WO2006030943A1 - 圧電アクチュエータ - Google Patents

圧電アクチュエータ Download PDF

Info

Publication number
WO2006030943A1
WO2006030943A1 PCT/JP2005/017231 JP2005017231W WO2006030943A1 WO 2006030943 A1 WO2006030943 A1 WO 2006030943A1 JP 2005017231 W JP2005017231 W JP 2005017231W WO 2006030943 A1 WO2006030943 A1 WO 2006030943A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric actuator
displacement
temperature
electric field
Prior art date
Application number
PCT/JP2005/017231
Other languages
English (en)
French (fr)
Inventor
Toshiatsu Nagaya
Tatsuhiko Nonoyama
Masaya Nakamura
Yasuyoshi Saito
Hisaaki Takao
Takahiko Honma
Kazumasa Takatori
Original Assignee
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corporation filed Critical Denso Corporation
Priority to EP20050785898 priority Critical patent/EP1791193B1/en
Publication of WO2006030943A1 publication Critical patent/WO2006030943A1/ja
Priority to US11/717,796 priority patent/US7443085B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties

Definitions

  • the present invention relates to a multilayer actuator that uses the inverse piezoelectric effect and electrostrictive effect in a large electric field, a piezoelectric lens, an ultrasonic motor, a bimorph piezoelectric
  • piezoelectric actuators such as elements, ultrasonic sonar, piezoelectric ultrasonic transducers, piezoelectric buzzers, and piezoelectric force.
  • Piezoelectric actuators using piezoelectric ceramic materials are products that convert electrical energy into mechanical energy using displacement due to the inverse piezoelectric effect, and are widely applied in the fields of electronics and mechatronics.
  • PZT system P b (Z r ⁇ T i) 0 3 system
  • B a T i 0 3 etc. are known.
  • PZT-based piezoelectric ceramics have higher piezoelectric properties than other piezoelectric ceramics, and occupy the majority of piezoelectric ceramics that are currently in practical use.
  • PbO lead oxide
  • B a T i ⁇ 3 ceramics do not contain lead, but have lower piezoelectric properties than PZT, and also have a problem that they cannot be used at high temperatures because the Curie temperature is about 120 ° C. .
  • the above-mentioned piezoelectric actuator overnight generally includes a piezoelectric element that is a piezoelectric ceramic provided with at least one pair of electrodes and a holding portion that holds the piezoelectric element.
  • a pressure contact member such as an adhesive member or a panel for holding the piezoelectric element on the holding component, a lead terminal for applying a voltage to the piezoelectric element, and a resin coated between the pair of electrodes Or it consists of an electrical insulation member such as silicone oil.
  • a piezoelectric element made of piezoelectric ceramic is pressed by adhesion or molding or a spring or the like, a mechanical restraint force (preset load) is already applied in a state where no voltage is applied. Is given.
  • the piezoelectric actuator overnight when a voltage is applied to the piezoelectric actuator, the piezoelectric element is displaced as the voltage increases, so that the mechanical restraining force increases (load increase).
  • the displacement of the piezoelectric actuator overnight is smaller than the displacement performance of the piezoelectric element itself due to the preset load and the load increase.
  • the usage conditions and driving conditions of the piezoelectric actuator overnight include parameters such as temperature, driving electric field strength, driving waveform, driving frequency, and continuous driving or intermittent driving.
  • the general operating temperature range of the piezoelectric actuator overnight is about 30 ° C to 80 ° C when used in a general living environment, and maximum when used as an automobile part. At —40 ° (: ⁇ 1600 ° C.
  • the amplitude of the driving electric field strength depends on the application of the piezoelectric actuator, and it is 50 for the piezoelectric buzzer, ultrasonic sonar, piezoelectric speaker, etc.
  • the piezoelectric actuator drive method includes (1) a constant voltage drive method in which displacement is controlled by using voltage as a parameter, and (2) drive by control of displacement in which injection energy is used as a parameter. It can be classified into the constant energy drive method and (3) the constant charge drive method that drives by controlling the displacement with the injected charge as a parameter.
  • the above-mentioned piezoelectric actuator drive method using the constant voltage drive method has a feature that the displacement when the voltage is applied rises and falls and has hysteresis.
  • this constant voltage driving method there is a problem that the fluctuation range of the displacement within the operating temperature range is relatively large.
  • the piezoelectric energy drive method using the constant energy drive method has a characteristic that the displacement when the injection energy rises and falls has hysteresis.
  • the fluctuation range of the displacement within the operating temperature range is small compared to the above constant voltage driving method.
  • the AC drive that uses the constant charge drive method is superior in that the most precise displacement control is possible because the difference in displacement between the rise and fall of the injected charge is almost zero. .
  • the fluctuation range of displacement within the operating temperature range is larger than that of the constant voltage drive and the constant energy drive.
  • the following techniques have been developed as a method for reducing the fluctuation range of the temperature characteristics of the piezoelectric ceramic sensor.
  • Japanese Laid-Open Patent Publication No. 6-233264 discloses a stacked piezoelectric actuator that has a plurality of piezoelectric ceramic layers having different displacement performances.
  • Japanese Patent Application Laid-Open No. 5-284060 discloses a piezoelectric element in which a temperature compensation capacitor is electrically connected in series or in parallel to piezoelectric ceramics.
  • Japanese Patent Laid-Open No. 7-79002 discloses that in a piezoelectric element that generates an electric charge according to pressure, piezoelectric layers and dielectric layers are alternately stacked, and the electrostatic capacity of the dielectric layer is the same as that of the piezoelectric layer.
  • a piezoelectric element is disclosed which is made of a material having a characteristic that is larger than the capacitance and whose dielectric layer has a temperature coefficient opposite to that of the piezoelectric layer.
  • a piezoelectric element that generates an electric charge according to pressure is mixed and molded with a dielectric material whose capacitance changes with a temperature characteristic opposite to that of the piezoelectric material.
  • a piezoelectric element is disclosed.
  • the piezoelectric d 33 constant measured by the resonance method in a piezoelectric titanate piezoelectric ceramic is 3 0 0 p C / N
  • a composition having a small temperature change rate of the piezoelectric d 33 from 30 ° C. to 85 ° C. is disclosed.
  • Japanese Patent Laid-Open No. 2 0 0 3-1 2 8 4 60 describes in a multilayer piezoelectric element using a barium titanate-based Ni as an internal electrode, from the strain rate when an electric field strength of lk mm is applied.
  • a piezoelectric element having a small temperature change rate of the calculated piezoelectric d 31 constant is disclosed.
  • the present invention has been made in view of such a conventional problem, and intends to provide a piezoelectric actuator that can reduce the temperature dependence of the displacement regardless of the driving method of the piezoelectric actuator. It is a thing.
  • a piezoelectric actuator having a piezoelectric element formed by forming a pair of electrodes on a surface of a piezoelectric ceramic as a driving source, wherein a voltage is applied to the piezoelectric actuator and the electric field strength is 10.
  • the piezoelectric actuator overnight is less in the following requirements (a) to (c).
  • C nax represents the maximum value of the apparent dynamic capacity at 30 to 80 ° C
  • C min represents the minimum value of the apparent dynamic capacity at 30 to 80 ° C.
  • L ⁇ ax is the maximum displacement from 30 to 80 ° C
  • L n i n is
  • the fluctuation width W L / C [%] due to the temperature change of L / C represented by the following formula (3) is-30 to 80.
  • C [F] is the apparent dynamic capacity of the piezoelectric actuator overnight
  • L [urn] is the displacement of the piezoelectric actuator overnight.
  • the C [F] is the amount of charge Q accumulated in the capacitor when the piezoelectric actuator and the capacitor are connected in series, and a voltage is applied to the piezoelectric actuator and the capacitor.
  • C is calculated by dividing [C] by the voltage V [V] applied to the piezoelectric actuator overnight.
  • W L / C (%) [ ⁇ 2 X (L / C) aax / ((L / C) iax +
  • the second invention is a piezoelectric actuator that has a piezoelectric element having a pair of electrodes formed on the surface of a piezoelectric ceramic as a drive source.
  • the piezoelectric actuator overnight is required to satisfy the following requirements (j) to (1) Piezoelectric actuators characterized by satisfying at least one requirement (Claim 10 of claims).
  • W c (%) [ ⁇ 2 XC na no (C B ax + C lin ) ⁇ 1 1]
  • L B ax represents the maximum value of displacement at 1 30 to 160 ° C
  • L B in represents the minimum value of displacement at 1 30 to 160 ° C
  • W L / C (%) [(2 X (L / C) BAX / ((L / C) AAX +
  • the piezoelectric actuate of the first invention satisfies at least one of the above requirements (a) to (c). That is, in the piezoelectric actuator overnight according to the first aspect of the invention, the fluctuation width W due to temperature change of the apparent dynamic capacity C (the fluctuation width W due to temperature change of the displacement L or the displacement noise dynamic. At least one of the fluctuation ranges W L / C due to the temperature change of the capacitance (LZC) is within the specific range in the specific temperature range of ⁇ 30 to 80 ° C.
  • the piezoelectric actuator of the second invention satisfies at least one of the requirements (j) to (1). That is, in the piezoelectric actuator overnight according to the first aspect of the invention, the fluctuation width W due to the temperature change of the apparent dynamic capacity C or the fluctuation width WL due to the temperature change of the displacement L, or the displacement Z dynamic capacity (L At least one of the fluctuation ranges W L / c due to the temperature change of / C) is within the specific range in the specific temperature range of ⁇ 30 to 160 ° C.
  • the piezoelectric actuator overnight according to the first and second inventions has little variation in displacement due to temperature change. That is, the piezoelectric actuator can exhibit a substantially constant displacement even when used in an environment where the temperature changes rapidly. Therefore, the above piezoelectric features Ayu can also be suitably used for products that are used in environments where the temperature changes drastically, such as automobile parts.
  • the drive method of piezoelectric actuator overnight is as follows:
  • Constant voltage drive method that drives by controlling displacement with voltage as a parameter
  • Constant energy drive method that drives by controlling displacement with parameter as an injection energy
  • the displacement (A L 1) of the constant voltage drive piezoelectric actuator is expressed by the following formula A 1.
  • AL 1 D 3 3 XEFXL 0 A 1
  • D 3 3 Dynamic strain [mZV]
  • EF Maximum electric field strength [V Zm]
  • L 0 Length of piezoelectric ceramic before voltage application [ m].
  • the amount of dynamic strain is parallel to the voltage application direction when driven by applying a high voltage with a constant amplitude, with an electric field strength of 0 to 300 V / mm and a dielectric breakdown. This is the displacement performance of the piezoelectric ceramic generated in the direction, and is expressed by the following formula A2.
  • D 3 3 has not only temperature dependency but also electric field strength dependency.
  • the piezoelectric actuator evening displacement ( ⁇ L 1) is proportional to the product of the dynamic strain amount D 3 3 according to the applied electric field strength and the applied electric field strength. .
  • the energy, charge, apparent dynamic capacity, and applied voltage are related by the following formulas A 3 and A 4.
  • W 1/2 XCXV 2 A 3
  • Q CXV ⁇ A 4
  • C Apparent dynamic capacity [F]
  • V Applied voltage [V]
  • Q Charge [C].
  • the apparent dynamic capacitance C [F] is generally in the range where a piezoelectric actuator and a capacitor are connected in series, and the electric field strength is 0 to 300 0 V / mm and insulation breakdown does not occur. It is defined as the value obtained by dividing the amount of charge accumulated in the capacitor by the voltage applied overnight when driven with a constant amplitude electric field strength.
  • the apparent dynamic capacity C includes at least the charge component derived from the dielectric component, the polarization inversion component, and the polarization rotation component of the piezoelectric ceramic, and the leakage current derived from the direct current resistance component of the piezoelectric ceramic.
  • the apparent dynamic capacity C has not only temperature dependence but also electric field strength dependence.
  • D 3 3 is the displacement performance, D 3 3 / C 0 - 5, the absolute value of D 3 3 ZC is desirably large.
  • V (2 XW / C) ° - 5
  • the terminal voltage also converges to a constant value, so that D 3 3 / C Q ' 5 at a constant driving electric field strength If the temperature dependency is small, the temperature dependency of the displacement of the constant energy control can be reduced. In addition, if the temperature dependence of D 3 3 / C at a constant driving electric field strength is small, the temperature dependence of the arcuate displacement under constant charge control can be reduced.
  • the amount of dynamic strain generated under electric field driving conditions with a certain amplitude in the operating temperature range D 3 3 is desirably fluctuation width of 3 / C is small.
  • the fluctuation width W due to the temperature change of the apparent dynamic capacity C (the fluctuation width W due to the temperature change of the displacement L or the displacement / apparent Fluctuation width due to temperature change of dynamic capacity (L / C) of at least one of W we is within ⁇ 1 1% and ⁇ 14% within a specific temperature range of 30 to 80 ° C, respectively Within ⁇ 1 2%.
  • the fluctuation width W due to a temperature change of the apparent dynamic capacity C or the fluctuation width W due to a temperature change of the displacement L or the displacement / apparent dynamic Fluctuation width due to temperature change of capacitance (L / C) W W ( ; at least one of them is within ⁇ 30% and ⁇ 14% within a specific temperature range of 1 30 to 160 ° C, respectively. Within ⁇ 3 5%.
  • the temperature dependence of the displacement is reduced regardless of driving methods such as constant voltage driving, constant energy driving, and constant charge driving. In other words, even if the operating temperature is changed, substantially the same displacement characteristics can be exhibited.
  • FIG. 1 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to the first example.
  • FIG. 2 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to the first example.
  • FIG. 3 is a diagram showing the temperature dependence of the apparent dynamic capacity of the displacement of the piezoelectric actuator according to the first embodiment.
  • FIG. 4 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to the second embodiment.
  • FIG. 5 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to the second embodiment.
  • FIG. 6 is a diagram showing the temperature dependence of the apparent dynamic capacity of the displacement of the piezoelectric actuator according to the second embodiment.
  • FIG. 7 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to the third embodiment.
  • FIG. 8 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to the third embodiment.
  • FIG. 9 is a diagram showing the temperature dependence of the displacement Z apparent dynamic capacity of the piezoelectric actuator according to the third embodiment.
  • FIG. 10 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to the fourth example.
  • FIG. 11 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to the fourth embodiment.
  • FIG. 12 is a diagram showing the temperature dependence of the displacement / apparent dynamic capacity of the piezoelectric actuator according to the fourth example.
  • FIG. 13 is a diagram showing the temperature dependence of the apparent dynamic capacitance and capacitance of the piezoelectric actuator according to the fifth embodiment.
  • Fig. 14 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to Example 5.
  • FIG. 15 is a diagram showing the temperature dependence of the displacement Z apparent dynamic capacity according to the fifth embodiment.
  • Figure 16 shows the apparent movement of Piezoelectric Yue, according to Comparative Example 1. It is a diagram which shows the temperature dependence of dynamic capacity.
  • FIG. 17 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to the first comparative example.
  • FIG. 18 is a diagram showing the temperature dependence of the apparent dynamic capacitance of the displacement Z of the piezoelectric actuator according to Comparative Example 1.
  • FIG. 19 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 2.
  • FIG. 20 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to the comparative example 2.
  • FIG. 21 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 2.
  • FIG. 22 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 3.
  • FIG. 23 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to Comparative Example 3.
  • FIG. 24 is a diagram showing the temperature dependence of the displacement / apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 3.
  • FIG. 25 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 4.
  • FIG. FIG. 26 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to Comparative Example 4.
  • FIG. 27 is a diagram showing the temperature dependence of the displacement / apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 4.
  • FIG. 27 is a diagram showing the temperature dependence of the displacement / apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 4.
  • FIG. 28 is a diagram showing the temperature dependence of the apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 5.
  • FIG. 29 is a diagram showing the temperature dependence of the displacement of the piezoelectric actuator according to Comparative Example 5.
  • FIG. 30 is a diagram showing the temperature dependence of the displacement / apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 5.
  • FIG. 30 is a diagram showing the temperature dependence of the displacement / apparent dynamic capacity of the piezoelectric actuator according to Comparative Example 5.
  • FIG. 31 is a diagram showing the apparent dynamic capacity and the temperature dependence of the dynamic capacity of Piezoelectric Stack (Example 1) according to Example 6.
  • FIG. Fig. 3 2 is a diagram of the piezoelectric actuator according to Example 6 (Example 4). It is a diagram which shows the temperature dependence of an apparent dynamic capacity
  • FIG. 33 is a diagram showing the apparent dynamic capacity and the temperature dependence of the dynamic capacity of Piezoelectric Ikuya (Comparative Example 1) according to Example 6.
  • FIG. 33 is a diagram showing the apparent dynamic capacity and the temperature dependence of the dynamic capacity of Piezoelectric Ikuya (Comparative Example 1) according to Example 6.
  • Fig. 34 is a diagram showing the relationship between the electrode strength amplitude and the dynamic strain at a temperature of 20 ° C for each piezoelectric actuator obtained in Example 1 to Example 5 according to Example 7. It is.
  • FIG. 35 shows the measured value of the temperature characteristic of d 3 , the single plate produced in Example 5, according to Example 8, and the driving of 100 0 V to 200 0 V / mm shown in Example 5
  • FIG. 6 is a diagram showing the results of normalizing the amount of dynamic strain at electric field strength with a value of 20 ° C., respectively.
  • FIG. 36 is an explanatory diagram showing an example of the configuration of the piezoelectric actuator according to the present invention.
  • FIG. 37 is an explanatory diagram illustrating the outline of the configuration of the piezoelectric actuator according to the first embodiment.
  • FIG. 38 is an explanatory diagram of the configuration of the piezoelectric element according to the first example.
  • FIG. 39 is an explanatory diagram showing the configuration of a piezoelectric element (single plate) made of a single piece of piezoelectric ceramic according to the first embodiment.
  • FIG. 40 is an explanatory diagram illustrating a state in which the piezoelectric element (single plate) and the internal electrode plate according to the first embodiment are stacked.
  • W L (%) [ ⁇ 2 XL B ax / (L nax + L ffl in ) ⁇ -1]
  • W L / C (%) [ ⁇ 2 X (L / C) B ax / ((L / C) leakage ax +
  • the apparent dynamic capacity is the same as that of the piezoelectric actuator X overnight, for example, at a temperature of 25 ° C.
  • the amount of charge Q [C] accumulated in the capacitor is expressed as the voltage applied to the piezoelectric actuator overnight.
  • the piezoelectric actuator overnight does not satisfy any of the above requirements (a) to (c), that is, when the fluctuation range W C is out of the range of ⁇ 11% at -30 to 80 ° C.
  • the temperature is between 3 ° C and 80 ° C. There is a possibility that the temperature dependence of the piezoelectric actuator overnight will increase.
  • the piezoelectric actuator overnight preferably satisfies both the above requirement (a) and the above requirement (b) (claim 2).
  • the temperature dependence of the piezoelectric actuator overnight can be made smaller.
  • the piezoelectric actuator overnight satisfies all of the above requirements (a) to (c) (claim 3).
  • the temperature dependence of the piezoelectric actuator overnight can be further reduced.
  • the fluctuation range W E [%] due to a change in the dynamic capacity temperature is preferably within ⁇ 12% within a specific temperature range of ⁇ 40 to 80 ° C. .
  • the fluctuation range WL due to the temperature change of the displacement L is preferably within ⁇ 14% within a specific temperature range of _40 to 80 ° C.
  • the fluctuation range W L / (; due to the temperature change of LZC is within ⁇ 13% in a specific temperature range of ⁇ 40 to 80 ° C.
  • the piezoelectric actuator overnight preferably satisfies the following requirement (d) (claim 4).
  • the fluctuation width W L / e 5 due to the temperature change of L ZC Q ' 5 is within the specified temperature range of 30 to 80 ° C. If it exceeds 12%, the temperature dependence of the displacement of the piezoelectric actuator may be increased.
  • the fluctuation range W L / e Q ' 5 due to the temperature change of L / C 11 ' 5 is preferably within ⁇ 12% within a specific temperature range of ⁇ 40 to 80 ° C.
  • the temperature dependence of the displacement of the piezoelectric actuator can be reduced even in a temperature range of ⁇ 40 to 80 ° C.
  • the piezoelectric actuator overnight satisfies the following requirement (e): Be satisfied Preferred (claim 5).
  • the amount of dynamic strain calculated by dividing the strain in the direction of electric field application of the piezoelectric actuator overnight by the electric field strength is 25 50 pm / in a specific temperature range of 130 to 80 ° C. V or higher.
  • the piezoelectric actuator overnight does not satisfy the above requirement (e), that is, if the dynamic strain is less than 2500 pm ZV in the specific temperature range of 1 30 to 80 ° C, There is a risk that the displacement of the piezoelectric actuator overnight will become small.
  • the amount of dynamic strain is preferably 2500 pm / V or more in a temperature range of 140 to 80 ° C.
  • the displacement of the piezoelectric actuator can be increased even in a temperature range of ⁇ 40 to 80 ° C.
  • the piezoelectric actuator overnight preferably satisfies the following requirement (f) (claim 6).
  • the piezoelectric actuator overnight preferably satisfies the following requirement (g) (claim 7). .
  • the variation width W L due to the temperature change of the displacement L of the piezoelectric actuator is within ⁇ 14% in the specific temperature range of ⁇ 30 to 160 ° C.
  • the piezoelectric actuator overnight preferably satisfies the following requirement (h) (claim 8).
  • the piezoelectric actuator overnight preferably satisfies the following requirement (i) (claim 9).
  • the piezoelectric actuator overnight satisfies at least one of the requirements (f) to (i)
  • the temperature dependence of the piezoelectric actuator overnight can be further improved. That is, in this case, the temperature dependence of the displacement of the piezoelectric actuator can be reduced in a wider temperature range of 30 to 160 ° C.
  • the piezoelectric actuator overnight satisfies the above requirements (j) to U).
  • C max represents the maximum value of the apparent dynamic capacity at 1 30 to 160 ° C
  • C min represents the minimum value of the apparent dynamic capacity at 1 30 to 160 ° C.
  • the apparent dynamic capacity is obtained by connecting the piezoelectric actuator overnight and a capacitor installed at a temperature of, for example, 25 ° C in series, and applying a voltage to the piezoelectric actuator overnight and the capacitor.
  • the amount of charge Q [C] accumulated in the capacitor is It can be calculated by dividing by the voltage V [V] applied overnight.
  • the above requirement (1) is as follows.
  • the apparent dynamic capacity of the piezoelectric actuator is C [F]
  • the displacement of the BL actuator is L (m).
  • the fluctuation width W wc due to the temperature change of L / C expressed by the following formula (7) is within ⁇ 35% in the specific temperature range of ⁇ 3 0 16 0 ° C.
  • W L (%) [ ⁇ 2 X (L / C) aax / ((L / C) aax +
  • the dynamic capacity of the apparent connects the capacitor installed in the piezoelectric ⁇ Kuchiyue Isseki and example temperature 2 5 D C in series, a voltage to the piezoelectric Akuchiyue Isseki and the capacitor When applied, it can be calculated by dividing the amount of charge Q [C] accumulated in the capacitor by the voltage V [V] applied overnight.
  • the above-mentioned piezoelectric actuator Ichiya has both the above requirements (j) and (1) When not satisfied, that is, when the temperature range is 30 to 160 ° C, the above fluctuation range W C is out of the range of within 30% of soil, or the above range of fluctuation W L is out of the range of within 14% of soil If the fluctuation width W WE is out of the range of 35% or less of the soil, the temperature dependence of the piezoelectric actuator overnight at temperatures between 30 ° C and 160 ° C may increase. .
  • the piezoelectric actuator overnight preferably satisfies both the above requirement (j) and the above requirement (k) (claim 11).
  • the temperature dependence of the piezoelectric actuator overnight can be further reduced.
  • the piezoelectric actuator overnight preferably satisfies all of the above requirements (j) to (1) (claims 1 and 2).
  • the temperature dependence of the piezoelectric actuator overnight can be further reduced.
  • the above fluctuation range W C [%] due to the temperature change of the apparent dynamic capacity is within ⁇ 35% within a specific temperature range of 1400 to 160 ° C. Preferably there is.
  • the fluctuation range due to the temperature change of the displacement L is preferably within 14% of soil in a specific temperature range of ⁇ 40 to 160 ° C.
  • the fluctuation width W W (; due to the temperature change of L / C is within ⁇ 35% in a specific temperature range of ⁇ 40 to 160 ° C.
  • the piezoelectric actuator overnight preferably satisfies the following requirement (m) (claims 1 to 3): o
  • (LZC .. 5 ) raa is the maximum value of LZC 11 ' 5 in the specific temperature range of 1 30 to 160 ° C
  • (L / C 0 ' 5 ) min is 1 30 to 1 represents the minimum value of LZC ⁇ ⁇ 5 in a specific temperature range of 60 ° C.) If the piezoelectric actuator overnight does not satisfy the above requirement (m), the fluctuation width due to temperature change of L ZC ° ' 5 W L / C. If ' 5 exceeds 20% of soil in the specific temperature range of ⁇ 30 to 160 ° C, the temperature dependence of the displacement of the piezoelectric actuator may increase.
  • the fluctuation range W we Q ' 5 due to the temperature change of L / C Q ' 5 is preferably within ⁇ 20% in a specific temperature range of 140 to 160 ° C.
  • the temperature dependence of the displacement of the piezoelectric actuator can be reduced even in the temperature range of 140 to 160 ° C.
  • the piezoelectric actuator X preferably satisfies the following requirement (n) (Claim 14).
  • the piezoelectric actuator overnight does not satisfy the requirement ( ⁇ ), that is, if the dynamic strain is less than 25 pm / V in the specific temperature range of 1 30 to 160 ° C.
  • the displacement of the piezoelectric actuator overnight may be reduced.
  • the amount of dynamic strain is preferably not less than 2500 pm / V in the temperature range of -40 to 160 ° C.
  • the displacement of the piezoelectric actuator overnight can be increased even in the temperature range of 140 to 160 ° C.
  • the piezoelectric actuator has a piezoelectric element formed by forming a pair of electrodes on the surface of the piezoelectric ceramic as a driving source.
  • the piezoelectric ceramic is preferably composed of an alkali metal-containing piezoelectric ceramic containing at least one selected from Li, K, and Na (claim 18).
  • the leakage current during driving in a high temperature environment of 80 ° C or higher increases further, and the fluctuation range of the above ⁇ apparent dynamic capacity '' at temperatures of 80 ° C or higher is 80 ° C. It is larger than the fluctuation range of “Capacitance” and “Dynamic capacitance” above C. Therefore, in this case, the requirement (a) or Z and (c) of the first invention that defines the fluctuation range with the apparent dynamic capacity as a parameter, the requirement (j) of the second invention or And (1) obtained by satisfying (1), for example, the above-mentioned effect of reducing the temperature dependence of displacement in constant energy driving and constant charge driving can be more remarkably exhibited.
  • the specific resistance is 1 ⁇ 10 6 ⁇ ⁇ m or more over the entire temperature range (for example, a temperature of 30 to 160 ° C.).
  • the piezoelectric ceramic can be prevented from being destroyed by resistance heat generation.
  • the piezoelectric ceramic has a specific resistance of 1 ⁇ 10 8 ⁇ ⁇ m or more in the operating temperature range of the piezoelectric actuator. In this case, the lifetime of the piezoelectric actuator can be extended.
  • the piezoelectric ceramic does not contain lead (claim 19).
  • the piezoelectric ceramic is represented by the general formula: ⁇ L i x (K, _ y N a y ),. X ⁇ ⁇ N b, _ z .w T a z S b w ⁇ ⁇ 3 (where 0 ⁇ x ⁇ 0. 2, 0 ⁇ y ⁇ l, 0 ⁇ z ⁇ 0. 4, 0 ⁇ w ⁇ 0. 2, x + z + w> 0) And a crystal-oriented piezoelectric ceramic in which specific crystal planes of crystal grains constituting the polycrystal are oriented (claim 20).
  • a piezoelectric actuator that satisfies the requirements (a) to (i) and a piezoelectric actuator that satisfies the requirements (j) to (n) can be easily realized.
  • the grain-oriented piezoelectric ceramic box is a type potassium sodium niobate is isotropic downy mouth Busukai preparative compounds (K -! Y N a y N B_ ⁇ 3) as a basic composition
  • a site elements (K , N a) is partially substituted with a predetermined amount of Li and / or B site element (N b) is partially substituted with a predetermined amount of Ta and Z or S b .
  • x + z + w> 0 indicates that at least one of L i, T a and S b may be included as a substitution element.
  • y represents the ratio of K and Na contained in the crystal-oriented piezoelectric ceramic.
  • the crystal-oriented piezoelectric ceramic according to the present invention only needs to contain at least one of K or Na as the A-site element. That is, the ratio y between K and Na is not particularly limited, and can take any value between 0 and 1.
  • the value of y is preferably not less than 0.05 and not more than 0.75, more preferably not less than 0.20 and not more than 0.70, and more preferably 0.35 or more and 0.65 or less, more preferably 0.40 or more and 0.60 or less, and still more preferably 0.42 or more and 0.60 or less.
  • X represents the substitution amount of L i for substituting K and / or Na which are A site elements. Substituting part of K and / or Na with Li provides the effect of improving the piezoelectric characteristics, increasing the Curie temperature, and / or promoting densification. Specifically, the value of X is preferably 0 or more and 0.2 or less. If the value of X exceeds 0.2, the displacement characteristics deteriorate, which is not preferable. The value of X is preferably 0 or more and 0.15 or less, and more preferably 0 or more and 0.110 or less.
  • Z represents the amount of substitution of Ta that replaces the B site element Nb. Replacing a part of Nb with Ta can improve the displacement characteristics.
  • the value of z is preferably 0 or more and 0.4 or less. If the value of z exceeds 0.4, the Curie temperature decreases, making it difficult to use it as a piezoelectric material for home appliances and automobiles.
  • the value of is preferably 0 or more and 0.35 or less, and more preferably 0 or more and 0.30 or less.
  • w is the position of S b that replaces the B site element N b. Represents the amount of conversion. Replacing part of Nb with Sb can improve the displacement characteristics.
  • the value of w is preferably 0 or more and 0.2 or less. If the value of w exceeds 0.2, the displacement characteristics and Z or Curie temperature decrease, which is not preferable.
  • the value of w is preferably 0 or more and 0.1 or less.
  • first crystal phase transition temperature Kyuri one temperature
  • second Crystal phase transition temperature tetragonal ⁇ orthorhombic
  • rhombohedral crystal ⁇ rhombohedral crystal third crystal phase transition temperature.
  • first crystal phase transition temperature is higher than the operating temperature range
  • the second crystal phase transition temperature is lower than the operating temperature range, so that it is tetragonal over the entire operating temperature range.
  • crystal phase transition temperature Curie temperature
  • second crystal phase transition temperature orthorhombic crystal-rhombohedral
  • the second crystal phase transition temperature is about 190 °
  • the third crystal phase transition temperature is It is about 1 150 ° C. Therefore, the temperature region that is tetragonal is 1
  • the crystal-oriented piezoelectric ceramic, potassium sodium niobate is a basic composition - with respect to (K ⁇ y N a y N B_ ⁇ 3), L i, T a , varying the amount of substituting element of S b
  • the first crystal phase transition temperature and the second crystal phase transition temperature can be freely changed.
  • y 0.4 to 0.6
  • the maximum piezoelectric property is obtained.
  • L i, T a S
  • the results of multiple regression analysis of the substitution amount of b and the measured crystal phase transition temperature are shown in the following formulas B1 and B2.
  • the first crystal phase transition temperature is the temperature at which the piezoelectricity completely disappears, and the dynamic capacity rapidly increases in the vicinity thereof.
  • the upper boundary temperature + 60 ° C) is desirable.
  • the second crystal phase transition temperature is simply the temperature at which the crystal phase transition occurs, and since the piezoelectricity does not disappear, it can be set within a range that does not adversely affect the temperature dependence of the displacement or dynamic capacity.
  • the lower limit temperature of the product's operating environment + 40 ° C) is desirable.
  • the maximum use environment temperature of the product varies depending on the application, such as 60 ° C, 80, 100 ° C (, 120 ° C, 140 ° C, 160 ° C, etc.
  • the minimum operating environment temperature of the product is 130 ° C, 140 ° C, etc. Therefore, since the first crystal phase transition temperature shown in the above formula B 1 is preferably 120 ° C. or higher, “x”, “z” and “w” are (3 8 8 + 9 x— 5 z 1 1 7 w) It is desirable to satisfy +5 0 ⁇ 1 2 0.
  • the second crystal phase transition temperature shown in Formula B 2 is desirably 10 ° C. or less
  • “x”, “z”, and “w” are (1 9 0— 1 8. 9 X-3 9 z-5. 8 w) — It is desirable to satisfy 5 0 ⁇ 1 0.
  • the crystal-oriented piezoelectric ceramics are isotropic bebskite expressed by the above general formula. There are cases where it consists only of type compounds (first KNN compounds) and cases where other elements are actively added or replaced. In the former case, it is desirable to consist only of the first KNN compound, but it is possible to maintain the crystal structure of the isotropic mouth buxite type and adversely affect various characteristics such as sintering characteristics and piezoelectric characteristics. Other elements or other phases may be included as long as they do not affect.
  • the raw material for producing the above-mentioned crystal orientation piezoelectric ceramic impurities contained in the industrial raw material having a purity of 99% to 99.9% available on the market are unavoidable.
  • the N b 2 ⁇ 5 which is one of raw materials for the crystal-oriented piezoelectric ceramic, as impurities derived from raw ore or process, up to T a is 0.1 less than 1 wt%, F is 0. 1-5 May contain less than wt%.
  • Bi is used in the manufacturing process, it is inevitable to mix it.
  • the apparent dynamic Resonance-driven actuate overnight due to reduced temperature dependence of capacitance, increased displacement, and decreased dielectric loss ta ⁇ ⁇ and increased mechanical quality factor Q m Preferred characteristics are obtained.
  • the specific crystal plane of each crystal grain constituting the polycrystal having the isotropic belobite compound represented by the above general formula as the main phase is oriented.
  • the specific crystal plane oriented in the crystal grains is preferably a pseudo cubic ⁇ 1 0 0 ⁇ plane.
  • “Pseudo-cubic ⁇ HKL ⁇ ” means that the isotropic perovskite ⁇ -type compound has a slightly distorted structure from cubic, such as tetragonal, orthorhombic, and trigonal crystals. Because it is a little, it is regarded as a cubic crystal and Miller index is displayed.
  • the displacement of the piezoelectric actuator can be increased, and the temperature dependence of the apparent dynamic capacity can be reduced.
  • pseudo cubic ⁇ 1 0 0 ⁇ plane is oriented + 3 ⁇ 4a A
  • the degree of surface orientation can be expressed by the average degree of orientation F (H K L) by the ⁇ --------------------
  • ⁇ I (hk 1) is the sum of X-ray diffraction intensities of all crystal planes (hk 1) measured for the crystal-oriented piezoelectric ceramic
  • ⁇ I. (Hk 1) is the value measured for non-oriented ceramics with the same composition as the crystal-oriented piezoelectric ceramics. This is the sum of the X-ray diffraction intensities of all crystal planes (hk 1).
  • ⁇ 'I (HKL) is the sum of X-ray diffraction intensities of specific crystallographically equivalent crystal planes (HKL) measured for crystal-oriented piezoelectric ceramics.
  • ⁇ ' I 0 (HK L) Is the sum of X-ray diffraction intensities of specific crystallographically equivalent crystal planes (HKL) measured for non-oriented ceramics with the same composition as the crystal-oriented piezoelectric ceramic.
  • the average degree of orientation F (HKL) is 0%.
  • the (HKL) planes of all the crystal grains constituting the polycrystal are oriented parallel to the measurement plane, the average degree of orientation F (HKL) is 100%.
  • the higher the ratio of oriented crystal grains the higher the characteristics.
  • the average orientation degree F (HKL) according to the Lotgering method expressed by the above formula 1 is used. Is preferably 30% or more, more preferably 50% or more, and even more preferably 70% or more.
  • the specific crystal plane to be oriented is preferably a plane perpendicular to the polarization axis.
  • the specific crystal plane to be oriented is preferably the agglomeration ⁇ 1 0 0 ⁇ plane.
  • the above-mentioned crystal-oriented piezoelectric ceramic has a degree of orientation of the pseudo-cubic ⁇ 1 0 0 ⁇ plane by lottering of 30% or more and in a temperature range of 10 to 160 ° C. It is preferable that the crystal system is a tetragonal crystal (claim 2).
  • the degree of orientation cannot be defined by the same degree of orientation as the plane orientation (Equation 1).
  • the average orientation degree (axis orientation degree) according to the Lotgering method for (HKL) diffraction when X-ray diffraction is performed on a plane perpendicular to the orientation axis. ) Can be used to express the degree of axial orientation.
  • the degree of axial orientation of a compact in which a specific crystal plane is almost completely axially oriented is the same as the degree of axial orientation measured for a compact in which a specific crystal plane is almost perfectly plane-oriented. .
  • Piezoelectric actuator using the above crystal-oriented piezoelectric ceramic as a driving source
  • the electric field strength is 10 V / mm or more, and the electric field driving condition has a constant amplitude of
  • the amount of dynamic strain D 3 3 generated at 2 can be set to 2 50 pm / V or more.
  • a piezoelectric ceramic using the crystal-oriented piezoelectric ceramic as a drive source In the temperature range of 30 to 1600 ° C, Chiyue Ichibata has an apparent dynamic capacity fluctuation range that occurs under electric field drive conditions with a constant amplitude of 10 O VZmm or more, ( When the reference value is (maximum value minus minimum value) / 2, it can be ⁇ 35% or less. Furthermore, by optimizing the composition and process, it can be adjusted to ⁇ 32% or less, further ⁇ 30% or less, and soil 28% or less.
  • the apparent dynamic capacity fluctuation range generated under electric field drive conditions with a constant amplitude of electric field strength of 100 V Zmm or more is (maximum value 1 (Minimum value)
  • 2 When 2 is used as the reference value, it can be ⁇ 1% or less. If the composition and process are further optimized, it can be ⁇ 9% or less, further ⁇ 7% or less, further ⁇ 5% or less, and further ⁇ 4% or less. Therefore, when the constant charge drive and constant energy drive are used, an effective circuit with low temperature dependence of the terminal voltage can be obtained.
  • the piezoelectric actuator Ichiyu using the crystal-oriented piezoelectric ceramic as a drive source has an electric field strength of a constant amplitude of 100 V Zmm or more in the temperature range of 30 to 160 ° C.
  • the fluctuation range of the displacement / apparent dynamic capacity that occurs under the driving condition can be ⁇ 35% or less, where (maximum value – minimum value) / 2 is the reference value.
  • it can be reduced to ⁇ 30% or less, and further ⁇ 25% or less.
  • the fluctuation range of the displacement / apparent dynamic capacity that occurs under the electric field drive condition with a constant amplitude of electric field strength of 100 V / mm or more is
  • the reference value is (maximum value minus minimum value) / 2
  • it can be ⁇ 12% or less.
  • by optimizing the composition and process it can be ⁇ 9% or less, and further ⁇ 7% or less. Therefore, temperature dependence of displacement in constant charge driving is small. You can get a great evening.
  • the piezoelectric actuator Ichiyu which uses the above crystal oriented piezoelectric ceramics as a drive source, has an electric field drive with a constant amplitude of more than 100 VZmm in the temperature range of 30 to 160 ° C.
  • the displacement width (apparent dynamic capacity) generated under the conditions 1)
  • the fluctuation range of 5 can be ⁇ 20% or less when (maximum value – minimum value) / 2 is used as the reference value.
  • it can be reduced to ⁇ 15% or less.
  • the displacement / (apparent dynamic capacity) Q ′ that occurs under electric field driving conditions with a constant amplitude of electric field strength of 100 V / mm or more
  • the fluctuation range of 5 can be ⁇ 1 2% or less when (maximum value – minimum value) / 2 is used as the reference value.
  • the composition and process are optimized, it can be ⁇ 9% or less, and further ⁇ 7% or less. Therefore, it is possible to obtain an action that has a small temperature dependence of displacement in constant energy drive.
