WO2006043486A1 - 減反射積層フィルム及びそれを用いた表示装置 - Google Patents

減反射積層フィルム及びそれを用いた表示装置 Download PDF

Info

Publication number
WO2006043486A1
WO2006043486A1 PCT/JP2005/018983 JP2005018983W WO2006043486A1 WO 2006043486 A1 WO2006043486 A1 WO 2006043486A1 JP 2005018983 W JP2005018983 W JP 2005018983W WO 2006043486 A1 WO2006043486 A1 WO 2006043486A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
hard coat
film
reflection
Prior art date
Application number
PCT/JP2005/018983
Other languages
English (en)
French (fr)
Inventor
Takayuki Nojima
Shotaro Noguchi
Original Assignee
Nof Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nof Corporation filed Critical Nof Corporation
Priority to EP05793582A priority Critical patent/EP1804087A4/en
Publication of WO2006043486A1 publication Critical patent/WO2006043486A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/442Light reflecting means; Anti-reflection means

Definitions

  • the present invention relates to a low reflection laminated film that is provided in a display device and is difficult to be colored, and a display device using the same.
  • the antireflection processing of a display device aims to reduce the reflectance of the display device at a wavelength (550 to 60 Onm) near the center of human visibility.
  • An antireflection film with extremely reduced reflectivity in the vicinity of 550 to 600 nm is provided in the display device.
  • the antireflection film of this design has a so-called “V-shaped” reflection spectrum, and the antireflection film is strongly colored from purple to blue when exposed to light.
  • the colored antireflection film has a problem of impairing the color reproducibility of the display device. In particular, when the background color is dark (black), coloring of the antireflection film is conspicuous, and there is a problem that black is not easily reproduced as black.
  • a hard coat layer having a thickness of about 1 to about LO m is often laminated on the transparent resin film.
  • a hard coat layer having a refractive index different from that of the transparent resin film is laminated with a thickness of 1 to 10 m, interference unevenness like an oil film on water occurs at the interface between the two layers.
  • the unevenness of the interference deteriorates the appearance of the display device and significantly deteriorates the quality of the display device.
  • the thickness of the hard coat layer is 1 to 3 m, the hard coat layer is colored red and green due to the interference action described above. There was a problem that.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-177209
  • An object of the present invention is to provide a reduced reflection laminated film with improved antireflection performance and suppressed coloring, and a display device using the same.
  • a transparent resin film, a coating layer provided on the transparent resin film, and a hard coating layer are provided.
  • a reduced reflection laminated film comprising the provided reduced reflection layer.
  • a display device in which the reduced reflection laminated film is provided on a front surface of a display.
  • a preferred anti-reflection laminated film has a haze value defined by JIS K 7136 of 1% or less.
  • the anti-reflection layer includes a low refractive index layer having a refractive index lower than that of the hard coat layer, and the refractive index of the low refractive index layer is 1.28 to: L 45.
  • the anti-reflection layer includes a low refractive index layer having a refractive index lower than that of the hard coat layer, and a high refractive index having a refractive index higher than that of the low refractive index layer.
  • the difference between the refractive index of the high refractive index layer and the refractive index of the hard coat layer is 0.05 or less.
  • the refractive index of the transparent resin film is 1.45 to: L 55, and the difference between the refractive index of the hard coat layer and the refractive index of the transparent resin film is 0.03 or less.
  • the film thickness of the hard coat layer is 1 to 10 ⁇ m.
  • the transparent resin film has a refractive index of 1.55 to L70, and the transparent resin On one surface of the film, an interference layer, a hard coat layer and at least a layer having a refractive index lower than the refractive index of the hard coat are sequentially laminated, and the refractive index of the hard coat layer is 1.45 to 1.55,
  • the hard coat layer has a thickness of 1 to: LO m, and the interference layer has a refractive index represented by the following formula:
  • Refractive index of interference layer ⁇ (refractive index of transparent resin film) X (refractive index of hard coat layer) ⁇ 1 2 ⁇ 0. 03
  • the optical thickness of the interference layer is 125 to 165 nm
  • the refractive index of the interference layer is between the refractive index of the transparent resin film and the refractive index of the hard coat layer.
  • the transparent resin film is a triacetyl cellulose film or an acrylic film
  • the antireflection layer contains hollow silicon oxide particles or a fluorine-containing organic compound.
  • the transparent resin film is a polyethylene terephthalate film
  • the anti-reflection layer contains hollow silicon oxide silicon particles or a fluorine-containing organic compound.
  • FIG. 1 is a cross-sectional view of a reduced reflection laminated film of Example 1.
  • FIG. 2 is a reflection spectrum of the reduced reflection laminated film of Example 1.
  • FIG. 3 is a reflection spectrum of the reduced reflection laminated film of Example 6.
  • FIG. 4 is a reflection spectrum of the reduced reflection laminated film of Comparative Example 1.
  • FIG. 5 is a reflection spectrum of the reduced reflection laminated film of Comparative Example 2.
  • the inventor of the present application indicates that the maximum value in the wavelength range of 500 to 650 nm of the peak-to-peak amplitude of the reflectance curve is 1% or less, and the visibility reflectance Y force to CIE standard illuminant D65 is 2% or less.
  • the ab chroma cab for the CIE standard illuminant D65 is 10 or less, the knowledge that it is indispensable to achieve both improvement of antireflection performance and reduction of coloring is obtained.
  • a low reflection laminated film was completed.
  • the above-mentioned maximum value for a low reflection laminated film ? It is configured to meet all the requirements of viewing sensitivity reflectivity and ab chroma cab.
  • the reduced reflection laminated film of one embodiment of the present invention includes a hard coat layer 13 provided on the transparent resin film 11 and a reduced reflection provided on the hard coat layer 13. With layer 14;
  • the transparent resin film is preferably formed from a transparent resin material having a refractive index (n) of 1.45 to L70.
  • TAC film and AC film are preferred as transparent resin films with low refractive index.
  • a PET film is preferable as a transparent resin film having a high refractive index.
  • the thickness of the transparent resin film is preferably 25 to 400 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the reduced reflection laminated film of the present invention is configured so that the maximum peak-to-peak amplitude of the reflectance curve in the wavelength region of 500 nm to 650 nm is 1% or less. That is, the reflection spectrum of the reduced reflection laminated film is represented by a ripple-like reflectance curve (see Fig. 2). Due to the interference light between the hard coat layer and the transparent resin film, the reflectance curve amplitude (peak-to-peak amplitude) changes continuously. The peak-to-peak amplitude is the difference between the maximum and minimum values of the reflectance curve, and is calculated or measured by the reflection spectral torque at the surface of the reduced reflection laminated film. The maximum value is more preferably 0.5% or less. If the maximum value exceeds 1%, interference unevenness is conspicuous, lowering the quality of the appearance of the display device, causing unevenness in red or green color due to interference unevenness, and reducing the color reproducibility of the display device. It ’s not good.
  • the luminous reflectance Y of the reduced reflection laminated film with respect to CIE standard illuminant D65 is 2% or less, more preferably 1% or less.
  • the CIE standard illuminant D65 is an illuminant whose relative spectral distribution is specified by the International Commission on Illumination (CIE) (radiation whose relative spectral distribution is specified for the entire wavelength range that affects the color perception of the illuminated object).
  • CIE International Commission on Illumination
  • the luminous reflectance Y is calculated as the tristimulus value of the object color due to reflection in the X-color system specified by JIS Z8701 using this relative spectral distribution. If the visibility reflectance strength exceeds 2%, the reflection reduction effect of the anti-reflection laminated film is weak, and the reflection of the background on the screen cannot be reduced, and the color reproducibility of the display device is lowered, which is not preferable.
  • the maximum reflectance of the reduced reflection laminated film with respect to the wavelength range that human eyes perceive as light, ie, visible light (380 nm to 780 nm) is preferably 4% or less, more preferably 3% or less.
  • the effect of the present invention is further improved by reducing the maximum reflectance in the visible region. The reason for this is that if the antireflection performance of a reduced reflection laminated film with a maximum reflectance of more than 4% for visible light is improved, the reduced reflection laminated film tends to be colored more strongly. This is because the antireflection performance tends to deteriorate if it is suppressed.
  • the ab chroma Cab of the antireflection laminated film with respect to CIE standard illuminant D65 represented by the following formula is 10 or less, preferably 5 or less.
  • the ab chroma Cab represents an amount that correlates approximately with saturation in the color space CIE1976L * a * b * color system with perceptually uniform rate recommended by CIE in 1976.
  • a b chroma Cab exceeds 10
  • coloring of the surface of the antireflection laminated film becomes conspicuous, and the color reproducibility of the display device is lowered, which is not preferable.
  • the antireflection laminated film preferably has a haze value specified in JIS K 7136 of 1% or less, more preferably 0.5% or less.
  • a reflection-reduced laminated film with a haze value exceeding 1% is installed in a display device, the surface appears white and cloudy, which is preferable because the color reproducibility of the display device is significantly reduced. ,.
  • the interference unevenness of the reduced reflection laminated film can be reduced.
  • the following measures are required.
  • the difference between the refractive index of the hard coat layer and the refractive index of the transparent resin film is 0.03 or less, and the hard coat It is important that the layer thickness is 1-10 m. More preferably, the difference between the refractive index of the hard coat layer and the refractive index of the transparent resin film is 0.02 or less.
  • the refractive index of the hard coat layer is 1.45-1.55
  • the thickness of the hard coat layer is 1 ⁇ to 10 / ⁇ m
  • the refractive index of the interference layer is in the range represented by the following formula:
  • the optical thickness of the interference layer is 125 to 165 nm.
  • Refractive index of interference layer ⁇ (refractive index of transparent resin film) ⁇ X (refractive index of hard coat layer) ⁇ 1 2 ⁇ 0. 03
  • the refractive index of the interference layer is smaller than the refractive index of the transparent resin film and larger than the refractive index of the hard coat layer.
  • the optical film thickness is the product of the refractive index (n) of the layer and the thickness (d) of the layer (n ⁇ d).
  • a more preferable refractive index of the interference layer is ⁇ (refractive index of transparent resin film) X (refractive index of hard coat layer) ⁇ 1/2 ⁇ 0.02.
  • the refractive index of the interference layer is equal to ⁇ (the refractive index of the transparent resin film) X (the refractive index of the hard coat layer) ⁇ 1/2 , the interference unevenness is most reduced.
  • the refractive index and optical film thickness of the interference layer are out of the above ranges, the effect of reducing the unevenness of light interference is reduced, which is not preferable.
  • the refractive index of the hard coat layer is less than 1.45 or more than 1.55, an appropriate effect of reducing uneven interference of light cannot be obtained, which is not preferable.
