WO2006043316A1 - 樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型 - Google Patents

樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型 Download PDF

Info

Publication number
WO2006043316A1
WO2006043316A1 PCT/JP2004/015492 JP2004015492W WO2006043316A1 WO 2006043316 A1 WO2006043316 A1 WO 2006043316A1 JP 2004015492 W JP2004015492 W JP 2004015492W WO 2006043316 A1 WO2006043316 A1 WO 2006043316A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
bending
angle
raceway groove
bent
Prior art date
Application number
PCT/JP2004/015492
Other languages
English (en)
French (fr)
Inventor
Takeshi Kobayashi
Original Assignee
Hayakawa Seisakusho Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Seisakusho Co., Ltd. filed Critical Hayakawa Seisakusho Co., Ltd.
Priority to PCT/JP2004/015492 priority Critical patent/WO2006043316A1/ja
Priority to CNB2004800442726A priority patent/CN100551674C/zh
Priority to KR1020077006731A priority patent/KR101112503B1/ko
Priority to JP2005518941A priority patent/JPWO2006043316A1/ja
Priority to TW094136822A priority patent/TW200630204A/zh
Publication of WO2006043316A1 publication Critical patent/WO2006043316A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/08Bending or folding of tubes or other profiled members
    • B29C53/083Bending or folding of tubes or other profiled members bending longitudinally, i.e. modifying the curvature of the tube axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/08Bending or folding of tubes or other profiled members