  • piezoelectric actuators can be configured by combining the piezoelectric ceramic represented by 1) with other piezoelectric ceramics.
  • the volume of 50% or more of the piezoelectric ceramic is composed of crystal-oriented piezoelectric ceramic represented by the above general formula (1), and the remaining less than 50% It can be composed of barium titanate-based piezoelectric ceramics.
  • Piezoelectric actuators constructed using the above piezoelectric ceramics -Displacement, apparent dynamic capacity, displacement Z apparent dynamic capacity, generated under electric field driving conditions with a constant amplitude of electric field strength of 10 OV / mm or more in the temperature range of 30 to 80 ° C, Displacement / (apparent dynamic capacity) ⁇ ⁇
  • the resistance is small in the temperature range of about 80 ° C or less, and about 80 ° C.
  • a semiconductor element having a positive resistance temperature coefficient that increases the resistance in a high temperature region exceeding the temperature is electrically connected in parallel with the actuator, and the temperature of the PTC resistor and the temperature of the piezoelectric element are substantially equal. It can be seen that the arrangement should be as follows. In this way, a large amount of current flows through the PTC resistor below 80 ° C, and almost no current flows through the PTC resistor above 80 ° C. can do. As a result, over a wide temperature range from 30 to 160 ° C, the piezoelectric voltage is low and the temperature dependence of the displacement is small and the temperature dependence of the terminal voltage in constant charge driving and constant energy driving is small. Obtainable.
  • the piezoelectric actuator overnight has a positive temperature coefficient of resistance.
  • the PTC resistor and the piezoelectric ceramic having a negative resistance temperature coefficient are electrically connected in parallel, and the temperature of the PTC resistor and the piezoelectric ceramic is substantially equal. It is preferable to arrange them so that they are equal (claim 15).
  • the substantially equal temperature means that the temperature difference between the piezoelectric ceramic (piezoelectric element) and the PTC resistor during driving of the piezoelectric actuator is within 40 ° C, more preferably within 30 ° C. More preferably, it is within 20 ° C, more preferably within 10 ° C.
  • the positional relationship between the PTC resistor and the piezoelectric ceramics is different from that when the PTC resistor is installed between the lead terminals of the piezoelectric actuator.
  • a PTC resistor is placed on a connector that is a single component.
  • the resistance temperature characteristic of the PTC resistor is preferably a barium titanate-based semiconductor element whose resistance value rapidly increases at a high temperature exceeding about 80 ° C. That is, the PTC resistor is a barium titanate semiconductor, and preferably has a positive resistance temperature coefficient in a temperature region of 80 ° C. or more (claim 16).
  • the insulating property of the PTC semiconductor at a temperature of 80 ° C. or higher is further improved, so that the leakage current flowing in the parallel circuit of the inductor and the PTC element can be reduced.
  • the resistance value of a barium titanate semiconductor whose resistance increases rapidly at 80 ° C or higher does not contain lead, a high-temperature shift additive at its curie temperature, it must not contain lead even in the event of evening. Therefore, it is more preferable.
  • the resistance value of the PTC resistor is low, the voltage applied to the actuator will decrease, so the resistance value of the PTC resistor will be the impedance of the piezoelectric actuator overnight when the piezoelectric actuator is driven. It is desirable that it be sufficiently larger than that.
  • the PTC resistor may or may not self-heat as the piezoelectric actuator is driven.
  • self-heating occurs, for example, by placing a PTC resistor at a position where heat conduction to the piezoelectric element is likely to occur, it can act as a temperature switch, and the minimum use temperature of the stack can be increased. In other words, by narrowing the operating temperature range, it is possible to substantially reduce the fluctuation range of the apparent dynamic capacity of the actual overnight.
  • barium titanate-based semiconductor elements are suitable because they have a constant temperature heat resistance that rapidly increases with the Curie temperature.
  • the piezoelectric actuator overnight preferably has a laminated piezoelectric ceramics in which a plurality of piezoelectric ceramics are laminated as the piezoelectric ceramic, and is used for a fuel injection valve.
  • the piezoelectric actuator 1 includes, for example, a piezoelectric element 2 having a piezoelectric ceramic, a holding member 4 that holds the piezoelectric element, a housing member 3 that stores the piezoelectric element, etc., and displacement of the piezoelectric element. And a transmission member 5 for transmission.
  • piezoelectric element 2 As shown in FIG. 38 to be described later, for example, a laminated piezoelectric element in which a plurality of piezoelectric ceramics 2 1 and internal electrodes 2 2 and 2 3 are alternately laminated can be used. .
  • piezoelectric element a single-plate piezoelectric element configured by sandwiching one piezoelectric ceramic between two internal electrodes can be used (not shown).
  • a pair of external electrodes 25 and 26 are formed on the side surface of the piezoelectric element 2, and two adjacent internal electrodes 2 2 and 2 3 in the piezoelectric element 2 are different from each other in the external electrodes 2 5 and 2. 6 is electrically connected.
  • a transmission member 5 such as a piston is disposed at one end of the piezoelectric element 2 in the stacking direction.
  • a disc spring 5 5 is disposed between the housing 3 and the transmission member 5, and a preset load is applied to the piezoelectric element 2.
  • the transmission member 5 is movable in accordance with the displacement of the piezoelectric element 2, and can transmit the displacement to the outside.
  • the housing 3 is provided with moving holes 3 1 and 3 2. Terminals (lead wires) 6 1 and 6 2 for supplying electric charges from the outside are inserted into the movement holes 3 1 and 3 2, and the airtightness in the housing 3 is improved by the grommets 3 1 and 3 2. It has a structure to keep.
  • the terminals 6 1 and 6 2 are electrically connected to external terminals 2 5 and 2 6 provided on the piezoelectric element 2.
  • an O-ring 35 is arranged between the piston member 5 and the housing 3 so that the airtightness in the housing 3 is maintained and the piston member 5 can be expanded and contracted. It is.
  • the piezoelectric actuator overnight can be used for a fuel injection valve, for example.
  • a piezoelectric element having piezoelectric ceramics is manufactured, and a piezoelectric actuator is manufactured using the piezoelectric element.
  • the piezoelectric actuator 11 is manufactured using the jig 8 as a model of the piezoelectric actuator 11. That is, the piezoelectric actuator 11 of this example has a laminated piezoelectric element 2 using a piezoelectric ceramic as a drive source, and the piezoelectric element 2 is fixed to a jig 8.
  • the jig 8 includes a housing 8 1 for housing the piezoelectric element 2, and a piston (connection member) 8 2 that is connected to the piezoelectric element 2 and transmits the displacement of the piezoelectric element 2.
  • the piston 8 2 is connected to the guide 8 3 through the pan panel 8 5.
  • a pedestal portion 8 15 is provided in the housing 8 1, and the piezoelectric element 2 is disposed on the pedestal portion 8 15.
  • the piezoelectric element 2 arranged on the pedestal portion 8 15 is fixed by the head portion 8 2 1 of the piston 8 2.
  • a preset load can be applied from the pan panel 85 to the piezoelectric element 2.
  • the end portion (measurement portion 8 8) opposite to the head portion 8 2 1 of the piston 8 2 can move in accordance with the displacement of the piezoelectric element 2.
  • the method of applying the preset load will be described.
  • insert a cylindrical push rod (not shown) into the gap between the piston 8 2 and the push screw 84, and mark the correct load on the guide 83 with Amsler. It is obtained by adding.
  • the push screw 8 4 and the housing 8 1 are fixed with the load applied. Thereafter, the push rod is removed.
  • the reason for producing the piezoelectric actuator overnight model is to evaluate the temperature characteristics of the displacement of the piezoelectric actuator overnight.
  • the portion below the dotted line is placed inside the thermostatic chamber in the piezoelectric actuator 11 shown in Fig. 37.
  • a heat insulating material 86 is provided in the piezoelectric actuator overnight.
  • the piezoelectric element 2 is composed of a laminated piezoelectric element in which piezoelectric ceramics 21 and internal electrode plates 2 2 and 2 3 are alternately laminated.
  • alumina plates 2 45 are disposed at both ends of the piezoelectric element 2 in the stacking direction.
  • two external electrodes 25 and 2 6 are formed on the side surface of the piezoelectric element 2 so as to sandwich the piezoelectric element.
  • the external electrodes 2 5 and 2 6 are connected to the lead wires 6 1 and 6 2. ing.
  • the internal electrode plates 2 2 and 2 3 and the external electrodes 2 5 and 2 6 are composed of the external electrodes 2 5 and 2 having different potentials from the two adjacent internal electrodes 2 2 and 2 3 in the piezoelectric element 2. Electrically connected to connect to 6.
  • piezoelectric element 2 of this example a total of 40 piezoelectric ceramics 21 are laminated.
  • FIG. The figure in which the number of layers is omitted is shown.
  • a piezoelectric element is manufactured as follows.
  • the obtained mixture is put into a platinum crucible and heated under the condition of 85 ° C.X1 hr to completely dissolve the flux, and further heated under the condition of 1100 ° CX 2 hr. and, B i 2. 5 N a 3. 5 N b 5 ⁇ , it was synthesized 8.
  • the rate of temperature increase was 200 ° C / hr, and the temperature was lowered by furnace cooling. After cooling, the flux was removed by hot water washing from the reaction, to obtain B i 2. 5 N a 3 .
  • the resulting B i 2. 5 N a 3 . 5 N b 5 ⁇ 18 powder was a platelike powder with the developed plane of ⁇ 0 0 1 ⁇ plane.
  • the resulting reactant contains B i 2 0 3 in addition to Na N b 0 3 powder, so after removing the flux from the reactant, this is added to HN 0 3 (1 N). put to dissolve B i 2 ⁇ 3 produced as a surplus component. Further, this solution was filtered to separate Na 3 NbO 3 powder, and washed with 8 0 ion-exchanged water.
  • the obtained N a N b 0 3 powder has a pseudo-cubic ⁇ 1 0 0 ⁇ plane as the development plane, the particle size is 1 0 3 0 ⁇ , and the gap ratio is about 1 0 2 0 Plate-like powder.
  • the mixed slurry was formed into a tape shape having a thickness of about 100 m using a tape forming apparatus. Further, this tape was laminated, pressed and rolled to obtain a plate-like molded body having a thickness of 1.5 mm. Next, the obtained plate-like molded body was heated in the atmosphere at a heating temperature of 60 ° C., a heating time of 5 hours, a heating rate of 50 ° C / hr, and a cooling rate of furnace cooling. Degreasing was performed below. Further, the degreased plate-like molded body was subjected to a CIP treatment with a pressure of 300 MPa, and then sintered in oxygen at 110 ° C for 5 hours. In this way, a piezoelectric ceramic (crystal-oriented piezoelectric ceramic) was produced.
  • the obtained disk-shaped sample was processed to a diameter of 8.5 mm by cylindrical grinding for the purpose of removing the several micrometer bulges on the outer periphery of the electrode inevitably formed by printing. After that, polarization treatment was performed in the vertical direction to obtain a piezoelectric element (single plate) 20 in which the entire surface electrode 2 10 was formed on the piezoelectric ceramic 2 1.
  • the piezoelectric strain constant (d 31 ), the electromechanical coupling coefficient (kp), the mechanical quality factor (Qm), and the dielectric constant ( ⁇ 33 1 ⁇ 0 ), which are dielectric properties, are obtained.
  • dielectric loss (ta ⁇ ⁇ ) were measured by resonance anti-resonance method at a temperature of 25 ° C.
  • the first crystal phase transition temperature (Curie temperature) and the second crystal phase transition temperature were determined by measuring the temperature characteristics of the relative permittivity.
  • the second crystal phase transition temperature is 0 ° C or lower, the variation range of the relative dielectric constant on the higher temperature side than the second crystal phase transition temperature is very small.
  • the temperature at which the relative permittivity bends was taken as the second crystal phase transition temperature.
  • a laminated piezoelectric element was produced using the piezoelectric element obtained above, and a piezoelectric actuator was constructed using the piezoelectric element, and the evaluation was performed.
  • the piezoelectric element 20 obtained as described above and a SUS made of SUS having a thickness of 0.02 mm and a diameter of 8.4 mm having projections for connecting to external electrodes described later.
  • the internal electrode plates 2 2 (2 3) were laminated alternately. At this time, the internal electrode plates 2 2 (2 3) are arranged so that the protrusions of the internal electrode plates 2 2 (2 3) are alternately arranged in different directions in the stacking direction and are aligned in the same direction every other layer. Arranged.
  • a laminated piezoelectric element 2 was fabricated by laminating alumina plates (insulating plates) with a diameter of 8.5 mm as shown in Fig. 38.
  • the strip-shaped SUS external electrodes 2 5 and 2 6 are welded to the protrusions of the internal electrode plates 2 2 and 2 3 so that the piezoelectric elements are electrically connected in parallel, and the lead terminals 6 1 and 6 2 were prepared, and the external electrodes 2 5 and 2 6 were electrically connected to the lead terminals 6 1 and 6 2.
  • the laminated piezoelectric element 2 was formed by coating with silicone grease and coating the laminated body with a holding member 4 made of an insulating tube.
  • Displacement measurement is a trapezoidal wave drive with a frequency of 0.5 Hz and 10 Hz, a voltage rise time of 1 5 0 s, a voltage fall time of 1 5 0 s, and a duty ratio of 5 0: 50
  • the displacement observed under the conditions was measured with a capacitive displacement sensor.
  • the apparent dynamic capacity is measured by connecting an 8 7 8 F capacitor in series with the piezoelectric actuator Ichiyu so that the temperature is always 25 ° C.
  • Applied voltage 4 8 5, 7 2 8, 9 70 V, frequency: 0.05 Hz, voltage rise time: 1 ms, voltage fall time: 1 ms, voltage ON time: 10 s, voltage OFF time: 10 s, constant voltage
  • the terminal voltage of the capacitor observed under trapezoidal wave driving conditions was measured and obtained by calculation using the following equation 11.
  • the fluctuation range in the temperature range of 130 to 80 ° C and the fluctuation range in the temperature range of -30 to 160 ° C were obtained.
  • the fluctuation range is a value based on (maximum value minus minimum value) / 2 as a reference value.
  • the relative density of the crystallographically-oriented ceramic obtained in this example was 95% or more.
  • the pseudo cubic ⁇ 1 0 0 ⁇ plane is oriented parallel to the tape surface, and the average orientation degree of the pseudo cubic ⁇ 1 0 0 ⁇ plane by the lottering method is 88.5%. Reached.
  • apparent dynamic capacity, frequency 0.5 Hz displacement, displacement / apparent dynamic capacity, displacement ⁇ (apparent dynamic capacity) ⁇ ⁇ 5 — 3 0 to 80 ° C temperature Within the range of temperature and the temperature range of 30 ° C to 160 ° C.
  • the fluctuation ranges are shown in Table 12.2, Table 13.3, Table 14.4, and Table 15.5, respectively.
  • Table 1 1, Table 1 2, Table 1 3, and Table 14 in this example it is-3 0 to 80 ° C.
  • the maximum displacement fluctuation range was when the drive electric field amplitude was 1500 V / mm, and the fluctuation range was ⁇ 3.8%.
  • the maximum value of the fluctuation range of the apparent dynamic capacity was when the drive electric field amplitude was 100 0 V / mm, and the fluctuation range was ⁇ 3.2%.
  • the maximum value of the fluctuation range of the displacement was when the drive electric field amplitude was 200,000 VZmm, and the fluctuation range was ⁇ 7.7%.
  • the maximum fluctuation range of the dynamic capacity was when the drive electric field amplitude was 100 OV / mm, and the fluctuation range was 28.9%.
  • Displacement Z The maximum fluctuation width of the apparent dynamic capacity was when the drive electric field amplitude was 100 O VZmm, and the fluctuation width was ⁇ 27.8%. • Displacement / (apparent dynamic capacity) ⁇ ⁇ The maximum fluctuation range of 5 is the driving electric field The amplitude is 10 0 O VZmm, and the fluctuation range is ⁇ 13.8%.
  • Example 1 According to the same procedure as in Example 1, except that the firing temperature of the degreased plate-like molded body was set to 110 ° C. ⁇ Li. .0 7 ( ⁇ .. 45 N a .. 55 ) Q. 93 ⁇ ⁇ N b 0. 8 2 T a 0.! 0 S b 0. 08 ⁇ ⁇ Crystalline oriented ceramics with 3 composition were prepared. With respect to the obtained crystallographically-oriented ceramic, under the same conditions as in Example 1, the sintered body density, average degree of orientation, and piezoelectric characteristics were evaluated. In addition, according to the same procedure as in Example 1, 40 piezoelectric laminates were manufactured and the characteristics were evaluated.
  • the relative density of the crystallographically-oriented ceramic obtained in this example was 95% or more.
  • the pseudo cubic ⁇ 1 0 0 ⁇ plane is oriented parallel to the tape surface, and the average orientation degree of the pseudo cubic ⁇ 1 0 0 ⁇ plane by the Lotgering method is 94.6% Reached.
  • the piezoelectric 1 31 constant was 8 8.
  • the electromechanical coupling coefficient kp was 4 8. 9%
  • the mechanical quality factor Qm was 1 6.
  • relative permittivity ⁇ 33 ⁇ / ⁇ . was 1 0 7 1 and the dielectric loss tan S was 4.7%.
  • the first crystal phase transition temperature (Curie temperature) determined from the temperature characteristics of the relative permittivity was 2 56 ° C
  • the second crystal phase transition temperature was 1 35 ° C.
  • Table 2 Fig. 4, Fig. 5, Fig. 6, Fig. 6, Table 11, Table 12, Table 13 and Table 14 show the characteristics of this example.
  • the minimum value of the dynamic strain D 3 3 in the temperature range of 30 to 80 ° C and the fluctuation range of the above characteristics are as follows. I understood that.
  • the maximum fluctuation range of the apparent dynamic capacity was when the drive electric field amplitude was 100 0 V Vmm, and the fluctuation range was ⁇ 6.3%.
  • the maximum displacement fluctuation range was when the drive electric field amplitude was 20 0 0 V / mm, and the fluctuation range was ⁇ 13.8%.
  • the maximum fluctuation width of the dynamic capacity was when the drive electric field amplitude was 1500 V / mm, and the fluctuation width was ⁇ 3 1.4%.
  • the maximum fluctuation range at displacement Z (apparent dynamic capacity) ° ⁇ 5 is when the drive electric field amplitude is 10 0 O VZmm, and the fluctuation range was ⁇ 13.3%
  • Example 2 Following the same procedure as in Example 1 except that the calcining temperature of the plate-shaped body after degreasing was set to 1 105 ° C. ⁇ L i Q 65 ( ⁇ . 45 N a .. 55 ) Q. 935 ⁇ ⁇ N b. 83 Ta. . 9 S b Q 8 ⁇ ⁇ Crystal orientation ceramics with 3 composition Box was made. Examples of obtained crystallographically oriented ceramics
  • the relative density of the crystal orientation ceramic obtained in this example was 95% or more.
  • the pseudo cubic ⁇ 1 0 0 ⁇ plane is oriented parallel to the tape surface, and the average orientation degree of the pseudo cubic ⁇ 1 0 0 ⁇ plane by the lot-getting method is 9 3. 9 % Reached.
  • piezoelectric 31 constant is 95.2 p mZV, electromechanical coupling coefficient kp is 50.4%, mechanical quality factor Qm is 15 9, relative permittivity ⁇ 33 ⁇ ⁇ ⁇ was 1 1 5 5 and dielectric loss tan ⁇ 5 was 5.2%
  • the first crystal phase transition temperature obtained from the temperature characteristics of relative permittivity The temperature (Curie temperature) was 2 61 ° C and the second crystal phase transition temperature was 1 12 ° C.
  • Table 3 Fig. 7, Fig. 8, Fig. 9, Fig. 11, Table 11, Table 12, 2, Table 13, and Table 14 show the characteristics of the piezoelectric actuator overnight.
  • the minimum value of the dynamic strain D 3 3 in the temperature range of 30 to 80 ° C and the fluctuation range of the above characteristics are as follows. That's it.
  • the maximum fluctuation range of the apparent dynamic capacity was when the drive electric field amplitude was 100 0 VZmm, and the fluctuation range was ⁇ 5.2%.
  • the maximum displacement fluctuation range was when the drive electric field amplitude was 1500 V / mm, and the fluctuation range was ⁇ 11.5%.
  • the maximum value of the fluctuation range of the dynamic capacity is when the drive electric field amplitude is 100 O VZmm, and the fluctuation range is ⁇ 34.6%.
  • Displacement Z The maximum fluctuation width of the apparent dynamic capacity was when the drive electric field amplitude was 100 O VZmm, and the fluctuation width was ⁇ 27.1%. , Displacement Z (apparent dynamic capacity) ⁇ ⁇ The maximum fluctuation range of 5 is when the drive electric field amplitude is 100 OV / mm, and the fluctuation range is ⁇ 1 0.9%
  • Example 2 a crystal-oriented piezoelectric ceramic having the same composition as in Example 1 was produced by a procedure different from that in Example 1, and a piezoelectric actuator was produced using the crystal-oriented piezoelectric ceramic.
  • N a N b 0 3 plate-like powder is first produced in Example 1, non-plate-like N a N b 0 3 powder, KN B_ ⁇ 3 powder, KT A_ ⁇ 3 powder, L i S B_ ⁇ 3 powders and Na S b 0 3 powders, ⁇ Li. .. 7 (K 0. 43 N a 0. 5 ⁇ ) o. 93 ⁇ ⁇ b 0. 84 T a 0. O 9 S b 0. O? ⁇
  • ⁇ 3 composition an organic solvent as a solvent Wet mixing was performed for 20 hours.
  • N a N b 0 3 plate powder is such that 5 wt% of the A site element of the first KNN solid solution (AB 0 3 ) synthesized from the starting material is N a N b 0 3 plate. The amount supplied from the powder.
  • N a N B_ ⁇ 3 powder, KN B_ ⁇ 3 powder, KT A_ ⁇ 3 powder, L i S B_ ⁇ 3 powder and N a S B_ ⁇ 3 powder having a purity of 9 9.9% K 2 C_ ⁇ 3 powder, N a 2 C 0 3 powder, with N b 2 ⁇ 5 powder, T a 2 ⁇ 5 powder and Z or S b 2 ⁇ 5 powder mixture containing a predetermined amount of 7 5 0 ° C 5
  • the reaction product was prepared by a solid phase method in which the reaction product was heated for a period of time and pulverized.
  • the mixed slurry was formed into a tape having a thickness of about 100 xm using a tape forming apparatus. Further, this tape was laminated, pressed and rolled to obtain a plate-like molded body having a thickness of 1.5 mm. Next, the obtained plate-shaped molded body was heated in the atmosphere at a heating temperature of 60 ° C., a heating time of 5 hours, a heating rate of 50 ° C / hr, and a cooling rate of furnace cooling. Degreasing was performed below.
  • the relative density of the crystallographically-oriented ceramic obtained in this example was 95% or more.
  • the pseudo cubic ⁇ 1 0 0 ⁇ plane is oriented parallel to the tape surface, and the average degree of orientation of the pseudo cubic ⁇ 1 0 0 ⁇ plane by the Lottgering method reaches 96%. .
  • the piezoelectric 01 31 constant was 96.5 pm / V
  • the electromechanical coupling factor kp was 5 1.9%
  • the mechanical quality factor Qm was 1 5 2.
  • Relative permittivity ⁇ 33 ⁇ / ⁇ . was 10 7 9 and the dielectric loss tand was 4.7%.
  • the first crystal phase transition temperature Curie temperature
  • the second crystal phase transition temperature was -28 ° C.
  • Table 4 Fig. 10, Fig. 10, Fig. 11, Fig. 12, Table 11, Table 12, Table 13, and Table 14 show the characteristics of this example.
  • the minimum value of the dynamic strain D 3 3 in the temperature range of 30 to 80 ° C and the fluctuation range of the above characteristics are as follows. I understood that.
  • the maximum fluctuation width of the apparent dynamic capacity was when the drive electric field amplitude was 200 0 V / mm, and the fluctuation width was ⁇ 6.1%.
  • the maximum value of the fluctuation range of the apparent dynamic capacity of the displacement was when the drive electric field amplitude was 1 O O O VZmm, and the fluctuation range was ⁇ 8.0%.
  • Displacement (apparent dynamic capacity)
  • the maximum value of the fluctuation width of Q ' 5 is when the drive electric field amplitude is 100 OV / mm, and the fluctuation width is ⁇ 6.7%.
  • the maximum displacement fluctuation range was when the drive electric field amplitude was 200 000 VZmm, and the fluctuation range was 9.4% soil.
  • the maximum value of the fluctuation range of the dynamic capacity was when the drive electric field amplitude was 2 00 V / mm, and the fluctuation range was ⁇ 28.4%.
  • the maximum variation of the displacement / apparent dynamic capacity is 1 for the driving electric field amplitude. This is the case of 0 0 0 V / mm, and the fluctuation range was ⁇ 32.4%.
  • the maximum fluctuation width of displacement / (apparent dynamic capacity) ⁇ 5 is when the drive electric field amplitude is 10 0 O VZmm, and the fluctuation width is ⁇ 19.5%.
  • Example 3 a composition of Example 3, ⁇ L i 0. 065 ( K 0 .45 a 0. 55). 935 ⁇ ⁇ N b o. 8 3 Ta. 9 S b 0 .Q 8 ⁇ O 3 1 mo
  • Piezoelectric ceramics (crystal-oriented piezoelectric ceramics) with a composition in which Mn is added to 0.0 0 0 5 mo 1 externally to 1 were fabricated, and piezoelectric ceramics were manufactured using the piezoelectric ceramics. .
  • a crystal orientation ceramic having a composition of 0. 0 0 0 5 mo 1 was prepared. With respect to the obtained crystal orientation ceramic, the sintered body density, average orientation degree, and piezoelectric properties were evaluated under the same conditions as in Example 1. did. In addition, using the same procedure as in Example 1, 40 layers of stacked actuators were made. The product overnight characteristics were evaluated. In addition, the electrostatic capacitance was evaluated under the conditions that the amplitude of the electric field intensity was 2 V Zmm (Soil IV), a sin wave, and a frequency of 1 kHz.
  • the relative density of the crystallographically-oriented ceramic obtained in this example was 95% or more.
  • the pseudo cubic ⁇ 1 0 0 ⁇ plane is oriented parallel to the tape surface, and the average orientation degree of the pseudo cubic ⁇ 1 0 0 ⁇ plane by the lot-galling method is 89.6. % Reached. Furthermore, as a result of evaluating the piezoelectric characteristics at a temperature of 25 ° C, piezoelectric (1 3
  • the first crystal phase transition temperature (curry temperature) obtained from the temperature characteristics of the relative permittivity was 26 3 ° C, and the second crystal phase transition temperature was – 15 ° C.
  • the minimum value of dynamic strain D 3 3 in the temperature range of _ 30 to 80 ° C and the fluctuation range of the above characteristics are as follows. I understood that.
  • the maximum displacement fluctuation range was when the drive electric field amplitude was 100 0 VZmm, and the fluctuation range was ⁇ 10.4%.
  • the maximum fluctuation width of the apparent dynamic capacity was when the drive electric field amplitude was 100 0 V Vmm, and the fluctuation width was 4.9% on the soil.
  • Displacement Z The maximum fluctuation range of the apparent dynamic capacity is 1 for the driving electric field amplitude.
  • the maximum displacement fluctuation range was when the drive electric field amplitude was 10 0 0 0 VZmm, and the fluctuation range was ⁇ 1 1.8%.
  • the maximum fluctuation range of the dynamic capacity was when the drive electric field amplitude was 100 O VZmm, and the fluctuation range was ⁇ 2 6.9%.
  • Displacement The maximum value of the apparent dynamic capacity fluctuation range was when the drive electric field amplitude was 100 O VZmm, and the fluctuation range was ⁇ 2 1.3%.
  • Displacement Z (apparent dynamic capacity) Q ' 5 has a maximum fluctuation range when the drive electric field amplitude is 100 OV / mm and the fluctuation range is ⁇ 12.4%.
  • the capacitance of the piezoelectric actuator overnight in this example will be described.
  • the capacitance of the piezoelectric actuator overnight in this example is smaller than the apparent dynamic capacitance in the range of -30 to 160 ° C. Value.
  • the fluctuation range in the range of 30 to 80 C is ⁇ 4.8%, and the electric field strength 1 It was almost the same as the fluctuation range of the apparent dynamic capacity at 0 0 0 VZ mm.
  • the fluctuation range in the range of 130 to 160 ° C is ⁇ 5.2%, which is much smaller than the apparent dynamic capacity fluctuation range.
  • the difference between the dynamic capacitance and the capacitance is thought to be dominated by the difference in electric field strength.
  • the cause of the difference in the fluctuation range is that the apparent dynamic capacity increases due to the increase in the leakage current at an electric field strength of 100 V 0 mm or higher in a high temperature range of 80 ° C or higher.
  • the field strength of 2 V / mm there is almost no leakage current and the capacitance does not increase.
  • the piezoelectric actuator Ichiya of this example has an apparent dynamic in a wide temperature range of 1.3 to 160 ° C by reducing the driving electric field strength to less than 100 O VZ mm. It was found that the fluctuation range of the capacity can be reduced. The achievable level is considered to be about the same as the temperature characteristic of capacitance.
  • This comparative example is an example of a multilayered actuator that uses tetragonal PZT material that is an intermediate characteristic between the soft and hard systems (semi-hard), suitable for laminated actuators for automotive fuel injection valves.
  • the soft system is a material having Q m of 100 or less
  • the hard system is a material having Q m of 100 or more.
  • a stacked actuator for a fuel injection valve is used for constant voltage control, constant energy control or constant charge control, and controls fuel spray by opening and closing the valve by trapezoidal wave drive. is there. The fact that it is required to have high displacement performance and low temperature characteristics of displacement in each control method.
  • a binder polyvinyl propylal
  • a plasticizer butyl benzyl phthalate
  • the mixed slurry was formed into a tape shape having a thickness of about 100 m using a tape forming apparatus. Further, this tape was laminated and thermocompression bonded to obtain a plate-like molded body having a thickness of 1.2 mm. Next, the obtained plate-like molded body was degreased in the air. Furthermore, the degreased plate-like molded body was placed on an MgO plate in an alumina mortar and sintered in the atmosphere at 1170 ° C. for 2 hours. The subsequent procedure, using the A g paste as an electrode material, is to be the same as that of Example 1 except that baked.
  • the relative density of the piezoelectric ceramic of this comparative example was 95% or more.
  • the piezoelectric d 31 constant is 1 5 8.
  • the electromechanical coupling coefficient kp is 60.2%
  • the mechanical quality factor Qm is 5 4
  • relative permittivity 6 3 3 1 / £. was 1 7 0 1
  • the dielectric loss ta ⁇ ⁇ was 0.2%.
  • the minimum value of the dynamic strain amount D 33 in the temperature range of 130 to 70 and the fluctuation range of the above characteristics are as follows. I understood it. 'Minimum value of dynamic strain D 3 3 is when drive electric field amplitude is 2 0 0 0 V V mm, and 1 5 0 O VZmm and temperature is ⁇ 30 ° C, and at 5 5 3 pm ZV there were.
  • the maximum displacement fluctuation range was ⁇ 5.6% when the drive electric field amplitude was 20 0 O VZmm.
  • the maximum fluctuation width of the apparent dynamic capacity is ⁇ 14.5% when the drive electric field amplitude is 15 500 V / mm.
  • Displacement Z The maximum fluctuation range of the apparent dynamic capacity is 1 for the driving electric field amplitude.
  • the minimum value of the dynamic strain amount D 3 3 is when the drive electric field amplitude is 2.0 0 0 V / mm and 15 0 OV / mm and the temperature is 30 ° C, and 5 5 3 ⁇ m / V.
  • the maximum displacement fluctuation range was ⁇ 1 1.1% when the drive electric field amplitude was 2 00 V / mm.
  • This Comparative Example 2 is an example of a multilayered stack using a soft rhombohedral PZT material suitable for positioning of a stacked layered system for semiconductor manufacturing equipment with small environmental temperature changes. Laminated stacks for positioning are used in places where environmental temperature changes are small, so high displacement performance is required, but it is not necessary to have excellent temperature characteristics.
  • a molded body of 15 and 2 mm thick was obtained by dry press molding using a mold.
  • the obtained disk-shaped molded body was degreased in the air.
  • CIP treatment was applied to the plate-shaped body after degreasing with pressure: 20 OMPa, it was placed on an Mg plate in an alumina pot and placed at 1 260 ° C in the atmosphere. Time sintering was performed.
  • the subsequent procedure is the same as in Comparative Example 1.
  • the relative density of the piezoelectric ceramic of this comparative example was 95% or more. Also, as a result of evaluating the piezoelectric characteristics at a temperature of 25 ° C, the piezoelectric d 31 constant was 2 1 2. 7 pm / V, the electromechanical coupling coefficient kp was 67.3%, and the mechanical quality factor Qm was 4 7.5, dielectric constant 5 3 3 1 / £. Was 1 94 3 and the induction loss ta ⁇ ⁇ was 2.1%.
  • the minimum value of dynamic strain D 3 3 in the temperature range of 30 to 70 ° C and the fluctuation range of the above characteristics are as follows. I understood that.
  • the minimum value of the dynamic strain amount D 3 3 was 4 8 2 pm / V when the drive electric field amplitude was 2 0 00 V Z mm and the temperature was 1 3 0 ° C.
  • the maximum value of the fluctuation range of the apparent dynamic capacity is ⁇ 1 5.5% when the drive electric field amplitude is 15 500 VZmm.
  • the minimum value of the dynamic strain amount D 3 3 was 4 8 2 pm / V when the drive electric field amplitude was 20 00 V Z mm and the temperature was 130 ° C.
  • This comparative example 3 is an example of a multilayer stack that uses a soft tetragonal PZT material that is suitable for automotive knock sensors.
  • the knock sensor detects the knocking of a gasoline engine by converting it into a voltage using the piezoelectric effect of piezoelectric ceramics, and does not have a function as an actuator.
  • the relative density of the piezoelectric ceramic of this comparative example was 95% or more.
  • the piezoelectric d 31 constant was 2 0 3. 4 1117 ⁇
  • the electromechanical coupling coefficient was 62.0%
  • the mechanical quality factor Q m was 5 5 8.
  • Relative permittivity ⁇ 33 1 Z ⁇ . was 2 3 0 8 and the induction loss ta ⁇ ⁇ 5 was 1.4%.
  • the minimum value of the dynamic strain D 33 in the temperature range of 30 to 70 ° C and the fluctuation range of the above characteristics are shown. I found out the following. • The minimum value of the dynamic strain amount D 3 3 is 6 6 3 pmZV when the drive electric field amplitude is 1.500 V / mm and the temperature is ⁇ 30 ° C.
  • the minimum value of the dynamic strain amount D 3 3 was 6 6 3 pm / V when the drive electric field amplitude was 15 500 V nom and the temperature was ⁇ 30 ° C.
  • the maximum fluctuation width of the apparent dynamic capacity is ⁇ 3 2.3% when the drive electric field amplitude is 15 500 V / mm. • Displacement The maximum fluctuation width of the apparent dynamic capacity was ⁇ 18.4% when the drive electric field amplitude was 15 500 V / mm.
  • Comparative Example 4 is an example of a stacked stack using a semi-hard tetragonal PZT material suitable for high-power ultrasonic motors.
  • the ultrasonic motor is a piezoelectric ceramic ring affixed on a stationary basis that is driven to resonate at a frequency of 10 kHz and rotates the mouth that is pressed in the stationary state. The fact that it is required to have relatively high displacement performance and excellent temperature characteristics of displacement.
  • the relative density of the piezoelectric ceramic of this comparative example was 95% or more.
  • the piezoelectric d 31 constant was 1 3 6.
  • the electromechanical coupling coefficient kp was 5 7.9%
  • the mechanical quality factor Qm was 8 5
  • the relative dielectric constant 6 3 3 1/5 () was 1 5 4 5
  • the dielectric loss ta eta ⁇ 5 is 0.2%.
  • the minimum value of the dynamic strain amount D 3 3 in the temperature range of _ 30 to 70 ° C and the fluctuation range of the above characteristics are shown.
  • the next thing was.
  • the minimum value of the dynamic strain amount D 3 3 is that the drive electric field amplitude is 1 5 0 0 0 VZmm.
  • the temperature was 1300 ° C. and was 40 9 pm / V.
  • the maximum displacement fluctuation range was ⁇ 6.0% when the drive electric field amplitude was 2 0 00 VZmm.
  • Displacement Z The maximum fluctuation width of the apparent dynamic capacity is 1 for the driving electric field amplitude.
  • the minimum value of the dynamic strain amount D 3 3 was 40 9 pm / V when the drive electric field amplitude was 15 500 VZmm and the temperature was 130 ° C.
  • the maximum value of the fluctuation range of the displacement is when the drive electric field amplitude is 15 500 V Z mm, and is ⁇ 15.2%.
  • the maximum fluctuation width of the apparent dynamic capacity is ⁇ 36.7% when the drive electric field amplitude is 15 500 V / mm.
  • Comparative Example 5 is a stacked actuate that uses a hard tetragonal PZT material suitable for a highly sensitive angular velocity sensor.
  • the angular velocity sensor has both an accumulator function for resonantly driving a piezoelectric ceramic tuning fork at several kilohertz and a sensor function for detecting angular velocity.
  • the fact that the displacement performance may be low, the temperature characteristic of the displacement is required to be small.
  • the relative density of the piezoelectric ceramic of this comparative example was 95% or more. Also, as a result of evaluating the piezoelectric characteristics at a temperature of 25 ° C, the piezoelectric d 31 constant was 1 0 3.6 pm / V, the electromechanical coupling coefficient kp was 54.1%, and the mechanical quality factor Qm was 1 The relative dielectric constant £ 33 l / £ fl was 10 6 1 and the induction loss ta ⁇ ⁇ was 0.2%.
  • the minimum value of the dynamic strain D 3 3 in the temperature range of 30 to 70 ° C and the fluctuation range of the above characteristics are shown. I found out the following. -The minimum value of the dynamic strain amount D 3 3 was 2 95 5 pm when the drive electric field amplitude was 15 500 VZmm and the temperature was 20 ° C. The minimum value of the dynamic strain amount D 3 3 was smaller than 30 3 pm / V in Example 1.
  • the maximum fluctuation width of the apparent dynamic capacity is ⁇ 14.3% when the drive electric field amplitude is 15 500 VZmm.
  • Displacement Z The maximum fluctuation range of the apparent dynamic capacity is 1 for the driving electric field amplitude.
  • the minimum value of the dynamic strain amount D 3 3 is the drive electric field amplitude is 1 5 0 0 VZ mm
  • the temperature was 20 ° C. and was 2 95 pm / V.
  • the maximum displacement fluctuation range was ⁇ 1 1.1% when the drive electric field amplitude was 1550 OV / mm.
  • Displacement Z The maximum fluctuation width of the apparent dynamic capacity was ⁇ 24.5% when the drive electric field amplitude was 1550 VZmm.
  • Example 5 in order to examine whether the cause of the increase in the apparent dynamic capacity at 80 ° C or more is due to an increase in leakage current as in Example 5. Furthermore, the temperature characteristics of the dynamic capacity were evaluated using the piezoelectric ceramics (single plate) produced in Example 1, Example 4 and Comparative Example 1.
  • the dynamic capacitance is measured by applying the following formula A when a high voltage with an electric field strength of 20 0 0 V / mm (0-9 70 V) is applied with a triangular wave with a frequency of 1 Hz. 9 was used to measure the amount of polarization from the polarization amount-voltage hysteresis loop, and based on this, the amount of injected charge in driving under a high electric field was calculated as the dynamic capacity.
  • the single plate produced in Example 1 and Example 4 is in the temperature range of 80 ° C or higher.
  • the phenomenon that the zero point of polarization drifts due to leakage current is observed. woke up. Therefore, in order to evaluate the hysteresis loop, the voltage unipolar characteristics observed by applying the voltage 10 times is corrected so that the polarization amount is zero when the voltage is equal to the opening, and Eliminates leakage current in models with linear resistors in parallel And obtained a hysteresis loop.
  • the dynamic capacity obtained from this hysteresis loop is different from the apparent dynamic capacity, and the charge charge derived from the dielectric component, polarization inversion component, and polarization rotation component, excluding the leakage current, is divided by the applied voltage. Is. This hysteresis loop was repeated 10 times, and the average value of the maximum charge amount was defined as the polarization amount.
  • the single plate produced in Comparative Example 1 did not exhibit a phenomenon that the zero point of polarization amount drifted even when voltage was repeatedly applied.
  • the average value of the maximum charge amount observed by voltage application 10 times was used as the polarization amount as described above.
  • the dynamic capacity of the veneer thus obtained is multiplied by 40, which is the number of elements per day, to obtain the apparent appearance of Actuary, manufactured in Example 1, Example 4, and Comparative Example 1.
  • the results compared with the dynamic capacity are shown in Fig. 31, Fig. 32, and Fig. 33, respectively.
  • the piezoelectric actuator according to the present invention will be It was found that the fluctuation range of the apparent dynamic capacity can be reduced even in a high electric field drive with a driving electric field strength of 200 V / mm in a wide temperature range of ⁇ 160 ° C.
  • the achievable level It is considered that the temperature of the steel plate is about the same as the temperature characteristics of the dynamic capacity of a single plate.
  • Example 5 by changing the driving electric field strength to less than 100 0 V / mm, the fluctuation range of the apparent dynamic capacity over a wide temperature range of 30 to 160 ° C Can be made smaller. However, when the driving electric field strength is reduced, the amount of dynamic strain is also reduced. In the present embodiment, the amount of dynamic strain when the drive electric field intensity of the actuary overnight of the present invention is reduced is obtained.
  • FIG. 34 shows the relationship between the drive electric field strength of Actuary produced in Examples 1 to 5 and the amount of dynamic strain at 20 ° C. It was found that the dynamic strain amount was 2500 pm / V or more at the lower limit of 10 V / mm, which is the lower limit of the drive electric field strength necessary for the actuary. .
  • the fluctuation range of displacement when the driving electric field strength lower than 100 V / mm is small and the amount of dynamic strain is small is obtained.
  • the voltage applied to the piezoelectric actuator should be reduced, but in the piezoelectric actuator manufactured in this example, the displacement is small when the electric field strength is less than 500 V / mm. Measurement accuracy may deteriorate. In addition, its temperature characteristics are more difficult to evaluate. .
  • the piezoelectric transverse strain constant d 3 i of a single plate was measured by the resonance method.
  • Example 5 the fluctuation range of the piezoelectric d 31 constant of the single plate in the temperature range of 30 to 80 ° C. was ⁇ 7.8%. Further, the fluctuation range of the piezoelectric d 31 constant of the single plate in the temperature range of _30 to 160 ° C. was ⁇ 7.8% in Example 5. This value was equal to or smaller than the fluctuation range of the dynamic strain amount in the driving electric field strength of 100 to 2000 VZmm.
  • Example 4 1500 One 30 to 80 106.5 97.3 101.9 4.6 One 30 to 160 165.0 97.3 131.1 25.8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