  • the thickness of the hard coat layer is less than 1 m, it is not preferable because sufficient surface strength cannot be obtained.
  • the film thickness exceeds 10 / zm, problems such as a decrease in bending resistance occur, which is not preferable.
  • the material of the interference layer and the method of forming the layer as long as the refractive index and thickness are within the above ranges.
  • materials for the interference layer are attalylate, silicon compound, metal, and metal oxide.
  • the interference layer may have a function of improving the adhesion between the transparent resin film and the hard coat layer.
  • the interference layer and the transparent resin film may be integrally formed by stretching or casting.
  • an easy-adhesion layer is formed by applying an adhesive made of polyester-based resin. If the refractive index and film thickness of this easy-adhesion layer satisfy the requirements for the interference layer, the easy-adhesion layer can also serve as the interference layer.
  • the method for forming the hard coat layer is not particularly limited.
  • hard coat layer materials include monofunctional (meth) acrylate, polyfunctional (meth) acrylate, and tetraethoxysilane. And a cured product such as a reactive silicon compound.
  • (meth) atrelate refers to both methacrylic acid esters and acrylic acid esters.
  • a particularly preferable material for the hard coat layer is a polymerized cured product of a composition containing an ultraviolet curable polyfunctional acrylate, which is excellent in productivity and hardness.
  • UV-curable polyfunctional attalylate examples include dipentaerythritol hexaatalylate, tetramethylololemethanetetratalylate, tetramethylololemethanetritalylate, trimethylolpropanetritalylate, 1, 6 Acrylic derivatives of polyfunctional alcohols such as hexanediol ditalylate, 1,6-bis (3-ataryloxy-2-hydroxypropyloxy) hexane, polyethylene glycol ditalylate, and polyurethane acrylate. Can be mentioned.
  • a composition containing an ultraviolet curable polyfunctional attalylate and another composition may also be used.
  • examples of other components are inorganic or organic particulate fillers, inorganic or organic particulate pigments, and other inorganic or organic particulates; polymers, polymerization initiators, polymerization inhibitors, antioxidants, Examples thereof include additives such as dispersants, surfactants, light stabilizers and leveling agents.
  • the anti-reflection layer can have a single-layer structure or a two-layer structure.
  • a layer having a refractive index lower than that of the hard coat layer (low refractive index layer) is formed on the hard coat layer.
  • a relatively high refractive index layer is laminated on the hard coat layer, and a relatively low refractive index layer is laminated on the high refractive index layer.
  • the anti-reflection layer has a multilayer structure of three or more layers, the reflectance can be reduced more effectively. However, as the number of layers increases, color unevenness occurs due to slight film thickness unevenness of each layer. It tends to become easier, and the color appearance becomes worse as the appearance deteriorates.
  • the antireflection layer includes a low refractive index layer and a high refractive index layer, and the difference between the refractive index of the high refractive index layer and the refractive index of the hard coat layer is preferably 0.05 or less. Thereby, the reflection spectrum can be maintained flat, and the antireflection performance can be further improved.
  • the method for forming the antireflection layer is not particularly limited, and examples thereof include a dry coating method, a roll coating method, a spin coating method, and a dip coating method.
  • the refractive index of the low refractive index layer is formed in order to exhibit the function of the antireflection layer.
  • the layer is required to have a lower refractive index than the layer immediately below, and the refractive index is preferably in the range of 1.28 to L 45. 1. When it exceeds 45, it is difficult to obtain a sufficient anti-reflection effect by the wet coating method, and when the refractive index is less than 1.28, it is difficult to form a sufficiently hard layer. It is in.
  • the high refractive index layer needs to have a higher refractive index than the hard coat layer, and therefore the refractive index is preferably in the range of 1.46 to 1.60.
  • the thickness of the anti-reflection layer varies depending on the type and shape of the transparent resin film and the structure of the anti-reflection layer.
  • the thickness is preferably equal to or less than the wavelength of visible light per layer.
  • the optical film thickness n -d of the high refractive index layer and the low refractive index of the low refractive index layer are preferably equal to or less than the wavelength of visible light per layer.
  • the refractive index layer n-d preferably satisfies the following formula.
  • n 400 ⁇ 4n -d (nm) ⁇ 650n, where n is the refractive index of the high refractive index layer and low refractive index layer, respectively.
  • H L is the thickness of the high refractive index layer and the low refractive index layer, respectively.
  • the material constituting the high refractive index layer is not particularly limited, and an inorganic material or an organic material can be used.
  • the inorganic material include zinc oxide, titanium oxide, cerium oxide, aluminum oxide, tantalum oxide, yttrium oxide, ytterbium oxide, zirconium oxide, and indium tin oxide (hereinafter abbreviated as ITO).
  • ITO indium tin oxide
  • Fine particles In particular, the use of conductive fine particles such as indium tin oxide is preferable because the surface resistivity can be lowered and the antistatic ability can be further imparted.
  • the organic material for example, a polymerized cured product of a composition containing a polymerizable monomer having a fluorene skeleton can be used.
  • the high refractive index layer containing inorganic fine particles may be formed by a wet coating method.
  • a polymerizable monomer having a refractive index of less than 1.65 and a composition containing these polymers can be used as a noinder during wet coating.
  • the average particle size of the inorganic fine particles does not greatly exceed the thickness of the layer.
  • the average particle size is preferably 0.1 m or less.
  • the surface of the fine particles can be modified with various coupling agents. Examples of various coupling agents include organically substituted silicon compounds, metal alkoxides such as aluminum, titanium, zirconium and antimony, and organic acid salts.
  • the material constituting the low refractive index layer includes inorganic substances such as silicon oxide, lanthanum fluoride, magnesium fluoride, and cerium fluoride, fluorine-containing organic compounds alone or as a mixture, and fluorine-containing organic compound heavy materials. Compositions containing coalescing can be used. In addition, a monomer (abbreviated as a non-fluorine monomer) or a polymer containing fluorine can be used as a binder. Among these, silicon oxide fine particles, particularly hollow silicon oxide particles and fluorine-containing organic compounds are particularly preferable in terms of low refractive index.
  • the hollow silicon oxide silicon particles include particles having cavities inside the outer shell and porous silicon fine particles. It is preferable that the average particle diameter of the fine particles does not greatly exceed the thickness of the layer.
  • the surface of the fine particles may be modified with an organically substituted silicon compound, an alkoxide of a metal such as aluminum, titanium, zirconium, or antimony, an organic acid salt, and a reactive group such as a (meth) atalyloyl group.
  • the (meth) atallyloyl group is effective in increasing the hardness of the low refractive index layer.
  • fluorine-containing organic compound examples include fluorine-containing monofunctional (meth) acrylate, fluorine-containing multifunctional (meth) acrylate, fluorine-containing itaconate, fluorine-containing maleate, fluorine-containing silicon compound, etc. Monomers thereof, and polymers thereof. From the viewpoint of reactivity, fluorine-containing (meth) acrylate is preferred, and fluorine-containing polyfunctional (meth) acrylate is particularly preferred from the viewpoint of hardness and refractive index. By curing these fluorine-containing organic compounds, a layer having a low refractive index and high hardness can be formed.
  • fluorine-containing monofunctional (meth) atalylate examples include 1— (meth) atariloy oxy- 1-perfluoroalkylmethane, and 1- (meth) attaloy oxyoxy-2-perfluoroalkyl eta It is Preferred perfluoroalkyl groups are linear, branched and cyclic having 1 to 8 carbon atoms.
  • fluorine-containing polyfunctional (meth) acrylate fluorine-containing bifunctional (meth) acrylate, fluorine-containing trifunctional (meth) acrylate and fluorine-containing tetrafunctional (meth) acrylate are preferred.
  • fluorine-containing bifunctional (meth) atalylate include 1,2 di (meth) atallyloyloxy-3 -perfluoroalkylbutane, 2 hydroxy 1H, 1H, 2H, 3H, 3H-perfluoro Di (meth) ataryloxymethylperfluoroalkane, and mixtures thereof.
  • the perfluoroalkyl group is preferably a linear, branched or cyclic group having 1 to L carbon atoms, and the perfluoroalkane group is preferably a linear one! /.
  • fluorine-containing trifunctional (meth) acrylates include, for example, 2- (meth) attaroyloxy 1H, 1H, 2H, 3H, 3H-perfluoroalkyl 1, 2, 2, 1 bis ⁇ (Meth) atarioxymethyl ⁇ propionate.
  • the perfluoroalkyl group is preferably a linear, branched or cyclic group having 1 to 11 carbon atoms.
  • fluorine-containing tetrafunctional (meth) atarylates are ⁇ , ⁇ , ⁇ , ⁇ -tetrakis ⁇ (meth) acryloyloxy ⁇ — ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ Preferred are ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ , ⁇ ⁇ , ⁇ -no fluoroalkanes, and mixtures thereof.
  • the perfluoroalkane group is preferably a straight chain having 1 to 14 carbon atoms.
  • a preferred fluorine-containing silicon compound is (1H, 1H, 2 ⁇ , 2 ⁇ -perfluoroalkyl) trimethoxysilane.
  • the perfluoroalkyl group is preferably a linear, branched or cyclic group having 1 to LO carbon atoms.
  • the polymer of the fluorine-containing organic compound or the polymer of the other fluorine-containing monomer include a homopolymer, a copolymer, or a copolymer of the fluorine-containing monomer and a non-fluorine monomer. Examples thereof include linear polymers such as polymers, polymers containing carbocycles or heterocycles in the chain, cyclic polymers, comb polymers, and the like.
  • the non-fluorine-based monomer include silicon compounds such as monofunctional or polyfunctional (meth) acrylates and tetraethoxysilane.
  • the anti-reflection layer is an organic or organic pigment, polymer, polymerization initiator, photopolymerization initiator, polymerization inhibitor, antioxidant, dispersion, as long as the effects of the present invention are not impaired. You may add additives, such as an agent, surfactant, a light stabilizer, and a leveling agent.
  • an adhesive layer can be formed on the surface of the transparent resin film side.
  • the material used for the adhesive layer is not particularly limited.
  • This adhesive layer can be provided with one or more functions such as blocking light in a specific wavelength region, improving contrast, and correcting color tone. For example, when the transmitted light color of the reduced reflection laminated film is yellowish or the like, it is possible to correct the color tone by adding a pigment or the like.
  • the reduced reflection laminated film of the present embodiment has an effect of improving color reproducibility and an effect of suppressing uneven light interference. As a result, it can be used for applications that require a low reflection effect. In particular, it can be used in display devices such as CRTs, plasma displays, and liquid crystal display devices.
  • the anti-reflection laminated film can be applied to the transparent plate placed on the front surface of the display surface or the force applied directly to the display surface of the display device.
  • the luminous reflectance Y for the CIE standard illuminant D65 is set to 2% or less, so that reflection on the reduced reflection laminated film surface is reduced. It is possible to improve the antireflection performance of the antireflection laminated film. Since the ab chroma cab for CIE standard illuminant D65 is set to 10 or less, the reflection spectrum becomes flat, the difference in reflectance in the visible region can be reduced, and the color derived from the reduced reflection laminated film itself Can be suppressed.
  • the reduced reflection layer constituting the reduced reflection laminated film includes a low refractive index layer, and the refractive index of the low refractive index layer is set to a small range of 1.28 to L45, whereby the visibility is improved.
