WO2006038545A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2006038545A1
WO2006038545A1 PCT/JP2005/018087 JP2005018087W WO2006038545A1 WO 2006038545 A1 WO2006038545 A1 WO 2006038545A1 JP 2005018087 W JP2005018087 W JP 2005018087W WO 2006038545 A1 WO2006038545 A1 WO 2006038545A1
Authority
WO
WIPO (PCT)
Prior art keywords
common mode
pwm
rectifier circuit
choke coil
pwm inverter
Prior art date
Application number
PCT/JP2005/018087
Other languages
English (en)
French (fr)
Inventor
Reiji Kawashima
Yoshitsugu Koyama
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US11/664,624 priority Critical patent/US8008886B2/en
Priority to AU2005290576A priority patent/AU2005290576B2/en
Priority to EP05787740.9A priority patent/EP1806833B1/en
Publication of WO2006038545A1 publication Critical patent/WO2006038545A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements

Definitions

  • the present invention relates to a power converter including a PWM rectifier circuit and a PWM inverter circuit, and including a common mode filter including a common mode choke coil and a capacitor.
  • Patent Document 1 a power converter including a PWM common circuit filter including a PWM rectifier circuit and a PWM inverter circuit and including a common mode choke coil and a capacitor has been proposed (see Patent Document 1).
  • FIG. 1 is an electric circuit diagram showing a motor drive system that drives a motor via a power conversion device including a diode rectifier circuit and a PWM inverter circuit.
  • a three-phase AC voltage is rectified to a DC voltage by a diode rectifier circuit, and a pulse width modulation is performed by a switching element of a PWM inverter circuit by comparing a triangular wave signal as a carrier wave with a modulated wave. Outputs an AC voltage of the frequency and frequency and supplies it to the motor.
  • a common mode voltage Vinv ⁇ see (E) in Fig. 2 ⁇ is generated as shown in Fig. 2. If the potential between the output terminals U, V, W of the PW M inverter and the midpoint N of the DC part is Vun, Vvn, Vwn, the common mode voltage Vinv is
  • This common mode voltage Vinv causes high-frequency leakage current and shaft voltage when the motor is driven by an inverter.
  • the high-frequency leakage current becomes conduction noise and becomes the main factor of the noise terminal voltage. Therefore, various measures have been studied to solve the problems caused by the common mode voltage Vinv.
  • FIG. 3 shows the equivalent circuit for the common mode of the motor drive system using the common mode filter.
  • the common mode choke coil used in the common mode filter has a three-phase winding on the magnetic core so that the polarity and power are equal.
  • the inductance is zero because it cancels out, but it operates as a large rear tuttle for the common mode.
  • the magnetic flux density of the common mode choke coil exceeds the saturation magnetic flux density Bmax, the inductance will be drastically reduced and it will not function as a common mode filter.
  • the magnetic flux ⁇ ⁇ ⁇ ⁇ of the core is expressed by the following equation 1, and the effective cross section of the magnetic core If the product is S, the magnetic flux density BLC1 is
  • the absolute value of the common mode voltage is greatest when the positive side of all three-phase arms of the inverter is on or the negative side is on (the inverter modulation factor is zero).
  • the carrier cycle of the inverter is Ti and the common mode voltage Vinv is all applied to the common mode choke
  • the interlinkage flux ⁇ ⁇ is given by Equation 3, and the DC voltage Ed is high or the switching cycle is large.
  • the common mode choke will become magnetically saturated.
  • Figure 4 shows the carrier wave when the inverter modulation factor Ki is 1, the phase voltage, the common mode voltage Vinv, the interlinkage flux of the common mode choke coil ⁇ ⁇ see ( ⁇ ) in Fig. 4 ⁇ , and 0 It shows the carrier wave, each phase voltage, common mode voltage Vinv, and flux linkage ⁇ inv of the common mode choke coil ⁇ see (B) in Fig. 4 ⁇ .
  • a PWM rectifier circuit in which a switching element is provided in parallel with a diode may be used.
  • the switching element of the PWM rectifier circuit operates in the same manner as the PWM inverter circuit, the common mode voltage Vrec is also generated from the PWM rectifier circuit.
  • the equivalent circuit for the common mode of the PWM rectifier circuit and the PWM inverter circuit is as shown in Fig. 6.
  • the common mode voltages Vrec and Vinv generated by the PWM rectifier circuit and the PWM inverter circuit for the DC link are Reverse series.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-18853
  • the common mode voltage generated by both converters is amplified or canceled. Will fit. Specifically, the common mode voltage when the switching frequency of the PWM rectifier circuit is twice the switching frequency of the PWM inverter circuit is as shown in Fig. 8, and the switching frequency of the PWM rectifier circuit is as follows. Fig. 9 shows the common-mode voltage when the wave power is 2.4 times the switching frequency of the SPWM inverter circuit.
  • the common mode voltage may be increased by using the PWM rectifier circuit.
  • the common mode choke coil used in the diode rectifier circuit If it is used, the function as a filter is lost and the effect of suppressing conductive noise such as noise terminal voltage is lost (switching frequency of PWM rectifier circuit and switching of PWM inverter circuit). (See Figure 10 showing the noise terminal voltage when the frequency is equal, and Figure 11 showing the noise terminal voltage when the switching frequency of the PWM rectifier circuit is twice the switching frequency of the PWM inverter circuit).
  • the switching frequency of the PWM rectifier circuit is set to a high frequency so as not to be affected by noise and the like. Since the switching frequency is set to a low frequency so as to reduce the switch loss, PW
  • the present invention has been made in view of the above problems, and provides a power converter capable of preventing the common mode voltage from becoming large enough to magnetically saturate the common mode choke coil.