Definitions

  • the present invention relates to a tube bending method capable of bending a synthetic resin tube at high speed three-dimensionally, and a tube three-dimensional bending die used in this method.
  • the bending mechanism B is provided at only one place, the straight portion of the tube T is gripped by the chuck Ch, and the tube T is twisted by the chuck Ch to be fed and bent.
  • One-dimensional 3D bending is also widespread.
  • this bending method is a mechanism that repeats the combined work of feeding (propulsion) and rotation (twisting) of the tube T by the chuck Ch. Therefore, the work becomes intermittent and requires time for the bending work.
  • the track is swirling and approaching, there are theoretical limits such as not being able to use it when, for example, two bending parts are approaching and the force is not in the same plane.
  • the present invention is capable of bending a tube three-dimensionally only by moving a bending carriage head that applies force in the vertical and horizontal directions following the bending trajectory. It is an object to provide a technique that can be molded.
  • the configuration of the three-dimensional bending method of the present invention made for the purpose of solving the above-described problem is that a terminal on the near side of the tube (hereinafter referred to as a front terminal) in a three-dimensional bending-formed form is defined as X, Y , Place it at the origin of Cartesian coordinates by the Z-axis and set it as the cache reference point, and at multiple points including the bent part from the front end of the tube to the far end (hereinafter referred to as the rear end), The position on each axis of the coordinates, the angle with respect to two vertical planes on the coordinates at each position, and the angle with respect to the horizontal plane are obtained, and based on the obtained position data and angle data!
  • the tube The bending end of the straight tube is formed as a three-dimensional bending track groove on the block-shaped mold member, and the front end of the straight tubular tube to be bent is the starting end of the bending track groove.
  • Set to the front end of the tube and the rear end By moving while modeled after the horizontal rollers on the raceway groove toward, and is characterized in that to bend three-dimensionally the tube do pushing the raceway groove.
  • a three-dimensional bending molded resin tube is rotated around the central axis of the tube at the origin on the orthogonal coordinates of the X, ,, and Z axes, and the XY
  • the XZ plane, and the YZ plane by rotating in units of ⁇ XY degrees, ⁇ XZ degrees, and ⁇ YZ degrees (0> 1 °), respectively, this 360 degrees around the central axis of the resin tube
  • the bending trajectory of the tube is expressed by position data and angle data in 3D space (on the Cartesian coordinates), and this defines the posture in which the tube is 3D bent.
  • This resin tube obtained by rotating these two angles ⁇ and ⁇ 360 degrees around the central axis. Obtain all the bending trajectories of the probe and calculate the maximum value. The maximum value in each posture at 360 degrees around the central axis is defined as the reference value, and the tube posture that minimizes this value, that is, the rotation angle around the central axis of the tube is calculated. Determine the tube orientation (orientation).
  • the position data on the orthogonal coordinates and the angle data with respect to the vertical plane and the horizontal plane at each position for a plurality of points including the bent portion of the tube It is formed by rotating at an appropriate angle pitch about 360 degrees around the central axis, and the posture of the rotation angle of the tube in the angle data that minimizes the sum of the angle data with respect to the vertical plane and the horizontal plane at each rotation position is used as the mold member.
  • a 3D bending die for the tube is formed, and a 3D high-speed bending of the tube is performed using this bending die and a horizontal roller that applies a force to push the tube into the raceway groove of this bending die.
  • a three-dimensional bending mold is processed by placing the end on the front side of the tube (hereinafter referred to as the front end) in the three-dimensional bending-molded form at the origin of the orthogonal coordinates of the X, Y, and Z axes. For a plurality of points including a bent portion from the front end of the tube to the other end (hereinafter referred to as the rear end) as a reference point, the position on each axis of the coordinates and 2 on the coordinates at each position.
  • the rectangular coordinates are defined as the X axis in the direction in which the groove extends in block B, the Y axis in the direction perpendicular to the groove, the Z axis in the vertical direction, and the origin of the groove as the origin.
  • block B made of materials according to the purpose, such as metal, resin, ceramic, etc.
  • the trajectory in the 3D bending form of the tube to be 3D bent is engraved as a groove 1.
  • the surface of the track that passes through the center line of the groove 1 and that is perpendicular to both the vertically lower side and the center line of the groove and that is at an equal distance from the center line force of the groove and has an appropriate width Create 2. (Hereafter, this surface is referred to as the upper surface 2 of the mold). Further, the block B other than the upper surface 2 of the mold is cut vertically downward, so that the vertical surface 3 that is equidistant in the horizontal direction with the tube bending trajectory (hereinafter this surface is referred to as the vertical surface 3 of the mold). Create The entire part with the groove 1, the upper surface 2 and the vertical surface 3 created in the material block B in this way is called a bending die G. Since the function of the bending die G in the present invention depends on the shape, the manufacturing method can be formed by cast molding, optical molding, or the like in addition to the cutting process described above, and the forming method is not limited.
  • a cylindrical horizontal roller 4 is disposed above the upper surface 2 of the mold G, and the vertical axis with the vertical lower side as the central axis on the extension line of the central axis of the horizontal roller 4 is disposed.
  • the roller 5 is provided on both sides of the horizontal roller 4, and the posture is fixed by the vertical roller 5 sandwiching the vertical surface 3, and the vertical roller 5 and the horizontal roller 4 are held by the roller support member 6.
  • a bending carriage head ⁇ in which the horizontal roller 4 and the vertical roller 5 are incorporated in the support member 6 is created.
  • the machining head ⁇ has a rotating shaft 7 at the top in the vertical direction, and the shaft 7 is held by a bearing 8a of the holder 8.