  • the reflectance Y can be lowered, and the antireflection performance can be improved.
  • the antireflection layer in the antireflection laminated film includes a low refractive index layer and a high refractive index layer, and the refractive index difference between the refractive index of the high refractive index layer and the hard coat layer is set to 0.05 or less. As a result, the reflection spectrum can be kept flat, and the antireflection performance can be further improved.
  • the display device is configured such that the reduced reflection laminated film is provided on the front surface of the display device, the above-described effects of the reduced reflection laminated film can be exhibited.
  • a low reflection layer on the surface of an acrylic plate (trade name: “Delagrass A”, manufactured by Asahi Kasei Kogyo Co., Ltd.) with a refractive index of 1.
  • a forming coating solution was applied. The amount of the coating solution is adjusted so that a layer having an optical film thickness of about 550 nm is formed after drying.
  • the solvent was removed from the coating liquid layer to form a dry coating film. If necessary, the coating solution was cured by irradiating 40 OmJ of ultraviolet light using a 120 W high-pressure mercury lamp in a nitrogen atmosphere with an ultraviolet irradiation device (manufactured by Iwasaki Electric Co., Ltd.).
  • the surface opposite to the coating film was roughened with sandpaper and painted with a black paint to prepare a laminate sample.
  • the reflectance (5 °, ⁇ 5 ° regular reflectance) of the laminated plate sample at 400 to 650 nm was measured with a spectrophotometer (“U—Best V560”, manufactured by Nippon Bunko Co., Ltd.). The minimum value or maximum value of the reflectance was read.
  • the back surface of the anti-reflection laminated film (the bottom surface of the transparent resin film 11 in FIG. 1) was roughed with a sandpaper and painted with black paint to prepare a laminate sample.
  • the reflection spectrum of the laminate sample was measured with a spectrophotometer (“U-Be st V560”, manufactured by JASCO Corporation). The measurement range is 380-780nm. Thereby, the reflection spectrum of the antireflection layer can be measured.
  • the maximum amplitude of reflectance at a wavelength of 500 to 650 nm was read.
  • the tristimulus value Y of the object color due to reflection in the XYZ color system specified by JIS Z8701 is reduced.
  • the appearance of the film was observed under a three-wavelength fluorescent lamp tube, and the case where the interference unevenness was clearly visible was evaluated as X, and the case where it was hardly observed was evaluated as ⁇ .
  • a sample was prepared by attaching an anti-reflection film using an acrylic adhesive sheet on one side of a 10 cm x 10 cm size glass plate and a black film on the other side.
  • the black power of the black film on the back side appears to be natural black, black is faint, or the anti-reflective film is not colored black.
  • the case was rated as X.
  • H-1 10 parts by mass of ITO fine particles with an average particle size of 0.07 m, 90 parts by mass of tetramethylol methane tritalylate, photopolymerization initiator (trade name: “KAYACURE BMS”, manufactured by Nippon Kayaku Co., Ltd.), 5 parts by mass, butyl alcohol 900 parts by mass was mixed to prepare a coating solution for forming a high refractive index layer (H-1).
  • the refractive index of the polymerized cured product of H-2 was 1.54.
  • the refractive index of the cured product was 1.48.
  • PET polyethylene terephthalate
  • the hard coat layer forming coating solution HC-1 was applied thereon with a bar coater to a dry film thickness of about 3 m, and cured with 400 mjZcm 2 of ultraviolet light.
  • a spin coater to apply the low refractive index layer coating solution L-1 onto it, adjusting the layer thickness so that the optical film thickness is 105 nm, and after drying, apply 400 mjZcm in a nitrogen atmosphere.
  • Hard by 2 UV rays To produce a reduced reflection laminated film.
  • FIG. 1 A schematic cross-sectional view of the resulting antireflection laminated film is shown in FIG.
  • a hard coat layer 13 is provided on a transparent resin film 11 with an interference layer 12 interposed therebetween, and a low refractive index layer 14 that functions as a low reflection layer on the surface of the hard coat layer 13. Is provided.
  • Spectral reflectance of reduced reflection laminated film ?
  • Figure 2 and Table 1 show the results of evaluating the reflectance, the maximum amplitude of the reflectance curve at a wavelength of 500 to 650 nm, the ab chroma cab, the haze value, the presence or absence of interference unevenness, and coloring suppression.
  • X in FIG. 2 indicates the maximum amplitude within the range of 500 to 650 nm in the reflectance curve of the reduced reflection laminated film of Example 1.
  • a reduced reflection laminated film was produced in the same manner as in Example 1 except that the low refractive index layer coating solution was changed to L2.
  • a reduced reflection laminated film was prepared in the same manner as in Example 1 except that the low refractive index layer coating solution was changed to L3.
  • PET polyethylene terephthalate
  • a hard coat layer-forming coating solution HC-1 was applied thereon with a bar coater to a dry film thickness of about 3 m, and cured with 400 mjZcm 2 of ultraviolet light.
  • a high refractive index layer coating solution H-1 is applied onto the hard coat layer by adjusting the thickness of the layer so that the optical film thickness becomes 1 OOnm using a spin coater, and after drying, Then, it was cured with 400 mjZcm 2 of ultraviolet rays in a nitrogen atmosphere to form a high refractive index layer.
  • the low refractive index layer coating liquid L-1 was applied by adjusting the thickness of the layer so that the optical film thickness was lOOnm, and after drying, 400 mj / kg in a nitrogen atmosphere. Curing with ultraviolet rays of 2 cm 2 produced a low reflection laminated film.
  • Example 5 A reduced reflection laminated film was prepared in the same manner as in Example 4 except that the low refractive index layer coating solution was changed to L3.
  • a hard coating layer coating solution HC-2 is dried on a triacetylcellulose (TAC) film (trade name: “KC8UY”, manufactured by Koyuka Minoltaput Co., Ltd.) with a thickness of 80 ⁇ m using a bar coater.
  • TAC triacetylcellulose
  • the film was applied to a thickness of about 3 m and cured with 400 mj / cm 2 of ultraviolet light.
  • use a spin coater to apply the low refractive index layer coating liquid L-1 onto the optical film having an optical film thickness of 105 nm, and after drying, under a nitrogen atmosphere Curing was performed with 400 mjZcm 2 ultraviolet rays to prepare a low reflection laminated film.
  • X in FIG. 3 indicates the maximum amplitude in the range of 500 to 650 nm in the reflectance curve of the reduced reflection laminated film of Example 6.
  • the hard coat layer coating solution HC-2 is dried using a bar coater.
  • the film was applied to a thickness of about 3 m and cured with 400 mj / cm 2 of ultraviolet light.
  • a high refractive index layer coating solution H-1 was applied by adjusting the layer thickness so that the optical film thickness became lOnm using a spin coater, and after drying, The film was cured by ultraviolet rays of 400 mi / cm 2 under a nitrogen atmosphere to form a high refractive index layer.
  • the low refractive index layer coating liquid L-2 was applied by adjusting the layer thickness so that the optical film thickness was 95 nm, and after drying, it was 400 miZcm 2 in a nitrogen atmosphere.
  • the film was cured with UV light to produce a reduced reflection laminated film.
  • a low reflection laminated film was produced in the same manner as in Example 6 except that the transparent resin film was changed to an acrylic (AC) film with a thickness of 125 m (trade name: “Technoloy S 001”, manufactured by Sumitomo Chemical Co., Ltd.). did.
  • AC acrylic
  • a reduced reflection laminated film was produced in the same manner as in Example 1 except that no interference layer was formed.
  • X in FIG. 4 is 500 to 650 nm in the reflectance curve of the reduced reflection laminated film of Comparative Example 1. The maximum amplitude within the range of.
  • a reduced reflection laminated film was produced in the same manner as in Example 5 except that the high refractive index layer coating solution was changed to H-2.
  • X in FIG. 5 indicates the maximum amplitude in the range of 500 to 650 nm in the reflectance curve of the reduced reflection laminated film of Comparative Example 2.
  • a reduced reflection laminated film was produced in the same manner as in Example 5 except that the low refractive index layer coating solution was changed to L4.
  • a reduced reflection laminated film was prepared in the same manner as in Example 7 except that the high refractive index layer coating solution was changed to H-2.
  • the hard coat layer coating solution AG-1 is dried using a bar coater.
  • the film was applied to a thickness of about 3 m and cured with ultraviolet light of 400 mj / cm 2 to produce an antiglare film.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 8 Substrate PET PET PET PET PET PET TAC TAC AC Refractive index (ns) 1.65 1-65 1.65 1.65 1.65 1.17 1.47 1.5
  • Interference B F- 1 IF-1 IF-1 IF- 1 IF-1 None None None Refractive index (ni) 1.58 1.58 1.58 1.58-Hard coat HC-1 HC-1 HC-1 HC-1 -1 HC-1 HC-1 HC-2 HC-2 Refractive index (nHC) 1.52 1.52 1.52 1.52 1.52 1.52 1.52 t.49 1.49 1.49 1.49
  • the reduced reflection laminated film of Examples 1 to 5 includes an interference layer having an appropriate refractive index
  • the reduced reflection laminated film of Example 6 force 8 includes a hard coat layer having an appropriate refractive index.
  • the maximum amplitude of the reflectance curve from 500 to 650 nm was 0.5% or less, and the interference unevenness was reduced.
  • Visibility reflectance Y of the reduced reflection laminated film of Examples 1 to 8 is 2% or less
  • ab chroma Ca b is 10 or less
  • haze value is 1% or less, and has both excellent appearance and low reflectance, The black spots and color reproducibility were excellent.
  • Comparative Example 3 the value of ab chroma Cab is small, and the coloring of the anti-reflection layer is small, but the luminous reflectance is over 2.0% and the anti-reflection performance is poor, so the background reflection Intense coloring suppression and color reproducibility were bad.
  • Comparative Example 5 because of antiglare properties, the haze value exceeded 1.0%, and the whole looked whitish, and both coloring suppression and color reproducibility were bad.
  • Example 9 An acrylic pressure-sensitive adhesive sheet was uniformly bonded to the back surface of the reduced reflection laminated film of Examples 1 to 8 (the bottom surface of the transparent resin film 11 in FIG. 1) using a non-roller. Next, the adhesive sheet was directly bonded to the display surface of the plasma display. The appearance of uneven interference when the display was turned off and the color reproducibility when the display was turned on were evaluated. As a result, by using the reduced reflection laminated films of Examples 1 to 8, the interference unevenness was inconspicuous and the reproducibility of primary colors and black and white was excellent. The display device was observed under a three-wavelength fluorescent lamp, and the degree of interference was evaluated. The color reproducibility was evaluated by displaying the image of the personal computer image software on the display device and displaying red, blue, green, white, and black one after another, and how natural these colors look.
  • the antireflection laminated film of Comparative Examples 1 to 5 it was attached to the plasma display in the same way as in Example 9, and the appearance of uneven interference when the display was turned off and the color reproducibility when the display was turned on were evaluated. did.
  • the interference unevenness is clearly observed, the appearance quality is remarkably deteriorated, and the color reproducibility of the plasma display in which the red and green coloring of the hard coat layer derived from the interference unevenness is severe. It was evil.
  • the intense reddish-purple color of the anti-reflective layer is displayed mixed with the color of the image, so that the hue is natural.
  • a hard coat layer and an anti-reflection layer may be provided on both sides of the transparent resin film.
  • the antireflection performance can be improved by reducing the difference between the haze values in the different light reflection directions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