  • the purpose is that.
  • the power converter of claim 1 includes a PWM rectifier circuit and a PWM inverter circuit, and a common mode filter including a common mode choke coil and a capacitor.
  • the carrier frequency of the PWM rectifier circuit and the carrier frequency of the PWM inverter circuit are set to frequencies at which the common mode choke coil does not cause magnetic saturation.
  • the carrier frequency of the PWM rectifier circuit is set to an odd multiple of the carrier frequency of the PWM inverter circuit.
  • the power conversion device according to claim 3 includes a rectifier circuit and a PWM inverter circuit, and a common mode filter including a common mode choke coil and a capacitor.
  • the resonance frequency of the common mode filter is set to more than twice the carrier frequency of the rectifier circuit or the carrier frequency of the PWM inverter circuit.
  • the power conversion device employs a PWM inverter circuit that supplies driving power to a compressor driving motor.
  • the common mode voltage is reduced, the magnetic flux generated in the common mode choke coil of the common mode filter is reduced, and magnetic saturation of the common mode choke coil is prevented. be able to.
  • the resonance frequency of the common mode filter is set to the carrier frequency of the rectifier circuit or PWM. Since it is set to more than twice the carrier frequency of the inverter circuit, magnetic saturation of the common mode choke coil can be prevented.
  • the first invention is characterized by preventing magnetic saturation of the common mode choke coil of the common mode filter and reducing the size of the common mode choke coil. There is an effect.
  • the second invention prevents the magnetic saturation of the common mode choke coil of the common mode filter, and can reduce the size of the common mode choke coil. There is an effect.
  • FIG. 12 shows a compressor driving mode incorporating an embodiment of the power converter of the present invention. It is the schematic which shows the structure of a data drive system.
  • This compressor drive motor drive system is connected to the input terminal of the PWM rectifier circuit 2 via a common mode choke coil Lcl and a rear tuttle Ln in series with each phase output terminal of the Y-connected three-phase AC power supply 1. And connect a pair of capacitors 3 of equal capacity in series between the output terminals of the PWM rectifier circuit 2, and connect the voltage between the terminals of the series connection circuit of the pair of capacitors 3 to the input terminal of the PWM inverter 4. The output of the PWM inverter 4 is supplied to the motor 5 for driving the compressor.
  • a capacitor Ccl is connected between the connection point of each phase common mode choke coil Lcl and rear tail Ln and the neutral point of the three-phase AC power supply 1. Further, a PWM rectifier circuit controller 6 that controls each switching element of the PWM rectifier circuit 2 and a PWM inverter controller 7 that controls each switching element of the PWM inverter 4 are provided.
  • the PWM rectifier circuit control unit 6 sets the switching frequency of the PWM rectifier circuit 2 to three times the switching frequency of the PWM inverter 4 by the PWM inverter control unit 7.
  • the PWM rectifier circuit control unit 6 and the PWM inverter control unit 7 set the common mode voltage Vrec generated by the PWM rectifier circuit 2 and the common mode voltage Vinv generated by the PWM inverter 4 in phase.
  • the common mode choke coil Lcl and capacitor Ccl constitute a common mode filter.
  • the PWM rectifier circuit control unit 6 controls the switching element of the PWM rectifier circuit 2 to convert the three-phase AC voltage into a DC voltage and smooth it by the capacitor 3. Then, the PWM inverter control unit 7 controls the switching element of the PWM inverter 4 to convert the DC voltage into a three-phase AC voltage and apply it to the compressor driving motor 5.
  • the switching frequency of the PWM rectifier circuit 2 by the PWM rectifier circuit controller 6 is set to P
  • the common mode voltage Vrec generated by the PWM rectifier circuit 2 and the PWM inverter are set at three times the switching frequency of the PWM inverter 4 by the WM inverter control unit 7. Since the common mode voltage Vinv generated by the data generator 4 is set to the same phase as that shown in Fig. 13 (A) (B), the overall common mode voltage Vcc is shown in Fig. 13 (C).
  • the magnetic flux ⁇ cc of the common mode choke coil Lcl is as shown in (D) of FIG.
  • FIG 14 shows that the switching frequency of PWM rectifier circuit 2 by PWM rectifier circuit controller 6 is set to three times the switching frequency of PWM inverter 4 by PWM inverter controller 7, and PWM rectifier circuit 2
  • the voltage waveform and magnetic flux waveform are shown when the common mode voltage Vrec generated and the common mode voltage Vinv generated by the PWM inverter 4 are set in reverse phase.
  • the noise terminal voltage is as shown in FIG. 15, which can be greatly reduced as compared with the noise terminal voltage shown in FIG.
  • the common mode filter can be set to more than twice the switching frequency of the PWM rectifier circuit 2.
  • the common mode choke coil Lcl Since the impedance of the common mode filter decreases near the resonance frequency, when the switching frequency of either the PWM rectifier circuit 2 or the PWM inverter 4 is close to the resonance frequency of the common mode filter, the common mode choke coil Lcl Although the applied voltage becomes extremely large and the common mode choke coil Lcl is likely to cause magnetic saturation, the resonance frequency of the common mode filter is set to the PWM rectifier circuit 2 as described above.
  • the common mode choke coil Lcl can be prevented from being magnetically saturated by setting the carrier frequency of the PWM inverter 4 or more than twice the carrier frequency of the PWM inverter 4.
  • Fig. 16 and Fig. 19 show the common mode as a whole when the resonance frequency fc force of the common mode filter is 1, 2, 3 and 4 times the switching frequency free of the PWM rectifier circuit 2, respectively. Show voltage Vcc ⁇ (A) ⁇ , common mode choke coil Lcl voltage VLC1 ⁇ see (B) ⁇ , common mode choke coil Lcl magnetic flux ⁇ Lcl ⁇ (C) ⁇ .