  • the machining head H includes a cylinder 9 in its holder 9a for receiving a pressing force from the upper side. Further, the machining head ⁇ is supported by the holding member 6 while being kept horizontal, and the support member 6 is formed so as to move in the horizontal direction by the cylinder 10 and in the vertical direction by the cylinder 9. Thus, the head P is pressed against the inside of the groove 1 by the horizontal roller 4 while moving the head H along the upper surface 2 of the die G.
  • control method of the cylinders 9 and 10 for moving the processing head H horizontally and vertically in the three-dimensional bending process of the tube mechanical control of the cam mechanism, electrical NC drive control, Control by a sequencer can be used, and the control method is not limited in the present invention.
  • the bearing 8a of the holder 8 can also be used by using a rotation control device that rotates the shaft 7.
  • the vertical roller 5 can be omitted.
  • the horizontal roller 4 itself has a driving force, the driving mechanism and its control mechanism are simplified. You may be able to Thus, an example of the bending apparatus which can implement the method of the present invention is formed.
  • the force of the horizontal roller 4 generates a force that presses the tube P against the wall surfaces on both sides of the raceway groove 1, and the stress of the raceway groove 1 bent while the tube P is bent by the stress. It is bent in the inside and inserted. In this way, the tube P can be bent along any three-dimensional track groove 1 formed in the mold G by moving the head ⁇ along the track groove 1.
  • the tube P can be three-dimensionally bent by the above-described embodiment.
  • the tube P is preheated prior to bending, and the Young's modulus of the tube P is determined. If the limit strain is reduced, three-dimensional bending can be performed at a higher speed, and the effect is extremely remarkable as compared to the conventional three-dimensional bending process.
  • the tube P at room temperature that is not heated is bent.
  • the tube P can be heated in the raceway groove 1 after bending.
  • the heat source and heating method such as an electric resistance heater, a heat exchange tube, microwave heating, high frequency heating, far infrared heating, etc. are not limited.
  • the present invention it is possible to cope with the physical properties of the tube P. That is, the force that can be dealt with by strengthening the mechanical strength of the bending device to deal with the tube P with a large Young's modulus, as shown in Fig. 3, depending on the diameter of the tube P on the horizontal roller 4 Adding a dimple 4a is effective for bending force. It is also effective to install a guide roller on the head ⁇ . That is, in FIG. 3, guide rollers 12 and 12 having the same orientation as the vertical rollers 5 and 5 are provided on both sides of the roller holder 11 provided on the extension 8b of the holder 8 via the vertical shaft 8c. The movement along 1 is guided and supported on the moving tip side.
  • the bending method of the present invention is also effective for a tube P using a composite material such as a multilayer structure tube and a resin tube p equipped with an attached rubber protector.
  • a composite material such as a multilayer structure tube and a resin tube p equipped with an attached rubber protector.
  • it is effective to apply friction reduction treatment such as hard plating, grease coating, and silicon coating on the inner surface of groove 1 of bending jig G.
  • the raceway groove 1 formed in the mold G is always displaced (moved) in the positive direction with respect to the traveling direction (moving direction, X-axis direction) of the horizontal roller 4 (or machining head ⁇ ).
  • This is an example having a planar shape.
  • the raceway groove 1 is reversed (in other words, the figure 4, As indicated by the solid line in FIG. 5, the horizontal roller 4 may move backward (return to the reverse direction) in the direction indicated by the straight line AB.
  • the mold G itself in which the groove 1 is formed is placed in the plane. It was made to turn with. That is, as shown by phantom lines in FIGS. 4 and 5, in the case of FIG. 4, the mold G is rotated clockwise at the starting point of the mold G groove 1 or a point P1 in the vicinity thereof, In the case of 5, the inversion of the raceway groove 1 was canceled by rotating the mold G clockwise at a point P2 at or near the center of the mold G. In the present invention, inversion and a large bending angle are Therefore, the rotation direction at the points PI and P2 may be either the clockwise direction or the counterclockwise direction.
  • the equipment used is a three-dimensional bending apparatus that implements the method of the present invention described with reference to FIGS.
  • the tube to be bent was heated to about 150 ° C-160 ° C at room temperature.
  • the front end of this tube was set in the groove 1 of the bending apparatus, and the machining head H was moved from the start end of the groove 1 to the end in 3 seconds. After moving the head ⁇ , the inside of the tube was cooled to room temperature by cooling for about 15 seconds.
  • the cycle time required for bending the tube was about 20 seconds excluding the preheating time.
  • the present invention is as described above, and processing is performed by placing the end on the front side of the tube (hereinafter referred to as the front end) in the three-dimensional bending-molded form at the origin of orthogonal coordinates by the X, Y, and Z axes.
  • the front end For a plurality of points including a bent portion from the front end of the tube to the other end (hereinafter referred to as the rear end) as a reference point, the position on each axis of the coordinates and 2 on the coordinates at each position.
  • the angle with respect to two vertical planes and the angle with respect to the horizontal plane are obtained, and the bending trajectory of the tube is divided into three block-shaped mold members based on the obtained position data and angle data.
  • the method of the present invention since the method of the present invention is as described above, it can be applied to a metal tube such as aluminum with little return after being bent, and in particular, to the bending of a resin tube accompanied by heat softening treatment. It is extremely effective.
  • FIG. 1 is a plan view of an example of a bending apparatus for carrying out the method of the present invention.
  • FIG. 2 is a front view of the bending apparatus of FIG.
  • FIG. 3 is a perspective view showing an outline of a bending mechanism for explaining the method of the present invention.
  • FIG. 4 is a plan view of an example in which a bending die G used in the method of the present invention is rotated in a horizontal plane.
  • FIG. 5 is a plan view of another example in which the bending die G used in the method of the present invention is rotated in a horizontal plane.
  • FIG. 6 is a perspective view for explaining a conventional roll bending apparatus.
  • FIG. 7 is a perspective view for explaining a conventional NC vendor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

