WO2006043519A1 - ケージ状シクロブタン酸二無水物及びその製造法 - Google Patents

ケージ状シクロブタン酸二無水物及びその製造法 Download PDF

Info

Publication number
WO2006043519A1
WO2006043519A1 PCT/JP2005/019071 JP2005019071W WO2006043519A1 WO 2006043519 A1 WO2006043519 A1 WO 2006043519A1 JP 2005019071 W JP2005019071 W JP 2005019071W WO 2006043519 A1 WO2006043519 A1 WO 2006043519A1
Authority
WO
WIPO (PCT)
Prior art keywords
trans
carbon atoms
formula
compound
acid
Prior art date
Application number
PCT/JP2005/019071
Other languages
English (en)
French (fr)
Inventor
Hideo Suzuki
Takayuki Tamura
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to KR1020077008265A priority Critical patent/KR101286228B1/ko
Priority to CN2005800360415A priority patent/CN101044108B/zh
Priority to US11/665,024 priority patent/US7872148B2/en
Priority to EP05795540A priority patent/EP1813592B1/en
Priority to JP2006542980A priority patent/JP5326211B2/ja
Publication of WO2006043519A1 publication Critical patent/WO2006043519A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/10Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
    • C07C67/11Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond being mineral ester groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/54Preparation of carboxylic acid anhydrides
    • C07C51/56Preparation of carboxylic acid anhydrides from organic acids, their salts, their esters or their halides, e.g. by carboxylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/04Saturated compounds having a carboxyl group bound to a three or four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/12Preparation of carboxylic acid esters from asymmetrical anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring

Definitions

  • the present invention relates to caged cyclobutanoic acid dianhydride and a method for producing the same, for example, caged cyclobutanoic acid dianhydride that can be a raw material monomer for polyimide for optical materials, and a method for producing the same.
  • polyimide resin is widely used as an electronic material such as a protective material or an insulating material in a liquid crystal display element or a semiconductor because of its high characteristics, mechanical strength, heat resistance, insulation, and solvent resistance. It is used. Recently, it is also expected to be used as an optical communication material such as an optical waveguide material.
  • a particularly important characteristic is high transparency.
  • a polyimide precursor is obtained by polycondensation reaction between an alicyclic tetracarboxylic dianhydride and an aromatic diamine, and this precursor is imidized to produce a polyimide.
  • Patent Documents 1 and 2 it has already been reported that a highly transparent polyimide with relatively little coloration can be obtained.
  • the synthesis of 1,2,3,4-cyclobutanetetracarboxylic acid 1,3: 2,4 monodianhydride, a kind of alicyclic tetracarboxylic dianhydride includes the following schemes: To obtain trans, trans, trans-1,2,3,4-cyclobutanetetracarboxylic acid represented by the formula (D) from the dimethyl fumarate represented by the formula (A). (See Non-Patent Document 1) and 1, 2, 3, 4 represented by the formula (E) from the trans, trans, trans 1, 2, 3, 4 cyclobutanetetracarboxylic acid represented by the formula (D).
  • a method of combining 4-cyclobutanetetracarboxylic acid 1,3: 2,4 dianhydride with a method is known.
  • reaction time in the first step is very long, 1-5 days.
  • Non-Patent Document 2 1, 2, 3, 4-cyclobutanetetracarboxylic acid 1,3: 2,4 monodianhydride represented by the formula (E) of the target product is colored. There is a problem of precipitation as a solid. Furthermore, in Non-Patent Document 2, the chemical structure of the target product is determined only by IR, and a compound having the actual cyclic structure is obtained rather than the absolute structure determination method using single crystal X-rays! / I'm not sure whether or not.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 60-188427
  • Patent Document 2 JP-A-58-208322
  • Non-Patent Document 1 Journal of American Chemical Society, Vol. 83, 272 5-2728 (1961) 196. Am. Chem. Soc., 83, 2725-8 (1961)]
  • Non-Patent Document 2 Journal of Organic Chemistry, III, 1018-1021 (1968) ⁇ . Org. Chem., 33 (3), 1018—1021 (1968)]
  • the present invention has been made in view of the above circumstances, such as a liquid crystal alignment film, an optical waveguide for optical communication, and the like that have no absorption in the ultraviolet region, have high light transmission properties, and have improved heat resistance.
  • An object of the present invention is to provide a cage-like cyclobutanoic acid dianhydride compound that can be a raw material monomer of polyimide for optical materials and a method for producing the same.
  • the inventors of the present invention pay attention to a method of increasing the transparency and heat resistance of polyimide by increasing the degree of polymerization by making the main chain of the polyimide structure more linear, and as a raw material monomer, 1, 2, 3, 4 Cage-like cyclobutanoic acid dianhydride compound with excellent linearity, high degree of polymerization, high heat resistance, and symmetry expected to improve solubility in organic solvents by introducing alkyl groups -Cyclobutane tetracarboxylic acid 1,3: 2,4
  • 1, 2, 3, 4-cyclobutane tetracarboxylic acid— Established a practical process for 1,2,3,4-cyclobutanetetracarboxylic acid 1,3: 2,4 monoanhydride compounds using 1,2: 3,4 dianhydride compounds as starting materials
  • the present invention has been completed.
  • the present invention provides the following (1) to (46).
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms. Represents a phenol group or a cyan group.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms.
  • a cis, trans, cis 1, 2, 3, 4-cyclobutanetetracarboxylic acid tetraester compound represented by the formula is isomerized with a base catalyst [4]
  • R 1 and R 2 forces 1,2,3,4-cyclobutanetetracarboxylic acid 1,3: 2,4 or 12 of any one of (12) to (14) and (22), which is a methyl group A method for producing an anhydride compound.
  • R 5 and R 6 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms: an L0 alkyl group, an alkoxy group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 10 carbon atoms, or a carbon number. Represents a cycloalkyl group, a phenyl group or a cyano group of 3 to 8)
  • an electronic material such as a protective material or an insulating material in a liquid crystal display element or a semiconductor, which absorbs light in the ultraviolet region, has high light transmittance, and has improved heat resistance, and further has a light guide.
  • a cage-like cyclobutanoic acid dianhydride compound that can be used as a raw material monomer for a polyimide for optical materials, which is expected to be used as an optical communication material such as a waveguide, and a practical production method thereof.
  • FIG. 1 is a single crystal X-ray chart of cis, trans, cis-tetramethyl 1, 2, 3, 4-cyclobutane tetracarboxylate obtained in Example 1. [0013] FIG.
  • FIG. 2 is a single crystal X-ray chart of 1,2,3,4-cyclobutanetetracarboxylic acid 1,3: 2,4-dianhydride obtained in Example 9.
  • FIG. 3 is a single-crystal X-ray chart of 1,2 dimethyl 1,1,2,3,4 tetracyclobutane 1,3: 2,4 dianhydride obtained in Example 13.
  • n represents normal, “i” represents iso, “s” represents secondary, “t” represents tertiary, and is represented by the above formula [6].
  • 2, 3, 4-cyclobutanetetracarboxylic acid 1,3: 2,412 dianhydride compounds (hereinafter abbreviated as caged CBDA compounds) are the following first step, second step, third step and It can be manufactured by a manufacturing method including the fourth step, where the first step can be the first 'step and the third step can be the third' step. Each process is performed in the order of the first process, the second process, the third process, and the fourth process.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms. And represents a phenol group or a cyan group, and each R 3 independently represents an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group of LO may be linear or branched, for example, methyl group, ethyl group, n -propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group T-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-decyl group and the like.
  • a methyl group having 1 to 5 carbon atoms an ethyl group, an n-propinole group, an i-propinole group, an n-butinole group, an i-butinole group, an s butynole group, a t-butyl group, an n-
  • methyl groups, ethyl groups, n-propyl groups and the like, which are alkyl groups having 1 to 3 carbon atoms are more preferable in that the influence of steric hindrance preferred by pentyl groups is small.
  • Examples of the halogenated alkyl group having 1 to 10 carbon atoms include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a perfluorooctyl group, and a perfluorodecyl group.
  • trifluoromethyl, pentafluoroethyl, and heptafluoropropyl which are halogenated alkyl groups having 1 to 3 carbon atoms, are preferred because they are less affected by steric hindrance! / ,.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • cyclopropyl and cyclobutyl which are cycloalkyl groups having 3 to 4 carbon atoms, are preferred because they are less affected by steric hindrance! /!
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, n butyl group, i butyl group, s butyl group, t butyl group, n-pentyl group, octyl Group, decyl group and the like.
  • a methyl group, an ethyl group, and an n-propyl group, which are alkyl groups having 1 to 3 carbon atoms are more preferable because a steric hindrance that is preferred is a til group, a t- butyl group, or an n-pentyl group.
  • This process consists of 1, 2, 3, 4-cyclobutanetetracarboxylic acid 1, 2: 3,4 mono-anhydride compound (abbreviated as CBDA compound) and an alcohol compound represented by formula [2].
  • CBDA compound 3,4 mono-anhydride compound
  • Cis, trans, cis 1, 2, 3, 4-cyclobutanetetracarboxylic acid tetraester compound (abbreviated as cis, trans, cis-TMCB compound) represented by the formula [3] Is a process of manufacturing.
  • the raw material CBDA compound represented by the formula [1] can be produced by photodimerization reaction of substituted maleic anhydride.
  • a typical production example of the photodimerization reaction is described in JP-A-59-212495.
  • Examples of the alcohol compound represented by the formula [2] include alcohols having an alkyl group having 1 to 10 carbon atoms represented by methanol, ethanol, n propanol, i propanol, n-octanol, n-decanol and the like. Kind. Of these, economical methanol is preferred.
  • the amount of the alcohol compound used is preferably 4 to 100 mol times, particularly 10 to 50 mol times with respect to the substrate.
  • inorganic acids such as hydrochloric acid and sulfuric acid
  • solid acids such as heteropolyacid and cation exchange resin
  • sulfuric acid is preferred.
  • the amount of acid catalyst used is preferably 0.1 to 20% by weight based on the substrate, especially 1%.
  • the reaction temperature is usually about the boiling point of the alcoholic compound.
  • 00 ° C is preferred, especially 50 to 150 ° C.
  • the progress of the reaction can be confirmed by gas chromatography analysis. Operation after completion
  • finish of reaction is not specifically limited, For example, the following method is mentioned.
  • sulfuric acid as the acid catalyst after confirming disappearance of the raw materials
  • return to room temperature after the reaction The precipitated crystals are collected by filtration, washed with the alcohol compound used, and dried to obtain the desired cis, trans, cis-TMCB compound.