圧電セラミックスの表面に一対の電極を形成してなる圧電素子2を駆動源として有する圧電アクチュエータ1である。圧電アクチュエータ1は、下記の要件(a)~(c)の内の少なくとも一つの要件を満足する。 (a)見かけの動的容量C[F]の温度変化による変動幅WCが、−30~80℃という特定温度範囲において±11%以内であること (b)変位L[μm]の温度変化による変動幅WLが、−30~80℃という特定温度範囲において±14%以内であること (c)見かけの動的容量をC[F]、変位をL[μm]とすると、L/Cの温度変化による変動幅WL/Cが、−30~80℃という特定温度範囲において±12%以内であること

Description

圧電ァクチユエ一夕
技術分野
本発明は、 大電界での逆圧電効果ならびに電歪効果を利用した積 層ァクチユエ一夕、 圧電卜ランス、 超音波モー夕、 バイモルフ圧電 明
素子、 超音波ソナ一、 圧電超音波振動子、 圧電ブザー、 圧電スピー 力等の圧電ァクチユエ一夕に関する。
書 背景技術
圧電セラミックス材料を利用した圧電ァクチユエ一夕は、 逆圧電 効果による変位を利用して電気エネルギーを機械エネルギーへ変換 する製品であり、 広くエレク トロニクスやメカ トロニクスの分野で 応用されているものである。
上記圧電ァクチユエ一夕に使用される圧電セラミックスとしては
、 例えば、 P b ( Z r · T i ) 〇3系 (以下、 これを 「P Z T系」 という。 ) 、 B a T i 〇3などが知られている。 P Z T系の圧電セ ラミックスは、 他の圧電セラミックスに比較して高い圧電特性を有 しており、 現在実用化されている圧電セラミックスの大部分を占め ている。 しかしながら、 蒸気圧の高い酸化鉛 (P b〇) を含んでい るために、 環境に対する負荷が大きいという問題がある。 一方、 B a T i 〇3セラミックスは、 鉛を含まないが、 P Z Tに比して圧電 特性が低く、 さらにはキュリー温度が約 1 2 0 °Cと低いため、 高温 では使用できないという問題がある。
上記圧電ァクチユエ一夕は、 一般に少なく とも 1対の電極を設け た圧電セラミックスである圧電素子と該圧電素子を保持する保持部 品と、 該保持部品に上記圧電素子を保持する接着部材またはパネな どの圧接部材と、 上記圧電素子に電圧を印加するためのリ一ド端子 と、 上記 1対の電極間に被覆される樹脂またはシリコーンオイルな どの電気絶縁部材とからなる。 上記圧電ァクチユエ一夕においては 、 圧電セラミックスからなる圧電素子が接着あるいはモールドある いはバネ等によって圧接されるため、 電圧印加を行わない状態にお いて、 すでに機械的な拘束力 (プリセッ ト負荷) が与えられている 。 また、 上記圧電ァクチユエ一夕においては、 該圧電ァクチユエ一 夕に電圧を印加すると、 電圧上昇に伴い圧電素子が変位するため、 上記の機械的な拘束力が高くなる (負荷上昇) 。
従って、 上記圧電ァクチユエ一夕の変位は、 プリセッ ト負荷と負 荷上昇により、 圧電素子そのものの変位性能とは異なり、 より小さ な値となる。
上記圧電ァクチユエ一夕の使用条件および駆動条件には、 温度、 駆動電界強度、 駆動波形、 駆動周波数、 連続駆動あるいは間欠駆動 等のパラメ一夕がある。 上記圧電ァクチユエ一夕の一般的な使用温 度範囲としては、 一般生活環境で使用する場合には最大で一 3 0 °C 〜 8 0 °C程度であり、 自動車部品として使用する場合には最大で— 4 0 ° (:〜 1 6 0 °C程度である。 また、 駆動電界強度の振幅は、 圧電 ァクチユエ一夕の用途によって異なり、 圧電ブザ一、 超音波ソナ一 、 圧電スピーカ等では 5 0 0 V / m m以下、 超音波モータ、 圧電卜 ランス、 圧電超音波振動子等では 1 0 0 O V Z m m以下、 積層ァク チユエ一夕では 3 0 0 O V / m m以下である。 また、 駆動波形は共 振駆動する場合は s i n波、 それ以外では s i n波、 台形波、 三角 波、 矩形波、 パルス波と様々である。 また、 駆動周波数は超音波モ —夕、 超音波ソナ一、 圧電超音波振動子等は 2 0 k H z以上、 それ 以外では 2 O K H z未満である。 上記圧電ァクチユエ一夕の駆動方式には、 ( 1 ) 電圧をパラメ一 夕として変位を制御して駆動する定電圧駆動法、 ( 2 ) 注入エネル ギーをパラメ一夕として変位を制御して駆動する定エネルギー駆動 法、 ならびに ( 3 ) 注入電荷をパラメ一夕として変位を制御して駆 動する定電荷駆動法に分類できる。
ここで、 各駆動法とァクチユエ一夕の変位の関係について説明す る。
上記定電圧駆動法による圧電ァクチユエ一夕の駆動方式において は、 電圧印加の上昇時と下降時の変位がヒステリシスを有するとい う特徴がある。 この定電圧駆動法においては、 使用温度範囲内での 変位の変動幅が比較的大きいという問題がある。
また、 上記定エネルギー駆動法による圧電ァクチユエ一夕の駆動 方式においては、 注入エネルギーの上昇時と下降時の変位がヒステ リシスを有するという特徴がある。 この定エネルギー駆動法におい ては、 使用温度範囲内での変位の変動幅が上記定電圧駆動法と比較 して小さい。
一方、 定電荷駆動法によるァクチユエ一夕の駆動方式においては 、 注入電荷の上昇時と下降時の変位の差がほぼゼロであるため、 最 も精密な変位制御が可能である点で優れている。 しかし、 使用温度 範囲内での変位の変動幅が、 上記定電圧駆動ならびに上記定ェネル ギー駆動と比較して大きいという問題がある。
そこで、 圧電ァクチユエ一夕ゃ圧電セラミックスセンサの温度特 性の変動幅を小さくする方法として、 例えば以下のような技術が開 発されている。
即ち、 特開昭 6 0 — 1 8 7 7号公報には、 温度変化に対して圧電 単体の電圧印加時出力としての変位が増加関数的に変化する圧電単 体と減少関数的に変化する圧電単体を組合せて積層した圧電体が開 示されている。
また、 特開平 6 - 2 3 2 4 6 5号公報には、 変位性能が異なる複 数の圧電セラミ ックス層を積層した積層型圧電ァクチユエ一夕が開 示されている。
特開平 5 — 2 8 4 6 0 0号公報には、 圧電セラミックスに温度補 償用コンデンサを直列あるいは並列に電気的に接続した圧電素子が 開示されている。
特開平 7 — 7 9 0 2 2号公報には、 圧力に応じて電荷を発生する 圧電素子において、 圧電体層と誘電体層を交互に積層し、 誘電体層 の静電容量が圧電層の静電容量より大で、 かつ誘電体層の温度係数 が圧電層の温度係数と逆の特性を持った材料から構成した圧電素子 が開示されている。
特開平 7 — 7 9 0 2 3号公報には、 圧力に応じて電荷を発生する 圧電素子において、 圧電体材料と逆の温度特性をもって静電容量が 変化する誘電体材料を混合して成型した圧電素子が開示されている また、 特開平 1 1 一 1 8 0 7 6 6号公報には、 チタン酸バリゥム 系圧電磁器において、 共振法で測定した圧電 d33定数が 3 0 0 p C /N以上であり、 かつ、 一 3 0 °Cから 8 5 °Cにおける圧電 d 33の温 度変化率が小さい組成物が開示されている。
特開 2 0 0 3 - 1 2 8 4 6 0号公報には、 チタン酸バリウム系の N i を内部電極とした積層型圧電素子において、 電界強度 l k mmを印加したときの素子に歪み率から計算した圧電 d31定数の温 度変化率が小さい圧電素子が開示されている。
しかしながら、 これら従来の技術においても、 温度変化による圧 電ァクチユエ一夕の変位特性等の変動を充分に解消することはでき なかった。 発明の開示
本発明はかかる従来の問題点に鑑みてなされたものであって、 圧 電ァクチユエ一夕の駆動方式によらず、 変位の温度依存性を小さく することができる圧電ァクチユエ一夕を提供しょうとするものであ る。
第 1の発明は 、 圧電セラミックスの表面に一対の電極を形成して なる圧電素子を駆動源として有する圧電ァクチユエ一夕であつて、 上記圧電ァクチユエ —夕に電圧を印加して、 電界強度 1 0 0 V/ m m以上の一定の振幅を有する電界駆動条件で駆動させた場 Πに、 上記圧電ァクチユエ一夕は、 下記の要件 ( a ) 〜 ( c ) の内 、 少な
<とも一つの要件を満足することを特徴とする圧電ァクチュ X一夕 にある (請求の範囲第 1項) 。
( a ) 下記の式 ( 1 ) で表される見かけの動的容量 C [F] の温 度変化による変動幅 Wc [%] 力 一 3 0〜 8 0 °Cの特定温度範囲 において ± 1 1 %以内であること (但し、 C [ F ] は、 該圧電ァク チユエ一夕の見かけの動的容量であって、 該圧電ァクチユエ一夕と コンデンサとを直列に接続し、 該圧電ァクチユエ一夕及び該コンデ ンサに電圧を印加したときに、 該コンデンサに蓄積される電荷量 Q
[C] を該圧電ァクチユエ一夕に印加された電圧 V [V] で除すこ とによって算出されるものである)
Wc (%) = [ { 2 X Cma x/ (Cm a x + Cm i n) } - 1 ]
X 1 0 o ( 1 )
(但し、 Cn a xは一 3 0〜 8 0 °Cにおける見かけの動的容量の最大 値、 Cm i nは— 3 0〜 8 0 °Cにおける見かけの動的容量の最小値を 表す)
(b ) 下記の式 ( 2 ) で表される変位 L [ m] の温度変化によ る変動幅 WL [ ] カ 、 一 3 0〜 8 0 °Cの特定温度範囲において土 1 4 %以内であること (但し、 L [ a m] は該圧電ァクチユエ一夕 の変位である)
WL (%) = [ { 2 X Lmax/ (Lm a x + Lm i n) } - 1 ]
X 1 0 0 ( 2 )
(但し、 L η a xは— 3 0〜 8 0 °Cにおける変位の最大値、 L n i nは—
3 0〜 8 0 °Cにおける変位の最小値を表す)
( c ) 下記の式 ( 3 ) で表される L /Cの温度変化による変動幅 WL/C [%] が、 — 3 0〜 8 0。Cという特定温度範囲において ± 1 2 %以内であること (但し、 C [F ] は該圧電ァクチユエ一夕の見 かけの動的容量であり、 L [ urn] は該圧電ァクチユエ一夕の変位 であって、 該 C [F] は、 該圧電ァクチユエ一夕とコンデンサとを 直列に接続し、 該圧電ァクチユエ一夕及び該コンデンサに電圧を印 加したときに、 該コンデンサに蓄積される電荷量 Q [C] を該圧電 ァクチユエ一夕に印加された電圧 V [V] で除すことによって算出 されるものである)
WL/ C (%) = [ { 2 X (L/C) a a x/ ( (L/C) i a x +
(L/ C) a i n) } - 1 ] X 1 0 0 · · ( 3 ) (但し、 (L / C ) n a xは一 3 0〜 8 0 °Cにおける L Z Cの最大値 、 (L/C) m i nは一 3 0〜 8 0 °Cにおける L/Cの最小値を表す )
また、 第 2の発明は、 圧電セラミックスの表面に一対の電極を形 成してなる圧電素子を駆動源として有する圧電ァクチユエ一夕であ つて、
上記圧電ァクチユエ一夕に電圧を印加して、 電界強度 1 0 0 VZ mm以上の一定の振幅を有する電界駆動条件で駆動させた場合に、 上記圧電ァクチユエ一夕は、 下記の要件 ( j ) 〜 ( 1 ) の内、 少な く とも一つの要件を満足することを特徴とする圧電ァクチユエ一夕 にある (請求の範囲第 1 0項) 。
( j ) 下記の式 ( 5 ) で表される見かけの動的容量 C CF] の温 度変化による変動幅 We [% ] が、 一 3 0〜: I 6 0 °Cという特定温 度範囲において ± 3 0 %以内であること (但し、 C [ F ] は、 該圧 電ァクチユエ一夕の見かけの動的容量であって、 該圧電ァクチユエ —夕とコンデンサとを直列に接続し、 該圧電ァクチユエ一夕及び該 コンデンサに電圧を印加したときに、 該コンデンサに蓄積される電 荷量 Q [C] を該圧電ァクチユエ一夕に印加された電圧 V [V] で 除すことによって算出されるものである)
Wc (%) = [ { 2 X Cn aノ (CB a x + Cl i n) } 一 1 ]
X 1 0 0 ( 5 )
(但し、 ^„はー 3 0〜 1 6 0 °( にぉける見かけの動的容量の最 大値、 Cm i nは一 3 0〜 1 6 0 °Cにおける見かけの動的容量の最小 値を表す)
( k ) 下記の式 ( 6 ) で表される変位 L [nm] の温度変化によ る変動幅 WL [ ] が、 一 3 0〜 1 6 0 °Cという特定温度範囲にお いて ± 1 4 %以内であること (但し、 L [ m] は、 該圧電ァクチ ユエ一夕の変位である)
WL ( ) = L { 2 X LB a x/ (Lmax + Lm i n) } - 1 ]
X 1 0 0 · · · ( 6 )
(但し、 LB axは一 3 0〜 1 6 0 °Cにおける変位の最大値、 LB i nは 一 3 0〜 1 6 0 °Cにおける変位の最小値を表す)
( 1 ) 下記の式 ( 7 ) で表される L/Cの温度変化による変動幅 WL/ C [%] 力^ 一 3 0〜: L 6 0 °Cという特定温度範囲において土 3 5 %以内であること (但し、 C [F] は該圧電ァクチユエ一夕の 見かけの動的容量であり、 L ( n m) は該圧電ァクチユエ一夕の変 位であって、 該 C [F ] は、 該圧電ァクチユエ一夕とコンデンサと を直列に接続し、 該圧電ァクチユエ一夕及び該コンデンサに電圧を 印加したときに、 該コンデンサに蓄積される電荷量 Q [ C ] を該圧 電ァクチユエ一夕に印加された電圧 V [V] で除すことによって算 出されるものである)
WL / C ( % ) = [ { 2 X ( L / C ) B A X / ( ( L / C ) A A X +
( L / C ) B i n) } - 1 ] X 1 0 0 - - ( 7 ) (但し、 (L Z C ) n a xは一 3 0〜 1 6 0 °Cにおける L Z Cの最大 値、 ( L C ) m i nは _ 3 0〜 1 6 0 °Cにおける L / Cの最小値を 表す)
上記第 1 の発明の圧電ァクチユエ一夕は、 上記要件 ( a ) 〜 ( c ) の内、 少なく とも一つの要件を満足する。 即ち、 上記第 1 の発明 の圧電ァクチユエ一夕においては、 上記見かけの動的容量 Cの温度 変化による変動幅 W (;、 上記変位 Lの温度変化による変動幅 Wい 又 は上記変位ノ動的容量 (L Z C ) の温度変化による変動幅 WL / Cの 内の少なく とも一つが— 3 0〜 8 0 °Cという特定温度範囲において 上記特定の範囲内にある。
また、 上記第 2の発明の圧電ァクチユエ一夕は、 上記要件 ( j ) 〜 ( 1 ) の内、 少なく とも一つの要件を満足する。 即ち、 上記第 1 の発明の圧電ァクチユエ一夕においては、 上記見かけの動的容量 C の温度変化による変動幅 Wい 上記変位 Lの温度変化による変動幅 WL、 又は上記変位 Z動的容量 (L / C ) の温度変化による変動幅 WL /cの内の少なくとも一つが— 3 0〜 1 6 0 °Cという特定温度範 囲において上記特定の範囲内にある。
そのため、 上記第 1及び第 2の発明の圧電ァクチユエ一夕は、 温 度変化による変位のバラツキが小さい。 即ち、 上記圧電ァクチユエ —夕は、 温度変化の激しい環境下で用いられた場合においても、 略 一定の変位を発揮することができる。 そのため、 上記圧電ァクチュ エー夕は、 例えば自動車部品等の温度変化の激しい環境下で用いら れる製品にも好適に用いることができる。
一般に、 圧電ァクチユエ一夕の駆動方式には、 上述のごとく、 (
1 ) 電圧をパラメ一夕として変位を制御して駆動する定電圧駆動法 、 ( 2 ) 注入エネルギーをパラメ一夕として変位を制御して駆動す る定エネルギー駆動法、 ならびに ( 3 ) 注入電荷をパラメ一夕とし て変位を制御して駆動する定電荷駆動法がある。
ここで、 圧電ァクチユエ一夕の変位の温度依存性について、 圧電 ァクチユエ一夕の駆動方式ごとに、 説明する。
まず、 定電圧駆動の圧電ァクチユエ一夕の変位 (A L 1 ) は、 下 記の式 A 1で表される。
A L 1 =D 3 3 X E F X L 0 A 1 ここで、 D 3 3 : 動的歪量 [mZV] 、 E F : 最大電界強度 [V Zm] および L 0 : 電圧を印加する前の圧電セラミックスの長さ [ m] である。 また、 動的歪量は、 電界強度 0〜 3 0 0 0 V/mmで あって絶縁破壊しない程度の範囲の高電圧を、 一定の振幅で印加し て駆動した場合に、 電圧印加方向と平行方向に発生する圧電セラミ ックスの変位性能であり、 下記の式 A 2で表される。
D 3 3 = S / E F = ( Δ L 1 / L 0 ) / ( V / L 0 ) · · A 2 こ こで、 S : 最大歪量である。 また、 D 3 3は温度依存性だけで はなく、 電界強度依存性を有するものである。
上記式 (A 1 ) 及び (A 2 ) から知られるごとく、 圧電ァクチュ エー夕変位 (△ L 1 ) は、 印加電界強度に応じた動的歪量 D 3 3 と 印加電界強度の積に比例する。
また、 エネルギーと電荷と見かけの動的容量と印加電圧は、 下記 の式 A 3 , A 4の関係がある。
W = 1 / 2 X C X V 2 A 3 Q = C X V · A 4 ここで、 W ·· エネルギー [ J ] 、 C : 見かけの動的容量 [F] 、 V : 印加電圧 [V] および Q : 電荷 [C] である。
ここで、 見かけの動的容量 C [F] は、 一般に圧電ァクチユエ一 夕とコンデンサとを直列に接続し、 電界強度 0〜 3 0 0 0 V/mm であって絶縁破壌しない程度の範囲の一定振幅の電界強度で駆動さ せた時に、 コンデンサに蓄積される電荷量をァクチユエ一夕に印加 される電圧で除した値で定義されるものである。 見かけの動的容量 Cは、 少なく とも圧電セラミックスの誘電成分、 分極反転成分、 及 び分極回転成分に由来する充電電荷と、 圧電セラミックスの直流抵 抗成分に由来するリーク電流とを含むものである。 また、 見かけの 動的容量 Cは温度依存性だけではなく、 電界強度依存性を有するも のである。
従って、 定エネルギー駆動 (W : —定) の場合の圧電ァクチユエ —夕の変位 (A L 2 ) は、 下記の式 A 5より、 駆動電界強度に応じ た D 3 3 ZCQ' 5と駆動電界強度 (=駆動電圧 ZL 0 ) の積に比例 する。
△ L 2 =D 3 3 X ( 2 XW/ C ) °· 5 A 5 ここで、 温度変化により見かけの動的容量 Cが変動すると、 上記 式 A 3に従い、 駆動電界強度そのものも変動してしまうという特徴 を有する。
また、 定電荷駆動 (Q : 一定) の場合のァクチユエ一夕の変位 ( 厶 L 3 ) は、 下記の式 A 6より、 駆動電界強度に応じた D 3 3 /C と駆動電界強度 (=駆動電圧/ L 0 ) の積に比例する。
△ L 3 =D 3 3 X (Q/C) A 6 ここで、 温度変化により Cが変動すると、 上記式 A 4に従い、 印加 電界強度そのものも変動してしまうという特徴を有する。 従って、 使用温度範囲におけるァクチユエ一夕の変位変動幅を小 さくするには、 駆動電界強度に応じた D 3 3 、 D 3 3 / C。' 5、 D 3 3ノ C等の温度依存性が小さいことが望ましいといえる。
また、 当然のことながら、 変位性能である D 3 3 、 D 3 3 / C 0 - 5、 D 3 3 Z Cの絶対値は大きいことが望ましい。
次に、 定エネルギー駆動および定電荷駆動の場合の、 見かけの動 的容量と駆動電圧の関係について説明する。
定エネルギー駆動 (W : —定) の場合の圧電ァクチユエ一夕およ び駆動回路に負荷される電圧 (端子電圧) は、 下記の式 A 7より 1 Z C 11 · 5に比例する。
V = ( 2 X W / C ) ° - 5 A 7 定電荷駆動 (Q : 一定) の場合の端子電圧は、 下記の'式 A 8より
1 / Cに比例する。
V = Q / C A 8 端子電圧が変動すると、 圧電ァクチユエ一夕および駆動回路の耐 電圧の信頼性を確保するために、 端子電圧上限で設計を行う必要が ある。 ァクチユエ一夕の設計においては、 電極間放電あるいは側面 リークあるいは絶縁破壊を防ぐため、 正負電極間距離を小さくでき ないという制約を受ける。 そのため、 使用温度範囲内における端子 電圧の下限値において変位特性が低下してしまう。 したがって、 回 路設計においては、 回路素子の耐電圧をあげるため大型化 · 高価格 化する問題となる。
従って、 ァクチユエ一夕の変位性能向上ならびに駆動回路の小型 化 · 低コス ト化には、 駆動電界強度に応じた 1 / C Q ' 5、 1 Z Cの 温度依存性が小さいことが望ましい。
また、 見かけの動的容量 Cが一定値に収束すれば、 端子電圧も一 定値に収束するため、 駆動電界強度一定における D 3 3 / C Q ' 5の 温度依存性が小さければ、 定エネルギー制御でのァクチユエ一夕の 変位の温度依存性は小さくすることが出来る。 また、 駆動電界強度 一定における D 3 3 / Cの温度依存性が小さければ、 定電荷制御で のァクチユエ一夕の変位の温度依存性は小さくすることができる。
このように、 圧電ァクチユエ一夕の温度依存性を小さくするため には、 使用温度範囲において、 一定の振幅を有する電界駆動条件下 で発生する動的歪量 D 3 3、 見かけの動的容量 C、 D 3 3 / C°- 5 、 ならびに D 3 3 / Cの変動幅が小さいことが望ましい。
上記第 1の発明の圧電ァクチユエ一夕においては、 上記のごとく 、 上記見かけの動的容量 Cの温度変化による変動幅 W (;、 上記変位 Lの温度変化による変動幅 Wい 又は上記変位/見かけの動的容量 (L/C) の温度変化による変動幅 Ww eの内の少なく とも一つが 、 一 3 0〜 8 0 °Cという特定温度範囲において、 それぞれ ± 1 1 % 以内、 ± 1 4 %以内、 ± 1 2 %以内という小さい範囲内にある。
また、 上記第 2の発明の圧電ァクチユエ一夕においては、 上記見 かけの動的容量 Cの温度変化による変動幅 Wい 上記変位 Lの温度 変化による変動幅 Wい 又は上記変位/見かけの動的容量 (L/C ) の温度変化による変動幅 WW (;の内の少なく とも一つが、 一 3 0 〜 1 6 0 °Cという特定温度範囲において、 それぞれ ± 3 0 %以内、 ± 1 4 %以内、 ± 3 5 %以内という小さい範囲内にある。
したがって、 上記第 1及び第 2の発明の圧電ァクチユエ一夕は、 定電圧駆動、 定エネルギー駆動、 及び定電荷駆動等の駆動方式によ らず、 変位の温度依存性が小さくなる。 即ち、 使用温度を変えても 、 ほぼ同等の変位特性を発揮することができる。
以上のごとく、 本発明によれば、 圧電ァクチユエ一夕の駆動方式 によらず、 変位の温度依存性を小さくすることができる圧電ァクチ ユエ一夕を提供することができる。 図面の簡単な説明
図 1 は、 実施例 1 にかかる、 圧電ァクチユエ一夕の見かけの動的 容量の温度依存性を示す線図である。 図 2は、 実施例 1 にかかる、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図 3は 、 実施例 1 にかかる、 圧電ァクチユエ一夕の変位ノ見かけの動的容 量の温度依存性を示す線図である。
図 4は、 実施例 2にかかる、 圧電ァクチユエ一夕の見かけの動的 容量の温度依存性を示す線図である。 図 5は、 実施例 2 にかかる、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図 6は 、 実施例 2にかかる、 圧電ァクチユエ一夕の変位 見かけの動的容 量の温度依存性を示す線図である。
図 7は、 実施例 3 にかかる、 圧電ァクチユエ一夕の見かけの動的 容量の温度依存性を示す線図である。 図 8は、 実施例 3 にかかる、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図 9は 、 実施例 3 にかかる、 圧電ァクチユエ一夕の変位 Z見かけの動的容 量の温度依存性を示す線図である。
図 1 0は、 実施例 4にかかる、 圧電ァクチユエ一夕の見かけの動 的容量の温度依存性を示す線図である。 図 1 1は、 実施例 4にかか る、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図 1 2は、 実施例 4にかかる、 圧電ァクチユエ一夕の変位/見かけの 動的容量の温度依存性を示す線図である。
図 1 3は、 実施例 5にかかる、 圧電ァクチユエ一夕の見かけの動 的容量及び静電容量の温度依存性を示す線図である。 図 1 4は、 実 施例 5にかかる、 圧電ァクチユエ一夕の変位の温度依存性を示す線 図である。 図 1 5は、 実施例 5にかかる、 圧電ァクチユエ一夕の変 位 Z見かけの動的容量の温度依存性を示す線図である。
図 1 6は、 比較例 1 にかかる、 圧電ァクチユエ一夕の見かけの動 的容量の温度依存性を示す線図である。 図 1 7は、 比較例 1 にかか る、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図 1 8は、 比較例 1 にかかる、 圧電ァクチユエ一夕の変位 Z見かけの 動的容量の温度依存性を示す線図である。
図 1 9は、 比較例 2にかかる、 圧電ァクチユエ一夕の見かけの動 的容量の温度依存性を示す線図である。 図 2 0は、 比較例 2にかか る、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図 2 1 は、 比較例 2にかかる、 圧電ァクチユエ一夕の変位ノ見かけの 動的容量の温度依存性を示す線図である。
図 2 2は、 比較例 3にかかる、 圧電ァクチユエ一夕の見かけの動 的容量の温度依存性を示す線図である。 図 2 3は、 比較例 3にかか る、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図 2 4は、 比較例 3にかかる、 圧電ァクチユエ一夕の変位/見かけの 動的容量の温度依存性を示す線図である。
図 2 5は、 比較例 4にかかる、 圧電ァクチユエ一夕の見かけの動 的容量の温度依存性を示す線図である。 図 2 6は、 比較例 4にかか る、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図
2 7は、 比較例 4にかかる、 圧電ァクチユエ一夕の変位/見かけの 動的容量の温度依存性を示す線図である。
図 2 8は、 比較例 5にかかる、 圧電ァクチユエ一夕の見かけの動 的容量の温度依存性を示す線図である。 図 2 9は、 比較例 5にかか る、 圧電ァクチユエ一夕の変位の温度依存性を示す線図である。 図
3 0は、 比較例 5にかかる、 圧電ァクチユエ一夕の変位/見かけの 動的容量の温度依存性を示す線図である。
図 3 1 は、 実施例 6にかかる、 圧電ァクチユエ一夕 (実施例 1 ) の見かけの動的容量及び動的容量の温度依存性を示す線図である。 図 3 2は、 実施例 6にかかる、 圧電ァクチユエ一夕 (実施例 4 ) の 見かけの動的容量及び動的容量の温度依存性を示す線図である。 図
3 3は、 実施例 6 にかかる、 圧電ァクチユエ一夕 (比較例 1 ) の見 かけの動的容量及び動的容量の温度依存性を示す線図である。
図 3 4は、 実施例 7 にかかる、 実施例 1〜実施例 5にて得られた 各圧電ァクチユエ一夕の電極強度振幅と温度 2 0 °Cにおける動的歪 量との関係を示す線図である。
図 3 5は、 実施例 8 にかかる、 実施例 5で作製した単板の d 3 ,の 温度特性の測定値と、 実施例 5で示す 1 0 0 0〜 2 0 0 0 V/mm の駆動電界強度における動的歪量とを、 それぞれ、 2 0 °Cの値で規 格化した結果を示す線図である。
図 3 6は、 本発明の圧電ァクチユエ一夕の構成の一例を示す説明 図である。
図 3 7は、 実施例 1 にかかる、 圧電ァクチユエ一夕の構成の概略 を示す説明図である。 図 3 8は、 実施例 1 にかかる、 圧電素子の構 成を示す説明図である。 図 3 9は、 実施例 1 ίこかかる、 一枚の圧電 セラミックスからなる圧電素子 (単板) の構成を示す説明図である 。 図 4 0は、 実施例 1 にかかる、 圧電素子 (単板) と内部電極板と を積層する様子を示す説明図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について説明する。
上記第 1 の発明の圧電ァクチユエ一夕は、 上記要件 ( a ) 〜 ( c ) を満足する。
上記要件 ( a ) は、 上記圧電ァクチユエ一夕の見かけの動的容量 を C [F] とすると、 下記の式 ( 1 ) で表される見かけの動的容量 の温度変化による変動幅 Wc [ ] カ^ — 3 0〜 8 0 °Cという特定 温度範囲において ± 1 1 %以内であることにある。 WC ( % ) = [ { 2 ズ n a x , ( m ax + ^ ra i n ) J — 1 ]
X · · · · ( 1 ) 上記要件 ( a ) において、 上記見かけの動的容量は、 上記圧電ァ クチユエ一夕と例えば温度 2 5 °cに設置したコンデンサとを直列に 接続し、 上 §し jdL ¾ァクチユ エ一夕及び上記コンデンサに電圧を印加 したときに、 上記 ンデンサに蓄積される電荷量 Q [C ] を上記圧 電ァクチユエ一夕に印加された電圧 V [V] で除すことによって算 出することができる
上記要件 (b ) は 、 上 し /上 ¾ァクチユエ一夕の変位を L [ IX m] とすると、 下記の式 ( 2 ) で表される変位 Lの温度変化による変動 幅 WLが、 — 3 0〜 8 0 °Cという特定温度範囲において ± 1 4 %以 内であることにある。
WL (%) = [ { 2 X LB a x/ (Ln a x + Lffl i n) } - 1 ]
X 1 0 0 ( 2 ) また、 上記要件 ( c ) は、 上記圧電ァクチユエ一夕の見かけの動 的容量を C [F ] 、 上記圧電ァクチユエ一夕の変位を L [ a m] と すると、 下記の式 ( 3 ) で表される L / Cの温度変化による変動幅 Ww cが、 一 3 0〜 8 0 °Cという特定温度範囲において ± 1 2 %以 内であることにある。
WL / C (%) = [ { 2 X ( L / C ) B a x/ ( (L /C ) 漏 a x +
(L / C) m i n) } - 1 ] X 1 0 0 · · ( 3 ) 上記要件 ( C ) において 、 上記見かけの動的容量は、 上記圧電ァ クチュ X一夕と例えば温度 2 5 °cに設置したコンデンサとを直列に 接続し 、 上記圧電ァクチュエー夕及び上記コンデンザに電圧を印加 したときに、 ェ 己 ンデンサに蓄積される電荷量 Q [C ] を上記圧 電ァクチユエ一夕に印加された電圧 V [V] で除すことによって算 出するしとができる 上記圧電ァクチユエ一夕が上記要件 ( a ) 〜 ( c ) のいずれをも 満足しない場合、 即ち— 3 0〜 8 0 °Cにおいて、 上記変動幅 WCが ± 1 1 %以内という範囲から外れる場合、 上記変動幅 WLが ± 1 4 %以内という範囲から外れる場合、 及び上記変動幅 WL / (;が ± 1 2 %以内という範囲から外れる場合には、 温度— 3 0〜 8 0 °Cにおけ る上記圧電ァクチユエ一夕の温度依存性が大きくなつてしまうおそ れがある。
上記圧電ァクチユエ一夕は、 上記要件 ( a ) と上記要件 ( b ) と の両方を満足することが好ましい (請求の範囲第 2項) 。
この場合には、 上記圧電ァクチユエ一夕の温度依存性をより小さ なものとすることができる。
また、 上記圧電ァクチユエ一夕は、 上記要件 ( a ) 〜 ( c ) のす ベてを満足することが好ましい (請求の範囲第 3項) 。
この場合には、 上記圧電ァクチユエ一夕の温度依存性を一層小さ くすることができる。
