WO2006030743A1 - 試料中のプロトン性溶媒量を局所的に測定する方法、装置 - Google Patents

試料中のプロトン性溶媒量を局所的に測定する方法、装置 Download PDF

Info

Publication number
WO2006030743A1
WO2006030743A1 PCT/JP2005/016771 JP2005016771W WO2006030743A1 WO 2006030743 A1 WO2006030743 A1 WO 2006030743A1 JP 2005016771 W JP2005016771 W JP 2005016771W WO 2006030743 A1 WO2006030743 A1 WO 2006030743A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
sample
small
magnetic field
pulse
Prior art date
Application number
PCT/JP2005/016771
Other languages
English (en)
French (fr)
Inventor
Kuniyasu Ogawa
Tomoyuki Haishi
Kohei Ito
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2006535878A priority Critical patent/JP4849623B2/ja
Priority to US11/575,173 priority patent/US7808237B2/en
Publication of WO2006030743A1 publication Critical patent/WO2006030743A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • G01R33/3415Constructional details, e.g. resonators, specially adapted to MR comprising surface coils comprising arrays of sub-coils, i.e. phased-array coils with flexible receiver channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3808Magnet assemblies for single-sided MR wherein the magnet assembly is located on one side of a subject only; Magnet assemblies for inside-out MR, e.g. for MR in a borehole or in a blood vessel, or magnet assemblies for fringe-field MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5617Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using RF refocusing, e.g. RARE
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present invention relates to a method and an apparatus for locally measuring the amount of a protic solvent in a sample.
  • Patent Document 1 is an example of such a technique.
  • Patent Document 1 discloses that a parameter including a 1H-NMR transverse relaxation time constant is used in designing a water-absorbent resin used in paper diapers and the like.
  • the 1H-NMR transverse relaxation time constant is a parameter related to the mobility of the molecular chain of the resin. The shorter the transverse relaxation time, the greater the degree of polymer chain entanglement and cross-linking. Yes.
  • the transverse relaxation time constant is obtained by the CPMG (Carr-Purcell-Meiboom-Gill) method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-106728
  • the water content can be calculated by obtaining the spin relaxation time constant for water molecules (protic solvent) present in the substance.
  • the method of applying a gradient magnetic field requires a long measurement time of 100 seconds or more and is not practical.
  • a method that feeds back the measurement results and uses it for control such as locally measuring the amount of water at a specific location in a substance and replenishing the substance with water based on the measurement results, Such a long measurement time is a big problem.
  • the present invention has been made in view of the above circumstances, and uses an NMR measurement result to It provides a technique for measuring the amount of local protic solvent at a specific location in a material in a relatively short time.
  • a plurality of echo signals corresponding to the excitation vibration magnetic field are sequentially applied to the specific portion of the sample placed in a static magnetic field by using a small RF coil smaller than the sample and sequentially applying the excitation vibration magnetic field multiple times.
  • a static magnetic field application unit that applies a static magnetic field to the sample
  • the T relaxation time constant is calculated from the intensity of the echo signal, and the calculated T relaxation time constant is calculated.
  • a calculation device comprising: a calculation unit that calculates the amount of the protic solvent at a specific location in the sample from 2 2
  • an echo signal is also obtained which is obtained by applying a local excitation magnetic field (0 and also generating a point force by applying a GO excitation vibration magnetic field).
  • ⁇ relaxation time constant transverse relaxation time constant
  • Mouth-tonic solvent amount for example, water content is measured. Part to be measured by small RF coil Since the pulse echo method is applied by limiting the position, the amount of local protic solvent can be measured in a short time.
  • static magnetic field refers to acquisition of an echo signal and a T relaxation time constant.
  • the magnetic field may not be completely stable, and there may be some fluctuation within the range.
  • the “echo signal” corresponds to the oscillating magnetic field for excitation and T
  • the protic solvent refers to a solvent that dissociates itself to generate protons.
  • examples of protic solvents include water;
  • Alcohols such as methanol and ethanol
  • Carboxylic acids such as acetic acid
  • the amount of the protonic solvent in the present invention can be measured more stably.
  • the pulse sequence can also be a force.
  • the ⁇ relaxation time constant is
  • the 90 ° pulse may be in the first phase
  • the ⁇ number of the 180 ° pulse force may be in the second phase shifted by 90 ° from the first phase.
  • the pulse sequence having the above configuration uses a 180 ° pulse in the second phase that is 90 ° shifted from the first phase. Therefore, by applying the 180 ° pulse, the nuclear magnetic field is changed in the rotating coordinate system. Reversal, which results in the magnetic field inhomogeneity The coming measurement error factor is eliminated. Since the second phase 180 ° pulse is applied periodically, the measurement error factor is eliminated each time, ensuring an accurate T relaxation time constant.
