WO2006046597A1 - 導電性ペースト、及び積層型圧電セラミック部品 - Google Patents

導電性ペースト、及び積層型圧電セラミック部品 Download PDF

Info

Publication number
WO2006046597A1
WO2006046597A1 PCT/JP2005/019680 JP2005019680W WO2006046597A1 WO 2006046597 A1 WO2006046597 A1 WO 2006046597A1 JP 2005019680 W JP2005019680 W JP 2005019680W WO 2006046597 A1 WO2006046597 A1 WO 2006046597A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
internal electrode
conductive paste
powder
electrode layer
Prior art date
Application number
PCT/JP2005/019680
Other languages
English (en)
French (fr)
Inventor
Takafumi Yamada
Takahiro Matto
Katsuhiro Horikawa
Toshikatsu Hisaki
Toyokazu Tabata
Suetake Omiya
Original Assignee
Murata Manufacturing Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd filed Critical Murata Manufacturing Co., Ltd
Publication of WO2006046597A1 publication Critical patent/WO2006046597A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Definitions

  • the present invention relates to a conductive paste and a multilayer piezoelectric ceramic component, and more specifically, a conductive paste containing a metal powder and a ceramic powder as a solid content, and the conductive paste manufactured using the conductive paste.
  • the present invention relates to a multilayer piezoelectric ceramic component.
  • Multilayer piezoelectric ceramic parts are formed by alternately laminating ceramic layers and internal electrode layers. By reducing the thickness of the internal electrode layers, the cost can be reduced and the amount of displacement can be reduced. Can be increased.
  • the internal electrode layer when the internal electrode layer is thinned, pores are formed in the internal electrode layer, and the coverage of the internal electrode layer on the ceramic layer is reduced, resulting in a reduction in the electrode area. As a result, the potential drops and the amount of displacement may decrease.
  • the ceramic layer expands and contracts when a voltage is applied, so if the covering ratio decreases and the bonding strength between the ceramic layer and the internal electrode layer becomes weak, it is caused by repeated stretching movements. There is a possibility that the internal electrode layer and the ceramic layer are separated at the interface.
  • the internal electrode includes first ceramic particles having an average particle size equal to or less than the average particle size of the conductor particles,
  • Patent Document 1 a ceramic electronic component in which second ceramic particles that reach from one ceramic layer of the internal electrode to the other ceramic layer exist.
  • Patent Document 1 the first ceramic particles 0.05 to 1 times the average particle size of the conductor particles are added in an amount of 10 to 50% by weight based on the added amount of the conductor particles, and the average particle size of the conductor particles is increased.
  • Diameter 2 ⁇ 10 Interface of the second ceramic particles twice, by 01-1 weight 0/0 added 0.5 to hydrogenation mosquito ⁇ conductor particles, the generation of cracks and internal electrode layers and ceramic layers inside the laminate This suppresses peeling.
  • the first ceramic particles equal to or less than the conductor particles are interspersed between the conductor particles, whereby the coefficient of thermal expansion of the internal electrode layer 101 is reduced.
  • the heat shock is mitigated by approaching the thermal expansion coefficient of the back layer 102, thereby reducing the occurrence of cracks.
  • the second ceramic particles 103 exist so as to reach from one ceramic layer of the internal electrode to the other ceramic layer, the second ceramic particles 103 form a column, and therefore, the ceramic layers 102 sandwiching the internal electrode layer 101 are formed with each other. Bonding is performed via the second ceramic particles 103, whereby the bonding strength between the internal electrode layer 101 and the ceramic layer 102 can be improved, and peeling at the interface can be suppressed.
  • the internal electrode includes a metal powder and a ceramic powder having an average particle size equal to or less than 1/2 of the average particle size of the metal powder, and the ceramic powder has a total solid content.
  • Patent Document 2 A multilayer ceramic electronic component formed by firing a conductive paste contained at a ratio of 2 to 40% by weight has also been proposed (Patent Document 2).
  • Patent Document 2 Ni powder having an average particle diameter of 0.4 ⁇ m and an average particle diameter of 0.2 ⁇ m are used.
  • the ceramic powder is the same material as the ceramic forming the ceramic green sheet
  • the adhesion is improved, thereby preventing interfacial peeling between the ceramic layer and the internal electrode layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-277369
  • Patent Document 2 Japanese Patent Laid-Open No. 11-354374
  • Patent Document 1 since the second ceramic particles 103 form columns as described above, the bonding strength between the internal electrode layer 101 and the ceramic layer 102 is excessively strengthened. Therefore, when the technology of Patent Document 1 is applied to a multilayer piezoelectric ceramic component and a voltage is applied The driving displacement of the ceramic layer is constrained by the internal electrode layer. In addition, since the covering force is reduced due to the formation of the pillars, a potential drop occurs when a voltage is applied, which makes it difficult to obtain a desired large displacement.
  • Patent Document 2 contains a ceramic powder in addition to metal powder in the internal electrode to improve adhesion and smooth the internal electrode.
  • a multilayer ceramic capacitor is used as a multilayer ceramic electronic component.
  • it is not intended, and it is unclear whether a bonding strength that can withstand repeated stretching movements can be obtained.
  • Patent Document 2 uses a ceramic powder having a large average particle diameter of about 0.2 am or 0.1 ⁇ m in the case of Ni powder having an average particle diameter of 0.4 am, for example. Therefore, the so-called displacement restraining force that restrains the displacement amount due to the formation of the pillars may increase, and the coverage may also decrease. Therefore, even if the conductive paste of Patent Document 2 is applied to a multilayer piezoelectric ceramic component, it is difficult to obtain a desired large displacement even if the internal electrode layer is made thin, as in Patent Document 1. There was a point.
  • the present invention has been made in view of such problems, and can improve the bonding strength between the ceramic layer and the internal electrode layer, and has a large amount of displacement. It is an object of the present invention to provide a conductive paste capable of obtaining the above and a laminated piezoelectric ceramic component manufactured using the conductive paste.
  • the present invention has been intensively studied to achieve the above object, and as a conductive paste, an ultrafine ceramic powder having a specific surface area of 5 to 20 times that of a metal powder is mixed with a metal powder.
  • the content of the ceramic powder is set to 20 to 50% by weight with respect to the total solid content in the conductive paste, that is, the total of the metal powder and the ceramic powder. Even when the layer thickness was reduced to 7 zm or less, a multilayer piezoelectric ceramic component with a coverage of 95% or more could be obtained.
  • a conductive paste capable of improving the bonding strength between the ceramic layer and the internal electrode layer and realizing a multilayered piezoelectric ceramic component having a large displacement can be obtained.
  • the conductive base according to the present invention is a conductive paste for forming an electrode of a piezoelectric ceramic component, and comprises a metal powder. And a ceramic powder having a specific surface area of 5 to 20 times that of the metal powder, and the content of the ceramic powder is 20 to 50 weights with respect to the total of the metal powder and the ceramic powder. %.
  • the inventors of the present invention manufactured a multilayer piezoelectric ceramic component using the above conductive paste, and performed composition analysis on a small predetermined region of the conductive paste in a dry state.
  • the area where the ceramic powder content in the predetermined region is 80% or less of the content of the ceramic powder contained in the conductive paste is 10% or less in area ratio, the voids in the internal electrode layer It has been found that the growth can be further effectively suppressed and the coverage can be improved.
  • the content of the ceramic powder in each predetermined region is 80% of the total content of the ceramic powder.
  • the following areas are characterized by an area ratio of 10% or less.
  • the conductive paste contains 70% by weight or more of relatively inexpensive Ag, it is possible to achieve both the bonding strength and the amount of displacement described above, and in particular, a laminated piezoelectric material having a good amount of displacement. The ability to obtain ceramic products is possible.
  • the metal powder preferably has an Ag content of 70% by weight or more.
  • the ceramic layer and the internal electrode layer are alternately laminated to form a ceramic body, and external electrodes are formed on both end faces of the ceramic body.
  • the internal electrode layer is formed by sintering the conductive paste.
  • the thickness of the internal electrode layer can be reduced to 1.7 xm or less, and the coverage is also 95% or more.
  • the power S can be.
  • the thickness of the internal electrode layer is 1.7 ⁇ m or less, and the coverage of the internal electrode layer on the ceramic layer is 95% or more. It is a feature. The invention's effect
  • the metal powder and the ceramic powder having a specific surface area of 5 to 20 times that of the metal powder, the total amount of the ceramic powder being the total of the metal powder
  • the ceramic powder in the conductive paste is uniformly dispersed, the ceramic Darin sheet and the conductive paste are co-sintered during the manufacturing process of the laminated piezoelectric ceramic component.
  • the ceramic powder in the conductive paste diffuses into the ceramic layer (ceramic green sheet) before the internal electrode layer is sintered, and the metal powder in the internal electrode is rapidly sintered. As a result, it is possible to suppress the formation of columns made of ceramic powder in the internal electrode layer.
  • the content of the ceramic powder is 20 to 50% by weight with respect to the total of the metal powder and the ceramic powder. Suppression can be suppressed, and it is possible to suppress the growth of vacancies in the internal electrode layer that proceed simultaneously.
  • the conductive paste even when ceramic powder is contained in the conductive paste, the formation of pillars in the internal electrode layer and the growth of vacancies are suppressed. Therefore, even if the internal electrode layer is made thinner, the bonding strength between the internal electrode layer and the ceramic layer can be increased, and the desired force and displacement can be increased. Achieving a conductive paste capable of obtaining a multilayer piezoelectric ceramic component having a sufficient amount can be achieved.
  • the content of the ceramic powder in each predetermined region is 80% of the total content of the ceramic powder. Since the area force area ratio is 10% or less, it can be seen that the dispersibility of the ceramic powder in the internal electrode layer is good. Therefore, even if the conductive paste is sintered, the ceramic powder acts as a pinning to the metal powder being sintered, preventing rapid sintering of the metal powder, and as a result, the growth of vacancies that progress simultaneously with this. As a result, the coverage of the internal electrode layer can be improved.
  • the conductive paste of the present invention has an Ag content of 70 wt% or more in the metal powder.
  • the conductive paste of the present invention has an Ag content of 70 wt% or more in the metal powder.
  • the conductive paste of the present invention is useful in a multilayer piezoelectric ceramic component that requires a large amount of displacement and requires a large bonding strength with respect to the large amount of displacement.
  • it is particularly effective in a multilayer piezoelectric ceramic component of a type formed by co-sintering a ceramic layer and internal electrodes.
  • the piezoelectric ceramic layers and the internal electrode layers are alternately laminated to form a ceramic body, and external electrodes are formed on both end faces of the ceramic body.