また、 上記圧電ァクチユエ一夕において、 動的容量の温度変化に よる上記変動幅 WE [%] は、 — 4 0〜 8 0 °Cという特定温度範囲 において ± 1 2 %以内であることが好ましい。
また、 上記変位 Lの温度変化による上記変動幅 WLは、 _ 4 0〜 8 0 °Cという特定温度範囲において ± 1 4 %以内であることが好ま しい。
さらに、 L Z Cの温度変化による上記変動幅 WL / (;が、 — 4 0〜 8 0 °Cという特定温度範囲において ± 1 3 %以内であることが好ま しい。
このように、 一 4 0〜 8 0 °Cという温度範囲において、 上記変動 幅 Wい 変動幅 Wい 変動幅 が上記のごとく特定の範囲内にあ る場合には、 一 4 0〜 8 0 °Cという温度範囲においても、 上記圧電 ァクチユエ一夕の変位の温度依存性を小さくすることができる。 上記圧電ァクチユエ一夕は、 下記の要件 (d) を満足することが 好ましい (請求の範囲第 4項) 。
( d ) 上記見かけの動的容量を C [F ] 、 上記圧電ァクチユエ一 夕の変位を L [^m] とすると、 下記の式 ( 4 ) で表される L ZC 05の温度変化による変動幅 WL / c Q · 5が、 一 3 0〜 8 0 °Cという特 定温度範囲において ± 1 2 %以内であること (但し、 LZCQ' 5は 、 前記圧電ァクチユエ一夕の変位 L [u rn] の、 前記見かけの動的 容量 C [F] の自乗根に対する比である)
WL/ C°- 5 (%) = [ { 2 X (L /C。· 5) ma x/
( (LZC0.5) ffl a x + (L /C0· 5) m i n) }
— 1 ] X 1 0 0 · · · ( 4 )
(但し、 (L/C。· 5) maxは、 温度— 3 0〜 8 0 °Cにおける L/C 0· 5の最大値、 (LZC。. " ra i nは、 温度— 3 0〜 8 0 °Cにおける L/C0· 5の最小値を表す)
上記圧電ァクチユエ一夕が上記要件 ( d) を満足しない場合、 即 ち L ZCQ' 5の温度変化による変動幅 WL/ e 5が、 一 3 0〜 8 0 °C という特定温度範囲において ± 1 2 %を超える場合には、 上記圧電 ァクチユエ一夕の変位の温度依存性が大きくなつてしまうおそれが ある。
また、 L /C11' 5の温度変化による上記変動幅 WL/e Q' 5は、 ー 4 0〜 8 0 °Cという特定温度範囲において ± 1 2 %以内であることが 好ましい。
この場合には、 — 4 0〜 8 0 °Cという温度範囲においても、 上記 圧電ァクチユエ一夕の変位の温度依存性を小さくすることができる 上記圧電ァクチユエ一夕は、 下記の要件 ( e ) を満足することが 好ましい (請求の範囲第 5項) 。
( e ) 上記圧電ァクチユエ一夕の電界印加方向の歪みを電界強度 で除することによって算出される動的歪量が、 一 3 0〜 8 0 °Cとい う特定温度範囲において 2 5 0 p m/V以上であること。
上記圧電ァクチユエ一夕が上記要件 ( e ) を満足しない場合、 即 ち上記動的歪量が、 一 3 0〜 8 0 °Cという特定温度範囲において 2 5 0 p m Z V未満の場合には、 上記圧電ァクチユエ一夕の変位が小 さくなつてしまうおそれがある。
また、 上記動的歪量は、 一 4 0〜 8 0 °Cという温度範囲において 2 5 0 p m/V以上であることが好ましい。
この場合には、 — 4 0〜 8 0 °Cという温度範囲においても、 上記 圧電ァクチユエ一夕の変位を大きくすることができる。
次に、 上記圧電ァクチユエ一夕は、 下記の要件 ( f ) を満足する ことが好ましい (請求の範囲第 6項) 。
( f ) 上記見かけの動的容量 Cの温度変化による上記変動幅 Wc [%] が、 一 3 0〜: L 6 0。Cという特定温度範囲において ± 3 5 % 以内であること。
また、 上記圧電ァクチユエ一夕は、 下記の要件 ( g ) を満足する ことが好ましい (請求の範囲第 7項) 。 .
( g ) 上記圧電ァクチユエ一タの変位 Lの温度変化による上記変 動幅 WLが、 — 3 0〜 1 6 0 Cという特定温度範囲において ± 1 4 %以内であること。
また、 上記圧電ァクチユエ一夕は、 下記の要件 ( h) を満足する ことが好ましい (請求の範囲第 8項) 。
( h ) 見かけの動的容量を C [F] 、 上記圧電ァクチユエ一夕の 変位を L [^ m] とすると、 L/Cの温度変化による上記変動幅 W wcが、 一 3 0〜 1 6 0 °Cという特定温度範囲において ± 3 5 %以 内であること。
また、 上記圧電ァクチユエ一夕は、 下記の要件 ( i ) を満足する ことが好ましい (請求の範囲第 9項) 。
( i ) 上記見かけの動的容量を C [ F ] 、 上記圧電ァクチユエ一 夕の変位を L [ 11 m] とすると、 L / C 11· 5の温度変化による上記 変動幅 WL / ' 5が、 一 3 0〜 1 6 0 °Cという特定温度範囲において ± 2 0 %以内であること。
上記圧電ァクチユエ一夕が、 上記 ( f ) 〜 ( i ) 要件のいずれか 一つ以上の要件を満足する場合には、 上記圧電ァクチユエ一夕の温 度依存性をさらに向上させることができる。 即ち、 この場合には、 温度一 3 0〜 1 6 0 °Cというより広い温度範囲において、 上記圧電 ァクチユエ一夕の変位の温度依存性を小さくすることができる。 次に、 上記第 2の発明において、 上記圧電ァクチユエ一夕は、 上 記要件 ( j ) 〜 U ) を満足する。
上記要件 ( j ) は、 上記圧電ァクチユエ一夕の見かけの動的容量 を C [ F ] とすると、 下記の式 ( 5 ) で表される見かけの動的容量 の温度変化による変動幅 Wc [%] カ 、 — 3 0〜 1 6 0 °Cという特 定温度範囲において ± 3 0 %以内であることにある。
Wc ( %) = [ { 2 X Cffl a x/ ( C m a x + Cm i n ) } - 1 ]
X 1 0 0 ( 5 )
(但し、 C m a xは、 一 3 0〜 1 6 0 °Cにおける見かけの動的容量の 最大値、 C m i nは、 一 3 0〜 1 6 0 °Cにおける見かけの動的容量の 最小値を表す)
上記要件 ( j ) において、 上記見かけの動的容量は、 上記圧電ァ クチユエ一夕と例えば温度 2 5 °Cに設置したコンデンサとを直列に 接続し、 上記圧電ァクチユエ一夕及び上記コンデンサに電圧を印加 したときに、 上記コンデンサに蓄積される電荷量 Q [C ] を上記圧 電ァクチユエ一夕に印加された電圧 V [V] で除すことによって算 出することができる。
上記要件 ( k ) は、 上記圧電ァクチユエ一夕の変位を L [^m] とすると、 下記の式 ( 6 ) で表される変位 Lの温度変化による変動 幅 WLが、 — 3 0 1 6 0 °Cという特定温度範囲において ± 1 4 % 以内であることにある。
WL (%) = [ { 2 X Lmax/ (Lffl ax + Lm i n) } - 1 ]
X 1 0 0 ( 6 )
(伹し L m a xけ - - 3 0 1 6 0 Cにおける変位の最大値、 L m i n は、 ― 3 0 1 6 0 °Cにおける変位の最小値を表す)
上記要件 ( 1 ) は 、 上記圧電ァクチユエ一夕の見かけの動的容量 を C [ F ] 、 上 し BL電ァクチユエ一夕の変位を L ( m) とすると
、 下記の式 ( 7 ) で表される L/Cの温度変化による変動幅 Ww c が、 ― 3 0 1 6 0 °Cという特定温度範囲において ± 3 5 %以内で ある とにある。
WLパ (%) = [ { 2 X (L /C) a a x/ ( (L/C) a a x +
(L/C) a i n) } - 1 ] X 1 0 0 - - ( 7 ) (但し、 (L/C) n a xは、 一 3 0 1 6 0 °Cにおける L/Cの最 大値、 (L C ) m i πは、 — 3 0 1 6 0 °Cにおける L Z Cの最小 値を表す)
上記要件 ( 1 ) において、 上記見かけの動的容量は、 上記圧電ァ クチユエ一夕と例えば温度 2 5 DCに設置したコンデンサとを直列に 接続し、 上記圧電ァクチユエ一夕及び上記コンデンサに電圧を印加 したときに、 上記コンデンサに蓄積される電荷量 Q [C] を上記圧 電ァクチユエ一夕に印加された電圧 V [V] で除すことによって算 出することができる。
上記圧電ァクチユエ一夕が上記要件 ( j ) ( 1 ) のいずれをも 満足しない場合、 即ち温度一 3 0〜 1 6 0 °Cにおいて、 上記変動幅 WCが土 3 0 %以内という範囲から外れる場合、 上記変動幅 WLが土 1 4 %以内という範囲から外れる場合、 及び上記変動幅 WW Eが土 3 5 %以内という範囲から外れる場合には、 温度— 3 0〜 1 6 0 °C における上記圧電ァクチユエ一夕の温度依存性が大きくなつてしま うおそれがある。
上記圧電ァクチユエ一夕は、 上記要件 ( j ) と上記要件 ( k ) と の両方を満足することが好ましい (請求の範囲第 1 1項) 。
この場合には、 上記圧電ァクチユエ一夕の温度依存性をより小さ くすることができる。
上記圧電ァクチユエ一夕は、 上記要件 ( j ) 〜 ( 1 ) のすベてを 満足することが好ましい (請求の範囲第 1 2項) 。
この場合には、 上記圧電ァクチユエ一夕の温度依存性をより一層 小さくすることができる。
また、 上記圧電ァクチユエ一夕において、 見かけの動的容量の温 度変化による上記変動幅 WC [%] は、 一 4 0〜 1 6 0 °Cという特 定温度範囲において ± 3 5 %以内であることが好ましい。
また、 上記変位 Lの温度変化による上記変動幅 は、 — 4 0〜 1 6 0 °Cという特定温度範囲において土 1 4 %以内であることが好 ましい。
さらに、 L / Cの温度変化による上記変動幅 WW (;が、 ー 4 0〜 1 6 0 °Cという特定温度範囲において ± 3 5 %以内であることが好 ましい。
このように、 一 4 0〜 1 6 0 °Cという温度範囲において、 上記変 動幅 W (;、 変動幅 WL、 変動幅 WW Eが上記のごとく特定の範囲内に ある場合には、 — 4 0〜 1 6 0 °Cという温度範囲においても、 上記 圧電ァクチユエ一夕の変位の温度依存性を小さくすることができる 上記圧電ァクチユエ一夕は、 下記の要件 ( m ) を満足することが 好ましい (請求の範囲第 1 3項) o
(m) 上記見かけの動的容量を C (F ) 、 上記圧電ァクチユエ一 夕の変位を L ( n m) とすると、 下記の式 ( 8 ) で表される L/C
°· 5の温度変化による変動幅 Wwc 0, 5が、 - 3 0〜 1 6 0でとレ ぅ 特定温度範囲において ± 2 0 %以内であること
WL/ C°- 5 (%) = [ { 2 X (L / C0. m a X ^
( (L/C0· 5) m a x + (L/C0· 5) B i n) }
- 1 ] X 1 0 0 ( 8 )
(但し、 (LZC。.5) raa は、 一 3 0〜 1 6 0 °Cという特定温度範 囲における LZC11' 5の最大値、 (L /C0' 5) m i nは、 一 3 0〜 1 6 0 °Cという特定温度範囲における L Z C β· 5の最小値を表す) 上記圧電ァクチユエ一夕が上記要件 (m) を満足しない場合、 即 ち L ZC°' 5の温度変化による変動幅 WL/C。' 5が、 — 3 0〜 1 6 0 °Cという特定温度範囲において土 2 0 %を超える場合には、 上記圧 電ァクチユエ一夕の変位の温度依存性が大きくなつてしまうおそれ がある。
また、 L/CQ' 5の温度変化による上記変動幅 Ww e Q' 5は、 一 4 0〜 1 6 0 °Cという特定温度範囲において ± 2 0 %以内であること が好ましい。
この場合には、 一 4 0〜 1 6 0 °Cという温度範囲においても、 上 記圧電ァクチユエ一夕の変位の温度依存性を小さくすることができ る。
上記圧電ァクチュ X 夕は、 下記の要件.( n ) を満足することが 好ましい (請求の範囲第 1 4項)
( n ) 上 d h電ァクチュエー夕の電界印加方向の歪みを電界強度 で除することによって算出される動的歪量が、 一 3 0〜 1 6 0 Cと いう特定温度範囲において 2 5 0 p mZV以上であること
上記圧電ァクチユエ一夕が上記要件 (η ) を満足しない場合、 即 ち上記動的歪量が、 一 3 0〜 1 6 0 °Cという特定温度範囲において 2 5 0 p m/V未満の場合には、 上記圧電ァクチユエ一夕の変位が 小さくなつてしまうおそれがある。
また、 上記動的歪量は、 _ 4 0〜 1 6 0 °Cという温度範囲におい て 2 5 0 p m/V以上であることが好ましい。
この場合には、 一 4 0〜 1 6 0 °Cという温度範囲においても、 上 記圧電ァクチユエ一夕の変位を大きくすることができる。
また、 上記第 1及び第 2の発明において、 上記圧電ァクチユエ一 夕は、 圧電セラミックスの表面に一対の電極を形成してなる圧電素 子を駆動源として有する。
上記圧電セラミックスは、 L i、 K、 及び N aから選ばれる少な く とも一種を含有するアルカリ金属含有圧電セラミ ックスからなる ことが好ましい (請求の範囲第 1 8項) 。
この場合には、 温度 8 0 °C以上という高温環境下における駆動時 のリーク電流がより増加し、 温度 8 0 °C以上における上記 「みかけ の動的容量」 の変動幅が、 温度 8 0 °C以上における 「静電容量」 及 び 「動的容量」 の変動幅よりも大きくなる。 そのためこの場合には 、 みかけの動的容量をパラメ一夕として変動幅を規定する上記第 1 の発明の上記要件 ( a) 又は Z及び ( c ) 、 上記第 2の発明の要件 ( j ) 又は 及び ( 1 ) を満足させることによって得られる例えば 定エネルギー駆動及び定電荷駆動における変位の温度依存性を小さ くできるという上述の作用効果をより顕著に発揮することができる また、 上記圧電セラミックスは、 上記圧電ァクチユエ一夕の使用 全温度範囲 (例えば温度一 3 0〜 1 6 0 °C) において、 比抵抗が 1 X 1 06 Ω · m以上であることが好ましい。 この場合には、 抵抗発 熱によって上記圧電セラミックスが破壊されることを防ぐことがで きる。 より好ましくは、 上記圧電セラミックスは、 上記圧電ァクチ ユエ一夕の上記使用温度範囲において、 比抵抗が 1 X 1 08 Ω · m 以上であることがよい。 この場合には、 上記圧電ァクチユエ一夕の 寿命をより長くすることができる。
また、 上記圧電セラミックスは、 鉛を含有していないことが好ま しい (請求の範囲第 1 9項) 。
この場合には、 環境負荷の大きい鉛を含有しない上記圧電ァクチ ユエ一夕を作製することできる。 即ち、 上記圧電ァクチユエ一夕の 環境に対する安全性を向上させることができる。
また、 上記圧電セラミックスは、 一般式 : { L i x (K,_yN ay ) ,.x } {N b ,_z.w T az S bw} 〇3 (但し、 0≤ x≤ 0. 2、 0 ≤ y≤ l、 0≤ z≤ 0. 4、 0≤ w≤ 0. 2、 x + z + w> 0 ) で 表される等方性べロブスカイ ト型化合物を主相とする多結晶体から なると共に、 該多結晶体を構成する各結晶粒の特定の結晶面が配向 している結晶配向圧電セラミックスからなることが好ましい (請求 の範囲第 2 0項) 。
この場合には、 上記要件 ( a ) 〜 ( i ) を満足する圧電ァクチュ エー夕や、 上記要件 ( j ) 〜 (n) 要件を満足する圧電ァクチユエ 一夕を容易に実現することができる。
上記結晶配向圧電セラミ ックスは、 等方性べ口ブスカイ ト型化合 物の一種であるニオブ酸カリウムナトリウム (K!— yN ayN b〇3 ) を基本組成とし、 Aサイ ト元素 (K、 N a ) の一部が所定量の L i で置換され、 並びに/又は、 Bサイ ト元素 (N b) の一部が所定 量の T a及び Z若しくは S bで置換されたものからなる。 上記一般 式において、 「 x + z +w> 0」 は、 置換元素として、 L i 、 T a 及び S bの内の少なく とも 1つが含まれていればよいことを示す。
また、 上記一般式において、 「 y」 は、 結晶配向圧電セラミック スに含まれる Kと N aの比を表す。 本発明に係る結晶配向圧電セラ ミ ックスは、 Aサイ ト元素として、 K又は N aの少なく とも一方が 含まれていればよい。 すなわち、 Kと N aの比 yは、 特に限定され るものではなく、 0以上 1以下の任意の値を取ることができる。 高 い変位特性を得るためには、 yの値は、 好ましくは、 0. 0 5以上 0. 7 5以下、 さらに好ましくは、 0. 2 0以上 0. 7 0以下、 さ らに好ましくは、 0. 3 5以上 0. 6 5以下、 さらに好ましくは、 0. 4 0以上 0. 6 0以下、 さらに好ましくは、 0. 4 2以上 0. 6 0以下である。
「 x」 は、 Aサイ ト元素である K及び/又は N aを置換する L i の置換量を表す。 K及び 又は N aの一部を L i で置換すると、 圧 電特性等の向上、 キュリー温度の上昇、 及び/又は緻密化の促進と いう効果が得られる。 Xの値は、 具体的には、 0以上 0. 2以下が 好ましい。 Xの値が 0. 2 を越えると、 変位特性が低下するので好 ましくない。 Xの値は、 好ましくは、 0以上 0. 1 5以下であり、 さらに好ましくは、 0以上 0. 1 0以下である。
「 z」 は、 Bサイ ト元素である N bを置換する T aの置換量を表 す。 N bの一部を T aで置換すると、 変位特性等の向上という効果 が得られる。 z の値は、 具体的には、 0以上 0. 4以下が好ましい 。 z の値が 0. 4を越えると、 キュリー温度が低下し、 家電や自動 車用の圧電材料としての利用が困難になるので好ましくない。 の 値は、 好ましくは、 0以上 0. 3 5以下であり、 さらに好ましくは 、 0以上 0. 3 0以下である。
さらに、 「w」 は、 Bサイ ト元素である N bを置換する S bの置 換量を表す。 N bの一部を S bで置換すると、 変位特性等の向上と いう効果が得られる。 wの値は、 具体的には、 0以上 0. 2以下が 好ましい。 wの値が 0. 2 を越えると、 変位特性、 及び Z又はキュ リー温度が低下するので好ましくない。 wの値は、 好ましくは、 0 以上 0. 1 5以下である。
また、 上記結晶配向圧電セラミ ックスは、 高温から低温になるに つれて、 結晶相が立方晶—正方晶 (第 1 の結晶相転移温度 =キユリ 一温度) 、 正方晶→斜方晶 (第 2の結晶相転移温度) 、 斜方結晶→ 菱面体晶 (第 3の結晶相転移温度) と変化する。 第 1 の結晶相転移 温度より高い温度領域では立方晶となるため変位特性が消滅し、 ま た、 第 2の結晶相転移温度より低い温度領域では斜方結晶となり、 変位ならびに見かけの動的静電容量の温度依存性が大きくなる。 従 つて、 第 1 の結晶相転移温度は使用温度範囲より高く、 第 2の結晶 相転移温度は使用温度範囲より低くすることで使用温度範囲全域に わたって正方晶であることが望ましい。
ところが、 上記結晶配向圧電セラミクスの基本組成であるニオブ 酸カリウムナトリウム (K!— yN ayN b 03) は、 「ジャーナル ' ォブ · アメリカン ' セラミ ック · ソサイエティ "Journal of Ameri can Ceramic Society" 」 、 米国、 1 9 5 9年、 第 4 2卷 [ 9 ] p • 4 3 8— 4 4 2、 ならびに米国特許 2 9 7 6 2 4 6号明細書によ れば、 高温から低温になるにつれて、 結晶相が立方晶—正方晶 (第
1 の結晶相転移温度 =キュリー温度) 、 正方晶—斜方晶 (第 2の結 晶相転移温度) 、 斜方結晶—菱面体晶 (第 3の結晶相転移温度) と 変化する。 また、 「y = 0. 5」 における第 1 の結晶相転移温度は 約 4 2 0 °C、 第 2の結晶相転移温度は約 1 9 0 ° (:、 第 3の結晶相転 移温度は約一 1 5 0 °Cである。 従って、 正方晶である温度領域は 1
9 0〜4 2 0 °Cの範囲であり、 工業製品の使用温度範囲である一 4 0〜 1 6 0 °Cと一致しない。
一方、 上記結晶配向圧電セラミックスは、 基本組成であるニオブ 酸カリウムナトリウム (K^— yN ayN b〇3) に対して、 L i , T a , S bの置換元素の量を変化させることにより、 第 1の結晶相転 移温度ならびに第 2の結晶相転移温度を自由に変えることができる 圧電特性が最も大きくなる y = 0. 4〜 0. 6において、 L i , T a , S bの置換量と結晶相転移温度実測値の重回帰分析を行った 結果を下記の式 B 1、 式 B 2に示す。
式 B 1及び式 B 2から、 L i 置換量は第 1 の結晶相転移温度を上 昇させ、 かつ、 第 2の結晶相転移温度を低下させる作用を有するこ とがわかる。 また、 T aならびに S bは第 1 の結晶相転移温度を低 下させ、 かつ、 第 2の結晶相転移温度を低下させる作用を有するこ とがわかる。
第 1 の結晶相転移温度 = ( 3 8 8 + 9 x - 5 z - 1 7 w) ± 5 0
[°C] (式 B 1 ) 第 2の結晶相転移温度- ( 1 9 0 — 1 8. 9 X - 3. 9 z - 5. 8 w) ± 5 0 [。C ] . . · · (式 B 2 ) 第 1 の結晶相転移温度は圧電性が完全に消失する温度であり、 か つその近傍で動的容量急激に大きくなることから、 (製品の使用環 境上限温度 + 6 0 °C) 以上が望ましい。 第 2の結晶相転移温度は単 に結晶相転移する温度であり、 圧電性は消失しないため変位、 ある いは動的容量の温度依存性に悪影響が出ない範囲に設定すればよい ため、 (製品の使用環境下限温度 + 4 0 °C) 以下が望ましい。
一方、 製品の使用環境上限温度は、 用途により異なり、 6 0 °C、 8 0で、 1 0 0 ° ( 、 1 2 0 °C、 1 4 0 °C、 1 6 0 °Cなどである。 製 品の使用環境下限温度は一 3 0 °C、 一 4 0 °Cなどである。 従って、 上記式 B 1 に示す第 1の結晶相転移温度は 1 2 0 °C以上 が望ましいため、 「x」 、 「 z」 、 「w」 は ( 3 8 8 + 9 x— 5 z 一 1 7 w) + 5 0≥ 1 2 0 を満足することが望ましい。
また、 式 B 2に示す第 2の結晶相転移温度は、 1 0 °C以下が望ま しいため、 「 x」 、 「 z」 、 「w」 は ( 1 9 0— 1 8. 9 X - 3. 9 z - 5. 8 w) — 5 0≤ 1 0 を満足することが望ましい。
即ち、 上記結晶配向圧電セラミックスにおいては、 上記一般式 : { L i x (K,_yN ay) j _x } { N b !_z_ff T a z S b w } 03における x、 y、 及び zが、 下記の式 ( 9 ) 及び式 ( 1 0 ) の関係を満足す ることが好ましい (請求の範囲第 2 1項) 。
9 x - 5 z - 1 7 w≥ - 3 1 8 ( 9 )
— 1 8. 9 X - 3. 9 z - 5. 8 w≤ - 1 3 0 · · ( 1 0 ) なお、 上記結晶配向圧電セラミックスは、 上記一般式で表される 等方性べ口ブスカイ ト型化合物 (第 1 の KNN系化合物) のみから なる場合と積極的に他の元素を添加又は置換させる場合とがある。 前者の場合は、 第 1 の KNN系化合物のみからなることが望まし いが、 等方性べ口ブスカイ ト型の結晶構造を維持でき、 かつ、 焼結 特性、 圧電特性等の諸特性に悪影響を及ぼさないものである限り、 他の元素又は他の相が含まれていても良い。 特に、 上記結晶配向圧 電セラミックスを製造するための原料において、 市場で入手可能な 純度 9 9 %乃至 9 9. 9 %の工業原料に含まれる不純物は混入が不 可避である。 例えば、 上記結晶配向圧電セラミックスの原料の一つ である N b25には、 原鉱石あるいは製法に由来する不純物として 、 最大で T aが 0. 1 w t %未満、 Fが 0. 1 5 w t %未満含まれ る場合がある。 また、 後述の実施例 1 にて記載するが、 製造工程に おいて B i を使用する場合は、 その混入が不可避である。
後者の場合は、 例えば M nを添加することにより、 見かけの動的 容量の温度依存性の低減、 変位の上昇の効果があり、 加えて誘電損 失 t a η δの低下、 機械的品質係数 Q mの上昇の効果があることか ら共振駆動型のァクチユエ一夕として好ましい特性が得られる。 また、 上記結晶配向圧電セラミックスにおいては、 上記一般式で 表される等方性べロブスカイ ト型化合物を主相とする多結晶を構成 する各結晶粒の特定の結晶面が配向している。 上記結晶粒 において配向する特定の結晶面は、 擬立方 { 1 0 0 } 面であること が好ましい。
なお、 「擬立方 { H K L } 」 とは、 ― に、 等方性ぺロブスカイ 卜型化合物は、 正方晶、 斜方晶、 三方晶など、 立方晶からわずかに 歪んだ構造を取るが 、 その歪は僅かであるので 、 立方晶とみなして ミラー指数表示することを意味する。
この場合には、 上記圧電ァクチユエ 夕の変位をより大きくする ことができると共に 、 見かけの動的容量の温度依存性を小さくする ことができる。
また、 擬立方 { 1 0 0 } 面が面配向している + ¾a A
口 において、 面配 向の程度は、 次の数 1 の式で表される □ッ トゲ —リング ( L o t g e r i n g ) 法による平均配向度 F ( H K L ) で表す とができる
(数 1 )
Z'KHKL) ∑'I0(HKL)
F(HKL) x lOO (%)
Figure imgf000032_0001
なお、 数 1 の式において、 ∑ I ( h k 1 ) は、 結晶配向圧電セラ ミックスについて測定されたすベての結晶面 ( h k 1 ) の X線回折 強度の総和であり、 ∑ I。 ( h k 1 ) は、 結晶配向圧電セラミック スと同一組成を有する無配向セラミックスについて測定されたすベ ての結晶面 ( h k 1 ) の X線回折強度の総和である。 また、 ∑ ' I (HKL) は、 結晶配向圧電セラミ ックスについて測定された結晶 学的に等価な特定の結晶面 (HKL) の X線回折強度の総和であり 、 ∑ ' I 0 (HK L) は、 結晶配向圧電セラミ ックスと同一組成を 有する無配向セラミックスについて測定された結晶学的に等価な特 定の結晶面 (HKL) の X線回折強度の総和である。
従って、 多結晶体を構成する各結晶粒が無配向である場合には、 平均配向度 F (HKL) は 0 %となる。 また、 多結晶体を構成する すべての結晶粒の (HKL) 面が測定面に対して平行に配向してい る場合には、 平均配向度 F (HKL) は 1 0 0 %となる。
一般に、 配向している結晶粒の割合が多くなる程、 高い特性が得 られる。 例えば、 特定の結晶面を面配向させる場合において、 高い 圧電特性等を得るためには、 上記数 1の式で表されるロッ トゲ一リ ング (L o t g e r i n g ) 法による平均配向度 F (HKL) は、 3 0 %以上が好ましく、 さらに好ましくは、 5 0 %以上、 さらに好 ましくは 7 0 %以上である。 また、 配向させる特定の結晶面は、 分 極軸に垂直な面が好ましい。 例えば、 該ぺロブスカイ ト型化合物の 結晶系が正方晶の場合において、 配向させる特定の結晶面は、 凝立 方 { 1 0 0 } 面が好ましい。
即ち、 上記結晶配向圧電セラミックスは、 ロッ トゲーリングによ る擬立方 { 1 0 0 } 面の配向度が 3 0 %以上であり、 かつ、 1 0〜 1 6 0 °Cという温度範囲おいて、 結晶系が正方晶であること好まし い (請求の範囲第 2 2項) 。
なお、 特定の結晶面を軸配向させる場合には、 その配向の程度は 、 面配向と同様の配向度 (数 1 の式) では定義できない。 しかしな がら、 配向軸に垂直な面に対して X線回折を行った場合の (HKL ) 回折に関する L o t g e r i n g法による平均配向度 (軸配向度 ) を用いて、 軸配向の程度を表すことができる。 また、 特定の結晶 面がほぼ完全に軸配向している成形体の軸配向度は、 特定の結晶面 がほぼ完全に面配向している成形体について測定された軸配向度と 同程度になる。
次に、 上記結晶配向圧電セラミックスを用いた圧電ァクチユエ一 夕の特性について説明する。
上記結晶配向圧電セラミックスを駆動源に用いた圧電ァクチユエ
—夕は、 — 3 0〜 1 6 0°Cの温度範囲において、 電界強度 1 0 0 V /mm以上、 かつ、 絶縁破壊をしない電界強度以下で、 の一定の振 幅を有する電界駆動条件下で発生する動的歪量 D 3 3を 2 5 0 pm /V以上とすることが出来る。 さらに組成およびプロセスを適正化 すれば 3 0 0 pm/V以上、 さらに 3 5 0 pmZV以上、 さらに 4 0 0 pm/V以上、 さらに 4 5 0 pm/V以上、 さらに 5 0 0 pm ZV以上とすることが出来る。
また、 変位の変動幅 (=動的歪量の変動幅) は、 (最大値一最小 値) Z 2 を基準値とした場合、 ± 1 4 %以下とすることが出来る。 さらに組成およびプロセスを適正化すれば、 土 1 2 %以下、 さらに ± 1 0 %以下、 さらに ± 8 %以下とすることが出来る。
また、 一 3 0〜 8 0°Cの温度範囲においては、 電界強度 1 0 0 V Zmm以上の一定の振幅を有する電界駆動条件下で発生する変位の 変動幅 (=動的歪量の変動幅) は (最大値一最小値) / 2を基準値 とした場合、 ± 1 4 %以下とすることが出来る。 さらに組成および プロセスを適正化すれば、 ± 1 2 %以下、 さらに ± 9 %以下、 さら に ± 7 %以下、 さらに ± 5 %以下、 さらに ±4 %以下とすることが 出来る。 従って、 定電圧駆動における変位の温度依存性が小さなァ クチユエ一夕が得られる。
また、 上記結晶配向圧電セラミックスを駆動源に用いた圧電ァク チユエ一夕は、 一 3 0〜 1 6 0 °Cの温度範囲において、 電界強度 1 0 O VZmm以上の一定の振幅を有する電界駆動条件下で発生する 見かけの動的容量の変動幅は、 (最大値一最小値) / 2 を基準値と した場合、 ± 3 5 %以下とすることが出来る。 さらに組成およびプ 口セスを適正化すれば、 ± 3 2 %以下、 さらに ± 3 0 %以下、 さら に土 2 8 %以下とすることが出来る。
また、 一 3 0〜 8 0 °Cの温度範囲においては、 電界強度 1 0 0 V Zmm以上の一定の振幅を有する電界駆動条件下で発生する見かけ の動的容量の変動幅は (最大値一最小値) 2 を基準値とした場合 、 ± 1 1 %以下とすることが出来る。 さらに組成およびプロセスを 適正化すれば、 ± 9 %以下、 さらに ± 7 %以下、 さらに ± 5 %以下 、 さらに ± 4 %以下とすることが出来る。 従って、 定電荷駆動およ び定エネルギー駆動した場合に、 端子電圧の温度依存性の小さなァ クチユエ一夕が得られる。
また、 上記結晶配向圧電セラミックスを駆動源に用いた圧電ァク チユエ一夕は、 — 3 0〜 1 6 0 °Cの温度範囲において、 電界強度 1 0 0 V Zmm以上の一定の振幅を有する電界駆動条件下で発生する 、 変位/見かけの動的容量の変動幅は、 (最大値一最小値) / 2 を 基準値とした場合、 ± 3 5 %以下とすることが出来る。 さらに組成 およびプロセスを適正化すれば、. ± 3 0 %以下、 さらに ± 2 5 %以 下にすることが出来る。