  • another sequence may be executed in which a step of applying 180 ° noise is performed at a time ⁇ before 90 ° panoreth (a). .
  • a step of applying 180 ° noise is performed at a time ⁇ before 90 ° panoreth (a).
  • the intensity of the two pulses has a one-to-two relationship, and excitation of the magnetization vector at 90 ° and 180 °, respectively, is an important factor that improves the accuracy and reproducibility of the measured values. As a result, even if the relationship between the two pulses becomes inadequate due to device abnormality or immature adjustment, the abnormality can be detected before the measurement is performed, and the measured value should be more accurate. It is out.
  • an RF signal generation unit that generates an RF signal for generating the excitation oscillating magnetic field in the small RF coil
  • An echo signal detection unit that detects an echo signal acquired by the small RF coil and sends the echo signal to the arithmetic unit;
  • the small RF coil, the RF signal generation unit, and the echo signal detection unit are provided in a branching unit, and the small RF coil and the RF signal generation unit are connected to each other, and the small RF coil and the echo A switch circuit for switching between the signal detection unit and the connected state;
  • a plurality of the small RF coils are provided, an excitation oscillating magnetic field is applied to a plurality of locations of the sample, an echo signal corresponding to the excitation oscillating magnetic field is acquired, and the sample is obtained.
  • ⁇ relaxation time constant is calculated for multiple locations of and based on the ⁇ relaxation time constant Then, as a configuration for obtaining the moisture content in the plurality of locations of the sample.
  • the moisture content distribution of the sample may be presented based on the moisture content at the multiple locations of the sample.
  • multipoint simultaneous measurement can be performed with a simple configuration. Arrangement of a plurality of small RF coils is arbitrary and can be arrayed according to the shape of the object to be measured.
  • a storage unit that holds information indicating a correlation, for example, a calibration curve, is provided, and the calculation unit acquires the information corresponding to the sample to be measured from the storage unit, and based on the information, the amount of water is obtained. It is good also as a structure which calculates.
  • the sample may include a matrix made of solid or gel, and the calculation unit may be configured to calculate the amount of water contained in the matrix.
  • the sample can be, for example, a film containing water, for example, a solid electrolyte film (polymer film) used in a fuel cell or the like.
  • a film containing water for example, a solid electrolyte film (polymer film) used in a fuel cell or the like.
  • the sample is a liquid containing water
  • the calculation unit is configured to calculate the amount of water in the liquid.
  • a configuration is adopted in which a small coil is used and the Marcheco method is locally applied to a specific portion of the sample. It can be measured in a short time.
  • the small RF coil is a planar coil, and is formed by connecting a coil portion in which a conducting wire is wound in a clockwise direction and a coil portion in which the conducting wire is wound in a counterclockwise direction. Is preferred.
  • the measuring apparatus of the present invention includes a small RF coil and a support body that supports a static magnetic field application unit, the support body is in a stick shape, and the small RF coil is attached to the tip of the support body. It can be a thing attached.
  • measurement can be performed simply by the user holding the support and bringing its tip close to the sample, so that the operability of the measurement apparatus can be improved.
  • the measuring method and measuring apparatus can locally calculate the amount of protic solvent in a sample, for example, the amount of water in a short time. For this reason, it can be applied to the measurement of the moisture content in the film and the measurement of the moisture content distribution.
  • a system that measures the water content of a solid electrolyte membrane (high molecular membrane) in a hydrogen-supplied fuel cell in real time, etc., and a technology that controls the amount of water supplied in the fuel based on the measured water content can be suitably applied.
  • a fuel cell having a polymer membrane, an anode electrode disposed across the polymer membrane, and a force sword electrode;
  • An oxidizing gas supply unit for supplying an oxidizing gas to the fuel cell
  • a fuel gas supply unit for supplying fuel gas to the fuel cell
  • a steam mixing section that mixes steam with the fuel gas discharged from the fuel gas supply section toward the fuel cell, and supplies the fuel gas and steam to the fuel cell;
  • the above-described measuring device for measuring the amount of moisture in the polymer film, and the measurement result of the amount of moisture from the measuring device, and the water vapor supplied from the steam mixing unit based on the measurement result And a controller for controlling the water vapor mixing unit so as to adjust the amount of the fuel cell system.
  • FIG. 1 is a flowchart showing an outline of a local moisture measuring method according to the present embodiment.