反射防止性能の向上と、着色の抑制を両立した減反射積層フィルムは、透明樹脂フィルム(11)に積層された干渉層(12)と、干渉層(12)に積層されたハードコート層(13)と、ハードコート層(13)に積層された減反射層(14)とを備える。この減反射積層フィルムは下記の要件を満たすことで反射防止性能の向上と着色の抑制を両立する。(i)500nmから650nmの波長領域における反射率曲線の最大振幅が1%以下である。(ii)CIE標準イルミナントD65に対する視感度反射率Yが2%以下である。(iii)CIE標準イルミナントD65に対するabクロマCabが10以下である。

Description

明 細 書
減反射積層フィルム及びそれを用いた表示装置
技術分野
[0001] 本発明は、表示装置に設けられ、着色しにくい減反射積層フィルム及びそれを用 いた表示装置に関する。
背景技術
[0002] 近年、プラズマディスプレイ (PDP)や液晶ディスプレイ(LED)等の薄型で大型の 表示装置が開発されている。大型の表示装置の視認性向上のために、表示面に反 射防止処理が施される。
[0003] 一般に、表示装置の反射防止処理は、人間の視感度中心付近の波長(550〜60 Onm)における表示装置の反射率を下げることを目指す。 550〜600nm付近の反 射率を極度に低減した反射防止フィルムが表示装置に設けられる。しかし、この設計 の反射防止フィルムは、いわゆる" V字型"の反射スペクトルを有し、反射防止フィル ムは光が当たると、赤紫から青色に強く着色してしまう。着色した反射防止フィルムは 、表示装置の色再現性を損なうという問題があった。特に、背景色が暗い色 (黒色) である場合には、反射防止フィルムの着色が際立ってしまい、黒色が黒色として再現 されにく ヽと 、う問題があった。
[0004] 減反射積層フィルムの表面硬度を高めるための、厚さ 1〜: LO m程度のハードコー ト層が透明榭脂フィルムに積層されることが多い。透明榭脂フィルムと異なる屈折率 を有するハードコート層が厚さ 1〜10 mで積層されると、水上の油膜のような干渉 むらが両層の界面で生じる。干渉むらは表示装置の外観を損なうと共に表示装置の 品位を著しく下げてしまうという問題があった。ハードコート層の膜厚が 1〜3 mでは 、前述の干渉作用によりハードコート層が赤と緑に着色してしまうため、反射防止層 の着色と同様に、表示装置の色再現性を妨げてしまうという問題があった。
[0005] これらの問題に対して、次のような解決法が提案されて 、る。即ち、最外層から減反 射層、ハードコート層及び干渉層からなる多層構造を透明榭脂フィルム上に設けると 共に、 500nm力も 650nmの波長領域における反射率の最大振幅が 1. 0%以下で ある減反射フィルムが提案されている(例えば、特許文献 1を参照)。
特許文献 1 :特開 2003— 177209号公報
発明の開示
[0006] 特許文献 1に記載の技術では、干渉むらは低減されるが反射防止性能は不十分で あり、減反射フィルムの着色は十分に抑えられない。
[0007] 本発明の目的は、反射防止性能の向上された、着色の抑制された減反射積層フィ ルム及びそれを用いた表示装置を提供することにある。
[0008] 上記の目的を達成するために、本発明の一側面によれば、透明榭脂フィルムと、前 記透明榭脂フィルム上に設けられたノ、ードコート層と、前記ハードコート層上に設け られた減反射層とを備えた減反射積層フィルムが提供される。前記減反射積層フィ ルムは peak-to-peak振幅を有するリップル状の反射率曲線によって表わされる反射 率スペクトルを有し、 500〜650nmの波長範囲における前記 peak-to-peak振幅の最 大値 (X)は 1%以下であり、 CIE標準イルミナント D65に対する視感度反射率 Yは 2 %以下であり、 Cab= { (a*) 2+ (b*) 2 } 1/2で表される、 CIE標準イルミナント D65に対 する abクロマ Cabが 10以下である。
[0009] 本発明の別の側面によれば、上記減反射積層フィルムがディスプレイの前面に設 けられた表示装置が提供される。
[0010] 好ましい減反射積層フィルムは、 JIS K 7136に規定されるヘーズ値が 1%以下で ある。
[0011] 一例では、前記減反射層は、前記ハードコート層の屈折率よりも低い屈折率を有す る低屈折率層を含み、前記低屈折率層の屈折率が 1. 28〜: L 45である。
[0012] 一例では、前記減反射層は、前記ハードコート層の屈折率よりも低い屈折率を有す る低屈折率層と、前記低屈折率層の屈折率よりも高い屈折率を有する高屈折率層と を含み、高屈折率層の屈折率とハードコート層の屈折率との差が 0. 05以下である。
[0013] 一例では、前記透明榭脂フィルムの屈折率が 1. 45〜: L 55であり、前記ハードコ ート層の屈折率と前記透明榭脂フィルムの屈折率との差が 0. 03以下であり、前記ハ ードコート層の膜厚が 1〜10 μ mである。
[0014] 一例では、前記透明榭脂フィルムの屈折率が 1. 55〜: L 70であり、前記透明榭脂 フィルムの一表面に、干渉層、ハードコート層及び少なくとも該ハードコートの屈折率 より低い屈折率を有する層を順に積層し、前記ハードコート層の屈折率が 1. 45〜1 . 55であり、前記ハードコート層の膜厚が 1〜: LO mであり、前記干渉層が次式で表 される屈折率を有し、
干渉層の屈折率 = { (透明榭脂フィルムの屈折率) X (ハードコート層の屈折率) }1 2 ±0. 03
前記干渉層の光学膜厚が 125〜165nmであり、
前記干渉層の屈折率は透明榭脂フィルムの屈折率とハードコート層の屈折率の間で ある。
[0015] 一例では、前記透明榭脂フィルムがトリァセチルセルロースフィルム又はアクリルフ イルムであり、前記減反射層は、中空酸化珪素粒子又は含フッ素有機化合物を含む
[0016] 一例では、前記透明榭脂フィルムがポリエチレンテレフタレートフィルムであり、前記 減反射層は中空酸ィ匕珪素粒子又は含フッ素有機化合物を含む。
図面の簡単な説明
[0017] [図 1]実施例 1の減反射積層フィルムの断面図。
[図 2]実施例 1の減反射積層フィルムの反射スペクトル。
[図 3]実施例 6の減反射積層フィルムの反射スペクトル。
[図 4]比較例 1の減反射積層フィルムの反射スペクトル。
[図 5]比較例 2の減反射積層フィルムの反射スペクトル。
発明を実施するための最良の形態
[0018] 以下、本発明の一実施形態について詳細に説明する。
[0019] 本願発明者は、反射率曲線の peak-to-peak振幅の 500〜650nmの波長範囲に おける最大値が 1%以下であり、 CIE標準イルミナント D65に対する視感度反射率 Y 力 2%以下であり、かつ、 CIE標準イルミナント D65に対する abクロマ Cabが 10以下 であるときに、反射防止性能の向上と着色の低減とを両立するのに不可欠であると言 う知見を得て、本願発明の減反射積層フィルムを完成した。減反射積層フィルムは上 記最大値、?見感度反射率、及び abクロマ Cabの全要件を満たすように構成される。 [0020] 図 1に示すように本発明の一実施形態の減反射積層フィルムは、透明榭脂フィルム 11上に設けられたハードコート層 13と、そのハードコート層 13上に設けられた減反 射層 14とを備える。
[0021] 透明榭脂フィルムは、屈折率 (n)が 1. 45〜: L 70の範囲内の透明榭脂材料から形 成されるのが好ましい。透明榭脂材料の例は、トリァセチルセルロース (TAC、 n= l . 48)、アクリルフィルム(AC、 n= l. 50)、アートン (ARTON、JSR (株)製、嵩高の 環状ォレフィン榭脂、 n= l. 51)、ゼォノア (ZEONOR、嵩高の環状ォレフィン榭脂、 日本ゼオン (株)製、 n= l. 53)、ポリエチレンテレフタレート(PET、 n= l. 65)、ポリ カーボネート(PC、 n= l. 59)、ポリアリレート(PAR、 n= l. 60)及びポリエーテルス ルフォン(PES、 n= l. 65)である。 TACフィルムや ACフィルムは、屈折率が低めの 透明榭脂フィルムとして好まし 、。 PETフィルムは屈折率が高めの透明榭脂フィルム として好ましい。
[0022] 透明榭脂フィルムの厚みは、好ましくは 25〜400 μ m、更に好ましくは 50〜200 μ mである。
[0023] 本発明の減反射積層フィルムは、 500nmから 650nmの波長領域における反射率 曲線の peak-to-peak振幅の最大値が 1%以下になるように構成される。即ち、減反射 積層フィルムの反射スペクトルはリップル (ripple)状の反射率曲線によって表わされる (図 2参照)。ハードコート層と透明榭脂フィルムとの間の干渉光に起因して、反射率 曲線の振幅(peak-to-peak振幅)は連続的に変化する。 peak-to-peak振幅は反射率 曲線の極大値と極小値の差であり、減反射積層フィルムの表面における反射スぺタト ルカ 算出または計測される。その最大値は、更に好ましくは 0. 5%以下である。そ の最大値が 1%を超えると干渉むらが目立ち、表示装置の外観の品位を下げ、干渉 むら由来の赤や緑の色むらが発生し、表示装置の色再現性を低下させるため、好ま しくない。
[0024] CIE標準イルミナント D65に対する減反射積層フィルムの視感度反射率 Yは 2%以 下であり、より好ましくは 1%以下である。 CIE標準イルミナント D65は、国際照明委 員会 (CIE)によって相対分光分布が規定されたイルミナント (それで照射された物体 の色知覚に影響を及ぼす波長域全体の相対分光分布が規定されている放射)であ る。視感度反射率 Yは、この相対分光分布を用いて、 JIS Z8701で規定されている X ΥΖ表色系における反射による物体色の三刺激値として計算される。視感度反射率 Υ 力 2%を超えると、減反射積層フィルムの反射低減効果が弱ぐ画面への背景の映り 込みを低減できず、表示装置の色再現性が低下するため、好ましくない。
[0025] 人間の目に光として感じる波長範囲、即ち可視光(380nmから 780nm)に対する 減反射積層フィルムの最大反射率は好ましくは 4%以下、更に好ましくは 3%以下で ある。可視領域の最大反射率を低減することにより、本発明の効果は更に向上する。 その理由は、可視光に対する最大反射率が 4%を超える減反射積層フィルムの反射 防止性能を向上させると、減反射積層フィルムの着色がきつくなる傾向があり、逆に 減反射積層フィルムの着色を抑えようとすると、反射防止性能が悪くなる傾向がある ためである。
[0026] 次式で表される、 CIE標準イルミナント D65に対する減反射積層フィルムの abクロ マ Cabは 10以下であり、好ましくは 5以下である。
Cab= { (a*) 2+ (b*) 2}1 2
abクロマ Cabは、 CIEが 1976年に推奨した知覚的にほぼ均等な歩度をもつ色空間 CIE1976L*a*b*表色系において、彩度に近似的に相関する量を表している。この a bクロマ Cabが 10を超える場合には、減反射積層フィルムの表面の着色が目立つよう になり、表示装置の色再現性が低下するため好ましくない。
[0027] 減反射積層フィルムは、 JIS K 7136に規定されるヘーズ値が 1%以下であることが 好ましぐ 0. 5%以下であることが更に好ましい。このヘーズ値が 1%を超える減反射 積層フィルムを表示装置に設置した場合、表面が白く濁った感じに見えてしまい、表 示装置の色再現性を著しく低下させてしまうため、好ましくな!/、。