明 細 書
樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型 技術分野
[0001] 本発明は、主として合成樹脂チューブを高速で 3次元曲げ加工することができるチ ユーブの曲げ方法と、この方法に用いるチューブの三次元曲げ型に関する。
背景技術
[0002] チューブを 3次元に曲げる工程は、特に燃料チューブやブレーキチューブ等のよう に高精度が要求される分野や 3次元曲げ工程による多品種少量生産が要求される 産業分野において広く利用される工程である。
[0003] 従来の曲げ方法によるチューブの 3次元曲げ成形では、曲げ方向と同一方向から 加圧する、換言すれば、曲げ部を含む同じ面内においてその曲げ部に曲げ力を作 用させる必要があった。例えば、図 6に例示したロール曲げでは、 3つの曲げ機構 B1 一 B3をそれぞれのチューブ Tに付与される各曲げ部の曲げ姿勢に応じて複数組設 置したり、産業ロボットで曲げ装置そのものを 3次元制御する必要があった。このため 3次元曲げ加工設備が専用化したり、複雑で精巧な装置が必要になり、多くの設備 投資を余儀なくされていた。
[0004] 一方、図 7に例示したように、曲げ機構 Bを一箇所のみとし、チューブ Tの直線部を チャック Chで握り、該チャック Chでチューブ Tを捻りながら送り出して曲げを行う NCベ ンダ一による 3次元曲げも広く普及している。しかし、この曲げ方法は、チャック Chに よるチューブ Tの送り込み (推進)と回転 (捻り)の複合作業を繰り返す機構であるため 、作業が断続的となって、曲げ作業に時間を要するほか、曲げ軌道が旋回して接近 している場合、例えば、 2つの曲げ部が接近し、し力も同じ面内にない場合等には使 用できないなどの原理的な限界もある。
[0005] 上記のように、従来の 3次元曲げ技術では、それぞれの曲げ部にその曲げ平面内 で曲げ方向に応じた力をカ卩えることを不可欠としているので、この点が従来技術にお ける問題点の主な原因となっている。
発明の開示 発明が解決しょうとする課題
[0006] 本発明は、上記のような従来技術における問題点に鑑み、垂直方向と水平方向に 力をカ卩える曲げカ卩ェヘッドを曲げ軌道に倣って移動させるだけで、チューブを 3次元 曲げ成形できる手法を提供することを課題とするものである。
課題を解決するための手段
[0007] 上記の課題を解決することを目的としてなされた本発明 3次元曲げ方法の構成は、 三次元曲げ成形された形態におけるチューブの手前側の端末 (以下、前端末という) を X, Y, Z軸による直交座標の原点に置いてカ卩ェ基準点にし、そのチューブの前端 末から向こう側の端末 (以下、後端末と 、う)までの曲げ部を含む複数点につ 、て、 前記座標の各軸上での位置と各位置における前記座標上での 2つの垂直面に対す る角度と水平面に対する角度を求め、得られた位置データと角度データに基づ!/、て 前記チューブの曲げ軌道をブロック状の型部材に三次元曲げの軌道溝として形成す ることにより三次元曲げ型とし、曲げようとする直管状のチューブの前端末を前記曲 げ型の軌道溝の始端部にセットして当該チューブの前端末力 後端末へ向けて水平 ローラを前記軌道溝に倣わせながら移動させることにより、前記チューブを軌道溝に 押込んで三次元曲げ成形することを特徴とするものである。
[0008] 本発明方法では、 3次元曲げ成形された形態の榭脂チューブを、 X, Υ, Z軸による 直交座標上の原点においてそのチューブの中心軸の回りに回転させ、当該座標上 の XY面、 XZ面、 YZ面に関し、それぞれ Θ XY度、 Θ XZ度、 Θ YZ度( 0 > 1° )を 単位として回転させることにより、当該榭脂チューブの中心軸の回りの 360度について 、このチューブの曲げ軌道を 3次元空間上(直交座標上)での位置データと角度デー タにより表現し、これによりそのチューブが 3次元曲げ成形された姿勢を定義する。
[0009] 次に、前記榭脂チューブの中心軸の回り 360度についての全ての曲げ軌道のデー タにつ 、て、この榭脂チューブの曲げ軌道上の曲げ部を含む各点での方向ベクトル 力 XZ面方向において X軸となす角度(以下、 Θ という)と、 XY面方向において方
1
向ベクトルの起点を通り、 X軸と並行な直線とのなす角度で、方向ベクトル後端がこの 直線と最も接近する側に挟まれる角度 (以下、 Θ
2という)を算出する。
[0010] この 2つの角度 Θ , Θ を、中心軸の回りに 360度回転させて得られるこの樹脂チュ ーブの全ての曲げ軌道について求め、その最大値を算出する。中心軸の回りの 360 度における各姿勢での最大値を基準値として定義し、この値が最小となるチューブの 姿勢、つまり、チューブの中心軸の回りにおける回転角を算出して、前記座標上での チューブの姿勢(向き)を決める。
[0011] 即ち、本発明では、チューブの曲げ部を含む複数点についての直交座標上での位 置データと各位置での垂直面と水平面に対する角度データを、そのチューブを基準 点において当該チューブの中心軸の回り 360度について適宜角度ピッチで回転させ て形成し、各回転位置での垂直面と水平面に対する角度データの和が最小となる角 度データにおける前記チューブの回転角の姿勢を型部材に軌道溝として形成するこ とにより、チューブの三次元曲げ型を形成し、この曲げ型とこの曲げ型の軌道溝にチ ユーブを押込む力を付与する水平ローラを用いてチューブの三次元高速曲げが実 現できるのである。
発明の効果
