WO2006043514A1 - ペルチェ素子又はゼーベック素子の構造及びその製造方法 - Google Patents

ペルチェ素子又はゼーベック素子の構造及びその製造方法 Download PDF

Info

Publication number
WO2006043514A1
WO2006043514A1 PCT/JP2005/019053 JP2005019053W WO2006043514A1 WO 2006043514 A1 WO2006043514 A1 WO 2006043514A1 JP 2005019053 W JP2005019053 W JP 2005019053W WO 2006043514 A1 WO2006043514 A1 WO 2006043514A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
region
seebeck
peltier
pattern
Prior art date
Application number
PCT/JP2005/019053
Other languages
English (en)
French (fr)
Inventor
Yoshiomi Kondoh
Naotaka Iwasawa
Original Assignee
Meidensha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corporation filed Critical Meidensha Corporation
Priority to JP2006542973A priority Critical patent/JP4850070B2/ja
Priority to US11/664,937 priority patent/US20090007952A1/en
Priority to CN2005800355934A priority patent/CN101044638B/zh
Publication of WO2006043514A1 publication Critical patent/WO2006043514A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to, for example, various types of electrical equipment, combustion devices and related equipment, and all high temperature parts such as buildings and objects affected by heat of external force derived from sunlight, geothermal heat, etc.
  • the present invention relates to a structure of an element in which a Peltier element or Seebeck element that is used in a thermoelectric conversion system or thermoelectric conversion device that directly converts heat energy in a minute, space, or region into electric energy or a manufacturing method thereof.
  • thermoelectric conversion element Seebeck element
  • Seebeck coefficient The differential value obtained by dividing the thermoelectromotive force by the temperature change.
  • a thermoelectric conversion element is configured by contacting two types of conductors (or semiconductors) with different Seebeck coefficients. The difference in the number of free electrons between the two types of conductors causes the movement of electrons between the two conductors, resulting in a potential difference between the two conductors.
  • thermoelectric effect if thermal energy is given to one contact, the movement of free electrons becomes active on the one contact side, but the movement of free electrons does not become active because the other contact is not given thermal energy. .
  • This difference in temperature between the two contacts that is, the difference in the activity of free electrons, is converted into thermal energy, electrical energy. This effect is generally called a thermoelectric effect.
  • thermoelectric effect element utilizing the Peltier effect
  • the heat absorption part and the heat generation part are integrated elements.
  • the Seebeck element the heating part and the cooling part thermally interact with each other
  • the Peltier element the heat absorption part and the heat generation part thermally interact with each other. Therefore, the Seebeck effect and the Peltier effect attenuate with time. End up. In order to prevent this, heat is being released by forced air cooling or forced water cooling using energy or electric energy from a new heat engine in order to discharge or remove heat energy in the high temperature area.
  • thermoelectric conversion device that does not require forced air cooling or forced water cooling by electric energy, and an energy conversion system using the same, and has already proposed (See Patent Document 1).
  • a Peltier Seebeck element chip in which a plurality of Peltier elements or Seebeck elements used in such a thermoelectric conversion device are provided on an integrated circuit substrate and a manufacturing method thereof are disclosed in Japanese Patent Application No. 2004-194596 ( This is proposed as a prior application.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-92433
  • Patent Document 2 Japanese Patent Application No. 2004-194596
  • One end of 102 (T1: high temperature side) is joined by an ohmic contact with a joining member 103 having a metallic force such as copper, and the other end (T2: low temperature side) of the first conductive member 101 and the second conductive
  • the other end (T2: low temperature side) of the member 102 is connected to the other end (T2) of the second or first conductive member of another Seebeck element (not shown) via a joining member 104 or 105 that is also made of a metal such as copper. : Low temperature side).
  • the thermal conductivity of the semiconductor constituting the first and second conductive members 101 and 102 is relatively large, about 1 / 200th that of copper. Therefore, it is difficult to maintain the first and second conductive members for a long time in a state where the temperature difference ⁇ between the high temperature side temperature (T1) and the low temperature side temperature (T2) is large.
  • the problem with incorporating a conventional pie-type Seebeck element or Peltier element as shown in FIG. 44 is that the high-temperature part side force of each element due to heat conduction ignores the flow of thermal energy to the low-temperature part side. It was impossible. For this reason, when heat transfer is performed using the conventional pie-type Peltier effect, the temperature difference between the high temperature side and the low temperature part is given by the heat generation and endothermic effect of the sticky Peltier effect, and the temperature on the low temperature side is Even if it is lower than the surrounding temperature, it is high Because of the heat conduction from the hot side to the low temperature side, the temperature on the low temperature side is raised and becomes higher than the surrounding temperature where heat is taken in, and heat cannot be taken from the surroundings, making it impossible to transfer heat.
  • thermoelectric conversion element that converts thermal energy into electrical energy by the Seebeck effect using a temperature difference
  • the low-temperature side force is also caused by the heat conduction to the low-temperature part side of the Seebeck element.
  • the Seebeck electromotive voltage decreased, and the conversion efficiency of heat energy into electrical energy decreased, there was a problem.
  • thermoelectric conversion element or heat transfer element in which a conventional-shaped Seebeck element or Peltier element is inserted, the high-temperature portion side force of each element due to heat conduction is applied to the low-temperature portion side. Due to the flow of energy, the conversion efficiency of the entire device from heat energy to electrical energy, that is, the utilization efficiency of heat energy, was kept low, and improvement of this energy utilization efficiency was a major technical issue.
  • An object of the present invention is to provide a Peltier element or a Zebeck element having a new structure and a method for manufacturing the same in order to solve the above problems. Specifically, by changing the shape (or material) of the first conductive member and second conductive member of the element to be used, the heat energy transfer from the high temperature side to the low temperature side is reduced to reduce the heat energy. The use efficiency of the device is increased and the manufacturing cost of the device is reduced.
  • the present invention relates to the structure of the Peltier element or Seebeck element, and the lengths of the first conductive member and the second conductive member having different Seebeck coefficients constituting the Peltier element or Seebeck element are different.
  • the thermal conductivity of the middle part of the direction is set smaller than the thermal conductivity of both end parts.
  • first conductive member and the second conductive member are arranged at both ends in the length direction.
  • the cross section area of the outer part, that is, the middle part of the first and second conductive members, is smaller than both end parts! /
  • the materials of the first conductive member and the second conductive member other than both end portions in the length direction, that is, the intermediate portions of the first and second conductive members are the end portions thereof. It is characterized in that the material has a lower thermal conductivity than the above material.
  • the first conductive member and the Seebeck element constituting the Peltier element or the Seebeck element other than both end portions in the length direction of the first conductive member and the second conductive member, that is, the first and second conductive members.
  • This is characterized in that the middle part of the cross section is divided into a plurality of portions and the shape of the cross section is further constricted.
  • the heat in the middle portion in the longitudinal direction of each of the first conductive member and the second conductive member having different Zeebeck coefficients constituting the Peltier element or the Seebeck element.
  • the present invention relates to a method for manufacturing a Peltier element or a Zebeck element in which the conductivity is smaller than the thermal conductivity of both ends, and is characterized by having the following steps.
  • a saddle-shaped pattern for forming the third region which is the other region of the both end portions of the conductive member and the second conductive member, and for preparing a pretreatment pattern using a photomask technique.
  • the manufacturing method for simultaneously manufacturing a plurality of Peltier elements or Seebeck elements comprising the following steps: It is characterized by. (9) simultaneously forming a plurality of regions on one end of the first conductive member using a plurality of the first region patterns; and (10) a plurality of the first region patterns. And simultaneously forming a plurality of one region of the both end portions of the second conductive member, and (11) using a plurality of the second region patterns to form a front of the first conductive member.
  • the other end of the second conductive member. Simultaneously forming a plurality of regions; and (15) forming an ohmic contact between the first conductive member and the second conductive member in the region formed by the first region pattern and the region formed by the second region pattern.
  • a Peltier element comprising: A plurality of Seebeck elements are formed simultaneously.
  • FIG. 1 is a schematic diagram showing a first embodiment of a pie-type Peltier Z Seebeck element according to the present invention.
  • FIG. 2 is a schematic diagram showing a second embodiment of the pie-type Peltier Z Seebeck element of the present invention.
  • FIG. 3 is a schematic view showing a third embodiment of the pie-type Peltier Z Seebeck element of the present invention.
  • FIG. 4 is a graph showing electrical resistivity characteristics of a compound semiconductor constituting an intermediate portion of the first or second conductive member used in the pie-type Peltier Z Seebeck element of the present invention.
  • FIG. 5 is a diagram showing the Seebeck coefficient characteristics of a compound semiconductor constituting an intermediate portion of the first or second conductive member used in the pie-type Peltier Z Seebeck element of the present invention.
  • FIG. 6 is a diagram showing thermal conductivity characteristics of a compound semiconductor constituting an intermediate portion of the first or second conductive member used in the pie-type Peltier Z Seebeck element of the present invention.
  • FIG. 7 is an experimental conceptual diagram for confirming the conventional type and the highly functional Peltier effect and Seebeck effect according to the embodiment of the present invention by experiments.
  • FIG. 8 is a diagram showing experimental results of the Peltier effect confirmed by the experiment of FIG.
  • FIG. 9 is a diagram showing experimental results of the Seebeck effect confirmed by the experiment of FIG.
  • FIG. 10 is a schematic diagram for performing a conventional (no constriction) simulation.
  • FIG. 11 is a schematic view of a copper plate used in the simulation.
  • FIG. 12 is a schematic diagram of a semiconductor used in the simulation.
  • FIG. 13 is a schematic diagram for performing a simulation of a high-functional type (with a constriction) according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a constricted semiconductor used in a simulation.
  • FIG. 15 is a schematic diagram transformed into a cylindrical one-dimensional model to perform a conventional (no constriction) simulation.
  • FIG. 16 is a schematic diagram for explaining the radius of each part in FIG. 15.
  • FIG. 17 A high-functional type (with constriction) simulation according to an embodiment of the present invention is performed. Therefore, it is a schematic diagram transformed into a cylindrical one-dimensional model.
  • FIG. 22 is a graph showing one of the simulation results of the conventional type (no constriction) when the heating temperature is changed.
  • FIG. 23 is a graph showing one of the simulation results of the conventional type (no constriction) when the heating temperature is changed.
  • FIG. 24 is a graph showing one of the simulation results of the conventional type (no constriction) when the heating temperature is changed.
  • FIG. 25 is a graph showing one of the simulation results of the conventional type (no constriction) when the heating temperature is changed.
  • FIG. 26 is a graph showing one of the simulation results of the conventional type (no constriction) when the heating temperature is changed.
  • FIG. 27 is a graph showing one of the simulation results of the conventional type (no constriction) when the heating temperature is changed.
  • FIG. 28 is a graph showing one of the simulation results of the conventional type (no constriction) when the heating temperature is changed.
  • FIG. 29 is a graph showing one of the simulation results of the conventional type (no constriction) when the heating temperature is changed.
  • ⁇ 32 A graph showing one of the simulation results of the high-functional type (with constriction) which is an embodiment of the present invention when the heating temperature is changed.
  • ⁇ 33 A graph showing one of the simulation results of the high-functional type (with constriction) which is an embodiment of the present invention when the heating temperature is changed.
  • FIG. 38 A saddle type (both ends) for manufacturing the first or second conductive member constituting the high-functional type (constricted) pie-type Peltier Z-Zeck element that is an embodiment of the present invention.
  • FIG. 4 is a side sectional view showing one of the portions).
  • FIG. 39 is a saddle-shaped (both ends) for manufacturing the first or second conductive member constituting the high-functional (necked) pie-type Peltier Z-zebeck element according to one embodiment of the present invention.
  • FIG. 3 is a plan view showing one of the parts.
  • FIG. 40 is a saddle-shaped (center) for manufacturing the first or second conductive member constituting the high-functional (necked) pie-type Peltier Z-Zeck element that is an embodiment of the present invention.
  • FIG. 40 is a saddle-shaped (center) for manufacturing the first or second conductive member constituting the high-functional (necked) pie-type Peltier Z-Zeck element that is an embodiment of the present invention.
  • FIG. 41 is a saddle-shaped (center) for manufacturing the first or second conductive member constituting the high-functional (necked) pie-type Peltier Z-zebeck element according to an embodiment of the present invention.
  • FIG. 41 is a saddle-shaped (center) for manufacturing the first or second conductive member constituting the high-functional (necked) pie-type Peltier Z-zebeck element according to an embodiment of the present invention.
  • FIG. 42 A saddle type (both ends) for manufacturing the first or second conductive member constituting the high-functional type (with constriction) pie-type Peltier Z-zebeck element according to an embodiment of the present invention.
  • FIG. 5 is a side sectional view showing the other part).
  • FIG. 43 A saddle type (both ends) for manufacturing the first or second conductive member constituting the high-functional (necked) pie-type Peltier Z-zebeck element according to one embodiment of the present invention. It is a top view which shows the other part of a part.
  • FIG. 44 shows a conventional pie-type Peltier Z Seebeck element.
  • FIG. 1 is a schematic diagram showing an example of the first embodiment of the structure of the Peltier element or Seebeck element of the present invention.
  • a first conductive member (n-type semiconductor or the like) 10 having a predetermined Seebeck coefficient is composed of both end portions nl and n3 and an intermediate portion n2.
  • a second conductive member (p-type semiconductor or the like) 20 having a Seebeck coefficient different from that of the first conductive member is also composed of both end portions pi, p3 and an intermediate portion p2.
  • the intermediate portions n2 and p2 of the first conductive member 10 and the second conductive member 20 are formed to have a smaller cross-sectional area than both end portions nl, n3 and pi, p3. Even so, the thermal conductivity is smaller than at both ends.
  • one nl of both end portions of the first conductive member 10 is bonded to the bonding member 30 by ohmic contact, and one pi of both end portions of the second conductive member 20 is bonded to the bonding member 30.
  • Joined by contact The joining member 30 is heated to a temperature T1 to constitute a high temperature part.
  • the other end n3 of both end portions of the first conductive member 10 is joined to the joining member 40 by ohmic contact, and the other end p3 of the both end portions of the second conducting member 20 is ohmic contact to the joining member 50. It is joined with.
  • the joining member 40 and the joining member 50 are at a temperature T2 and constitute a low temperature part. That is, T1> T2.