[0028] 500nmから 650nmの波長領域における反射率曲線の最大振幅を 1%以下にする ことで減反射積層フィルムの干渉むらは低減される力 そのためには以下の工夫が 必要である。屈折率が 1. 45〜: L 55の透明榭脂フィルムを使用する場合には、ハー ドコート層の屈折率と透明榭脂フィルムの屈折率との差が 0. 03以下であり、ハードコ ート層の膜厚が 1〜10 mであることが重要である。更に好ましくは、ハードコート層 の屈折率と透明榭脂フィルムの屈折率との差が 0. 02以下である。 [0029] 屈折率が 1. 55〜: L . 70の透明榭脂フィルムを使用する場合には、透明榭脂フィル ム上に、干渉層とハードコート層を順に積層することにより干渉むらを低減させること が望ましい。この場合、ハードコート層の屈折率は 1. 45-1. 55で、ハードコート層 の膜厚は 1 μ πι〜10 /ζ mであり、干渉層の屈折率は次式で表される範囲内であり、 干渉層の光学膜厚が 125〜165nmである。
干渉層の屈折率 = { (透明榭脂フィルムの屈折率) } X (ハードコート層の屈折率) }1 2 ±0. 03
そして、干渉層の屈折率は透明榭脂フィルムの屈折率より小さぐハードコート層の 屈折率より大き!、。光学膜厚とは層の屈折率 (n)と層の厚み (d)の積で (n X d)ある。
[0030] 更に好ましい干渉層の屈折率は、 { (透明榭脂フィルムの屈折率) X (ハードコート 層の屈折率 ) }1/2±0. 02である。干渉層の屈折率が { (透明榭脂フィルムの屈折率) X (ハードコート層の屈折率) }1/2と等しいときに干渉むらは最も低減される。
[0031] 干渉層の屈折率及び光学膜厚が、上記範囲外である場合には、光の干渉むらの 低減効果が低くなるため好ましくない。同様にハードコート層の屈折率が 1. 45未満 の場合、或いは 1. 55を超える場合には、適切な光の干渉むら低減効果が得られな いため好ましくない。ハードコート層の膜厚が 1 m未満の場合には、十分な表面強 度が得られないため好ましくない。一方、その膜厚が 10 /z mを超える場合には、耐屈 曲性の低下等の問題が生じるため好ましくない。
[0032] 干渉層は屈折率、厚みが前記範囲内であれば良ぐその材料、層の形成方法は特 に限定されない。干渉層の材料例はアタリレート、珪素化合物、金属、及び金属酸化 物である。
[0033] 干渉層は透明榭脂フィルムとハードコート層との密着性を向上する機能を有しても よい。干渉層と透明榭脂フィルムとを延伸やキャストで一体に形成してもよい。例えば 、 PET製の透明榭脂フィルムの製造時に、ポリエステル系榭脂からなる接着剤を塗 布して易接着層を形成する。この易接着層の屈折率及び膜厚が干渉層の要件を満 たせば、易接着層が干渉層を兼ねることができる。
[0034] ハードコート層の形成方法は特に限定されない。ハードコート層の材料として、例え ば、単官能 (メタ)アタリレート、多官能 (メタ)アタリレート、そしてテトラエトキシシラン等 の反応性珪素化合物等の硬化物が挙げられる。本明細書において (メタ)アタリレー トは、メタクリル酸エステルとアクリル酸エステルの両方を指す。特に好ましいハードコ ート層の材料は生産性及び硬度の点で優れた、紫外線硬化性の多官能アタリレート を含む組成物の重合硬化物である。
[0035] 紫外線硬化性の多官能アタリレートの例はジペンタエリスリトールへキサアタリレート 、テトラメチローノレメタンテトラアタリレート、テトラメチローノレメタントリアタリレート、トリメ チロールプロパントリアタリレート、 1, 6 へキサンジオールジアタリレート、 1, 6 ビ ス(3—アタリロイルォキシ 2 ヒドロキシプロピルォキシ)へキサン等の多官能アル コールのアクリル誘導体や、ポリエチレングリコールジアタリレート、そしてポリウレタン アタリレート等が挙げられる。
[0036] 紫外線硬化性の多官能アタリレートと他の組成物とを含む組成物であってもよ!/、。
他の成分の例は、無機又は有機の微粒子状充填剤、無機又は有機の微粒子状顔 料、及びそれ以外の無機又は有機微粒子;重合体、重合開始剤、重合禁止剤、酸 化防止剤、分散剤、界面活性剤、光安定剤及びレべリング剤等の添加剤等が挙げら れる。
[0037] 次に、減反射層は単層構造又は 2層構造をとることができる。単層構造の場合には 、ハードコート層上に該ハードコート層よりも低い屈折率の層(低屈折率層)を 1層形 成する。 2層構造の場合には、ハードコート層の上に比較的高屈折率の層を積層し、 その高屈折率の層の上に比較的低屈折率の層を積層する。減反射層が 3層以上の 多層構造を有する場合には、より効果的に反射率を下げることができるが、層の数が 増えると、各層のわずかな膜厚むらにより、色むらが発生しやすくなり、外観が悪くな ると共に色再現性が低下する傾向を示す。
[0038] 減反射層は低屈折率層と高屈折率層とを含み、高屈折率層の屈折率とハードコー ト層の屈折率との差が 0. 05以下であることが好ましい。これにより、反射スペクトルを フラットに維持することができ、反射防止性能をより向上させることができる。
[0039] 減反射層の形成方法は特に限定されず、例えばドライコーティング法、ロールコー ト法、スピンコート法、及びディップコート法である。
[0040] 減反射層の機能を発揮させるために、低屈折率層の屈折率としては、形成される 層がその直下の層より低屈折率であることを要件とし、その屈折率は 1. 28〜: L 45 の範囲にあることが好ましい。 1. 45を超える場合にはウエットコーティング法では十 分な減反射効果を得ることが難しぐまた屈折率が 1. 28未満の場合には十分に硬 い層を形成することが困難となる傾向にある。 2層構造を有する場合には、高屈折率 層はハードコート層より屈折率を高くすることが必要であるので、その屈折率は 1. 46 〜1. 60の範囲内であることが好ましい。
[0041] 減反射層の厚みは透明榭脂フィルムの種類、形状、減反射層の構造によって異な る力 一層あたり可視光の波長と同じ厚み又はそれ以下の厚みが好ましい。可視光 の反射を低減するためには、高屈折率層の光学膜厚 n -d及び低屈折率層の低屈
H H
折率層 n -dは次式を満たすことが好ましい。
し し
500~≤4n -d (nm)≤750
H H
400≤4n -d (nm)≤650n 、 nはそれぞれ高屈折率層、低屈折率層の屈折率で
L L H L
あり、 d 、 d
H Lはそれぞれ高屈折率層、低屈折率層の厚みである。
[0042] 高屈折率層を構成する材料は特に限定されず、無機材料又は有機材料を用いるこ とができる。無機材料としては、例えば酸ィ匕亜鉛、酸化チタン、酸化セリウム、酸ィ匕ァ ルミ二ゥム、酸化タンタル、酸化イットリウム、酸化イッテルビウム、酸化ジルコニウム、 酸化インジウム錫 (以後、 ITOと略す。)等の微粒子が挙げられる。特に、酸化インジ ゥム錫等の導電性微粒子を用いた場合には表面抵抗率を下げることができ、帯電防 止能も更に付与することができるため好ましい。一方、有機材料としては、例えばフル オレン骨格を有する重合性単量体を含む組成物の重合硬化物を用いることができる
[0043] 無機微粒子を含む高屈折率層はウエットコーティング法により形成してもよい。その 場合には、屈折率が 1. 65未満となる重合性単量体及びこれらの重合体を含む組成 物をウエットコーティング時のノインダ一として用いることができる。無機微粒子の平 均粒径は層の厚みを大きく超えないことが好ましぐ特に 0. 1 m以下であることが 好ま 、。必要に応じて微粒子表面を各種カップリング剤等により修飾することができ る。各種カップリング剤としては例えば、有機置換された珪素化合物、アルミニウム、 チタニウム、ジルコニウム、アンチモン等の金属アルコキシド、有機酸塩等が挙げられ る。
[0044] 低屈折率層を構成する材料としては、酸化珪素、フッ化ランタン、フッ化マグネシゥ ム、フッ化セリウム等の無機物や、含フッ素有機化合物の単独又は混合物、或いは 含フッ素有機化合物の重合体を含む組成物を用いることができる。また、フッ素を含 まな 、単量体 (非フッ素系単量体と略記)や重合体をバインダーとして用いることがで きる。この中でも、酸化珪素系微粒子、特に中空酸化珪素粒子や含フッ素有機化合 物力 低屈折率の点で特に好ましい。
[0045] 中空酸ィ匕珪素粒子としては、例えば外殻内部に空洞を有する粒子及び多孔質シリ 力微粒子が挙げられる。微粒子の平均粒径は層の厚みを大きく超えないことが好まし ぐ特に 0. : L m以下であることが好ましい。必要に応じて微粒子表面を、有機置換 された珪素化合物、アルミニウム、チタニウム、ジルコニウム、アンチモン等の金属の アルコキシド、有機酸塩、及び (メタ)アタリロイル基等の反応性基で修飾してもよい。 特に (メタ)アタリロイル基は低屈折率層の硬度を高めるのに有効である。
[0046] 上記含フッ素有機化合物の例は、含フッ素単官能 (メタ)アタリレート、含フッ素多官 能 (メタ)アタリレート、含フッ素ィタコン酸エステル、含フッ素マレイン酸エステル、含 フッ素珪素化合物等の単量体、及びそれらの重合体等が挙げられる。反応性の観点 より含フッ素 (メタ)アタリレートが好ましぐ特に含フッ素多官能 (メタ)アタリレートが、 硬度、屈折率の点より最も好ましい。これら含フッ素有機化合物を硬化させることによ り、低屈折率かつ高硬度の層を形成することができる。
[0047] 含フッ素単官能 (メタ)アタリレートの例は 1— (メタ)アタリロイ口キシ— 1—パーフル ォロアルキルメタン、及び 1— (メタ)アタリロイ口キシ— 2—パーフルォロアルキルエタ ンである。好ましいパーフルォロアルキル基は炭素数 1〜8の直鎖状、分枝状、及び 環状のものである。
[0048] 含フッ素多官能 (メタ)アタリレートとしては、含フッ素 2官能 (メタ)アタリレート、含フッ 素 3官能 (メタ)アタリレート及び含フッ素 4官能 (メタ)アタリレートが好ま 、。含フッ素 2官能 (メタ)アタリレートとしては、例えば、 1, 2 ジ (メタ)アタリロイルォキシ— 3—パ 一フルォロアルキルブタン、 2 ヒドロキシ 1H, 1H, 2H, 3H, 3H—パーフルォロ ジ (メタ)アタリロイルォキシメチルパーフルォロアルカン、及びそれらの混合物が挙げ られる。パーフルォロアルキル基は炭素数 1〜: L 1の直鎖状、分枝状、環状のものが、 パーフルォロアルカン基は直鎖状のものが好まし!/、。
[0049] 含フッ素 3官能 (メタ)アタリレートの例としては、例えば、 2- (メタ)アタリロイルォキ シ一 1H, 1H, 2H, 3H, 3H—パーフルォロアルキル一 2,, 2,一ビス { (メタ)アタリ口 ィルォキシメチル }プロピオナート等が挙げられる。パーフルォロアルキル基は炭素 数 1〜11の直鎖状、分枝状、環状のものが好ましい。
[0050] 含フッ素 4官能 (メタ)アタリレートの例としては、 α , β , φ , ω—テトラキス { (メタ)ァ クリロイノレォキシ }— α Η, α Η, β Η, γ Η, γ Η, χ Η, χ Η, Η, ω Η, ω Η—ノ 一フルォロアルカン、及びそれらの混合物が好ましい。パーフルォロアルカン基は炭 素数 1〜14の直鎖状のものが好ましい。
[0051] 好ましい含フッ素珪素化合物は、(1H, 1H, 2Η, 2Η—パーフルォロアルキル)トリ メトキシシランである。パーフルォロアルキル基は炭素数 1〜: LOの直鎖状、分枝状、 環状のものが好まし 、。前記含フッ素有機化合物の重合体又はその他の含フッ素系 単量体の重合体としては、前記含フッ素単量体の単独重合体、共重合体、又は非フ ッ素系単量体との共重合体等の直鎖状重合体、鎖中に炭素環や複素環を含む重合 体、環状重合体、櫛型重合体等が挙げられる。前記非フッ素系単量体の例は単官能 又は多官能 (メタ)アタリレートゃテトラエトキシシラン等の珪素化合物等が挙げられる