  • This step is a step of producing a cis, trans, cis-TMCB compound by reacting a CBDA compound with a dialkyl sulfate represented by the formula [7] in the presence of a base catalyst.
  • Dialkyl sulfates include dimethyl sulfate, jetyl sulfate, di-n-propyl sulfate, di-i-propyl sulfate, di-n-butyl sulfate, di-i-butyl sulfate, di-s-butyl sulfate, di-n-amyl sulfate, di-n-xyl sulfate, and di-n-butyl.
  • dialkyl sulfates having 1 to L0 carbon atoms represented by sulfuric acid di n-octyl sulfate, di n nonyl sulfate, di n-decyl sulfate and the like. Of these, economical dimethyl sulfate is preferred.
  • the amount of dialkylsulfuric acid used is preferably 2 to 10 mol times, particularly 2 to 4 mol times relative to the substrate.
  • a base catalyst is important.
  • the types include alkylamines such as jetylamine, triethylamine, diisopropylamine and di-n-butylamine, and aromatic amines such as pyridine and picoline, with diisopropylamine being particularly preferred.
  • the amount of the base catalyst used is preferably 2 to 10 mol times, particularly 2 to 4 mol times relative to the substrate.
  • This step can be performed without a solvent, but can also be performed using a solvent.
  • an alcohol compound is preferable.
  • the kind is preferably an alcohol compound having an alkyl group corresponding to dialkyl sulfate. That is, for example, in the case of dimethyl sulfate, ethanol is suitable in the case of methanol-powered ethyl sulfate.
  • the amount of the solvent used is preferably 1 to 20 times by mass, particularly 2 to 10 times by mass with respect to the substrate.
  • reaction temperature a temperature approximately equal to the boiling point of the alcoholic compound is usually employed, but 20200 ° C is preferred, and 50 150 ° C is particularly preferred.
  • reaction can be confirmed by gas chromatography analysis. Operation after completion
  • finish of reaction is not specifically limited, For example, the following method is mentioned. After confirming the disappearance of the raw materials, toluene and dilute hydrochloric acid are added to the residue obtained by concentration to dissolve it, and the organic layer is washed with sodium bicarbonate water and water to obtain the target crude crystal. This crude crystal is dissolved in toluene and n-heptane and recrystallized to obtain a high-purity cis, trans, cis-TMCB compound.
  • This step is suitable when R 1 and R 2 are each independently a C 1 to LO alkyl group, for example, a methyl group.
  • a cis, trans, cis-TMCB complex is isomerized with a base catalyst, and the trans, trans, trans-1,2,3,4-cyclobutanetetra-force norebon represented by the formula [4] is used.
  • the base catalyst which is a process for producing an acid tetraester compound (abbreviated as “all trans” —TMCB compound), includes alkali metal or alkaline earth metal alcoholates, carbonates, hydroxides or acids. Such as things. Examples of the alkali metal include lithium, sodium, and lithium, and examples of the alkaline earth metal include magnesium, calcium, and sodium.
  • alcoholates such as sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium methoxide, potassium ethoxide, potassium t-butoxide are preferable, and sodium methoxide and potassium t-butoxide are more preferable.
  • t-Butoxide is optimal.
  • the amount of the base catalyst is suitably 0.1 mol% to 100 mol% is preferred instrument particularly 0.5 mol% to 20 mol 0/0 relative to the substrate.
  • ether compounds such as tetrahydrofuran (THF), 1,4-dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether; methanol, ethanol, n Alcohol compounds such as —propanol, i-propanol, n-butanol, i-butanol and s-butanol are preferred.
  • ether compounds are preferably used because they can be used in a low temperature range in addition to promoting the progress of the reaction.
  • the amount of solvent used is preferably 1 to 50 times the mass of the substrate, especially 2 to 10 times the mass. It is right.
  • the reaction temperature is preferably 100 to 200 ° C force S, and particularly preferably 1 to 100 to 100 ° C.
  • ether compounds are used as solvents, it is possible even at temperatures below 20 ° C.
  • the progress of the reaction can be confirmed by gas chromatography analysis.
  • the operation after completion of the reaction is not particularly limited, and examples thereof include the following methods.
  • the residue obtained by concentration is extracted with 1,2-dichloroethane (EDC) and water, acidified with 35% hydrochloric acid, the EDC layer is separated, and concentrated to give white crystals.
  • the white crystals are dissolved in methanol and then concentrated to a slight concentration.
  • the crystals are collected by filtration, washed with methanol and dried under reduced pressure to obtain a single “all trans” —TMCB compound. This procedure is suitable for R 1 and R 2 force hydrogen atoms.
  • Examples of the acid include fatty acids such as formic acid, acetic acid, and propionic acid; and sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, and trifluoromethanesulfonic acid.
  • fatty acids such as formic acid, acetic acid, and propionic acid
  • sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, and trifluoromethanesulfonic acid.
  • formic acid is preferred because the reaction operation is simplified.
  • the amount of acid used is preferably at least 4 molar equivalents relative to the substrate.
  • the reaction is promoted when the acid ester produced as a by-product is distilled together with a part of the acid, it is preferable that the acid is present in an excess of 10 to LOO molar equivalent.
  • benzenesulfonic acid or p-toluenesulfonic acid is added. It is particularly preferable to add P-toluenesulfonic acid.
  • the amount of these additives is preferably 0.1 to 10% by weight, particularly 0.5 to 5% by weight, based on the substrate.
  • This step is suitable when R 1 and R 2 are hydrogen atoms.
  • This step is a step of producing “all trans” —CBTC compound by reacting “all trans” —TMCB compound with an inorganic acid.
  • Examples of the inorganic acid include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid and the like. Among these, the method using hydrochloric acid is simple.
  • the inorganic acid is used in an excess amount of 4 to 50 molar equivalents relative to the substrate.
  • the reaction is promoted by distilling off the by-produced alcohol, the reaction is preferably carried out while distilling off the by-produced alcohol.
  • the reaction temperature is preferably 50 to 200 ° C, particularly preferably 60 to 150 ° C.
  • reaction solution was distilled off until the disappearance of the raw material by NMR, azeotropically dehydrated with toluene and dried to dryness, and then recrystallized with ethyl acetate to obtain “all trans” —white crystals of CBTC compound Is obtained.
  • This step is suitable when R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, for example, both are methyl groups.
  • This process is a process for producing a caged CBDA compound by reacting an “all trans” —CBTC compound with a dehydrating agent.
  • Examples of the dehydrating agent include aliphatic carboxylic acid anhydrides, 1,3-dicyclohexylcarbodiimide (abbreviated as DCC), 2-chlorodiethyl 1,3-dimethylenoylimidazolium chloride (DM) abbreviated as c), etc., and preferably an inexpensive aliphatic carboxylic acid anhydride, particularly acetic anhydride.
  • DCC 1,3-dicyclohexylcarbodiimide
  • DM 2-chlorodiethyl 1,3-dimethylenoylimidazolium chloride
  • c 2-chlorodiethyl 1,3-dimethylenoylimidazolium chloride
  • the amount of the dehydrating agent used is 2 to 50 equivalents, preferably 2 to: LO equivalents relative to the substrate.
  • the solvent can be used by adding an excess amount of the dehydrating agent itself, but an organic solvent that does not directly participate in the reaction can also be used.
  • organic solvents include aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as 1,2-dichroic ethane and 1,2-dichroic propane; 1,4 dioxane, etc. Is mentioned. Among them, aromatic hydrocarbons are preferably used because a cage-like CBDA complex without coloring is obtained.
  • the amount of the organic solvent used is 1 to 20 times by mass, preferably 1 to 10 times by mass with respect to the substrate.
  • the reaction temperature is generally around the boiling point of the dehydrating agent or solvent, but is preferably 50 to 200. C, more preferably 60-150. C.
  • reaction time varies depending on the reaction temperature, it cannot be defined unconditionally, but in practice, it is 1 to 20 hours, more preferably 2 to LO time.
  • the dehydrating agent and, if necessary, the solvent used are distilled off to obtain the target caged CBDA compound.
  • the obtained compound has sufficient purity as it is, but may be purified by a recrystallization method if necessary.
  • the reaction mixture is subjected to the dehydration reaction in the fourth step, and formic acid and acetic acid produced as a by-product (when acetic anhydride is used as the dehydrating agent)
  • the desired cage-like CBDA compound can be obtained by increasing the conversion rate while distilling off the organic solvent used together with necessity (3rd step 4th step one-pot method). ).
  • reaction of each process mentioned above can be performed by a notch type or a flow type, and can be performed under normal pressure or under pressure.
  • the present invention also provides a 1,2,3,4-cyclobutanetetracarboxylic acid 1,3: 2,4 monodianhydride compound represented by the formula [8].
  • R 5 and R 6 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms: an L0 alkyl group, an alkoxy group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or 3 carbon atoms. Represents a cycloalkyl group, a phenol group or a cyano group of ⁇ 8)
  • R 5 and R 6 include fluorine atom, chlorine atom, bromine atom, halogen atom of iodine atom; carbon number such as methyl group, ethyl group, propyl group, octyl group, decyl group, etc. 1-10 alkyl groups; halogens having 1-10 carbon atoms such as trifluoromethoxy group, pentafluoroethoxy group, heptafluoropropoxy group, perfluorooctyloxy group, perfluorodecyloxy group, etc.