  • the joining member 30 is kept at a high temperature (T1) and the surroundings of the joining members 40 and 50 are kept at a low temperature (for example, room temperature ⁇ 2), the temperature between the joining members 30, 40 and 50 is reduced. A thermoelectromotive force is generated in proportion to the difference. This is the Seebeck effect.
  • the bonding member 30 and the bonding member 40 are connected by the first conductive member 10
  • the bonding member 30 and the bonding member 50 are connected by the second conductive member 20.
  • the first conductive member 10 and the second conductive member 20 have the same thermal conductivity as that of the conventional example (see FIG. 44) (see FIG. 4).
  • the high temperature portion for example, the bonding member 30 in FIG. 1
  • the low temperature portion for example, the bonding member in FIG. 1.
  • the intermediate portions n2, p2 of the first conductive member and the second conductive member are the portions of both end portions nl, n3 and p1, p3, respectively.
  • thermoelectric conversion efficiency is improved.
  • the cross-sectional areas of the intermediate portions n2 and p2 of the first conductive member 10 and the second conductive member 20 are smaller than the cross-sectional areas of both end portions nl, n3, pi, and p3.
  • the heat transfer coefficient force, and therefore the movement of the heat amount is reduced, so that the temperature difference between the heat side and the heat generation side can be kept large, and more heat energy is obtained than the ambient force on the heat absorption side.
  • the heat is absorbed and electronic heat transfer to the heat generating side is performed efficiently.
  • FIG. 1 is a diagram in which the thermal conductivity is reduced by making the cross-sectional area of the intermediate portion of the first conductive member 10 and the second conductive member 20 smaller than the cross-sectional area of both end portions thereof.
  • the first conductive member 10 and the second conductive member 20 have the same cross-sectional shape, and the material of the intermediate portions n2 and p2 It is also possible to use a material having a property of lower thermal conductivity than both end portions n 1, pi or n 3, P 3, such as amorphous silicon or polysilicon.
  • the intermediate portions n2 and p2 between the first conductive member 10 and the second conductive member 20 are further divided into constrictions. Formed (for example, a narrow portion is formed in the intermediate portion between the first conductive member 10 and the second conductive member 20), that is, the intermediate portions n2 and p2 themselves are divided into a plurality of sections to reduce the cross section! It can also be made into a shape that incorporates. As a result, the thermal conductivity of the intermediate portions n2 and P2 can be further reduced, and the semiconductor material can be reduced. As a result, the temperature difference between the high temperature side and the low temperature side can be further increased easily. become.
  • the first Peltier effect or the function to enhance the Seebeck effect is provided.
  • the conductive members nl, n2, n3 and the second conductive members pi, p2, p3 may have the same Seebeck coefficient, but some or all of nl, n2, n3, or pi, p2, p3 It is also possible to vary the Seebeck coefficient of.
  • Fig. 4 to Fig. 6 signals ( ⁇ ), ( ⁇ ), (T) in Fig. 4 to Fig. 6 are dissolved materials, ( ⁇ ), ( ⁇ ), ( ⁇ ) are sintered bodies) Such as p-type Bi Sb Te with the physical properties shown in
  • FIG. 4 shows that the electrical resistivity increases with temperature (T)
  • FIG. 5 shows that the Seebeck coefficient increases with increasing temperature (T)
  • Figure 6 also shows that the thermal conductivity coefficient decreases with increasing temperature (T). In this way, the physical properties of this compound semiconductor increase as the temperature increases. The coefficient of heat increases, and the coefficient of thermal conductivity increases. Compound semiconductors having such characteristics are being developed further.
  • Reference numeral 7a in FIG. 7 shows the conventional Peltier Z Seebeck element in FIG. 44, in which the first conductive member 101 or the second conductive member 102 is joined to a joining member 103 or 104 (such as a copper plate). 1 05), and a heat sink 106 is connected to one of the joining members 103.
  • Reference numeral 107 in FIG. 7 is a reinforcing member for reinforcing the strength of the joining member 104 (105), and is composed of a copper plate.
  • reference numeral 7b in FIG. 7 shows an example of a Peltier Z Seebeck element used as an example of the embodiment of the present invention shown in FIG.
  • One end of the first conductive member 10 or the second conductive member 20, which is a component of the Peltier Z Seebeck element, is joined to the heat sink 106 via the joining member 30.
  • 60 in FIG. 7 is a reinforcing member for reinforcing the strength of the joining member 40 (50) similarly to the reference numeral 107 in FIG. 7, and is made of a copper plate.
  • the first conductive member 20 and the second conductive member 30 have an intermediate portion n2 (p2) whose thermal conductivity is higher than both end portions nl (pi) and n3 (p3).
  • FIG. 8 is a plot of temperature characteristics when current is applied to both the conventional Peltier Z Seebeck element shown in FIG. 7 and the high-performance Peltier Z Seebeck element used in one embodiment of the invention. Is.
  • the horizontal axis shows the time after energization, and the vertical axis shows the temperature of the joining member.
  • One memory on the horizontal scale is 5 minutes.
  • Reference numeral 8a in FIG. 8 represents, for example, a current of 1 ampere (A) between the joining members 103 and 104 (105) in a conventional Berche Z Seebeck element (corresponding to reference numeral 7a in FIG. 7). The temperature of each joining member 103 and 104 (105) when flowing was measured.
  • the temperature of the two joint members located on both sides of the conductive member was the same value as the force S, and as the energization time passed, While the temperature of the member 103 was hardly changed from T1, it was observed that the temperature of the joining member 104 (105) on the side without the heat sink 106 gradually decreased and started to increase after 5 minutes. This change from a temperature drop to a temperature rise occurs as a result of the heat drop in the semiconductor 101 (102) from the high temperature side to the low temperature side due to heat conduction hindering the temperature drop due to the endothermic endothermic effect. Shows things.
  • the temperature of the joining member 30 joined to the heat sink 106 is substantially constant at T1
  • the joining member 40 on the side where the heat sink 106 is not joined The temperature of 50 decreases rapidly over time.
  • the high-performance Peltier Z-Zebeck element shown in the embodiment of the present invention is compared with the conventional type (see reference numeral 8a in FIG. 8).
  • the temperature difference between the joining member 30 and the joining member 40 (50) further increases with time. This is because the thermal conductivity of the semiconductor 10 (20) part is smaller than that of the high-functional Peltier Z Seebeck element used in the embodiment of the present invention, so that heat from the high temperature side to the low temperature side due to the thermal conductivity is reduced. This indicates that the energy transfer is suppressed, the supply of heat energy to the low temperature side is reduced, and the temperature on the low temperature side is lower due to the endothermic effect of the Peltier effect.
  • FIG. 9 shows the Seebeck effect between the conventional Peltier Z Seebeck element and the high-performance Peltier Z Seebeck element used in the embodiment of the present invention.
  • the horizontal axis in Fig. 9 is the temperature difference between the two joining members, and the vertical axis shows the Seebeck electromotive voltage.
  • ( ⁇ ) in FIG. 9 shows the electromotive voltage of the high-performance Peltier Z Seebeck element used in the embodiment of the present invention, and ( ⁇ ) shows the electromotive voltage generated by the conventional Peltier Z Seebeck element.
  • both the conventional type and the high-performance element of the present invention output the Seebeck electromotive voltage in the same straight line proportional to the temperature difference.
  • the high-performance Peltier Z Seebeck element Seebeck of the present invention in which the thermal conductivity of the semiconductor part is reduced, can maintain the temperature difference between the high temperature side and the low temperature side to a larger value. As a result, it was confirmed by this experiment that the Seebeck electromotive force output was larger than the conventional type.
  • FIGS. 10 to 14 are high-performance Peltier Z Zseebeck elements according to embodiments of the present invention.
  • the material of the intermediate portion of the first and second conductive members constituting the high-functional Bellecher Z Seebeck element used in the embodiment of the present invention is vertical and horizontal 1 . Assuming the use of a cube with a height of 5 mm and a height of 1.5 mm, it was assumed that a similar simulation experiment was conducted.
  • the temperature of the copper plate of the joining member opposite to the heating side is changed to the temperature inside the circuit by changing the set temperature of the copper plate of the joining member on the heating side to a constant temperature. It was assumed that simulation experiments were conducted using boundary conditions that were automatically determined without any physical contradiction by conduction and heat transfer to the air (air around the circuit and at the same temperature as room temperature). The speed of heat transfer due to heat conduction in the circuit The amount of heat transfer due to heat transfer to air at the same temperature as the room temperature. Since it is an order of magnitude larger than the speed, we repeated a preliminary simulation to check that an actual circuit experiment can be reproduced with a one-dimensional cylindrical model, and that the actual circuit experiment data can be reproduced quantitatively. It could be confirmed.
  • FIGS. 15 to 17 are diagrams showing one cycle of the circuit shown in FIGS. 10 to 14 as a one-dimensional cylindrical model. Based on this model, simulation experiments were conducted. .
  • the first conductive member 73 (n-type semiconductor) and the first conductive member 73
  • the second conductive member 74 is composed of a p-type semiconductor having a different Seebeck coefficient from the first conductive member 73, but the shape is the same as the first conductive member 73.
  • first conductive member 73 is joined to joining member 76A having the same shape as joining member 72A, and joining member 76A is joined to joining member 76B having the same shape as joining member 72B. Yes.
  • the other end of the second conductive member 74 is joined to a joining member 75A having the same shape as the joining member 72C, and this joining member 75A is joined to the joining member 75B having the same shape as the joining member 72B (joining member).
  • 76A it is similarly joined to the joining member 72B and to the shape equivalent 76B.
  • the conventional type shown in FIGS. 15 and 16 is different except that the configurations of the first conductive member 73 and the second conductive member 74 are different.
  • FIG. 20 is a plot of the electromotive voltage 5 minutes after heating to reach a steady state against the temperature on the heating side. From this figure, for example, when the heating side temperature is set to 60 ° C, the high function type (with constriction) can obtain an electromotive force nearly 1.6 times larger than the conventional type (without constriction). I understand.
  • Figure 21 plots the electromotive voltage against the temperature difference between the heated side and the non-heated side (opposite side), but both the conventional type (no constriction) and the high-functional type (with constriction) are on the same straight line. The simulation data is lined up.
  • FIGS. 22 to 29 show the relationship between the elapsed time after heating and the electromotive voltage, and the first or first, in the conventional type (no constriction) Peltier Z Seebeck element, using the temperature on the heating side as a parameter. The relationship between the position of 2 conductive members and temperature is shown.
  • FIG. 22 to FIG. 25 show the simulation results of the electromotive voltage with respect to time after heating at four heating temperatures of 30 ° C., 40 ° C., 50 ° C., and 60 ° C.
  • FIG. 26 to FIG. 29 are plots of the temperature at the location where the left end position of the member 75B in FIG. 15 is Omm and the right end of the member 76B is 17 mm, with the heating temperature as a parameter.
  • the dotted line in the figure is the temperature after 5 seconds of heating time, and the solid line is the temperature 5 minutes after heating to reach a steady state.
  • the heating time elapses, the temperature difference between the heating side (near the center of the figure) and the opposite side surrounded by room temperature air (both ends of the figure) may become small. I understand.
  • Figs. 30 to 37 show the results of heating in a high performance (constricted) Peltier Z Seebeck element when the same simulation as in Figs. 22 to 29 was performed with the temperature on the heating side as a parameter. 2 shows the relationship between the elapsed time from the electromotive force and the electromotive voltage and the relationship between the position of the first or second conductive member and the temperature.
  • FIG. 30 to FIG. 33 show the simulation results of the electromotive voltage with respect to time after heating at four heating temperatures of 30 ° C., 40 ° C., 50 ° C., and 60 ° C.
  • Fig. 30 to Fig. 33 Force Component force
  • the electromotive voltage after heating at 30 ° C, 40 ° C, 50 ° C, and 60 ° C at steady state is 0.3 mV. , 1.5 mV, 2.6 mV, and 3.8 mV. Compared with FIGS. 22 to 25, it can be seen that it is about 1.6 times larger.
  • FIGS. 34 to 37 are plots of the temperature at the location when the left end position of the member 75B in FIG. 17 is Omm and the right end of the member 76B is 17 mm, with the heating temperature as a parameter. .
  • the dotted line shows the temperature after 5 seconds of heating
  • the solid line shows the temperature after 5 minutes of heating to reach a steady state.
  • FIG. 38 (plan view) and FIG. 39 (side view) show a saddle type for simultaneously producing 48 first conductive members 10 or second conductive members 20 shown in FIG.
  • FIG. 38 and FIG. 39 show a saddle shape for creating one (nl or pi) of both end portions when the first conductive member 10 or the second conductive member 20 is divided into three parts.
  • FIG. 40 front view
  • FIG. 41 side view
  • FIG. 40 front view
  • FIG. 41 side view
  • FIG. 42 front view
  • the side view shows the first conductive member 10 or the second conductive member 20 at the other end (n3 or p3).
  • the cross-section of the first conductive member 10 or the second conductive member 20 does not need to be a cylindrical shape, and may be a square or another polygonal shape. Needless to say.
  • FIGS. 38 to 43 show a method for manufacturing a high-functional (constricted) Berche Z Seebeck element according to the first embodiment of the present invention.
  • the cross-sectional areas of the semiconductors in the respective parts of FIGS. 38 to 43 are made equal, and the material of the intermediate part (semiconductor material in the vertical shape shown in FIGS. 40 and 41) is made of amorphous silicon or polysilicon, etc.
  • a saddle mold formed in a desired shape is used for each pattern of both end portions and intermediate portions of the first conductive member 10 or the second conductive member 20.
  • various methods can be applied, and for example, a photomask technique or the like may be applied.
  • various patterns can be used for each pattern as long as they are used for Peltier Z Seebeck elements (for example, solid, A material which is a liquid or powder and has a low thermal conductivity and is finally solidified by heating or pressurization can be applied.
  • the thermal conductivity of the semiconductor constituting the first conductive member or the second conductive member is about 200 times that of copper. Due to its relatively large size, in the steady state, the temperature difference ⁇ between the upper and lower temperatures T1 and T2 of the semiconductor became smaller, and the Peltier effect and Seebeck effect were greatly reduced.
  • the shape for reducing the heat conduction in the intermediate portion of the first or second conductive member Or a material with a small thermal conductivity coefficient the temperature difference ⁇ between the upper and lower temperatures T1 and T2 of the semiconductor is larger in the steady state than in the conventional Pel ⁇ Z Seebeck element.
  • the Peltier effect and the Seebeck effect can be greatly exhibited in accordance with the original purpose.
  • the structure of the highly functional (constricted) Peltier Z Seebeck element according to the embodiment of the present invention, an intermediate portion between the first conductive member and the second conductive member constituting the element Since the thermal conductivity of the heat sink is smaller than the thermal conductivity of both ends, the heat conduction from the high temperature side to the low temperature side becomes worse, and as a result, the heat energy moves from the high temperature side to the low temperature side. Less. For this reason, the utilization efficiency of heat energy improves.
  • each element can be simultaneously formed on the substrate, the uniformity of each element can be ensured and the manufacturing cost of the element can be reduced.