  • FIG. 2 (a) is a diagram showing an example of a pulse sequence in the CPMG method, and (b) is a diagram showing an example of an echo signal.
  • FIG. 3 (a) to (d) are diagrams for explaining the compensation function of the CPMG method.
  • ⁇ 4 This is a diagram for explaining the principle of measuring the T relaxation time constant by the spin echo method.
  • FIG. 5 is a diagram showing a schematic configuration of a water content measuring apparatus according to the first embodiment.
  • FIG. 6 shows an example of a small RF coil.
  • FIG. 7 is a diagram showing an example of an LC circuit that applies a high-frequency pulse for excitation and detects an echo signal.
  • FIG. 8 is a diagram showing a schematic configuration of a measuring apparatus according to a second embodiment.
  • FIG. 9 is a diagram showing a configuration of a switch unit of the measuring apparatus according to the second embodiment.
  • FIG. 10 is a block diagram for explaining in detail a measuring apparatus that is effective in the third embodiment.
  • FIG. 11 is a diagram showing a main part of a measuring apparatus that is powerful in the fourth embodiment.
  • FIG. 12 is a view showing a small RF coil of a measuring apparatus that is powerful in the fourth embodiment.
  • FIG. 13 is a block diagram showing a fuel cell system that is relevant to the fifth embodiment.
  • FIG. 15 is a schematic diagram showing a humidifying / heating cell of a reference example.
  • FIG. 16 is a diagram showing the relationship between the water vapor concentration of humidified nitrogen gas and the soot relaxation time constant.
  • FIG. 17 is a diagram showing the results of measuring a multi-echo signal using the CPMG method in Example 1.
  • FIG. 18 is a diagram showing the results of measuring a multi-echo signal using the CPMG method in Example 1.
  • FIG. 19 is a diagram showing a result of measuring a multi-echo signal using the CPMG method in Example 2.
  • Example 2 the calculated average value of T (CPMG) and a standard indicating the variation in measurement.
  • FIG. 22 is a view showing a table of T relaxation time constant (CPMG) results calculated in Example 4.
  • FIG. 23 is a diagram showing an attenuation curve of an echo signal in Example 5.
  • FIG. 24 is a diagram showing an attenuation curve of an echo signal in Example 5.
  • FIG. 25 is a graph showing the relationship between the amount of methanol contained in the polymer film and the T relaxation time constant.
  • Fig.26 Shows the relationship between the amount of methanol per unit volume (mgZmm 3 ) and the T relaxation time constant.
  • FIG. 1 A first figure.
  • FIG. 27 is a block diagram of an output unit that is useful in the sixth embodiment.
  • FIG. 28 is a diagram showing a display unit that is helpful in the sixth embodiment.
  • water will be described as an example of the protic solvent to be measured.
  • FIG. 1 is a flowchart showing an outline of a local moisture measuring method according to the present embodiment.
  • a sample is placed in a space where a magnet is placed, and a static magnetic field is applied to the sample (S102).
  • an excitation high-frequency pulse is applied to the sample, and an echo signal corresponding to this is acquired (S104).
  • T relaxation time constant is calculated from this echo signal (S102).
  • Step 104 Application of excitation high frequency pulse and acquisition of echo signal
  • Step 104 the force to apply the excitation high-frequency pulse to the sample It is preferable that this excitation high-frequency pulse is a pulse sequence having a plurality of pulse forces, and the corresponding echo signal group is acquired. . In this way, the T relaxation time constant can be obtained accurately. Norse Syke It is preferable that the flow consists of the following (a) and (b).
  • the CPMG method is an example of a method for providing such a pulse sequence.
  • the Hahn echo method is known as a method of giving the relaxation time constant.
  • the CPMG method is more suitable for measuring moisture content.
  • the CPMG method and the comparison between the CPMG method and the Hahn echo method are described below.
  • Hydrogen nuclei placed in a static magnetic field have a net magnetization vector in the direction along the static magnetic field (for convenience, the Z direction), and an RF wave of a specific frequency (this is called the resonance frequency) on the Z axis.
  • the resonance frequency By irradiating an external force in the vertical X-axis direction, the magnetic vector is tilted in the positive direction of the Y-axis, and a nuclear magnetic resonance signal (called an NMR signal) can be observed.
  • the X-axis excitation pulse irradiated to obtain the NMR signal with the maximum intensity is called 90 ° noise.
  • the magnetization vector is tilted in the positive direction of the Y axis by a 90 ° pulse, and then ⁇ hours later, an external 180 ° excitation pulse in the X axis direction (twice the 90 ° pulse) ) And reverse the magnetic vector in the negative direction of the axis.