  • the internal electrode layer is formed by sintering the conductive paste, so that a multilayer piezoelectric ceramic component having a large displacement and bonding strength can be obtained.
  • the ceramic of the internal electrode layer can be manufactured by using the conductive paste, even if the thickness of the internal electrode layer is 1.7 ⁇ or less.
  • the coverage of the layer can be 95% or more, and therefore, a multilayer piezoelectric ceramic component having a large amount of displacement while having a large bonding strength can be obtained.
  • FIG. 1 is a diagram for explaining a dispersion state of a ceramic powder contained in a conductive paste according to the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of a multilayer piezoelectric actuator as a multilayer piezoelectric ceramic component manufactured using the conductive paste of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of a main part of an internal electrode layer showing an example of background art.
  • the conductive paste according to the present invention comprises a metal powder having a specific surface area of 2 to 4m 2 Zg, a ceramic powder having a specific surface area of 5 to 20 times that of the metal powder, and an organic vehicle.
  • the content of the ceramic powder is 20 to 50% by weight based on the total amount of the metal powder and the ceramic powder (hereinafter referred to as “solid content”).
  • a multilayer piezoelectric ceramic component such as a multilayer piezoelectric actuator is required to obtain a large amount of displacement when a voltage is applied. Therefore, even if the internal electrode is smoothed as described in the section of [Background Art] and [Problems to be Solved by the Invention] as a result of the inclusion of ceramic powder as a solid content in the conductive paste, If a large number of pillars are formed in the internal electrode layer, the bonding strength between the internal electrode layer and the ceramic layer is excessively strengthened. As a result, the interfacial peeling is suppressed, but the displacement restraint force increases. .
  • ceramic powder having a specific surface area of 5 to 20 times that of metal powder is prepared, and the content of the ceramic powder is 20 to 50% by weight with respect to the total solid content.
  • the ceramic powder is contained in a conductive paste.
  • the ceramic powder having the predetermined specific surface area is contained in the predetermined amount, the ceramic powder is uniformly dispersed in the manufacturing process of the multilayer piezoelectric ceramic component. Even if the internal electrode layer is formed using the conductive paste and the conductive paste and the ceramic green sheet are co-sintered, the internal electrode layer The ceramic powder diffuses into the ceramic layer (ceramic green sheet) before sintering and can suppress the formation of pillars in the internal electrode layer and suppress the rapid sintering of the metal powder. In addition, the shrinkage of the internal electrode layer can be prevented and the coverage can be improved.
  • the content of the ceramic powder is 20 to 50% by weight with respect to the total solid content, so that rapid sintering of the metal powder was suppressed during the co-sintering. As a result, the growth of vacancies that can be formed in the internal electrode layer can be suppressed, and this also improves the coverage.
  • the ceramic powder having a specific surface area of 5 to 20 times that of the metal powder is contained in the conductive paste in the range of 20 to 50% by weight.
  • the internal electrode shrinks due to abrupt sintering of the metal powder, which is also successfully dispersed in the conductive paste and thus does not cause a local decrease in the amount of the ceramic powder.
  • voids in the internal electrode layer are suppressed. Growth is also suppressed, and the coverage of the internal electrode layer can be improved in combination with the specific surface area of the ceramic powder.
  • the present conductive paste has a high effect of improving the coverage as described above, the internal electrode can be thinned and the electrode area can be increased, thereby increasing the amount of displacement and bonding strength.
  • Type piezoelectric ceramic component can be obtained.
  • the specific surface area of the ceramic powder is set to 5 to 20 times the specific surface area of the metal powder as described above for the following reason.
  • the specific surface area of the ceramic powder is less than 5 times the specific surface area of the metal powder, the dispersibility of the ceramic powder in the conductive paste decreases due to the large particle size of the ceramic powder, and the internal electrode layer Therefore, sufficient bonding strength cannot be obtained.
  • the specific surface area of the ceramic powder exceeds 20 times the specific surface area of the metal powder, the ceramic powder contained in the conductive paste aggregates, which makes the ceramic powder sufficiently in the ceramic layer. There is a possibility that a column is formed in the internal electrode layer without being diffused.
  • the specific surface area of the ceramic powder is 5 to 20 times, preferably 10 to 20 times the specific surface area of the metal powder.
  • the ratio table area of the ceramic powder in the above preferred range, it is possible to obtain a higher coverage ratio and a larger displacement amount S.
  • the content of the ceramic powder is less than 20% by weight with respect to the total solid content, the content of the ceramic powder becomes too small, so that the pore diameter in the internal electrode layer increases and the coverage decreases. For this reason, the bonding strength at the interface between the internal electrode layer and the ceramic layer is lowered.
  • the content exceeds 50% by weight, when the conductive paste and the ceramic green sheet are co-fired, the ceramic powder that has not diffused into the ceramic layer remains in the internal electrode layer to form columns. As a result, the bonding strength becomes excessively large and the displacement restraining force also increases, resulting in a decrease in the amount of displacement.
  • the content of the ceramic powder is 20 to 20% of the total solid content.
  • the ceramic powder contained in the conductive paste of the present invention does not necessarily have the same or similar component composition as the ceramic material forming the ceramic layer. However, since the ceramic powder contained in the conductive paste also diffuses to the ceramic layer side during firing, a ceramic material having the same or similar component composition as the ceramic material forming the ceramic layer is used from the viewpoint of preventing characteristic fluctuations. More preferably.
  • a dry film (for example, 40 ⁇ m in length and 40 ⁇ m in width) obtained by drying the conductive paste is used to form a predetermined area 1 ⁇ ′ ⁇ 1 in a matrix form as shown in FIG. Divided into
  • the content of the ceramic powder in a predetermined region is determined by the conductive paste.
  • the area of 80% or less of the ceramic powder content contained in is 10% or less in area ratio.
  • the amount of the ceramic powder is uniformly and uniformly dispersed in the conductive paste with a small number of locally reduced regions, and thereby the internal electrode as a dry film.
  • the growth of vacancies in the layer can be suppressed and the vacancy diameter can be prevented from expanding, and the coverage can be improved.
  • the ceramic powder is uniformly and uniformly dispersed in the conductive paste, even if the conductive paste is sintered, the ceramic powder acts as a pinning to the metal powder being sintered. Internal electrode layer by rapid sintering of metal powder As a result, the growth of vacancies in the internal electrode layer, which proceeds simultaneously with this, is suppressed, thereby improving the coverage of the internal electrode layer.
  • the content of the ceramic powder in the predetermined region when the area that is 80% or less of the content of the ceramic powder contained in the conductive paste is 8% or less in area ratio, It is more preferable because the coverage is further improved.
  • the ceramic powder contained in the conductive paste a material having the same composition as that of the ceramic material used for the multilayer piezoelectric ceramic component, for example, a PZT material is used.
  • the metal powder preferably contains 70 wt% or more of Ag.
  • the content of Ag in the metal powder is increased, the melting point of the conductive paste is lowered, and thus the sintering temperature is lowered, so that it is difficult to increase the coverage of the internal electrodes.
  • the above conductive paste can provide a high coverage even if the Ag content is 70% by weight or more, and Ag is more flexible than other electrode materials such as Ni alone and Pd alone. A larger displacement amount can be obtained.
  • an organic binder such as methyl cellulose resin or ethyl cellulose resin dissolved in a terpene solvent, an organic solvent such as terbinol or butyl carbitol in a predetermined blending amount is used. be able to.
  • an organic vehicle is produced by dissolving an organic binder in an organic solvent.
  • a metal powder having a predetermined specific surface area for example, 2 to 4 m 2 / g
  • the metal powder is mixed with the organic vehicle and kneaded with a three-roll mill or the like. Get.
  • a ceramic raw material having the same composition as the ceramic raw material of the multilayer piezoelectric ceramic component is put into a forced stirring device such as a bead stirring type pulverizer and pulverized to give 5 to 20 times the metal powder.
  • a forced stirring device such as a bead stirring type pulverizer and pulverized to give 5 to 20 times the metal powder.
  • a ceramic powder having a specific surface area of is prepared.
  • the ceramic powder and the organic vehicle are mixed, and the ceramic powder is sufficiently dispersed in the organic vehicle using a forced stirring device such as the bead stirring mill, thereby obtaining a ceramic paste. .
  • the content of the ceramic powder in the solid content is 20 to 5
  • the metal paste and the ceramic paste are kneaded with a three-roll mill or the like so as to be 0% by weight, thereby producing the conductive paste.
  • FIG. 2 is a cross-sectional view showing an embodiment of the multilayer piezoelectric actuator, wherein the multilayer piezoelectric actuator includes a ceramic layer 2 (2a to 2h) and an internal electrode layer 3 (3a to 3g).
  • the piezoelectric ceramic body 4 is formed by alternately stacking, and the external electrodes 5 (5a, 5b) made of a conductive material such as Ag are formed at both ends of the piezoelectric ceramic body 4.
  • one end of the internal electrodes 3a, 3c, 3e, 3g is electrically connected to one external electrode 5a, and one end of the internal electrodes 3b, 3d, 3f is electrically connected to the other external electrode 5b. Connected.
  • the multilayer piezoelectric actuator when a voltage is applied between the external electrode 5a and the external electrode 5b, the multilayer piezoelectric actuator is displaced in the stacking direction indicated by the arrow X due to the piezoelectric longitudinal effect.
  • the multilayer piezoelectric actuator is manufactured using the conductive paste, so that even if the film thickness of the internal electrode layer 3 is set to 1 ⁇ 7 ⁇ or less, the ceramic layer 2 of the internal electrode layer 3 is formed. Therefore, it is possible to obtain a highly reliable laminated piezoelectric actuator having a large bonding strength that can withstand repeated expansion and contraction, and that has a large displacement when an electric field is applied.
  • the film thickness of the internal electrode layer 3 is preferably 0.8 ⁇ or more. This is because when the film thickness of the internal electrode layer 3 becomes thinner than 0.8 ⁇ , it becomes difficult to maintain the coverage of the internal electrode layer 3 at 95% or more, and sufficient bonding strength cannot be obtained. is there.
  • a predetermined amount of a ceramic raw material such as PbO, TiO, ZrO, NbO is weighed, and then
  • the weighed product is put into a ball mill together with a grinding medium such as zirconia and water and sufficiently wet-pulverized, and further calcined at a predetermined temperature (for example, 600 to 1000 ° C.) to prepare a calcined product, and then dissolved. Add the agent and dispersant and wet pulverize again in the ball mill to make ceramic raw material powder.
  • a grinding medium such as zirconia and water