  • An alkyl group a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like, a cycloalkyl group having 3 to 8 carbon atoms; a phenyl group; a cyano group, and the like.
  • the present invention provides a cis, trans, cis 1, 2, 3, 4-cyclobutanetetracarboxylic acid represented by the formula [9] as an intermediate for producing the compound represented by the formula [8].
  • Trans 1, 2, 3, 4 Provides a cyclobutane tetracarboxylic acid compound.
  • Measuring instrument Automatic melting point measuring device, FP62 (METTLER TOLEDO)
  • DIP2030K manufactured by Mac Science
  • This crystal was confirmed to be cis, trans, cis-tetramethyl-1,2,3,4-cyclobutanetetracarboxylate by the following single crystal X-ray analysis. This structure was also supported by MASS, 'H-NMR and 13 c-NMR data.
  • the separated EDC layer was concentrated to obtain 2.7 g of white crystals. Further, the white crystals were dissolved in methanol, concentrated slightly and vigorously cooled to precipitate crystals. The crystals were collected by filtration, washed with methanol and dried under reduced pressure, and gas chromatography (GC) gave 2.Og of white crystals with a single peak.
  • GC gas chromatography
  • Example 2 In the reaction of Example 2, a cis, trans, cis-tetramethyl 1, 2, 3, 4-cyclobutanetetracarboxylate 0.864 g (3.Ommol) was placed in a 50 ⁇ Pyrex (registered trademark) glass four-neck reaction flask. ), 14.4 g of methanol, and the types and Table 1 shows the results of gas chromatography using the reaction temperature and time shown in Table 1.
  • This crystal was confirmed to be 1, 2, 3, 4 cyclobutanetetracarboxylic acid 1, 3: 2, 4 monodianhydride by MASS, —NMR and 13 C—NMR analysis.
  • the reaction mixture was cooled to 20 ° C., and the precipitated crystals were collected by filtration, washed with toluene and dried under reduced pressure at a temperature of 40 ° C. or less to obtain 10.9 g of white crystals (yield 86.3%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
ケージ状シクロブタン酸二無水物及びその製造法
技術分野
[0001] 本発明は、ケージ状シクロブタン酸二無水物及びその製造法に関し、例えば、光学 材料用ポリイミドの原料モノマーとなり得るケージ状シクロブタン酸二無水物及びその 製造法に関する。
背景技術
[0002] 一般に、ポリイミド榭脂は、その特徴である高 、機械的強度、耐熱性、絶縁性、耐 溶剤性のために、液晶表示素子や半導体における保護材料、絶縁材料などの電子 材料として広く用いられている。また、最近では光導波路用材料等の光通信用材料 としての用途も期待されている。
近年、この分野の発展は目覚ましぐそれに対応して、用いられる材料に対しても益 々高度な特性が要求されるようになっている。すなわち、単に耐熱性、耐溶剤性に優 れるだけでなぐ用途に応じた性能を多数併せ持つことが期待されている。
[0003] 特に重要な特性として、高い透明性が挙げられる。この透明性を実現する一つの方 法として、脂環式テトラカルボン酸二無水物と芳香族ジァミンとの重縮合反応によりポ リイミド前駆体を得て、この前駆体をイミドィ匕し、ポリイミドを製造することで、比較的着 色が少なぐ高い透明性を有するポリイミドが得られることが既に報告されている (特 許文献 1, 2参照)。
[0004] 脂環式テトラカルボン酸二無水物の一種である 1, 2, 3, 4ーシクロブタンテトラカル ボン酸 1, 3 : 2, 4一二無水物の合成法としては、下記の各スキームで表されるよう に、式 (A)で表されるジメチルフマレートから、式(D)で表されるトランス,トランス,ト ランス—1, 2, 3, 4ーシクロブタンテトラカルボン酸を得る方法 (非特許文献 1参照)と 、式(D)で表されるトランス,トランス,トランス一 1, 2, 3, 4 シクロブタンテトラカルボ ン酸から式(E)で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4 二無水物を得る方法 (非特許文献 2参照)とを組み合わせる手法が知られて ヽる。
[0005] [化 1] )
Figure imgf000004_0001
[0006] [化 2]
Figure imgf000004_0002
[0007] しかし、非特許文献 1に記載の方法の各工程には、下記のような問題点がある。
(1)第 1工程の光反応では反応時間が 1〜5日間と非常に長い。
(2)第 2工程の異性ィ匕反応では、 300°Cという高温を要する。
(3)第 2工程の別法では、 6当量の塩基を必要とし、収率も非常に低い。
(4)第 3工程の加水分解反応では、濃塩酸を使用し、収率が不明である。
一方、非特許文献 2に記載の方法では、 目的物の式 (E)で表される 1, 2, 3, 4ーシ クロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物が着色した固体として析出すると いう問題がある。また、非特許文献 2では、 目的物の化学構造決定は IRのみ力も行 われており、単結晶 X線による絶対構造決定法ではなぐ実際に目的とする環状構 造を有する化合物が得られて!/、るか否かは定かではな 、。
さらに、 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物のシクロ ブタン環にアルキル基が置換したィ匕合物は未だ知られて ヽな 、。
[0008] 特許文献 1:特開昭 60— 188427号公報
特許文献 2:特開昭 58— 208322号公報
非特許文献 1 :ジャーナル ォブ アメリカン ケミカル ソサイエティー、第 83卷、 272 5〜2728頁(1961年) ϋ. Am. Chem. Soc. , 83, 2725— 8 (1961) ] 非特許文献 2 :ジャーナル ォブ オーガニック ケミストリー、第 3卷、 1018〜1021 頁(1968年) ϋ. Org. Chem. , 33 (3) , 1018— 1021 (1968) ]
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、上記事情に鑑みてなされたものであり、紫外線領域に吸収がなぐかつ 、光透過性が高ぐさらに耐熱性が改善された、液晶配向膜や光通信用光導波路等 の光学材料用ポリイミドの原料モノマーとなり得るケージ状シクロブタン酸二無水物化 合物及びその製造法を提供することを目的とする。
課題を解決するための手段
[0010] 本発明者らは、ポリイミド構造の主鎖をより直線性にするとともに、重合度を上げるこ とで、ポリイミドの透明性と耐熱性とを高める手法に着目し、その原料モノマーとして、 直線性に優れ、高重合度及び高耐熱性、並びにアルキル基の導入による有機溶媒 溶解性向上が期待される対称性を有するケージ状のシクロブタン酸二無水物化合物 である 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物を 採用することにし、その効率的な製造法について鋭意検討した結果、 1, 2, 3, 4ーシ クロブタンテトラカルボン酸— 1, 2 : 3, 4 二無水物化合物を出発原料とする、実用 的な 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製 造法を確立し、本発明を完成した。
[0011] したがって、本発明は、下記(1)〜(46)を提供する。
(1) 式 [1]
Figure imgf000005_0001
(式中、 R1及び R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数 1〜10のァ ルキル基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基 、フエ-ル基又はシァノ基を表す。 ) で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 2 : 3, 4一二無水物化合 物と、式 [2]
[化 4]
R30H [ 2 ]
(式中、 R3は、炭素数 1〜10のアルキル基を表す。 )
で表されるアルコール化合物と、を酸触媒の存在下で反応させることを特徴とする式
[3]
[化 5]
Figure imgf000006_0001
(式中、
Figure imgf000006_0002
R2及び R3は、上記と同じ。 )
で表されるシス, トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエス テル化合物の製造法。
(2) 前記酸触媒力 硫酸である(1)のシス, トランス,シス 1, 2, 3, 4ーシクロブタ ンテトラカルボン酸テトラエステルイ匕合物の製造法。
(3) 式 [3]
[化 6]
Figure imgf000006_0003
(式中、
Figure imgf000006_0004
R2及び R3は、上記と同じ。 )
で表されるシス, トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエス テル化合物を、塩基触媒で異性化させることを特徴とする式 [4]
[化 7]
Figure imgf000007_0001
(式中、
Figure imgf000007_0002
R2及び R3は、上記と同じ。 )
で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テト ラエステル化合物の製造法。
(4) 前記塩基触媒が、金属アルコラートである(3)のトランス,トランス,トランス— 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
(5) 前記塩基触媒が、 t—ブトキシカリウムである(3)のトランス,トランス,トランス- 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
(6) 前記異性化が、 100〜200°Cで行われる(3)のトランス,トランス,トランス— 1 , 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
(7) 前記異性化が、エーテル系化合物溶媒中で行われる(3)のトランス,トランス,ト ランス一 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
(8) 式 [4]
[化 8]
Figure imgf000007_0003
(式中、
Figure imgf000007_0004
R2及び R3は、上記と同じ。 )
で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テト ラエステルイ匕合物を、有機酸と反応させることを特徴とする式 [5]
[化 9]
Figure imgf000007_0005
(式中、
Figure imgf000008_0001
R2及び R3は、上記と同じ。 )
で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸化 合物の製造法。
(9) 前記有機酸が、蟻酸である(8)のトランス, トランス, トランス— 1, 2, 3, 4 シク ロブタンテトラカルボン酸ィ匕合物の製造法。
(10) 前記有機酸力 蟻酸及び p—トルエンスルホン酸である(8)のトランス, トランス ,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸ィ匕合物の製造法。
(11) 前記反応力 0〜200°Cで行われる(8)のトランス, トランス, トランス 1, 2, 3 , 4ーシクロブタンテトラカルボン酸ィ匕合物の製造法。
(12) 式 [5]
[化 10]
Figure imgf000008_0002
(式中、
Figure imgf000008_0003
R2及び R3は、上記と同じ。 )
で表されるトランス, トランス, トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸化 合物を、脱水剤と反応させることを特徴とする式 [6]
[化 11]
Figure imgf000008_0004
(式中、 R1及び R2は、上記と同じ。 )
で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合 物の製造法。
(13) 前記脱水剤が、有機酸無水物である(12)の 1, 2, 3, 4ーシクロブタンテトラ カルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
(14) 前記反応が、芳香族炭化水素溶媒中で行われる(12)の 1, 2, 3, 4ーシクロ ブタンテトラカルボン酸一 1, 3 : 2, 4 :無水物化合物の製造法。
(15) 式 [1]
[化 12]
Figure imgf000009_0001
(式中、 R1及び R2は、上記と同じ。 )
で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸- 2 : 3, 4- :無水物化合 物と、式 [7]
[化 13]
R3 2SO 4 [ 7 ]
(式中、 R3は、上記と同じ。)
で表されるジアルキル硫酸ィ匕合物とを、塩基触媒の存在下で反応させることを特徴と する式 [3]
[化 14]
Figure imgf000009_0002
(式中、
Figure imgf000009_0003
R2及び R3は、上記と同じ。 )
で表されるシス, トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエス テル化合物の製造法。
(16) 前記式 [7]で表されるジアルキル硫酸ィ匕合物力 ジメチル硫酸である(15)の シス, トランス,シス—1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル化合 物の製造法。
(17) 前記塩基触媒が、脂肪族ァミンである(15)のシス, トランス,シス 1, 2, 3, 4 -シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。 (18) 式 [4]
[化 15]
Figure imgf000010_0001
(式中、
Figure imgf000010_0002
R2及び R3は、上記と同じ。 )
で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テト ラエステル化合物を、無機酸と反応させることを特徴とする式 [5]
[化 16]
Figure imgf000010_0003
(式中、 R1及び R2は、上記と同じ。 )
で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸化 合物の製造法。
(19) 前記無機酸が、塩酸である(18)のトランス, トランス, トランス— 1, 2, 3, 4— シクロブタンテトラカルボン酸ィ匕合物の製造法。
(20) 前記反応が、副生するアルコールを反応槽力 留出させながら行われる(18) のトランス, トランス, トランス一 1, 2, 3, 4 シクロブタンテトラカルボン酸化合物の製 造法。
(21) (1)に記載の方法で得られた前記式 [3]で示される化合物から、(3)に記載 の方法で前記式 [4]で示される化合物を得、 (8)に記載の方法でこの式 [4]で示さ れる化合物から前記式 [5]で示される化合物を得、さらに(12)に記載の方法でこの 式 [5]で示される化合物力 前記式 [6]で示される化合物を得る 1, 2, 3, 4ーシクロ ブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
(22) (15)に記載の方法で得られた前記式 [3]で示される化合物から、(3)に記載 の方法で前記式 [4]で示される化合物を得、 (18)に記載の方法でこの式 [4]で示さ れる化合物から前記式 [5]で示される化合物を得、さらに(12)に記載の方法でこの 式 [5]で示される化合物力 前記式 [6]で示される化合物を得る 1, 2, 3, 4ーシクロ ブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
(23) 前記 R1及び R2力 水素原子である(1)又は(2)のシス,トランス,シス 1, 2, 3, 4—シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
(24) 前記 R1及び R2が、水素原子である(3)〜(7)の ヽずれかのトランス, トランス, トランス一 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
(25) 前記 R1及び R2力 水素原子である(8)〜(11)のいずれかのトランス, トランス ,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸ィ匕合物の製造法。
(26) 前記 R1及び R2力 水素原子である(12)〜(14)及び(21)のいずれかの 1, 2 , 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
(27) 前記 R1及び R2が、それぞれ独立に炭素数 1〜: L0のアルキル基である(15)〜 (17)のいずれかのシス,トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸 テトラエステルイ匕合物の製造法。
(28) 前記 R1及び R2が、それぞれ独立に炭素数 1〜: L0のアルキル基である(3)〜( 7)のいずれかのトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン 酸テトラエステル化合物の製造法。
(29) 前記 R1及び R2が、それぞれ独立に炭素数 1〜: L0のアルキル基である(18)〜 (20)のいずれかのトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカル ボン酸化合物の製造法。
(30) 前記 R1及び R2が、それぞれ独立に炭素数 1〜: L0のアルキル基である(12)〜 (14)及び(22)のいずれかの 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4 二無水物化合物の製造法。
(31) 前記 R1及び R2力 メチル基である(15)〜(17)のいずれかのシス,トランス, シス一 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
(32) 前記 R1及び R2が、メチル基である(3)〜(7)の 、ずれかのトランス,トランス,ト ランス一 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。 (33) 前記 R1及び R2が、メチル基である(18)〜(20)のいずれかのトランス,トランス ,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸ィ匕合物の製造法。
(34) 前記 R1及び R2力 メチル基である(12)〜( 14)及び(22)のいずれかの 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
(35) 式 [8]で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二 無水物化合物。
[化 17]
Figure imgf000012_0001
(式中、 R5及び R6は、それぞれ独立に、ハロゲン原子、炭素数 1〜: L0のアルキル基、 炭素数 1〜10のアルコキシ基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8 のシクロアルキル基、フ ニル基又はシァノ基を表す。)