また、 一 3 0〜 8 0 °Cの温度範囲においては、 電界強度 1 0 0 V /mm以上の一定の振幅を有する電界駆動条件下で発生する、 変位 /見かけの動的容量の変動幅は (最大値一最小値) / 2 を基準値と した場合、 ± 1 2 %以下とすることが出来る。 さらに組成およびプ 口セスを適正化すれば、 ± 9 %以下、 さらに ± 7 %以下とすること が出来る。 従って、 定電荷駆動における変位の温度依存性が小さな ァクチユエ一夕が得られる。
また、 上記結晶配向圧電セラミックスを駆動源に用いた圧電ァク チユエ一夕は、 一 3 0〜 1 6 0 °Cの温度範囲において、 電界強度 1 0 0 VZmm以上の一定の振幅を有する電界駆動条件下で発生する 、 変位ノ (見かけの動的容量) 1) 5の変動幅は、 (最大値一最小値 ) / 2 を基準値とした場合、 ± 2 0 %以下とすることが出来る。 さ らに組成およびプロセスを適正化すれば、 ± 1 5 %以下にすること が出来る。
また、 — 3 0〜 8 0 °Cの温度範囲においては、 電界強度 1 0 0 V /mm以上の一定の振幅を有する電界駆動条件下で発生する、 変位 / (見かけの動的容量) Q' 5の変動幅は (最大値一最小値) / 2 を 基準値とした場合、 ± 1 2 %以下とすることが出来る。 さらに組成 およびプロセスを適正化すれば、 ± 9 %以下、 さらに ± 7 %以下と することが出来る。 従って、 定エネルギー駆動における変位の温度 依存性が小さなァクチユエ一夕が得られる。
また、 上記圧電ァクチユエ一夕は、 その変位発生源の全てを上記 結晶配向圧電セラミックスにて構成することもできるが、 圧電ァク チユエ一夕の変位特性に影響がない範囲で、 上記一般式 ( 1 ) で表 される圧電セラミックスと他の圧電セラミックスとを組合せて圧電 ァクチユエ一夕を構成することもできる。 例えば、 積層ァクチユエ —夕の場合、 圧電セラミ ックスのうち、 その 5 0 %以上の体積を上 記一般式 ( 1 ) で表される結晶配向圧電セラミックスで構成し、 残 りの 5 0 %未満をチタン酸バリウム系圧電セラミックスなどで構成 することができる。
次に、 圧電セラミックスと正の温度特性を有する半導体素子を並 列接続したァクチユエ一夕について記述する。
上記圧電セラミ ックスを用いて構成された圧電ァクチユエ一夕は - 3 0〜 8 0 °Cの温度範囲において、 電界強度 1 0 O V / m m以上 の一定の振幅を有する電界駆動条件下で発生する変位、 見かけの動 的容量、 変位 Z見かけの動的容量、 変位/ (見かけの動的容量) β ·
5の変動幅が小さく温度特性の良好なァクチユエ一夕を得ることが 出来る。 しかし、 — 3 0〜 1 6 0 °Cの温度範囲においては、 変位の 変動幅は小さいものの、 見かけの動的容量が若干増加するおそれが ある。
この原因を調べるため、 圧電ァクチユエ一夕のリーク電流成分を 除去して動的容量を測定したところ、 動的容量は 8 0 °C以上の温度 領域においても増加しなかった。 即ち、 上記圧電セラミックスは、 8 0 °Cより高い温度領域においてリーク電流が大きく増加すること がわかる。 これは、 比抵抗の値が温度 2 5 °Cの値に対しておよそ 2 桁程度低下するためである。 温度 2 5 °Cの比抵抗は 1 0 1 ϋ Ω · m以 上の値を有していた。
このことから一 3 0〜 1 6 0 °Cの温度領域における見かけの動的 容量の変動幅を小さくするためには、 およそ 8 0 °C以下の温度領域 では抵抗が小さく、 およそ 8 0 °Cを超える高い温度領域では抵抗が 大きくなるような正の抵抗温度係数を有する半導体素子をァクチュ ェ一夕と並列に電気接続し、 かつ、 P T C抵抗体の温度と圧電素子 の温度とが略等しくなるように配置すればよいことがわかる。 こう すれば 8 0 °C以下は P T C抵抗体に電流が多く流れ、 8 0 °C以上で は P T C抵抗体に電流がほとんど流れないため、 ァクチユエ一夕の 見かけの動的容量の変動幅を小さくすることができる。 その結果、 一 3 0〜 1 6 0 °Cの広い温度範囲にわたって、 定電荷駆動および定 エネルギー駆動での端子電圧の温度依存性が小さく、 かつ、 変位の 温度依存性が小さい圧電ァクチユエ一夕を得ることができる。
即ち、 上記圧電ァクチユエ一夕は、 正の抵抗温度係数を有する P T C抵抗体を有し、 該 P T C抵抗体と負の抵抗温度係数を有する上 記圧電セラミックスとは、 電気的に並列に接続されていると共に、 上記 P T C抵抗体と上記圧電セラミックスとの温度が略等しくなる ような位置関係で配置されていることが好ましい (請求の範囲第 1 5項) 。
こ こで、 略等しくなる温度とは、 上記圧電ァクチユエ一夕の駆動 時における上記圧電セラミックス (圧電素子) と P T C抵抗体の温 度差が 4 0 °C以内、 より好ましくは 3 0 °C以内、 より好ましくは 2 0 °C以内、 より好ましくは 1 0 °C以内のことである。
また、 配置する位置関係は、 上記 P T C抵抗体と圧電セラミック スとが接触するように配置する場合、 圧電ァクチユエ一夕のリード 端子間に P T C抵抗体を設置する場合、 圧電ァクチユエ一夕とは別 個の部品である接続コネクタに P T C抵抗体を配置する場合などが ある。
また、 P T C抵抗体の抵抗温度特性はおよそ 8 0 °Cを超える高温 で急激に抵抗値が上昇するチタン酸バリウム系の半導体素子が望ま しい。 即ち、 上記 P T C抵抗体は、 チタン酸バリウム系半導体であ り、 温度 8 0 °C以上の温度領域において、 正の抵抗温度係数を有す ることが好ましい (請求の範囲第 1 6項) 。
この場合には、 8 0 °C以上の温度における P T C半導体の絶縁性 が、 より高くなるので、 ァクチユエ一夕と P T C素子の並列回路に 流れるリーク電流を小さくすることができる。 また、 8 0 °C以上で 急激に抵抗値が上昇するチタン酸バリゥム系半導体は、 そのキュリ 一温度の高温シフ ト添加物である鉛を含有しないため、 ァクチユエ —夕としても鉛を含有しないことになるため、 さらに好ましい。
さらに、 ァクチユエ一夕が気密パッケージ型であり、 かつ、 半導 体素子を気密パッケージ内部に設置する場合は、 ァクチユエ一夕に 使用される絶縁樹脂等が長期間の使用において熱分解し、 気密パッ ケージ内部の酸素を消費してしまう懸念があるため、 低酸素濃度雰 囲気でも抵抗値が低下しない耐還元性のチタン酸バリウム系の半導 体素子が望ましい。
また、 P T C抵抗体の抵抗値が低いとァクチユエ一夕に印加され る電圧が低下してしまうため、 P T C抵抗体の抵抗値は、 圧電ァク チユエ一夕の駆動時における圧電ァクチユエ一夕のインピーダンス よりも十分に大きいことが望ましい。
また、 圧電ァクチユエ一夕の駆動に伴って、 P T C抵抗体は自己 発熱してもしなくてもよい。 自己発熱を伴う場合は、 例えば、 圧電 素子に熱伝導され易い位置に P T C抵抗体を配置することで温度ヒ 一夕として作用させ、 ァクチユエ一夕の使用下限温度を上昇させる ことができる。 つまり、 作動温度範囲を狭めることで、 実質的にァ クチユエ一夕の見かけの動的容量などの変動幅を小さくすることが できる。 特に、 チタン酸バリウム系の半導体素子はそのキュリー温 度で抵抗値が急上昇する定温度ヒー夕なので適当である。
一方、 自己発熱を伴わない場合は、 ァクチユエ一夕と半導体素子 の並列回路に流れる電流が小さくなるため、 回路のコス トの上昇を 抑制することができる。
また、 上記圧電ァクチユエ一夕は、 上記圧電セラミックスとして 、 複数の圧電セラミックスが積層されてなる積層型圧電セラミック スを有し、 燃料噴射弁に用いられることが好ましい (請求の範囲第
1 7項) 。
この場合には、 上記圧電ァクチユエ一夕の特性を最大限に発揮す ることができる。
次に、 本発明の圧電ァクチユエ一夕の構成の一例について、 図 3 6 を用いて説明する。 同図に示すごとく、 圧電ァクチユエ一夕 1は、 例えば圧電セラミ ックスを有する圧電素子 2 と、 圧電素子を保持する保持部材 4と、 圧電素子等を収納するハウジング部材 3 と、 圧電素子の変位を伝達 する伝達部材 5 とにより構成することができる。
圧電素子 2 としては、 後述の図 3 8 に示すごとく、 例えば圧電セ ラミックス 2 1 と内部電極 2 2 , 2 3 とを交互に複数積層してなる 積層型の圧電素子等を用いることができる。
また、 圧電素子としては、 一枚の圧電セラミックスを 2枚の内部 電極で挟むことにより構成した単板の圧電素子を用いることもでき る (図示略) 。
また、 圧電素子 2の側面には一対に外部電極 2 5, 2 6が形成さ れており、 圧電素子 2 において隣り合う二つの内部電極 2 2 , 2 3 は、 互いに異なる外部電極 2 5 , 2 6 に電気的に接続される。
図 3 6 に示すごとく、 圧電ァクチユエ一夕 1 においては、 圧電素 子 2の積層方向の一方の端部にピス トン等の伝達部材 5が配置され る。 ハウジング 3 と伝達部材 5 との間には、 皿バネ 5 5が配置され 、 圧電素子 2にプリセッ ト荷重がかかっている。 伝達部材 5は、 圧 電素子 2の変位に伴って可動であり、 その変位を外部に伝えること ができる。 また、 ハウジング 3 には、 動通孔 3 1, 3 2が設けられ ている。 該動通孔 3 1, 3 2には、 外部から電荷を供給するための 端子 (リード線) 6 1, 6 2が挿入されおり、 グロメッ ト 3 1 , 3 2 によりハウジング 3内の気密性を保つ構造になっている。 端子 6 1 , 6 2は、 圧電素子 2に設けられた外部端子 2 5, 2 6 と電気的 に接続される。
また、 図 3 6 に示すごとく、 ピス トン部材 5 とハウジング 3の間 には Oリング 3 5が配置されており、 ハウジング 3内の気密性を保 つとともに、 ピス トン部材 5を伸縮可動な構成にしてある。 上記圧電ァクチユエ一夕は、 例えば燃料噴射弁などに用いること ができる。 また、 上記圧電ァクチユエ一夕としては、 積層ァクチュ エー夕、 圧電トランス、 超音波モー夕、 バイモルフ圧電素子、 超音 波ソナ一、 圧電超音波振動子、 圧電ブザー、 圧電スピーカ等がある
(実施例 1 )
次に、 本発明の実施例について説明する。
本例においては、 圧電セラミックスを有する圧電素子を作製し、 該圧電素子を用いて圧電ァクチユエ一夕を作製する。
本例においては、 圧電ァクチユエ一夕のモデルとして、 図 3 7 に 示すごとく、 治具 8 を用いた圧電ァクチユエ一夕 1 1 を作製する。 即ち、 本例の圧電ァクチユエ一夕 1 1は、 圧電セラミックスを駆 動源とする積層型の圧電素子 2を有し、 該圧電素子 2が治具 8 に固 定されてなる。
治具 8は、 圧電素子 2を収納するためのハウジング 8 1 と、 圧電 素子 2に連結され、 圧電素子 2の変位を伝達するピス トン (連結部 材) 8 2 とを有している。 ピス トン 8 2は、 皿パネ 8 5 を介してガ イ ド 8 3 に連結されている。 ハウジング 8 1 内には、 台座部 8 1 5 が設けられており、 圧電素子 2は台座部 8 1 5に配置される。 台座 部 8 1 5に配置した圧電素子 2は、 ピス トン 8 2のヘッ ド部 8 2 1 によって固定される。 このとき、 皿パネ 8 5から圧電素子 2にプリ セッ ト荷重を加えることができる。 また、 ピス トン 8 2のヘッ ド部 8 2 1 と反対側の端部 (測定部 8 8 ) は、 圧電素子 2の変位に伴つ て動く ことができる。
ここでプリセッ ト荷重の印加方法について説明する。 プリセッ ト 荷重は、 ピス トン 8 2 と押し込みネジ 8 4の空隙に円柱状の押し棒 (図示略) を挿入し、 アムスラ一にて正確な荷重をガイ ド 8 3に印 加することによって得られる。 次に、 プリセッ ト荷重を維持するた めに、 荷重を印加した状態で、 押し込みネジ 8 4とハウジング 8 1 を固定する。 その後、 前記押し棒を取り除く ものである。
なお、 本例において、 圧電ァクチユエ一夕のモデルを作製する理 由は、 圧電ァクチユエ一夕の変位の温度特性を評価するためである 。 その形状を長尺状にすることにより、 圧電素子 2を恒温槽の内部 に設置し、 かつ、 測定部 8 8 を恒温槽の外部 ( =温度約 2 5 °C ) に 設置することが可能となる。 後述の温度特性の評価においては、 図 3 7に示す圧電ァクチユエ一夕 1 1 において、 点線より も下の部分 を恒温槽の内部に設置する。 このとき、 圧電ァクチユエ一夕におい て、 点線よりも上の部分への熱の移動を防止するため、 圧電ァクチ ユエ一夕には、 断熱材 8 6が設けられている。
かかる、 圧電ァクチユエ一夕のモデルは図 3 6に示すところの圧 電ァクチユエ一夕と機能上は等価である。
また、 図 3 8 に示すごとく、 本例において、 圧電素子 2は、 圧電 セラミックス 2 1 と内部電極板 2 2 , 2 3 とが交互に積層されてな る積層型の圧電素子からなる。 また、 圧電素子 2の積層方向の両端 部には、 アルミナ板 2 4 5が配置されている。
また、 圧電素子 2の側面には圧電素子を挟むように二つの外部電 極 2 5, 2 6が形成されており、. 外部電極 2 5 , 2 6はリード線 6 1, 6 2に接続されている。
また、 内部電極板 2 2, 2 3 と外部電極 2 5, 2 6 とは、 圧電素 子 2内において隣り合う二つの内部電極 2 2 , 2 3がそれぞれ異な る電位の外部電極 2 5 , 2 6に接続するように、 電気的に接続され ている。
なお、 本例の圧電素子 2においては、 圧電セラミックス 2 1が合 計 4 0枚積層されてなるが、 図面作成の便宜のため、 図 3 8 におい ては積層数を省略した図を示してある。
次に、 本例の圧電ァクチユエ一夕の製造方法につき、 説明する。 まず、 以下のようにして圧電素子を作製する。
( 1 ) N a N b〇3板状粉末の合成
化学量論比で B i 2.5 N a3.5 N b5〇 , 8組成となるように B i 23粉末、 N a 2 C〇3粉末及び N b 25粉末を秤量し、 これらを湿式 混合した。 次いで、 この原料に対し、 フラックスとして N a C 1 を 5 0 w t %添加し、 1時間乾式混合した。
次に、 得られた混合物を白金るつぼに入れ、 8 5 0 °C X 1 h rの 条件下で加熱し、 フラックスを完全に溶解させた後、 さらに 1 1 0 0 °C X 2 h rの条件下で加熱し、 B i 2.5 N a 3.5 N b 5〇 , 8の合成 を行った。 なお、 昇温速度は、 2 0 0 °C/ h r とし、 降温は炉冷と した。 冷却後、 反応物から湯洗によりフラックスを取り除き、 B i 2.5 N a3.5 N b5018粉末を得た。 得られた B i 2.5N a 3.5 N b 518粉末は、 { 0 0 1 } 面を発達面とする板状粉末であった。
次に、 この B i 2.5 N a 3.5 N b518板状粉末に対し、 N a N b 〇3合成に必要な量の N a 2 C〇3粉末を加えて混合し、 N a C 1 を フラックスとして、 白金るつぼ中において、 9 5 0 °C X 8時間の熱 処理を行った。
得られた反応物には、 N a N b〇3粉末に加えて B i 203が含ま れているので、 反応物からフラックスを取り除いた後、 これを HN 〇3 ( 1 N) 中に入れ、 余剰成分として生成した B i 23を溶解さ せた。 さらに、 この溶液を濾過して N a N b〇3粉末を分離し、 8 0 のイオン交換水で洗浄した。 得られた N a N b 03粉末は、 擬 立方 { 1 0 0 } 面を発達面とし、 粒径が 1 0 3 0 ΠΙであり、 か っァスぺク 卜比が 1 0 2 0程度の板状粉末であった。
! 0. 0 7 ( o.43 N a o. 5 7 0. } I N b 0 841 3- 0 09 b 0 , 07} 〇3組成を有する結晶配向セラミックスを以下の ·ように作製し た。
純度 9 9. 9 9 %以上のN a 2 C〇3粉末、 K2 C 03粉末、 L i 2 C 03粉末、 N b 25粉末、 T a25粉末、 S b25粉末を { L i 0 .07 (K0.43 N a 0. 5 7 ) 0. 9 3 } { N b Q.84 T a。.。9 S b Q.。7 } 〇3の 化学量論組成 I m o l から、 N a N b〇3を 0. 0 5 m o l差し引 いた組成となるように秤量し、 有機溶剤を媒体として Z rポールで 2 0時間の湿式混合を行った。 その後、 7 5 0 °Cで 5時間仮焼し、 さらに有機溶剤を媒体として Z rポールで 2 0時間の湿式粉砕を行 うことで平均粒径が約 0. 5 mの仮焼物粉体を得た。
この仮焼物粉体と前記板状の N a N b〇3とを { L i Q . Q 7 (K0.4 3N a 0.57 ) 0.93 } { N b o.84 T a o.09 S b o.07 } 03組成になるよ うに、 仮焼物粉体 : N a N b〇3 = 0. 9 5 m 0 1 : 0. 0 5 m o 1 の比率に秤量し、 有機溶剤を媒体にして、 Z rポールで 2 0時間 の湿式混合を行う ことで粉碎スラリーを得た。 その後、 スラリーに 対してバインダ (ポリビニルプチラール) 及び可塑剤 (フタル酸ブ チル) を加えた後、 さらに 2時間混合した。
次に、 テープ成形装置を用いて、 混合したスラリーを厚さ約 1 0 0 mのテープ状に成形した。 さらに、 このテープを積層、 圧着及 び圧延することにより、 厚さ 1. 5 mmの板状成形体を得た。 次い で、 得られた板状成形体を、 大気中において、 加熱温度 : 6 0 0 °C 、 加熱時間 : 5時間、 昇温速度 : 5 0 °C/h r、 冷却速度 : 炉冷の 条件下で脱脂を行った。 さらに、 脱脂後の板状成形体に圧力 : 3 0 0 M P aで C I P処理を施した後、 酸素中、 1 1 1 0 °Cで 5時間焼 結を行った。 このようにして、 圧電セラミックス (結晶配向圧電セ ラミックス) を作製した。
得られた圧電セラミックスについて、 焼結体密度、 及ぴテープ面 と平行な面についての口ッ トゲーリング法による擬立方 { 1 0 0 } 面の平均配向度 F ( 1 0 0 ) を上記の数 1 の式を用いて算出した。
さらに、 得られた圧電セラミックスから研削、 研磨、 加工により 、 図 3 9 に示すごとく、 その上下面がテープ面に対して平行である 厚さ 0. 4 8 5 mm、 直径 1 1 mmの円盤状試料の圧電セラミック ス 2 1 を作製し、 その上下面に A u焼付電極ペース ト (住友金属鉱 山 (株) 製 A L P 3 0 5 7 ) を印刷 · 乾燥したのち、 メッシュべ ルト炉を用い 8 5 0 °C X 1 0分の焼付を行い、 圧電セラミックス 2 1 に厚さ 0. 0 1 m mの電極 2 0 を形成した。 さらに、 印刷により 不可避に形成された電極外周部の数マイクロメートルの盛り上り部 を除去する目的で、 得られた円板状試料を円筒研削により直径 8. 5 mmに加工した。 その後、 上下方向に分極処理を施して、 圧電セ ラミックス 2 1 に全面電極 2 1 0が形成された圧電素子 (単板) 2 0を得た。
得られた圧電素子 2 0から圧電特性である圧電歪み定数 ( d31 ) 、 電気機械結合係数 ( k p ) 、 機械的品質係数 (Qm) 、 及び誘電 特性である比誘電率 ( ε 33 1 ε 0) 、 誘電損失 ( t a η δ ) を、 温 度 2 5 °Cにおいて共振反共振法により測定した。
また、 同様に、 第 1 の結晶相転移温度 (キュリー温度) と第 2の 結晶相転移温度を、 比誘電率の温度特性を測定することにより求め た。 なお、 第 2の結晶相転移温度が 0 °C以下の場合には、 第 2の結 晶相転移温度より高温側の比誘電率の変動幅が非常に小さくなるた め、 比誘電率のピーク位置を特定が確認できない場合は、 比誘電率 が屈曲する温度を第 2の結晶相転移温度とした。
次に、 上記にて得られた圧電素子を用いて積層型の圧電素子を作 製し、 該圧電素子を用いて圧電ァクチユエ一夕を構成し、 その評価 を行った。 図 4 0に示すごとく、 まず上記のようにして得られた圧電素子 2 0 と、 後述の外部電極に接続するための突起を有する厚み 0. 0 2 mm、 直径 8. 4 mmの S U S製の内部電極板 2 2 ( 2 3 ) とを交 互に積層した。 このとき、 内部電極板 2 2 ( 2 3 ) の突起が積層方 向に交互に異なる方向に配置し、 かつ、 一層おきには同じ方向に揃 うように内部電極板 2 2 ( 2 3 ) を配置した。 このようにして、 合 計 4 0枚の圧電セラミックス 2 1 と、 合計 4 1枚の内部電極板 2 2 ( 2 3 ) とを交互に積層し、 さらにその積層体の上下面に厚み 2 m m、 直径 8. 5 mmのアルミナ板 (絶縁板) を積層して、 図 3 8に 示すごとく、 積層型の圧電素子 2を作製した。
その後、 短冊状の S U S製の外部電極 2 5 , 2 6 を、 圧電素子が 電気的に並列接続となるように上記内部電極板.2 2, 2 3の突起に 溶接し、 さらに、 リード端子 6 1, 6 2を準備し、 外部電極 2 5, 2 6 とリード端子 6 1 , 6 2 とを電気的に接続した。
また、 内部電極板 2 2 , 2 3の突起と、 反対極性の内部電極板 2
2 , 2 3及び反対極性の圧電素子の A u電極間との絶縁を確保する ために、 積層体側面の同一極電極板の突起間に櫛歯状の樹脂製絶縁 部材 (図示略) を挿入配置し、 その上からシリコーングリースを塗 布し、 さらに積層体を絶縁チューブからなる保持部材 4で被覆して 積層型の圧電素子 2 とした。
その後、 積層型の圧電素子 2の A u電極と電極板の密着性を向上 させる目的で、 温度 2 5 °Cで積層方向に 1 5 O M P aの圧縮応力を
3 0秒間印加した (加圧エージング) 。 さらに、 温度 2 5 °Cで積層 方向に 3 0 M P aの圧縮応力を印加した状態で、 電界強度 0 — 1 5 0 O V/mmの振幅の s i n波を周波数 4 O H zで 3 0分間印加し た (電圧エージング) 。 その後、 図 3 7に示すごとく、 積層型の圧 電素子 2を、 治具 8 に固定し、 圧電素子 2の積層方向に、 パネ定数 2 , 9 NZ mの皿バネ 8 5 をプリセッ ト荷重 1 6. 4 M P aで圧 接した。 このようにして、 図 3 7に示すごとく圧電ァクチユエ一夕 1 1 を作製した。
次いで、 得られた圧電ァクチユエ一夕について、 印加電圧 : 4 8 5、 7 2 8、 9 7 0 V (電界強度が 0 — 1 0 0 0 V/mm、 0 - 1 5 0 0 VZmm、 0 - 2 0 0 0 V/mm) の一定振幅の台形波駆動 を行い、 変位と見かけの動的容量の温度特性を一 4 0〜 1 6 0 °Cの 温度範囲で測定した。
変位の測定は、 周波数 0. 5 H zならびに 1 0 H z、 電圧立上げ 時間は 1 5 0 s、 電圧立ち下げ時間は 1 5 0 s 、 デューティ一 比は 5 0 : 5 0の台形波駆動条件下で観測される変位を静電容量式 の変位センサで測定した。
見かけの動的容量の測定は、 圧電ァクチユエ一夕と直列に 8 7 8 Fのコンデンサを常に温度 2 5 °Cになるような状態で接続し、 印 加電圧 : 4 8 5、 7 2 8、 9 7 0 V、 周波数 : 0. 0 5 H z、 電圧 立上げ時間 : 1 m s、 電圧立ち下げ時間 : 1 m s、 電圧 ON時間 : 1 0 s 、 電圧 O F F時間 : 1 0 s、 の定電圧の台形波駆動条件下で 観測されるコンデンサの端子電圧を測定し、 下記の式 1 1より計算 により求めた。
見かけの動的容量 = { (V (O N) — V (O F F) ) X
8 7 8 /2 F } / {印加電圧一 (V (O N)
- V (0 F F) ) } ( 1 1 )
(ここで、 見かけの動的静電容量 [F] 、 印加電圧 [V] 、 V (〇 N) : 電圧 ONから 1 0 s後のコンデンサ端子電圧 [V] 、 V ( 0 F F) : 電圧 O F Fから 1 0 s後のコンデンサ端子電圧 [V] ) つまり、 コンデンサの端子電圧をもとにコンデンサの蓄積電荷 ( =ァクチユエ一夕の蓄積電荷 +リークした電荷) をもとめ、 それを ァクチユエ一夕の印加電圧で除して、 ァクチユエ一夕の見かけの動 的容量とした。 ここで、 コンデンサと直列接続することによるァク チユエ一夕に印加される電圧は低下するが、 最大低下幅は 0. 3 V と小さな値であったため、 印加電圧とァクチユエ一夕に印加される 電圧は同一と判断した。
また、 測定した値から、 一 3 0〜 8 0 °Cの温度範囲における変動 幅ならびに— 3 0〜 1 6 0 °Cの温度範囲における変動幅を求めた。 ここで、 変動幅とは (最大値一最小値) / 2を基準値とした値とし た。
本実施例で得られた結晶配向セラミックスの相対密度は、 9 5 % 以上であった。 また、 擬立方 { 1 0 0 } 面は、 テープ面に対して平 行に配向しており、 ロッ トゲーリング法による擬立方 { 1 0 0 } 面 の平均配向度は、 8 8. 5 %に達した。 さらに、 温度 2 5 °Cにおけ る圧電特性を評価した結果、 圧電(13 |定数は 8 6. 5 p m/V, 電 気機械結合係数 k pは 4 8. 8 %、 機械的品質係数 Qmは 1 8. 2 、 比誘電率 £ 3 / £。は 1 0 4 2、 誘電損失 t a n <5は 6. 4 %で あった。 また、 比誘電率の温度特性より求めた第 1の結晶相転移温 度 (キュリー温度) は 2 8 2 ° (:、 第 2の結晶相転移温度は— 3 0 °C であった。
次に、 本例で得られた圧電ァクチユエ一夕の特性について記載す る。
測定した見かけの動的容量及び周波数 0. 5 H zの変位、 並びに 計算で求めた、 変位/見かけの動的容量、 変位/ (見かけの動的容 量) β· 5、 動的歪量 D 3 3 を表 1、 図 1、 図 2、 図 3に示す。
また、 見かけの動的容量、 周波数 0. 5 H zの変位、 変位/見か けの動的容量、 変位 Ζ (見かけの動的容量) ΰ· 5の— 3 0〜 8 0 °Cの 温度範囲における変動幅ならびに一 3 0〜 1 6 0 °Cの温度範囲にお ける変動幅をそれぞれ表 1 2、 表 1 3、 表 1 4、 表 1 5に示す。 表 1、 図 1、 図 2、 図 3、 表 1 1、 表 1 2、 表 1 3、 表 1 4より 知られるごとく、 本例の圧電ァクチユエ一夕においては、 — 3 0〜 8 0 °Cの温度範囲における動的歪量 D 3 3の最小値と前記特性の変 動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 O V/mmで 温度が一 3 0 °Cの場合であり、 D 3 3 = 3 0 3 pmZVであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場 合であり、 変動幅は ± 3. 8 %であった。
, 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 V/mmの場合であり、 変動幅は ± 3. 2 %であった。
• 変位/見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 VZmmの場合であり、 変動幅は ± 6. 9 %であった。
• 変位 (見かけの動的容量) °· 5の変動幅の最大値は、 駆動電界 振幅が 1 5 0 O VZmmの場合であり、 変動幅は ± 5. 3 %であつ た。
次に、 _ 3 0〜 1 6 0°Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 0 VZmmで 温度が— 3 0 °Cの場合であり、 D 3 3 = 3 0 3 pm "Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 VZmmの場 合であり、 変動幅は ± 7. 7 %であった。
, 動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 O V/mm の場合であり、 変動幅は土 2 8. 9 %であった。
, 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 O VZmmの場合であり、 変動幅は ± 2 7. 8 %であった。 • 変位/ (見かけの動的容量) ϋ· 5の変動幅の最大値は、 駆動電界 振幅が 1 0 0 O VZmmの場合であり、 変動幅は ± 1 3. 8 %であ つた
(実施例 2 )
脱脂後の板状成形体の焼成温度を 1 1 0 5 °Cとした以外は、 実施 例 1と同一の手順に従い、 { L i。.0 7 (Κ。.45 N a。.55) Q.93 } { N b 0. 8 2 T a 0.! 0 S b 0. 08 } 〇3組成を有する結晶配向セラミック スを作製した。 得られた結晶配向セラミックスについて、 実施例 1 と同一の条件下で、 焼結体密度、 平均配向度及び圧電特性を評価し た。 また、 実施例 1 と同一の手順で、 圧電素子 4 0枚の積層ァクチ ユエ一夕を作製し、 ァクチユエ一夕特性を評価した。
本実施例で得られた結晶配向セラミックスの相対密度は、 9 5 % 以上であった。 また、 擬立方 { 1 0 0 } 面は、 テープ面に対して平 行に配向しており、 ロッ トゲ一リング法による擬立方 { 1 0 0 } 面 の平均配向度は、 9 4. 6 %に達した。 さらに、 温度 2 5 °Cにおけ る圧電特性を評価した結果、 圧電 131定数は 8 8. l pmZV、 電 気機械結合係数 k pは 4 8. 9 %、 機械的品質係数 Qmは 1 6. 6 、 比誘電率 ε 33 ι/ ε。は 1 0 7 1、 誘電損失 t a n Sは 4. 7 %で あった。 また、 比誘電率の温度特性より求めた第 1の結晶相転移温 度 (キュリー温度) は 2 5 6 °C、 第 2の結晶相転移温度は一 3 5 °C であった。
本実施例の圧電ァクチユエ一夕の特性を、 表 2、 図 4、 図 5、 図 6、 表 1 1、 表 1 2、 表 1 3、 表 1 4に示す。
これらの表及び図より知られるごとく、 本例の圧電ァクチユエ一 夕においては、 一 3 0〜 8 0°Cの温度範囲における動的歪量 D 3 3 の最小値と前記特性の変動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 0 V/mmで 温度が 2 0°Cの場合であり、 D 3 3 = 3 5 5 pm/Vであった。 ' 変位の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 V/mmの場 合であり、 変動幅は ± 8. 0 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 VZmmの場合であり、 変動幅は ± 6. 3 %であった。
• 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 O V/mmならびに 1 0 0 O VZmmの場合であり、 変動幅は ± 7. 8 %であった。
• 変位/ (見かけの動的容量) Q' 5の変動幅の最大値は、 駆動電界 振幅が 1 0 0 O VZmmの場合であり、 変動幅は土 6. 7 %であつ た。
次に、 一 3 0〜 1 6 0°Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかつた。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 0 V/mmで 温度が 2 0 °Cの場合であり、 D 3 3 = 3 5 5 pm/Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 V/mmの場 合であり、 変動幅は ± 1 3. 8 %であった。