[0012] 本発明では、三次元曲げ型を、三次元曲げ成形された形態におけるチューブの手 前側の端末 (以下、前端末という)を X, Y, Z軸による直交座標の原点に置いて加工 基準点にし、そのチューブの前端末から向こう側の端末 (以下、後端末という)までの 曲げ部を含む複数点について、前記座標の各軸上での位置と各位置における前記 座標上での 2つの垂直面に対する角度と水平面に対する角度を求め、得られた位置 データと角度データに基づいて前記チューブの曲げ軌道をブロック状の型部材に軌 道溝として形成することにより三次元曲げ型として形成したので、曲げようとする直管 状のチューブの前端末を前記曲げ型の軌道溝の始端部にセットして当該チューブの 前端末力 後端末へ向けて水平ローラを前記軌道溝に倣わせながら移動させること により、前記チューブを高速で軌道溝に押込み三次元曲げ成形することができる。 発明を実施するための最良の形態
[0013] 上記の本発明方法を実施する例について、図 1一図 3を参照して説明する。なお、 以下の説明においては、説明の便宜上、直角座標はブロック Bにおいて溝が延びる 方向を X軸、溝と直交する方向を Y軸、垂直方向を Z軸とし、溝の始点を原点とする。 図 3において、まず、金属,榭脂,セラミックなど、目的に応じた素材によるブロック B に、 3次元曲げしょうとするチューブの 3次元曲げ成形した形態での軌道を溝 1として 彫込む。次に、前記溝 1の中心線を通過し、且つ、鉛直下方と溝の中心線の両方に 対し垂直を保ち、且つ、溝の中心線力 等距離にあって適宜の幅を有する軌道の面 2を作成する。(以下、この面を型の上面 2という)。更に、型の上面 2以外の部分のブ ロック Bは鉛直下方に切削することにより、チューブの曲げ軌道と水平方向において 等距離にある垂直面 3 (以下、この面を型の垂直面 3という)を作成する。こうして素材 ブロック Bに作成された溝 1,型上面 2,垂直面 3を備えた部品全体を曲げ型 Gという。 本発明における曲げ型 Gの機能は、上記形状に依拠するため、その製法は、上記の 切削加工のほか、注型成型や光成形などにより形成することができ、その形成手法 は限定されない。
[0014] 同じぐ図 3において、前記型 Gの上面 2の上方側に、円柱形の水平ローラー 4を設 置し、水平ローラー 4の中心軸の延長線上において、鉛直下方を中心軸とする垂直 ローラー 5を当該水平ローラ 4の両側に設け、垂直ローラー 5が前記垂直面 3を挟み 込むことにより姿勢が固定されると共に、当該垂直ローラ 5と水平ローラー 4をローラ 支持部材 6に保持させることにより、支持部材 6に水平ローラー 4,垂直ローラー 5が 組み込まれた曲げカ卩ェヘッド Ήを作成する。加工ヘッド Ήは、鉛直方向の上部に回 転軸 7を有しその軸 7がホルダ 8のベアリング 8aに保持されて!、る。加工ヘッド Hは、 その上方カゝら押下げ力を受けるためのシリンダ 9をそのホルダ 9aに具備している。ま た、加工ヘッド Ήは、前記保持部材 6に水平を保ったまま支持され、支持部材 6をシリ ンダ 10により水平方向へ、及び、シリンダ 9により垂直方向に移動させるように形成す ることによって、前記ヘッド Hを型 Gの上面 2を倣って移動しつつ水平ローラ 4によりチ ユーブ Pをその上面力も溝 1の内部に押付ける構造に形成されている。
[0015] 加工ヘッド Hをチューブの 3次元曲げ加工において水平移動、及び、垂直移動させ るためのシリンダ 9, 10の制御方法に関しては、カム機構の機械制御、電気的な NC 駆動制御、シリンダとシーケンサによる制御などを利用でき、本発明においては制御 方法は限定されない。また、上記ホルダ 8のベアリング 8aは、軸 7を回転させる回転制 御機器を用いても対応可能であり、この場合には垂直ローラー 5の省略が可能になる 。更に、水平ローラー 4自体に駆動力を持たせると駆動機構やその制御機構を簡略 ィ匕することができる場合もある。このようにして本発明方法を実施することができる曲 げ装置の一例が形成されるが、その使用態様は以下の通りである。
[0016] まず、型 Gの軌道溝 1の始端に、曲げ成形前の直管状のチューブ Pの前端末を揷 入してこの上にヘッド Hを降ろし、水平ローラー 4と型 Gの上面 2を密着させシリンダ 9 により一定の押下げ圧力をかける。この状態で、シリンダ 10を作動させてヘッド H全体 を軌道溝 1の始端部力 終端側に向けて当該溝 1に沿わせ移動させると、水平ローラ 一 4の溝 1に沿った転動によってチューブ Pが逐次軌道溝 1へ押し込まれる力が発生 する。軌道溝 1が直線の部分ではこの力が直接チューブ Pを直下に押下げるように作 用し、チューブ Pを軌道溝 1に順次挿入してゆく。軌道溝 1が直線でない部分では、 前記水平ローラ 4の力がチューブ Pを軌道溝 1の両側の壁面に押しつける力を発生さ せ、その応力によって、チューブ Pが曲げられながら曲がった軌道溝 1の中に順次曲 げられ乍ら挿入されていく。このようにして、ヘッド Ήを軌道溝 1に沿わせ移動させるこ とにより、型 Gに形成された任意の 3次元軌道溝 1に沿ってチューブ Pを曲げることが できるのである。
[0017] 本発明方法では、上記態様によってチューブ Pを 3次元曲げ成形することが可能で あるが、本発明では、チューブ Pを曲げに先立って予め加熱処理しておき、チューブ Pのヤング率と、限界ひずみの大きさを低下させておくと、より高速での 3次元曲げ成 形が可能となり、その効果は、従来の公知技術による三次元曲げ処理に比べきわめ て顕著である。
[0018] また、本発明では、予熱して遡性変形を容易にした榭脂チューブ Pを上記手法で 3 次元曲げ成形するいわば予熱曲げ手法のほか、加熱しない常温下のチューブ Pを 曲げ成形するとき、乃至は、曲げ成形後に軌道溝 1の中でチューブ Pを加熱すること もできる。なお、加熱の方法としては、電気抵抗式ヒーター,熱交換管,マイクロ波な どによる加熱、高周波加熱,遠赤外線加熱などその熱源と加熱手法は限定されない