  • an organic binder plasticizer is added to the ceramic raw material powder thus prepared. Then, a wet mixing process is performed to form a slurry, and then a forming process is performed using a doctor blade method or the like to produce a ceramic green sheet.
  • ceramic green sheets on which electrode patterns are not screen-printed are arranged above and below in the laminating direction and pressed to form a laminate. Make it.
  • the laminate is cut into a predetermined size, accommodated in an alumina sheath, subjected to a debinding process at a predetermined temperature (for example, 250 to 500 ° C.), and then subjected to a predetermined temperature (for example, 950). ⁇ : 1100 ° C.) to form a piezoelectric ceramic body 4 in which ceramic layers 2 and internal electrode layers 3 are alternately laminated.
  • the same conductive paste for external electrodes made of Ag or the like is applied to both ends of the piezoelectric ceramic body 4, and a baking process is performed at a predetermined temperature (for example, 750 ° C to 850 ° C).
  • the external electrodes 5a and 5b are formed and further subjected to a predetermined polarization process, whereby a laminated piezoelectric actuator is manufactured.
  • the external electrodes 5a and 5b may be formed by a thin film forming method such as a sputtering method or a vacuum deposition method as long as the adhesion is good.
  • the thickness of the internal electrode layer 3 is set to 1.7 ⁇ ⁇ or less.
  • the coverage ratio of the internal electrode layer 3 to the ceramic layer 2 can be 95% or more, and a laminated piezoelectric actuator having a large displacement and a high bonding strength can be obtained.
  • oxides such as Pb 2 O were used as ceramic raw materials, but carbonates and hydroxides were used.
  • the present invention is suitable for the multilayer piezoelectric actuator that requires a particularly large amount of displacement in the multilayer piezoelectric ceramic electronic component, but various other types such as a piezoelectric oscillator, a piezoelectric buzzer, and a piezoelectric sensor are also available. It goes without saying that it can be applied to multilayer piezoelectric ceramic electronic components.
  • PZT ceramic material containing Pb (Zr Ti) 0 as a main component and containing 2 mol of Nb component per 100 mol of the main component is prepared, and this PZT ceramic material is pulverized with beads. It was put into a machine and pulverized to produce 5 types of ceramic powders with a specific surface area Sc of 8-40.
  • the ceramic powder and the organic vehicle are put into a bead stirring type dusting machine so that the organic vehicle becomes 80 parts by weight with respect to 100 parts by weight of the ceramic powder, and dispersion treatment is performed for 40 minutes.
  • a ceramic paste was prepared.
  • the metal paste and the ceramic paste are kneaded so that the content of the ceramic powder is 30% by weight with respect to the total of the ceramic powder and the metal powder, which are solid components, and thereby the conductive paste.
  • the content of the ceramic powder is 30% by weight with respect to the total of the ceramic powder and the metal powder, which are solid components, and thereby the conductive paste.
  • a PZT-based ceramic material used in the preparation of the ceramic paste was prepared and pulverized so as to have a specific surface area force of 3 ⁇ 4 m 2 / g to obtain a ceramic raw material.
  • a solvent and a dispersant are added to the ceramic raw material and wet pulverized. Thereafter, a predetermined amount of an ethyl cellulose resin as an organic binder and a predetermined additive are added and wet-mixed, and the ceramic raw material is mixed. A rally was made.
  • this ceramic slurry was formed into a sheet using a doctor blade method, and a ceramic green sheet was prepared so that the thickness of the fired ceramic layer was 20 am.
  • the coverage of the internal electrode layer to the ceramic layer, the amount of displacement, and the bending strength were measured.
  • the bonding strength between the internal electrode layer and the ceramic layer was evaluated based on the bending strength at the interface between the ceramic layer and the internal electrode layer.
  • the coverage of the internal electrode layer was quantified by peeling each sample along the internal electrode layer, capturing microscopic photographs of pores scattered in the internal electrode layer, and performing image analysis processing.
  • the displacement was measured with a laser displacement meter under a frequency of 1 kHz and applying an electric field of lOOOVZmm.
  • the bending strength is determined by bonding a ceramic plate to both main surfaces of each sample, cutting out a square column with a dicing saw, preparing a test piece, performing a bending test on each test piece, The strength when peeled was measured and determined. In this example, the bonding strength between the internal electrode layer and the ceramic layer was evaluated based on the bending strength. [0093] Next, for sample numbers 2 to 6, mapping analysis was performed using WDX (Wavelength Dispersive X-ray Spectroscopy), and the internal electrode layer (70 ° C, 10 ° C) was analyzed.
  • WDX Widelength Dispersive X-ray Spectroscopy
  • the strength distribution of the ceramic powder contained in the dried film is measured, and the content of the ceramic powder in the specified region (41.0 zm X 41.0 ⁇ m), that is, the partial content is conductive.
  • Pixels that were 80% or less were defined as defective pixels, the total area of the defective pixels was calculated, and the area ratio relative to the entire measurement region was calculated.
  • Table 1 shows the specifications of the conductive paste in Sample Nos. 1 to 17: the thickness of the internal electrode layer, and the measurement results.
  • Sample No. 2 has a small specific surface area ratio Sc / Sm force of ceramic powder and metal powder, the area ratio is reduced when the internal electrode layer thickness is reduced to 1.7 / m. 12.0%, exceeding 10%, and therefore the formation of vacancies in the internal electrode layer is considered to be encouraged, so the coverage is lowered to 92%, and the bending strength is 99 MPa. It was found that the bonding strength between the internal electrode layer and the ceramic layer deteriorated.
  • Sample No. 7 also has a specific surface area ratio ScZSm of ceramic powder and metal powder as small as 4, so when the internal electrode layer thickness is reduced to 1.5 zm, the coverage is 88%. It was found that the bending strength decreased to 86 MPa, and the bonding strength between the internal electrode layer and the ceramic layer deteriorated.
  • Sample No. 15 also has a specific surface area ratio ScZSm of ceramic powder and metal powder of 3.75, so the coating rate is 90% when the internal electrode layer thickness is reduced to 1.5 zm. %, The bending strength decreased to 88 MPa, and the bonding strength between the internal electrode layer and the ceramic layer deteriorated.
  • Sample Nos. 1, 3 to 6, 8 to: 14, 16, and 17 have a specific surface area ratio Sc / Sm of ceramic powder to metal powder of 5 to 20, and the strength is also ceramic powder. Since the content in the solid content is 3 ⁇ 40% by weight, even if the thickness of the internal electrode layer is reduced to 0.8 to 1.7 ⁇ , the coverage is 95 to 100%. As a result, the bending strength is 106 to 114 MPa, the bonding strength between the internal electrode layer and the ceramic layer is good, and the displacement when electric field is applied is as large as 0.780-0.844 ⁇ . It was found that a multilayer piezoelectric ceramic component that can provide a large bonding strength can be obtained.
  • this conductive paste is suitable for thinning the internal electrode layer.
  • the ceramic powder content in the predetermined divided region is a region where the ceramic powder content (30 wt%) in each conductive paste is 80% or less, that is, 24
  • region used as weight% or less was compared.
  • the area ratio is 10 for sample numbers 3 to 6 where Sc / Sm is 5 or more. /. It was found that the amount of displacement, the coverage of the internal electrode, and the bending strength were within the scope of the present invention. That is, 80 of ceramic powder content in electrical paste. / 0 if the following as a region is equal to or less than 10% by area ratio, improved coverage of the internal electrodes, and it was confirmed that the large internal electrode bonding strength is obtained.
  • a metal powder having a specific surface area 3111 of 2111 2 / ⁇ (eight parts : 70% by weight, (1: 30% by weight)) was prepared, and a metal paste was prepared in the same manner as in [Example 1].
  • a ceramic paste was prepared by the same procedure as in [Example 1] except that the particle size was adjusted so that the specific surface area Sc of the ceramic material was 20 m 2 / g.
  • a ceramic green sheet was prepared in the same manner as in [Example 1].
  • Table 2 shows the specifications of the conductive paste, sample electrode thickness, internal electrode layer thickness, and the above measurement results for sample numbers 2:! -28.
  • the sample number 21 is a ratio of the specific surface area of the ceramic powder and the metal powder Sc / Sm is 10.
  • the content of the ceramic powder relative to the solid content is 15% by weight, 20 Since it was less than wt%, the coverage of the internal electrode layer was greatly reduced to 89%, and the bending strength was as small as 81 MPa, indicating that the bonding strength was poor.
  • Sample No. 28 also has a specific surface area ratio ScZSm of 10 for the ceramic powder and metal powder, but the content of the ceramic powder with respect to the solid content is excessive at 60% by weight. As a result, a large amount of ceramic powder remains and the bonding strength is excessively strengthened, and the bending strength is increased to 142 MPa, the displacement restraint force is increased and the displacement is decreased to 0.75 6 ⁇ m. It was.
  • Sample Nos. 22 to 27 have a content of 20 to 50% by weight based on the solid content of the ceramic powder, and the ratio of the specific surface area between the ceramic powder and the metal powder is ScZSm of 10. some because the coverage of the internal electrode layer is 95 to 97 weight 0/0, the displacement amount 0. 778 ⁇ 0. 820 / m and the large instrument flexural strength increases with 102 ⁇ 125MPa, good bond strength It was found that
  • a metal paste was prepared in the same manner as in the above procedure.
  • composition formula is represented by 0.20Pb (Ni Nb) 0 _0. 40PbZrO _0. 40PbTiO.
  • the ceramic material was put into a bead stirrer and pulverized to produce four types of ceramic powders having a specific surface area Sc of 8 to 35.
  • a ceramic green sheet was prepared in the same manner as in [Example 1].
  • the laminated piezoelectric ceramic parts Nos. 31 to 42 were prepared in the same manner as in Example 1].
  • the firing temperature was 1025 ° C, 1000 ° C, and 975 ° C depending on the blending ratio of Ag and Pd of the metal powder. This is because the melting point varies depending on the amount of the metal powder, and the firing temperature is changed.
  • Table 3 shows the specification of the conductive paste, the thickness of the internal electrode layer, the firing temperature, and the measurement results for Sample Nos. 31 to 42.
  • Pb (Ni, Nb) O PZT material is PZT ceramic material used in Examples 1 and 2
  • the internal electrode layer is made thinner as shown in Table 3.
  • the displacement amount can be further increased.
  • sample No. 31 has a small Sc / Sm force S4 between the specific surface area of the metal powder and the specific surface area of the ceramic powder, and the coverage of the internal electrode layer is as small as 92%. It was found that the bending strength was as low as 80 MPa and the bonding strength was inferior.
  • Sample No. 35 also has a small surface area ratio ScZSm force S4 of ceramic powder and metal powder. Therefore, as with Sample No. 31, the bending strength at which the coverage of the internal electrode layer is 93% is low. 87M
  • Sample No. 39 also has a small surface strength ratio ScZSm force S4 of ceramic powder and metal powder. Therefore, as with Sample No. 31, it has a low bending strength with an internal electrode layer coverage of 91%. 81M
  • Sample Nos. 32-34, 36-38, and 40-42 have a specific surface area ratio of Sc / Sm force of 3 ⁇ 4 or more and the ceramic powder content is 30% by weight with respect to the solid content. It was also found that the covering ratio of the internal electrode layer was 95 to 100%, and that a large bonding strength was obtained while maintaining a large displacement amount of 98 to 115 MPa in bending strength.