♦ 動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mm の場合であり、 変動幅は ± 3 1. 4 %であった。
• 変位/見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 O V/mmの場合であり、 変動幅は ± 2 6. 8 %であった。
• 変位 Z (見かけの動的容量) °· 5の変動幅の最大値は、 駆動電界 振幅が 1 0 0 O VZmmの場合であり、 変動幅は ± 1 3. 3 %であ た
(実施例 3 )
脱脂後の板状成形体の焼成温度を 1 1 0 5 °Cとした以外は、 実施 例 1と同一の手順に従い、 {L i Q65 (Κ。.45 N a。.55) Q.935 } {N b。 83 T a。 . 。 9 S b Q8 } 〇 3組成を有する結晶配向セラミツ クスを作製した。 得られた結晶配向セラミックスについて、 実施例
1 と同一の条件下で、 焼結体密度、 平均配向度及び圧電特性を評価 した。 また、 実施例 1 と同一の手順で、 圧電素子 4 0枚の積層ァク チユエ一夕を作製し、 ァクチユエ一夕特性を評価した。
本実施例で得られた結晶配向セラミ ックスの相対密度は、 9 5 % 以上であった。 また、 擬立方 { 1 0 0 } 面は、 テープ面に対して平 行に配向しており、 ロッ トゲ一リ ング法による擬立方 { 1 0 0 } 面 の平均配向度は、 9 3. 9 %に達した。 さらに、 温度 2 5 °Cにおけ る圧電特性を評価した結果、 圧電 ( 31定数は 9 5. 2 p mZV、 電 気機械結合係数 k pは 5 0. 4 %、 機械的品質係数 Qmは 1 5. 9 、 比誘電率 ε 33 ιΖ ε。は 1 1 5 5、 誘電損失 t a n <5は 5. 2 %で あった。 また、 比誘電率の温度特性より求めた第 1の結晶相転移温 度 (キュリー温度) は 2 6 1 °C、 第 2の結晶相転移温度は一 1 2 °C であった。
本実施例の圧電ァクチユエ一夕の特性を、 表 3、 図 7、 図 8、 図 9、 表 1 1、 表 1 2、 表 1 3、 表 1 4に示す。
これらの表及び図より知られるごとく、 本例の圧電ァクチユエ一 夕においては、 一 3 0〜 8 0 °Cの温度範囲における動的歪量 D 3 3 の最小値と前記特性の変動幅について次のことがわかつた。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 0 VZmmで 温度が 8 0 °Cの場合であり、 D 3 3 = 3 4 7 p m/Vであった。 • 変位の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場 合であり、 変動幅は ± 5. 6 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 VZmmの場合であり、 変動幅は ± 5. 2 %であった。
- 変位 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 VZmmの場合であり、 変動幅は ± 8. 6 %であった。 • 変位/ (見かけの動的容量) fl' 5の変動幅の最大値は、 駆動電界 振幅が 1 5 0 0 VZmmの場合であり、 変動幅は ± 6. 9 %であつ た。
次に、 一 3 0〜 1 6 0 °Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 O VZmmで 温度が 8 0°Cの場合であり、 D 3 3 = 3 4 7 pm/Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V /mmの場 合であり、 変動幅は ± 1 1. 5 %であった。
, 動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 O VZmm の場合であり、 変動幅は ± 3 4. 6 %であった。
• 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 O VZmmの場合であり、 変動幅は ± 2 7. 1 %であった。 , 変位 Z (見かけの動的容量) ϋ· 5の変動幅の最大値は、 駆動電界 振幅が 1 0 0 O V/mmの場合であり、 変動幅は ± 1 0. 9 %であ
Όた。
(実施例 4 )
本例においては、 実施例 1と同一組成の結晶配向圧電セラミ ック スを、 実施例 1 とは異なる手順で作製し、 該結晶配向圧電セラミツ クスを用いて圧電ァクチユエータを作製した。
即ち、 まず実施例 1で作製した N a N b 03板状粉末、 並びに、 非板状の N a N b 03粉末、 KN b〇3粉末、 KT a〇3粉末、 L i S b〇3粉末及び N a S b 03粉末を、 { L i。 .。 7 (K0.43N a0.5 τ ) o. 93 } { b0. 84 T a 0. o9 S b0. o ? } 〇3組成となるように秤量 し、 有機溶剤を溶媒として 2 0時間の湿式混合を行った。
スラリーに対してバインダ (ポリ ビニルプチラール) 及び可塑剤 (フタル酸ジブチル) を加えた後、 さらに 2時間混合した。 なお、 N a N b〇3板状粉末の配合量は、 出発原料から合成され る第 1の KNN系固溶体 (A B〇3) の Aサイ ト元素の 5 w t %が N a N b〇3板状粉末から供給される量とした。 また、 非板状の N a N b〇3粉末、 KN b〇3粉末、 KT a〇3粉末、 L i S b〇3粉末 及び N a S b〇3粉末は、 純度 9 9. 9 %の K2 C〇3粉末、 N a2 C 03粉末、 N b 25粉末、 T a25粉末及び Z又は S b 25粉末を 所定量含む混合物を 7 5 0 °Cで 5時間加熱し、 反応物をポールミル 粉碎する固相法により作製した。
次に、 テープ成形装置を用いて、 混合したスラリーを厚さ約 1 0 0 xmのテープ状に成形した。 さらに、 このテープを積層、 圧着及 び圧延することにより、 厚さ 1. 5 mmの板状成形体を得た。 次い で、 得られた板状成形体を、 大気中において、 加熱温度 : 6 0 0 °C 、 加熱時間 : 5時間、 昇温速度 : 5 0 °C/ h r、 冷却速度 : 炉冷の 条件下で脱脂を行った。 さらに、 脱脂後の板状成形体に圧力 : 3 0 O M P aで C I P処理を施した後、 酸素中において、 焼成温度 : 1 1 3 0 °C、 加熱時間 : 5時間、 昇 . 降温速度 : 2 0 0 °CZ h rの条 件下で、 加熱時間中に 3 5 k gZ c m 2 ( 3. 4 2 M P a ) の圧力 を印加するホッ トプレス焼結を行った。 このようにして圧電セラミ ックス (結晶配向圧電セラミックス) を作製した。
本実施例で得られた結晶配向セラミックスの相対密度は、 9 5 % 以上であった。 また、 擬立方 { 1 0 0 } 面は、 テープ面に対して平 行に配向しており、 ロッ トゲーリング法による擬立方 { 1 0 0 } 面 の平均配向度は、 9 6 %に達した。 さらに、 温度 2 5 °Cにおける圧 電特性を評価した結果、 圧電0131定数は 9 6. 5 p m/ V, 電気機 械結合係数 k pは 5 1. 9 %、 機械的品質係数 Qmは 1 5. 2、 比 誘電率 ε 33 ι/ ε。は 1 0 7 9、 誘電損失 t a n dは 4. 7 %であつ た。 また、 比誘電率の温度特性より求めた第 1 の結晶相転移温度 ( キュリー温度) は 2 7 9 °C、 第 2の結晶相転移温度は— 2 8 °Cであ つた。
本実施例の圧電ァクチユエ一夕の特性を、 表 4、 図 1 0、 図 1 1 、 図 1 2、 表 1 1、 表 1 2、 表 1 3、 表 1 4に示す。
これらの表及び図より知られるごとく、 本例の圧電ァクチユエ一 夕においては、 一 3 0〜 8 0 °Cの温度範囲における動的歪量 D 3 3 の最小値と前記特性の変動幅について次のことがわかった。
' 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 0 V / m mで 温度が 5 0 °Cの場合であり、 D 3 3 = 4 2 7 p mZVであった。 • 変位の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 V/mmの場 合であり、 変動幅は ± 7. 2 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 V/mmの場合であり、 変動幅は ± 6. 1 %であった。
, 変位ノ見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 O O O VZmmの場合であり、 変動幅は ± 8. 0 %であった。
, 変位ノ (見かけの動的容量) Q' 5の変動幅の最大値は、 駆動電界 振幅が 1 0 0 O V/mmの場合であり、 変動幅は ± 6. 7 %であつ た。
次に、 一 3 0〜 1 6 0 °Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかつた。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 0 V/mmで 温度が 5 0 °Cの場合であり、 D 3 3 = 4 2 7 p m/Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 VZmmの場 合であり、 変動幅は土 9. 4 %であった。
• 動的容量の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 V/mm の場合であり、 変動幅は ± 2 8. 4 %であった。
• 変位/見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 V/mmの場合であり、 変動幅は ± 3 2. 4 %であった。 • 変位/ (見かけの動的容量) ^ 5の変動幅の最大値は、 駆動電界 振幅が 1 0 0 O VZmmの場合であり、 変動幅は ± 1 9. 5 %であ つた。
(実施例 5 )
本実施例においては、 実施例 3の組成物である、 { L i 0. 065 ( K0.45 a0.55) 。.935 } { N b o. 83 T a 。 9 S b 0. Q 8 } O 3 1 m o
1 に対して M nを 0. 0 O 0 5 m o 1 を外添加した組成を有する圧 電セラミックス (結晶配向圧電セラミックス) を作製し、 該圧電セ ラミックスを用いて圧電ァクチユエ一夕を作製した。
まず、 純度 9 9. 9 9 %以上の1^ 3 2 (:〇3粉末、 K2 C〇3粉末、 L i 2 C〇3粉末、 N b 25粉末、 T a25粉末、 S b 25粉末、 お よび M n〇2粉末を、 { L i 0. 07 (K0.43 N a 0. 5 7) 。.93} { N b 0 .8 T a a . e g S b 0. 07 } O3 l m o l +M n 0. 0 0 0 5 m o l の組 成から、 N a N b〇3を 0. 0 5 m o l 差し引いた組成を秤量し、 有機溶剤を媒体として Z rボールで 2 0時間の湿式混合を行った。 その後、 7 5 0 °Cで 5時間仮焼し、 さらに有機溶剤を媒体として Z rポールで 2 0時間の湿式粉砕を行うことで平均粒径が約 0. 5 mの仮焼物粉体を得た。
以降の手順は、 脱脂後の板状成形体の焼成温度を 1 1 0 5 °Cとし た以外は、 実施例 1 と同一の手順に従い、 { L i Q 65 (K0.45 N a o. 55 ) 。 . 935 } {N b。.83 T a。, 。 9 S b。, 。 8 } 〇3 l m o 1 + M n
0. 0 0 0 5 m o 1 組成を有する結晶配向セラミ ックスを作製した 得られた結晶配向セラミ ックスについて、 実施例 1 と同一の条件 下で、 焼結体密度、 平均配向度及び圧電特性を評価した。 また、 実 施例 1 と同一の手順で、 圧電素子 4 0枚の積層ァクチユエ一夕を作 製しァクチユエ一夕特性を評価した。 また、 電界強度の振幅が 2 V Zmm (土 I V) 、 s i n波、 周波数 1 kH zの条件でァクチユエ 一夕の静電容量を評価した。
本実施例で得られた結晶配向セラミックスの相対密度は、 9 5 % 以上であった。 また、 擬立方 { 1 0 0 } 面は、 テープ面に対して平 行に配向しており、 ロッ トゲ一リ ング法による擬立方 { 1 0 0 } 面 の平均配向度は、 8 9. 6 %に達した。 さらに、 温度 2 5 °Cにおけ る圧電特性を評価した結果、 圧電(13 |定数は 9 9. l pmZV、 電 気機械結合係数 k pは 5 2. 0 %、 機械的品質係数 Qmは 2 0. 3 、 比誘電率 ε 33 ι/ ε。は 1 1 5 9、 誘電損失セ 3 11 3は 2. 7 %で あった。 これにより、 Μηを添加は、 Qmの上昇と、 t a n <3の低 下に効果があることがわかった。
また、 比誘電率の温度特性より求めた第 1の結晶相転移温度 (キ ユリ一温度) は 2 6 3 °C、 第 2の結晶相転移温度は— 1 5 °Cであつ た。
本実施例の圧電ァクチユエ一夕の特性を、 表 5、 図 1 3、 図 1 4 、 図 1 5、 表 1 1、 表 1 2、 表 1 3、 表 1 4に示す。
これらの表及び図より知られるごとく、 本例の圧電ァクチユエ一 夕においては、 _ 3 0〜 8 0 °Cの温度範囲における動的歪量 D 3 3 の最小値と前記特性の変動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 0 VZmmで 温度が 5 0 ° (:、 ならびに 8 0 °Cの場合であり、 D 3 3 = 3 5 5 pm ノ Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 VZmmの場 合であり、 変動幅は ± 1 0. 4 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 VZmmの場合であり、 変動幅は土 4. 9 %であった。 • 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1
0 0 O VZmmの場合であり、 変動幅は ± 1 0. 7 %であった。 • 変位ノ (見かけの動的容量) D' 5の変動幅の最大値は、 駆動電界 振幅が 1 0 0 O VZmmの場合であり、 変動幅は ±7. 2 %であつ た。
また、 一 3 0〜 1 6 0°Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 0 0 0 Vノ m mで 温度が 5 0 °C、 ならびに 8 0 °Cの場合であり、 D 3 3 = 3 5 5 p m / Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 0 0 0 VZmmの場 合であり、 変動幅は ± 1 1. 8 %であった。
- 動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 O VZmm の場合であり、 変動幅は ± 2 6. 9 %であった。
• 変位 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 0 0 O VZmmの場合であり、 変動幅は ± 2 1. 3 %であった。 • 変位 Z (見かけの動的容量) Q' 5の変動幅の最大値は、 駆動電界 振幅が 1 0 0 O V/mmの場合であり、 変動幅は ± 1 2. 4 %であ つ ,こ
この結果により、 M n添加は一 3 0〜 1 6 0 °Cの温度範囲におけ る見かけの動的容量の変動幅を小さくする効果があることがわかつ た。
また、 本例の圧電ァクチユエ一夕の静電容量について、 説明する 本例の圧電ァクチユエ一夕の静電容量は— 3 0〜 1 6 0°Cの範囲 において、 見かけの動的容量よりも小さな値となった。 また、 一 3 0〜 8 0 Cの範囲における変動幅は ±4. 8 %であり、 電界強度 1 0 0 0 V Z m mにおける、 見かけの動的容量の変動幅とほぼ同じで あった。 一方、 一 3 0〜 1 6 0 °Cの範囲における変動幅は ± 5. 2 %であり、 見かけの動的容量の変動幅よりも非常に小さな値となつ た。 この動的容量と静電容量の違いは電界強度の違いが支配的と考 えられる。
従って、 変動幅の差異の原因は、 8 0 °C以上の高温の温度領域に おいて、 電界強度 1 0 0 0 Vノ m m以上ではリーク電流が増加する ことにより見かけの動的容量が増加するが、 その一方で電界強度 2 V/mmではリーク電流がほとんどなく静電容量が増加しないから と考えられる。
以上のことから、 本例の圧電ァクチユエ一夕は、 駆動電界強度を 1 0 0 O VZ mmより小さくすることにより、 一 .3 0〜 1 6 0 °Cの 広い温度範囲において、 見かけの動的容量の変動幅が低減できるこ とがわかった。 その達成可能レベルは静電容量の温度特性と同程度 までと考えられる。
(比較例 1 )
本比較例は、 自動車用燃料噴射弁用の積層ァクチユエ一夕に適し た、 ソフ ト系とハード系の中間的な特性 (セミハード) の正方晶の P Z T材料を用いた積層ァクチユエ一夕の例である。 ここで、 ソフ ト系とは Q mが 1 0 0以下の材料のことであり、 ハード系とは Q m が 1 0 0 0以上の材料のことである。 燃料噴射弁用の積層ァクチュ ェ一タは、 定電圧制御あるいは定エネルギー制御あるいは定電荷制 御で使用されるものであり、 台形波駆動により弁を開閉させること で燃料の噴霧を制御するものである。 ァクチユエ一夕特性には、 変 位性能が高いことと、 各制御方式における変位の温度特性が小さい ことが要求される。
P b O粉末、 Z r〇2粉末、 T i 〇2粉末、 S r C〇3粉末、 Y20 3粉末、 N b25粉末、 M n23粉末を、 ( P b。.92 S r。.。9) { ( 2 r 0 543 T i 0. 457 ) 0. 985 ( Y 0. 5 N b o , 5 ) o. o i M n 0 005 } 〇 3組成となるように抨量し、 水を媒体として Z rポールで湿式混合 を行った。 その後、 7 9 0 °Cで 7時間仮焼し、 さらに、 有機溶剤を 媒体として Z rポールで湿式粉砕を行うことで平均粒径が約 0. 7 mの仮焼物粉体のスラリーを得た。
このスラリーに対してバインダ (ポリビニルプチラール) 及び可 塑剤 (フタル酸ブチルベンジル) を加えたあと Z rボールで 2 0時 間混合した。
次に、 テープ成形装置を用いて、 混合したスラリーを厚さ約 1 0 0 mのテープ状に成形した。 さらに、 このテープを積層、 熱圧着 ことにより、 厚さ 1. 2 mmの板状成形体を得た。 次いで、 得られ た板状成形体を、 大気中において脱脂を行った。 さらに、 脱脂後の 板状成形体をアルミナこう鉢中の M g O板上に配置して大気中、 1 1 7 0 °Cで 2時間焼結を行った。 以降の手順は、 電極材料として A gペース トを用いて、 焼付を行ったこと以外は実施例 1 と同じであ る。
本比較例の圧電セラミックスの相対密度は、 9 5 %以上であった 。 また、 温度 2 5 °Cにおける圧電特性を評価した結果、 圧電 d31定 数は 1 5 8. O p mZV、 電気機械結合係数 k pは 6 0. 2 %、 機 械的品質係数 Qmは 5 4 0、 比誘電率 6 3 3 1 / £。は 1 7 0 1、 誘電 損失 t a η δは 0. 2 %であった。
本比較例のァクチユエ一夕特性を、 表 6、 図 1 6、 図 1 7、 図 1 8、 表 1 5、 表 1 6、 表 1 7、 表 1 8 に示す。
これらの表及び図より知られるごとく、 本比較例の圧電ァクチュ エー夕においては、 一 3 0〜 7 0 の温度範囲における動的歪量 D 3 3の最小値と前記特性の変動幅について次のことがわかった。 ' 動的歪量 D 3 3 の最小値は、 駆動電界振幅が 2 0 0 0 Vノ mm、 および 1 5 0 O VZmmで温度が— 3 0 °Cの場合であり、 5 5 3 p m Z Vであった。
. 変位の変動幅の最大値は、 駆動電界振幅が 2 0 0 O VZmmの場 合であり、 ± 5. 6 %であった。
, 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場合であり、 ± 1 4. 5 %であった。
• 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1
5 0 0 V/mmの場合であり、 ± 1 0. 5 %であった。
また、 — 3 0〜 1 6 0 °Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかった。
' 動的歪量 D 3 3の最小値は、 駆動電界振幅が 2 .0 0 0 V/mm、 および 1 5 0 O V/mmで温度が一 3 0 °Cの場合であり、 5 5 3 ρ m / Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 V/mmの場 合であり、 ± 1 1 . 1 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 VZmmの場合であり、 ± 3 3 , 5 %であった。
• 変位/見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 O V/mmの場合であり、 ± 2 3. 7 %であった。
(比較例 2 )
本比較例 2は、 環境温度変化が小さい半導体製造装置などの位置 決め用の積層ァクチユエ一夕に適した、 ソフ ト系の菱面体晶の P Z T材料を用いた積層ァクチユエ一夕の例である。 位置決め用の積層 ァクチユエ一夕は、 環境温度変化が小さい場所で使用されることか ら、 高い変位性能が要求されるが、 温度特性に優れる必要はない。
P b〇粉末、 Z r 〇2粉末、 T i 〇2粉末、 S r C〇3粉末、 Y23粉末、 N b 25粉末を、 (P b。.835 S r。.115) { ( Z r 0.57 T i o.43 ) 0. 978 (Yo. s N b o. s) o. o i N b 0.012 } 〇 3組成となるよ うに秤量し、 水を媒体としての Z rポールで湿式混合を 2 0時間行 つた。 その後、 8 7 5 °Cで 5時間仮焼し、 さらに、 水を媒体として Z rポールで湿式粉砕を行った。 このスラリー(こ対して、 バインダ (ポリ ビニルアルコール) を仮焼粉体に対して 1 w t %となるよう に添加した後、 スプレードライヤで乾燥、 造粒した。
次に、 金型を用いた乾式プレス成形で 1 5、 厚さ 2 m mの成形 体を得た。 次いで、 得られた円板状成形体を、 大気中において脱脂 を行った。 さらに、 脱脂後の板状成形体に圧力 : 2 0 O M P aで C I P処理を施した後、 アルミナこう鉢中の M g〇板上に配置して大 気中、 1 2 6 0 °Cで 2時間焼結を行った。 以降の手順は、 比較例 1 と同じである。
本比較例の圧電セラミックスの相対密度は、 9 5 %以上であった 。 また、 温度 2 5 °Cにおける圧電特性を評価した結果、 圧電 d31定 数は 2 1 2. 7 pm/V, 電気機械結合係数 k pは 6 7. 3 %、 機 械的品質係数 Qmは 4 7. 5、 比誘電率 5 3 3 1 / £。は 1 9 4 3、 誘 電損失 t a η δは 2. 1 %であった。
本比較例のァクチユエ一夕特性を、 表 7、 図 1 9、 図 2 0、 図 2 1、 表 1 5、 表 1 6、 表 1 7、 表 1 8に示す。
これらの表及び図より知られるごとく、 本例の圧電ァクチユエ一 夕においては、 — 3 0〜 7 0 °Cの温度範囲における動的歪量 D 3 3 の最小値と前記特性の変動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 2 0 0 0 V Z m mで 温度が一 3 0 °Cの場合であり、 4 8 2 p m / Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V Z m mの場 合であり、 土 2 3. 7 %であった。 • 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場合であり、 土 3 7. 9 %であった。
, 変位ノ見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 VZmmの場合であり、 ± 1 5. 5 %であった。
また、 _ 3 0 1 6 0 °Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかった。
, 動的歪量 D 3 3の最小値は、 駆動電界振幅が 2 0 0 0 V Z m mで 温度が一 3 0 °Cの場合であり、 4 8 2 p m/Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 5 0 O VZmmの場 合であり、 土 3 8. 5 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場合であり、 + 6 3. 5 %であった。
• 変位 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 V/mm, および 1 5 0 O VZmmの場合であり、 ± 3 3. 1 %であった。
(比較例 3 )
本比較例 3は自動車用のノックセンサに適した、 ソフ ト系の正方 晶の P Z T材料を用いた積層ァクチユエ一夕の例である。 ノックセ ンサは、 ガソリンエンジンのノ ッキングを圧電セラミックスの圧電 効果を利用して電圧に変換して検知するものであり、 ァクチユエ一 夕としての機能は有さない。
P b O粉末、 Z r 〇2粉末、 T i 〇2粉末、 S r T i 〇3粉末、 S b 2〇3粉末を、 、 P b o. 95 o r 0. 05 ) I ( Γ 0. 53 i fU ? 0. 97
8 S b。. Q 22 } 〇 3組成となるように秤量し、 水を媒体としての Z r ポールで湿式混合を 2 0時間行った。 その後、 8 2 5 °Cで 5時間仮 焼し、 さらに、 水を媒体として Z rポールで湿式粉砕を行った。 以 降の手順は、 焼結温度を 1 2 3 0 としたこと以外は、 比較例 2 と 同一である。
本比較例の圧電セラミックスの相対密度は、 9 5 %以上であった 。 また、 温度 2 5 °Cにおける圧電特性を評価した結果、 圧電 d31定 数は 2 0 3. 4 1117¥、 電気機械結合係数 は6 2. 0 %、 機 械的品質係数 Q mは 5 5. 8、 比誘電率 ε 33 1 Z ε。は 2 3 0 8、 誘 電損失 t a η <5は 1. 4 %であった。
本比較例のァクチユエ一夕特性を、 表 8、 図 2 2、 図 2 3、 図 2 4、 表 1 5、 表 1 6、 表 1 7、 表 1 8に示す。
これらの表及び図より知られるごとく、 本比較例の圧電ァクチュ ェ一夕においては、 一 3 0〜 7 0°Cの温度範囲における動的歪量 D 3 3の最小値と前記特性の変動幅について次のことがわかった。 • 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1.5 0 0 V / m mで 温度が— 3 0°Cの場合であり、 6 6 3 pmZVであった。
' 変位の変動幅の最大値は、 駆動電界振幅が 2 0 0 O V/mmの場 合であり、 ± 1 0. 4 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場合であり、 ± 1 7. 9 %であった。
• 変位/見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1
5 0 0 VZmmの場合であり、 ± 1 0. 2 %であった。
また、 一 3 0〜 1 6 0 °Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 5 0 0 Vノ m mで 温度が— 3 0°Cの場合であり、 6 6 3 pm/Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 VZmmの場 合であり、 ± 1 4. 8 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場合であり、 ± 3 2. 3 %であった。 • 変位 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場合であり、 ± 1 8. 4 %であった。
(比較例 4 )
比較例 4は、 高出力の超音波モータに適した、 セミハード系の正 方晶の P Z T材料を用いた積層ァクチユエ一夕の例である。 超音波 モー夕はステ一夕に貼り付けた圧電セラミックスリ ングを数 1 0 k H zで共振駆動させ、 ステ一夕に圧接された口一夕を回転させるも のである。 ァクチユエ一夕特性には、 比較的高い変位性能と変位の 温度特性に優れることが要求される。
P b〇粉末、 Z r 〇2粉末、 T i 02粉末、 S r C〇3粉末、 S b 23粉末、 M n C〇3粉末を、 (P b。.965 S r。. Q5) { ( Z r。.5 T i o. 5 ) ο. 96 S b0.03Μ η 0.01 } 03組成となるように秤量し、 水を 媒体としての Z rポールで湿式混合を行った。 その後、 8 7 5 °Cで 5時間仮焼し、 さらに、 水を媒体としての Z rポールで湿式粉砕を 行った。 以降の手順は、 焼結温度を 1 2 3 0 °Cとしたこと以外は、 比較例 2 と同一である。
本比較例の圧電セラミックスの相対密度は、 9 5 %以上であった 。 また、 温度 2 5 °Cにおける圧電特性を評価した結果、 圧電 d31定 数は 1 3 6. 9 p mZV、 電気機械結合係数 k pは 5 7. 9 %、 機 械的品質係数 Qmは 8 5 0、 比誘電率 6 3 3 1 / 5 ()は 1 5 4 5、 誘電 損失 t a η <5は 0. 2 %であった。
本比較例のァクチユエ一夕特性を、 表 9、 図 2 5、 図 2 6、 図 2 7、 表 1 5、 表 1 6、 表 1 7、 表 1 8 に示す。
これらの表及び図より知られるごとく、 本比較例の圧電ァクチュ エー夕においては、 _ 3 0〜 7 0 °Cの温度範囲における動的歪量 D 3 3の最小値と前記特性の変動幅について次のことがわかつた。 • 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 5 0 0 VZmmで 温度が一 3 0°Cの場合であり、 40 9 pm/Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 VZmmの場 合であり、 ±6. 0 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 VZmmの場合であり、 ± 1 5. 8 %であった。
, 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1
5 0 0 VZmmの場合であり、 ± 1 1. 5 %であった。
また、 — 3 0〜 1 6 0°Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかった。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 5 0 0 VZmmで 温度が一 3 0°Cの場合であり、 4 0 9 pm/Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V Z m mの場 合であり、 ± 1 5. 2 %であうた。