[0052] 減反射層には前記の化合物以外に本発明の効果を損なわない範囲において、無 機又は有機顔料、重合体、重合開始剤、光重合開始剤、重合禁止剤、酸化防止剤、 分散剤、界面活性剤、光安定剤、レべリング剤等の添加剤を添加してもよい。
[0053] 減反射積層フィルムにお ヽて、透明榭脂フィルム側の表面に接着層を形成すること ができる。接着層に用いられる材料としては特に限定されない。この接着層には特定 波長域の光の遮断、コントラスト向上、色調補正等の機能を一種類以上付与すること ができる。例えば、減反射積層フィルムの透過光色が黄色味を帯びている等、好まし くない場合には色素等を添加して色調補正することができる。
[0054] 本実施形態の減反射積層フィルムは、色再現性向上効果、光の干渉むら抑制効 果、減反射効果を必要とする用途に用いることができる。特に、 CRT,プラズマデイス プレイ、及び液晶表示装置のような表示装置に使用することができる。減反射積層フ イルムは表示装置の表示面に直接貼り付けられる力 又は表示面の前面に配置され る透明板に貼り付けられる。
[0055] 実施形態によって発揮される効果について、以下にまとめて記載する。
[0056] 本実施形態の減反射積層フィルムでは、 CIE標準イルミナント D65に対する視感 度反射率 Yが 2%以下に設定されて ヽることから、減反射積層フィルム表面への映り こみを少なくすることができ、減反射積層フィルムの反射防止性能を向上させることが できる。 CIE標準イルミナント D65に対する abクロマ Cabが 10以下に設定されている ことから、反射スペクトルがフラットになり、可視領域での反射率の差を少なくすること ができ、減反射積層フィルム自身に由来する着色を抑制することができる。
[0057] 減反射積層フィルム〖お IS K 7136に規定されるヘーズ値が 1%以下に設定される ことにより、濁りのないクリアな画像を得ることができる。
[0058] 減反射積層フィルムを構成する減反射層は低屈折率層を含み、その低屈折率層 の屈折率が 1. 28〜: L 45という小さい範囲に設定されることにより、前記視感度反射 率 Yを下げることができ、反射防止性能を向上させることができる。
[0059] 減反射積層フィルムにおける減反射層は低屈折率層と高屈折率層とを含み、高屈 折率層の屈折率とハードコート層との屈折率差が 0. 05以下に設定されることにより、 反射スペクトルをフラットに維持することができ、反射防止性能をより向上させることが できる。
[0060] 表示装置は、前記減反射積層フィルムが表示装置の前面に設けられて構成される ため、減反射積層フィルムによる上記の効果を発揮することができる。
[0061] 本発明の製造例、実施例及び比較例を説明する。まず、減反射層形成用塗液の 硬化物の屈折率の測定を説明する。
(1)屈折率 1. 49のアクリル板 (商品名:「デラグラス A」、旭化成工業株式会社製)の 表面上に、ディップコーター (杉山元理ィ匕学機器株式会社製)により、減反射層形成 用塗液を塗布した。塗液の量は乾燥後に 550nm程度の光学膜厚を有する層が形 成されるように調整される。 (2)塗液の層から溶媒を除去して、乾燥塗膜を形成した。必要に応じて紫外線照射 装置 (岩崎電気株式会社製)により窒素雰囲気下で 120W高圧水銀灯を用いて、 40 OmJの紫外線を照射して塗液を硬化させた。
(3)アクリル板にお 、て塗膜と反対側の面 (裏面)をサンドペーパーで粗くし、黒色塗 料で塗りつぶして積層板試料を作成した。分光光度計(「U— Best V560」、日本分 光株式会社製)により、 400〜650nmにおける積層板試料の反射率(5° 、 —5° 正 反射率)を測定した。反射率の極小値又は極大値を読み取った。
(4)反射率の極値より以下の式を用いて塗膜の屈折率を計算した。
[0062] [数 1] 反射率の難 ;アクリル板の屈折率)- (層の麵
(アクリル板の屈折率) + (層の屈折率)2 ΐ χ 1 00
[0063] 減反射積層フィルムの物性を以下の方法で測定した。
[0064] (a)分光反射率
減反射積層フィルムの裏面(図 1にお 、て透明榭脂フィルム 11の下面)をサンドべ一 パーで粗し、黒色塗料で塗りつぶして積層板試料を作成した。分光光度計(「U— Be st V560」、日本分光株式会社製)により積層板試料の反射スペクトルを測定した。 測定範囲は 380〜780nmである。これにより、減反射層の反射スペクトルが測定で きる。
[0065] (b)波長 500〜650nmでの反射率曲線の最大振幅
測定した反射スペクトルより、波長 500〜650nmでの反射率の最大振幅を読み取つ た。
[0066] (c)視感度反射率 Y
380〜780nmの分光反射率と、 CIE標準イルミナント D65の相対分光分布を用いて 、 JIS Z8701で規定される XYZ表色系における、反射による物体色の三刺激値 Yを 十异しプ。
[0067] (d)abクロマ
(a)で測定した 380〜780nmの分光反射率と、 CIE標準イルミナント D65の相対分光 分布を用いて、 JIS Z8720に規定される色空間 CIE1976L*a*b*表色系を計算し、 a*、 b*値から abクロマ Cabを計算した。
[0068] (e)ヘーズ値
ヘーズメーター(「NDH2000」、日本電色工業株式会社製)を用いてヘーズ値を測 し 7こ。
[0069] (D干渉むらの有無
三波長蛍光灯管の下でフィルムの外観を観察し、干渉むらがはっきりと見える場合を X、殆ど観察されない場合と〇として評価した。
[0070] (g)着色抑制(黒のしまり)
10cm X 10cmサイズのガラス板の片面にアクリル系粘着シートを使用して減反射フ イルムを貼り合せ、もう片方の面に黒色フィルムを貼り合せたサンプルを作製した。こ のサンプルを、三波長蛍光灯管の下で観察し、裏面の黒色フィルムの黒色力 自然 な黒色に見える場合を〇、黒色が白茶けたり、減反射フィルムの着色がきつぐ黒つ ぼく見えない場合を Xとして評価した。
[0071] 〔製造例 1 1、干渉層形成用塗液 (IF— 1)の調製〕
ジペンタエリスリトールへキサアタリレート 30質量部、テトラメチロールメタントリアタリ レート 20質量部、平均粒径 0. 05 mの酸ィ匕錫微粒子 50質量部、光重合開始剤( 製品名:「IRGACURE907」、チバスペシャルティケミカル製) 2質量部を 2 ブタノ ール 1000質量部に溶解乃至分散して干渉層形成用塗液 (IF— 1)を調製した。塗 液 IF— 1の硬化物の屈折率は 1. 58であった。
[0072] 〔製造例 1— 2、ハードコート層形成用塗液 (HC— 1)の調製〕
ジペンタエリスリトールへキサアタリレート 70質量部、 1, 6 ビス(3—アタリロイルォ キシ— 2 ヒドロキシプロピルォキシ)へキサン 30質量部、光重合開始剤(商品名:「I RGACURE184」、チバスペシャルティケミカル製) 4質量部、イソプロパノール 100 質量部を混合してハードコート層形成用塗液 (HC— 1)を調製した。塗液 HC— 1の 硬化物の屈折率は 1. 52であった。
[0073] 〔製造例 1— 3、ハードコート層形成用塗液 (HC— 2)の調整〕
ジペンタエリスリトールへキサアタリレート 50質量部、シリカゲル微粒子分散液 (商 品名:「XBA— ST」、日産化学株式会社製) 50質量部、光重合開始剤 (商品名:「IR GACURE 184」、チバスペシャルティケミカル製) 4質量部、イソプロパノール 100質 量部を混合してハードコート層形成用塗液 (HC— 2)を調製した。塗液 HC— 2の硬 化物の屈折率は 1. 49であった。
[0074] 〔製造例 1—4、防眩性ノ、ードコート層形成用塗液 (AG— 1)の調整〕
ジペンタエリスリトールへキサアタリレート 96質量部、平均粒径 2 μ mの架橋ポリスチ レン粒子 (商品名: SX— 200H、綜研ィ匕学株式会社製)を 4質量部、光重合開始剤( 商品名:「IRGACURE907」、チバスペシャルティケミカル製) 4質量部、メチルェチ ルケトン Zイソプロパノール = 50Z50の混合溶媒 100質量部を混合した後、高速デ イスパにて 5000rpmで 1時間攪拌、分散した後、孔径 30 mのポリプロピレン製フィ ルターで濾過して、防眩性ノヽードコート層形成用塗液 AG— 1を調製した。塗液 AG 1の硬化物の屈折率は 1. 51だった。
[0075] 〔製造例 1 5、高屈折率層形成用塗液 (H— 1)の調製〕
平均粒径 0. 07 mの ITO微粒子 10質量部、テトラメチロールメタントリアタリレート 90質量部、光重合開始剤(商品名:「KAYACURE BMS」、日本化薬株式会社製 ) 5質量部、ブチルアルコール 900質量部を混合し高屈折率層形成用塗液 (H— 1) を調製した。 H— 2の重合硬化物の屈折率は 1. 54であった。
[0076] 〔製造例 1 6、高屈折率層形成用塗液 (H— 2)の調製〕
平均粒径 0. 07 mの ITO微粒子 70質量部、テトラメチロールメタントリアタリレート 30質量部、光重合開始剤(商品名:「KAYACURE BMS」、日本化薬株式会社製 ) 5質量部、ブチルアルコール 900質量部を混合し高屈折率層形成用塗液 (H— 1) を調製した。塗液 H— 2の重合硬化物の屈折率は 1. 64であった。
[0077] 〔製造例 1 7、低屈折率層形成用塗液 (L 1)の調製〕
1, 10 ジァクリロイルォキシ— 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9— へキサデカフルォロデカン 40質量部、中空シリカゾル(固形分濃度 20質量%、平均 粒径 60nm、触媒化成工業株式会社製) 120質量部、光重合開始剤 (商品名:「KA YACURE BMS」、日本化薬株式会社製) 5質量部を混合して、低屈折率層形成 用塗液 (L 1)を調製した。塗液 L 3の重合硬化物の屈折率は 1. 32であった。 [0078] 〔製造例 1 8、低屈折率層形成用塗液 (L 2)の調製〕
ジペンタエリスリトールへキサアタリレート 30質量部、中空シリカゾル(固形分濃度 2 0質量%、平均粒径 60nm、触媒化成工業株式会社製) 140質量部、光重合開始剤 (商品名:「KAYACURE BMSJ、 日本化薬株式会社製) 5質量部を混合して、低 屈折率層形成用塗液 (L 2)を調製した。塗液 L 2の重合硬化物の屈折率は 1. 3 5であった。
[0079] 〔製造例 1 9、低屈折率層形成用塗液 (L 3)の調製〕
1, 10 ジァクリロイルォキシ— 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9— へキサデカフルォロデカン 80質量部、ジペンタエリスリトールへキサアタリレート 5質 量部、シリカゲル微粒子分散液 (商品名:「XBA— ST」、日産化学株式会社製) 60 質量部、光重合開始剤(商品名:「KAYACURE BMSJ、日本化薬株式会社製) 5 質量部を混合して低屈折率層形成用塗液 (L- 3)を調製した。 L 3の重合硬化物 の屈折率は 1. 40であった。
[0080] 〔製造例 1 10、低屈折率層形成用塗液 (L 4)の調製〕