Abstract

 本発明の導電性ペーストは、積層型圧電セラミック部品の内部電極層を形成するための導電性ペーストであって、金属粉末と、該金属粉末の5倍以上20倍以下の比表面積を有するセラミック粉末とを含有し、前記セラミック粉末の含有量が、前記金属粉末と前記セラミック粉末との総計に対し、20~50重量%とされている。これにより、セラミック層と内部電極層との接合強度を向上させることができ、かつ、変位量の大きな積層型圧電セラミック部品を得ることが可能な導電性ペーストを実現することができる。

Description

明 細 書
導電性ペースト、及び積層型圧電セラミック部品
技術分野
[0001] 本発明は導電性ペースト、及び積層型圧電セラミック部品に関し、より詳しくは金属 粉末とセラミック粉末とを固形分として含有した導電性ペースト、及び該導電性ぺー ストを使用して製造された積層型圧電セラミック部品に関する。
背景技術
[0002] 積層型圧電セラミック部品は、セラミック層と内部電極層とが交互に積層されて形成 されており、内部電極層を薄層化することにより、コスト削減を図ることができると共に 、変位量を大きくすることが可能となる。
[0003] すなわち、この種の積層型圧電セラミック部品では、変位量の大きいことが要請され る力 電圧を印加するとセラミック層のみが伸縮するため、内部電極層の厚みが厚い とセラミック層間が前記内部電極層により拘束されて該セラミック層の伸縮が阻害され 、その結果大きな変位量を得ることができなくなる。これに対して内部電極層の厚み が薄くなるとセラミック層が伸縮しやすくなり、大きな変位量を得ることが可能となる。
[0004] し力、しながらその一方、内部電極層を薄層化すると内部電極層に空孔が形成され 、内部電極層のセラミック層への被覆率が低下し、その結果、電極面積が減少して電 位降下が生じ、変位量が低下するおそれがある。しかも、積層型圧電セラミック部品 の場合、電圧印加時にセラミック層が伸縮するため、前記被覆率が低下してセラミツ ク層と内部電極層との間の接合強度が弱くなると、繰り返し行われる伸縮運動により 内部電極層とセラミック層とが界面で剥離してしまうおそれがある。
[0005] 内部電極層とセラミック層との界面剥離を抑制する技術としては、内部電極に、導 体粒子の平均粒径と同等以下の平均粒径を有する第 1のセラミック粒子が存在する と共に、内部電極の一方のセラミック層から他方のセラミック層に達する第 2のセラミツ ク粒子が存在するようにしたセラミック電子部品が提案されている(特許文献 1)。
[0006] この特許文献 1では、導体粒子の平均粒径の 0. 05〜1倍の第 1のセラミック粒子を 、導体粒子の添加量に対し 10〜 50重量%添加し、導体粒子の平均粒径の 2〜: 10 倍の第 2のセラミック粒子を、導体粒子の添カ卩量に対し 0. 01〜1重量0 /0添加すること により、積層体内部でのクラックの発生や内部電極層とセラミック層との界面で剥離が 生じるのを抑制している。
[0007] すなわち、特許文献 1では、図 3に示すように、導体粒子と同等以下の第 1のセラミ ック粒子を導体粒子間に散在させることにより、内部電極層 101の熱膨張率をセラミ ック層 102の熱膨張率に近付けてヒートショックを緩和し、これによりクラックの発生を 低減させている。また、第 2のセラミック粒子 103は、内部電極の一方のセラミック層か ら他方のセラミック層に達するように存在するので柱を形成することとなり、したがって 内部電極層 101を挟持するセラミック層 102同士が前記第 2のセラミック粒子 103を 介して接合され、これにより内部電極層 101とセラミック層 102との接合強度の向上を 図ることができ、界面での剥離を抑制することが可能となる。
[0008] また、他の従来技術としては、内部電極が、金属粉末と、金属粉末の平均粒径の 1 /2以下の平均粒径のセラミック粉末とを含み、該セラミック粉末が全固形分の 2〜4 0重量%の割合で含有された導電性ペーストの焼成により形成された積層セラミック 電子部品も提案されてレ、る (特許文献 2)。
[0009] この特許文献 2では、例えば、平均粒径が 0. 4 μ mの Ni粉末と、平均粒径が 0. 2
μ m又は 0· 1 μ mのセラミック粉末(該セラミック粉末はセラミックグリーンシートを形 成するセラミックと同一材料)とからなる固形分を導電性ペースト中に含有させると共 に、セラミック粉末の全固形分に対する含有量を 2〜40重量%とすることにより、密着 性を向上させ、これによりセラミック層と内部電極層との界面剥離を抑制せんとしてい る。
[0010] 特許文献 1 :特開 2000— 277369号公報
特許文献 2:特開平 11一 354374号公報
発明の開示
発明が解決しょうとする課題
[0011] し力 ながら、特許文献 1は、上述したように第 2のセラミック粒子 103が柱を形成し ているため、内部電極層 101とセラミック層 102との接合強度が過度に強化され、こ のため特許文献 1の技術を積層型圧電セラミック部品に適用し、電圧を印加した場合 、セラミック層の駆動変位が内部電極層によって拘束される。し力も、柱が形成される ことにより被覆率も低下するため電圧印加時に電位降下が生じ、このため所望の大き な変位量を得ることは困難であるという問題点があった。
[0012] また、特許文献 2は、内部電極に金属粉末の他、セラミック粉末を含有させて密着 性を向上させ、内部電極の平滑化を図っているが、積層セラミック電子部品として積 層セラミックコンデンサしか意図しておらず、繰り返し行われる伸縮運動に耐え得る接 合強度が得られるかは不明である。
[0013] しかも、特許文献 2は、平均粒径が、例えば 0. 4 a mの Ni粉末の場合は平均粒径 が 0. 2 a m又は 0. 1 μ m程度の粒径の大きなセラミック粉末を使用しているため、柱 の形成によって変位量が拘束される所謂変位拘束力の増大するおそれがあり、さら に被覆率も低下するおそれがある。したがって、特許文献 2の導電性ペーストを積層 型圧電セラミック部品に適用しても、特許文献 1と同様、内部電極層を薄層化しても 所望の大きな変位量を得るのが困難であるという問題点があった。
[0014] 本発明はこのような問題点に鑑みなされたものであって、セラミック層と内部電極層 との接合強度を向上させることができ、かつ、大きな変位量を有する積層型圧電セラ ミック部品を得ることができる導電性ペースト、及び該導電性ペーストを使用して製造 された積層型圧電セラミック部品を提供することを目的とする。
課題を解決するための手段
[0015] 本発明は上記目的を達成するために鋭意研究したところ、導電性ペーストとして金 属粉末の 5倍以上 20倍以下の比表面積を有する超微粒のセラミック粉末を金属粉 末と共に混在させると共に、セラミック粉末の含有量を、導電性ペースト中の全固形 分、すなわち金属粉末とセラミック粉末との総計に対し、 20〜50重量%とすることに より、内部電極層の積層方向の厚みを 1. 7 z m以下に薄層化しても被覆率が 95% 以上の積層型圧電セラミック部品を得ることができた。そしてこれにより、セラミック層と 内部電極層との接合強度が向上し、かつ大きな変位量を有する積層型圧電セラミツ ク部品の実現が可能な導電性ペーストを得ることができるという知見を得た。
[0016] 本発明はこのような知見に基づきなされたものであって、本発明に係る導電性べ一 ストは、圧電セラミック部品の電極を形成するための導電性ペーストであって、金属粉 末と、該金属粉末の 5倍以上 20倍以下の比表面積を有するセラミック粉末とを含有し 、前記セラミック粉末の含有量が、前記金属粉末と前記セラミック粉末との総計に対し 、 20〜50重量%であることを特徴としている。
[0017] さらに、本発明者らは、上記導電性ペーストを使用して積層型圧電セラミック部品を 作製し、乾燥状態の導電性ペーストの微小な所定領域にっレ、て組成分析を行ったと ころ、該所定領域におけるセラミック粉末の含有量は、導電性ペーストに含有される セラミック粉末の含有量の 80%以下である領域が、面積率で 10%以下となる場合、 内部電極層内の空孔の成長を更に効果的に抑制することができ、被覆率を向上させ ることができることを見出した。
[0018] すなわち、本発明の導電性ペーストは、乾燥膜において複数の所定領域に分割し た場合に、前記各所定領域における前記セラミック粉末の含有量は、前記セラミック 粉末の含有量総計の 80 %以下である領域が、面積率で 10%以下であることを特徴 としている。
[0019] また、上記導電性ペーストは、比較的安価な Agを 70重量%以上含有する場合に、 上述した接合強度と変位量との両立が可能な上、特に変位量が良好な積層型圧電 セラミック咅品を得ること力 Sできる。
[0020] すなわち、本発明の導電性ペーストは、前記金属粉末が、 Agの含有量が 70重量 %以上であることが好ましい。
[0021] また、本発明に係る積層型圧電セラミック部品は、セラミック層と内部電極層とが交 互に積層されてセラミック素体を形成すると共に、該セラミック素体の両端面に外部 電極が形成された積層型圧電セラミック部品において、前記内部電極層は、上記導 電性ペーストが焼結されてなることを特徴としている。
[0022] また、上記導電性ペーストを使用して製造された積層型圧電セラミック部品は、内 部電極層の厚みを 1. 7 x m以下に薄層化することができ、被覆率も 95%以上とする こと力 Sできる。
[0023] すなわち、本発明の積層型圧電セラミック部品は、前記内部電極層の厚みが 1. 7 μ m以下であり、前記内部電極層のセラミック層への被覆率が 95%以上であることを 特徴としている。 発明の効果
[0024] 上記導電性ペーストによれば、金属粉末と、該金属粉末の 5倍以上 20倍以下の比 表面積を有するセラミック粉末とを含有し、前記セラミック粉末の含有量が前記金属 粉末との総計に対し、 20〜50重量%であるので、前記導電性ペースト中でのセラミ ック粉末を均一に分散させると積層型圧電セラミック部品の製造過程でセラミックダリ ーンシートと導電性ペーストとを共焼結させた場合であっても、内部電極層が焼結す る前に導電性ペースト中のセラミック粉末がセラミック層(セラミックグリーンシート)中 に拡散しつつ、内部電極中の金属粉末の急激な焼結を抑制することができ、その結 果、セラミック粉末からなる柱が内部電極層中に形成されるのを抑制することができる
[0025] また、上述したようにセラミック粉末の含有量が、前記金属粉末と前記セラミック粉末 との総計に対し、 20〜50重量%であるので、前記共焼結時に前記金属粉末の急激 な焼結を抑制することができ、これと同時進行する内部電極層内の空孔の成長を抑 制すること力 Sできる。
[0026] このように上記導電性ペーストによれば、導電性ペースト中にセラミック粉末が含有 されていても、内部電極層での柱の形成や、空孔の成長が抑制され、これにより、内 部電極の被覆率を向上させることができ、したがって、内部電極層を薄層化しても内 部電極層とセラミック層との接合強度を大きくすることができ、し力、も所望の大きな変 位量を有する積層型圧電セラミック部品を得ることが可能な導電性ペーストを実現す ること力 Sできる。
[0027] また、本発明の導電性ペーストは、乾燥膜において複数の所定領域に分割した場 合に、前記各所定領域における前記セラミック粉末の含有量が、前記セラミック粉末 の含有量総計の 80%以下である領域力 面積率で 10%以下であるので、内部電極 層中のセラミック粉末の分散性が良好であることが分かる。したがって導電性ペースト を焼結させても、セラミック粉末は焼結途中の金属粉末に対しピンニングとして作用し 、金属粉末の急激な焼結が防止され、その結果これと同時進行する空孔の成長が抑 制され、これにより内部電極層の被覆率向上を図ることができる。