(36) 前記 R5及び R6が、それぞれ独立に炭素数 1〜10のアルキル基である(35)の 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物。
(37) 前記 R5及び R6力 メチル基である(36)の 1, 2, 3, 4ーシクロブタンテトラカル ボン酸 1, 3 : 2, 4一二無水物化合物。
(38) 式 [9]で表されるシス,トランス,シス一 1, 2, 3, 4 シクロブタンテトラカルボ ン酸テトラエステルイ匕合物。
[化 18]
Figure imgf000012_0002
(式中、
Figure imgf000012_0003
R5及び は、上記と同じ。 )
(39) 前記 R5及び R6が、それぞれ独立に炭素数 1〜10のアルキル基である(38)の シス,トランス,シス—1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル化合 物。
(40) 前記 R5及び R6力 メチル基である(39)のシス,トランス,シス 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物。
(41) 式 [10]で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラ カルボン酸テトラエステルイ匕合物。
[化 19]
Figure imgf000013_0001
(式中、 R3、 R5及び R6は、上記と同じ。 )
(42) 前記 R5及び R6が、それぞれ独立に炭素数 1〜10のアルキル基である(41)の トランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル 化合物。
(43) 前記 R5及び R6力 メチル基である(42)のトランス,トランス,トランス 1, 2, 3 , 4 -シクロブタンテトラカルボン酸テトラエステルイ匕合物。
(44) 式 [11]で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラ カルボン酸化合物。
[化 20]
Figure imgf000013_0002
(式中、 R5及び R6は、上記と同じ。 )
(45) 前記 R5及び R6が、それぞれ独立に炭素数 1〜10のアルキル基である(44)の トランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸化合物。
(46) 前記 R5及び R6力 メチル基である(45)のトランス,トランス,トランス 1, 2, 3 , 4ーシクロブタンテトラカルボン酸化合物。
発明の効果 [0012] 本発明によれば、紫外線領域に吸収がなぐかつ、光透過性が高ぐさらに耐熱性 が改善された、液晶表示素子や半導体における保護材料、絶縁材料などの電子材 料、更に光導波路等の光通信用材料としての用途が期待される光学材料用ポリイミ ドの原料モノマーとなり得るケージ状シクロブタン酸二無水物化合物及びその実用的 製造法を提供できる。
図面の簡単な説明
[0013] [図 1]実施例 1で得られたシス,トランス,シスーテトラメチル 1, 2, 3, 4ーシクロブタン テトラカルボキシレートの単結晶 X線チャートである。
[図 2]実施例 9で得られた 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4— 二無水物の単結晶 X線チャートである。
[図 3]実施例 13で得られた 1, 2 ジメチル一 1, 2, 3, 4 シクロブタンテトラカルボン 酸 1, 3 : 2, 4一二無水物の単結晶 X線チャートである。
発明を実施するための最良の形態
[0014] 以下、本発明についてさらに詳しく説明する。なお、以下の説明において、「n」はノ ルマルを、「i」はイソを、「s」はセカンダリーを、「t]はターシャリーを、それぞれ表す。 上記式 [6]で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二 無水物化合物(以下、ケージ状 CBDA化合物と略記する)は、下記の第 1工程、第 2 工程、第 3工程及び第 4工程を含む製造法により製造することができる。ここで別法と して、第 1工程は第 1 '工程とすることもでき、第 3工程は第 3'工程とすることもできる。 なお、各工程は、第 1工程、第 2工程、第 3工程、第 4工程の順序で行われる。
[0015] [化 21]
第 1工程
第 2工程
Figure imgf000015_0001
第 3工程
Figure imgf000015_0002
第 4工程
Figure imgf000015_0003
第 1' 工程
Figure imgf000015_0004
[1] [3]
Figure imgf000015_0005
[4] [5] (各式中、 R1及び R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数 1〜10の アルキル基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル 基、フエ-ル基又はシァノ基を表し、 R3は、それぞれ独立に炭素数 1〜10のアルキル 基を表す。 )
[0016] まず、 R1及び R2の具体例を記す。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、沃素原子が挙げられる。 炭素数 1〜: LOのアルキル基としては、直鎖、分岐のいずれでもよぐ例えば、メチル 基、ェチル基、 n—プロピル基、 i プロピル基、 n ブチル基、 i ブチル基、 s ブチ ル基、 t ブチル基、 n—ペンチル基、 n—へキシル基、 n—ォクチル基、 n—デシル 基等が挙げられる。中でも、炭素数 1〜5のアルキル基であるメチル基、ェチル基、 n —プロピノレ基、 i—プロピノレ基、 n—ブチノレ基、 i—ブチノレ基、 s ブチノレ基、 t—ブチ ル基、 n—ペンチル基等が好ましぐ立体障害の影響が小さいという点で、特に、炭 素数 1〜3のアルキル基であるメチル基、ェチル基、 n—プロピル基等がより好ましい
[0017] 炭素数 1〜10のハロゲン化アルキル基としては、トリフルォロメチル基、ペンタフル ォロェチル基、ヘプタフルォロプロピル基、ペルフルォロォクチル基、ペルフルォロ デシル基等が挙げられる。この場合も、立体障害の影響が小さいという点で、炭素数 1〜3のハロゲン化アルキル基であるトリフルォロメチル基、ペンタフルォロェチル基、 ヘプタフルォロプロピル基が好まし!/、。
炭素数 3〜8のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シク 口ペンチル基、シクロへキシル基、シクロへプチル基、シクロォクチル基等が挙げられ る。この場合も、立体障害の影響が小さいという点で、炭素数 3〜4のシクロアルキル 基であるシクロプロピル基、シクロブチル基が好まし!/ヽ
[0018] 次に R3の具体例を記す。
炭素数 1〜10のアルキル基としては、メチル基、ェチル基、 n—プロピル基、 i—プロ ピル基、 n ブチル基、 i ブチル基、 s ブチル基、 t ブチル基、 n—ペンチル基、 ォクチル基、デシル基等が挙げられる。中でも、炭素数 1〜5のアルキル基であるメチ ル基、ェチル基、 n プロピル基、 i プロピル基、 n ブチル基、 i ブチル基、 s ブ チル基、 t ブチル基、 n ペンチル基等が好ましぐ立体障害の影響が小さいという 点で、特に炭素数 1〜3のアルキル基であるメチル基、ェチル基、 n プロピル基等 力 り好ましい。
[0019] 上記の各工程について具体的に説明する。
[1]第 1工程
この工程は、 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 2 : 3, 4一二無水物化合 物(CBDA化合物と略記する。)と、式 [2]で表されるアルコール化合物とを、酸触媒 の存在下で反応させて式 [3]で表されるシス, トランス,シス 1, 2, 3, 4ーシクロブ タンテトラカルボン酸テトラエステル化合物(cis, trans, cis— TMCB化合物と略記 する。)を製造する工程である。
原料である式 [ 1 ]で表される CBDAィ匕合物は、置換無水マレイン酸の光二量化反 応等で製造することができる。光二量化反応の代表的製造例は、特開昭 59— 2124 95号公報に記載されている。
[0020] 式 [2]で示されるアルコール化合物としては、メタノール、エタノール、 n プロパノ ール、 i プロパノール、 n—ォクタノール、 n—デカノール等に代表される炭素数 1〜 10のアルキル基を有するアルコール類が挙げられる。これらの中でも経済的なメタノ ールが好ましい。
アルコール化合物の使用量は、基質に対して 4モル倍〜 100モル倍が好ましぐ特 に 10モル倍〜 50モル倍が適当である。
酸触媒としては、塩酸や硫酸等の無機酸、ヘテロポリ酸や陽イオン交換榭脂等の 固体酸等が使用できるが、硫酸が好ましい。
酸触媒の使用量は、基質に対して 0. 1重量%〜20重量%が好ましぐ特に 1重量
%〜 10重量%が適当である。
[0021] 反応温度は、通常、アルコールィ匕合物の沸点程度の温度が採用されるが、 20〜2
00°Cが好ましぐ特に 50〜150°Cが好ましい。
反応の進行は、ガスクロマトグラフィー分析により確認することができる。 反応終了後の操作は特に限定されず、例えば、以下の方法が挙げられる。 原料の消失を確認した後、酸触媒として硫酸を用いる場合は、反応後、室温に戻し て析出する結晶を濾取し、用いたアルコールィ匕合物でこの結晶を洗浄した後、乾燥 して目的の cis, trans, cis—TMCB化合物が得られる。
なお、本工程は、 R1及び R2力 それぞれ水素原子の場合に適している。
[0022] [2]第 1,工程
この工程は、 CBDAィ匕合物と、式 [7]で表されるジアルキル硫酸とを、塩基触媒の 存在下で反応させて cis, trans, cis— TMCB化合物を製造する工程である。
ジアルキル硫酸としては、ジメチル硫酸、ジェチル硫酸、ジ n プロピル硫酸、ジ i プロピル硫酸,ジ n ブチル硫酸、ジ i ブチル硫酸、ジ s ブチル硫酸、ジ n—ァミル 硫酸、ジ n キシル硫酸、ジ n プチル硫酸、ジ n—ォクチル硫酸、ジ n ノニル 硫酸、ジ n—デシル硫酸等に代表される炭素数 1〜: L0のジアルキル硫酸類が挙げら れる。中でも経済的なジメチル硫酸が好ましい。
ジアルキル硫酸の使用量は、基質に対して 2モル倍〜 10モル倍が好ましぐ特に 2 モル倍〜 4モル倍が適当である。
[0023] 本工程では、塩基触媒の存在が重要である。その種類としては、ジェチルァミン、ト リエチルァミン、ジイソプロピルァミン、ジ n—ブチルァミン等のアルキルアミン類や、ピ リジン、ピコリン等の芳香族ァミン類が挙げられ、中でもジイソプロピルァミンが好まし い。塩基触媒の使用量は、基質に対して 2モル倍〜 10モル倍が好ましぐ特に 2モル 倍〜 4モル倍が適当である。
本工程は、無溶媒で行うこともできるが、溶媒を用いて行うこともできる。 溶媒としてはアルコール化合物が好ましい。その種類としては、ジアルキル硫酸に 対応したアルキル基を有するアルコールィ匕合物が好ましい。すなわち、例えばジメチ ル硫酸の場合は、メタノール力 ジェチル硫酸の場合は、エタノールが好適である。 溶媒の使用量は、基質に対して 1質量倍〜 20質量倍が好ましぐ特に 2質量倍〜 1 0質量倍が適当である。
[0024] 反応温度は、通常、アルコールィ匕合物の沸点程度の温度が採用されるが、 20 2 00°Cが好ましぐ特に 50 150°Cが好ましい。
反応の進行は、ガスクロマトグラフィー分析により確認することができる。 反応終了後の操作は特に限定されず、例えば、以下の方法が挙げられる。 原料の消失を確認した後、濃縮して得られた残渣に、トルエンと希塩酸とを加えてこ れを溶解した後、有機層を重曹水及び水で洗浄して目的物の粗結晶を得る。この粗 結晶をトルエン及び n—ヘプタンに溶かして再結晶し、高純度の cis, trans, cis— T MCBィ匕合物が得られる。
本工程は、 R1及び R2が、それぞれ独立に、炭素数 1〜: LOのアルキル基、例えば共 にメチル基の場合に適して 、る。
[0025] [3]第 2工程
この工程は、 cis, trans, cis— TMCBィ匕合物を塩基触媒で異性ィ匕させ、式 [4]で 表されるトランス、トランス, トランス一 1, 2, 3, 4—シクロブタンテトラ力ノレボン酸テトラ エステル化合物("all trans"—TMCB化合物と略記する。 )を製造する工程である 塩基触媒としては、アルカリ金属又はアルカリ土類金属のアルコラート、炭酸塩、水 酸ィ匕物又は酸ィ匕物などが挙げられる。アルカリ金属としては、リチウム、ナトリウム、力 リウム等、アルカリ土類金属としては、マグネシウム、カルシウム、ノ リウム等が挙げら れる。
これらの中でも、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム tーブトキシド、 カリウムメトキシド、カリウムエトキシド、カリウム t—ブトキシド等のアルコラートが好適で あり、ナトリウムメトキシド、カリウム t—ブトキシドがより好ましぐカリウム t—ブトキシドが 最適である。
塩基触媒の使用量は、基質に対して 0. 1モル%〜100モル%が好ましぐ特に 0. 5モル%〜 20モル0 /0が適当である。
[0026] 溶媒としては、各種の溶媒類が使用できるが、テトラヒドロフラン (THF)、 1, 4—ジ ォキサン、 1, 2—ジメトキシェタン、ジエチレングリコールジメチルエーテル等のエー テル化合物類;メタノール、エタノール、 n—プロパノール、 i—プロパノール、 n—ブタ ノール、 iーブタノール、 s—ブタノール等のアルコール化合物類が好ましい。中でも、 エーテルィ匕合物類は、反応進行を促進させるうえに、低温域でも使用可能であること 力 好適に用いられる。
溶媒の使用量は、基質に対して 1〜50質量倍が好ましぐ特に 2〜10質量倍が適 当である。
[0027] 反応温度は、 100〜200°C力 S好ましく、特に一 50〜100°Cが好ましい。エーテル 化合物類を溶媒にした場合は、 20°C以下でも可能である。
反応の進行は、ガスクロマトグラフィー分析により確認することができる。 反応終了後の操作としては、特に限定されないが、例えば以下の方法が挙げられ る。
反応終了後、濃縮して得られた残渣を 1, 2—ジクロロェタン (EDC)と水で抽出し、 35%塩酸で酸性にして力 EDC層を分離し、濃縮すると白色結晶が得られる。この 白色結晶をメタノールに溶解させた後、やや濃縮して力 氷冷すると結晶が析出する 。この結晶を濾取し、メタノール洗浄して力 減圧乾燥することにより、単一の" all tr ans"—TMCB化合物が得られる。この操作は、 R1及び R2力 水素原子の場合に適 している。
また、反応終了後、濃縮して得られた残渣をトルエン及び水で抽出し、有機層を分 離し、濃縮すると白色結晶が得られる。この白色結晶を、トルエン及び n—ヘプタンに 溶解し、再結晶させることで、ガスクロマトグラフィーで単一の" all trans" -TMCB 化合物が得られる。この操作は、 R1及び R2力 それぞれ独立に炭素数 1〜: LOのアル キル基、例えば、共にメチル基の場合に適している。
[0028] [4]第 3工程
この工程は、 "all trans"— TMCB化合物を有機酸と反応させ、式 [5]で表される トランス, トランス, トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸化合物("all trans"— CBTC化合物と略記する。 )を製造する工程である。
酸の種類としては、蟻酸、酢酸、プロピオン酸等の脂肪酸類;メタンスルホン酸、ェ タンスルホン酸、トリフルォロメタンスルホン酸等のスルホン酸類が挙げられる。中でも 、反応操作が簡便になるという点から、蟻酸が好適である。
酸の使用量は、基質に対して 4モル当量以上が好ましい。なお、副生する酸エステ ルを、酸の一部と共に留出させると、反応が促進されることから、酸は 10〜: LOOモル 当量の過剰量存在させることが好ま 、。
[0029] さらに、本工程では、ベンゼンスルホン酸や p トルエンスルホン酸を添カ卩すること が好ましぐ特に P—トルエンスルホン酸を添加することが好適である。
これらの添カ卩量は、基質に対して 0. 1〜10重量%が好ましぐ特に 0. 5〜5重量% が好ましい。
^H—NMRで原料が消失するまで副生する酸エステルを留去して ヽると、酸エステ ルを留去するにつれて白色の結晶が析出し、その量が増加する。原料消失後、室温 まで冷却して析出した結晶を濾取し、これを酢酸ェチルで洗浄して力 減圧乾燥し、 "all trans"— CBTC化合物の白色結晶が得られる。
本工程は、 R1及び R2が、水素原子の場合に適している。
[0030] 第 3'工程について説明する。
この工程は、" all trans"— TMCB化合物を無機酸と反応させて、" all trans" - CBTC化合物を製造する工程である。
無機酸の種類としては、塩酸、臭化水素酸、硫酸、燐酸等が挙げられる。これらの 中で、塩酸による方法が簡便である。
無機酸の使用量は、基質に対して 4〜50モル当量の過剰量存在させることが好ま しい。
この場合、副生するアルコールを留去すると、反応が促進されることから、当該反応 は、副生するアルコールを留去しながら行うことが好まし 、。
[0031] 反応温度は、 50〜200°Cが好ましぐ特に 60〜150°Cが好ましい。
反応液は、 — NMRで原料が消失するまで留去した後、トルエンを加えて共沸脱 水 ·乾固した後、酢酸ェチルで再結晶することにより、 "all trans"— CBTC化合物 の白色結晶が得られる。
本工程は、 R1及び R2が、それぞれ独立に、炭素数 1〜10のアルキル基の場合、例 えば、共にメチル基の場合に適している。
[0032] [5]第 4工程
この工程は、 "all trans"— CBTC化合物を脱水剤と反応させて、ケージ状 CBDA 化合物を製造する工程である。
脱水剤としては、例えば、脂肪族カルボン酸無水物、 1, 3—ジシクロへキシルカル ボジイミド(DCCと略記)、 2—クロ口一 1, 3—ジメチノレイミダゾリ-ゥムクロライド(DM cと略記)等が用いられるが、好ましくは安価な脂肪族カルボン酸無水物、特に無水 酢酸が用いられる。
脱水剤の使用量は、基質に対して 2〜50当量、好ましくは 2〜: LO当量である。
[0033] 溶媒は、脱水剤自身を過剰量加えて使用することもできるが、反応に直接関与しな い有機溶媒を用いることもできる。このような有機溶媒としては、例えば、トルエン、キ シレン等の芳香族炭化水素類; 1, 2—ジクロ口エタン、 1, 2—ジクロ口プロパン等の ハロゲン化炭化水素類; 1, 4 ジォキサン等が挙げられる。中でも、着色のないケー ジ状 CBDAィ匕合物が得られる点から、芳香族炭化水素類が好適に用いられる。 有機溶媒の使用量は、基質に対して 1〜20質量倍、好ましくは 1〜10質量倍であ る。
[0034] 反応温度は、一般的に脱水剤又は溶媒の沸点付近が採用されるが、好ましくは 50 〜200。C、より好ましくは、 60〜150。Cである。
反応時間は、反応温度によって変動するものであるため一概には規定できないが、 実用的には、 1〜20時間、より好ましくは 2〜: LO時間である。
反応後、脱水剤及び必要に応じて用いられる溶媒を留去すると、目的物であるケ ージ状 CBDAィ匕合物が得られる。なお、得られた化合物は、そのままでも十分な純 度を有して 、るが、必要に応じて再結晶法により精製してもよ 、。
[0035] また、前述のように第 3工程で蟻酸を用いる場合は、その反応混合物を、第 4工程 の脱水反応に供し、蟻酸や副生する酢酸 (脱水剤として無水酢酸を用いた場合)を、 必要に応じて使用される有機溶媒と共に留去させながら転ィ匕率を上げて、目的とす るケージ状 CBDAィ匕合物を得ることもできる(第 3工程'第 4工程ワンポット法)。
なお、上述した各工程の反応は、ノ ツチ式又は流通式で行うことができ、また常圧 下でも加圧下でも行うことができる。
[0036] また、本発明は、式 [8]で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物を提供する。
[0037] [化 22]
Figure imgf000023_0001
(式中、 R5及び R6は、それぞれ独立にハロゲン原子、炭素数 1〜: L0のアルキル基、 炭素数 1〜10のアルコキシ基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8 のシクロアルキル基、フエ-ル基又はシァノ基を表す。)
[0038] ここで、 R5及び R6の具体例としては、フッ素原子、塩素原子、臭素原子、沃素原子 のハロゲン原子;メチル基、ェチル基、プロピル基、ォクチル基、デシル基等の炭素 数 1〜10のアルキル基;トリフルォロメトキシ基、ペンタフルォロエトキシ基、ヘプタフ ルォロプロポキシ基、ペルフルォロォクチルォキシ基、ペルフルォロデシルォキシ基 等の炭素数 1〜10のハロゲン化アルキル基;シクロプロピル基、シクロブチル基、シク 口ペンチル基、シクロへキシル基、シクロへプチル基、シクロォクチル基等の炭素数 3 〜8のシクロアルキル基;フエニル基;シァノ基等が挙げられる。
[0039] また、本発明は、上述した式 [8]で表される化合物の製造中間体として、式 [9]で 表されるシス,トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステ ル化合物、式 [10]で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタン テトラカルボン酸テトラエステルイ匕合物、及び式 [11]で表されるトランス,トランス,トラ ンス一 1, 2, 3, 4 シクロブタンテトラカルボン酸ィ匕合物を提供する。
[0040] [化 23]
Figure imgf000023_0002
[ 1 0 ]
(式中、 R3、 R5及び R6は、上記と同じ意味を表す。 )
式 [8]〜 [ 11]にお 、て、特に R5及び R6が炭素数 1〜 10のアルキル基である場合 は、対応する原料である 1, 2 ジアルキル 1, 2, 3, 4ーシクロブタンテトラカルボ ン酸—1, 2 : 3, 4一二無水物化合物の入手が容易である。 例えば、 1, 4 ジメチルー 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 2:3, 4— 二無水物は、特開平 4— 106127号公報に記載の方法で得られる。
