒状の形状であり、射出成形榭脂注入用のゲートを、射出成形部 品の中心軸を取り囲む内壁に連続的又は等角度間隔で備えることを特徴とする射出 成形部品。
PCT/JP2005/020103 2004-11-05 2005-11-01 結像光学レンズユニット、及び光学レンズホルダー WO2006049164A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006542399A JPWO2006049164A1 (ja) 2004-11-05 2005-11-01 結像光学レンズユニット、及び光学レンズホルダー

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004321513 2004-11-05
JP2004-321513 2004-11-05
JP2005-083125 2005-03-23
JP2005083125 2005-03-23
JP2005083124 2005-03-23
JP2005-083124 2005-03-23

Publications (1)

Publication Number Publication Date
WO2006049164A1 true WO2006049164A1 (ja) 2006-05-11

Family

ID=36319169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020103 WO2006049164A1 (ja) 2004-11-05 2005-11-01 結像光学レンズユニット、及び光学レンズホルダー

Country Status (2)

Country Link
JP (1) JPWO2006049164A1 (ja)
WO (1) WO2006049164A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019647A (zh) * 2018-04-20 2022-02-08 大立光电股份有限公司 环形光学元件及成像镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179626A (ja) * 1982-04-15 1983-10-20 Sony Corp 射出成形装置
JPH08101329A (ja) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp コリメーターレンズホルダー
JP2003284359A (ja) * 2002-03-26 2003-10-03 Seiko Precision Inc 導電性可動子及び当該導電性可動子を備えた静電アクチュエータ
JP2003311841A (ja) * 2002-04-26 2003-11-06 Kurashiki Kako Co Ltd 樹脂筒の嵌め込み方法及びそのためのダイス、繊維含有樹脂筒の成形方法及びその成形装置、繊維含有樹脂筒、並びに該樹脂筒を有する防振成形体
JP2004317990A (ja) * 2003-04-18 2004-11-11 Sony Corp レンズ固定方法、レンズ固定装置、及びレンズ本体
JP2005062835A (ja) * 2003-07-08 2005-03-10 Canon Inc レンズ鏡筒

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160710A (ja) * 1985-01-08 1986-07-21 Canon Inc レンズ鏡筒
JPH04204610A (ja) * 1990-11-30 1992-07-27 Mitsubishi Electric Corp 光学装置
JP2000208406A (ja) * 1999-01-18 2000-07-28 Nikon Corp 投影露光装置
JP2003246927A (ja) * 2002-02-26 2003-09-05 Kanegafuchi Chem Ind Co Ltd ポリイミド樹脂組成物、ポリイミドフィルム、ポリイミド管状物及び電子写真用管状物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179626A (ja) * 1982-04-15 1983-10-20 Sony Corp 射出成形装置
JPH08101329A (ja) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp コリメーターレンズホルダー
JP2003284359A (ja) * 2002-03-26 2003-10-03 Seiko Precision Inc 導電性可動子及び当該導電性可動子を備えた静電アクチュエータ
JP2003311841A (ja) * 2002-04-26 2003-11-06 Kurashiki Kako Co Ltd 樹脂筒の嵌め込み方法及びそのためのダイス、繊維含有樹脂筒の成形方法及びその成形装置、繊維含有樹脂筒、並びに該樹脂筒を有する防振成形体
JP2004317990A (ja) * 2003-04-18 2004-11-11 Sony Corp レンズ固定方法、レンズ固定装置、及びレンズ本体
JP2005062835A (ja) * 2003-07-08 2005-03-10 Canon Inc レンズ鏡筒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019647A (zh) * 2018-04-20 2022-02-08 大立光电股份有限公司 环形光学元件及成像镜头

Also Published As

Publication number Publication date
JPWO2006049164A1 (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
US8215843B2 (en) Fluid dynamic bearing device
US7830610B2 (en) Lens, lens unit, and imaging device using the same
JPWO2006046437A1 (ja) 光学部品の製造装置
JP2012198537A (ja) 光コネクタ部材およびその製造方法
JP2006022130A (ja) 熱伝導性樹脂組成物及びその製造方法
TWI437304B (zh) 光學透鏡元件和該塑膠透鏡成型模具及塑膠透鏡的製造方法
JP2008170534A (ja) 光学素子の製造方法、光学素子及び光学素子ユニット
WO2006049164A1 (ja) 結像光学レンズユニット、及び光学レンズホルダー
JP5049605B2 (ja) 円筒成形品、レンズ鏡筒、カメラおよび射出成形用金型
US7891965B2 (en) Mold
CN101408654B (zh) 镜头模组
US7402032B2 (en) Mold apparatus and manufacturing method for the mold apparatus
JP2010066292A (ja) レンズユニット、撮像装置、光学機器、レンズユニットの組立方法および撮像装置の組立方法
JP2006322985A (ja) レンズ鏡筒
JP2008232753A (ja) 導光体付ピンおよび導光体付ピンを有する温度センサならびに射出成形用金型
JP2005099748A (ja) 光レセプタクル
JPH11211934A (ja) 光コネクタ用プラスチックフェルールおよびその製造方法
WO2016098403A1 (ja) 鏡枠、鏡筒、および光学機器
JP4695485B2 (ja) 成形用金型および成形方法
Yamamoto et al. Super Compact Plastic Projection Lensen for Projection Televisions
JPH1164606A (ja) プラスチックレンズ
JP2013037121A (ja) 光コネクタ部材
JP2007125731A (ja) 成形用金型
JP2002269710A (ja) 磁気ヘッドの位置決め固定方法及び磁気ヘッドキャリッジ装置並びにフロッピー(登録商標)ディスク装置
JP3287390B2 (ja) 光コネクタ用フェルール射出成形用金型

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542399

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805426

Country of ref document: EP

Kind code of ref document: A1