, 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場合であり、 ± 3 6. 7 %であった。
• 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V/mmの場合であり、 ± 2 2. 7 %であった。
(比較例 5 )
比較例 5は高感度の角速度センサに適した、 ハード系の正方晶の P Z T材料を用いた積層ァクチユエ一夕である。 角速度センサは、 圧電セラミックス音叉を数 kH zで共振駆動させるァクチユエ一夕 機能と、 角速度を検知するセンサ機能の両方を有するものである。 ァクチユエ一夕特性には、 変位性能は低くてもよいが、 変位の温度 特性が小さいことが要求される。
P b〇粉末、 Z r〇2粉末、 T i 〇2粉末、 Z n〇粉末、 Mn C〇 3粉末、 Nb25粉末を、 P b { (Z r。.5T i。, 5) o . 98 (Z n0.3 3 N b o . 67) 。 M M n Q n , } 〇 3組成となるように秤量し、 水を媒体 として Z rポールで湿式混合を行った。 その後、 8 0 0 °Cで 5時間 仮焼し、 さらに、 水を媒体として Z rポールで湿式粉砕を行った。 以降の手順は、 焼結温度を 1 2 0 0 °Cとしたこと以外は、 比較例 2 と同一である。
本比較例の圧電セラミ ックスの相対密度は、 9 5 %以上であった 。 また、 温度 2 5 °Cにおける圧電特性を評価した結果、 圧電 d31定 数は 1 0 3. 6 p m/V、 電気機械結合係数 k pは 5 4. 1 %、 機 械的品質係数 Qmは 1 2 3 0、 比誘電率 £ 33 l/ £ flは 1 0 6 1、 誘 電損失 t a η δは 0. 2 %であった。
本比較例のァクチユエ一夕特性を、 表 1 0、 図 2 8、 図 2 9、 図 3 0、 表 1 5、 表 1 6、 表 1 7、 表 1 8に示す。
これらの表及び図より知られるごとく、 本比較例の圧電ァクチュ ェ一夕においては、 一 3 0〜 7 0 °Cの温度範囲における動的歪量 D 3 3の最小値と前記特性の変動幅について次のことがわかった。 - 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 5 0 0 VZmmで 温度が 2 0 °Cの場合であり、 2 9 5 p m であった。 この動的歪 量 D 3 3の最小値は、 実施例 1 の 3 0 3 p m/ Vよりも小さいもの であった。
• 変位の変動幅の最大値は、 駆動電界振幅が 2 0 0 0 V /mmの場 合であり、 ± 3. 2 %であった d
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 VZmmの場合であり、 ± 1 4. 3 %であった。
• 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1
S O O VZmmの場合であり、 ± 1 3. 9 %であった。
また、 — 3 0〜 1 6 0 °Cの温度範囲における動的歪量 D 3 3の最 小値と前記特性の変動幅について次のことがわかつた。
• 動的歪量 D 3 3の最小値は、 駆動電界振幅が 1 5 0 0 V Z m mで 温度が 2 0 °Cの場合であり、 2 9 5 p m / Vであった。
• 変位の変動幅の最大値は、 駆動電界振幅が 1 5 0 O V/mmの場 合であり、 ± 1 1. 1 %であった。
• 見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 V / mmの場合であり、 + 3 2. 4 %であった。
, 変位 Z見かけの動的容量の変動幅の最大値は、 駆動電界振幅が 1 5 0 0 VZmmの場合であり、 ± 2 4. 5 %であった。
(実施例 6 ) リーク電流と容量の分離
本例においては、 実施例 1〜 5において示したごとく、 見かけの 動的容量が 8 0 °C以上で上昇する原因が、 実施例 5のようにリーク 電流の増加によるものかどうかを検討するために、 実施例 1、 実施 例 4および比較例 1で作製した圧電セラミックス. (単板) を用いて 動的容量の温度特性を評価した。
ここで、 動的容量の測定は、 電界強度 2 0 0 0 V/mm ( 0 - 9 7 0 V) の高電圧を、 周波数 1 H z の三角波で印加し駆動した場合 において、 下記の式 A 9により、 分極量—電圧ヒステリシスループ から分極量を測定し、 これをもとに高電界下における駆動における 注入電荷量を動的容量として算出した。
動的容量 C = Q/V A 9 ここで、 V : 印加電圧 (= 9 '7 0 V) 、 Q : 最大電荷 [C] であ る。
実施例 1、 実施例 4で作製した単板は 8 0 °C以上の温度領域にお いて.、 電圧を繰返し印加したときに、 リーク電流により、 分極量の ゼロ点がドリ フ トする現象が起きた。 従って、 ヒステリシスループ を評価するために、 1 0回繰返しの電圧印加で観測された電圧一分 極量特性を、 電圧 =ゼ口の時に、 分極量 =ゼロになるように補正し て、 かつ、 線形抵抗が並列についているモデルでリーク電流を除去 して、 ヒステリシスループを得た。 このヒステリシスループから求 められる動的容量は、 見かけの動的容量とは異なり、 リーク電流を 除いた、 誘電成分と分極反転成分と分極回転成分に由来する充電電 荷を、 印加電圧で除したものである。 このヒステリシスループを 1 0回繰り返し、 最大電荷量の平均値を分極量とした。
一方、 比較例 1で作製した単板は電圧を繰返し印加しても、 分極 量のゼロ点がドリフ トする現象はなかった。 ヒステリシスループの 評価は前記と同様に 1 0回繰返しの電圧印加で観測された最大電荷 量の平均値を分極量とした。
また、 このようにして求めた単板の動的容量にァクチユエ一夕の 素子枚数である 4 0 を乗じて、 実施例 1、 実施例 4、 比較例 1で作 製したァクチユエ一夕の見かけの動的容量と比較.した結果をそれぞ れ図 3 1、 図 3 2, 図 3 3に示す。
図 3 1、 図 3 2, 図 3 3から知られるごとく、 比較例 1の (ァク チユエ一夕の見かけの動的容量) と (単板の動的容量 X 4 0 ) の値 はほぼ一致しているが、 実施例 1、 4においては (ァクチユエ一夕 の見かけの動的容量) と (単板の動的容量 X 4 0 ) の値は、 大きく 異なった。 (ァクチユエ一夕の見かけの動的容量) は 8 0 °C以上の 高温領域において、 上昇するが、 (単板の動的容量 X 4 0 ) の値は ほぼ一定であった。 一 3 0〜 1 6 0 °Cの温度範囲における (単板の 動的容量 X 4 0 ) の変動幅は、 実施例 1では ± 7. 6 %、 実施例 4 では ± 2. 2 %であった。
以上のことから、 本発明の圧電ァクチユエ一夕は、 およそ 8 0 °C 以上の高温におけるリーク電流を低減するか、 逆に 8 0 °C以下での リーク電流を増加させれば、 一 3 0〜 1 6 0 °Cの広い温度範囲にお いて、 駆動電界強度 2 0 0 0 V/mmの高電界駆動でも、 見かけの 動的容量の変動幅が低減できることがわかった。 その達成可能レべ ルは単板の動的容量の温度特性と同程度までと考えられる。
(実施例 7 ) 動的歪量の下限値の規定
実施例 5 において示したように、 駆動電界強度を 1 0 0 0 V/m mよりも小さくすることにより、 — 3 0〜 1 6 0 °Cの広い温度範囲 において、 見かけの動的容量の変動幅は小さくすることが出来る。 しかし、 駆動電界強度を小さくすると、 動的歪量も小さくなる。 本 実施例では、 本発明のァクチユエ一夕の駆動電界強度を小さく した 場合の動的歪量を求める。
実施例 1〜 5で作製したァクチユエ一夕の駆動電界強度と 2 0 °C における動的歪量の関係を図 3 4に示す。 ァクチユエ一夕として必 要な駆動電界強度の下限値である 1 0 0 V/mmにおいて、 動的歪 量は 2 5 0 p m / V以上であることがわかった。 .
(実施例 8 ) 動的歪量の低電界での温特の規定
本実施例では、 1 0 0 0 V / m mより も低い駆動電界強度が小さ く、 動的歪量が小さい場合の変位の変動幅を求める。
このためには、 圧電ァクチユエ一夕への印加電圧を下げて測定す べきであるが、 本実施例で作製した、 圧電ァクチユエ一夕では電界 強度 5 0 0 V/mm未満においては、 変位が小さく、 測定精度が悪 化する可能性がある。 加えて、 その温度特性評価はさらに困難であ る。 .
そこで、 単板の圧電横歪定数 d 3 iの測定をすれば、 変位の絶対値 の推定は困難であるが、 変位の温度特性の推定は可能であるため、 本実施例では、 共振一反共振法により、 単板の圧電横歪定数 d 3 ,の 測定を実施した。
実施例 5で作製した単板の圧電 d 3 ,定数の温度特性を測定値と、 実施例 5で得た 1 0 0 0〜 2 0 0 O V/mmの駆動電界強度におけ る動的歪量とを、 それぞれ、 2 0 °Cの値で規格化して比較した結果 を図 3 5に示す。 一 3 0〜 8 0 °Cの温度範囲における単板の圧電 d 31定数の変動幅は、 実施例 5では ± 7. 8 %であった。 また、 _ 3 0〜 1 6 0 °Cの温度範囲における単板の圧電 d31定数の変動幅は、 実施例 5では ± 7. 8 %であった。 この値は、 1 0 0 0〜 2 0 0 0 VZmmの駆動電界強度における動的歪量の変動幅と同等もしくは 小さい値であった。
以上のことから、 本発明のァクチユエ一夕は、 駆動電界強度を 1 0 0 O V/mmより小さく しても、 — 3 0〜 1 6 0 °Cの広い温度範 囲において、 変位の変動幅が低減できることがわかった。
(表 1)実施例 1
度 見かけの動的容量
駆動電界強度: EF 温 変位 変位/見かけの動的容量 変位/ (見かけの動的容量) 5 動的歪量
[。c] EnF] L M m] [m/F] [m/ F] [pm/V]
160 118.9 17.18 144.6 0.0498 443
120 93.8 15.17 161.7 0.0495 391
80 78.2 14.72 188.1 0.0526 379
50 74.0 14.94 202.0 0.0549 385
EF=2000V/mm
20 74.6 15.67 210.0 0.0574 404 一 10 76.5 15.22 199.0 0.0550 392
-30 77.9 15.00 192.5 0.0537 387
-40 78.1 14.44 184.9 0.0517 372
160 ' 119.9 11.36 94.8 0.0328 390
120. 92.7 10.35 111.7 0.0340 356
80 76.4 9.96 130.5 0.0361 342
50 72.2 10.19 141.2 0.0379 350
EF=1500V/mm
20 71.7 10.75 149.8 0.0401 369 一 10 74.1 10.41 140.6 0.0383 358
- 30 75.7 10.02 132.3 0.0364 344
-40 75.7 9.40 124.2 0.0342 323
160 120.9 6.44 53.2 0.0185 332
120 88.8 6.16 69.3 0.0207 317
80 71.2 6.04 85.0 0.0227 312
50 66.7 6.16 92.2 0.0238 317
EF=1000V/mm
20 67.1 6.32 94.3 0.0244 326 一 10 69.6 6.16 88.5 0.0233 317
-30 70.8 5.88 83.0 0.0221 303
-40 70.8 5.43 76.6 0.0204 280
(表 2)実施例 2
度 見かけの動的容量
駆動電界強度: EF 温 変位 変位/見かけの動的容量 変位/ (見カゝけの動的容量 )°·5 動的歪量
[。C] [nF] [m/F] [m/ F] [pm/V]
160 160.4 21.98 137.1 0.0549 566
120 119.0 18.48 155.4 0.0536 476
80 95.7 17.38 181.6 0.0562 448
50 87.9 16.64 189.3 0.0561 429
EF=2000V/mm
20 85.3 17.10 200.4 0.0585 441
-10 85.3 17.29 202.6 0.0592 446
- 30 85.3 17.93 210.1 0.0614 462
- 40 85.3 17.66 206.9 0.0604 455
160 158.1 14.53 91.9 0.0365 499
120' 113.4 12.60 111.1 0.0374 433
80 92.8 11.68 125.9 0.0383 401
50 82.5 11.31 137.1 0.0394 388
EF=1500V/mm
20 82.5 11.59 140.5 0.0403 398
- 10 82.5 12.14 147.2 0.0423 417
-30 85.9 12.14 141.3 0.0414 417
- 40 85.9 12.1 141.3 0.0414 417
160 144.8 8.18 56,5 0.0215 422
120 98.3 7.36 74.9 0.0235 379
80 87.9 7.36 83.7 0.0248 379
50 82.8 7.08 85.6 0.0246 365
EF=1000V/mm
20 77.6 6.90 88.9 0.0248 355 一 10 82.8 7.45 90.0 0.0259 384
- 30 82.8 8.09 97.8 0.0281 417
-40 82.8 8.00 96.7 0.0278 412
(表 3)実施例 3
見かけの動的容量
駆動電界強度: EF 変位 変位/見かけの動的容量 変位/ (見かけの動的容量产5 動的歪量
C°C] [nF] L i m] [m/F] [m/ F] [pm/V]
160 138.7 20.15 145.3 0.0541 519
120 106.4 17.23 161.9 0.0528 444
80 81.6 16.44 201.4 0.0575 424
50 80.8 16.49 204.1 0.0580 425
EF=2000V/mm
20 80.2 17.38 216.7 0.0614 448
- 10 ' 82.2 17.92 218.1 0.0625 462
-30 82.4 17.92 217.4 0.0624 462
-40 80.2 17.48 217.9 0.0617 450
160 147.5 14.11 95.7 0.0367 485
120 107.5 12.08 112.4 0.0368 415
80 86.8 11.19 128.9 0.0380 384
50 79.9 11.44 143.1 0.0405 393
EF=1500V/mm
20 78.8 12.08 153.3 0.0430 415
-10 81.2 12.38 152.4 0.0434 425
- 30 82.3 12.53 152.1 0.0437 430
-40 80.9 11.98 148.2 0.0421 411
160 152.4 8.42 55.2 0.0216 434
120 105.3 7.28 69.1 0.0224 375
80 82.2 6.73 82.0 0.0235 347
50 74.4 6.78 91.2 0.0249 350
EF=1000V/
20 74.1 6.93 93.6 0.0255 357
- 10 76.6 7.38 96.3 0.0267 380
-30 77.7 7.48 96.2 0.0268 385 一 40 75.8 7.18 94.8 0.0261 370
(表 4)実施例 4
度 見かけの動的容量
駆動電界強度: EF 温 変位 変位/見かけの動的容量 変位/ (見かけの動的容量 )Q-5 動的歪量
[。C] [nF] ί ϊίί] [m/F] [m/7"F] [pm/V]
160 168.1 26.21 155.9 0.0639 675
120 131.9 23.26 176.4 0.0641 600
80 106.0 21.89 206.4 0.0672 564
50 100.9 21.70 215.2 0.0683 559
EF=2000V/mm
20 98.3 22.16 225.5 0.0707 571
-10 ' 95.4 22.80 239.0 0.0738 588
-30 93.8 21.70 231.2 0.0708 559
-40 77.7 19.40 249.8 0.0696 500
160 165.0 16.64 100.9 0.0410 572
120 134.0 15.91 118.7 0.0435 546
80 106.5 14.90 139.8 0.0456 512
50 99.7 1.4.62 146.7 0.0463 502
EF=1500V/mm
20 97.3 15.45 158.8 0.0495 531
-10 100.3 15.63 155.8 0.0493 537
-30 97.7 15.36 157.2 0.0491 527
-40 73.5 13.61 185.1 0.0502 467
160 160.4 8.37 52.2 0.0209 431
120 124.1 8.92 71.8 0.0253 460
80 98.3 8.55 87.0 0.0273 441
50 93.1 8.28 88.9 0.0271 427
EF=1000V/mm
20 90.0 9.01 100.1 0.0300 465
-10 95.2 9.56 100.5 0.0310 493
- 30 91.8 9.38 102.2 0.0310 483 一 40 68.3 8.46 123.9 0.0324 436
(表 5)実施例 5
けの動的容量
■駆動電界強度: EF 温度 見か 変位 変位/見かけの動的容量 変位/ (見かけの動的容量)11 ·5 動的歪量 ra CnF] [/x mj [m/F] [m/ F] - Cpm/V]
160 129.8 19.77 152.3 0.0549 510
120 97.7 17.47 178.9 0.0559 450
80 85.6 17.24 201.3 0.0589 444
50 81.9 .17.01 207.8 0.0594 438
EF=2000V/'mm
20 83.2 17.93 215.5 0.0622 462
-10 87.6 18.62 212.5 0.0629 480
-30 88.6 19.31 218.1 0.0649 498
-40 85.3 19.08 223.8 0.0653 492
160 129.6 13.79 106.5 0.0383 474
120 98.1 12.18 124.2 0.0389 418
80 85.4 11.72 137.3 0.0401 403
50 80.0 11.49 143.7 0.0406 395
EF=1500V,画
20 81.1 12.18 150.2 0.0428 418
- 10 85.9 12.41 144.5 0.0423 426
-30 87.0 13.33 153.3 0.0452 458
-40 83.6 13.10 156.8 0.0453 450
160 131.6 8.74 66.4 0.0241 450
120 96.2 7.13 74.1 0.0230 367
80 83.5 6.90 82.6 0.0239 355
50 75.8 6.90 91.0 0.0251 355
EF=1000V/mm
20 76.9. 7.59 98.6 0.0274 391 一 10 82.6 7.82 94.6 0.0272 403
-30 83.2 8.51 102.3 0.0295 438 一 40 79.4 8.28 104.2 0.0294 427
160 56.8
120 53.8
80 54.2
EF=2V/mm 50 56.0
(静電容量) 20 57.8
一 10 59.6
-30 56.3
-40 50.4
(表 6)比較例 1
けの動的容量
駆動電界強度: EF 温度 見か 変位 変位/見かけの動的容量 変位/ (見かけの動的容量) Q'5 動的歪量
[°C] CnF] L Ai m] Cm/F] [m/V"F] [pm/V]
160 180.8 26.80 148.2 0.0630 691
120 150.9 25.60 169.6 0.0659 660
70 125.7 24.00 190.9 0.0677 619
EF=2000V/mm
20 108.9 22.70 208.4 0.0688 585
-30 94.8 21.45 226.3 0.0697 553
-40 92.0 21.20 230.5 0.0699 546
160 189.5 20.00 105.6 0.0459 687
120 154.9 18.80 121.3 0.0478 646
70 126.3 17.50 138.6 0.0492 601
EF=1500V/mm
20 108.1 16.60 153.5 0.0505 570 一 30 94.4 16.10 170.5 0.0524 553
-40 91.7 16.00 174.6 0.0528 549
(表 7)比較例 2
かけの動的容量
駆動電界強度: EF 温度 見 変位 変位/見かけの動的容量 変位/ (見かけの動的容量 )α·5 動的歪量 ra CnF] L jii m] [m/F] [m/ F] Cpm/V]
160 290,0 37.50 129.3 0.0696 966
120 228.1 34.00 149.1 0.0712 876
70 148.4 29.30 1975 0.0761 755
EF=2000V/mm
20 97.7 22.30 228.3 0.0714 575
-30 72.8 18.72 257.2 0.0694 482
-40 67.8 18.00 265.5 0.0691 464
160 351.3 33.0.0 93.9 0.0557 1133
120 273.3 29.20 106.8 0.0559 1003
70 174.0 23.80 136.8 0.0571 817
EF=1500V/mm
20 109.7 18.00 164.1 0.0543 618
- 30 78.4 14.67 187.0 0.0524 504
-40 72.2 14.00 194.0 0.0521 481
(表 8)比較例 3
見かけの動的容量
駆動電界強度: EF 温度 変位 変位/見かけの動的容量 変位/ (見かけの動的容量) Q'5 動的歪量
C°C] CnF] L/t m] [m/F] [m/ F] [pm/V]
160 218.4 35.50 162.6 0.0760 915
120 191.3 34.00 177.7 0.0777 876
70 163.4 32.50 198.9 0.0804 838
EF=2000V/mm
20 139.2 30.40 218.3 0.0815 784
-30 114.6 26.40 230.4 0.0780 680
-40 109.6 25.60 233.5 0.0773 660
160 225.8 26.00 115.1 0.0547 893
120 194.5 24.20 124.4 0.0549 831
70 165.9 22.60 136.2 0.0555 776
EF=1500V/mm
20 140.1 21.30 152.0 0.0569 731
-30 115.5 19.30 167.1 0.0568 663
-40 110.5 18.90 171.0 0.0568 649
(表 9)比較例 4
温度 見かけの動的容量 位/見かけの動的容量
駆動電界強度: EF 変位 変 変位/ (見力、けの動的容量) °·5 動的歪量
[°C] [nF] Lju m] [m/F] [m/ F] [pm/V]
160 157.4 21.80 138.5 0.0549 562
120 127.5 19.80 155.3 0.0555 510
70 102.7 18.30 178.3 0.0571 472
EF=2000V/mm
20 85.7 17.30 201.8 0.0591 446
-30 76.1 16.22 213.0 0.0588 418
-40 74.2 16.00 215.5 0.0587 412
160 161.2 16.20 100.5 0.0403 556
120 128.0 14.40 112.5 0.0403 495
70 102.6 13.00 126.7 0.0406 446
EF=1500V/mra
20 84.1 12.50 148.7 0.0431 429
- 30 74.7 11.92 159.6 0.0436 409
-40 72.8 11.80 162.2 0.0437 405
(表 10)比較例 5
けの動的容量
駆動電界強度: EF 温度 見か 変位 変位/見かけの動的容量 変位/ (見かけの動的容量) 1X5 動的歪量
[。C] [nF] ΐ μ ϊϋ] [m/F] [m/ F] [pm/V]
160 99.6 15.00 150.6 0.0475 387
120 83.0 13.90 167.4 0.0482 358
70 66.4 12.80 192.9 0.0497 330
EF=2000V/mm
20 58.4 12.00 205.5 0.0497 309
-30 52.5 12.17 231.7 0.0531 314
-40 51.3 12.20 237.7 0.0539 314
160 98.6 10.60 107.5 0.0338 364
120 81.7 10.00 122.4 0.0350 343
70 67.1 9.00 134.1 0.0347 309
EF=1500V/mra
20 56.8 8.60 151.5 0.0361 295
-30 50.4 8.93 177.4 0.0398 307 一 40 49.1 9.00 183.4 0.0406 309
(表 11)
見かけの動的容量 駆動電界強度 温度範囲
(V/mm) (°C) 平均値 変動幅
(nF) (nF) (nF) (%) 一 30〜80 78.2 74.0 76.1 2.8
2000
一 30〜160 118.9 74.0 96.4 23.3
— 30〜80 76.4 71.7 74.1 3.1 実施例 1 1500
一 30〜160 119.9 71.7 95.8 25.1
-30~80 71.2 66.7 69.0 3.2
1000
-30~160 120.9 66.7 93.8 28.9
-30~80 95.7 85.3 90.5 1 _ 5.7
2000
-30~160 160.4 85.3 122.8 30.5
-30~80 92.8 82.5 87.6 5.9 実施例 2 1500
一 30〜160 158.1 82.5 120.3 31.4
1000 一 30〜80 87.9 77.6 82.8 6.3 一 30〜160 144.8 77.6 111.2 30.2
-30~80 82.4 80.2 81.3 1.4
2000
一 30〜160 138.7 80.2 109.5 26.7 実施例 3 1500 一 30〜80 86.8 78.8 82.8 4.8
-30~160 147.5 78.8 113.2 30.3
-30~80 82.2 74.1 78.1 5.2
1000
一 30〜160 152.4 74.1 113.2 34.6 一 30〜80 106.0 93.8 99.9 6.1
2000
-30~160 168.1 93.8 131.0 28.4 実施例 4 1500 一 30〜80 106.5 97.3 101.9 4.6 一 30〜160 165.0 97.3 131.1 25.8
1000 一 30~80 98.3 90.0 94.1 4.4 一 30〜160 160.4 90.0 125.2 28.1
-30~80 88.6 81.9 85.2 3.9
2000
— 30〜160 129.8 81.9 105.8 22.6 30~80 87.0
1500 一 80.0 83.5 4.2 一 30〜160 129.6 80.0 104.8 23.7 実施例 5
-30~80 83.5 75.8 79.7 4.9
1000
— 30〜160 131.6 75.8 103.7 26,9
-30~80 59.6 54.2 56.9 4.8
2
一 30〜膽 59.6 53.8 56.7 5.2
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000085_0001
(表 15)
見かけの動的容量
駆動電界強度 温度範囲
(V/mra) (。C) 最大値 最小値 平均値 田
(nF) (nF) (nF) (%)
-30~70 125.7 94.8 110.3 14.0
2000
— 30〜160 180.8 94.8 137.8 31.2 比較例 1 一 30〜70 126.3 94.4 110.4 14.5
1500
一 30〜160 189.5 94.4 141.9 33.5
— 30〜70 148.4 72.8 110.6 34.2
2000
-30~160 290.0 72.8 181.4 59.9 比較例 2
— 30〜70 174.0 78.4 126.2 37.9
1500
一 30〜160 351.3 78.4 214.9 63.5
139.0 17.6
2000 一 30〜70 163.4 114.6
比較例 3 一 30〜160 218.4 114.6 166.5 31.2
1500 一 30〜70 165.9 115.5 140.7 17.9 一 30〜: 160 225.8 115.5 170.6 32.3
-30~70 102.7 76.1 89.4 14.8
2000
比較例 4 一 30〜160 157.4 76.1 116.8 34.8
1500 一 30〜70 102.6 74.7 88.6 15.8
— 30〜160 161.2 74.7 117.9 36.7
-30~70 66.4 52.5 59.4 11.7
2000
-30~160 99.6 52.5 76.0 31.0 比較例 5
-30~70 67.1 50.4 58.7 14.3
1500
— 30〜160 98.6 50.4 74.5 32.4
Figure imgf000087_0001
Figure imgf000088_0001
(表 18)
変位/ (見力 >けの動的容量)2 駆動電界強度 温度範囲
(V/mm) CO 最大値 最小値 平均値
(m/VF) (m/ "F) (m/7"F) (%) 一 30〜70 0.0697 . 0.0677 0.0687 1.4
2000
一 30~160 0.0697 0.0630 0.0663 5.0 比較例 1
一 30〜マ 0 0.0524 0.0492 0.0508 3.1
1500
— 30〜160 0.0524 0.0459 0.0492 6.6 一 30〜70 0.0761 0.0694 0.0727 4.6
2000
一 30〜160 0.0761 0.0694 0.0727 4.6 比較例 2
一 30〜70 0.0571 0.0524 0.0547 4.3
1500
— 30〜160 0.0571 0.0524 0.0547 4.3
— 30〜70 0.0815 0.0780 0.0797 2.2
2000
— 30〜160 0.0815 0.0760 0.0787 3.5 比較例 3
-30~70 0.0569 0.0555 0.0562 1.3
1500
— 30〜: L60 0.0569 0.0547 0.0558 2.0 一 30〜70 0.0591 0.0571 0.0581 1.7
2000
-30~160 0.0591 0.0549 0.0570 3.6 比較例 4
— 30〜70 0.0436 0.0406. ' 0.0421 3.6
1500
-30~160 0.0436 0.0403 ' 0.0419 4.0
— 30〜70 0.0531 0.0497 0.0514 3.3
2000
-30~160 0.0531 0.0475 0.0503 5.5 比較例 5
-30~70 0.0398 0.0347 0.0373 6.8
1500
.—30〜: 160 0.0398 0.0338 0.0368 8.2