[0019] 一方、本発明では、チューブ Pの物性に応じての対応も可能である。即ち、ヤング 率の大きなチューブ Pへの対応としては曲げ装置の機械的な強度を強化することに より対応可能である力 図 3に例示したように水平ローラー 4にチューブ Pの径に応じ た窪み 4aをつけると曲げ力卩ェに有効である。更に、ヘッド Ήにガイドローラーを設置 することも有効である。即ち、図 3において、ホルダ 8の延長部 8bに垂直軸 8cを介して 設けたローラホルダー 11の両側に、垂直ローラ 5, 5と同じ向きのガイドローラ 12, 12を 設け、ヘッド Ήの軌道溝 1に沿った移動を、その移動先端側でガイドし、支持するよう にするのである。
[0020] また、榭脂チューブ Pのように弾性限度内のひずみが大きい材料では、加熱等の前 処理によりその物性を変化させると、きわめて高速での 3次元曲げ成形が可能となる
。更に、多層構造チューブなどの複合材料を用いたチューブ Pや、付属するゴム製プ ロテクターを備えた樹脂チューブ pにおいても、本発明の曲げ方法は有効であるが、 特に、表面に摩擦抵抗の大きな材料を有するチューブ Pでは、曲げ治具 Gの溝 1の 内表面に硬質メツキ,榭脂コート,シリコンコート等の摩擦低減処理を施すことが有効 である。
[0021] 以上の説明は、型 Gに形成した軌道溝 1が、水平ローラ 4 (又は、加工ヘッド Ή)の 進行方向 (移動方向、 X軸方向)に関し、常時、正方向側に変位 (移動)する平面形 状を具備した例である。
しかし、チューブ Pの三次元曲げ成形上りの形態によっては、そのチューブ Pを座標 の原点にお 、て中心軸の回りに 360度回転させても、軌道溝 1が反転する (換言すれ ば、図 4,図 5に実線で示すように、直線 ABで示す方向に関し水平ローラ 4の移動方 向が後退側(逆方向に戻る)ことがある。
水平ローラ 4には、そのヘッド Hに X軸(直線 AB)の正方向の移動力が加えられるの で、軌道溝 1が型 Gの上で反転していると、高速曲げが実現できない(図 4の C部参 照)。この点は、曲げ角が大きい場合にも、同様な問題を惹起する。
[0022] そこで本発明では、軌道溝 1が反転したり曲げ角が大きい (例えば、 90度程度乃至 はそれに近い角など)場合には、その溝 1が形成された型 G自体を、平面内で旋回さ せるようにした。即ち、図 4,図 5に仮想線で示すように、図 4の場合には、型 Gをこの 型 G溝 1の始点乃至はその近傍の点 P1で時計回り方向に回転させ、また、図 5の場 合には、型 Gをその型 Gの中心又はその近傍の点 P2で時計回り方向に回転させるこ とにより、軌道溝 1の反転を解消するようにした。本発明では、反転や大きな曲げ角が 解消されればよいので、点 PI, P2における回転方向は、時計回り方向、反時計回り 方向のいずれの方向でもよい。
[0023] (実施例)
外形 8mm,内径 6mm,長さ 270mmの直管のナイロン製燃料チューブを、表 1の条件 で曲げ成形した。
使用機器は、図 1一図 3により説明した本発明方法を実施する 3次元曲げ装置であ る。
曲げるべきチューブを予め常温力 一例として 150°C— 160°C程度に加熱した。この チューブの前端末を上記曲げ装置の溝 1にセットし、加工ヘッド Hを溝 1の始端部か ら終端部に向け 3秒で移動させた。ヘッド Ήの移動後、チューブ内部を約 15秒間冷 却して常温に戻した。
このチューブの曲げに要したサイクルタイムは、予熱時間を除き約 20秒であった。
[0024] [表 1]
Figure imgf000009_0001
産業上の利用可能性
[0025] 本発明は以上の通りであって、三次元曲げ成形された形態におけるチューブの手 前側の端末 (以下、前端末という)を X, Y, Z軸による直交座標の原点に置いて加工 基準点にし、そのチューブの前端末から向こう側の端末 (以下、後端末という)までの 曲げ部を含む複数点について、前記座標の各軸上での位置と各位置における前記 座標上での 2つの垂直面に対する角度と水平面に対する角度を求め、得られた位置 データと角度データに基づいて前記チューブの曲げ軌道をブロック状の型部材に三 次元曲げの軌道溝として形成することにより三次元曲げ型とし、曲げようとする直管状 のチューブの前端末を前記曲げ型の軌道溝の始端部にセットして当該チューブの前 端末力 後端末へ向けて水平ローラを前記軌道溝に倣わせながら移動させることに より、前記チューブを軌道溝に押込んで三次元曲げ成形されるようにしたから、合成 榭脂製チューブや金属製チューブを容易かつ低コストで 3次元曲げ成形することが できる。
[0026] また、本発明方法は上記の通りであるから、曲げた後の戻りが少ないアルミニウムな どの金属チューブにも適用できるほか、特に、加熱軟化処理を伴う榭脂チューブの 曲げに適用して極めて有効である。
図面の簡単な説明
[0027] [図 1]本発明方法を実施するための曲げ装置の一例の平面図。
[図 2]図 1の曲げ装置の正面図。
[図 3]本発明方法を説明するための曲げ機構の概要を示す斜視図。
[図 4]本発明方法に用いる曲げ型 Gを水平面内で回転させる一例の平面図。
[図 5]本発明方法に用いる曲げ型 Gを水平面内で回転させる別例の平面図。
[図 6]従来のロール曲げ装置を説明するための斜視図。
[図 7]従来の NCベンダーを説明するための斜視図。
符号の説明
G 曲げ型
1 軌道溝
2 上面
3 垂直面
4 水平ローラ,
5 垂直ローラ'
6 保持部材
7 回転軸
8, 9 ホノレダ
8a ベアリング シリンダ ヘッド、 チューブ