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 ペルチェ素子又はゼーベック素子は異なるゼーベック係数を有する第1導電部材と第2導電部材の一端から他端への熱伝導をより少なくするため、夫々の長さ方向の中間部分の断面積をその両端部分の断面積より小さくすることにより中間部分の熱伝導度を両端部分の熱伝導度より小さく設定する。また、断面積を小さく設定する代わりに、前記導電部材の中間部分を複数に分割して断面の形状を変えるか、中間部分の材質を両端部分の材質より熱伝導度の小さいアモルファスシリコン等を用いて形成する。これにより、ペルチェ・ゼーベック素子の加熱側とその反対側の温度差が長時間所定の温度差を維持できるような高機能型ペルチェ/ゼーベック素子とその製造方法を提供する。

Description

明 細 書
ペルチェ素子又はゼーベック素子の構造及びその製造方法
技術分野
[0001] 本発明は、例えば、各種の電気機器、燃焼装置やその関連機器類、太陽光や地 熱等に由来する外部力 の熱が影響する建物や物体等の全ての温度の高くなる部 分や空間や領域にある熱エネルギーを直接電気エネルギーに変換する熱電変換シ ステムないし熱電変換装置に利用されるペルチェ素子又はゼーベック素子を高機能 化した素子の構造とその製造方法に関する。
背景技術
[0002] 自然界に存在するエネルギーの利用形態は非可逆的に進行し、最終的には熱ェ ネルギ一となつて自然界に放出される。通常は、この自然界に放出された熱エネル ギ一は、人類のために利用されることがなぐ逆に、自然界に対して悪い影響を及ぼ すことがしばしば起こりうる。このため、この熱エネルギーの排出や除去をするために 、更に新たな熱機関によるエネルギーや電気エネルギーを使った強制空冷や強制 冷却が行われている。
[0003] 例えば、太陽光の照射や地熱等の影響する建物や物体、あるいはその周りの領域 が高温になる場合、この高温部の熱エネルギーの排出や除去をするために、更に新 たな熱機関によるエネルギーや電気エネルギーを使った強制空冷や強制水冷が行 われており、これらの熱エネルギーの放出や除去に使われるエネルギーの増加ととも に、熱エネルギーの利用効率の低下が問題になっている。
[0004] 現在、これらの熱エネルギーを積極的に再利用して省エネルギー化を図るとともに 、環境への負荷を低減させるための研究が開始され、その実用化に向けた開発努力 が各方面で行われつつある。しかし、現実は、新たなエネルギーの投入無しで、エネ ルギ一の最終形態であって自然界に無尽蔵に存在する熱エネルギーを積極的に再 利用し、環境への悪影響を低減するには至って 、な 、。
[0005] 一方、熱エネルギーを電気エネルギーのような直接利用可能な形態に変換するこ とは、ペルチェ効果ある 、はゼ一ベック効果として古くから知られて 、る物理学上の 現象を使って可能である。すなわち、 2種類の導体をつなげて全体を一様な温度に 保ちながら電流を流すと、ジュール熱以外の放射あるいは吸収する熱が発生する。こ の現象は、 J. C. A. Peltierが 1834年に発見した現象であり、ペルチェ効果と言わ れる。また、 2種類の導線をつなぎ、 2つの接点を異なる温度 Tl, T2に保って、一方 の導線を切断すると、その切断した端子間に起電力が発生する。この現象は 1821 年に J. J. Seebeckにより発見された。この 2端子間に発生する起電力を熱起電力と いい、この現象は、発見者の名に因んでゼーベック効果と言われている。
[0006] このゼーベック効果を利用した熱電変換素子 (ゼーベック素子)の開発は、化石燃 料や原子力の代替エネルギーとして注目を集めている。ゼーベック素子による熱起 電力は、 2つの接点温度のほかに、 2つの導線の材質にも依存しており、この熱起電 力を温度変化で割った微分値をゼーベック係数と呼んでいる。熱電変換素子は、そ れぞれゼーベック係数が異なる 2種類の導体 (又は半導体)を接触させることにより構 成される。そして、 2種類の導体の自由電子数の差により、両導体間で電子の移動が 生じるため結果的に両導体間に電位差が生じる。そこで、一方の接点に熱エネルギ 一を与えると、一方の接点側で自由電子の動きが活発となるが、他方の接点は熱ェ ネルギ一が与えられないため、自由電子の動きは活発にならない。この両接点間の 温度の差、すなわち自由電子の活動の差が熱エネルギー力 電気エネルギーへ変 換となるのである。この効果を、一般的には熱電効果という。
[0007] 一般的に、上述したゼーベック素子は、加熱部(高温側)と冷却部 (低温側)とが一 体素子となっており、また、ペルチェ効果を利用した熱電効果素子(以下、ペルチェ 素子と称する)においても、その吸熱部と発熱部は一体素子となっている。すなわち、 ゼーベック素子では加熱部と冷却部とが熱的に相互干渉し、ペルチェ素子では吸熱 部と発熱部とが熱的に相互干渉するため、それらゼーベック効果、ペルチェ効果は 時間経過と共に減衰してしまう。これを防ぐために、高温部の熱エネルギーの排出や 除去のために新たな熱機関によるエネルギーや電気エネルギーを使った強制空冷 や強制水冷による放熱が行われているのが現状である。
[0008] したがって、前記のようなペルチェ素子とゼーベック素子を用いて大規模なエネノレ ギー変換設備を構築しょうとした場合、その設備等の設置場所において新たな熱機 関を設置するなどの物理的な制限が加わるため非現実的なものとなっていた。
[0009] 本発明者(出願人)は、上述したような新たな熱機関や電気エネルギーによる強制 空冷や強制水冷を必要としない熱電変換装置及びそれを利用したエネルギー変換 システムを発明し、既に提案した (特許文献 1を参照)。また、このような熱電変換装置 に利用されるペルチェ素子又はゼーベック素子を集積回路基板上に複数個設けた ペルチェ ·ゼーベック素子チップとその製造方法につ!、ては、特願 2004— 194596 号 (先願)として提案している。
特許文献 1:特開 2003 - 92433号公報
特許文献 2 :特願 2004— 194596号
[0010] しかし、特許文献 1に記載のペルチェ ·ゼーベック素子も、特許文献 2で提案した集 積ペルチェ'ゼーベック素子チップにおいても、これらを回路系に組み込む場合は、 図 44に示すような従来の形状のゼーベック素子或いはペルチヱ素子を利用しなけれ ばならない。すなわち、図 44に示すように、異なるゼーベック係数を有する第 1の導 電部材 (例えば、 n型半導体等) 101の一端 (T1:高温側)と第 2の導電部材 (例えば 、 P型半導体等) 102の一端 (T1:高温側)を銅等の金属力もなる接合部材 103でォ 一ミックコンタクトにより接合し、第 1の導電部材 101の他端 (T2 :低温側)と第 2の導 電部材 102の他端 (T2 :低温側)は、同じく銅等の金属からなる接合部材 104又は 1 05を介して不図示の他のゼーベック素子の第 2又は第 1の導電部材の他端 (T2:低 温側)に接合されている。
[0011] 図 44に示すような従来型のパイ型素子では、第 1及び第 2の導電部材 101, 102を 構成する半導体の熱伝導率が、銅の約 200分の 1と比較的に大きいために、第 1及 び第 2の導電部材の高温側の温度 (T1)と低温側の温度 (T2)の温度差 ΔΤを大きく した状態で、長時間維持することは困難であった。
[0012] したがって、図 44に示すような、従来のパイ型ゼーベック素子或いはペルチェ素子 を組み込んだ場合の問題は、熱伝導による各素子の高温部側力 低温部側への熱 エネルギーの流れが無視できないということであった。このため、従来のパイ型ペル チェ効果で熱転送を行う場合は、せつ力べペルチェ効果による発熱と吸熱作用で高 温部側と低温部側の温度差を付けて、低温側の温度を、周りの温度より下げても、高 温部側から低温部側への熱伝導の為に低温部側の温度が引き上げられて熱を取り 込む周りの温度よりも高くなつてしまい、周りから熱を取り込めなくなり、熱転送が行え なくなるという問題があった。そしてこれを防ぐために、通常は、高温部側に大きい熱 容量の金属熱吸収体を取り付けるとともに、新たな電気エネルギーを使って小型電 気ファンなどを設置して高温側から熱エネルギーを外部へ強制排出しなければなら ないという問題があった。
[0013] また、温度差を利用してゼーベック効果で熱エネルギーを電気エネルギーに変換 する熱電変換素子の場合は、同様にゼーベック素子の高温部側力 低温部側への 熱伝導によって、低温側の温度が上がってしまい、ゼーベック起電圧が下がり、熱ェ ネルギ一の電気エネルギーへの変換効率が下がると 、う問題があった。これを防ぐ ために、低温側に新たな熱機関によるエネルギーや電気エネルギーを使った強制空 冷装置や強制水冷装置を取り付けて放熱しなければならな 、と 、う不都合があった。
[0014] このように、従来形状のゼーベック素子あるいはペルチェ素子を^ aみ込んだ熱電変 換素子あるいは熱転送素子の場合には、熱伝導による各素子の高温部側力 低温 部側への熱エネルギーの流れにより、装置全体の熱エネルギーから電気エネルギー への変換効率、すなわち、熱エネルギーの利用効率が低く抑えられ、この熱ェネル ギー利用効率の改善が大きな技術的課題となっていた。
発明の概要
[0015] 本発明の目的は、上記課題を解決するための、新たな構造のペルチェ素子又はゼ 一ベック素子とその製造方法を提供するものである。具体的には、使用する素子の 第 1導電部材と第 2導電部材の形状そのもの (または材質)を変えて、高温側から低 温側への熱エネルギーの熱伝導による移動を少なくして熱エネルギーの利用効率を 上げ、かつ、素子の製造コストを下げるようにしている。
[0016] より具体的には、ペルチヱ素子又はゼーベック素子の構造に関するものであり、ぺ ルチヱ素子又はゼーベック素子を構成する異なるゼーベック係数を有する第 1導電 部材と第 2導電部材について、夫々の長さ方向の中間部分の熱伝導度を両端部分 の熱伝導度より小さく設定したことを特徴とするものである。
[0017] また、別の観点によれば、第 1導電部材と第 2導電部材の長さ方向の両端部分以 外の部分、すなわち第 1及び第 2の導電部材の中間部分の断面面積を両端部分に 比べて小さくすることを特徴として!/、る。
[0018] さらに、別の観点によれば、第 1導電部材と第 2導電部材の長さ方向の両端部分以 外の部分、つまり第 1及び第 2導電部材の中間部分の材質をその両端部分の材質よ り熱伝導度の小さい材質とすることを特徴とするものである。
[0019] さらにまた、別の観点によれば、ペルチェ素子又はゼーベック素子を構成する第 1 導電部材と第 2導電部材の長さ方向の両端部分以外の部分、つまり第 1及び第 2導 電部材の中間部分を複数に分割して断面の形状にさらに括れを設けたことを特徴と している。
[0020] 加えて、別の観点によれば、ペルチェ素子又はゼーベック素子を構成する異なるゼ 一ベック係数を有する第 1導電部材と第 2導電部材について、夫々の長さ方向の中 間部分の熱伝導度を両端部分の熱伝導度より小さく形成するペルチ 素子又はゼ 一ベック素子の製造方法に関する発明であり、以下のステップを有することを特徴と している。すなわち、(1)前記ペルチェ素子又はゼーベック素子を構成する前記第 1 導電部材及び前記第 2導電部材の前記両端部分の一方の領域である第 1領域を形 成するための铸型作成やフォトマスク技法を使った前処理パターン作成による第 1領 域パターンを形成するステップと、 (2)前記ペルチェ素子又はゼーベック素子を構成 する前記第 1導電部材及び前記第 2導電部材の前記中間部分の領域である第 2領 域を形成するための铸型作成やフォトマスク技法を使った前処理パターン作成による 第 2領域パターンを形成するステップと、 (3)前記ペルチェ素子又はゼーベック素子 を構成する前記第 1導電部材及び前記第 2導電部材の前記両端部分の他方の領域 である第 3領域を形成するための铸型作成やフォトマスク技法を使った前処理パター ン作成による第 3領域パターンを形成するステップと、(4)前記第 1領域パターンと前 記第 2領域パターンと前記第 3領域パターンとを位置合わせをするステップと、 (5)前 記第 1導電部材及び前記第 2導電部材の前記第 1領域を形成するために、前記第 1 導電部材及び前記第 2導電部材の原料となる固体、液体又は粉末体を前記第 1領 域パターンに詰め込むステップと、 (6)前記第 1導電部材及び前記第 2導電部材の 前記第 2領域を形成するために前記第 1導電部材及び前記第 2導電部材の原料とな る固体、液体又は粉末体を前記第 2領域パターンに詰め込むステップと、(7)前記第 1導電部材及び前記第 2導電部材の前記第 3領域を形成するために前記第 1導電部 材及び前記第 2導電部材の原料となる固体、液体又は粉末体を前記第 3領域パター ンに詰め込むステップと、