  • the magnetic flux ⁇ Lcl of the common mode choke coil Lcl is suppressed by setting the resonance frequency fc to at least twice the switching frequency free of the PWM rectifier circuit 2.
  • the common mode choke coil Lcl can be prevented from being magnetically saturated.
  • a diode rectifier circuit can be employed instead of the PWM rectifier circuit 2.
  • the resonance frequency f c of the common mode filter is set to be at least twice the switching frequency finv of the PWM inverter 4.
  • the common mode choke coil Lcl can be prevented from being magnetically saturated.
  • Fig. 20 and Fig. 23 show the resonance frequency fc force of the common mode filter as a whole when the switching frequency finv of the PWM inverter 4 is 1, 2, 3 and 4 times, respectively. Show common mode voltage Vcc ⁇ (A) ⁇ , common mode choke coil Lcl voltage VLC1 ⁇ see (B) ⁇ , common mode choke coil Lcl magnetic flux ⁇ Lcl ⁇ ((C) ⁇ ).
  • the magnetic flux ⁇ Lcl of the common mode choke coil Lcl is suppressed by setting the resonance frequency fc to at least twice the switching frequency finv of the PWM inverter 4. As a result, the common mode choke coil Lcl can be prevented from being magnetically saturated.
  • FIG. 1 is a schematic diagram showing the configuration of a compressor motor drive system incorporating an example of a conventional power converter.
  • FIG. 2 is a diagram for explaining generation of a common mode voltage waveform. 3] It is a diagram showing an equivalent circuit for the common mode.
  • FIG. 4 is a diagram showing a carrier wave, each phase voltage, a common mode voltage Vinv, and a linkage flux ⁇ inv of a common mode choke coil when the modulation factor is 1 and 0.
  • FIG. 5 A schematic diagram showing the configuration of a compressor motor drive system incorporating another example of a conventional power converter.
  • FIG. 7 is a diagram showing a common mode voltage waveform when the switching frequency of the PWM rectifier circuit is equal to the switching frequency of the PWM inverter.
  • FIG. 8 is a diagram showing a common mode voltage waveform when the switching frequency force of the PWM rectifier circuit is twice the switching frequency of the SPWM inverter.
  • FIG. 9 is a diagram showing a common mode voltage waveform when the switching frequency force of the PWM rectifier circuit is 2.4 times the switching frequency of the SPWM inverter.
  • FIG. 10 is a diagram showing the noise terminal voltage when the switching frequency of the PWM rectifier circuit is equal to the switching frequency of the PWM inverter.
  • FIG. 11 is a diagram showing the noise terminal voltage when the switching frequency force of the PWM rectifier circuit is twice the switching frequency of the SPWM inverter.
  • FIG. 12 A schematic diagram showing a configuration of a motor drive system for a compressor incorporating an embodiment of the power conversion device of the present invention.
  • FIG. 6 is a diagram showing a common mode voltage waveform and a linkage flux of a common mode choke coil when the common mode voltage Vrec and the common mode voltage Vinv generated by the PWM inverter 4 are set in phase.
  • FIG. 14 The switching frequency of PWM rectifier circuit 2 by PWM rectifier circuit controller 6 is set to three times the switching frequency of PWM inverter 4 by PWM inverter controller 7, and PWM rectifier circuit 2 is generated
  • FIG. 6 is a diagram showing a common mode voltage waveform and a linkage flux of a common mode choke coil when the common mode voltage Vrec and the common mode voltage Vinv generated by the PWM inverter 4 are set in opposite phases.
  • FIG. 15 is a diagram showing the noise terminal voltage when the switching frequency of the PWM rectifier circuit 2 by the PWM rectifier circuit control unit 6 is set to three times the switching frequency of the PWM inverter 4 by the PWM inverter control unit 7 .
  • FIG. 16 is a diagram showing a common mode voltage waveform and a linkage flux of the common mode choke coil when the resonance frequency of the common mode filter is set equal to the switching frequency of the PWM rectifier circuit 2;
  • FIG. 17 is a diagram showing a common mode voltage waveform and a linkage flux of the common mode choke coil when the resonance frequency of the common mode filter is set to twice the switching frequency of the PWM rectifier circuit 2;
  • FIG. 18 is a diagram showing a common mode voltage waveform and a linkage flux of the common mode choke coil when the resonance frequency of the common mode filter is set to three times the switching frequency of the PWM rectifier circuit 2.
  • FIG. 19 is a diagram showing a common mode voltage waveform and a linkage flux of the common mode choke coil when the resonance frequency of the common mode filter is set to four times the switching frequency of the PWM rectifier circuit 2;
  • FIG.20 Common mode voltage waveform and chain of common mode choke coil when diode rectifier circuit is adopted instead of PWM rectifier circuit and resonance frequency of common mode filter is set equal to switching frequency of PWM inverter 4 It is a figure which shows an alternating magnetic flux.
  • FIG.21 Common mode voltage waveform and common mode choke coil when a diode rectifier circuit is used instead of the PWM rectifier circuit and the resonance frequency of the common mode filter is set to twice the switching frequency of the PWM inverter 4 It is a figure which shows interlinkage magnetic flux.
  • FIG.22 Common mode voltage waveform and common mode choke coil when a diode rectifier circuit is used instead of the PWM rectifier circuit and the resonance frequency of the common mode filter is set to 3 times the switching frequency of the PWM inverter 4 It is a figure which shows interlinkage magnetic flux.
  • FIG. 4 is a diagram showing a common mode voltage waveform and a linkage flux of a common mode choke coil when the resonance frequency is set to four times the switching frequency of the PWM inverter 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Description