  • an echo signal with a width is observed.
  • a pulse sequence as shown in FIG. 2 (a) is given, and an echo signal as shown in FIG. 2 (b) is obtained.
  • the magnetization vector is tilted in the positive direction of the Y axis by a 90 ° pulse, and after ⁇ time, the 180 ° excitation pulse from the outside in the “Y axis direction” (the X and Y axes change compared to Hahn). In this sense, the excitation waveform is 90 ° out of phase.) And the magnetic vector is inverted “with the Y axis as the symmetry axis”.
  • the magnetic vector converges on the “positive direction” of the ⁇ axis after 2 ⁇ hours, and an echo signal with a large amplitude is observed. Further, after 3 hours, the magnetic vector was irradiated with a 180 ° excitation pulse from the outside in the “axis direction” and converged again on the “positive direction” of the axis. An echo signal with In addition, continue to irradiate 180 ° pulses at two similar intervals. During this time, the peak intensity of the even-numbered echo signals of 2 ⁇ , 4 ⁇ , 6 ⁇ , ... is extracted and fitted with an exponential function to
  • the magnetic vector is reversed "with the Y axis as the symmetry axis".
  • the Hahn echo method and the CPMG method differ in the following points:
  • the 180 ° excitation pulse is in the Y-axis direction, and the converging echo is only in the positive direction of the Y-axis. .
  • CPMG method can compensate for (a) non-uniformity of static magnetic field and (b) non-uniformity of excitation pulse intensity irradiated by RF coil. Relaxation time constant
  • the compensation function is 180 ° so that the phase always converges in the positive direction of the same Y-axis so that the irreversible phase dispersion process caused by (a) and (b) above does not occur. N using excitation pulses [0042] Hereinafter, the above (a) and (b) will be supplemented.
  • the magnet itself does not have a completely uniform magnetic field.
  • Magnetic field inhomogeneity occurs due to differences in the magnetic susceptibility of the sample to be measured, the container in which it is placed, and the surrounding air.
  • Magnetic field inhomogeneities occur due to the different magnetic ratios of the materials composing the equipment, such as RF coils and containers.
  • Magnetic field is distorted by the surrounding environment where devices such as geomagnetism, buildings, flooring, etc. are installed, resulting in magnetic field inhomogeneity.
  • Magnetic field inhomogeneity occurs due to temporal fluctuations such as fluctuations in magnet temperature and temperature distribution due to the influence of the surrounding environment where the magnets are placed, and spatial temperature variations.
  • the intensity of the excitation pulse to be irradiated varies depending on the position. For example, at the center of the coil, it gets weaker toward the strong end. This causes nonuniformity of the excitation pulse intensity.
  • the compensation function of the CPMG method described above will be described with reference to FIG.
  • the coordinates shown in the figure are a rotating coordinate system.
  • P and Q as nuclear magnetization in a small region where the inhomogeneity of the static magnetic field can be ignored in the sample.
  • Fig. 3 (a) when a 90 ° pulse is applied in the x'-axis direction, the P and Q magnetic fields precess from the same location (y'-axis) in the rotating coordinate system.
  • the phase of P advances from the phase of Q (Fig. 3 (b)).
  • a 90 ° pulse is first applied in the x'-axis direction, and then y
  • the 180 ° pulse is applied in the axial direction, the nuclear magnetization of P and Q is reversed in the x'y' plane, as shown in Fig. 3 (c).
  • a 180 ° pulse is applied in the y'-axis direction at regular intervals, and the reversal of the magnetic field in the x'y 'plane occurs. Every time this reversal of the magnetic field occurs, the compensation function appears well.
  • the positions of P and Q may be above or below the x'y 'plane due to (a) non-uniformity of the magnetic field and (b) non-uniformity of the excitation pulse intensity irradiated by the RF coil.
  • ⁇ 2 relaxation time constant can be accurately measured by using spin echo method
  • the resonantly excited magnetic vector M relaxes over time.
  • the time change of the magnetic resonance signal actually observed at this time is relaxed by another time constant ⁇ * that cannot be expressed by the spin-lattice relaxation time constant ⁇ and the spin-spin relaxation time constant ⁇ alone.
  • spin echo is a method for correcting a phase shift due to magnetic field inhomogeneity as a sample or device characteristic. This is because, after ⁇ time of the 90 ° excitation pulse, a 180 ° excitation pulse having twice the excitation pulse intensity is applied and the phase of the magnetization vector ⁇ is disturbed on the xy plane. Invert the phase after 2 ⁇ hours to
  • p is the density distribution of the target nuclide as a function of position (X, y, z)
  • TR is the 90 ° excitation pulse repetition time (about 100ms to 10s)
  • TE is the echo time (2t, 1ms)
  • A is a constant that represents the RF coil detection sensitivity and device characteristics such as an amplifier.