(8)前記第 1領域パターンと前記第 2領域パターンと前記第 3領域パターンに詰め込 まれた前記第 1の導電部材及び前記第 2の導電部材の原料となる固体、液体又は粉 末体を加熱して接合し、前記第 1の導電部材及び前記第 2の導電部材それぞれの前 記両端部分と前記中間部分を一体に形成するステップと、(9)前記第 1領域パターン に埋め込まれた前記第 1導電部材の一方の端部と、前記第 1領域パターンに埋め込 まれた前記第 2導電部材の一方の端部とを導電性接合部材を介してォーミックコンタ タトによって接合するステップを含むことを特徴としている。
また、別の観点によれば、ペルチェ素子又はゼーベック素子を複数個同時に製造 する製造方法であって、請求項 5に記載されたペルチェ素子又はゼーベック素子の 製造方法において、さらに次のステップを含むことを特徴としている。すなわち、(9) 前記第 1領域パターンを複数個用いて、前記第 1の導電部材の前記両端部分の一 方の領域を複数個同時に形成するステップと、(10)前記第 1領域パターンを複数個 用いて、前記第 2の導電部材の前記両端部分の一方の領域を複数個同時に形成す るステップと、(11)前記第 2領域パターンを複数個用いて、前記第 1の導電部材の前 記中間部分の領域を複数個同時に形成するステップと、(12)前記第 2領域パターン を複数個用いて、前記第 2の導電部材の前記中間部分の領域を複数個同時に形成 するステップと、(13)前記第 3領域パターンを複数個用いて、前記第 1の導電部材の 前記両端部分の他方の領域を複数個同時に形成するステップと、(14)前記第 3領 域パターンを複数個用いて、前記第 2の導電部材の前記両端部分の他方の領域を 複数個同時に形成するステップと、(15)前記第 1領域パターンで形成された領域と 前記第 2領域パターンで構成された領域の第 1導電部材及び第 2導電部材同士をォ 一ミックコンタクトによって接合するステップと、 (16)前記第 2領域パターンで形成さ れた領域と前記第 3領域パターンで構成された領域の第 1導電部材及び第 2導電部 材同士をォーミックコンタクトによって接合するステップと、を含むペルチェ素子又は ゼーベック素子を複数個同時に作成することを特徴とするものである。
図面の簡単な説明
[図 1]本発明のパイ型ペルチェ Zゼーベック素子の第 1の実施の形態を示す模式図 である。
[図 2]本発明のパイ型ペルチェ Zゼーベック素子の第 2の実施の形態を示す模式図 である。
[図 3]本発明のパイ型ペルチェ Zゼーベック素子の第 3の実施の形態を示す模式図 である。
[図 4]本発明のパイ型ペルチヱ Zゼーベック素子に用いられる第 1または第 2導電部 材の中間部分を構成する化合物半導体の電気抵抗率特性を示す図である。
[図 5]本発明のパイ型ペルチヱ Zゼーベック素子に用いられる第 1または第 2導電部 材の中間部分を構成する化合物半導体のゼーベック係数特性を示す図である。
[図 6]本発明のパイ型ペルチヱ Zゼーベック素子に用いられる第 1または第 2導電部 材の中間部分を構成する化合物半導体の熱伝導率特性を示す図である。
[図 7]従来型と本発明実施の形態である高機能型ペルチェ効果及びゼーベック効果 を実験によって確認するための実験概念図である。
[図 8]図 7の実験によって確認されたペルチェ効果の実験結果を示す図である。
[図 9]図 7の実験によって確認されたゼーベック効果の実験結果を示す図である。
[図 10]従来型(くびれなし)のシミュレーションを行うための模式図である。
[図 11]シミュレーションで用いた銅板の模式図である。
[図 12]シミュレーションで用いた半導体の模式図である。
[図 13]本発明の一実施の形態である高機能型 (くびれあり)のシミュレーションを行う ための模式図である。
[図 14]シミュレーションで用いたくびれた部分の半導体の模式図である。
[図 15]従来型(くびれなし)のシミュレーションを行うために円筒型の一次元モデルに 変形した模式図である。
[図 16]図 15の各部位の半径を説明するための概略図である。
[図 17]本発明の一実施の形態である高機能型 (くびれあり)のシミュレーションを行う ために円筒型の一次元モデルに変形した模式図である。
圆 18]従来型 (くびれなし)と本発明の一実施の形態である高機能型 (くびれあり)の シミュレーション結果の一つを示すグラフである。
圆 19]従来型 (くびれなし)と本発明の一実施の形態である高機能型 (くびれあり)の シミュレーション結果の一つを示すグラフである。
圆 20]従来型 (くびれなし)と本発明の一実施の形態である高機能型 (くびれあり)の シミュレーション結果の一つを示すグラフである。
圆 21]従来型 (くびれなし)と本発明の一実施の形態である高機能型 (くびれあり)の シミュレーション結果の一つを示すグラフである。
[図 22]加熱温度を変化させたときの、従来型(くびれなし)のシミュレーション結果の 一つを示すグラフである。
[図 23]加熱温度を変化させたときの、従来型(くびれなし)のシミュレーション結果の 一つを示すグラフである。
[図 24]加熱温度を変化させたときの、従来型(くびれなし)のシミュレーション結果の 一つを示すグラフである。
[図 25]加熱温度を変化させたときの、従来型(くびれなし)のシミュレーション結果の 一つを示すグラフである。
[図 26]加熱温度を変化させたときの、従来型(くびれなし)のシミュレーション結果の 一つを示すグラフである。
[図 27]加熱温度を変化させたときの、従来型(くびれなし)のシミュレーション結果の 一つを示すグラフである。
[図 28]加熱温度を変化させたときの、従来型(くびれなし)のシミュレーション結果の 一つを示すグラフである。
[図 29]加熱温度を変化させたときの、従来型(くびれなし)のシミュレーション結果の 一つを示すグラフである。
圆 30]加熱温度を変化させたときの、本発明の一実施の形態である高機能型 (くびれ あり)のシミュレーション結果の一つを示すグラフである。
圆 31]加熱温度を変化させたときの、本発明の一実施の形態である高機能型 (くびれ あり)のシミュレーション結果の一つを示すグラフである。
圆 32]加熱温度を変化させたときの、本発明の一実施の形態である高機能型 (くびれ あり)のシミュレーション結果の一つを示すグラフである。
圆 33]加熱温度を変化させたときの、本発明の一実施の形態である高機能型 (くびれ あり)のシミュレーション結果の一つを示すグラフである。
圆 34]加熱温度を変化させたときの、本発明の一実施の形態である高機能型 (くびれ あり)のシミュレーション結果の一つを示すグラフである。
圆 35]加熱温度を変化させたときの、本発明の一実施の形態である高機能型 (くびれ あり)のシミュレーション結果の一つを示すグラフである。
圆 36]加熱温度を変化させたときの、本発明の一実施の形態である高機能型 (くびれ あり)のシミュレーション結果の一つを示すグラフである。
圆 37]加熱温度を変化させたときの、本発明の一実施の形態である高機能型 (くびれ あり)のシミュレーション結果の一つを示すグラフである。
[図 38]本発明の一実施形態である高機能型(くびれあり)のパイ型ペルチェ Zゼ一べ ック素子を構成する第 1又は第 2の導電部材を製造するための铸型(両端部分の一 方)を示す側面断面図である。
[図 39]本発明の一実施形態である高機能型(くびれあり)のパイ型ペルチェ Zゼ一べ ック素子を構成する第 1又は第 2の導電部材を製造するための铸型(両端部分の一 方)を示す平面図である。
[図 40]本発明の一実施形態である高機能型(くびれあり)のパイ型ペルチェ Zゼ一べ ック素子を構成する第 1又は第 2の導電部材を製造するための铸型(中央部分)を示 す側面断面図である。
[図 41]本発明の一実施形態である高機能型(くびれあり)のパイ型ペルチェ Zゼ一べ ック素子を構成する第 1又は第 2の導電部材を製造するための铸型(中央部分)を示 す平面図である。
[図 42]本発明の一実施形態である高機能型(くびれあり)のパイ型ペルチェ Zゼ一べ ック素子を構成する第 1又は第 2の導電部材を製造するための铸型(両端部分の他 方)を示す側面断面図である。 [図 43]本発明の一実施形態である高機能型(くびれあり)のパイ型ペルチェ Zゼ一べ ック素子を構成する第 1又は第 2の導電部材を製造するための铸型(両端部分の他 方)を示す平面図である。
[図 44]従来のパイ型ペルチェ Zゼーベック素子を示す図である。
発明を実施するための最良の形態
[0023] 以下、図面にしたがって本発明のペルチヱ素子又はゼーベック素子の構造とその 製造方法について説明する。図 1は、本発明のペルチェ素子又はゼーベック素子の 構造の第 1の実施形態の例を示す模式図である。
[0024] 図 1に示すように、所定のゼーベック係数を有する第 1の導電部材 (n型半導体等) 10は、その両端部分 nl, n3と中間部分 n2から構成されている。また、第 1の導電部 材とは異なるゼーベック係数を有する第 2の導電部材 (p型半導体等) 20もその両端 部分 pi, p3と中間部分 p2から構成されている。
[0025] 第 1の導電部材 10及び第 2の導電部材 20の中間部分 n2及び p2は、両端部分 nl , n3及び pi, p3と比べて断面積が小さく形成されており、このため材質が同じであつ ても、熱伝導度が両端部分と比べて小さくなつて 、る。
[0026] そして、この第 1の導電部材 10の両端部分の一方 nlが、接合部材 30にォーミック コンタクトで接合され、第 2の導電部材 20の両端部分の一方 piが接合部材 30にォ 一ミックコンタクトで接合されて 、る。この接合部材 30は温度 T1に熱せられて高温部 を構成することになる。また、第 1の導電部材 10の両端部分の他方 n3は、接合部材 40にォーミックコンタクトで接合され、第 2の導電部材 20の両端部分の他方 p3は接 合部材 50にォーミックコンタクトで接合されて ヽる。この接合部材 40と接合部材 50は 温度 T2とされて低温部を構成している。すなわち、 T1 >T2となっている。
[0027] 上述した構造の素子において、接合部材 30を高温 (T1)に保ち、接合部材 40と 50 の周囲を低温 (例えば室温 Τ2)に保つと、接合部材 30と 40及び 50の間の温度差に 比例した熱起電力が発生する。これがゼーベック効果である。ここで接合部材 30と接 合部材 40は第 1の導電部材 10によって接続され、接合部材 30と接合部材 50は第 2 の導電部材 20によって接続されている。このため、第 1の導電部材 10,第 2の導電 部材 20において、従来例(図 44参照)と同じような熱伝導度を有する部材構造(図 4 4中では、第 1の導電部材 101や第 2の導電部材 102)を用いた場合は、高温部(例 えば、図 1中の接合部材 30)から低温部(例えば、図 1中の接合部材 40, 50)への熱 の移動が早くなつて、両者と接合部材 40と 50の周囲の温度は短時間で熱平衡状態 となり、接合部材 30と 40及び 50の間の温度差が非常に小さくなる為に起電力が発 生しなくなってしまう。しかし、図 1に示す本発明の第 1の実施形態の例では、第 1導 電部材と第 2導電部材のそれぞれの中間部分 n2, p2がその両端部分 nl, n3及び p 1, p3の部分より断面積を小さくしているので、熱伝導度が悪くなるため、熱平衡状態 でも中間部分 n2, p2における温度勾配が大きく維持される。したがって、接合部材 3 0と 40及び 50の間の温度差を大きく維持できてゼーベック効果が発揮され、熱エネ ルギ一の電気エネルギーへの変換効率、すなわち熱電変換効率が向上することに なる。