電力変換装置
技術分野
[0001] 本発明は、 PWM整流回路と PWMインバータ回路とを含むとともに、コモンモード チョークコイルおよびコンデンサを含むコモンモードフィルタを含む電力変換装置に 関する。
背景技術
[0002] 従来から、 PWM整流回路と PWMインバータ回路とを含むとともに、コモンモード チョークコイルおよびコンデンサを含む田コモンモードフィルタを含む電力変換装置が 提案されてレ、た (特許文献 1参照)。
[0003] 図 1は、ダイオード整流回路と PWMインバータ回路からなる電力変換装置を介して モータを駆動するモータ駆動システムを示す電気回路図である。
このモータ駆動システムにおいては、 3相交流電圧をダイオード整流回路で直流電 圧に整流し、 PWMインバータ回路のスイッチング素子で、搬送波である三角波信号 と変調波との比較によりパルス幅変調することで、所望の電圧 ·周波数の交流電圧を 出力し、モータに供給する。そして、 PWMインバータ回路の各スイッチング素子が動 作すると、図 2に示すようにコモンモード電圧 Vinv{図 2中(E)参照 }が発生する。 PW Mインバータの出力端子 U、 V、 W点と直流部の中点 Nとの間の電位を Vun、 Vvn、 V wnとすると、コモンモード電圧 Vinvは、
Figure imgf000003_0001
となり、 Ed/2, Ed/6, -Ed/6, _Ed/2の 4つの値をとり、 PWMインバータのキャリア 周波数 fcを基本波成分とするステップ状の波形をとる。
[0004] このコモンモード電圧 Vinvは、高周波漏れ電流やインバータで電動機を駆動する 際の軸電圧の原因となる。高周波漏れ電流は、伝導ノイズとなり、雑音端子電圧の主 要因となる。したがって、このコモンモード電圧 Vinvに起因する問題を解決するため、 様々な対策が検討されてレ、る。
[0005] これらの対策のうちでは、コモンモードチョークコイルとコンデンサとの組み合わせ によるコモンモードフィルタを用いて高周波漏れ電流を抑制する方法が一般的に用 いられている。コモンモードフィルタを用いたモータ駆動システムの、コモンモードに 対する等価回路は図 3に示す通りになる。コモンモードフィルタに用いるコモンモード チョークコイルは、磁性体コアに 3相の卷線を極性と卷数が等しくなるように卷ぃたも ので、ノーマルモードに対しては 3相の電流による起磁力が相殺されるためインダクタ ンスが零となるが、コモンモードに対しては、大きなリアタトルとして動作する。しかし、 コモンモードチョークコイルの磁束密度が飽和磁束密度 Bmaxを越えてしまうと、イン ダクタンスが激減し、コモンモードフィルタとして機能しなくなる。
[0006] ここで、コモンモードチョークに印加される電圧を VLC1、コモンモードチョークコィ ルの卷数を Nとすると、コアの磁束 φ Ι Ιは数 1で表され、磁性体のコアの有効断面 積を Sとすると、磁束密度 BLC1は数 2となる。
[0007] [数 1] ΐα = 丄 · ί VLCI dt
N
[0008] [数 2]
Figure imgf000004_0001
S S N
また、コモンモード電圧の絶対値が最も大きくなるのは、インバータの三相アームす ベて正側がオンもしくは負側がオンしている場合である(インバータの変調率は零)。 ここで、インバータのキャリア周期を Tiとし、コモンモード電圧 Vinvがすべてコモンモ ードチョークに印加された場合の鎖交磁束 φ ίηνは数 3となり、直流電圧 Edが高い場 合や、スイッチング周期が大きい場合に大きくなり、コモンモードチョークが磁気飽和 しゃすいことになる。
[0009] [数 3] φ inv = -J— · J V inv dt = E d' T l _
N 8 - N
また、コモンモードチョークコイルが飽和しないように、磁束密度を小さくするには、 コイルの断面積 Sを大きくする力 \卷数 Nを多くする必要がある。すなわち、何れの場 合にも、コアサイズが大きくなつてしまう。図 4にインバータの変調率 Kiが 1の時の搬 送波、各相電圧、コモンモード電圧 Vinv、コモンモードチョークコイルの鎖交磁束 ην{図 4中(Α)参照 }、および 0の時の搬送波、各相電圧、コモンモード電圧 Vinv、コ モンモードチョークコイルの鎖交磁束 φ inv{図 4中(B)参照 }を示す。
[0010] また、高調波電流規制に対応するため、ダイオードと並列にスイッチング素子を設 けた PWM整流回路(図 5参照)を用いる場合がある。この場合には、 PWM整流回路 のスイッチング素子も PWMインバータ回路と同様の動作を行うため、 PWM整流回 路からもコモンモード電圧 Vrecが発生することになる。
[0011] PWM整流回路、 PWMインバータ回路のコモンモードに対する等価回路は、図 6 に示す通りであり、直流リンクに対して PWM整流回路と PWMインバータ回路とが発 生するコモンモード電圧 Vrec、 Vinvは逆直列となる。
[0012] そして、両変換器の搬送波を共通にした場合 (スイッチング周波数を互いに等しくし た場合)には、図 7に示すように、両変換器のコモンモード電圧は互いに打ち消しあ レ、、全体としてのコモンモード電圧 Vccは、それぞれの変換器が発生するコモンモー ド電圧よりち/ J、さくなる。
特許文献 1 :特開 2003— 18853号公報
発明の開示
発明が解決しょうとする課題
[0013] し力し、 PWM整流回路のスイッチング周波数と PWMインバータ回路のスィッチン グ周波数とを異なる周波数に設定する必要がある場合においては、両変換器が発生 するコモンモード電圧は、増幅したり打ち消し合うことなる。具体的には、 PWM整流 回路のスイッチング周波数が PWMインバータ回路のスイッチング周波数の 2倍であ る場合のコモンモード電圧は図 8に示す通りであり、 PWM整流回路のスイッチング周 波数力 SPWMインバータ回路のスイッチング周波数の 2. 4倍である場合のコモンモー ド電圧は図 9に示す通りである。
[0014] このように、両変換器のスイッチング周波数の関係により、 PWM整流回路を用いる ことでコモンモード電圧が大きくなる場合があり、その結果、ダイオード整流回路で用 いていたコモンモードチョークコイルと同等のものを用いると磁気飽和してしまうため、 フィルタとしての機能が失われ、雑音端子電圧などの伝導性ノイズの抑制効果がなく なってしまう(PWM整流回路のスイッチング周波数と PWMインバータ回路のスイツ チング周波数とが等しい場合の雑音端子電圧を示す図 10、および PWM整流回路 のスイッチング周波数が PWMインバータ回路のスイッチング周波数の 2倍である場 合の雑音端子電圧を示す図 11を参照)。
[0015] 特に、 PWM整流回路と PWMインバータ回路とを含むモータ駆動システムにおい ては、 PWM整流回路のスイッチング周波数を、騒音などの影響を及ぼさないように 高い周波数に設定する一方、 PWMインバータ回路のスイッチング周波数を、スイツ チンダロスを少なくするように低い周波数に設定するのであるから、上述のように PW
M整流回路のスイッチング周波数と PWMインバータ回路のスイッチング周波数とを 異なる周波数に設定することは決して特殊なことではなぐこの結果、上述の不都合 が一般的に発生していた。
[0016] 本発明は上記の問題点に鑑みてなされたものであり、コモンモード電圧がコモンモ ードチョークコイルを磁気飽和させる程度に大きくなることを防止することができる電 力変換装置を提供することを目的としている。