[0028] また、本発明の導電性ペーストは、金属粉末中の Agの含有量を 70重量%以上と することにより、接合強度と変位量との両立が可能な上、特に変位量が良好な積層型 圧電セラミック部品を得ること力 Sできる。すなわち、従来は、 Agの含有量が多くなると 、導電性ペーストの融点が下がり、したがって焼結温度が低くなるため、内部電極の 被覆率を高めることが困難であつたが、本発明の導電性ペーストでは金属粉末中の Agの含有量を 70重量%以上としても高い被覆率を得ることができ、し力、も、 Agは Ni 単体及び Pd単体等の他の電極材料よりも柔軟性に優れているので、より大きな変位 量を得ること力 Sできる。
[0029] このように本発明の導電性ペーストは、大きな変位量が要求され、し力、もこの大きな 変位量に対して大きな接合強度が求められるような積層型圧電セラミック部品におい て有用であり、特に、セラミック層と内部電極とが共焼結されることによって形成される タイプの積層型圧電セラミック部品において特に効果的である。
[0030] また、本発明の積層型圧電セラミック部品によれば、圧電セラミック層と内部電極層 とが交互に積層されてセラミック素体を形成すると共に、該セラミック素体の両端面に 外部電極が形成された積層型圧電セラミック部品において、前記内部電極層は、上 記導電性ペーストが焼結されてなるので、変位量や接合強度の大きな積層型圧電セ ラミック部品を得ることができる。
[0031] さらに、本発明積層型圧電セラミック部品によれば、上記導電性ペーストを使用して 製造することにより、内部電極層の厚みを 1. 7 μ ΐη以下にしても前記内部電極層の セラミック層への被覆率を 95%以上とすることができ、したがって大きな接合強度を 有しつつも、大きな変位量を有する積層型圧電セラミック部品を得ることができる。 図面の簡単な説明
[0032] [図 1]本発明に係る導電性ペーストに含有されるセラミック粉末の分散状態を説明す るための図である。
[図 2]本発明の導電性ペーストを使用して製造された積層型圧電セラミック部品として の積層圧電ァクチユエータの一実施の形態を示す断面図である。
[図 3]背景技術の一例を示す内部電極層の要部拡大断面図である。
符号の説明
[0033] 2 セラミック層 3 内部電極層
4 セラミック素体
発明を実施するための最良の形態
[0034] 次に、本発明の実施の形態を詳説する。
[0035] 本発明に係る導電性ペーストは、比表面積が 2〜4m2Zgの金属粉末と、該金属粉 末に比べ 5倍以上 20倍以下の比表面積を有するセラミック粉末と、有機ビヒクルとを 含有し、セラミック粉末の含有量が、金属粉末及びセラミック粉末 (以下、この両者を「 固形分」という。 )の総計に対し 20〜50重量%とされてレ、る。
[0036] 従来、積層型セラミック電子部品では、内部電極層とセラミック層との接合強度を高 めるためにセラミック層と同一又は類似の組成成分材料からなるセラミック粉末を金 属粉末と共に含有させた導電ペーストを使用し、セラミック材料からなる柱を有する内 部電極層を形成することが行われている。
[0037] し力 ながら、積層圧電ァクチユエータのような積層型圧電セラミック部品では、電 圧印加時には大きな変位量が得られることが求められる。したがって、導電性ペース ト中に固形分としてセラミック粉末を含有させた結果、 〔背景技術〕及び〔発明が解決 しょうとする課題〕の項で述べたように、内部電極が平滑化されたとしても、内部電極 層中に多数の柱が形成されてしまうと、内部電極層とセラミック層との接合強度が過 度に強化され、その結果、界面剥離は抑制されるものの、変位拘束力が増大する。ま た、上記多数の柱が形成されたり、内部電極層中にセラミック粉末が残存すると、内 部電極層のセラミック層への被覆率が低下し、その結果、電極面積が小さくなつて電 位降下が生じ、所望の大きな変位量を得ることができなくなる。
[0038] そこで、本実施の形態では、比表面積が金属粉末の 5倍以上 20倍以下のセラミック 粉末を用意し、該セラミック粉末の含有量が固形分の総計に対し 20〜50重量%とな るように、前記セラミック粉末を導電性ペースト中に含有させてレ、る。
[0039] 上記所定の比表面積を有するセラミック粉末を上記所定量含有させた導電性べ一 ストを用いることによって、該セラミック粉末を均一に分散させると、積層型圧電セラミ ック部品の製造過程において、上記導電性ペーストを使用して内部電極層を形成し 、導電性ペーストとセラミックグリーンシートとを共焼結した場合であっても、内部電極 が焼結する前に上記セラミック粉末はセラミック層(セラミックグリーンシート)中に拡散 し、内部電極層中に柱が形成されるのを抑制することができ、かつ金属粉末の急激 な焼結を抑制し、内部電極層の収縮を防ぎ、被覆率を向上させることができる。
[0040] しかも、上述したようにセラミック粉末の含有量を固形分の総計に対し、 20〜50重 量%としているので、前記共焼結時に金属粉末が急激な焼結が抑制され、したがつ て内部電極層中に形成され得る空孔の成長を抑制することができ、これによつても被 覆率を向上させることができる。
[0041] すなわち、金属粉末の 5倍以上 20倍以下の比表面積を有するセラミック粉末を、 2 0〜50重量%の範囲で導電性ペースト中に含有させることにより、後述するようにセ ラミック粉末は導電性ペースト中にも首尾良く分散され、したがって局所的なセラミツ ク粉末量の低下がなぐ金属粉末の急激な焼結による内部電極の収縮が抑制され、 その結果、内部電極層内の空孔の成長も抑制され、セラミック粉末の比表面積と相 俟つて内部電極層の被覆率向上を図ることができる。
[0042] そして、このように本導電性ペーストは、被覆率を向上させる効果が高いので、内部 電極を薄層化でき、かつ電極面積も増加し、これにより変位量及び接合強度の大き な積層型圧電セラミック部品を得ることができる。
[0043] ここで、セラミック粉末の比表面積を、上述したように金属粉末の比表面積の 5倍以 上 20倍以下としたのは以下の理由による。
[0044] セラミック粉末の比表面積を金属粉末の比表面積の 5倍未満とした場合は、セラミツ ク粉末の粒径が大きくなつて導電性ペースト中のセラミック粉末の分散性が低下し、 内部電極層の被覆率が低くなるため十分な接合強度が得られない。一方、セラミック 粉末の比表面積が金属粉末の比表面積の 20倍を超えた場合は、導電性ペースト中 に含まれるセラミック粉末同士が凝集してしまレ、、このためセラミック粉末がセラミック 層に十分に拡散せず、内部電極層中に柱を形成してしまうおそれがある。
[0045] そこで、本実施の形態では、セラミック粉末の比表面積を金属粉末の比表面積の 5 倍以上 20倍以下、好ましくは 10倍以上 20倍以下としている。セラミック粉末の比表 面積を上記好ましい範囲に設定することにより、より高い被覆率と大きな変位量を得 ること力 Sできる。 [0046] また、セラミック粉末の含有量を固形分の総計に対し、 20〜50重量%としたのは以 下の理由による。
[0047] セラミック粉末の含有量を固形分の総計に対し 20重量%未満になると、セラミック 粉末の含有量が過少となることから内部電極層中の空孔径が大きくなつて被覆率が 低下し、このため内部電極層とセラミック層との界面の接合強度が低下する。一方、 前記含有量が 50重量%を超えると導電性ペーストとセラミックグリーンシートとを共焼 結したときに、セラミック層に拡散しなかったセラミック粉末が内部電極層中に残存し て柱を形成し、その結果接合強度が過度に大きくなつて変位拘束力も大きくなり、変 位量の低下を招く。
[0048] そこで、本実施の形態では、セラミック粉末の含有量を固形分の総計に対し、 20〜
50重量%とした。
[0049] 尚、本発明の導電性ペーストに含まれるセラミック粉末はセラミック層を形成するセ ラミック材料と必ずしも同一又は類似の成分組成である必要はない。しかし、導電性 ペーストに含まれるセラミック粉末は、焼成時にセラミック層側にも拡散するため、特 性変動を防ぐ観点からセラミック層を形成するセラミック材料と同一又は類似の成分 組成を有するセラミック材料を使用するのがより好ましい。
[0050] また、本導電性ペーストを乾燥させて得られた乾燥膜 (例えば縦 40 μ m、横 40 μ m )を、図 1に示すようにマトリックス状に微小な所定領域 1 · ' · 1 に分割した場合、各
丄 1 nm
所定領域、例えば所定領域 1 におけるセラミック粉末の含有量は、導電性ペースト
11
に含有されるセラミック粉末の含有量の 80%以下となる領域が面積率で 10%以下と されている。
[0051] これは、セラミック粉末量が、局所的に少なくなる領域が少なぐ導電性ペースト中 に万遍なく略均一に分散していることを意味しており、これにより乾燥膜としての内部 電極層における空孔の成長が抑制されて空孔径が拡大するのを回避することができ 、被覆率を向上させることができる。
[0052] すなわち、セラミック粉末が導電性ペースト中に万遍なく略均一に分散していること から、導電性ペーストを焼結させても、セラミック粉末は焼結途中の金属粉末に対し ピンユングとして作用し、金属粉末の急激な焼結による内部電極層 の収縮が防止され、その結果、これと同時進行する内部電極層の空孔の成長が抑制 され、これにより内部電極層の被覆率向上を図ることができる。
[0053] また、特に上記所定領域におけるセラミック粉末の含有量について、導電性ペース トに含有されるセラミック粉末の含有量の 80%以下となる領域が、面積率で 8%以下 となる場合は、被覆率がさらに向上することからより好ましい。
[0054] 尚、導電性ペーストに含有されるセラミック粉末は、積層型圧電セラミック部品に使 用されるセラミック材料と同一成分組成の材料、例えば、 PZT系材料が使用される。
[0055] また、金属粉末については、 Agを 70重量%以上含有しているのが好ましい。すな わち、従来は、金属粉末中の Agの含有量が多くなると、導電性ペーストの融点が下 がり、したがって焼結温度が低くなるため、内部電極の被覆率を高めることが困難で あつたが、上記導電性ペーストでは Agの含有量を 70重量%以上としても高い被覆 率を得ることができ、しかも、 Agは Ni単体及び Pd単体等の他の電極材料よりも柔軟 性が高いため、より大きな変位量を得ることができる。
[0056] 尚、有機ビヒクルとしては、例えばメチルセルロース樹脂やェチルセルロース樹脂 等の有機バインダを、テルペン系溶剤やタービネオール、ブチルカルビトール等の 有機溶剤に所定の配合量で溶解させたものを使用することができる。
[0057] 次に、上記導電性ペーストの製造方法を説明する。
[0058] まず、有機溶剤中に有機バインダを溶解させて有機ビヒクルを作製する。次レ、で、 所定の比表面積 (例えば 2〜4m2/g)を有する金属粉末を用意し、前記有機ビヒク ルに前記金属粉末を混合させ、三本ロールミル等で混練し、これにより金属ペースト を得る。
[0059] 次に、積層型圧電セラミック部品のセラミック原料と同一組成成分のセラミック原料 をビーズ攪拌型粉砕機等の強制撹拌装置に投入して粉砕処理を施し、金属粉末の 5倍以上 20倍以下の比表面積を有するセラミック粉末を作製する。
[0060] 次いで、このセラミック粉末と上記有機ビヒクルとを混合し、上記ビーズ攪拌型粉砕 機等の強制撹拌装置を使用してセラミック粉末を有機ビヒクル中に十分に分散させ、 これによりセラミックペーストを得る。
[0061] 次に、固形分 (金属粉末及びセラミック粉末)中のセラミック粉末の含有量が 20〜5 0重量%となるように上記金属ペーストと上記セラミックペーストとを三本ロールミル等 で混練し、これにより上記導電性ペーストを作製する。