Claims

1 . 圧電セラミックスの表面に一対の電極を形成してなる圧電素 子を駆動源として有する圧電ァクチユエ一夕であって、 該圧電ァク チユエ一夕に電圧を印加して、 電界強度 1 0 O VZmm以上の一定 の振幅を有する電界駆動条件で駆動させた場合に、 該圧電ァクチュ
エー夕が下記の要件 ( a ) 〜 ( c ) の内の少なく とも一つの要件を 満足することを特徴とする、 圧電ァクチユエ一夕。
( a ) 下記の式 ( 1 ) で表される見かけの動的容量 C [F] の温 度変化による変動幅 [ ] 力 一 3 0〜 8 0 °Cの特定温度範囲 において ± 1 1 %以内であること (但し、囲 C [ F ] は、 該圧電ァク チュェ一夕の見かけの動的容量であって、 該圧電ァクチユエ一夕と ンデンサとを直列に接続し 、 該圧電ァクチュエー夕及び該コンデ ンザに電圧を印加したときに 、 該コンデンサに蓄積される電荷量 Q
[ C ] を該圧電ァクチユエ一夕に印加された電圧 V [ V] で除すこ とによつて算出されるものである)
W c (%) = [ { 2 X Cm / ( Γ
a X ' ^ ^ ni a X + 1 Γ m i n ) } - 1 ]
X 1 0 0 · • · · ( 1 )
(但し、 CM A Xは— 3 0〜 8 0 °Cにおける見かけの動的容量の最大 値、 C n i nは一 3 0〜 8 0 °Cにおける見かけの動的容量の最小値を 表す)
( b ) 下記の式 ( 2 ) で表される変位 L [nm] の温度変化によ る変動幅 WL [%] カ 、 一 3 0〜 8 0 °Cの特定温度範囲において土 1 4 %以内であること (但し、 L [^m] は該圧電ァクチユエ一夕 の変位である)
WL (%) = [ { 2 X L M A X / ( L B A X + LM I N) } - 1 ]
X 1 0 0 ( 2 ) (但し、 L m a χは— 3 0〜 8 0 °Cにおける変位の最大値、 L m i nは— 3 0〜 8 0 °Cにおける変位の最小値を表す)
( c ) 下記の式 ( 3 ) で表される L ZCの温度変化による変動幅 WL / C [%} 、 — 3 0〜 8 0 °Cという特定温度範囲において ± 1 2 %以内であること (但し、 C [ F ] は該圧電ァクチユエ一夕の見 かけの動的容量であり、 L [ a m] は該圧電ァクチユエ一夕の変位 であって、 該 C [F ] は、 該圧電ァクチユエ一夕とコンデンサとを 直列に接続し、 該圧電ァクチユエ一夕及び該コンデンサに電圧を印 加したときに、 該コンデンサに蓄積される電荷量 Q [C ] を該圧電 ァクチユエ一夕に印加された電圧 V [V] で除すことによって算出 されるものである)
WL / C ( ) = [ { 2 X ( L / C) i a x/ ( (L / C ) B a s +
(L /C ) „ ., n ) } 一 1 ] X 1 0 0 · · ( 3 )
(但し、 (L / C) n a xは一 3 0〜 8 0 °Cにおける L/ Cの最大値 、 (L /C ) ra i nは一 3 0〜 8 0 °Cにおける L ZCの最小値を表す )
2. 前記要件 ( a ) と前記要件 ( b ) の両方を満足することを特 徴とする、 請求の範囲第 1項に記載の圧電ァクチユエ一夕。
3 . 前記要件 ( a ) 〜 ( c ) のすベてを満足することを特徴とす る、 請求の範囲第 1項に記載の圧電ァクチユエ一夕。
4. 下記の要件 ( d ) を更に満足することを特徴とする、 請求の 範囲第 1〜 3項のいずれか一項に記載の圧電ァクチユエ一夕。
( d ) 下記の式 ( 4 ) で表される L ZCQ' 5の温度変化による変 動幅 WW C Q' 5が、 一 3 0〜 8 0 °Cという特定温度範囲において土 1 2 %以内であること (但し、 L / CG 5は、 前記圧電ァクチユエ一 夕の変位 L [fi m] の、 前記見かけの動的容量 C [F ] の自乗根に 対する比である) WL/ C°- 5 (%) = [ { 2 X (LZC。.5) m a xZ
( (L/C0· 5) m a x + (L/C0· 5) B i n) }
- 1 ] X 1 0 0 ( 4 )
(但し、 (LZC0.5) ma xは一 3 0〜 8 0 °Cにおける L/C°.5の 最大値、 ( 。。' 5) ^11は一 3 0〜 8 0 〇にぉける 。°' 5の 最小値を表す)
5. 下記の要件 ( e ) を更に満足することを特徴とする、 請求の 範囲第 1 〜 4項のいずれか一項に記載の圧電ァクチユエ一夕。
( e ) 前記圧電ァクチユエ一夕の電界印加方向の歪みを電界強度 で除することによって算出される動的歪量が、 — 3 0〜 8 0 °Cとい う特定温度範囲において 2 5 0 p m/V以上であること
6. 下記の要件 ( f ) を更に満足することを特.徴とする、 請求の 範囲第 1〜 5項のいずれか一項に記載の圧電ァクチユエ一夕。
( f ) 前記変動幅 Wc [%] が、 — 3 0〜: 1 6 0 °Cという特定温 度範囲において ± 3 5 %以内であること
7. 下記の要件 ( g) を更に満足することを特徴とする、 請求の 範囲第 1 〜 6項のいずれか一項に記載の圧電ァクチユエ一夕。
( g ) 前記変動幅 WL [%] が、 — 3 0〜 1 6 0 °Cという特定温 度範囲において ± 1 4 %以内であること
8. 下記の要件 ( h) を更に満足することを特徴とする、 請求の 範囲第 1 〜 7項のいずれか一項に記載の圧電ァクチユエ一夕。
( h ) 前記変動幅 WL/(; [%] 力 一 3 0〜: L 6 0 °Cという特定 温度範囲において ± 3 5 %以内であること
9 . 下記の要件 ( i ) を更に満足することを特徴とする、 請求の 範囲第 1 〜 8項のいずれか一項に記載の圧電ァクチユエ一夕。
( i ) 前記変動幅 WL/ C°' 5 [%] が、 — 3 0〜 1 6 0。Cという特 定温度範囲において ± 2 0 %以内であること
1 0. 圧電セラミックスの表面に一対の電極を形成してなる圧電 素子を駆動源として有する圧電ァクチユエ一夕であって、 該圧電ァ クチユエ一夕に電圧を印加して、 電界強度 1 0 O VZmm以上の一 定の振幅を有する電界駆動条件で駆動させた場合に、 該圧電ァクチ ユエ一夕は、 下記の要件 ( j ) 〜 ( 1 ) の内の少なく とも一つの要 件を満足することを特徴とする、 圧電ァクチユエ一夕。
( J ) 下記の式 ( 5 ) で表される見かけの動的容量 C [F ] の温 度変化による変動幅 We [%] 、 一 3 0〜: I 6 0 °Cという特定温 度範囲において ± 3 0 %以内であること (但し、 C [ F ] は、 該圧 電ァクチユエ一夕の見かけの動的容量であって、 該圧電ァクチユエ —夕とコンデンサとを直列に接続し、 該圧電ァクチユエ一夕及び該 コンデンサに電圧を印加したときに、 該コンデンサに蓄積される電 荷量 Q [C] を該圧電ァクチユエ一夕に印加された電圧 V [V] で 除すことによって算出されるものである)
Wc (%) = [ { 2 X Cm a x/ (CB a x + CD i n) } - 1 ]
X 1 0 0 ( 5 )
(但し、 Cma xは _ 3 0〜 1 6 0 °Cにおける見かけの動的容量の最 大値、 Cm i nは一 3 0〜 1 6 0 °Cにおける見かけの動的容量の最小 値を表す)
( k ) 下記の式 ( 6 ) で表される変位 L [ m] の温度変化によ る変動幅 [%] カ^ — 3 0〜 1 6 0 °Cという特定温度範囲にお いて ± 1 4 %以内であること (但し、 L [ urn] は、 該圧電ァクチ ユエ一夕の変位である)
WL (%) = [ { 2 X LB a x/ (LB ax + Ln i n) } - 1 ]
X 1 0 0 ( 6 )
(但し、 LE a xは _ 3 0〜; L 6 0 °Cにおける変位の最大値、 LB i nは 一 3 0〜 1 6 0 °Cにおける変位の最小値を表す) ( 1 ) 下記の式 ( 7 ) で表される L /Cの温度変化による変動幅 WL / C [%] が、 一 3 0〜: L 6 0 °Cという特定温度範囲において土 3 5 %以内であること (但し、 C [ F ] は該圧電ァクチユエ一夕の 見かけの動的容量であり、 L ( a m) は該圧電ァクチユエ一夕の変 位であって、 該 C [ F ] は、 該圧電ァクチユエ一夕とコンデンサと を直列に接続し、 該圧電ァクチユエ一夕及び該コンデンサに電圧を 印加したときに、 該コンデンサに蓄積される電荷量 Q [C ] を該圧 電ァクチユエ一夕に印加された電圧 V [V] で除すことによって算 出されるものである)
WL / C (%) = [ { 2 X (L / C ) m a x/ ( (L / C ) m a x +
(L / C ) ffl i n) } - 1 ] X 1 0 0 - - ( 7 ) (但し、 (LZC) maxは _ 3 0〜 1 6 0 °Cにおける L / Cの最大 値、 ( L / C ) m i nは一 3 0〜 1 6 0 °Cにおける L / Cの最小値を 表す)
1 1 . 前記要件 ( j ) と前記要件 (k ) の両方を満足することを 特徴とする、 請求の範囲第 1 0項に記載の圧電ァクチユエ一夕。
1 2. 前記要件 ( j ) 〜 ( 1 ) のすベてを満足することを特徴と する、 請求の範囲第 1 0項に記載の圧電ァクチユエ一夕。
1 3 . 下記の要件 (m) を更に満足することを特徴とする、 請求 の範囲第 1 0〜 1 2項のいずれか一項に記載の圧電ァクチユエ一夕
(m) 下記の式 ( 8 ) で表される L ZCD' 5の温度変化による変 動幅 WL / C°' 5 [%] 力 S、 一 3 0〜 1 6 0 °Cという特定温度範囲にお いて ± 2 0 %以内であること (但し、 L /CQ' 5は、 前記圧電ァク チユエ一夕の変位 L [ m] の、 前記見かけの動的容量 C [F ] の 自乗根に対する比である)
WL/ C。- 5 (%) = [ { 2 X (L /C0· 5) m a xZ ( (L/C。· " Dax + (L /C。· " B i n) }
- 1 ] X 1 0 0 ( 8 )
(但し、 ( /0 5) ^!(はー 3 0 1 6 0 °< とぃぅ特定温度範囲 における LZC°' 5の最大値、 (L/C。.5) n i nは一 3 0 1 6 0 °Cという特定温度範囲における L/ C 5の最小値を表す)
1 4. 下記の要件 ( n ) を更に満足することを特徴とする、 請求 の範囲第 1 0 1 3項のいずれか 項に記載の圧電ァクチユエ —夕
(n ) 前記圧電ァクチュェ一夕の電界印加方向の歪みを電界強度 で除することによつて算出される動的歪量が、 3 0 1 6 0 °cと いう特定温度範囲において 2 5 0 P mZ V以上であること
1 5. 正の抵抗温度係数を有する P T C抵抗体を有し、 該 P T C 抵抗体と負の抵抗温度係数を有する前記圧電セラミッタスとは 気的に並列に接続されていると共に 、 該 P T C抵抗体と該圧電セラ ミックスとの温度が略等し <なるような位置関係で配置されている ことを特徴とする、 請求の範囲第 1 0 1 4項のいずれか一項に pd 載の圧電ァクチユエ一夕
1 6. 前記 P T C抵抗体が、 チタン酸バリウム系半導体であり、 曰度 8 0 °C以上 y
の温度領域において、 正の抵抗温度係数を有す とを特徴とする 、 請求の範囲第 1 5項に記載の圧電ァクチユエ一夕
1 7. 前記圧電ァクチユエ一夕が、 前記圧電素子として、 複数の 刖記圧電セラミックスが積層されてなる積層型圧電素子を有し 、 燃 料噴射弁に用いられることを特徴とする、 請求の範囲第 1 1 6項 のいずれか 項に記載の圧電ァクチユエ一夕。
1 8. 前記圧電セラミックスが、 L i K、 及び Ν aから選ばれ る少なく とも 種を含有するアルカリ金属含有圧電セラミックスか らなることを特徴とする、 請求の範囲第 1〜 1 7項のいずれか一項 に記載の圧電ァクチユエ一夕。
1 9. 前記圧電セラミックスが鉛を含有していないことを特徴と する、 請求の範囲第 1〜 1 8項のいずれか一項に記載の圧電ァクチ ユエ一夕。
2 0. 前記圧電セラミックスが、 一般式 : { L i x (K,.y N a y ) , -x } { N b ,.z_w T a z S bw } O 3 (但し、 0≤ x≤ 0. 2、 0 ≤ y≤ 1 , 0≤ z ≤ 0 . 4、 0≤ w≤ 0. 2、 x + z + w> 0 ) で 表される等方性べ口ブスカイ ト型化合物を主相とする多結晶体から なると共に、 該多結晶体を構成する各結晶粒の特定の結晶面が配向 している結晶配向圧電セラミックスからなることを特徴とする、 請 求の範囲第 1〜 1 9項のいずれか一項に記載の圧.電ァクチユエ一夕
2 1 . 前記結晶配向圧電セラミックスにおいて、 前記一般式 : { L i x (K,.y N ay) , _x } { N b ,_z.w T a z S b w } 03における x 、 y、 及び z力 下記の式 ( 9 ) 及び式 ( 1 0 ) の関係を満足する ことを特徴とする、 請求の範囲第 2 0項に記載の圧電ァクチユエ一 夕。
9 X — 5 z 一 1 7 w≥ - 3 1 8 ( 9 )
― 1 8. 9 X — 3 . 9 z ― ■5 . 8 w≤ - 1 3 0 · · ( 1 0 )
2 2 晶配向圧電セラ — » ックスは、 ロッ トゲ一リングによ る凝立方 { 1 0 0 } 面の配向度が 3 0 %以上であり、 かつ、 1 0〜
1 6 0 °cの温度範囲おいて、 結晶系が正方晶であることを特徴とす 、 m求の範囲第 2 0項又は第 2 1項に記載の圧電ァクチユエ一夕
PCT/JP2005/017231 2004-09-13 2005-09-13 圧電アクチュエータ WO2006030943A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20050785898 EP1791193B1 (en) 2004-09-13 2005-09-13 Piezoelectric actuator
US11/717,796 US7443085B2 (en) 2004-09-13 2007-03-13 Piezoelectric actuator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004266110 2004-09-13
JP2004-266110 2004-09-13
JP2005-228396 2005-08-05
JP2005228396A JP4878133B2 (ja) 2004-09-13 2005-08-05 圧電アクチュエータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/717,796 Continuation US7443085B2 (en) 2004-09-13 2007-03-13 Piezoelectric actuator

Publications (1)

Publication Number Publication Date
WO2006030943A1 true WO2006030943A1 (ja) 2006-03-23

Family

ID=36060186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017231 WO2006030943A1 (ja) 2004-09-13 2005-09-13 圧電アクチュエータ

Country Status (4)

Country Link
US (1) US7443085B2 (ja)
EP (1) EP1791193B1 (ja)
JP (1) JP4878133B2 (ja)
WO (1) WO2006030943A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595889B2 (ja) * 2006-06-05 2010-12-08 日立電線株式会社 圧電薄膜素子の製造方法
DE102006026644A1 (de) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Piezoelektrischer Aktor
US7987728B2 (en) * 2006-07-07 2011-08-02 The University Of Houston System Piezoceramic-based smart aggregate for unified performance monitoring of concrete structures
JP5391395B2 (ja) * 2007-10-15 2014-01-15 日立金属株式会社 圧電薄膜付き基板及び圧電素子
JP4872947B2 (ja) * 2008-02-27 2012-02-08 株式会社デンソー 燃料噴射弁制御装置及び燃料噴射弁制御システム
JP4724728B2 (ja) * 2008-03-31 2011-07-13 株式会社デンソー 積層型圧電素子の製造方法
JP4567768B2 (ja) * 2008-05-30 2010-10-20 株式会社デンソー 積層型圧電素子の製造方法
FR2959877B1 (fr) * 2010-05-06 2013-06-14 Renault Sa Procede de fabrication d'un actionneur a empilement de couches alternees d'electrode intercalaire et de materiau piezoelectrique
KR101618473B1 (ko) * 2011-06-27 2016-05-04 캐논 가부시끼가이샤 압전 소자, 진동파 모터 및 광학 장치
CN102709463B (zh) * 2012-06-28 2014-03-12 陈�峰 压电陶瓷封装装置的制作方法
US9324931B2 (en) 2013-05-14 2016-04-26 Tdk Corporation Piezoelectric device
US20140339458A1 (en) * 2013-05-14 2014-11-20 Tdk Corporation Piezoelectric ceramic and piezoelectric device containing the same
DE102013106186A1 (de) * 2013-06-13 2014-12-18 Epcos Ag Vorrichtung mit einem elektronischen Vielschichtbauelement und Verfahren zum Betrieb der Vorrichtung
US9873248B2 (en) * 2013-11-28 2018-01-23 Kyocera Corporation Piezoelectric element, piezoelectric member, liquid discharge head, and recording device each using piezoelectric element
US11444556B1 (en) * 2018-03-01 2022-09-13 John M. Leslie Piezoelectric electric energy generating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284600A (ja) * 1992-04-03 1993-10-29 Kunihiro Nagata 圧電セラミックス素子
JP2003046154A (ja) * 2001-07-30 2003-02-14 Ngk Insulators Ltd 圧電/電歪素子、圧電/電歪デバイスおよびそれらの製造方法
JP2004115293A (ja) * 2002-09-24 2004-04-15 Noritake Co Ltd 圧電セラミックス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601877A (ja) * 1983-06-20 1985-01-08 Nippon Soken Inc 積層型圧電体
JPH06232465A (ja) 1993-02-01 1994-08-19 Murata Mfg Co Ltd 積層型圧電アクチュエータ
JP3362473B2 (ja) * 1993-09-08 2003-01-07 株式会社村田製作所 圧電磁器組成物
JPH0779023A (ja) 1993-09-08 1995-03-20 Unisia Jecs Corp 圧電素子
JP3365832B2 (ja) 1993-09-08 2003-01-14 株式会社日立ユニシアオートモティブ 圧電素子
EP0827218A4 (en) * 1995-06-06 1999-09-08 Kasei Optonix PIEZOELECTRIC DEVICE AND METHOD FOR DRIVING SAID DEVICE
JP3670473B2 (ja) 1997-12-18 2005-07-13 京セラ株式会社 圧電磁器組成物
JP3827915B2 (ja) * 2000-05-11 2006-09-27 株式会社日本自動車部品総合研究所 圧電材料およびその製造方法
JP2002054526A (ja) * 2000-05-31 2002-02-20 Denso Corp インジェクタ用圧電体素子
JP4039029B2 (ja) 2001-10-23 2008-01-30 株式会社村田製作所 圧電セラミックス、圧電素子、および積層型圧電素子
US7101491B2 (en) * 2002-07-16 2006-09-05 Denso Corporation Piezoelectric ceramic composition and method of production of same, piezoelectric element, and dielectric element
JP2004155601A (ja) * 2002-11-05 2004-06-03 Nippon Ceramic Co Ltd 圧電磁器組成物
JP4480967B2 (ja) * 2003-01-23 2010-06-16 株式会社デンソー 圧電磁器組成物,圧電素子,及び誘電素子
JP4163068B2 (ja) * 2003-01-23 2008-10-08 株式会社デンソー 圧電磁器組成物,及び圧電素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284600A (ja) * 1992-04-03 1993-10-29 Kunihiro Nagata 圧電セラミックス素子
JP2003046154A (ja) * 2001-07-30 2003-02-14 Ngk Insulators Ltd 圧電/電歪素子、圧電/電歪デバイスおよびそれらの製造方法
JP2004115293A (ja) * 2002-09-24 2004-04-15 Noritake Co Ltd 圧電セラミックス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1791193A4 *

Also Published As

Publication number Publication date
JP2006108638A (ja) 2006-04-20
EP1791193B1 (en) 2012-06-13
EP1791193A1 (en) 2007-05-30
JP4878133B2 (ja) 2012-02-15
EP1791193A4 (en) 2010-03-24
US7443085B2 (en) 2008-10-28
US20070228874A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2006030943A1 (ja) 圧電アクチュエータ
JP4795748B2 (ja) 圧電アクチュエータ
WO2006030940A1 (ja) 圧電センサ
US20130330541A1 (en) Metal oxide
EP1835554B1 (en) Piezoelectric ceramic device and method of manufacturing the same
WO2006095716A1 (ja) 圧電/電歪磁器組成物及びその製造方法
JP4510140B2 (ja) 圧電磁器組成物,圧電素子及び誘電素子
JP4480967B2 (ja) 圧電磁器組成物,圧電素子,及び誘電素子
JP4156461B2 (ja) 圧電磁器組成物及びその製造方法並びに圧電素子
JPWO2014156015A1 (ja) 無鉛圧電磁器組成物、それを用いた圧電素子、装置、及び、無鉛圧電磁器組成物の製造方法
JP2009256182A (ja) 圧電/電歪磁器組成物の製造方法
CN100511746C (zh) 压电执行元件
JP5597368B2 (ja) 積層型電子部品およびその製法
WO2006093043A1 (ja) 積層型圧電体素子
JP5022926B2 (ja) 圧電磁器組成物,及び圧電素子
JP4877672B2 (ja) 圧電組成物
JP4868881B2 (ja) 圧電磁器組成物、圧電磁器、圧電アクチュエータ素子および回路モジュール
JP5011140B2 (ja) 圧電磁器組成物及びその製造方法並びに圧電素子
JP5894222B2 (ja) 積層型電子部品およびその製法
JP5935187B2 (ja) 圧電セラミックスおよびこれを用いた圧電アクチュエータ
JP2006143540A (ja) 圧電磁器組成物及びその製造方法
JP4968985B2 (ja) 圧電トランス
JP2002356372A (ja) 圧電磁器組成物及び圧電トランス
JP2011201741A (ja) 圧電/電歪セラミックス、圧電/電歪セラミックスの製造方法、圧電/電歪素子及び圧電/電歪素子の製造方法
JPH03104180A (ja) アクチュエータ用圧電セラミック組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005785898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11717796

Country of ref document: US

Ref document number: 200580030714.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005785898

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11717796

Country of ref document: US