実施例
以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施 例に限定されるものではない。なお、実施例における各物性の分析法、及びガスクロ マトグラフィ一での分析条件は、以下のとおりである。
[1] ガスクロマトグラフィー(GC)
機種: Shimadzu GC— 17A, Column:キヤビラリカラム CBP1— W25— 100 (25mX0.53mm Xl/zm),カラム温度: 100°C (保持 2min.;)〜 290°C (保持 lOmin. ), 8°C/min. (昇温速度),注入口温度: 290°C,検出器温度: 290°C, キャリアガス:ヘリウム,検出法: FID法
[2] 質量分析 (MASS)
機種: LX— lOOO FEOL Ltd. ),検出法: FAB法
[3] JH NMR
機種: ECP500 (JEOL),測定溶媒: DMSO— d
6
[4] 13C NMR
機種: ECP500 (JEOL),測定溶媒: DMSO— d
6
[5] 融点 (mp. )
測定機器:自動融点測定装置、 FP62(METTLER TOLEDO)
[6] 液体クロマトグラフィー (LC)
機種: Shimadzu LC-10A, Column: Inertsil ODS— 3 (5 m, 250mmX 4. θπιπι ), カラム温度: 40°C,検出器: RI, 溶離液: H OZCH CN=4Z6,
2 3
流速: 1ml, mm.
[7] [X線結晶解析]
装置: DIP2030K (マックサイエンス製)
X線: MoKa (45kV, 200mA)
測定温度:室温
結晶:板状結晶(0.2X0.1X0. lmm) [実施例 1]シス, トランス,シス一テトラメチル 1, 2, 3, 4—シクロブタンテトラカルボキ シレートの合成
[化 24]
Figure imgf000025_0001
[0044] 内容積 200π パイレックス (登録商標)ガラス製四つ口反応フラスコに、 1, 2, 3, 4 —シクロブタンテトラカルボン酸一 1, 2 : 3, 4—二無水物 16. 4g (83. 6mmol)、 95 %硫酸 1. 64g、及びメタノール 98. 4gを仕込み、 80°Cの油浴で 4時間還流した。反 応の進行に伴い結晶が析出した。
反応終了後、室温に戻して力 析出した結晶を濾取し、水及びメタノールで洗浄し た後、減圧乾燥し、ガスクロマトグラフィー(GC)で単一ピークの白色結晶 23. 5g (収 率 97. 5%)を得た。
この結晶は、以下の単結晶 X線解析により、シス, トランス,シスーテトラメチルー 1, 2, 3, 4ーシクロブタンテトラカルボキシレートであることが確認された。また、 MASS 、 'H-NMR, 13c— NMRのデータからもこの構造が支持された。
[0045] MASS (FAB, m/e (%) ) : 289 ( [M+H]+, 47) , 257 (100) , 154 (66)
NMR(DMSO— d , 6 ppm) : 3. 6778 (s, 4H) , 3. 6039 (s, 12H)
6
13C-NMR(DMSO- d , δ ppm) :40. 0868, 52. 1500, 170. 8977 (各 4個
6
の炭素分を表す)
mp. : 146. 5〜147. 5°C
[0046] シス, トランス,シスーテトラメチル 1, 2, 3, 4ーシクロブタンテトラカルボキシレートの 単結晶 X線測定結果
シス, トランス,シスーテトラメチル 1, 2, 3, 4ーシクロブタンテトラカルボキシレートを 、ァセトニトリルに溶解させ、自然濃縮により単結晶を作成して X線測定を行ったとこ ろ、下記の結果が得られた。図 1にこの単結晶 X線のチャートを示す。
[0047] 分子式 C H O
12 16 8
分子量 288. 25 色相,形状 colorless, plate
t¾糸 triclinic
空間群 p— l
結晶糸 plane
格子定数 a=5. 971(1)A
b = 6.461(1) A
c = 8. 949(1) A
a =98. 534(8)°
β =101. 277(6
y =95. 189(7)°
V=332. 29(8) A3
Z値 =1
Figure imgf000026_0001
Mo K< > radiation
λ (MoKa)=0.70926A, μ (MoKa)O. 12mm"1
No. of measured reflections = 1414
No. of observed reflections = 1386
R(gt)=0.09
wR(gt) =0. 37
Temp. =298K
[実施例 2]トランス, トランス, トランスーテトラメチル 1, 2, 3, 4ーシクロブタンテトラ力 ルボキシレートの合成
[化 25]
Figure imgf000026_0002
内容積 ΙΟΟπ パイレックス (登録商標)ガラス製四つ口反応フラスコに、シス, トラン ス,シス一テ卜ラメチル 1, 2, 3, 4—シクロブタンテ卜ラカルボキシレー卜 2. 88g(10.0 mmol)、 t—ブトキシカリウム(純度 95%)0.23g(20mol%)、及びメタノール 28.8g を仕込み、 80°Cの油浴で 8時間還流した。反応終了後、濃縮して得られた残渣を 1, 2—ジクロロェタン (EDC)及び水で抽出し、 35%塩酸で酸性にしてから EDC層を分 離し、ガスクロマトグラフィーで分析した結果、生成物の GC面積%は95.0%であつ た。
分離した EDC層を濃縮すると、白色結晶 2.7gが得られた。さらに、この白色結晶 をメタノールに溶解し、やや濃縮して力 氷冷すると結晶が析出した。この結晶を濾 取し、メタノール洗浄して力も減圧乾燥し、ガスクロマトグラフィー(GC)で単一ピーク の白色結晶 2. Ogを得た。
この結晶は、 MASS, — NMR、及び13 C— NMR解析によってトランス,トランス ,トランスーテトラメチル 1, 2, 3, 4ーシクロブタンテトラカルボキシレートであることが 確認された。
[0050] MASS (FAB, m/e(%)) :289([M+H]+, 100), 257(92), 154(92)
NMR(DMSO— d , 6ppm) :3.4217 (s, 4H), 3.6428 (s, 12H)
6
13C-NMR(DMSO-d , 6ppm) :39.3470, 52.2496, 171.0202 (各 4個
6
の炭素分を表す)
mp. :127.5〜128.0°C
[0051] [実施例 3〜6]トランス,トランス,トランスーテトラメチル 1, 2, 3, 4ーシクロブタンテト ラカルボキシレートの合成
[化 26]
Figure imgf000027_0001
実施例 2の反応において、内容積 50πύパイレックス (登録商標)ガラス製四つ口反 応フラスコに、シス,トランス,シスーテトラメチル 1, 2, 3, 4ーシクロブタンテトラカル ボキシレート 0.864g(3. Ommol)、メタノール 14.4g、及び表 1に示される種類及 び量の塩基を仕込み、表 1に示される反応温度及び時間で反応を行い、反応液をガ スクロマトグラフィーで分析した結果を表 1に示す。
[0053] [表 1]
GC面積%
実施例 塩基 mg 温度 時間
。C h 2 1
3 i-BuOK 69 (20) 63 1 86.0 12.9
4 r-BuOK 69 (20) 45 1 81.9 18.1
5 ί-BuOK 29 (5) 63 2 80.2 16.9
6 MeONa 34 (20) 63 2 74.7 25.3
[0054] [実施例 7]トランス,トランス,トランス一テトラメチル 1, 2, 3, 4—シクロブタンテトラ力 ルボキシレートの合成
内容積 300π パイレックス (登録商標)ガラス製四つ口反応フラスコに、シス,トラン ス,シス—テトラメチル 1, 2, 3, 4 シクロブタンテトラカルボキシレート 35g (121. 4 11111101)、1;ーブトキシカリゥム(純度95%) 2. 72g (20mol%)、及びメタノール 175g を仕込み、 62°Cで 2時間還流した。反応終了後、 52°Cまで冷却し、種晶" all trans "一 TMCBを投入すると、白色結晶が析出した。この状態で 2時間攪拌した後、 40°C まで冷却して 2時間攪拌し、さらに 25〜30°Cまで冷却して 2時間攪拌した。析出した 結晶を濾過し、メタノール洗浄した後に減圧乾燥し、ガスクロマトグラフィー(GC)で 単一ピークの白色結晶 26. 9g (収率 76. 9%)を得た。
この結晶は、 MASS, — NMR、及び13 C— NMR解析によってトランス,トランス ,トランスーテトラメチル 1, 2, 3, 4ーシクロブタンテトラカルボキシレートであることが 確認された。
[0055] [実施例 8]トランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸の 合成
Figure imgf000029_0001
[0056] 内容積 500π パイレックス (登録商標)ガラス製四つ口反応フラスコに、トランス,ト ランス,トランスーテトラメチル 1, 2, 3, 4ーシクロブタンテトラカルボキシレート 30g、 p トルエンスルホン酸一水和物(p— TSと略記する。 )0. 9g(3質量%)、及び蟻酸 3 00gを仕込み、攪拌しながら 100°Cに昇温して還流し、 4時間反応させた。
この際、副生した蟻酸メチルを蟻酸とともに留去しながら1 H—NMRで原料が消失 するまで反応を行った。なお、留去した蟻酸メチルの量は 180gであった。留去する につれて白色結晶が析出した。
反応終了後、室温まで冷却した後、析出した結晶を濾取し、酢酸ェチルで洗浄して 力 減圧乾燥し、白色結晶 22. 7g (収率 93. 9%)を得た。
この結晶は、 MASS, — NMR、及び13 C— NMR解析によってトランス,トランス ,トランス一 1, 2, 3, 4 シクロブタンテトラカルボン酸であることが確認された。
[0057] MASS (FAB, m/e(%)) :233([M+H]+, 100)
NMR(DMSO d , 6ppm) :3. 1351 (s, 4H), 12. 7567(s, 4H)
6
13C-NMR(DMSO-d , δ ppm) :40. 3808, 172.8627 (各 4個の炭素分を表
6
す)
mp. :280.0°C
[0058] [実施例 9]1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3:2, 4一二無水物の合 成
[化 28]
Figure imgf000029_0002
[0059] 内容積 ΙΟΟπパイレックス (登録商標)ガラス製四つ口反応フラスコに、トランス,ト ランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸 24g、無水酢酸 120g(5 質量倍)、及びトルエン 120g (5質量倍)を仕込み、攪拌しながら 110°Cに昇温した。 攪拌を続けているうちに白色の結晶が生成してきたが、そのまま 24時間攪拌を継続 して反応を終了させた。
続いて、室温まで冷却した後、析出した結晶を濾取し、酢酸ェチルで洗浄してから 減圧乾燥し、白色結晶 15. lg (収率 74. 5%)を得た。
この結晶は、 MASS, — NMR、及び13 C— NMR解析によって、 1, 2, 3, 4 シ クロブタンテトラカルボン酸 1, 3:2, 4一二無水物であることが確認された。
[0060] MASS (FAB, m/e(%)): 197([M+H]+, 100)
NMR(DMSO d , δ ppm) :4. 2455 (s, 4H), 12. 7714(s, 4H)
6
13C-NMR(DMSO-d , δ ppm) :43. 3971, 163. 5640 (各 4個の炭素分を表
6
す)
mp. :258.0°C
[0061] 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3:2, 4一二無水物の単結晶 X線測 定結果
1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3:2, 4一二無水物の単結晶は、上 記反応で得られた白色結晶をそのまま使用して X線測定をしたところ、下記の結果が 得られた。図 2にこの単結晶 X線のチャートを示す。
[0062] 分子式 C H O
8 4 6
196. 114
色相, 形状 colorless, plate
曰曰; triclmic
空間群 P— 1
結晶系 plane
格子定数 a=9.0610(10) A
b = 8. 3480(10) A
c = 9.6980(10) A
a =90.00° β = 90. 00°
γ = 90. 00°
V= 733. 57 (14) A3
Z値 =4
Figure imgf000031_0001
Mo K< > radiation
λ (MoKa) =0. 70926A, μ (MoKa) =0. 16mm—1
No. of measured reflections = 950
No. of observed reflections = 885
R (gt) =0. 034
wR (gt) =0. 075
Temp. = 130K
[0063] [実施例 10]シス, トランス,シス一テトラメチル 1, 4 ジメチルー 1, 2, 3, 4 シクロ ブタンテトラカルボキシレートの合成
[化 29]
Figure imgf000031_0002
[0064] 内容積 200π パイレックス (登録商標)ガラス製四つ口反応フラスコに、 1, 4—ジメ チルー 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 2 : 3, 4一二無水物 14. 0g ( 純度 93%、 58. 08mmol)、及びメタノール 70g (5質量倍)を仕込み、 60°Cの油浴 で加温した状態でジイソプロピルアミン 18. 6g (144mmol)を滴下し、 30分間攪拌し た。
続いて、ジメチル硫酸 16. 5g (131mmol、 2. 1モル当量)を滴下した後、 60°Cで 1 時間半還流した。反応終了後、濃縮乾固して粗物 52. 9gを得た。この粗物にトルェ ン 70g及び 2%塩酸水 70gを滴下し、粗物を溶解させてから分液した。分液した有機 層に、 5%重曹水 42gを加えて洗浄した後、さらに水 42gで洗浄した。洗浄後の有機 層を濃縮して粗結晶 19. 2gを得た。この粗結晶に、トルエン 9. 6g及びヘプタン 38. 4gを加えて加温して粗結晶を溶解させた後、冷却しながら 52°Cで目的物の種晶を 加え、 20°Cで 30分間静置した。析出した結晶を濾取し、減圧乾燥して、ガスクロマト グラフィー(GC)で単一ピークの白色結晶 14.9g (収率 81.1%)を得た。
この結晶は、 NMR及び13 C— NMRからシス,トランス,シス一テトラメチル 1, 4 ジメチルー 1, 2, 3, 4ーシクロブタンテトラカルボキシレートであることが確認された
[0065] NMR(DMSO d , 6ppm) :1.2664 (s, 6H), 3.3011 (s, 2H), 3.61
6
89 (s, 6H), 3.6820 (s, 6H)
13C-NMR(DMSO-d , 6ppm) :19.9048(2), 45.0419(2), 51.5986(2
6
), 52.2327(4), 170.9263(2), 171.8576(2) (力 こ内の数字は炭素数を表 す)
mp. :86. 1°C
[0066] [実施例 11]トランス, トランス, トランス一テトラメチル 1, 2 ジメチル一 1, 2, 3, 4— シクロブタンテトラカルボキシレートの合成
[化 30]
Figure imgf000032_0001
[0067] 内容積 ΙΟΟπ パイレックス (登録商標)ガラス製四つ口反応フラスコに、シス, トラン ス,シス一テトラメチル 1, 4 ジメチル一 1, 2, 3, 4 シクロブタンテトラカルボキシレ ート 26.7g(84.4mmol)、及びテトラヒドロフラン(THF)134g(5質量倍)を仕込み 、 5°Cで攪拌下、 t—ブトキシカリウム(純度 95%) 0.474g(4.74mmol;5mol%)を 添加し、 5°Cでさらに 1時間攪拌した。
その後、溶媒を濃縮除去し、その残渣にトルエン 134g (5質量倍)を添加し、これを 濃縮留去した。この残渣に、さらにトルエン 134g(5質量倍)と水 134g(5質量倍)を 添加し、これを溶解させて分液した後、有機層を濃縮し、粗結晶 26.8gを得た。この 粗結晶に、トルエン 26.7g及びヘプタン 48gをカ卩えて加温溶解後、冷却しながら 35 〜40°Cで目的物の種晶を加え、さらに 20〜25°Cに冷却して 30分間攪拌した。析出 した結晶を濾取した後、減圧乾燥し、ガスクロマトグラフィー(GC)で単一ピークの白 色結晶 16.7g (収率 62.5%)を得た。また、濾液を濃縮すると結晶 8.6gが得られた 得られた白色結晶は、 NMR及び13 C— NMR解析によってトランス, トランス, トランスーテトラメチル 1, 2 ジメチルー 1, 2, 3, 4ーシクロブタンテトラカルボキシレ ートであることが確認された。
[0068] NMR(DMSO d , 6ppm) :1. 1248 (s, 6H), 3.6436 (s, 6H), 3.71
6
69 (s, 6H), 3.8995 (s, 2H) .
13C-NMR(DMSO-d , 6ppm) :15.3129(2), 39.7827(2), 49.2593(2
6
), 51.9986(2), 52.4945(2), 170.2656(2), 171.3643(2) (力 こ内の数 字は炭素数を表す)
mp. :82.4°C
[0069] [実施例 12]トランス, トランス, トランス 1, 2 ジメチルー 1, 2, 3, 4ーシクロブタン テトラカルボン酸の合成
[化 31]
Figure imgf000033_0001
[0070] 内容積 500π パイレックス (登録商標)ガラス製四つ口反応フラスコに、トランス, ト ランス, トランスーテトラメチル 1, 2 ジメチルー 1, 2, 3, 4ーシクロブタンテトラカル ボキシレート 15g(47.4mmol)、及び 2N—塩酸水 150g(274mmol;5.78mol当 量)を仕込み、攪拌しながら 100°Cに昇温し、 30分毎に副生したアルコール 7gを抜 き取りながら還流し、 9時間反応させた後、濃縮乾固して残渣 16.4gを得た。
この残渣にトルエン 75gをカ卩えて加熱共沸脱水し、固形物 11.6gを得た。さらに、 この固形物に酢酸ェチル 45gをカ卩えて 30分加熱還流した後、冷却し、 20〜25°Cで 30分攪拌して結晶を析出させた。得られた結晶を濾取し、トルエンで洗浄した後、酢 酸ェチルで洗净して減圧乾燥し、白色結晶 11. lg (収率 89.7%)を得た。
この結晶は、 NMR及び13 C— NMR解析によってトランス, トランス, トランス一 2 ジメチルー 1, 2, 3, 4ーシクロブタンテトラカルボン酸であることが確認された
[0071] H-NMR(DMSO-d , 6ppm) :1. 1833 (s, 6H), 3.7137(s, 2H), 12.6
6
874 (s, 4H)
13C-NMR(DMSO-d , 6ppm) :15.5255(2), 39.8732(2), 40.0030(2
6
), 48.4648(2), 172.2102(2), 173.0419(2) (力 こ内の数は炭素数を表す )
mp. :280.4°C
[0072] [実施例 13]
[化 32]
Figure imgf000034_0001
[0073] 内容積 200π パイレックス (登録商標)ガラス製四つ口反応フラスコに、トランス, ト ランス, トランス 1, 2 ジメチルー 1, 2, 3, 4ーシクロブタンテトラカルボン酸 14.6 g、無水酢酸 43.8g (3質量倍)、及びトルエン 43.8g (3質量倍)を仕込み、攪拌しな 力 107°Cに昇温して 5時間還流した。 3時間攪拌を続けた後に白色の結晶がわず かに生成してきた。
反応終了後、 20°Cまで冷却し、析出した結晶を濾取し、トルエンで洗浄して力も 40 °C以下で減圧乾燥し、白色結晶 10.9g (収率 86.3%)を得た。
この結晶は、 MASS, — NMR及び13 C— NMR解析によって、 1, 2—ジメチル -1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3:2, 4一二無水物であることが確 f*i¾ れ 。
[0074] MASS (FAB, m/e(%)) :225.08([M+H]+, 18), 79.06(100)
NMR(DMSO d , 6ppm) :1.3162(s, 6H), 4.4171 (s, 2H)
6
13C-NMR(DMSO-d , 6ppm) :12.6168(4), 45.8766(4), 52.7284(2
6
), 162.9991(2), 165.1050(2) (力 こ内は炭素数を表す) mp. :234. 1°C
[0075] 1. 2 ジメチルー 1. 2. 3.4ーシクロブタンテトラカルボン酸 1. 3:2.4 二無水 物の単結晶 X線沏 I定結
1, 2 ジメチルー 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3:2, 4一二無水 物として、上記反応で得られた白色結晶を 70°Cの無水酢酸'トルエン混合溶液に溶 解させた後、ゆっくりと室温まで冷却して得られた無色柱状の単結晶を用いて X線測 定をしたところ、下記の結果が得られた。図 3にこの単結晶 X線のチャートを示す。
[0076] 分子式 C HO
10 8 6
分子量 224. 168
色不目,形状 colorless,柱状
晶糸 urthorhombic
空間群 Pbcn
格子定数 a=9. 902(1)A
b = 9.000(1) A
c = ll.096(1) A
a =90.00°
β =90.00°
y =90.00°
V=988. 9(2) A3
Z値 =4
Figure imgf000035_0001
Mo K< > radiation
λ (MoKa) =0.70926A, μ (MoKa) =0. 13mm—1
No. of measured reflections = 1282
No. of observed reflections = 1081
R(gt)=0.067
wR(gt)=0. 145
Temp. =298K