[0062] 次に、上記導電性ペーストを使用して製造された圧電セラミック電子部品としての 積層圧電ァクチユエータについて説明する。
[0063] 図 2は前記積層圧電ァクチユエータの一実施の形態を示す断面図であって、該積 層圧電ァクチユエータは、セラミック層 2 (2a〜2h)と内部電極層 3 (3a〜3g)とが交互 に積層されて圧電セラミック素体 4が形成され、さらに圧電セラミック素体 4の両端部 に Ag等の導電性材料からなる外部電極 5 (5a、 5b)が形成されている。
[0064] 該積層圧電ァクチユエータは、内部電極 3a、 3c、 3e、 3gの一端が一方の外部電極 5aと電気的に接続され、内部電極 3b、 3d、 3fの一端は他方の外部電極 5bと電気的 に接続されている。そして、該積層圧電ァクチユエータでは、外部電極 5aと外部電極 5bとの間に電圧が印加されると、圧電縦効果により矢印 Xで示す積層方向に変位す る。
[0065] そして、上記積層圧電ァクチユエータは、上記導電性ペーストを使用して製造され ることにより、内部電極層 3の膜厚を 1 · 7 μ ΐη以下としても内部電極層 3のセラミック 層 2への被覆率を 95%以上とすることができ、電界印加時の変位量が大きぐしかも 繰り返しの伸縮運動にも耐え得る接合強度の大きな信頼性の優れた積層圧電ァクチ ユエータを得ることができる。
[0066] 尚、内部電極層 3の膜厚は、 0. 8 μ ΐη以上が好ましい。これは、内部電極層 3の膜 厚が 0. 8 μ ΐηよりも薄くなると、内部電極層 3の被覆率を 95%以上に維持することが 難しくなり、接合強度が十分に得られないからである。
[0067] 次に、上記積層圧電ァクチユエータの製造方法を詳述する。
[0068] まず、 Pb〇、 Ti〇、 ZrO、 Nb O等のセラミック素原料を所定量秤量し、次いで
3 4 2 2 2 5
該秤量物をジルコユア等の粉砕媒体と水と共にボールミルに投入して十分に湿式粉 砕し、さらに所定温度(例えば、 600〜: 1000°C)で仮焼し、仮焼物を作製した後、溶 剤と分散剤とを添加して再度ボールミル内で湿式粉砕し、セラミック原料粉末を作製 する。
[0069] 次に、このようにして作製されたセラミック原料粉末に有機バインダゃ可塑剤を添カロ し、湿式で混合処理を行なってスラリー状とし、その後、ドクターブレード法等を使用 して成形加工を施し、セラミックグリーンシートを作製する。
[0070] 次いで、上述した導電性ペーストを使用し、上記セラミックグリーンシート上にスクリ ーン印刷を施して電極パターンを形成する。
[0071] 次に、これら電極パターンがスクリーン印刷されたセラミックグリーンシートを積層し た後、電極パターンがスクリーン印刷されていないセラミックグリーンシートを積層方 向の上下に配置し、圧着して積層体を作製する。次いで、この積層体を所定寸法に 切断してアルミナ製の匣(さや)に収容し、所定温度(例えば、 250〜500°C)で脱バ インダ処理を行った後、所定温度(例えば、 950〜: 1100°C)で焼成処理を施し、セラ ミック層 2と内部電極層 3とが交互に積層された圧電セラミック素体 4を形成する。
[0072] そしてこの後、圧電セラミック素体 4の両端部に Ag等からなる外部電極用同導電性 ペーストを塗布し、所定温度(例えば、 750°C〜850°C)で焼付け処理を行って外部 電極 5a、 5bを形成し、さらに所定の分極処理を行ない、これにより積層圧電ァクチュ エータが製造される。尚、外部電極 5a、 5bは、密着性が良好であればよぐ例えばス パッタリング法や真空蒸着法等の薄膜形成方法で形成してもよい。
[0073] このように本実施の形態では、積層圧電ァクチユエータが、本発明の導電性ペース トを使用して製造されているので、内部電極層 3の膜厚を 1. 7 μ ΐη以下にしても内部 電極層 3のセラミック層 2への被覆率を 95%以上とすることができ、大変位量を有し接 合強度の大きな積層圧電ァクチユエータを得ることができる。
[0074] 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、 セラミック素原料として Pb O等の酸化物を使用したが、炭酸塩や水酸化物等を使用
3 4
することちでさる。
[0075] また、本発明は、積層型圧電セラミック電子部品において、特に大きな変位量が必 要となる上記積層圧電ァクチユエータに好適するが、その他圧電発振子、圧電ブザ 一、圧電センサ等の種々の積層型圧電セラミック電子部品に適用できるのはいうまで もない。
[0076] 次に、本発明の実施例を具体的に説明する。
実施例 1 [0077] 〔導電性ペーストの作製〕
まず、有機溶剤としてのテルペン系溶剤が 94重量%、有機バインダとしてのェチル セルロース樹脂が 6重量%となるように、ェチルセルロース樹脂をテルペン系溶剤に 徐々に加えてゆき、撹拌機で 24時間撹拌し、これにより有機ビヒクルを作製した。
[0078] 次に、比表面積3111が211127§及び41112/§の金属粉末(八§ : 70重量%、 Pd : 30重 量%)を用意し、該金属粉末 100重量部に対し前記有機ビヒクル 30重量部の調合割 合となるように、金属粉末と有機ビヒクルとを混合し、三本ロールミルで混練して金属 ペーストを作製した。
[0079] 次に、 Pb (Zr Ti )〇を主成分とし、該主成分 100モルに対し 2モルの Nb成分 を含有した PZT系セラミック材料を用意し、この PZT系セラミック材料をビーズ攪拌型 粉砕機に投入して粉砕処理を施し、比表面積 Scが 8〜40の 5種類のセラミック粉末 を作製した。
[0080] 次いで、セラミック粉末 100重量部に対し、有機ビヒクルが 80重量部となるように、 セラミック粉末と有機ビヒクルとをビーズ攪拌型粉碎機に投入して 40分間分散処理を 行レ、、これによりセラミックペーストを作製した。
[0081] 次に、セラミック粉末の含有量が、固形分であるセラミック粉末と金属粉末の総計に 対し 30重量%となるように、金属ペーストとセラミックペーストとを混練し、これにより導 電性ペーストを作製した。
[0082] 〔セラミックグリーンシートの作製〕
上記セラミックペーストの作製で使用した PZT系セラミック材料を用意し、比表面積 力 ¾m2/gとなるように粉砕処理してセラミック原料を得た。
[0083] 次に、このセラミック原料に溶剤と分散剤とを添加して湿式粉砕し、その後、有機バ インダとしてのェチルセルロース樹脂及び所定の添加物を所定量添加して湿式混合 し、セラミックスラリーを作製した。
[0084] 次いで、このセラミックスラリーを、ドクターブレード法を使用してシート状に成形し、 焼成後のセラミック層の厚みが 20 a mとなるようにセラミックグリーンシートを作製した
[0085] 〔積層型圧電セラミック部品の作製〕 上記導電性ペーストを使用し、焼成後の内部電極層の厚みが 0. 8〜: 1. 8 /i mとな るように塗布膜の厚みを調整しながら、上記セラミックグリーンシート上にスクリーン印 刷を施した。
[0086] 次いで、スクリーン印刷が施されたセラミックグリーンシートを 20枚積層した後、スク リーン印刷されていないセラミックグリーンシートを上下から挟持し、圧着して積層体 を作製した。次いで、この積層体をアルミナ製の匣(さや)に収容し、 500°Cの温度で 脱バインダ処理を行った後、 1025°Cの温度で 2時間の焼成処理を施し、導電性ぺ 一ストとセラミックグリーンシートとを共焼結し、セラミック層と内部電極層とが交互に積 層されたセラミック焼結体を得た。
[0087] 次に、このセラミック焼結体において、一方の端面に引き出された内部電極層と他 方の端面に引き出された内部電極層とが交互に配されるように、ダイシングソーを使 用して切り出し力卩ェを行レ、、長さ 3. Omm、幅 1. Omm、厚さ 0. 5mmの圧電セラミツ ク素体を作製した。
[0088] その後、この圧電セラミック素体の両端部に Agを蒸着して外部電極を形成し、次い で、温度 80°Cのシリコンオイル中で 3. OkV/mmの電界を 30分間印加して分極処 理を行い、試料番号:!〜 17の積層型圧電セラミック部品を作製した。
[0089] 〔各試料番号:!〜 17の評価〕
各試料番号 1〜17について、内部電極層のセラミック層への被覆率、変位量、抗 折強度を測定した。尚、本実施例では、セラミック層と内部電極層の界面の抗折強度 により内部電極層とセラミック層との接合強度を評価した。
[0090] ここで、内部電極層の被覆率は、各試料を内部電極層に沿って剥離し、内部電極 層に散在する細孔を顕微鏡写真で撮像し、画像解析処理して定量化した。
[0091] 変位量は、周波数 1kHzの下で、 lOOOVZmmの電界を印加しレーザー変位計に て測定した。
[0092] 抗折強度は、各試料の両主面にセラミック板を接着し、ダイシングソ一で四角柱を 切り出して試験片を作製し、各試験片について曲げ試験を行い、セラミック層と内部 電極とを剥離させたときの強度を測定して求めた。尚、本実施例では、抗折強度によ り内部電極層とセラミック層との接合強度を評価した。 [0093] 次に、試料番号 2〜6について、 WDX (Wavelength Dispersive X-ray Spectroscop y :波長分散型 X線分析法) を使用してマッピング分析を行い、内部電極層(70°C、 1 0分で乾燥させた乾燥膜)に含有されるセラミック粉末の強度分布を測定し、所定領 域 (41. 0 z m X 41. 0 μ m)におけるセラミック粉末の含有量、すなわち部分含有量 が導電性ペーストに当初添加されたセラミック粉末の含有量の 80%以下となる領域 の面積率を算出した。
[0094] すなわち、まず、 WDX装置を使用し、以下の測定条件でセラミック粉末の主成分で ある Pbの強度分布を測定した。
[0095] 〔測定条件〕
ピクセノレ数 : 256 X 256
ピクセノレサイズ: 0. 16 z m
測定領域 :41. 0 z m
[0096] 次いで、測定領域全体の Pb強度の測定値から、その平均値を算出し、該平均値の
80%以下であるピクセルを欠陥ピクセルとし、該欠陥ピクセルの総面積を算出し、測 定領域全体に対する面積率を算出した。
[0097] 表 1は試料番号 1〜: 17における導電性ペーストの仕様、内部電極層の厚み、及び 上記各測定結果を示してレ、る。
[0098] [表 1]
金属粉末の セラミック粉末の セラミック粉末の
金属粉末の 内部電極層 内部電極層
試料 比表面穰 Sm 比表面積 Sc Sc/Sm 固形分中の 変位量 抗折強度 面積率 配合比率 の厚み
No. の被 率
含有量 m) (MPa) (%)
(mVg) (mVg) (Ag/Pd) (iUm) (%)
(重量%)
1 2 20 10 2.0 100 0.758 114 一
2* 2 8 4 1.7 92 0.793 99 12.0
3 2 10 5 1.7 96 0.789 109 10.0
4 2 20 10 1.7 98 0.786 112 8.0
5 2 30 15 1.7 99 0.783 113 4.0
6 2 40 20 1.7 100 0.780 114 1.0
7* 2 8 4 1.5 88 0.820 86 一
8 2 10 5 1.5 95 0.816 106 一
30 70/30
9 2 20 10 1.5 97 0.809 111 一
10 2 20 10 1.2 95 0.834 106 一
11 2 30 15 1.2 98 0.827 112 一
12 2 30 15 1.0 95 0.838 106 一
13 2 40 20 1.0 99 0.833 113 ―
14 2 40 20 0.8 95 0.844 106 一
15氺 4 15 3.75 1.5 90 0.817 88 一