課題を解決するための手段
[0017] 請求項 1の電力変換装置は、 PWM整流回路と PWMインバータ回路とを含むとと もに、コモンモードチョークコイルおよびコンデンサを含むコモンモードフィルタを含む ものにおいて、
PWM整流回路のキャリア周波数と PWMインバータ回路のキャリア周波数とを、コモ ンモードチョークコイルが磁気飽和を起こさない周波数に設定してあるものである。 請求項 2の電力変換装置は、 PWM整流回路のキャリア周波数を、 PWMインバータ 回路のキャリア周波数の奇数倍に設定したものである。 [0018] 請求項 3の電力変換装置は、整流回路と PWMインバータ回路とを含むとともに、コ モンモードチョークコイルおよびコンデンサを含むコモンモードフィルタを含むものに おいて、
コモンモードフィルタの共振周波数を、整流回路のキャリア周波数、または PWMイン バータ回路のキャリア周波数の 2倍以上に設定したものである。
[0019] 請求項 4の電力変換装置は、 PWMインバータ回路として、圧縮機駆動用モータに 駆動用電力を供給するものを採用するものである。
[0020] 第 1の発明の電力変換装置であれば、コモンモード電圧を小さくし、コモンモードフ ィルタのコモンモードチョークコイルに発生する磁束を小さくして、コモンモードチョー クコイルの磁気飽和を防止することができる。
[0021] また、コモンモードフィルタは、共振周波数近傍ではインピーダンスが小さくなるの で、 PWM整流回路、 PWMインバータ回路の何れか一方のスイッチング周波数がコ モンモードフィルタの共振周波数近傍になると、コモンモードチョークコイルに印加さ れる電圧が極端に大きくなり、コモンモードチョークコイルが磁気飽和を起こし易くな るのであるが、第 2の発明では、コモンモードフィルタの共振周波数を整流回路のキ ャリア周波数、または PWMインバータ回路のキャリア周波数の 2倍以上に設定してあ るので、コモンモードチョークコイルが磁気飽和することを防止することができる。 発明の効果
[0022] 第 1の発明は、コモンモードフィルタのコモンモードチョークコイルの磁気飽和を防 止し、ひレ、てはコモンモードチョークコイルの小型化を達成することができるとレ、ぅ特 有の効果を奏する。
[0023] 第 2の発明は、コモンモードフィルタのコモンモードチョークコイルの磁気飽和を防 止し、ひレ、てはコモンモードチョークコイルの小型化を達成することができるとレ、ぅ特 有の効果を奏する。
発明を実施するための最良の形態
[0024] 以下、添付図面を参照して、本発明の電力変換装置の実施の形態を詳細に説明 する。
図 12は本発明の電力変換装置の一実施形態を組み込んでなる圧縮機駆動用モー タ駆動システムの構成を示す概略図である。
[0025] この圧縮機駆動用モータ駆動システムは、 Y接続の 3相交流電源 1の各相出力端 子に、コモンモードチョークコイル Lcl、およびリアタトル Lnを直列に介して PWM整流 回路 2の入力端子を接続し、 PWM整流回路 2の出力端子間に、互いに等しい容量 の 1対のコンデンサ 3を直列接続し、 1対のコンデンサ 3の直列接続回路の端子間電 圧を PWMインバータ 4の入力端子に印加し、 PWMインバータ 4の出力を圧縮機駆 動用モータ 5に供給している。そして、各相のコモンモードチョークコイル Lclとリアタト ル Lnとの接続点と 3相交流電源 1の中性点との間にコンデンサ Cclを接続している。 さらに、 PWM整流回路 2の各スイッチング素子を制御する PWM整流回路制御部 6 と、 PWMインバータ 4の各スイッチング素子を制御する PWMインバータ制御部 7とを 有している。
[0026] そして、 PWM整流回路制御部 6は、 PWM整流回路 2のスイッチング周波数を、 P WMインバータ制御部 7による PWMインバータ 4のスイッチング周波数の 3倍に設定 している。そして、 PWM整流回路制御部 6および PWMインバータ制御部 7は、 PW M整流回路 2が発生するコモンモード電圧 Vrecと PWMインバータ 4が発生するコモ ンモード電圧 Vinvとを同相に設定してレ、る。
[0027] なお、両制御部 6、 7の他の処理は従来公知であるから、詳細な説明を省略する。
また、コモンモードチョークコイル Lclとコンデンサ Cclとでコモンモードフィルタを構 成している。
[0028] 上記の構成の圧縮機駆動用モータ駆動システムの作用は次のとおりである。
PWM整流回路制御部 6により PWM整流回路 2のスイッチング素子を制御すること によって、 3相交流電圧を直流電圧に変換し、コンデンサ 3により平滑化する。そして 、 PWMインバータ制御部 7により PWMインバータ 4のスイッチング素子を制御するこ とによって、直流電圧を 3相交流電圧に変換し、圧縮機駆動用モータ 5に印加する。
[0029] そして、 PWM整流回路制御部 6による PWM整流回路 2のスイッチング周波数を、 P
WMインバータ制御部 7による PWMインバータ 4のスイッチング周波数の 3倍に設定 してレ、るとともに、 PWM整流回路 2が発生するコモンモード電圧 Vrecと PWMインバ ータ 4が発生するコモンモード電圧 Vinvとを同相に設定してレ、る {図 13中(A) (B)参 照 }のであるから、全体のコモンモード電圧 Vccは図 13中(C)に示す通りになり、コモ ンモードチョークコイル Lclの磁束 φ ccは図 13中(D)に示す通りになる。
図 14は、 PWM整流回路制御部 6による PWM整流回路 2のスイッチング周波数を、 PWMインバータ制御部 7による PWMインバータ 4のスイッチング周波数の 3倍に設 定してレ、るとともに、 PWM整流回路 2が発生するコモンモード電圧 Vrecと PWMイン バータ 4が発生するコモンモード電圧 Vinvとを逆相に設定した場合の電圧波形、およ び磁束波形を示している。
[0030] 図 13と図 14とを対比することにより分かるように、 PWM整流回路 2が発生するコモ ンモード電圧 Vrecと PWMインバータ 4が発生するコモンモード電圧 Vinvとを同相に 設定することによって、コモンモードチョークコイル Lclの磁束 φ ccのピークを抑えるこ とができる。
[0031] また、雑音端子電圧は図 15に示す通りであり、図 11に示す雑音端子電圧よりも大 幅に低減することができた。
[0032] したがって、コモンモードチョークコイル Lclの磁気飽和を防止し、コモンモードフィ ルタの小型化、およびコストダウンを達成することができる。
[0033] また、 PWM整流回路制御部 6による PWM整流回路 2のスイッチング周波数を、 P WMインバータ制御部 7による PWMインバータ 4のスイッチング周波数の 3倍に設定 する代わりに、または加えて、コモンモードフィルタの共振周波数を、 PWM整流回路 2のスイッチング周波数のスイッチング周波数の 2倍以上に設定することができる。
[0034] この場合にも、コモンモードチョークコイル Lclの磁気飽和を防止し、コモンモードフ ィルタの小型化、およびコストダウンを達成することができる。
[0035] さらに説明する。