Claims

請求の範囲 [1] 式 [1]
[化 1]
Figure imgf000036_0001
(式中、 R1及び R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数 1〜10のァ ルキル基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基 、フエ-ル基又はシァノ基を表す。 )
で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 2 : 3, 4一二無水物化合 物と、式 [2]
[化 2]
R3OH [ 2 ]
(式中、 R3は、炭素数 1〜10のアルキル基を表す。 )
で表されるアルコール化合物と、を酸触媒の存在下で反応させることを特徴とする式
[3]
[化 3]
Figure imgf000036_0002
(式中、
Figure imgf000036_0003
R2及び R3は、前記と同じ意味を表す。 )
で表されるシス, トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエス テル化合物の製造法。
[2] 前記酸触媒が、硫酸である請求項 1記載のシス, トランス,シス 1, 2, 3, 4ーシク ロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
[3] 式 [3] [化 4]
Figure imgf000037_0001
(式中、 R1及び R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数 1〜10のァ ルキル基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基 、フエ-ル基又はシァノ基を表し、 R3は、炭素数 1〜10のアルキル基を表す。) で表されるシス,トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエス テル化合物を、塩基触媒で異性化させることを特徴とする式
[4]
[化 5]
Figure imgf000037_0002
R3は、前記と同じ意味を表す。 )
で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テト ラエステル化合物の製造法。
前記塩基触媒が、金属アルコラートである請求項 3記載のトランス, トランス, トランス
2, 3, 4ーシクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法,
[5] 前記塩基触媒が、 t—ブトキシカリウムである請求項 3記載のトランス, トランス,トラ ンス一 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
[6] 前記異性化が、 100〜200°Cで行われる請求項 3記載のトランス, トランス,トラン ス一 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
[7] 前記異性化が、エーテル系化合物溶媒中で行われる請求項 3記載のトランス,トラ ンス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル化合物の製 造法。
[8] 式 [4] [化 6]
Figure imgf000038_0001
(式中、 R1及び R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数 1〜10のァ ルキル基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基 、フエ-ル基又はシァノ基を表し、 R3は、炭素数 1〜10のアルキル基を表す。) で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テト ラエステルイ匕合物を、有機酸と反応させることを特徴とする式 [5]
[化 7]
Figure imgf000038_0002
(式中、 R1及び R2は、前記と同じ意味を表す。 )
で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸化 合物の製造法。
[9] 前記有機酸が、蟻酸である請求項 8記載のトランス, トランス, トランス 1, 2, 3, 4 シクロブタンテトラカルボン酸ィ匕合物の製造法。
[10] 前記有機酸力 蟻酸及び p トルエンスルホン酸である請求項 8記載のトランス, ト ランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸ィ匕合物の製造法。
[11] 前記反応が、 0〜200°Cで行われる請求項 8記載のトランス, トランス, トランス 1,
2, 3, 4ーシクロブタンテトラカルボン酸ィ匕合物の製造法。
[12] 式 [5]
[化 8]
Figure imgf000039_0001
(式中、 R1及び R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数 1〜10のァ ルキル基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基 、フエ-ル基又はシァノ基を表す。 )
で表されるトランス, トランス, トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸化 合物を、脱水剤と反応させることを特徴とする式 [6]
[化 9]
Figure imgf000039_0002
(式中、 R1及び R2は、前記と同じ意味を表す。 )
で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合 物の製造法。
[13] 前記脱水剤が、有機酸無水物である請求項 12記載の 1, 2, 3, 4ーシクロブタンテ トラカルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
[14] 前記反応が、芳香族炭化水素溶媒中で行われる請求項 12記載の 1, 2, 3, 4ーシ クロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
[15] 式 [1]
[化 10]
Figure imgf000039_0003
(式中、 R1及び R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数 1〜10のァ ルキル基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基 、フエ-ル基又はシァノ基を表す。 )
で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸
物と、式 [7]
[化 11]
R SO,
(式中、 R3は、炭素数 1〜10のアルキル基を表す。 )
で表されるジアルキル硫酸ィ匕合物とを、塩基触媒の存在下で反応させることを特徴と する式 [3]
[化 12]
Figure imgf000040_0001
(式中、 R\ R2及び R3は、前記と同じ意味を表す。 )
で表されるシス, トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエス テル化合物の製造法。
[16] 前記式 [7]で表されるジアルキル硫酸ィ匕合物力 ジメチル硫酸である請求項 15記 載のシス, トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル 化合物の製造法。
[17] 前記塩基触媒が、脂肪族ァミンである請求項 15記載のシス, トランス,シス 1, 2, 3, 4—シクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
[18] 式 [4]
[化 13]
Figure imgf000040_0002
(式中、 R1及び R2は、それぞれ独立に水素原子、ハロゲン原子、炭素数 1〜10のァ ルキル基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基 、フエ-ル基又はシァノ基を表し、 R3は、炭素数 1〜10のアルキル基を表す。) で表されるトランス, トランス, トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テト ラエステル化合物を、無機酸と反応させることを特徴とする式 [5]
[化 14]
Figure imgf000041_0001
(式中、 R1及び R2は、前記と同じ意味を表す。 )
で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸化 合物の製造法。
[19] 前記無機酸が、塩酸である請求項 18記載のトランス, トランス, トランス 1, 2, 3,
4 シクロブタンテトラカルボン酸ィ匕合物の製造法。
[20] 前記反応が、副生するアルコールを反応槽カも留出させながら行われる請求項 18 記載のトランス,トランス,トランス一 1, 2, 3, 4 シクロブタンテトラカルボン酸ィ匕合物 の製造法。
[21] 請求項 1に記載の方法で得られた前記式 [3]で示される化合物から、請求項 3に記 載の方法で前記式 [4]で示される化合物を得、請求項 8に記載の方法でこの式 [4] で示される化合物から前記式 [5]で示される化合物を得、さらに請求項 12に記載の 方法でこの式 [5]で示される化合物から前記式 [6]で示される化合物を得る 1, 2, 3 , 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
[22] 請求項 15に記載の方法で得られた前記式 [3]で示される化合物から、請求項 3に 記載の方法で前記式 [4]で示される化合物を得、請求項 18に記載の方法でこの式 [ 4]で示される化合物から前記式 [5]で示される化合物を得、さらに請求項 12に記載 の方法でこの式 [5]で示される化合物力 前記式 [6]で示される化合物を得る 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製造法。
[23] 前記 R1及び R2が、水素原子である請求項 1又は 2記載のシス,トランス,シス 1, 2 , 3, 4ーシクロブタンテトラカルボン酸テトラエステルイ匕合物の製造法。
[24] 前記 R1及び R2力 水素原子である請求項 3〜7のいずれか 1項記載のトランス,トラ ンス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル化合物の製 造法。
[25] 前記 R1及び R2力 水素原子である請求項 8〜: L 1のいずれか 1項記載のトランス, ト ランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸ィ匕合物の製造法。
[26] 前記 R1及び R2が、水素原子である請求項 12〜14及び請求項 21のいずれ力 1項 記載の 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の 製造法。
[27] 前記 R1及び R2が、それぞれ独立に炭素数 1〜: L0のアルキル基である請求項 15〜
17のいずれ力 1項記載のシス,トランス,シス 1, 2, 3, 4ーシクロブタンテトラカル ボン酸テトラエステル化合物の製造法。
[28] 前記 R1及び R2が、それぞれ独立に炭素数 1〜: L0のアルキル基である請求項 3〜7 のいずれ力 1項記載のトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラ力 ルボン酸テトラエステルイ匕合物の製造法。
[29] 前記 R1及び R2が、それぞれ独立に炭素数 1〜: LOのアルキル基である請求項 18〜
20のいずれ力 1項記載のトランス,トランス,トランス一 1, 2, 3, 4 シクロブタンテトラ カルボン酸化合物の製造法。
[30] 前記 R1及び R2が、それぞれ独立に炭素数 1〜: L0のアルキル基である請求項 12〜
14及び請求項 22のいずれか 1項記載の 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4 二無水物化合物の製造法。
[31] 前記 R1及び R2力 メチル基である請求項 15〜 17のいずれ力 1項記載のシス,トラ ンス,シス—1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル化合物の製造 法。
[32] 前記 R1及び R2力 メチル基である請求項 3〜7のいずれか 1項記載のトランス,トラ ンス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル化合物の製 造法。
[33] 前記 R1及び R2力 メチル基である請求項 18〜20のいずれ力 1項記載のトランス,ト ランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸ィ匕合物の製造法。
[34] 前記 R1及び R2が、メチル基である請求項 12〜14及び請求項 22のいずれ力 1項記 載の 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物の製 造法。
[35] 式 [8]で表される 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水 物ィ匕合物。
[化 15]
Figure imgf000043_0001
(式中、 R5及び R6は、それぞれ独立に、ハロゲン原子、炭素数 1〜: L0のアルキル基、 炭素数 1〜10のアルコキシ基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8 のシクロアルキル基、フ ニル基又はシァノ基を表す。)
[36] 前記 R5及び R6が、それぞれ独立に炭素数 1〜: L0のアルキル基である請求項 35記 載の 1, 2, 3, 4ーシクロブタンテトラカルボン酸 1, 3 : 2, 4一二無水物化合物。
[37] 前記 R5及び R6が、メチル基である請求項 36記載の 1, 2, 3, 4 シクロブタンテトラ カルボン酸 1, 3 : 2, 4一二無水物化合物。
[38] 式 [9]で表されるシス,トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テ トラエステル化合物。
[化 16]
Figure imgf000043_0002
(式中、 R3は、炭素数 1〜10のアルキル基を表し、 R5及び R6は、それぞれ独立に、ハ ロゲン原子、炭素数 1〜: L0のアルキル基、炭素数 1〜: L0のアルコキシ基、炭素数 1 〜 10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基、フエ-ル基又はシ ァノ基を表す。 )
[39] 前記 R5及び R6力 それぞれ独立に炭素数 1〜10のアルキル基である請求項 38記 載のシス,トランス,シス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエステル 化合物。
[40] 前記 R5及び R6力 メチル基である請求項 39記載のシス, トランス,シス—1, 2, 3, 4 -シクロブタンテトラカルボン酸テトラエステルイ匕合物。
[41] 式 [10]で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカル ボン酸テトラエステルイ匕合物。
[化 17]
Figure imgf000044_0001
(式中、 R3は、炭素数 1〜10のアルキル基を表し、 R5及び R6は、それぞれ独立に、ハ ロゲン原子、炭素数 1〜: LOのアルキル基、炭素数 1〜: LOのアルコキシ基、炭素数 1 〜 10のハロゲン化アルキル基、炭素数 3〜8のシクロアルキル基、フエ-ル基又はシ ァノ基を表す。 )
[42] 前記 R5及び R6力 それぞれ独立に炭素数 1〜10のアルキル基である請求項 41記 載のトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカルボン酸テトラエス テル化合物。
[43] 前記 R5及び R6力 メチル基である請求項 42記載のトランス, トランス, トランス 1, 2, 3, 4 シクロブタンテトラカルボン酸テトラエステルイ匕合物。
[44] 式 [11]で表されるトランス,トランス,トランス 1, 2, 3, 4ーシクロブタンテトラカル ボン酸化合物。
[化 18]
Figure imgf000044_0002
(式中、 R5及び R6は、それぞれ独立に、ハロゲン原子、炭素数 1〜: L0のアルキル基、 炭素数 1〜10のアルコキシ基、炭素数 1〜10のハロゲン化アルキル基、炭素数 3〜8 のシクロアルキル基、フ ニル基又はシァノ基を表す。)
[45] 前記 R5及び R6が、それぞれ独立に炭素数 1〜: L0のアルキル基である請求項 44記 載のトランス,トランス,トランス一 1, 2, 3, 4 シクロブタンテトラカルボン酸ィ匕合物。
[46] 前記 R5及び R6力 メチル基である請求項 45記載のトランス, トランス, トランス 1,
2, 3, 4ーシクロブタンテトラカルボン酸化合物。
PCT/JP2005/019071 2004-10-20 2005-10-18 ケージ状シクロブタン酸二無水物及びその製造法 WO2006043519A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077008265A KR101286228B1 (ko) 2004-10-20 2005-10-18 케이지 형상 시클로부탄산 2무수물 및 그 제조법
CN2005800360415A CN101044108B (zh) 2004-10-20 2005-10-18 笼状环丁烷羧酸二酐及其制备方法
US11/665,024 US7872148B2 (en) 2004-10-20 2005-10-18 Cage-shaped cyclobutanoic dianhydrides and process for production thereof
EP05795540A EP1813592B1 (en) 2004-10-20 2005-10-18 Cage-shaped cyclobutanoic dianhydrides and process for production thereof
JP2006542980A JP5326211B2 (ja) 2004-10-20 2005-10-18 ケージ状シクロブタン酸二無水物の製造法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004305384 2004-10-20
JP2004-305384 2004-10-20
JP2004319740 2004-11-02
JP2004-319740 2004-11-02
JP2005-085162 2005-03-24
JP2005085162 2005-03-24