[0028] 次に、図 1に示す構造の素子において、接合部材 40と 50を電気的に接続して電流 を流すと、その電流量に比例した発熱と吸熱が接続部材 30と接続部材 40, 50の間 で起こる。この効果をペルチェ効果といい、この効果を奏する素子がペルチェ素子で ある。この吸熱と発熱は電流の向きにより互いに第 1導電部材 10及び第 2の導電部 材 20の反対側の面になる。つまり、ある電流の向きのとき接合部材 30が発熱側であ れば、電流の向きが反対になると接合部材 40と 50の側が発熱側となる。この状態で 、吸熱側、例えば接合部材 40と 50側から、発熱側となる接合部材 30の側に、第 1の 導電部材 10及び第 2の導電部材 20を介して電子的に熱転送が起こり、接合部材 30 と接合部材 40, 50の間に温度差を与えることになる。この時、本発明の実施の形態 では、第 1の導電部材 10及び第 2の導電部材 20の中間部分 n2, p2の断面積を両 端部分 nl, n3, pi, p3の断面積よりも小さくしているので、それによつて熱伝導係数 力 、さい為に熱量の移動が小さくなつて熱側と発熱側の温度差を大きく保つ事が出 来、吸熱側の周囲力 より多くの熱エネルギーを吸収して発熱側への電子的な熱転 送が効率よく行われる。
[0029] このように、電流が流れている間はペルチェ効果による吸熱効果と発熱効果は持続 しているので、接合部材 30と接合部材 40, 50の間の熱量の移動が遅いほど、接合 部材 30と接合部材 40, 50の間の温度差は増大する。このため、電流を流して接合 部材 30と接合部材 40, 50の間にできるだけ大きな温度差を形成させる目的で使わ れるペルチェ素子を、その目的に合うように機能を高くすることができるようになる。
[0030] このように、図 1は、第 1の導電部材 10と第 2の導電部材 20の中間部分の断面積を その両端部分の断面積よりも小さくして熱伝導度を少なくしたものであるが、本発明 の第 2の実施形態として、例えば図 2に示すように、第 1の導電部材 10及び第 2の導 電部材 20の断面形状は同一としておき、中間部分 n2, p2の材質として、両端部分 n 1, pi又は n3, P3よりも熱伝導度の小さい性質を有する材料、例えばアモルファスシ リコンゃポリシリコンなどを用いることも可能である。
[0031] また、本発明の第 3の実施形態の例として、図 3に示すように、第 1の導電部材 10と 第 2の導電部材 20の中間部分 n2及び p2をさらに分割してくびれを形成 (例えば、第 1の導電部材 10と第 2の導電部材 20の中間部分に幅狭部を形成)し、つまり中間部 分 n2, p2自体を複数に分割して断面の小さ!/、部分を組み込んだ形状にすることもで きる。これにより、中間部分 n2, P2の熱伝導率を更に小さくすることができるとともに、 半導体材料を減らすこともでき、結果として高温側と低温側の温度差を更に大きくす ることが容易に可能になる。
[0032] ここで、上記図 1から図 3に示すような本発明のペルチェ Zゼーベック素子の各実 施の形態において、ペルチェ効果、又は、ゼーベック効果を高める機能を持たせるた めに、第 1導電部材 nl, n2, n3,及び、第 2導電部材 pi, p2, p3は夫々互いに、同 じゼーベック係数でもよいが、 nl, n2, n3,又は pi, p2, p3のうちの一部または全部 のゼーベック係数を異ならせることもできる。
[0033] また、ペルチェ効果、又は、ゼーベック効果を高める機能を持たせるため、第 1導電 部材 nl, n2, n3,及び、第 2導電部材 pi, p2, p3のうち、中間部分を形成する と p2としては、例えば図 4〜図 6 (図 4〜図 6中の記号(♦) , (〇), (T)は溶解材料、 ( ◊) , (參), (▽)は焼結体)に示すような物性特性を有する p型 Bi Sb Teの様な
0.5 1.5 3 化合物半導体が用いられる。すなわち、図 4は、温度 (T)に対して電気抵抗率が増 大して 、ることを示し、図 5は温度 (T)の増加と共にゼーベック係数が増大することを 示している。また、図 6は、温度 (T)の増加とともに熱伝導係数が減少していることを 示している。このように、この化合物半導体の物性値は、温度の増加と共にゼ一べッ ク係数が大きくなり、かつ熱伝導係数力 、さくなつている。このような特性を有するィ匕 合物半導体が更に開発されつつある。
[0034] このように、第 1または第 2導電部材の中間部分に、材質を変えた半導体(中間部 分以外とは異なる材質の半導体)を挟み込む事により、高温側の熱が中間部を通つ て低温側へ伝わるとき、中間部分の材質が温度の増加と共に熱伝導率が小さくなる 為、高温側の熱は中間部を通って低温側へ伝わりにくくなり、その結果として、高温 側と低温側の温度差をより大きい状態に維持することができる。
[0035] 次に、図 7に基づいて、本発明の実施の形態のペルチヱ Zゼーベック素子につい て実験した例について説明する。この実験例では、比較データを作成するために従 来のペルチヱ Zゼーベック素子を用いた実験と、本発明の一実施形態のペルチェ Z ゼーベック素子を用いて実験を行って 、る。
[0036] 図 7の符号 7aは、図 44の従来例のペルチェ Zゼーベック素子を示したものであり、 第 1の導電部材 101又は第 2の導電部材 102を銅板等の接合部材 103又は 104 (1 05)と接合し、一方の接合部材 103にヒートシンク 106を接続している。なお、図 7中 の符号 107は接合部材 104 (105)の強度を補強するための補強部材であり、銅板 で構成されるものである。
[0037] また、図 7の符号 7bは、図 1に示す本発明の一実施の形態の例として用いられるぺ ルチェ Zゼーベック素子の例を示すものである。ペルチェ Zゼーベック素子の構成 要素である第 1の導電部材 10又は第 2の導電部材 20の一端は、接合部材 30を介し てヒートシンク 106に接合されている。なお、図 7中の 60も図 7中の符号 107と同様に 、接合部材 40 (50)の強度を補強するための補強部材であり、銅板で構成されてい る。そして、図 1で示したように、第 1の導電部材 20及び第 2の導電部材 30は、その 中間部分 n2 (p2)が両端部分 nl (pi)及び n3 (p3)と比べて熱伝導度が低くなるよう な形状又は材料が用いられている。この第 1の実施形態では、中間部分の断面積を 両端部分の断面積を小さくすることにより、中間部分の熱伝導度を低下させるように している。この n型半導体である nl, n2, n3 (又は p型半導体 pi, p2, p3)のゼ一べ ック係数あるいはペルチェ係数は同じ値でもよ 、し、異なるゼーベック係数あるいは ペルチェ係数の材料を組み合わせて適宜最適な値を設定してもよい。 [0038] 図 8は、図 7に示す従来のペルチヱ Zゼーベック素子と発明の一実施の形態で用 いられる高機能ペルチェ Zゼーベック素子の両方に、電流を通電したときの温度特 性をプロットしたものである。横軸は通電後の時間を示し、縦軸は接合部材の温度を 示している。横軸スケールの 1メモリは 5分である。図 8の符号 8aは、従来型のベルチ ェ Zゼーベック素子(図 7の符号 7aに対応する。 )において、接合部材 103と 104 (1 05)の間に、例えば 1アンペア (A)の電流を流したときのそれぞれの接合部材 103と 104 (105)の温度を測定したものである。この図力もわ力るように、通電開始時は導 電部材の両側に位置する二つの接合部材の温度は同じ値であった力 S、通電時間が 経過するにつれて、ヒートシンク 106がある側の接合部材 103の温度は T1とほとんど 変化していないのに対し、ヒートシンク 106がない側の接合部材 104 (105)は次第に 温度が下がり、 5分後から温度上昇に転ずることが認められた。この温度降下から温 度上昇への転換は、半導体 101 (102)中の熱伝導のよる高温側から低温側への熱 エネルギーの移動により、ペルチヱ効果の吸熱による温度降下が阻害された結果、 起こる事を示している。
[0039] 次に、本発明の実施の形態において、従来のペルチヱ Zゼーベック素子と同様の 実験を試みた結果を図 8の符号 8bに示した。この実験結果は、図 7の符号 7bの接合 部材 30と接合部材 40 (50)の間にほぼ 1アンペア (A)の電流を流し、接合部材 30と 接合部材 40 (50)の温度を測定したものを示して 、る。
[0040] この図 8の符号 8bからわかるように、ヒートシンク 106に接合された接合部材 30の温 度は、 T1でほぼ一定に推移するのに対し、ヒートシンク 106を接合しない側の接合 部材 40 (50)の温度は、時間の経過とともに急激に低下している。
[0041] 図 8の符号 8bからわ力るように、本発明の実施の形態に示す高機能ペルチェ Zゼ 一ベック素子は、従来型のもの(図 8の符号 8aを参照。)と比べて、接合部材 30と接 合部材 40 (50)との温度差が時間経過とともに一層増大している。これは、本発明の 実施形態に用いる高機能ペルチェ Zゼーベック素子に対して、半導体 10 (20)部の 熱伝導度が小さくしてあるために、熱伝導度よる高温側から低温側への熱エネルギ 一の移動が抑えられて、低温側への熱エネルギーの供給が少なくなり、ペルチェ効 果による吸熱作用によって低温側の温度がより低くなることを示している。 [0042] 次に、図 9に基づいて、従来のペルチェ Zゼーベック素子と本発明の実施形態で 用いる高機能ペルチェ Zゼーベック素子とのゼーベック効果について検証する。図 9 の横軸は、 2つの接合部材間の温度差であり、縦軸はゼーベック起電圧を示している 。図 9の(〇)は本発明の実施の形態に用いられる高機能ペルチェ Zゼーベック素子 の起電圧を示し、(♦)は従来のペルチェ Zゼーベック素子の発生する起電圧を示す 。この図 9から明らかなように、従来型も本発明の高機能素子のいずれも温度差に比 例した同一直線のゼーベック起電圧を出力する事から、本発明の高機能素子でもゼ 一ベック効果になんら影響を与えない事が分かり、同時に、半導体部の熱伝導度を 小さくした本発明の高機能ペルチェ Zゼーベック素子ゼーベックの方が、高温側と低 温側の温度差を大きな値まで維持できた結果、従来型よりもゼーベック起電圧出力 を大きく出来た事力 本実験により確認されたことになる。
[0043] 図 10〜図 14は、本発明の実施の形態における高機能ペルチヱ Zゼーベック素子
(第 1又は第 2導電部材にくびれあり)と従来型ペルチェ Zゼーベック素子 (第 1又は 第 2導電部材にくびれなし)の場合の、実際の構成例を示したものである。図 10〜図 12は従来型のペルチェ Zゼーベック素子、図 13〜図 14は本発明の実施形態に用 いられる高機能ペルチヱ Zゼーベック素子を接続した例である。図 10〜図 14の接合 部材としての銅板は、縦 8mm、横 3. 5mm、高さ lmmの直方体形状のものを用い、 第 1の導電部材と第 2の導電部材を構成する半導体としては、縦横 3mm、高さ 1. 5 mmの直方体を 3段に重ねたものを想定してシミュレーション実験を行うことを前提と した。また、図 13,図 14に示すように、本発明の実施の形態に用いられる高機能べ ルチェ Zゼーベック素子を構成する第 1及び第 2の導電部材の中間部分の材料とし ては、縦横 1. 5mm,高さ 1. 5mmの立方体を用いることを想定して、同様なシミュレ ーシヨン実験を行うことを前提とした。また、実際の回路実験を再現できるように、室温 を一定の温度にし、加熱側の接合部材の銅板の設定温度を変えて、加熱側と反対 の接合部材の銅板の温度は、回路内の熱伝導及び空気中(回路周囲であって室温 と同じ温度の空気中)への熱伝達によって物理的に矛盾なく自動的に決まる境界条 件を使って、シミュレーション実験を行うことを前提とした。なお、回路内の熱伝導によ る熱量の移動の速さ力 該室温と同じ温度の空気中への熱伝達による熱量の移動の 速さより桁違いに大きいことから、 1次元の円筒モデルで実際の回路実験を再現でき ることを調べるための予備的なシミュレーションを繰り返し、定量的にも実際の回路実 験のデータが再現できることを確認できた。
[0044] 図 15〜図 17は、図 10〜図 14に示した回路の一周期分を 1次元の円筒モデルで 示した図であり、このモデルに基づ!/、てシミュレーション実験を行った。
[0045] 図 15,図 16 (R;円筒モデルにした部材の半径)に示す従来のペルチェ Zゼ一べッ ク素子の円筒シミュレーションモデルでは、第 1の導電部材 73 (n型半導体)及び第 2 の導電部材 74 (p型半導体)は、半径 R3 ( = l. 693mm)で高さ(図 15〜図 17中で は左右方向の距離) 1. 5mmの円筒状部材が 3段に重ねられている。第 1の導電部 材 73は、半径 R2 ( = l. 829mm)で高さ lmmの円筒形の接合部材 72Aに接合され 、この接合部材 72Aは半径 Rl ( = l. 056mm)で高さ 2mmの円筒状部材 72Bに接 合され、さらに円筒形接合部材 72Bは、接合部材 72Cに接合されている。接合部材 72Cの形状は、接合部材 72Aと同じである。この接合部材 72A〜72Cはシミュレ一 シヨン実験において外部力も強制加熱される部分である。また、第 2の導電部材 74は 、第 1の導電部材 73とはゼーベック係数の異なる p型半導体で構成されるが、その形 状は第 1の導電部材 73と同じである。