テトラメチロールメタントリアタリレート 60質量部、シリカゲル微粒子分散液 (商品名: 「XBA— ST」、日産化学株式会社製) 40質量部、光重合開始剤 (商品名:「IRGAC URE907」、チバスペシャルティケミカル製) 4質量部、イソプロパノール 100質量部 を混合してハードコート層形成用塗液 (HC— 2)を調製した。硬化物の屈折率は 1. 4 8であった。
[0081] (実施例 1)
厚みが 100 mのポリエチレンテレフタレート(PET)フィルム(商品名:「A4300」、 東洋紡績株式会社製)上に干渉層として、干渉層形成用塗液 IF— 1をスピンコータ 一により、光学膜厚が 145〜155nmになるように層の厚さを調整して塗布し、乾燥後 、窒素雰囲気下で 400mj/cm2の紫外線により硬化した。
[0082] その上にハードコート層形成用塗液 HC—1をバーコ一ターを用いて乾燥膜厚 3 m程度になるように塗布し、 400mjZcm2の紫外線により硬化した。次に、スピンコー ターを用いて、その上に低屈折率層塗液 L—1を光学膜厚が 105nmになるように層 の厚さを調整して塗布し、乾燥後、窒素雰囲気下で 400mjZcm2の紫外線により硬 化し、減反射積層フィルムを作製した。得られた減反射積層フィルムの概略断面図を 図 1に示した。この図 1に示すように、透明榭脂フィルム 11の上に、干渉層 12を介し てハードコート層 13が設けられ、ハードコート層 13の表面には減反射層として機能 する低屈折率層 14が設けられて ヽる。
[0083] 減反射積層フィルムの分光反射率、?見感度反射率、波長 500〜650nmでの反射 率曲線の最大振幅、 abクロマ Cab、ヘーズ値、干渉むらの有無及び着色抑制を評価 した結果を図 2及び表 1に示した。図 2中の Xは、実施例 1の減反射積層フィルムの反 射率曲線において、 500〜650nmの範囲内での最大振幅を示す。
[0084] (実施例 2)
低屈折率層塗液を L 2に変えた以外は実施例 1と同様にして減反射積層フィルム を作製した。
[0085] (実施例 3)
低屈折率層塗液を L 3に変えた以外は実勢例 1と同様にして減反射積層フィルム を作製した。
[0086] (実施例 4)
厚みが 100 mのポリエチレンテレフタレート(PET)フィルム(商品名:「A4300」、 東洋紡績株式会社製)上に干渉層として、干渉層形成用塗液 IF— 1をスピンコータ 一により、光学膜厚が 145〜155nmになるように層の厚さを調整して塗布し、乾燥後 、窒素雰囲気下で 400mjZcm2の紫外線により硬化した。
[0087] その上にハードコート層形成用塗液 HC—1をバーコ一ターを用いて乾燥膜厚 3 m程度になるように塗布し、 400mjZcm2の紫外線により硬化した。次に、ハードコー ト層の上に、スピンコ一ターを用 ヽて高屈折率層塗液 H— 1を光学膜厚が 1 OOnmに なるように層の厚さを調整して塗布し、乾燥後、窒素雰囲気下で 400mjZcm2の紫 外線により硬化し、高屈折率層を形成した。更にその上に、スピンコーターを用いて、 低屈折率層塗液 L—1を光学膜厚が lOOnmになるように層の厚さを調整して塗布し 、乾燥後、窒素雰囲気下で 400mj/cm2の紫外線により硬化し、減反射積層フィル ムを作製した。
[0088] (実施例 5) 低屈折率層塗液を L 3に変えた以外は実勢例 4と同様にして減反射積層フィルム を作製した。
[0089] (実施例 6)
厚みが 80 μ mのトリアセチルセルロース(TAC)フィルム(商品名:「KC8UY」、コ ユカミノルタォプト株式会社製)上に、ハードコート層塗液 HC— 2をバーコ一ターを 用いて乾燥膜厚 3 m程度になるように塗布し、 400mj/cm2の紫外線により硬化し た。次に、スピンコーターを用いて、その上に低屈折率層塗液 L—1を光学膜厚が 10 5nmになるように層の厚さを調整して塗布し、乾燥後、窒素雰囲気下で 400mjZcm 2の紫外線により硬化し、減反射積層フィルムを作製した。図 3中の Xは、実施例 6の 減反射積層フィルムの反射率曲線において、 500〜650nmの範囲内での最大振幅 を示す。
[0090] (実施例 7)
厚みが 80 μ mのトリアセチルセルロース(TAC)フィルム(商品名:「KC8UY」、コ ユカミノルタォプト株式会社製)上に、ハードコート層塗液 HC— 2をバーコ一ターを 用いて乾燥膜厚 3 m程度になるように塗布し、 400mj/cm2の紫外線により硬化し た。次に、ハードコート層の上に、スピンコーターを用いて高屈折率層塗液 H— 1を光 学膜厚が l lOnmになるように層の厚さを調整して塗布し、乾燥後、窒素雰囲気下で 400mi/cm2の紫外線により硬化し、高屈折率層を形成した。更にその上に、スピン コーターを用いて、低屈折率層塗液 L— 2を光学膜厚が 95nmになるように層の厚さ を調整して塗布し、乾燥後、窒素雰囲気下で 400miZcm2の紫外線により硬化し、 減反射積層フィルムを作製した。
[0091] (実施例 8)
透明榭脂フィルムを厚みが 125 mのアクリル (AC)フィルム(商品名:「テクノロイ S 001」、住友化学株式会社製)に変更した以外は、実施例 6と同様にして減反射積層 フィルムを作製した。
[0092] (比較例 1)
干渉層を形成しない以外は実施例 1と同様にして減反射積層フィルムを作製した。 図 4の Xは、比較例 1の減反射積層フィルムの反射率曲線において、 500〜650nm の範囲内での最大振幅を示す。
[0093] (比較例 2)
高屈折率層塗液を H— 2に変えた以外は実施例 5と同様にして減反射積層フィル ムを作製した。図 5の Xは、比較例 2の減反射積層フィルムの反射率曲線において、 5 00〜650nmの範囲内での最大振幅を示す。
[0094] (比較例 3)
低屈折率層塗液を L 4に変えた以外は実施例 5と同様にして減反射積層フィルム を作製した。
[0095] (比較例 4)
高屈折率層塗液を H— 2に変えた以外は実施例 7と同様にして減反射積層フィル ムを作製した。
[0096] (比較例 5)
厚みが 80 μ mのトリアセチルセルロース(TAC)フィルム(商品名:「KC8UY」、コ ユカミノルタォプト株式会社製)上に、ハードコート層塗液 AG— 1をバーコ一ターを用 いて乾燥膜厚 3 m程度になるように塗布し、 400mj/cm2の紫外線により硬化し、 防眩フィルムを作製した。
[0097] 実施例 1乃至 8及び比較例 1乃至 5の評価結果を表 1, 2に示す。
[0098] [表 1] 実施例 1 実施例 2実施例 3実施例 4実施例 5実施例 6実施例フ実施例 8 基材 PET PET PET PET PET TAC TAC AC 屈折率 (ns) 1.65 1-65 1.65 1.65 1.65 1.17 1.47 1.5 干渉 B 】F- 1 IF-1 IF-1 IF- 1 IF-1 なし なし なし 屈折率 (ni ) 1.58 1.58 1.58 1.58 1.58 - ハードコート HC-1 HC-1 HC-1 HC-1 HC-1 HC 2 HC-2 HC-2 屈折率 (nHC) 1.52 1.52 1.52 1.52 1.52 t.49 1.49 1.49
(ns X nHC)l/2 1.58 1.58 1.58 1.58 1.58 ―
高屈折率 なし なし なし H-l H-1 なし H- l なし 低屈折率 S L— 1 L-2 し - 3 L-1 し - 3 L-1 L-2 L-1 反射率差の最大値 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 視慼度反射率 Y 0,5 0.9 1.7 0.4 1.4 0.7 0.6 0.7 abクロマ Cab 7.9 フ .5 5.0 7.7 6.9 6.A 9.3 e.4 ヘーズ値 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 干渉むらの有無 O 〇 〇 〇 〇 O o 〇
¾色抑制 o 〇 O o O O o 〇 [0099] [表 2]
Figure imgf000020_0001
[0100] 実施例 1から 5の減反射積層フィルムは、適切な屈折率の干渉層を備え、実施例 6 力 8の減反射積層フィルムは、適切な屈折率のハードコート層を備えるため、波長 5 00から 650nmの反射率曲線の最大振幅は 0. 5%以下であり、干渉むらが低減され た。実施例 1乃至 8の減反射積層フィルムの視感度反射率 Yは 2%以下、 abクロマ Ca bは 10以下、ヘーズ値は 1%以下であり、優れた外観と低反射率を兼ね備えており、 黒のしまり及び色再現性は優れて 、た。
[0101] 干渉層のない比較例 1の減反射積層フィルムでは、波長 500から 650nmでの反射 率曲線の最大振幅は 1. 0%を超えており、ハードコート層の干渉むらが激しぐ減反 射層表面に油膜模様が見られ、着色抑制(黒のしまり)、色再現性共に不良であった 。比較例 2、 4では、 abクロマ Cabが 10を超えており、減反射層の赤紫の着色が激し ぐ着色抑制、色再現性が極度に低下していた。比較例 3では、 abクロマ Cabの値は 小さぐ減反射層の着色は少な力つたが、視感度反射率が 2. 0%を超えており、減 反射性能が悪いために、背景の映りこみが激しぐ着色抑制、色再現性が悪力つた。 比較例 5は、防眩性があるために、ヘーズ値が 1. 0%を超えており、全体が白茶けて 見えてしまい、着色抑制、色再現性共に悪力つた。
[0102] (実施例 9) 実施例 1乃至 8の減反射積層フィルムの裏面(図 1にお 、て透明榭脂フィルム 11の 下面)に、アクリル系粘着シートをノヽンドローラーを用いて均一に貼り合わせた。次い で粘着シートをプラズマディスプレイの表示面に直接貼り合せた。ディスプレイを消灯 するときの干渉むらの外観、及びディスプレイを点灯するときの色再現性を評価した。 その結果、実施例 1〜8の減反射積層フィルムを使用することにより、干渉むらは目立 たず、原色及び白黒の再現性に優れていた。表示装置を 3波長蛍光灯のもとで観察 し、干渉むらの程度を評価した。色再現性は、表示装置にパーソナルコンピュータの 画像ソフトの画面を表示して、赤、青、緑、白、黒を次々に表示させ、それらの色がど れだけ自然に見えるかで評価した。
[0103] (比較例 6)
比較例 1乃至 5の減反射積層フィルムを使用して、実施例 9と同様にプラズマデイス プレイに貼り合わせ、ディスプレイを消灯するときの干渉むらの外観及びディスプレイ を点灯するときの色再現性を評価した。その結果、比較例 1のフィルムでは、干渉む らがはっきりと観測され、外観の品位が著しく低下すると共に、干渉むら由来のハード コート層の赤と緑の着色がきつぐプラズマディスプレイの色再現性が悪力つた。比較 例 2、 4のフィルムでは、減反射層の赤紫の着色が激しぐその色が画像の色と混ざつ て表示されるため、色合いが自然でな力つた。また比較例 3のフィルムを使用した場 合は、ディスプレイの表面への背景の映りこみが激しぐディスプレイに表示される色 合いが、自然に見えな力つた。最後に比較例 5を使用したフィルムでは、防眩性を付 与しているため、ヘーズが高ぐ画面全体が白茶けて見え、黒のしまりや色再現性に 乏しかった。
[0104] 本実施形態は、次のように変更して実施することも可能である。
[0105] 透明榭脂フィルムの両面にハードコート層及び減反射層を設けることもできる。
[0106] 光の反射方向が異なる方向におけるヘイズ値の差を小さくして反射防止性能を向 上させるように構成することちできる。
[0107] 光の透過率を例えば 90%以上にして明るさを確保することが好ましい。