Publications (1)

Publication Number Publication Date
WO2006043519A1 true WO2006043519A1 (ja) 2006-04-27

Family

ID=36202934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019071 WO2006043519A1 (ja) 2004-10-20 2005-10-18 ケージ状シクロブタン酸二無水物及びその製造法

Country Status (7)

Country Link
US (1) US7872148B2 (ja)
EP (1) EP1813592B1 (ja)
JP (1) JP5326211B2 (ja)
KR (1) KR101286228B1 (ja)
CN (1) CN101044108B (ja)
TW (1) TW200621705A (ja)
WO (1) WO2006043519A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104038A1 (ja) * 2005-03-29 2006-10-05 Nissan Chemical Industries, Ltd. ポリアミック酸、ポリイミド及びその製造方法
WO2010116990A1 (ja) * 2009-04-10 2010-10-14 日産化学工業株式会社 ケージ状シクロペンタン酸二無水物化合物、その製造法およびポリイミド
WO2015108170A1 (ja) * 2014-01-17 2015-07-23 日産化学工業株式会社 シクロブタンテトラカルボン酸及びその無水物の製造方法
CN111413440A (zh) * 2020-05-06 2020-07-14 上海臣邦医药科技股份有限公司 帕瑞昔布钠硫酸酯类基因毒性杂质的检测方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860070A (zh) * 2009-02-12 2016-08-17 日产化学工业株式会社 四羧酸衍生物、其制备方法及液晶取向剂
JP5376165B2 (ja) * 2009-04-08 2013-12-25 Jsr株式会社 液晶配向剤および液晶表示素子
US20180348658A1 (en) * 2017-05-31 2018-12-06 Canon Kabushiki Kaisha Curable liquid developer and method for producing curable liquid developer
CN110724058A (zh) * 2019-10-25 2020-01-24 吉林凯莱英制药有限公司 反式环丁烷邻二羧酸酯及其衍生物的制备方法
US20220380292A1 (en) * 2019-10-25 2022-12-01 Jilin Asymchem Pharmaceuticals Co., Ltd. Preparation method for trans-cyclobutane-o-dicarboxylic acid ester and derivative thereof
JP6865489B1 (ja) * 2020-10-20 2021-04-28 株式会社エス・ディー・エス バイオテック 2,3,5,6−テトラクロロ−1,4−ベンゼンジカルボン酸ジメチルの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139395A (en) * 1961-01-09 1964-06-30 American Cyanamid Co Photodimerization of fumaric acid derivatives
JP2003073338A (ja) * 2001-08-30 2003-03-12 Nissan Chem Ind Ltd シクロブタンテトラカルボン酸の(メタ)アクリレート化合物及びその製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208322A (ja) 1982-05-31 1983-12-05 Japan Synthetic Rubber Co Ltd ポリイミド化合物の製造方法
US4454310A (en) 1981-12-21 1984-06-12 Japan Synthetic Rubber Co., Ltd. Polyamide acid, process for producing same and polyimide obtained therefrom
JPS60188427A (ja) 1984-03-09 1985-09-25 Nissan Chem Ind Ltd 新規なポリイミド樹脂及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139395A (en) * 1961-01-09 1964-06-30 American Cyanamid Co Photodimerization of fumaric acid derivatives
JP2003073338A (ja) * 2001-08-30 2003-03-12 Nissan Chem Ind Ltd シクロブタンテトラカルボン酸の(メタ)アクリレート化合物及びその製造法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Columbus, Ohio, US; GRIFFIN G W ET AL: "The chemistry of photodimers of maleic and fumaric acid derivatives. I. Dimethyl fumare dimer." XP008060419 *
CHEMICAL ABSTRACTS, vol. 120, no. 216747, 1994, Columbus, Ohio, US; MAIER G ET AL: "Small rings. 77. Generation and trapping reactions of tetramethyl cyclobutadienetetracarboxylate." XP008060420 *
CHEMICAL ABSTRACTS, vol. 1964, no. 61, Columbus, Ohio, US; GRIFFIN G W ET AL: "Reductive cleavage of tetrasubstituted cyclobutanes: posible examples of homolytic fragmentations." XP002995091 *
CHEMISCHE BERICHTE., vol. 126, no. 8, 1993, pages 1827 - 1833 *
J AM CHEM SOC., vol. 83, 20 June 1961 (1961-06-20), pages 2725 - 2728 *
REV CHIM ACAD REP POPULAIRE ROUMAINE., vol. 7, no. 2, 1962, pages 901 - 906 *
See also references of EP1813592A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332204B2 (ja) * 2005-03-29 2013-11-06 日産化学工業株式会社 ポリアミック酸、ポリイミド及びその製造方法
WO2006104038A1 (ja) * 2005-03-29 2006-10-05 Nissan Chemical Industries, Ltd. ポリアミック酸、ポリイミド及びその製造方法
US8975365B2 (en) 2009-04-10 2015-03-10 Nissan Chemical Industries, Ltd. Cage-shaped cyclopentanoic dianhydride, method for production thereof, and polyimide
JPWO2010116990A1 (ja) * 2009-04-10 2012-10-18 日産化学工業株式会社 ケージ状シクロペンタン酸二無水物化合物、その製造法およびポリイミド
US8658743B2 (en) 2009-04-10 2014-02-25 Nissan Chemical Industries, Ltd. Cage-shaped cyclopentanoic dianhydride, method for production thereof, and polyimide
JP5637132B2 (ja) * 2009-04-10 2014-12-10 日産化学工業株式会社 ケージ状シクロペンタン酸二無水物化合物、その製造法およびポリイミド
WO2010116990A1 (ja) * 2009-04-10 2010-10-14 日産化学工業株式会社 ケージ状シクロペンタン酸二無水物化合物、その製造法およびポリイミド
TWI555750B (zh) * 2009-04-10 2016-11-01 Nissan Chemical Ind Ltd Cage cyclopentanoic acid dianhydride compounds, processes for their manufacture and polyimides
WO2015108170A1 (ja) * 2014-01-17 2015-07-23 日産化学工業株式会社 シクロブタンテトラカルボン酸及びその無水物の製造方法
KR20160108334A (ko) * 2014-01-17 2016-09-19 닛산 가가쿠 고교 가부시키 가이샤 시클로부탄테트라카르복실산 및 그 무수물의 제조 방법
JPWO2015108170A1 (ja) * 2014-01-17 2017-03-23 日産化学工業株式会社 シクロブタンテトラカルボン酸及びその無水物の製造方法
JP2020079247A (ja) * 2014-01-17 2020-05-28 日産化学株式会社 シクロブタンテトラカルボン酸及びその無水物の製造方法
KR102247402B1 (ko) 2014-01-17 2021-04-30 닛산 가가쿠 가부시키가이샤 시클로부탄테트라카르복실산 및 그 무수물의 제조 방법
CN111413440A (zh) * 2020-05-06 2020-07-14 上海臣邦医药科技股份有限公司 帕瑞昔布钠硫酸酯类基因毒性杂质的检测方法

Also Published As

Publication number Publication date
JP5326211B2 (ja) 2013-10-30
KR20070067132A (ko) 2007-06-27
KR101286228B1 (ko) 2013-07-15
CN101044108B (zh) 2012-05-23
US20090012318A1 (en) 2009-01-08
JPWO2006043519A1 (ja) 2008-05-22
TWI368610B (ja) 2012-07-21
EP1813592B1 (en) 2012-10-10
EP1813592A1 (en) 2007-08-01
TW200621705A (en) 2006-07-01
CN101044108A (zh) 2007-09-26
US7872148B2 (en) 2011-01-18
EP1813592A4 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
WO2006043519A1 (ja) ケージ状シクロブタン酸二無水物及びその製造法
JP2009256327A (ja) シクロアルカンジカルボン酸モノエステルの製造方法
CN110461824B (zh) 聚合性化合物的制造方法及溶液
KR101728443B1 (ko) 2-아미노니코틴산벤질에스테르 유도체의 제조 방법
KR102357570B1 (ko) 신규한 비스(히드록시알콕시페닐)디페닐메탄류
JP2020079247A (ja) シクロブタンテトラカルボン酸及びその無水物の製造方法
KR101134021B1 (ko) 새로운 중간체를 이용하는 피타바스타틴 헤미칼슘의 신규한 제조방법
JP2010126499A (ja) ナフタロシアニン化合物及びその製造方法
JP4929663B2 (ja) 重合性化合物の製造方法
JPWO2018116836A1 (ja) 重合性化合物の製造方法
EP2848612B1 (en) Method for producing a substituted benzoic acid compound
JP5205971B2 (ja) テトラヒドロピラン化合物の製造方法
JP4788049B2 (ja) ジカルボン酸ジエステル誘導体およびその製造方法
CN110903245B (zh) 一种合成1-烷基-2-三氟甲基-5-氨基-1h-咪唑的关键中间体及其制备方法
JP4125263B2 (ja) トリスフェノール類のトリオキシメチルカルボン酸及びそれらの3級シクロペンチルエステル
TWI568724B (zh) 製備異苯並呋喃-1(3h)-酮系化合物之方法
CN114805122A (zh) 一种酯化反应的方法
US8816123B2 (en) Method for producing alkyl 5-methyl-5-hexenoate
JPH1149724A (ja) 脂環式ジカルボン酸ジアリル誘導体及びその製造法
JP4356917B2 (ja) ビスアミノメチル−1,4−ジチアン類の製造方法及びその中間体
JP2009256306A (ja) 重合性不飽和基を有するアダマンタン誘導体とその製造法
JP2020063223A (ja) 芳香族テトラカルボン酸化合物
JP2004339074A (ja) 新規な2,6−デカヒドロナフタレンジカルボン酸ジエステル類とその製造方法
JP2008208119A (ja) 4’−ジアルコキシメチルビシクロへキシル−4−イルメタノール及びその製造方法
JP2008019237A (ja) ビス(3−ヒドロキシ−4−アミノフェニル)化合物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542980

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11665024

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077008265

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580036041.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005795540

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005795540

Country of ref document: EP