[0046] 第 1の導電部材 73の他端は、接合部材 72Aと同じ形状の接合部材 76Aと接合さ れており、接合部材 76Aは、接合部材 72Bと形状の等しい接合部材 76Bと接合され ている。また、第 2の導電部材 74の他端は、接合部材 72Cと形状の等しい接合部材 75Aと接合され、この接合部材 75Aは、同じく接合部材 72Bと形状の等しい接合部 材 75Bと接合 (接合部材 76Aの場合は、同じく接合部材 72Bと形状の等 ヽ 76Bと 接合)されている。
[0047] 一方、図 17に示す本発明の実施形態における高機能ペルチェ Zゼーベック素子 では、第 1導電部材 73と第 2の導電部材 74の構成が異なる以外は、図 15, 16の従 来型ペルチェ Zゼーベック素子の形状と構成を同じにしている。すなわち、図 17中 の第 1の導電部材 73は両端の部分 73a、 73cと中間部分 73bとから構成され、中間 部分 73bの半径 R4 ( = 0. 85mm)は、両端部分の半径 R3 (= 1. 693mm)の略 2分 の 1の大きさにしている。 [0048] 以上説明したような構成の従来型のペルチヱ Zゼーベック素子(くびれなし)と本発 明の実施の形態に用いられる高機能ペルチェ Zゼーベック素子(くびれあり)を用 ヽ 、室温を 27°C—定の条件にして、シミュレーション実験を行った結果を図 18〜図 21 ( 図 18〜図 21中の記号(〇)はくびれなし、(◊)はくびれあり)に示す。
[0049] 図 18は、加熱側(図 15〜図 17では接合部材 72A〜72C)を外部から強制加熱し て力 回路内の各点の温度が定常状態になる加熱後 5分後において、加熱側の温 度に対して反対側(図 15〜図 17では接合部材 75A, 75B, 76A, 76B)の温度がど のように変化するかを示したものである。加熱側の温度を、 27°Cを開始温度として徐 々に上げていくと、定常状態になる加熱後 5分後において、反対側の温度も次第に 上昇していく。この図 18からわ力るように、従来型(くびれなし)の場合は、高機能型( くびれあり)に比べて、加熱側の温度上昇とともに反対側の温度上昇が大きくなつて いる。図 19は定常状態になる加熱後 5分後の加熱側と、反対側の温度差と、加熱側 の温度との関係を示したものであるが、従来型 (くびれなし)に比べて高機能型 (くび れあり)の方が、両者の温度差が大きいことを示している。すなわち、高機能型 (くび れあり)では、第 1又は第 2の導電部材を熱が伝わりにくいことにより、同じ加熱温度に 対して、従来型 (くびれなし)より大きな温度差を実現できることを示して 、る。
[0050] 図 20は、加熱側の温度に対して、定常状態になる加熱後 5分後の起電圧をプロット したものである。この図から、例えば加熱側温度を 60°Cにした時に、高機能型(くび れあり)では、従来型(くびれなし)に比較して、 1. 6倍近い大きな起電力が得られる ことが分かる。図 21は、加熱側と非加熱側 (反対側)の温度差に対する起電圧もプロ ットしたものであるが、従来型 (くびれなし)、高機能型 (くびれあり)のいずれも同一直 線上にシミュレーションデータが並んでいる。このことは温度差に対して得られる起電 圧が比例していることを意味し、これによつて、従来型(くびれなし)に比べて、大きな 温度差を実現できる高機能型 (くびれあり)の方が、高いゼーベック効果起電圧を発 生できる機能を持つことを検証したことになる。
[0051] 図 22〜図 29は、従来型(くびれなし)のペルチヱ Zゼーベック素子において、加熱 側の温度をパラメータとして、該加熱してからの時間経過と起電圧の関係、及び第 1 又は第 2の導電部材の位置と温度の関係を示したものである。 [0052] 図 22〜図 25は、加熱後の時間に対する起電圧を、加熱温度 30°C, 40°C, 50°C, 60°Cの 4通りでシミュレーションした結果を示している。加熱温度が 30°C, 40°C, 50 °C, 60°Cで、それぞれ定常状態になる加熱後 5分後の起電圧は 0. 2mV, 0. 9mV , 1. 6mV, 2. 4mVを示している。また、図 26〜図 29は、図 15中の部材 75Bの左 端の位置を Ommとして部材 76Bの右端を 17mmとしたときの場所の温度を、加熱温 度をパラメータとしてプロットしたものである。図中の点線は加熱時間 5秒後の温度で あり、実線は定常状態になる加熱後 5分後の温度を示す。これら各図から明らかなよ うに、加熱時間が経過すると、加熱側(図の中心付近部)と室温空気で囲まれた反対 側(図の両端部)の温度差が小さくなつて 、ることが分かる。
[0053] 図 30〜図 37は、高機能型(くびれあり)のペルチヱ Zゼーベック素子において、加 熱側の温度をパラメータとして図 22〜図 29と同様のシミュレーションを行ったときの、 加熱してからの時間経過と起電圧の関係、及び第 1又は第 2の導電部材の位置と温 度の関係を示したものである。
[0054] 図 30〜図 33は、加熱後の時間に対する起電圧を、加熱温度 30°C, 40°C, 50°C, 60°Cの 4通りでシミュレーションした結果を示したものである。図 30〜図 33力 分力、 るように、加熱温度が 30°C, 40°C, 50°C, 60°Cで、それぞれ定常状態になる加熱後 5分後の起電圧は 0. 3mV, 1. 5mV, 2. 6mV, 3. 8mVを示し、図 22〜図 25と比 ベると、略 1. 6倍に大きくなつていることが分かる。
[0055] また、図 34〜図 37は、図 17中の部材 75Bの左端の位置を Ommとして部材 76Bの 右端を 17mmとしたときの場所の温度を、加熱温度をパラメータとしてプロットしたも のである。点線は加熱時間 5秒後の温度を示し、実線は定常状態になる加熱後 5分 後の温度を示す。これら各図から明らかなように、時間が経過すると、回路内の熱伝 導により加熱部と両端部の温度の差は、小さくなるが、従来型 (くびれなし)に比べる と温度の差は大きい状態で定常状態になり、この大きな温度差は半導体のくびれた 領域で実現されて ヽることが分かる。
[0056] このように、図 22〜図 29に示す従来型(くびれなし)と図 30〜図 37に示す高機能 型 (くびれあり)のシミュレーション結果は、明らかに高機能型 (くびれあり)の方が、起 電圧が大きくなり、加熱開始力も時間が経過し定常状態になる加熱後 5分後も、加熱 部分と室温空気で囲まれた反対側部との温度差が大きくなることが認められた。これ は高機能型(くびれあり)のペルチェ Zゼーベック素子の方が、従来型(くびれなし) に比べて、加熱部力 室温空気で囲まれた反対側部への熱伝導度が小さくなるから である。このシミュレーション結果によって、本発明の実施の形態である高機能型(く びれあり)のペルチヱ zゼーベック素子では、ゼーベック効果及びペルチェ効果が大 きく現れることが確認された。
[0057] 次に、図 38〜図 43に基づいて、本発明の実施の形態に用いられる高機能型(くび れあり)ペルチェ Zゼーベック素子の製造方法について説明する。図 38 (平面図), 図 39 (側面図)は、図 1に示す第 1導電部材 10又は第 2導電部材 20を 48個同時に 作成するための铸型を示したものである。図 38,図 39は、第 1導電部材 10又は第 2 導電部材 20を 3分割した時の両端部分の一方 (nl又は pi)を作成するための铸型 を示している。同様に図 40 (正面図),図 41 (側面図)は、第 1導電部材 10又は第 2 導電部材 20の中間部分 (n2又は p2)の铸型、図 42 (正面図),図 43 (側面図)は、 第 1導電部材 10又は第 2導電部材 20を両端部分の他方 (n3又は p3)を示して 、る。 これら各図では、第 1導電部材 10又は第 2導電部材 20の断面は円筒形状にしてい る力 形状については円筒である必要はなく四角形であっても、他の多角形であって もよいことは言うまでもない。ここで、図 40,図 41に示す中間部分の断面積は、図 38 ,図 39及び図 42,図 43に示す両端部分の断面積よりも小さくなつていることが重要 である。
[0058] 図 38〜図 43は、本発明の第 1の実施形態である、高機能型(くびれあり)のベルチ ェ Zゼーベック素子の製造方法を示したものであるが、本発明の第 2の実施形態で は、該図 38〜図 43の各部分の半導体の断面積を等しくし、中間部分の材料(図 40 ,図 41に示す铸型内の半導体材料)をアモルファスシリコン又はポリシリコン等の熱 伝導度の小さい材料とすることにより、本発明の第 1実施形態に示される高機能型 (く びれあり)のペルチヱ Zゼーベック素子と同じゼーベック効果を奏するペルチヱ Zゼ 一ベック素子を作成することが可能である。
[0059] なお、前記の第 1導電部材 10又は第 2導電部材 20の両端部分や中間部分の各パ ターンは、図 38〜図 43に示すように所望の形状に成形された铸型を用いる方法の 他に、種々の方法を適用することができ、例えばフォトマスク技法等を適用しても良い 。また、前記の各パターンには、前記のアモルファスシリコン又はポリシリコン等の熱 伝導度の小さい材料の他に、ペルチェ Zゼーベック素子に用いられているものであ れば種々の材料 (例えば、固体,液体又は粉末体であって熱伝導度の小さい材料を 挿入して、加熱や加圧等により最終的には固化した材料)を適用することができる。
[0060] 以上説明したように、従来型(くびれなし)のペルチヱ Zゼーベック素子では、第 1 導電部材又は第 2導電部材を構成する半導体の熱伝導率が、銅の約 200分の 1と比 較的大きいために、定常状態では半導体の上下の温度 T1と T2の温度差 ΔΤが小さ くなつてしまい、ペルチェ効果及びゼーベック効果が大きく低減するという欠陥があつ た。これに対して、本発明の実施の形態である高機能型 (くびれあり)のペルチェ Zゼ 一ベック素子の構造によれば、第 1又は第 2導電部材の中間部分の熱伝導を小さく する形状にするか、又は熱伝導係数の小さい材質を採用しているため、従来型のぺ ルチヱ Zゼーベック素子に比べて、半導体の上下の温度 T1と T2の温度差 ΔΤを定 常状態でも大きな値に維持する事が可能になり、その結果、ペルチェ効果及びゼー ベック効果を本来の目的に沿って大きく発揮させることができる。
[0061] したがって、本発明の実施の形態である高機能型(くびれあり)のペルチエ Zゼー ベック素子の構造によれば、素子を構成する第 1の導電部材及び第 2の導電部材の 中間部分の熱伝導率が、その両端部分の熱伝導率より小さく形成されるため、高温 側から低温側への熱の伝導が悪くなり、その結果、高温側から低温側への熱ェネル ギ一の移動が少なくなる。このため、熱エネルギーの利用効率が向上する。
[0062] また、それぞれの素子を基板上に複数個同時に作成することができるので、一個一 個の素子の均一性が担保されるとともに、素子の製造コストを下げることが可能である
[0063] 以上、本発明の実施の形態について、図面を用いて説明したが、本発明は上記実 施の形態に制限されるものではなぐ特許請求の範囲に記載した本発明の要旨を逸 脱しない限りにおいて、なお考えられる種々の形態を含むものであることは言うまでも ない。
[0064] 本発明の集積並列ペルチェ ·ゼーベック素子チップの製造方法によれば、 LSI作 成技術をペルチヱ ·ゼーベック素子集積チップの製造法に適用することにより、従来 熟練技術者が製造に要した時間を大幅に短縮することができる。
また、同時に多数個の集積並列ペルチェ'ゼーベック素子チップが作成され、これ を接続するための多端子コネクターも提供されるので、これらの複数の集積並列ペル チェ ·ゼーベック素子チップを接続した集積ペルチェ ·ゼーベックパネル又はシートを 簡単な方法で作成することができ、これらの集積ペルチェ ·ゼーベックパネル又はシ ートを組み込んだ熱エネルギー電気エネルギーの直接変換システム及び熱ェネル ギ一の転送システムも従来に比べて極めて短時間に組み立てることが可能になる。