16 4 20 5 1.5 97 0.811 110 一
17 4 30 7.5 1.5 98 0.808 114 ―
*は本発明範囲外
[0099] 試料番号 2は、セラミック粉末と金属粉末との比表面積の比 Sc/Sm力 ¾と小さいた め、内部電極層の厚みを 1. 7 / mに薄層化した場合、面積率が 12. 0%となって 10 %を超えてしまい、したがって内部電極層内での空孔の形成が助長されたと考えら れることから被覆率が 92%と低くなり、このため抗折強度が 99MPaに低下し、内部 電極層とセラミック層との接合強度が劣化することが分かった。
[0100] 試料番号 7も、セラミック粉末と金属粉末との比表面積の比 ScZSmが 4と小さいた め、内部電極層の厚みを 1. 5 z mに薄層化した場合、被覆率が 88%と低くなり、抗 折強度が 86MPaに低下し、内部電極層とセラミック層との接合強度が劣化すること が分かった。
[0101] 試料番号 15も、セラミック粉末と金属粉末との比表面積の比 ScZSmが 3. 75と小 さいため、内部電極層の厚みを 1. 5 z mに薄層化した場合、被覆率が 90%と低くな り、抗折強度が 88MPaに低下し、内部電極層とセラミック層との接合強度が劣化す ることが分かった。
[0102] これに対し試料番号 1、 3〜6、 8〜: 14、 16、及び 17は、セラミック粉末と金属粉末と の比表面積の比 Sc/Smが 5〜20であり、し力もセラミック粉末の固形分中の含有量 力 ¾0重量%であるので、内部電極層の厚みを 0. 8〜: 1. 7 μ ΐηに薄層化した場合で あっても、被覆率が 95〜: 100%と高ぐその結果、抗折強度が 106〜114MPaとな つて内部電極層とセラミック層との接合強度は良好であり、また電界印加時の変位量 も 0. 780-0. 844 μ ΐηと大きぐ大きな接合強度が得られる積層型圧電セラミック部 品を得ることができることが分かった。すなわち、本導電性ペーストを使用することに より、内部電極層の厚みを 1. 7 / m以下にした場合に大きな変位量を得ることができ 、かつ良好な接合強度が得られることが確認され、本導電性ペーストは、内部電極層 の薄層化に好適であることが確認された。
[0103] 尚、試料番号 2〜6において、所定の分割領域におけるセラミック粉末の含有量が 、各導電性ペーストにおけるセラミック粉末の含有量(30重量%)の 80%以下となる 領域、すなわち、 24重量%以下となる領域の面積率を比較した。その結果、 Sc/S mが 5以上である試料番号 3〜6について、面積率が 10。 /。以下となり、変位量、内部 電極の被覆率、及び抗折強度が本発明範囲内となることが分かった。すなわち、導 電性ペースト中のセラミック粉末含有量の 80。/0以下となる領域が面積率で 10%以下 となる場合に、内部電極の被覆率が向上し、かつ、接合強度の大きな内部電極が得 られることが確認された。
実施例 2
[0104] 〔導電性ペーストの作製〕
比表面積3111が21112/§の金属粉末(八§ : 70重量%、 (1 : 30重量%)を用意し、〔 実施例 1〕と同様の方法'手順で金属ペーストを作製した。
[0105] また、セラミック材料の比表面積 Scが 20m2/gとなるように粒度調整した以外は、〔 実施例 1〕と同様の方法 '手順でセラミックペーストを作製した。
[0106] 次いで、セラミック粉末の固形分に対する含有量が 15〜60重量%となるように、上 記金属ペースト及び上記セラミックペーストを調合し、〔実施例 1〕と同様の方法'手順 で導電性ペーストを作製した。
[0107] 〔セラミックグリーンシートの作製〕
〔実施例 1〕と同様の方法 '手順でセラミックグリーンシートを作製した。
[0108] 〔積層型圧電セラミック部品の作製〕
上記導電性ペーストを使用し、焼成後の内部電極層の厚みが 1. 5 z mとなるように 塗布膜の厚みを調整しながら、上述のセラミックグリーンシート上にスクリーン印刷を 施し、その後は〔実施例 1〕と同様の方法'手順で試料番号 21〜28の積層型圧電セ ラミック部品を作製した。
[0109] 〔各試料番号 2:!〜 28の評価〕
次に、各試料番号 2:!〜 28について、〔実施例 1〕と同様の方法 ·手順で内部電極層 のセラミック層への被覆率、変位量、抗折強度を測定した。
[0110] 表 2は試料番号 2:!〜 28における導電性ペーストの仕様、内部電極層の厚み、及 び上記各測定結果を示してレ、る。
[0111] [表 2] 金属粉末の セラミック粉末の セラミック粉末の
金属粉末の 内部電極層 内部電極層
試料 比表面積 Sm 比表面積 Sc ScZSm 固形分中の 変位量 抗折強度
No. 配合比率 の厚み の被覆率
含有量 (MPa)
(mVg) (mVg) (AgZPd) (/ m) (%)
(重量%)
21* 15 89 0.826 81
22 20 95 0.820 102
23 21 95 0.818 104
24 25 96 0.815 107
2 20 10 70/30 1.5
25 30 97 0.809 111
26 40 96 0.796 117
27 50 95 0.778 125
28* 60 91 0.756 142
*は本発明範囲外
[0112] 表 2から明らかなように試料番号 21は、セラミック粉末と金属粉末との比表面積の比 Sc/Smは 10である力 セラミック粉末の固形分に対する含有量が 15重量%であり 、 20重量%未満であるので内部電極層の被覆率が 89%と大幅に低下し、抗折強度 も 81MPaと小さく接合強度に劣ることが分かった。
[0113] 試料番号 28も、セラミック粉末と金属粉末との比表面積の比 ScZSmは 10である が、セラミック粉末の固形分に対する含有量が 60重量%と過剰であるため、焼成後 の内部電極層にセラミック粉末が大量に残存するため接合強度が過度に強化され、 このため抗折強度が 142MPaと大きくなり、変位拘束力が強くなつて変位量が 0. 75 6 μ mと小さくなることが分かった。
[0114] これに対し、試料番号 22〜27は、セラミック粉末の固形分に対する含有量が 20〜 50重量%であり、し力、もセラミック粉末と金属粉末との比表面積の比 ScZSmは 10で あるので、内部電極層の被覆率は 95〜97重量0 /0であり、変位量も 0. 778〜0. 820 / mと大きぐ抗折強度も 102〜125MPaと大きくなり、良好な接合強度が得られるこ とが分かった。
実施例 3
[0115] 〔導電性ペーストの作製〕
比表面積 Smが 2m2/gであって、 Agと Pdとの配合量が Ag: Pd = 70: 30、 80: 20 、 90 : 10の 3種類の金属粉末を用意し、〔実施例 1〕と同様の方法'手順で金属ぺー ストを作製した。
[0116] また、組成式が 0. 20Pb (Ni Nb )〇 _0. 40PbZrO _0. 40PbTiOで表され
1/3 2/3 3 3 3 る Pb (Ni, Nb) 0—PZT系セラミック材料を用意し、この Pb (Ni
3 , Nb) 0— PZT系セ
3 ラミック材料をビーズ攪拌型粉砕機に投入して粉砕処理を施し、比表面積 Scが 8〜3 5の 4種類のセラミック粉末を作製した。
[0117] 次いで、このセラミック粉末を使用し、〔実施例 1〕と同様の方法 '手順でセラミックぺ 一ストを作製した。
[0118] その後、セラミック粉末の含有量が固形分に対し 30重量%となるように、上記金属 ペースト及び上記セラミックペーストを調合し、〔実施例 1〕と同様の方法'手順で導電 性ペーストを作製した。 [0119] 〔セラミックグリーンシートの作製〕
〔実施例 1〕と同様の方法 '手順でセラミックグリーンシートを作製した。
[0120] 〔積層型圧電セラミック部品の作製〕
上記導電性ペーストを使用し、焼成後の内部電極層の厚みが 1. 5 z mとなるように 塗布膜の厚みを調整しながら、上述のセラミックグリーンシート上にスクリーン印刷を 施し、その後は〔実施例 1〕と同様の方法'手順で試料番号 31〜42の積層型圧電セ ラミック部品を作製した。尚、本実施例では、金属粉末の Agと Pdとの配合比に応じて 焼成温度を 1025°C、 1000°C、 975°Cで行った。これは金属粉末の配合量に応じて 融点が異なることから、焼成温度を変更したものである。
[0121] 〔各試料番号 3:!〜 42の評価〕
各試料番号 3:!〜 42について、〔実施例 1〕と同様の方法 ·手順で内部電極層のセ ラミック層への被覆率、変位量、抗折強度を測定した。
[0122] 表 3は試料番号 31〜42における導電性ペーストの仕様、内部電極層の厚み、焼 成温度及び上記各測定結果を示してレ、る。
[0123] [表 3]
金属粉末の セラミック粉末の セラミック粉末の
金属粉末の 内部電極層 内部電極層
試料 比表面積 Sm 比表面積 Sc 固形分中の
Sc/Sm 変位量 抗折強度 焼成温度
No. 配合比率 の厚み の被覆率
含有量 ( m) (MPa) (°C)
(mVg) (mVg) (Ag/Pd) m) (%)
(重量%)
31* 8 4 70/30 92 80 1025
32 10 5 70/30 95 1.080 98 1025
33 25 12.5 70/30 98 1.074 104 1025
34 35 17.5 70/30 100 110 1025
35* 8 4 80/20 93 1.077 87 1000
36 10 5 80/20 95 101 1000
2 30 1.5
37 25 12.5 80/20 98 1.066 106 1000
38 35 17.5 80/20 100 1.061 113 1000
39* 8 4 90/10 91 1.072 81 975
40 10 5 90/10 95 1.067 103 975
41 25 12.5 90/10 97 1.061 109 975
42 35 17.5 90/10 99 1.055 115 975
*は本発明範囲外
「 「
o o
O0卜 0 C
nO i C
[0124] Pb (Ni、 Nb) O PZT系材料は、実施例 1及び 2で使用した PZT系セラミック材料
3
に比べ、圧電定数が高いため、表 3に示すように内部電極層を薄層化することにより
、変位量をより一層大きくすることができる。
[0125] し力、しながら、試料番号 31は、金属粉末の比表面積とセラミック粉末の比表面積と の比 Sc/Sm力 S4と小さく、このため内部電極層の被覆率が 92%と小さくなり、抗折 強度が 80MPaと小さぐ接合強度に劣ることが分かった。
[0126] 試料番号 35も、セラミック粉末と金属粉末との比表面積の比 ScZSm力 S4と小さレヽ ため、試料番号 31と略同様、内部電極層の被覆率が 93%と低ぐ抗折強度も 87M
Paと小さぐ接合強度に劣ることが分かった。
[0127] 試料番号 39も、セラミック粉末と金属粉末との比表面積の比 ScZSm力 S4と小さレヽ ため、試料番号 31と略同様、内部電極層の被覆率が 91%と低ぐ抗折強度が 81M
Paと小さぐ接合強度に劣ることが分かった。
[0128] これに対して試料番号 32〜34、 36〜38、及び 40〜42は比表面積の比 Sc/Sm 力 ¾以上でありセラミック粉末の含有量が固形分に対し 30重量%であるので、内部電 極層の被覆率は 95〜: 100%であり、抗折強度も 98〜115MPaと大きぐ大きな変位 量を維持しつつも大きな接合強度が得られることが分かった。
[0129] また、金属粉末の配合量について、 Ag量を少なくとも 70重量%以上とした場合は、 本導電性ペーストを使用することにより、変位量及び抗折強度の双方で良好な値を 有する積層型圧電セラミック部品が得られることが分かった。