Claims

請求の範囲
[1] 透明榭脂フィルムと、
前記透明榭脂フィルム上に設けられたノ、ードコート層と、
前記ハードコート層上に設けられた減反射層とを備えた減反射積層フィルムにおい て、
前記減反射積層フィルムは peak-to-peak振幅を有するリップル状の反射率曲線に よって表わされる反射率スペクトルを有し、 500〜650nmの波長範囲〖こおける前記 p eak- to- peak振幅の最大値 (X)は 1%以下であり、
CIE標準イルミナント D65に対する視感度反射率 Yは 2%以下であり、
Cab= { (a*)2+ (b*) 2} 1/2で表される、 CIE標準イルミナント D65に対する abクロマ Cabが 10以下であることを特徴とする減反射積層フィルム。
[2] JIS K 7136に規定されるヘーズ値が 1%以下であることを特徴とする請求項 1に記 載の減反射積層フィルム。
[3] 前記減反射層は、前記ハードコート層の屈折率よりも低い屈折率を有する低屈折率 層を含み、前記低屈折率層の屈折率が 1. 28〜: L 45であることを特徴とする請求項 1に記載の減反射積層フィルム。
[4] 前記減反射層は、前記ハードコート層の屈折率よりも低い屈折率を有する低屈折率 層と、前記低屈折率層の屈折率よりも高い屈折率を有する高屈折率層とを含み、高 屈折率層の屈折率とハードコート層の屈折率との差が 0. 05以下であることを特徴と する請求項 1に記載の減反射積層フィルム。
[5] 前記透明榭脂フィルムの屈折率が 1. 45〜: L 55であり、前記ハードコート層の屈 折率と前記透明榭脂フィルムの屈折率との差が 0. 03以下であり、前記ハードコート 層の膜厚が 1〜10 μ mであることを特徴とする請求項 1から請求項 4のいずれか一項 に記載の減反射積層フィルム。
[6] 前記透明榭脂フィルムの屈折率が 1. 55〜: L 70であり、前記透明榭脂フィルムの 一表面に、干渉層、ハードコート層及び少なくとも該ハードコートの屈折率より低い屈 折率を有する層を順に積層し、前記ハードコート層の屈折率が 1. 45〜: L 55であり 、前記ハードコート層の膜厚が 1〜: L0 mであり、前記干渉層が次式で表される屈折 率を有し、
干渉層の屈折率 = { (透明榭脂フィルムの屈折率) X (ハードコート層の屈折率) }1 2 ±0. 03
前記干渉層の光学膜厚が 125〜165nmであり、
前記干渉層の屈折率は透明榭脂フィルムの屈折率とハードコート層の屈折率の間で あることを特徴とする請求項 1から請求項 4のいずれか一項に記載の減反射積層フィ ノレム。
[7] 前記透明榭脂フィルムがトリァセチルセルロースフィルム又はアクリルフィルムであり 、前記減反射層は、中空酸化珪素粒子又は含フッ素有機化合物を含むことを特徴と する請求項 1から請求項 4のいずれか 1項に記載の減反射積層フィルム。
[8] 前記透明榭脂フィルムがポリエチレンテレフタレートフィルムであり、前記減反射層 は中空酸ィ匕珪素粒子又は含フッ素有機化合物を含むことを特徴とする請求項 1から 請求項 4のいずれか 1項に記載の減反射積層フィルム。
[9] ディスプレイの前面に設けられた、請求項 1から請求項 8のいずれか 1項に記載の減 反射積層フィルムを備えた表示装置。
PCT/JP2005/018983 2004-10-20 2005-10-14 減反射積層フィルム及びそれを用いた表示装置 WO2006043486A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05793582A EP1804087A4 (en) 2004-10-20 2005-10-14 REFLECTION REDUCING SHOWN FILM AND DISPLAY DEVICE THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-304990 2004-10-20
JP2004304990A JP4887612B2 (ja) 2004-10-20 2004-10-20 減反射材及びそれを用いた電子画像表示装置

Publications (1)

Publication Number Publication Date
WO2006043486A1 true WO2006043486A1 (ja) 2006-04-27

Family

ID=36202903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018983 WO2006043486A1 (ja) 2004-10-20 2005-10-14 減反射積層フィルム及びそれを用いた表示装置

Country Status (5)

Country Link
EP (1) EP1804087A4 (ja)
JP (1) JP4887612B2 (ja)
KR (1) KR100867366B1 (ja)
CN (1) CN100501453C (ja)
WO (1) WO2006043486A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163231B2 (ja) * 2008-03-31 2013-03-13 日油株式会社 減反射材及びそれを備えた電子画像表示装置
JP5515265B2 (ja) * 2008-09-30 2014-06-11 大日本印刷株式会社 ハードコートフィルムの製造方法
JP2010107542A (ja) * 2008-10-28 2010-05-13 Hitachi Maxell Ltd ハードコートフィルムおよびそれを用いた反射防止フィルム
JP2010160464A (ja) * 2008-12-11 2010-07-22 Toppan Printing Co Ltd 帯電防止ハードコートフィルム及び帯電防止ハードコートフィルムを有する偏光板並びにディスプレイ
JP2010181613A (ja) * 2009-02-05 2010-08-19 Nof Corp 反射防止フィルム
JP5865599B2 (ja) 2010-04-15 2016-02-17 日東電工株式会社 ハードコートフィルムの製造方法
JP5304939B1 (ja) 2012-05-31 2013-10-02 大日本印刷株式会社 光学積層体、偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び画像表示装置の視認性改善方法
KR101526649B1 (ko) * 2012-11-21 2015-06-05 (주)엘지하우시스 하드코팅층을 포함하는 광특성이 우수한 반사방지 필름
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) * 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
JP6155850B2 (ja) * 2013-05-30 2017-07-05 凸版印刷株式会社 反射防止フィルム
JP6470274B2 (ja) * 2013-07-05 2019-02-13 エシロール アンテルナショナルEssilor International 可視領域において非常に低い反射を有する反射防止被覆を含む光学物品
TWI592311B (zh) * 2013-09-13 2017-07-21 康寧公司 具有多層光學膜的低色偏抗刮物件
JP6385094B2 (ja) * 2014-03-26 2018-09-05 リンテック株式会社 タッチパネル
TWI651017B (zh) * 2014-03-28 2019-02-11 日商日產化學工業股份有限公司 表面粗化方法
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
CN105276846B (zh) * 2014-11-14 2018-07-06 中国建筑材料科学研究总院 吸收边连续可调的太阳光谱选择性吸收涂层及其制备方法
CN104501958B (zh) * 2014-12-02 2017-05-24 中国航天科工集团第三研究院第八三五八研究所 一种红外剩余反射率光谱测试附件及测试方法
TWI578061B (zh) * 2015-05-29 2017-04-11 鴻海精密工業股份有限公司 電連接結構及陣列基板
EP3300520B1 (en) 2015-09-14 2020-11-25 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
WO2017047713A1 (ja) * 2015-09-15 2017-03-23 日産化学工業株式会社 湿式処理による表面粗化方法
US10401539B2 (en) * 2016-04-21 2019-09-03 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
KR102018356B1 (ko) * 2016-12-13 2019-09-04 삼성에스디아이 주식회사 윈도우 필름, 이의 제조방법 및 이를 포함하는 디스플레이 장치
DE102017105372B4 (de) * 2017-03-14 2022-05-25 Schott Ag Transparentes Element mit einer Antireflex-Beschichtung und Verfahren zu dessen Herstellung
JP6995491B2 (ja) * 2017-04-21 2022-01-14 キヤノン株式会社 光学薄膜、光学素子、光学素子の製造方法
JP2018197829A (ja) * 2017-05-25 2018-12-13 日油株式会社 防眩性反射防止フィルム及びそれを備えた画像表示装置
KR102209683B1 (ko) 2018-03-09 2021-01-29 주식회사 엘지화학 디스플레이 패널용 시인성 개선 필름 및 이를 포함하는 디스플레이 장치
CN111094200B (zh) 2018-08-17 2022-01-07 康宁股份有限公司 具有薄的耐久性减反射结构的无机氧化物制品
CN109711005B (zh) * 2018-12-11 2021-06-08 浙江大学 一种无反射的波浪调控装置及设计方法
KR102458462B1 (ko) * 2020-06-23 2022-10-24 코오롱인더스트리 주식회사 간섭 무늬가 개선된 다층 구조의 필름 및 이를 포함하는 표시장치
CN113075819A (zh) * 2021-03-24 2021-07-06 惠州市华星光电技术有限公司 背光模组及液晶显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177101A (ja) * 1996-12-18 1998-06-30 Sekisui Chem Co Ltd 低反射性積層体、光学素子、ディスプレイ及び低反射性積層体の製造方法
JP2003177209A (ja) * 2001-09-28 2003-06-27 Nof Corp 減反射フィルム及び電子画像表示装置
JP2003292831A (ja) * 2002-04-02 2003-10-15 Toppan Printing Co Ltd 低屈折率コーティング剤及び反射防止フィルム
JP2004098420A (ja) * 2002-09-09 2004-04-02 Dainippon Printing Co Ltd 透明積層フィルム、偏光板、液晶表示素子及び液晶表示装置
JP2004233454A (ja) * 2003-01-28 2004-08-19 Nitto Denko Corp 反射防止フィルム
JP2004272198A (ja) * 2003-02-20 2004-09-30 Dainippon Printing Co Ltd 反射防止積層体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172812B1 (en) * 1997-01-27 2001-01-09 Peter D. Haaland Anti-reflection coatings and coated articles
KR100906596B1 (ko) * 2001-04-10 2009-07-09 후지필름 가부시키가이샤 반사방지 필름, 편광판, 및 이미지 디스플레이용 장치
JP2003121606A (ja) * 2001-08-07 2003-04-23 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、および画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177101A (ja) * 1996-12-18 1998-06-30 Sekisui Chem Co Ltd 低反射性積層体、光学素子、ディスプレイ及び低反射性積層体の製造方法
JP2003177209A (ja) * 2001-09-28 2003-06-27 Nof Corp 減反射フィルム及び電子画像表示装置
JP2003292831A (ja) * 2002-04-02 2003-10-15 Toppan Printing Co Ltd 低屈折率コーティング剤及び反射防止フィルム
JP2004098420A (ja) * 2002-09-09 2004-04-02 Dainippon Printing Co Ltd 透明積層フィルム、偏光板、液晶表示素子及び液晶表示装置
JP2004233454A (ja) * 2003-01-28 2004-08-19 Nitto Denko Corp 反射防止フィルム
JP2004272198A (ja) * 2003-02-20 2004-09-30 Dainippon Printing Co Ltd 反射防止積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1804087A4 *

Also Published As

Publication number Publication date
EP1804087A1 (en) 2007-07-04
CN101019043A (zh) 2007-08-15
JP2006116754A (ja) 2006-05-11
KR100867366B1 (ko) 2008-11-06
CN100501453C (zh) 2009-06-17
KR20070036791A (ko) 2007-04-03
JP4887612B2 (ja) 2012-02-29
EP1804087A4 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
WO2006043486A1 (ja) 減反射積層フィルム及びそれを用いた表示装置
KR100867338B1 (ko) 코팅 조성물, 그 도막, 반사 방지막, 반사 방지 필름, 화상 표시 장치 및 중간 제품
JP4314803B2 (ja) 減反射フィルム
JP5163231B2 (ja) 減反射材及びそれを備えた電子画像表示装置
KR101487039B1 (ko) 광학 적층 필름
WO2009107536A1 (ja) 防眩フィルム、防眩性偏光板および画像表示装置
EP4130806A1 (en) Optical laminate and article
JP2003080624A (ja) 透明導電材料およびタッチパネル
WO2012096400A1 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び画像表示装置
WO2019107036A1 (ja) ハードコートフィルム、光学積層体および画像表示装置
TW201124747A (en) Hard-coated antiglare film, and polarizing plate and image display including the same
JP4712236B2 (ja) 反射防止膜、反射防止フィルム、画像表示装置、及び、それらの製造方法
JP2006110988A (ja) プラスチックフィルム及び画像表示装置
WO2018062442A1 (ja) 防眩性反射防止ハードコートフィルム、画像表示装置、防眩性反射防止ハードコートフィルムの製造方法
JP4285059B2 (ja) 透明導電性材料及びタッチパネル
JP4215458B2 (ja) 防眩フィルム
US20090059408A1 (en) Optical layered product
JP2009222801A (ja) 光学フィルム
JP4888593B2 (ja) 減反射材及びそれを用いた電子画像表示装置
JPH1138201A (ja) 反射防止膜及びそれを用いた画像表示装置
JP4802385B2 (ja) タッチパネル
JP2009015289A (ja) 反射防止フィルム及びそれを用いたディスプレイ用前面板
JP2010025996A (ja) 反射防止フィルムおよびその製造方法
JP2010014819A (ja) 反射防止フィルム
JP2005255913A (ja) コーティング組成物、その塗膜、反射防止膜、及び画像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005793582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077003559

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580030552.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020077003559

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005793582

Country of ref document: EP