[0036] コモンモードフィルタは、共振周波数近傍ではインピーダンスが小さくなるので、 P WM整流回路 2、 PWMインバータ 4の何れか一方のスイッチング周波数がコモンモ ードフィルタの共振周波数近傍になると、コモンモードチョークコイル Lclに印加され る電圧が極端に大きくなり、コモンモードチョークコイル Lclが磁気飽和を起こし易くな るのであるが、上述のように、コモンモードフィルタの共振周波数を PWM整流回路 2 のキャリア周波数、または PWMインバータ 4のキャリア周波数の 2倍以上に設定する ことによって、コモンモードチョークコイル Lclが磁気飽和することを防止することがで きる。
図 16力、ら図 19は、コモンモードフィルタの共振周波数 fc力 それぞれ PWM整流回 路 2のスイッチング周波数 freeの 1倍、 2倍、 3倍、 4倍である場合における、全体とし てのコモンモード電圧 Vcc{ (A)参照 }、コモンモードチョークコイル Lclの電圧 VLC1 { (B)参照 }、コモンモードチョークコイル Lclの磁束 φ Lcl { (C)参照 }を示してレ、る。
[0037] 図 16から図 19を参照すれば分かるように、共振周波数 fcを PWM整流回路 2のス イッチング周波数 freeの 2倍以上に設定することによって、コモンモードチョークコイル Lclの磁束 φ Lclを抑えることができ、ひいてはコモンモードチョークコイル Lclが磁気 飽和することを防止することができる。
[0038] また、この実施形態において、 PWM整流回路 2に代えてダイオード整流回路を採 用することが可能である。ただし、この場合には、コモンモードフィルタの共振周波数 f cを、 PWMインバータ 4のスイッチング周波数 finvの 2倍以上に設定する。
この場合にも、コモンモードチョークコイル Lclが磁気飽和することを防止することが できる。
[0039] 図 20力ら図 23は、コモンモードフィルタの共振周波数 fc力 それぞれ PWMインバ ータ 4のスイッチング周波数 finvの 1倍、 2倍、 3倍、 4倍である場合における、全体とし てのコモンモード電圧 Vcc{ (A)参照 }、コモンモードチョークコイル Lclの電圧 VLC1 { (B)参照 }、コモンモードチョークコイル Lclの磁束 φ Lcl { (C)参照 }を示してレ、る。
[0040] 図 20から図 23を参照すれば分かるように、共振周波数 fcを PWMインバータ 4のス イッチング周波数 finvの 2倍以上に設定することによって、コモンモードチョークコイル Lclの磁束 φ Lclを抑えることができ、ひいてはコモンモードチョークコイル Lclが磁気 飽和することを防止することができる。
図面の簡単な説明
[0041] [図 1]従来の電力変換装置の一例を組み込んだ圧縮機用モータ駆動システムの構 成を示す概略図である。
[図 2]コモンモード電圧波形の生成を説明する図である。 園 3]コモンモードに対する等価回路を示す図である。
[図 4]変調率が 1、 0の場合の搬送波、各相電圧、コモンモード電圧 Vinv、コモンモー ドチョークコイルの鎖交磁束 φ invを示す図である。
園 5]従来の電力変換装置の他の例を組み込んだ圧縮機用モータ駆動システムの構 成を示す概略図である。
園 6]コモンモードに対する等価回路を示す図である。
[図 7]PWM整流回路のスイッチング周波数と PWMインバータのスイッチング周波数 とが等しい場合におけるコモンモード電圧波形を示す図である。
[図 8]PWM整流回路のスイッチング周波数力 SPWMインバータのスイッチング周波数 の 2倍である場合におけるコモンモード電圧波形を示す図である。
[図 9]PWM整流回路のスイッチング周波数力 SPWMインバータのスイッチング周波数 の 2. 4倍である場合におけるコモンモード電圧波形を示す図である。
[図 10]PWM整流回路のスイッチング周波数と PWMインバータのスイッチング周波 数とが等しい場合における雑音端子電圧を示す図である。
[図 11]PWM整流回路のスイッチング周波数力 SPWMインバータのスイッチング周波 数の 2倍である場合における雑音端子電圧を示す図である。
園 12]本発明の電力変換装置の一実施形態を組み込んだ圧縮機用モータ駆動シス テムの構成を示す概略図である。
[図 13]PWM整流回路制御部 6による PWM整流回路 2のスイッチング周波数を、 PW Mインバータ制御部 7による PWMインバータ 4のスイッチング周波数の 3倍に設定し ているとともに、 PWM整流回路 2が発生するコモンモード電圧 Vrecと PWMインバー タ 4が発生するコモンモード電圧 Vinvとを同相に設定している場合におけるコモンモ ード電圧波形、およびコモンモードチョークコイルの鎖交磁束を示す図である。
[図 14]PWM整流回路制御部 6による PWM整流回路 2のスイッチング周波数を、 PW Mインバータ制御部 7による PWMインバータ 4のスイッチング周波数の 3倍に設定し ているとともに、 PWM整流回路 2が発生するコモンモード電圧 Vrecと PWMインバー タ 4が発生するコモンモード電圧 Vinvとを逆相に設定している場合におけるコモンモ ード電圧波形、およびコモンモードチョークコイルの鎖交磁束を示す図である。 [図 15]PWM整流回路制御部 6による PWM整流回路 2のスイッチング周波数を、 PW Mインバータ制御部 7による PWMインバータ 4のスイッチング周波数の 3倍に設定し た場合における雑音端子電圧を示す図である。
[図 16]コモンモードフィルタの共振周波数を PWM整流回路 2のスイッチング周波数と 等しく設定した場合におけるコモンモード電圧波形、およびコモンモードチョークコィ ルの鎖交磁束を示す図である。
[図 17]コモンモードフィルタの共振周波数を PWM整流回路 2のスイッチング周波数 の 2倍に設定した場合におけるコモンモード電圧波形、およびコモンモードチョークコ ィルの鎖交磁束を示す図である。
[図 18]コモンモードフィルタの共振周波数を PWM整流回路 2のスイッチング周波数 の 3倍に設定した場合におけるコモンモード電圧波形、およびコモンモードチョークコ ィルの鎖交磁束を示す図である。
[図 19]コモンモードフィルタの共振周波数を PWM整流回路 2のスイッチング周波数 の 4倍に設定した場合におけるコモンモード電圧波形、およびコモンモードチョークコ ィルの鎖交磁束を示す図である。
[図 20]PWM整流回路に代えてダイオード整流回路を採用し、コモンモードフィルタ の共振周波数を PWMインバータ 4のスイッチング周波数と等しく設定した場合にお けるコモンモード電圧波形、およびコモンモードチョークコイルの鎖交磁束を示す図 である。
[図 21]PWM整流回路に代えてダイオード整流回路を採用し、コモンモードフィルタ の共振周波数を PWMインバータ 4のスイッチング周波数の 2倍に設定した場合にお けるコモンモード電圧波形、およびコモンモードチョークコイルの鎖交磁束を示す図 である。
[図 22]PWM整流回路に代えてダイオード整流回路を採用し、コモンモードフィルタ の共振周波数を PWMインバータ 4のスイッチング周波数の 3倍に設定した場合にお けるコモンモード電圧波形、およびコモンモードチョークコイルの鎖交磁束を示す図 である。
[図 23]PWM整流回路に代えてダイオード整流回路を採用し、コモンモードフィルタ の共振周波数を PWMインバータ 4のスイッチング周波数の 4倍に設定した場合にお けるコモンモード電圧波形、およびコモンモードチョークコイルの鎖交磁束を示す図 である。
符号の説明
2 PWM整流回路
4 PWMインバータ
5 圧縮機駆動用モータ
Lcl コモンモードチョークコィノレ
Ccl コンデンサ