Claims

請求の範囲
[1] 圧電セラミック部品の電極を形成するための導電性ペーストであって、
金属粉末と、該金属粉末の 5倍以上 20倍以下の比表面積を有するセラミック粉末と を含有し、
前記セラミック粉末の含有量が、前記金属粉末と前記セラミック粉末との総計に対し
、 20〜50重量%であることを特徴とする導電性ペースト。
[2] 乾燥膜において複数の所定領域に分割した場合に、前記各所定領域における前 記セラミック粉末の含有量は、前記セラミック粉末の含有量総計の 80%以下である領 域が、面積率で 10%以下であることを特徴とする請求項 1記載の導電性ペースト。
[3] 前記金属粉末は、 Agの含有量が 70重量 %以上であることを特徴とする請求項 1又 は請求項 2記載の導電性ペースト。
[4] セラミック層と内部電極層とが交互に積層されてセラミック素体を形成し、該セラミツ ク素体の両端面に外部電極が形成された積層型圧電セラミック部品において、 前記内部電極層は、請求項 1乃至請求項 3のいずれかに記載の導電性ペーストが 焼結されてなることを特徴とする積層型圧電セラミック部品。
[5] 前記内部電極層の厚みが 1. 7 a m以下であり、前記内部電極層のセラミック層へ の被覆率が 95%以上であることを特徴とする請求項 4記載の積層型圧電セラミック部
PCT/JP2005/019680 2004-10-26 2005-10-26 導電性ペースト、及び積層型圧電セラミック部品 WO2006046597A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-310966 2004-10-26
JP2004310966 2004-10-26

Publications (1)

Publication Number Publication Date
WO2006046597A1 true WO2006046597A1 (ja) 2006-05-04

Family

ID=36227839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019680 WO2006046597A1 (ja) 2004-10-26 2005-10-26 導電性ペースト、及び積層型圧電セラミック部品

Country Status (1)

Country Link
WO (1) WO2006046597A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085041A (ja) * 2006-09-27 2008-04-10 Kyocera Corp 積層セラミックコンデンサおよびその製法
CN101872834A (zh) * 2010-05-20 2010-10-27 中山大学 一种弯曲振动型压电变压器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745883A (ja) * 1993-07-29 1995-02-14 Murata Mfg Co Ltd 圧電磁器組成物
JPH11354374A (ja) * 1998-06-03 1999-12-24 Murata Mfg Co Ltd 積層セラミック電子部品、積層セラミック電子部品の製造方法及び内部電極形成用導電ペースト
JP2004111939A (ja) * 2002-08-29 2004-04-08 Ngk Insulators Ltd 積層型圧電素子及びその製造方法
JP2004288548A (ja) * 2003-03-24 2004-10-14 Noritake Co Ltd 圧電セラミック材用導体ペースト及びその利用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745883A (ja) * 1993-07-29 1995-02-14 Murata Mfg Co Ltd 圧電磁器組成物
JPH11354374A (ja) * 1998-06-03 1999-12-24 Murata Mfg Co Ltd 積層セラミック電子部品、積層セラミック電子部品の製造方法及び内部電極形成用導電ペースト
JP2004111939A (ja) * 2002-08-29 2004-04-08 Ngk Insulators Ltd 積層型圧電素子及びその製造方法
JP2004288548A (ja) * 2003-03-24 2004-10-14 Noritake Co Ltd 圧電セラミック材用導体ペースト及びその利用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085041A (ja) * 2006-09-27 2008-04-10 Kyocera Corp 積層セラミックコンデンサおよびその製法
CN101872834A (zh) * 2010-05-20 2010-10-27 中山大学 一种弯曲振动型压电变压器
CN101872834B (zh) * 2010-05-20 2014-04-02 中山大学 一种弯曲振动型压电变压器

Similar Documents

Publication Publication Date Title
JP4945801B2 (ja) 圧電素子、及び圧電素子の製造方法
JP3958668B2 (ja) 圧電磁器組成物、圧電素子および圧電素子の製造方法
JP4039029B2 (ja) 圧電セラミックス、圧電素子、および積層型圧電素子
JP4565349B2 (ja) 積層型圧電セラミック部品の製造方法
JP4129931B2 (ja) 圧電磁器組成物および積層型圧電素子
JP2004002069A (ja) 圧電磁器の製造方法および圧電素子の製造方法
EP2181976B1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP4238271B2 (ja) 圧電磁器組成物および積層型圧電素子
TWI480904B (zh) 積層陶瓷電容器
WO2005011009A1 (ja) 積層型電子部品とその製造方法及び積層型圧電素子
TW201923797A (zh) 積層陶瓷電容器及其製造方法
JP5475272B2 (ja) 圧電/電歪膜型素子
JP2005174974A (ja) 積層圧電体部品の製造方法
JP2010103301A (ja) 圧電素子の製造方法及び圧電素子
JP4992192B2 (ja) 圧電磁器の製造方法及び圧電素子
WO2006046597A1 (ja) 導電性ペースト、及び積層型圧電セラミック部品
JP5774824B2 (ja) 圧電/電歪磁器組成物
JP6132070B2 (ja) 圧電素子の製造方法
WO2013157293A1 (ja) 膜型圧電/電歪素子
JP2008260674A (ja) 圧電/電歪磁器組成物の製造方法
JP2007230839A (ja) 圧電磁器組成物、積層型圧電素子及びその製造方法
JP2005286014A (ja) 導電ペースト
JP5196124B2 (ja) 圧電磁器組成物および積層型圧電素子
JP2006269982A (ja) 圧電素子の製造方法及び圧電素子
JP4736585B2 (ja) 圧電磁器組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05799395

Country of ref document: EP

Kind code of ref document: A1