Claims

請求の範囲
[1] 三次元曲げ成形された形態におけるチューブの手前側の端末 (以下、前端末とい う)を X, Y, Z軸による直交座標の原点に置いてカ卩ェ基準点にし、そのチューブの前 端末から向こう側の端末 (以下、後端末と 、う)までの曲げ部を含む複数点につ 、て
、前記座標の各軸上での位置と各位置における前記座標上での 2つの垂直面に対 する角度と水平面に対する角度を求め、得られた位置データと角度データに基づ!/、 て前記チューブの曲げ軌道をブロック状の型部材に三次元曲げの軌道溝として形成 することにより三次元曲げ型とし、曲げようとする直管状のチューブの前端末を前記 曲げ型の軌道溝の始端部にセットして当該チューブの前端末力 後端末へ向けて水 平ローラを前記軌道溝に倣わせながら移動させることにより、前記チューブを軌道溝 に押込んで三次元曲げ成形することを特徴とするチューブの高速曲げ方法。
[2] チューブの曲げ部を含む複数点についての直交座標上での位置データとその各 位置での垂直面と水平面に対する角度データを、基準点で当該チューブをその中 心軸の回りに適宜角度のピッチで回転させた各回転角において形成し、各回転角の 位置における垂直面と水平面に対する角度データの和が最小となる角度において 前記チューブの姿勢を型部材に軌道溝として形成する請求項 1のチューブの高速曲 げ方法。
[3] 水平ローラの移動方向に関し、軌道溝が反転したり大きな曲げ角であるときは、軌 道溝を設けた三次元曲げ型を平面内で角回転させることにより、前記反転を解消す るか又は大きな曲げ角を見かけ上小さくする請求項 1又は 2のチューブの高速曲げ 方法。
[4] チューブの径に応じた窪みを付けた水平ローラを使用する請求項 1一 3のいずれか のいずれかのチューブの高速曲げ方法。
[5] 水平ローラーの移動方向に関する両側に縦向きのローラーを設け、該縦向きローラ を軌道溝の外壁面に倣わせて曲げ成形する請求項 1一 4のいずれかのチューブの 高速曲げ方法。
[6] 軌道溝の表面を摩擦低減処理した請求項 1一 5のいずれかのチューブの高速曲げ 方法。
[7] チューブは、榭脂チューブ又はゴムプロテクタを付けた榭脂チューブ若しくは金属 製チューブである請求項 1一 6のいずれかのチューブの高速曲げ方法。
[8] チューブの曲げ部を含む複数点についての直交座標上での位置データとその各 位置での垂直面と水平面に対する角度データを、基準点で当該チューブをその中 心軸の回りに適宜角度のピッチで回転させた各回転角において形成し、各回転角の 位置における垂直面と水平面に対する角度データの和が最小となる角度において 前記チューブの姿勢を型部材に軌道溝として形成したことを特徴とするチューブの 三次元曲げ型。
PCT/JP2004/015492 2004-10-20 2004-10-20 樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型 WO2006043316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2004/015492 WO2006043316A1 (ja) 2004-10-20 2004-10-20 樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型
CNB2004800442726A CN100551674C (zh) 2004-10-20 2004-10-20 树脂管件的高速弯曲方法以及该方法中所使用的三维弯曲模具
KR1020077006731A KR101112503B1 (ko) 2004-10-20 2004-10-20 수지 튜브의 고속 굽힘 방법과 이 방법에 사용하는 3차원굽힘 형
JP2005518941A JPWO2006043316A1 (ja) 2004-10-20 2004-10-20 樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型
TW094136822A TW200630204A (en) 2004-10-20 2005-10-20 High speed bending method of resin tube and three-dimensional bending die employing that method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/015492 WO2006043316A1 (ja) 2004-10-20 2004-10-20 樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型

Publications (1)

Publication Number Publication Date
WO2006043316A1 true WO2006043316A1 (ja) 2006-04-27

Family

ID=36202741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015492 WO2006043316A1 (ja) 2004-10-20 2004-10-20 樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型

Country Status (5)

Country Link
JP (1) JPWO2006043316A1 (ja)
KR (1) KR101112503B1 (ja)
CN (1) CN100551674C (ja)
TW (1) TW200630204A (ja)
WO (1) WO2006043316A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127959A (zh) * 2017-07-02 2017-09-05 浙江波士特机械有限公司 成型尼龙管自动热成型设备
WO2019163187A1 (ja) * 2018-02-22 2019-08-29 三桜工業株式会社 曲げ型へのチューブ自動嵌め込み装置
IT202000030371A1 (it) * 2020-12-10 2022-06-10 Cte Sistemi Srl Procedimento per ricavare una curva tridimensionale in un prodotto tubolare, e procedimento per la fabbricazione di prodotti tubolari a curvatura complessa