Claims

請求の範囲
[1] PWM整流回路(2)と PWMインバータ回路(4)とを含むとともに、コモンモードチョー クコイル(Lcl)およびコンデンサ(Ccl)を含むコモンモードフィルタを含む電力変換 装置において、
PWM整流回路(2)のキャリア周波数と PWMインバータ回路(4)のキャリア周波数と を、コモンモードチョークコイル (Lcl)が磁気飽和を起こさない周波数に設定してある ことを特徴とする電力変換装置。
[2] PWM整流回路(2)のキャリア周波数は、 PWMインバータ回路(4)のキャリア周波数 の奇数倍に設定してある請求項 1に記載の電力変換装置。
[3] 整流回路(2)と PWMインバータ回路(4)とを含むとともに、コモンモードチョークコィ ノレ(Lcl)およびコンデンサ(Ccl)を含むコモンモードフィルタを含む電力変換装置 において、
コモンモードフィルタの共振周波数は、整流回路(2)のキャリア周波数、または PWM インバータ回路 (4)のキャリア周波数の 2倍以上に設定してあることを特徴とする電力 変換装置。
[4] PWMインバータ回路 (4)は、圧縮機駆動用モータ(5)に駆動用電力を供給するもの である請求項 1から請求項 3の何れかに記載の電力変換装置。
PCT/JP2005/018087 2004-10-04 2005-09-30 電力変換装置 WO2006038545A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/664,624 US8008886B2 (en) 2004-10-04 2005-09-30 Power converter
AU2005290576A AU2005290576B2 (en) 2004-10-04 2005-09-30 Power converter
EP05787740.9A EP1806833B1 (en) 2004-10-04 2005-09-30 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-291316 2004-10-04
JP2004291316A JP4645139B2 (ja) 2004-10-04 2004-10-04 電力変換装置

Publications (1)

Publication Number Publication Date
WO2006038545A1 true WO2006038545A1 (ja) 2006-04-13

Family

ID=36142620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018087 WO2006038545A1 (ja) 2004-10-04 2005-09-30 電力変換装置

Country Status (6)

Country Link
US (1) US8008886B2 (ja)
EP (1) EP1806833B1 (ja)
JP (1) JP4645139B2 (ja)
CN (1) CN100514828C (ja)
AU (1) AU2005290576B2 (ja)
WO (1) WO2006038545A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909388A1 (fr) * 2006-10-06 2008-04-09 Schneider Toshiba Inverter Europe SAS Dispositif de filtrage de mode commun et variateur de vitesse comportant un tel dispositif
US7606052B2 (en) * 2002-11-11 2009-10-20 Tokyo Institute Of Technology Filter device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528505B2 (en) * 2006-09-27 2009-05-05 General Electric Company Systems and methods for balancing of DC link in three level PWM power conversion equipment
JP5107133B2 (ja) * 2008-05-14 2012-12-26 三菱重工業株式会社 インバータ一体型電動圧縮機
WO2009139171A1 (ja) * 2008-05-14 2009-11-19 ダイキン工業株式会社 フィルタ回路実装ユニット及び電源ユニット
WO2010049976A1 (ja) * 2008-10-31 2010-05-06 三菱電機株式会社 電力変換装置
CN102474218B (zh) * 2009-07-01 2014-09-17 株式会社安川电机 电动机驱动装置
JP5026553B2 (ja) * 2010-04-22 2012-09-12 ファナック株式会社 Ac/dcコンバータの変換動作モードを動的に切替える機能を有するモータ駆動装置
FR2968484B1 (fr) * 2010-12-01 2014-10-24 Schneider Toshiba Inverter Variateur de vitesse equipe d'un dispositif de filtrage de mode commun
RU2014108141A (ru) * 2011-08-04 2015-09-10 Абб Текнолоджи Аг Бестрансформаторный многоуровневый преобразователь
JP5257533B2 (ja) * 2011-09-26 2013-08-07 ダイキン工業株式会社 電力変換装置
US8729844B2 (en) * 2012-01-18 2014-05-20 Hamilton Sundstrand Corporation Power converter with asymmetric phase shift autotransformer for alternating current (AC) motor
JP5906971B2 (ja) * 2012-07-03 2016-04-20 株式会社デンソー モータ駆動装置
CN104753324B (zh) * 2013-12-27 2017-08-11 施耐德东芝换流器欧洲公司 避免输入滤波器谐振的装置及方法
FI126063B (en) * 2014-05-21 2016-06-15 Vacon Oy Limiting electrical interference
GB201610369D0 (en) * 2016-06-15 2016-07-27 Rolls Royce Plc Control of an electrical converter
KR101858619B1 (ko) * 2016-08-24 2018-05-17 한국과학기술원 3상 전력 무선충전형 무인비행체 및 이를 위한 3상 전력 무선충전 장치
US9768705B1 (en) * 2016-10-07 2017-09-19 TSi Power Corp. Multibridge power converter for AC mains
US9787211B1 (en) 2016-10-07 2017-10-10 TSi Power Corp. Power converter for AC mains
US10381968B2 (en) * 2017-12-05 2019-08-13 Otis Elevator Company Converter pulse width modulation strategies for three phase regenerative drives
JP6873892B2 (ja) * 2017-12-22 2021-05-19 パナソニックIpマネジメント株式会社 スイッチング電源装置
JP7238284B2 (ja) * 2018-07-06 2023-03-14 富士電機株式会社 電動機駆動装置
JP7081554B2 (ja) * 2019-03-29 2022-06-07 株式会社豊田自動織機 電動圧縮機
DE102019118927A1 (de) * 2019-07-12 2021-01-14 Vacon Oy Gleichstromzwischenkreisladeanordnung und Verfahren zum Laden eines Gleichstromzwischenkreiskondensators
CN110571854B (zh) * 2019-09-06 2023-10-20 深圳市禾望电气股份有限公司 风力发电系统
CN111884523B (zh) * 2020-08-07 2021-11-19 浙江鲲悟科技有限公司 功率转换系统
US20240204688A1 (en) * 2022-12-16 2024-06-20 Bae Systems Controls Inc. Multi-wire common mode choke for increasing common mode transient immunity and minimizing circulating current in paralleled power semiconductors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211690A (ja) * 2000-01-24 2001-08-03 Denso Corp インバータ駆動型交流回転電機装置
JP2003143753A (ja) * 2001-10-30 2003-05-16 Sanyo Electric Co Ltd 圧縮機の制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818128A (en) * 1970-05-06 1974-06-18 Raytheon Co Display power system
HU179165B (en) * 1976-12-06 1982-08-28 Epitoegepgyarto Vallalat Method and circuit array of controlling current convrters,preferably for continuous speed-control of a.c. motors
US4563624A (en) * 1982-02-11 1986-01-07 Copeland Corporation Variable speed refrigeration compressor
JP2798988B2 (ja) * 1989-07-28 1998-09-17 株式会社東芝 空気調和装置用可調整交流電源装置
KR920010163B1 (ko) * 1990-12-18 1992-11-19 삼성전자 주식회사 공기조화기의 압축기 운전주파수제어장치 및 그 방법
US6191676B1 (en) * 1994-10-21 2001-02-20 Spinel Llc Apparatus for suppressing nonlinear current drawing characteristics
JP3373349B2 (ja) * 1995-06-09 2003-02-04 三菱電機株式会社 整流器制御装置
US5646498A (en) * 1995-08-07 1997-07-08 Eaton Corporation Conducted emission radiation suppression in inverter drives
JPH09294381A (ja) * 1996-04-25 1997-11-11 Hitachi Ltd 入出力非絶縁型電力変換装置
US5835364A (en) * 1997-06-12 1998-11-10 Allen Bradley Company, Llc Harmonic eliminating PWM converter
US5982253A (en) * 1997-08-27 1999-11-09 Nartron Corporation In-line module for attenuating electrical noise with male and female blade terminals
US6208098B1 (en) * 1998-03-02 2001-03-27 Yaskawa Electric America, Inc. Variable frequency drive noise attenuation circuit
FI108761B (fi) * 1998-09-14 2002-03-15 Abb Industry Oy Johtuvien häiriöiden suodatuksen optimointi
JP3466118B2 (ja) * 1999-08-31 2003-11-10 三菱電機株式会社 インバータ式駆動装置の漏洩電流低減フィルタ
US6366483B1 (en) * 2000-07-24 2002-04-02 Rockwell Automation Technologies, Inc. PWM rectifier having de-coupled power factor and output current control loops
JP3511018B2 (ja) * 2001-05-18 2004-03-29 松下電器産業株式会社 リニアコンプレッサ駆動装置
JP2003018853A (ja) 2001-06-28 2003-01-17 Fuji Electric Co Ltd コモンモード電流低減方法
JP2004032938A (ja) * 2002-06-27 2004-01-29 Mitsubishi Electric Corp インバータ装置用ノイズフィルタ
JP4196697B2 (ja) * 2003-02-27 2008-12-17 三菱電機株式会社 電力変換装置
US7262979B2 (en) * 2004-06-09 2007-08-28 Yuan Ze University Current source wave voltage inverter voltage-clamping and soft-switching techniques, and fuel cell system using the same
US7413413B2 (en) * 2004-07-20 2008-08-19 York International Corporation System and method to reduce acoustic noise in screw compressors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211690A (ja) * 2000-01-24 2001-08-03 Denso Corp インバータ駆動型交流回転電機装置
JP2003143753A (ja) * 2001-10-30 2003-05-16 Sanyo Electric Co Ltd 圧縮機の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606052B2 (en) * 2002-11-11 2009-10-20 Tokyo Institute Of Technology Filter device
US7868730B2 (en) 2006-06-10 2011-01-11 Schneider Toshiba Inverter Europe Sas Common-mode filtering device and speed variator comprising such a device
EP1909388A1 (fr) * 2006-10-06 2008-04-09 Schneider Toshiba Inverter Europe SAS Dispositif de filtrage de mode commun et variateur de vitesse comportant un tel dispositif
FR2906944A1 (fr) * 2006-10-06 2008-04-11 Schneider Toshiba Inverter Dispositif de filtrage de mode commun et variateur de vitesse comportant un tel dispositif