  • Step 108 Measurement of water content
  • step 108 the water content is calculated from the relaxation time constant. Water content in sample and T relaxation
  • the amount can be calculated.
  • the relaxation time constant is shorter. As the water content increases, the free water that fills the space increases, and the ⁇ 2 relaxation time constant increases.
  • the wrinkle relaxation time constant of the entire sample is expressed by the following equation when expressed by the simplest equation.
  • Equation (1) the force divided into the terms of adsorbed water and free water.
  • y the amount of adsorbed water that feels a uniform static magnetic field
  • W The amount of free water that feels a uniform static magnetic field
  • the water in the polymer is in various states, and the classification from the viewpoint of the static magnetic field of "the place where the static magnetic field is uniform and the place where the static magnetic field is not uniform" It is necessary to consider the both-sided force of the classification from the viewpoint of the state of water in the polymer. is there.
  • FIG. 5 is a diagram showing a schematic configuration of the moisture content measuring apparatus 1A according to the present embodiment.
  • This measuring device 1A locally measures the moisture content at a specific location in a sample, and includes a sample mounting table 116 on which a sample 115 is mounted, and a magnet 113 (applied with a static magnetic field to the sample 115).
  • a magnetostatic field application unit a small RF coil 114 provided at a specific location of the sample 115, and a calculation unit 130 that calculates a moisture content based on an echo signal acquired by the small RF coil 114.
  • the sample mounting table 116 is a table on which the sample 115 is mounted, and a sample having a predetermined shape and material can be used.
  • the sample 115 is a sample to be measured.
  • the sample 115 can be in various forms such as a solid such as a membrane or a lump, a liquid, an agar, a gel such as a jelly.
  • a solid such as a membrane or a lump
  • a liquid such as a liquid
  • an agar such as a jelly
  • a gel such as a jelly.
  • the measurement result of local water content can be obtained stably.
  • a membrane having a property of retaining moisture in the membrane such as a solid electrolyte membrane
  • the magnet 113 applies a static magnetic field to the sample 115. With this static magnetic field applied, an excitation radio frequency pulse is applied to the sample, and
  • the small RF coil 114 applies an excitation oscillating magnetic field to a specific portion of the sample 115 and acquires an echo signal corresponding to the excitation oscillating magnetic field.
  • the small RF coil 114 is preferably 1/10 or less of the size of the entire sample, and more preferably 1/10 or less. By using such a size, the local water content in the sample can be accurately measured in a short time.
  • the size of the sample can be, for example, a projected area when the sample is placed, and the exclusive area of the small RF coil 114 is preferably 1Z2 or less, more preferably 1 to 10 or less of the projected area. By doing so, accurate measurement is possible in a short time.
  • the size of the small RF coil 114 is preferably 10 mm or less. As the small RF coil 114, for example, the one shown in FIG. 6 can be used.
  • the measurement area can be limited and local measurement can be performed.
  • the measurement area of such a spiral coil has a width of about the coil diameter and a depth of about the coil radius.
  • this coil has a flat shape unlike a normal solenoid type coil, as shown in the figure on the right side of Fig. 6, it is possible to acquire an N MR signal simply by pasting it on a flat sample. Can do.
  • a flat spiral coil is used.
  • the present invention is not limited to this, and various forms can be used.
  • a flat type 8-shaped coil can be used.
  • the figure 8 coil includes two spiral coils, right-handed and left-handed.
  • the spiral coil has sensitivity in the axial direction of the wound coil, while the 8-shaped coil can detect magnetic field fluctuations in the direction parallel to the surface of the two spiral coils. .
  • the small RF coil 114 may be singular or plural. If there are a plurality of samples, the moisture content distribution in the sample 115 can be measured. In this case, if it is arranged two-dimensionally along the surface of the sample 115, a two-dimensional moisture content distribution on the sample surface can be obtained. If the sample 115 is arranged three-dimensionally in the sample 115, the three-dimensional moisture content distribution in the sample can be obtained.
  • An oscillating magnetic field (exciting oscillating magnetic field) applied by the small RF coil 114 is generated by cooperation of the RF oscillator 102, the modulator 104, the RF amplifier 106, the pulse control unit 108, and the small RF coil 114. That is, the excitation high-frequency RF transmitted from the RF oscillator 102 is modulated by the modulator 104 based on the control by the pulse control unit 108 and becomes a pulse shape.