Claims

請求の範囲
[1] ペルチェ素子又はゼーベック素子を構成する異なるゼーベック係数を有する第 1導 電部材と第 2導電部材について、夫々の長さ方向の中間部分の熱伝導度を両端部 分の熱伝導度より小さく設定したことを特徴とするペルチヱ素子又はゼーベック素子 の構造。
[2] 前記第 1導電部材と前記第 2導電部材の長さ方向の前記両端部分以外の前記中 間部分の断面面積を前記両端部分に比べて小さくすることを特徴とする請求項 1〖こ 記載のペルチェ素子又はゼーベック素子の構造。
[3] 前記第 1導電部材と前記第 2導電部材の長さ方向の前記両端部分以外の前記中 間部分の材質を前記両端部分の材質より熱伝導度の小さい材質及びゼーベック係 数の異なる材質にすることを特徴とする請求項 1に記載のペルチヱ素子又はゼ一べ ック素子の構造。
[4] 前記第 1導電部材と前記第 2導電部材の長さ方向の前記両端部分以外の前記中 間部分を複数に分割して断面の形状を変えたことを特徴とする請求項 1に記載のぺ ルチェ素子又はゼーベック素子の構造。
[5] ペルチェ素子又はゼーベック素子を構成する異なるゼーベック係数を有する第 1導 電部材と第 2導電部材について、夫々の長さ方向の中間部分の熱伝導度を両端部 分の熱伝導度より小さく形成するペルチェ素子又はゼーベック素子の製造方法であ つて、
前記ペルチエ素子又はゼーベック素子を構成する前記第 1導電部材及び前記第 2 導電部材の前記両端部分の一方の領域である第 1領域を形成するための铸型作成 やフォトマスク技法を使った前処理パターン作成による第 1領域パターンを形成する ステップと、
前記ペルチエ素子又はゼーベック素子を構成する前記第 1導電部材及び前記第 2 導電部材の前記中間部分の領域である第 2領域を形成するための铸型作成やフォト マスク技法を使った前処理パターン作成による第 2領域パターンを形成するステップ と、
前記ペルチエ素子又はゼーベック素子を構成する前記第 1導電部材及び前記第 2 導電部材の前記両端部分の他方の領域である第 3領域を形成するための铸型作成 やフォトマスク技法を使った前処理パターン作成による第 3領域パターンを形成する ステップと、
前記第 1領域パターンと前記第 2領域パターンと前記第 3領域パターンとを位置合 わせをするステップと、
前記第 1導電部材及び前記第 2導電部材の前記第 1領域を形成するために、前記 第 1導電部材及び前記第 2導電部材の原料となる固体、液体又は粉末体を前記第 1 領域パターンに詰め込むステップと、
前記第 1導電部材及び前記第 2導電部材の前記第 2領域を形成するために前記第 1導電部材及び前記第 2導電部材の原料となる固体、液体又は粉末体を前記第 2領 域パターンに詰め込むステップと、
前記第 1導電部材及び前記第 2導電部材の前記第 3領域を形成するために前記第 1導電部材及び前記第 2導電部材の原料となる固体、液体又は粉末体を前記第 3領 域パターンに詰め込むステップと、
前記第 1領域パターンと前記第 2領域パターンと前記第 3領域パターンに詰め込ま れた前記第 1の導電部材及び前記第 2の導電部材の原料となる固体、液体又は粉 末体を加熱して接合し、前記第 1の導電部材及び前記第 2の導電部材それぞれの前 記両端部分と前記中間部分を一体に形成するステップと、
前記第 1領域パターンに埋め込まれた前記第 1導電部材の一方の端部と、前記第 1領域パターンに埋め込まれた前記第 2導電部材の一方の端部とを導電性接合部材 を介してォーミックコンタクトによって接合するステップと、
を有するペルチェ素子又はゼーベック素子の製造方法。
前記第 1領域パターンを複数個用いて、前記第 1の導電部材の前記両端部分の一 方の領域を複数個同時に形成するステップと、
前記第 1領域パターンを複数個用いて、前記第 2の導電部材の前記両端部分の一 方の領域を複数個同時に形成するステップと、
前記第 2領域パターンを複数個用いて、前記第 1の導電部材の前記中間部分の領 域を複数個同時に形成するステップと、 前記第 2領域パターンを複数個用いて、前記第 2の導電部材の前記中間部分の領 域を複数個同時に形成するステップと、
前記第 3領域パターンを複数個用いて、前記第 1の導電部材の前記両端部分の他 方の領域を複数個同時に形成するステップと、
前記第 3領域パターンを複数個用いて、前記第 2の導電部材の前記両端部分の他 方の領域を複数個同時に形成するステップと、
前記第 1領域パターンで形成された領域と前記第 2領域パターンで構成された領 域の第 1導電部材及び第 2導電部材同士をォーミックコンタクトによって接合するステ ップと、
前記第 2領域パターンで形成された領域と前記第 3領域パターンで構成された領 域の第 1導電部材及び第 2導電部材同士をォーミックコンタクトによって接合するステ ップと、
を更に含み、ペルチェ素子又はゼーベック素子を複数個同時に作成することを特 徴とする請求項 5に記載のペルチェ素子又はゼーベック素子の製造方法。
PCT/JP2005/019053 2004-10-18 2005-10-17 ペルチェ素子又はゼーベック素子の構造及びその製造方法 WO2006043514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006542973A JP4850070B2 (ja) 2004-10-18 2005-10-17 ペルチェ素子又はゼーベック素子の製造方法
US11/664,937 US20090007952A1 (en) 2004-10-18 2005-10-17 Structure of Peltier Element or Seebeck Element and Its Manufacturing Method
CN2005800355934A CN101044638B (zh) 2004-10-18 2005-10-17 帕尔帖元件或塞贝克元件的结构及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-303321 2004-10-18
JP2004303321 2004-10-18

Publications (1)

Publication Number Publication Date
WO2006043514A1 true WO2006043514A1 (ja) 2006-04-27

Family

ID=36202929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019053 WO2006043514A1 (ja) 2004-10-18 2005-10-17 ペルチェ素子又はゼーベック素子の構造及びその製造方法

Country Status (4)

Country Link
US (1) US20090007952A1 (ja)
JP (1) JP4850070B2 (ja)
CN (1) CN101044638B (ja)
WO (1) WO2006043514A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147323A (ja) * 2006-12-08 2008-06-26 Murata Mfg Co Ltd 熱電変換モジュールおよびその製造方法
WO2008091293A2 (en) * 2006-07-28 2008-07-31 Bsst Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
US20080178606A1 (en) * 2007-01-30 2008-07-31 Massachusetts Institute Of Technology (Mit) Multistage thick film thermoelectric devices
JP2008530206A (ja) * 2005-02-17 2008-08-07 メディバス エルエルシー ポリマー粒子送達組成物および使用法
JP2009206201A (ja) * 2008-02-26 2009-09-10 Kyocera Corp セグメント型熱電素子、熱電モジュール、発電装置および温度調節装置
WO2010004550A2 (en) * 2008-07-06 2010-01-14 Lamos Inc. Split thermo-electric structure and devices and systems that utilize said structure
WO2010041725A1 (ja) * 2008-10-07 2010-04-15 住友化学株式会社 熱電変換モジュールおよび熱電変換素子
WO2010067367A3 (en) * 2008-12-11 2010-09-10 Lamos Inc. Thermo-electric structure
JP2011014862A (ja) * 2009-07-06 2011-01-20 Korea Electronics Telecommun 熱電素子及びその製造方法
JP2012109335A (ja) * 2010-11-16 2012-06-07 Nec Corp 熱電変換モジュール
KR101232875B1 (ko) * 2009-07-06 2013-02-12 한국전자통신연구원 열전 소자 및 그 제조 방법
JP2013110158A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 熱電変換素子、その製造方法、及び熱電変換モジュール
JP2013110157A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 熱電変換モジュール
US20140048113A1 (en) * 2009-12-09 2014-02-20 Sony Corporation Thermoelectric generator, thermoelectric generation method, electrical signal detecting device, and electrical signal detecting method
WO2015002029A1 (ja) * 2013-07-02 2015-01-08 富士フイルム株式会社 熱電変換素子
JPWO2013069347A1 (ja) * 2011-11-08 2015-04-02 富士通株式会社 熱電変換素子及びその製造方法
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
JP2016058734A (ja) * 2014-09-11 2016-04-21 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション 熱電発電モジュール及びその製造方法
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US9846089B2 (en) 2012-08-07 2017-12-19 National University Corporation Kyoto Institute Of Technology Calorimeter and method for designing calorimeter
JP2022523127A (ja) * 2019-02-01 2022-04-21 ディーティーピー サーモエレクトリックス エルエルシー 空間的に変動する分散輸送プロパティに基づいて増強された最大温度差を伴う熱電素子およびデバイス
US11913687B2 (en) 2020-06-15 2024-02-27 DTP Thermoelectrics LLC Thermoelectric enhanced hybrid heat pump systems