Also Published As

Publication number Publication date
JP2006109584A (ja) 2006-04-20
JP4645139B2 (ja) 2011-03-09
CN101040427A (zh) 2007-09-19
EP1806833A1 (en) 2007-07-11
EP1806833B1 (en) 2018-11-21
US20080284367A1 (en) 2008-11-20
CN100514828C (zh) 2009-07-15
AU2005290576A1 (en) 2006-04-13
AU2005290576B2 (en) 2008-10-16
EP1806833A4 (en) 2011-06-08
US8008886B2 (en) 2011-08-30

Similar Documents

Publication Publication Date Title
WO2006038545A1 (ja) 電力変換装置
JP4260110B2 (ja) フィルタ装置
JP4870968B2 (ja) 双方向昇降圧型電力コンバータ、双方向昇降圧型電力コンバータを使用する電気始動発電機、およびそれらの方法
JP4003409B2 (ja) 多出力電力変換回路
EP3038246B1 (en) Dc-ac conversion circuit topologie
JP5175452B2 (ja) インバータ装置
JPH10210757A (ja) ゼロ電流ターンオン形pwmインバータ装置
JP2001045795A (ja) 可変速駆動装置
JP3864799B2 (ja) Pwmサイクロコンバータ
JP2015053746A (ja) 共振型dc/dcコンバータ及び多相共振型dc/dcコンバータ
JP5432325B2 (ja) インバータ装置
JPH11191962A (ja) 絶縁形電力変換装置
JP3425331B2 (ja) 電源装置
JP2009095202A (ja) インバータ
EP3742596B1 (en) Power converter
JP5267522B2 (ja) 電力変換装置
JP4939819B2 (ja) 三相整流装置
JP3889714B2 (ja) 電力変換装置
JPH07236284A (ja) 三相電力変換装置
US11569792B2 (en) Integrated inverter output passive filters for eliminating both common mode and differential mode harmonics in pulse-width modulation motor drives and methods of manufacture and use thereof
JP2000232788A (ja) 電力変換回路における高調波ノイズ軽減方法
JP3725378B2 (ja) 単相昇降圧形高力率コンバータ
JP2006304600A (ja) 電力変換装置
Singh et al. Power quality improvement in a PMBLDCM drive using a forward buck converter
JP3161570B2 (ja) 交流入力電源装置の制御方法及び制御回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580033597.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005787740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005290576

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005290576

Country of ref document: AU

Date of ref document: 20050930

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005787740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11664624

Country of ref document: US