  • the generated RF pulse is amplified by the RF amplifier 106 and then sent to the small RF coil 114.
  • the small RF coil 114 applies this RF pulse to a specific portion of the sample placed on the sample placing table 116.
  • the small RF coil 114 detects the echo signal of the applied RF pulse.
  • This echo signal is amplified by the preamplifier 112 and then sent to the phase detector 110.
  • the phase detector 110 detects this echo signal and sends it to the AZD converter 118.
  • the AZD converter 118 performs AZD conversion on the echo signal and then sends it to the arithmetic unit 130.
  • FIG. 7 shows an example of such an LC circuit.
  • the coil part (inductance part) of the resonance circuit is a small RF coil as described above.
  • the nuclear magnetic resonance (NMR) method can measure atomic density and spin relaxation time constant by detecting the motion of nuclear magnetization as an NMR signal by the spin resonance phenomenon of a nucleus placed in a magnetic field.
  • the spin resonance frequency in the magnetic field of lTesla is about 43 MHz (this frequency band is called the radio frequency).
  • an LC resonance circuit as shown in Fig. 7 is used. Is used.
  • the excitation RF pulse applied to the sample 115 by the small RF coil 114 is, for example,
  • the pulse sequence can also be a force.
  • The relaxation time constant and the amount of water in the sample
  • a clear correlation can be acquired stably.
  • the pulse control unit 108 further includes a step of applying a 180 ° pulse at a time ⁇ before the 90 ° pulse (a). To execute the sequence. Then, by comparing the behavior of the decay curve of 180 ° pulse (b) corresponding to these two sequences, 90 ° pulse (a) and It is possible to discriminate whether or not the excitation intensity of 180 ° (b) is accurate. As a result, even when the excitation pulse intensity is deviated due to a device abnormality or the like, the abnormality can be detected before the measurement is performed, and the measurement value can be made more accurate.
  • the calculation unit 130 calculates a T relaxation time constant from the intensity of the echo signal, and calculates the calculated T
  • an echo signal is acquired by the data reception unit 120, and then the T relaxation time constant is calculated by the relaxation time constant calculation unit 122.
  • the data is sent to the moisture amount calculation unit 124.
  • the quantity calculation unit 124 accesses the calibration curve table (storage unit) 126 and acquires calibration curve data corresponding to the sample.
  • the calibration curve table 126 stores calibration curve data indicating the correlation between the amount of moisture in the sample and the T relaxation time constant for each type of sample.
  • the water content calculating unit 124 calculates the obtained calibration curve data and the T calculated as described above.
  • the calculated moisture amount is presented to the user by the output unit 132.
  • Various types of presentation types are possible, and there are no particular restrictions on display on the display, printer output, file output, and the like.
  • a plurality of small RF coils 114 are arranged inside the sample, on the surface of the sample, or in the vicinity of the sample. Accordingly, the excitation oscillating magnetic field can be applied to a plurality of locations of the sample and an echo signal corresponding to the application can be obtained.
  • the water content distribution calculation unit 128 calculates the water content distribution in the sample based on the water content at multiple locations in the sample.
  • the output unit 132 outputs this moisture content distribution.
  • FIG. 8 is a diagram showing the configuration of the moisture content measuring apparatus of the present embodiment.
  • the basic configuration of the measuring apparatus IB shown in FIG. 8 is the same as that of the measuring apparatus 1A shown in the first embodiment (FIG. 5), but is different in that it further includes a switch unit 161.
  • the switch unit 161 is provided in a branching unit that connects the small RF coil 114, the RF signal generation unit, and the echo signal detection unit.
  • the RF signal generation unit includes an RF oscillator 102, a modulator 104, and an RF amplifier 106, and generates an RF signal that causes the small RF coil 114 to generate an oscillating magnetic field for excitation.
  • the echo signal detection unit is composed of a preamplifier 112, a phase detector 110, and an AZD converter 118. The echo signal detection unit detects the echo signal acquired by the small RF coil 114 and sends the echo signal to the calculation unit 130. Send it out.
  • the switch unit 161 is
  • the switch unit 161 serves as such a “transmission / reception switching switch”. The role of this is to transmit the excitation pulse amplified by RF power-amp to the small RF coil 114, disconnect the preamplifier 112 of the receiving system to protect the high voltage force, and to receive the NMR signal after excitation. The noise generated by the large amplification transistor leaking from the RF amplifier 106 is blocked so as not to be transmitted to the preamplifier 112 of the receiving system.