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946120B2 (en) * 2001-02-09 2011-05-24 Bsst, Llc High capacity thermoelectric temperature control system
US6672076B2 (en) 2001-02-09 2004-01-06 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US7942010B2 (en) 2001-02-09 2011-05-17 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
US6959555B2 (en) * 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
WO2003014634A1 (en) * 2001-08-07 2003-02-20 Bsst Llc Thermoelectric personal environment appliance
US20110209740A1 (en) * 2002-08-23 2011-09-01 Bsst, Llc High capacity thermoelectric temperature control systems
US7870745B2 (en) 2006-03-16 2011-01-18 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
US7788933B2 (en) * 2006-08-02 2010-09-07 Bsst Llc Heat exchanger tube having integrated thermoelectric devices
US20100024859A1 (en) * 2008-07-29 2010-02-04 Bsst, Llc. Thermoelectric power generator for variable thermal power source
EP2349753B1 (en) * 2008-10-23 2016-11-23 Gentherm Incorporated Multi-mode hvac system with thermoelectric device
CN102428585A (zh) * 2009-04-15 2012-04-25 惠普开发有限公司 具有可变横截面连接结构的热电装置
US20110174350A1 (en) * 2010-01-19 2011-07-21 Alexander Gurevich Thermoelectric generator
AT13407U1 (de) * 2010-10-22 2013-12-15 Hassan Anour Spannungsmodulierter thermo-elektrischer Generator
DE102010049300A1 (de) * 2010-10-22 2012-04-26 Emitec Gesellschaft Für Emissionstechnologie Mbh Halbleiterelemente bestehend aus thermoelektrischem Material zum Einsatz in einem thermoelektrischen Modul
US8847382B2 (en) * 2010-12-06 2014-09-30 Stmicroelectronics Pte. Ltd. Thermoelectric cooler system, method and device
KR20120080820A (ko) * 2011-01-10 2012-07-18 삼성전기주식회사 열전모듈
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
CN102856485B (zh) * 2011-06-27 2016-03-02 吴应前 一种用于半导体制冷的三层复合结构材料
US20130008479A1 (en) * 2011-07-07 2013-01-10 Peng Chen Thermoelectric element design
KR20130065942A (ko) * 2011-12-12 2013-06-20 한국전자통신연구원 열전소자
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
DE112014000607T5 (de) 2013-01-30 2015-10-22 Gentherm Incorporated Auf Thermoelektrik basierendes Thermomanagementsystem
US20150034139A1 (en) * 2013-08-05 2015-02-05 Alexander Gurevich Thermoelectric generator
KR102141164B1 (ko) * 2013-09-06 2020-08-04 엘지이노텍 주식회사 열전모듈 및 이를 포함하는 냉각장치
JP6032175B2 (ja) * 2013-10-25 2016-11-24 株式会社デンソー 熱電変換装置の製造方法
GB2521353A (en) * 2013-12-17 2015-06-24 Ibm Thermoelectric device
KR102111604B1 (ko) * 2014-05-13 2020-05-15 엘지이노텍 주식회사 열전환장치
CN105702848A (zh) * 2014-11-27 2016-06-22 中国电子科技集团公司第十八研究所 一种p-n型温差电元件性能匹配方法
KR102281066B1 (ko) * 2015-03-27 2021-07-23 엘지이노텍 주식회사 열전소자, 열전모듈 및 이를 포함하는 열전환장치
KR20160129637A (ko) * 2015-04-30 2016-11-09 엘지이노텍 주식회사 열전모듈 및 이를 포함하는 열전환장치
CN104868044B (zh) * 2015-05-25 2018-11-09 中国华能集团清洁能源技术研究院有限公司 一种用于大温差环境下的多级联热电臂及其制造方法
KR102356683B1 (ko) * 2015-10-01 2022-01-27 삼성전자주식회사 열전 구조체, 열전 소자 및 이의 제조방법
US20180222284A1 (en) * 2017-02-09 2018-08-09 Ford Global Technologies, Llc Method of mitigating temperature buildup in a passenger compartment
US10549497B2 (en) 2017-02-13 2020-02-04 The Boeing Company Densification methods and apparatuses
CN108648635B (zh) 2018-05-09 2019-09-20 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的温度补偿方法
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11421919B2 (en) 2019-02-01 2022-08-23 DTP Thermoelectrics LLC Thermoelectric systems employing distributed transport properties to increase cooling and heating performance
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729171U (ja) * 1980-07-28 1982-02-16
JPH02106079A (ja) * 1988-10-14 1990-04-18 Ckd Corp 電熱変換素子
JPH104217A (ja) * 1996-06-17 1998-01-06 Matsushita Electric Works Ltd ペルチェ素子
JPH11243169A (ja) * 1998-02-24 1999-09-07 Nissan Motor Co Ltd 電子冷却モジュールおよびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564860A (en) * 1966-10-13 1971-02-23 Borg Warner Thermoelectric elements utilizing distributed peltier effect
JPS5729171A (en) * 1980-07-29 1982-02-17 Fujitsu Ltd Separation and discrimination processing system for pattern
JP3559962B2 (ja) * 2000-09-04 2004-09-02 日本航空電子工業株式会社 熱電変換材料及びその製造方法
JP2002094131A (ja) * 2000-09-13 2002-03-29 Sumitomo Special Metals Co Ltd 熱電変換素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729171U (ja) * 1980-07-28 1982-02-16
JPH02106079A (ja) * 1988-10-14 1990-04-18 Ckd Corp 電熱変換素子
JPH104217A (ja) * 1996-06-17 1998-01-06 Matsushita Electric Works Ltd ペルチェ素子
JPH11243169A (ja) * 1998-02-24 1999-09-07 Nissan Motor Co Ltd 電子冷却モジュールおよびその製造方法

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530206A (ja) * 2005-02-17 2008-08-07 メディバス エルエルシー ポリマー粒子送達組成物および使用法
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
EP2378577A3 (en) * 2006-07-28 2012-12-05 Bsst Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
WO2008091293A2 (en) * 2006-07-28 2008-07-31 Bsst Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
WO2008091293A3 (en) * 2006-07-28 2009-05-14 Bsst Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
JP2008147323A (ja) * 2006-12-08 2008-06-26 Murata Mfg Co Ltd 熱電変換モジュールおよびその製造方法
US9391255B2 (en) * 2007-01-30 2016-07-12 Massachusetts Institute Of Technology Multistage thick film thermoelectric devices
US20080178606A1 (en) * 2007-01-30 2008-07-31 Massachusetts Institute Of Technology (Mit) Multistage thick film thermoelectric devices
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9366461B2 (en) 2007-05-25 2016-06-14 Gentherm Incorporated System and method for climate control within a passenger compartment of a vehicle
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
JP2009206201A (ja) * 2008-02-26 2009-09-10 Kyocera Corp セグメント型熱電素子、熱電モジュール、発電装置および温度調節装置
US10473365B2 (en) 2008-06-03 2019-11-12 Gentherm Incorporated Thermoelectric heat pump
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
WO2010004550A3 (en) * 2008-07-06 2010-09-30 Lamos Inc. Split thermo-electric structure and devices and systems that utilize said structure
WO2010004550A2 (en) * 2008-07-06 2010-01-14 Lamos Inc. Split thermo-electric structure and devices and systems that utilize said structure
WO2010041725A1 (ja) * 2008-10-07 2010-04-15 住友化学株式会社 熱電変換モジュールおよび熱電変換素子
CN102187488A (zh) * 2008-10-07 2011-09-14 住友化学株式会社 热电转换模块和热电转换元件
EP2375191A1 (en) * 2008-12-11 2011-10-12 Lamos Inc. Thermo-electric structure
WO2010067367A3 (en) * 2008-12-11 2010-09-10 Lamos Inc. Thermo-electric structure
JP2011014862A (ja) * 2009-07-06 2011-01-20 Korea Electronics Telecommun 熱電素子及びその製造方法
US8940995B2 (en) 2009-07-06 2015-01-27 Electronics And Telecommunications Research Institute Thermoelectric device and method for fabricating the same
KR101232875B1 (ko) * 2009-07-06 2013-02-12 한국전자통신연구원 열전 소자 및 그 제조 방법
US9559282B2 (en) * 2009-12-09 2017-01-31 Sony Corporation Thermoelectric generator, thermoelectric generation method, electrical signal detecting device, and electrical signal detecting method
US20140048113A1 (en) * 2009-12-09 2014-02-20 Sony Corporation Thermoelectric generator, thermoelectric generation method, electrical signal detecting device, and electrical signal detecting method
JP2012109335A (ja) * 2010-11-16 2012-06-07 Nec Corp 熱電変換モジュール
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
JPWO2013069347A1 (ja) * 2011-11-08 2015-04-02 富士通株式会社 熱電変換素子及びその製造方法
US9601680B2 (en) 2011-11-08 2017-03-21 Fujitsu Limited Thermoelectric conversion element and method for manufacturing same
JP2013110157A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 熱電変換モジュール
US9455389B2 (en) 2011-11-17 2016-09-27 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion element, manufacturing method for the thermoelectric conversion element, and thermoelectric conversion module
JP2013110158A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 熱電変換素子、その製造方法、及び熱電変換モジュール
US9846089B2 (en) 2012-08-07 2017-12-19 National University Corporation Kyoto Institute Of Technology Calorimeter and method for designing calorimeter
WO2015002029A1 (ja) * 2013-07-02 2015-01-08 富士フイルム株式会社 熱電変換素子
JP2016058734A (ja) * 2014-09-11 2016-04-21 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション 熱電発電モジュール及びその製造方法
JP2022523127A (ja) * 2019-02-01 2022-04-21 ディーティーピー サーモエレクトリックス エルエルシー 空間的に変動する分散輸送プロパティに基づいて増強された最大温度差を伴う熱電素子およびデバイス
US11903318B2 (en) 2019-02-01 2024-02-13 DTP Thermoelectrics LLC Thermoelectric elements and devices with enhanced maximum temperature differences based on spatially varying distributed transport properties
JP7471308B2 (ja) 2019-02-01 2024-04-19 ディーティーピー サーモエレクトリックス エルエルシー 空間的に変動する分散輸送プロパティに基づいて増強された最大温度差を伴う熱電素子およびデバイス
US11913687B2 (en) 2020-06-15 2024-02-27 DTP Thermoelectrics LLC Thermoelectric enhanced hybrid heat pump systems

Also Published As

Publication number Publication date
JP4850070B2 (ja) 2012-01-11
CN101044638B (zh) 2012-05-09
JPWO2006043514A1 (ja) 2008-05-22
US20090007952A1 (en) 2009-01-08
CN101044638A (zh) 2007-09-26

Similar Documents

Publication Publication Date Title
WO2006043514A1 (ja) ペルチェ素子又はゼーベック素子の構造及びその製造方法
Tomita et al. Modeling, Simulation, Fabrication, and Characterization of a 10-$\mu $ W/cm 2 Class Si-Nanowire Thermoelectric Generator for IoT Applications
Maduabuchi et al. Overall performance optimisation of tapered leg geometry based solar thermoelectric generators under isoflux conditions
TW201041195A (en) Split-thermo-electric structures
US20060042676A1 (en) Thermoelectric device and method of manufacturing the same
US20110100406A1 (en) Split thermo-electric structure and devices and systems that utilize said structure
Zhang et al. The possibility of mW/cm 2-class on-chip power generation using ultrasmall Si nanowire-based thermoelectric generators
Admasu et al. Effects of temperature non-uniformity over the heat spreader on the outputs of thermoelectric power generation system
Siouane et al. Fully electrical modeling of thermoelectric generators with contact thermal resistance under different operating conditions
Li et al. Top-down silicon nanowire-based thermoelectric generator: design and characterization
JP2006186255A (ja) 熱電変換素子
US20160056363A1 (en) Freestanding Thermoelectric Energy Conversion Device
Ruiz‐Ortega et al. Transient thermal behavior of a segmented thermoelectric cooler with variable cross‐sectional areas
Mahfuz et al. Designing a bileg silicon-nanowire thermoelectric generator with cavity-free structure
JP2011222654A (ja) 多数連結ゼーベック係数増幅熱電変換素子の構造、多数連結ゼーベック係数増幅熱電変換ユニットの構造、多数連結ゼーベック係数増幅熱電変換集合ユニットの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換モジュールの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換パネルの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換シートの構造及びその製造方法、並びに多数連結ゼーベック係数増幅熱電変換システムの構造
JP4927822B2 (ja) 成形可能なペルチェ伝熱素子および同素子製造方法
KR20130073554A (ko) 열전 모듈 및 열전 모듈의 제조방법
Dönmez Noyan Improving the performance of an all-Si based thermoelectric micro/nanogenerator
Dunham et al. Thermoelectric generators: A case study in multi-scale thermal engineering design
JP5662490B2 (ja) 熱電変換装置
Sakamoto et al. Skutterudite-based thermoelectric technology for waste heat recovery: progress towards a 1 kW generator
CN104602484A (zh) 便携式设备及其散热装置
US7932459B2 (en) Thermal energy transfer circuit system
Dunham et al. Modeling and optimization of small thermoelectric generators for low-power electronics
RU2632995C1 (ru) Устройство для соединения полупроводниковых термоэлементов в батарею

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11664937

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580035593.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793608

Country of ref document: EP

Kind code of ref document: A1