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101537449B (zh) * 2009-04-10 2012-01-25 哈尔滨工业大学 型材变曲率零件弯曲成形的装置
CN103990666B (zh) * 2014-06-03 2016-04-20 安庆市汇通汽车部件有限公司 多工位冷弯曲数控液压弯管机
KR101542521B1 (ko) * 2015-05-20 2015-08-06 주식회사 유림모비스 밴딩장치
JP7060982B2 (ja) * 2018-02-22 2022-04-27 三桜工業株式会社 曲げ型及び曲げ型の製造方法
CN109013772B (zh) * 2018-09-29 2020-01-17 惠安闽居机械有限公司 一种汽车制造用管件加工的弯管机
CN111659780B (zh) * 2020-06-18 2022-07-01 上海发那科机器人有限公司 一种机器人弯管加工方法及弯管加工装置
CN111842536A (zh) * 2020-07-01 2020-10-30 北京航天新立科技有限公司 一种异形管路成型工艺及成型系统
CN112644002B (zh) * 2020-12-18 2022-05-27 常州市新创智能科技有限公司 一种复合材料自动辊压成型系统及其控制方法
CN113458212B (zh) * 2021-07-30 2023-05-02 浙江金马逊智能制造股份有限公司 手动弯管设备及其弯管方法
CN113458210B (zh) * 2021-07-30 2023-05-26 浙江金马逊智能制造股份有限公司 弯管设备及其弯管组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959417A (ja) * 1982-09-30 1984-04-05 Toyoda Gosei Co Ltd 合成樹脂ホ−スの曲げ加工方法
JPH0251374B2 (ja) * 1984-06-27 1990-11-07 Tokai Rubber Ind Ltd
DE3939352A1 (de) * 1989-11-29 1991-06-06 Bundy Gmbh Vorrichtung zum biegen von kleinkalibrigen rohrstuecken aus thermoplastischen kunststoffen
JPH0885149A (ja) * 1994-09-20 1996-04-02 Mitsubishi Plastics Ind Ltd 弯曲管の成形法
JP2000185324A (ja) * 1998-12-22 2000-07-04 Matsushita Electric Works Ltd 金型のキャビティ形状創成方法
JP2004243347A (ja) * 2003-02-12 2004-09-02 Babcock Hitachi Kk ボイラ耐圧部における3次元曲管の自動管曲げ方法及び自動管曲げ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257864B1 (en) 1999-06-18 2001-07-10 Itt Manufacturing Enterprises, Inc. Apparatus for directing heat in a tube bending machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959417A (ja) * 1982-09-30 1984-04-05 Toyoda Gosei Co Ltd 合成樹脂ホ−スの曲げ加工方法
JPH0251374B2 (ja) * 1984-06-27 1990-11-07 Tokai Rubber Ind Ltd
DE3939352A1 (de) * 1989-11-29 1991-06-06 Bundy Gmbh Vorrichtung zum biegen von kleinkalibrigen rohrstuecken aus thermoplastischen kunststoffen
JPH0885149A (ja) * 1994-09-20 1996-04-02 Mitsubishi Plastics Ind Ltd 弯曲管の成形法
JP2000185324A (ja) * 1998-12-22 2000-07-04 Matsushita Electric Works Ltd 金型のキャビティ形状創成方法
JP2004243347A (ja) * 2003-02-12 2004-09-02 Babcock Hitachi Kk ボイラ耐圧部における3次元曲管の自動管曲げ方法及び自動管曲げ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127959A (zh) * 2017-07-02 2017-09-05 浙江波士特机械有限公司 成型尼龙管自动热成型设备
WO2019163187A1 (ja) * 2018-02-22 2019-08-29 三桜工業株式会社 曲げ型へのチューブ自動嵌め込み装置
JP2019142161A (ja) * 2018-02-22 2019-08-29 三桜工業株式会社 曲げ型へのチューブ自動嵌め込み装置
KR20200121789A (ko) * 2018-02-22 2020-10-26 사노 인더스트리얼 캄파니 리미티드 벤딩 다이에 대한 튜브 자동 끼움 삽입 장치
JP7025955B2 (ja) 2018-02-22 2022-02-25 三桜工業株式会社 曲げ型へのチューブ自動嵌め込み装置
KR102413900B1 (ko) 2018-02-22 2022-06-28 사노 인더스트리얼 캄파니 리미티드 벤딩 다이에 대한 튜브 자동 끼움 삽입 장치
IT202000030371A1 (it) * 2020-12-10 2022-06-10 Cte Sistemi Srl Procedimento per ricavare una curva tridimensionale in un prodotto tubolare, e procedimento per la fabbricazione di prodotti tubolari a curvatura complessa
EP4011516A1 (en) * 2020-12-10 2022-06-15 CTE Sistemi S.r.l. Method for obtaining a three-dimensional curve in a tubular product, and method for manufacturing complex-curvature tubular products

Also Published As

Publication number Publication date
TW200630204A (en) 2006-09-01
CN101044012A (zh) 2007-09-26
CN100551674C (zh) 2009-10-21
JPWO2006043316A1 (ja) 2008-05-22
KR101112503B1 (ko) 2012-02-24
KR20070065339A (ko) 2007-06-22
TWI365133B (ja) 2012-06-01

Similar Documents

Publication Publication Date Title
JP5033231B2 (ja) 樹脂チューブの高速曲げに用いる3次元曲げ型
WO2006043316A1 (ja) 樹脂チューブの高速曲げ方法とこの方法に用いる三次元曲げ型
JP6654351B2 (ja) 曲げ加工装置
JP6363560B2 (ja) パイプの曲げ方法及び曲げ装置
KR101885265B1 (ko) 차량용 3차원 파이프 홀 가공장치
JP6101454B2 (ja) ワーク加工装置及び該ワーク加工装置における金型の移動方法
JP4986179B2 (ja) スピニング加工方法及び装置
JP6393419B2 (ja) 長尺部材の焼き入れ装置及び長尺部材の焼き入れ方法
CN108380706B (zh) 一种自动化钣金折弯生产线
JP2001293521A (ja) 管の曲げ加工装置
JP2008012572A (ja) ローラヘミング装置
TWM611752U (zh) 三維列印設備
JP5770430B2 (ja) 曲げ加工装置
KR102350801B1 (ko) 비정형 형상을 가지는 단조피팅 파지용 그리퍼
TWM597187U (zh) 單機多曲率及多角度立體連續彎曲裝置
JP7370567B2 (ja) トランスファフィーダ
JP2010240715A (ja) 曲げ加工装置
KR101712968B1 (ko) 밴딩머신의 밴딩유닛
JP2007030004A (ja) 多工程プレス機におけるワーク移送装置
JP2014069285A (ja) ワーク位置決め装置
TWI744152B (zh) 三維列印設備
CN214085196U (zh) 自动贴标设备
CN209124645U (zh) 一种双头液压弯管机
JPH01141706A (ja) インサート用ロボット
JPS6380922A (ja) ベンダ−

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005518941

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077006731

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1598/CHENP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200480044272.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04792658

Country of ref document: EP

Kind code of ref document: A1