  • the switch unit 161 is required for the following reasons in order to handle weak signals.
  • a “cross diode” can be used to cope with it.
  • the cross diode is a diode that is turned on when a voltage higher than a predetermined value is applied, and is turned off when the voltage is less than a predetermined value.
  • the reason why the “transmission / reception switching switch”, that is, the switch unit 161 is particularly necessary when the small RF coil 114 is used is as follows.
  • the sample volume that can be detected by the small coil of this measurement system is smaller than that of the large coil. This detectable sample volume is approximately (coil inner area x coil radius Depth).
  • This detectable sample volume is approximately (coil inner area x coil radius Depth).
  • the data varies. This phenomenon is prominent when switching between transmission and reception of small coils using a conventional cross diode.
  • the excitation diode intensity is smaller than that of the large coil, so the cross diode The loss at can not be ignored. For this reason, in order to obtain an appropriate excitation pulse intensity, a “transmission / reception switching switch” with minimal loss is required.
  • the switch part 161 By providing the switch part 161 in the branch part, the loss of the excitation high-frequency pulse signal applied to the sample 115 from the small RF coil 114 is reduced. As a result, the 90 ° pulse and the 180 ° pulse are reduced. It becomes possible to accurately control the pulse angle. Accurate control of the pulse angle is an important technical problem for reliably obtaining the compensation effect in the pulse echo method. In this embodiment, the problem to be solved is solved by the arrangement of the switch unit 161.
  • the RF detection coil for local measurement is miniaturized, and the reduction in noise during NMR reception is an important factor for ensuring the accuracy of measurement.
  • the noise that enters the preamplifier 112 mainly includes an RF wave transmission system, which emits "RF wave leakage” or “high power amplifier” from the RF amplifier 106 that amplifies the excitation pulse. Noise ”.
  • the problem to be solved is solved by the arrangement of the switch portion 161.
  • the switch unit 161 can employ various configurations.
  • FIG. 9 is a circuit diagram showing an example of the configuration of the switch unit 161.
  • FIG. 10 is a diagram showing the configuration of the moisture content calculation unit 124 and the calibration curve table 126 of the present embodiment.
  • the water content calculation unit 124 calculates the water content in the sample, and calculates the value calculated by the calculation unit 173 according to the size of the small RF coil 114.
  • a correction unit 175 for correcting is provided.
  • the calibration curve table 126 includes a correction parameter storage unit 177 in which correction parameters or correction formulas related to correction by the correction unit 175 are stored.
  • the echo signal force detected by the small RF coil 114 is also at the time of T relaxation.
  • Constants are calculated, but in this embodiment, the small RF coil 114 that applies the excitation magnetic field is small, so the measurement value may deviate from the measurement using a large solenoid coil. .
  • the correction unit 175 can correct the value of the moisture amount as necessary.
  • the correction parameter storage unit 177 stores a correction parameter and a correction method corresponding to the size of the small RF coil 114.
  • the correction unit 175 acquires the information from the correction parameter storage unit 177 and performs correction. Do.
  • the small RF coil 114 When the small RF coil 114 is used, basically, a force capable of obtaining a measurement value equivalent to that when an RF coil larger than the sample is used. As shown in the examples described later, the RF coil is small. In this case, differences in the excitation of the sample are likely to occur, and in general, factors that cause measurement error, such as magnetic field inhomogeneity and SN ratio reduction, occur. On the other hand, the influence of the size of the RF coil on the measured value can be reduced by eliminating the above factors by adopting the arrangement of the small RF coil or the configuration in which the switch portion is provided.
  • the entire sample cannot be excited uniformly.
  • the excitation pulse intensity due to the oscillating magnetic field becomes weaker as the coil receives the oscillating magnetic field most strongly and moves away from it.
  • NMR signals emitted by this non-uniform excitation contain magnetic keys having various excitation angles, and the phases of the magnetic keys may not be the same. For this reason, the NMR signal received by the coil as the sum of them can be different from the case of uniform excitation.
  • the situation different from the case of the uniform excitation includes, for example, a force that does not appear in a beautiful mountain-shaped echo peak that is symmetric, and a situation in which the maximum intensity position shifts back and forth in time.
  • the result may be different from that of a large coil with uniform excitation.
  • a magnet (static magnetic field application unit) 213 and a small RF coil 214 are attached to a support 201.
  • Other points are the same as those in the above embodiments.
  • the magnet 213 is a small magnet smaller than the magnet 113 of the measuring devices 1A and 1B of the above embodiments.
  • a static magnetic field is applied to the entire sample 115 by the magnet 113.
  • a specific portion of the sample 115 is applied.
  • a static magnetic field will be applied to this.
  • the support 201 is a stick-shaped housing.
  • a protrusion 201 A is formed at the center of the end surface of the support 201. Inside the support 201, a magnet 213 is accommodated. The static magnetic field H from the magnet 213 is
  • the direction is the same as the central axis of the support 201.
  • the pair of coil portions 214A are arranged along a direction substantially perpendicular to the static magnetic field direction, and one coil portion 214A is a winding of a conducting wire wound in a clockwise direction, and the other coil portion 214A is The conductor is wound left-handed.
  • Such a small RF coil 214 is fixed to the surface of the protrusion 201 A formed on the end surface of the tip of the support 201.
  • the oscillating magnetic field for excitation of the static magnetic field H direction and the small RF coil 214 is used.
  • a small RF coil 214 attached to the tip of the support 201 may be brought into contact with the sample.
  • a small magnet 213 for applying a static magnetic field H is attached to the support 201.
  • the large magnet 113 as shown in each of the above embodiments is not necessary, and the measuring device
  • the support 201 has a stick shape, measurement can be performed simply by the user holding the support 201 and bringing its tip into contact with the sample, thereby improving the operability of the measuring apparatus. Can be made.
  • the fuel cell system 3 includes a measuring device 1A, a fuel cell 31, an oxidizing gas supply unit 32 that supplies an oxidizing gas (oxygen, air, etc.) to the fuel cell 31, and a fuel to the fuel cell 31.
  • a fuel gas supply unit 33 that supplies gas (hydrogen gas, etc.), an acid gas supplied from the oxidizing gas supply unit 32 to the fuel cell 31, and a fuel gas supply unit 33 to the fuel cell 31.
  • Water vapor mixing units 34 and 35 for mixing water vapor with the fuel gas supplied toward the vehicle and a control unit 36 are provided.
  • the fuel cell 31 includes a polymer membrane (sample) 115, catalyst layers 311A and 311B provided on both sides of the polymer membrane 115, and porous diffusion layers 312A and 312B. And separators 313A and 313B.
  • the catalyst layer 311A and the diffusion layer 312A constitute an anode electrode 314, and the catalyst layer 311B and the diffusion layer 312B constitute a force sword electrode 315.
  • Separator 313A is supplied with fuel gas, and has a groove serving as a fuel gas flow path.
  • the separator 313B is supplied with an oxidizing gas, and has a groove serving as a flow path for the oxidizing gas.
  • the acid gas supply unit 32 is for supplying an acid gas to the fuel cell 31, and the fuel gas supply unit 33 is for supplying a fuel gas to the fuel cell 31.
  • a steam mixing unit 34 is provided between the oxidizing gas supply unit 32 and the fuel cell 31. In the water vapor mixing unit 34, water vapor is generated and mixed with the oxidizing gas supplied from the oxidizing gas supply unit 32 toward the fuel cell 31. The oxidizing gas thus mixed with the water vapor is supplied to the fuel cell 31.
  • a steam mixing unit 35 is also provided between the fuel gas supply unit 33 and the fuel cell 31.
  • water vapor mixing unit 35 water vapor is generated and mixed with the fuel gas supplied from the fuel gas supply unit 33 to the fuel cell 31. The fuel gas mixed with the water vapor is sent to the fuel cell 31.
  • the polymer film 115 of the fuel cell 31 is wetted by mixing the water vapor with the oxidizing gas and the fuel gas.
  • the plurality of small RF coils 114 of the measuring device 1A are brought into contact with the surface of the polymer membrane 115. Thereby, the amount of water in the high molecular film 115 can be measured.
  • the control unit 36 is connected to the measuring apparatus 1A and the steam mixing units 34 and 35.
  • the control unit 36 obtains the water content measurement result and the water content distribution from the measuring device 1A, and based on this measurement result, the water vapor mixing units 34 and 35 generate the fuel cell 31 and supply it.
  • the water vapor mixing sections 34 and 35 are controlled so as to adjust the amount of water vapor.
  • water is generated by the reaction between hydrogen ions and oxygen gas on the force sword electrode 315 side. Therefore, the amount of water in the polymer film 115, particularly on the force sword electrode 315 side, may become excessive. If the amount of water is excessive, water aggregates in the flow path of the separator 313B, impeding the flow of oxidant gas, which may reduce power generation efficiency.
  • the control unit 36 acquires the moisture content distribution from the measuring device 1A, and determines whether or not the moisture content value in the acquired distribution is within a predetermined range, that is, the polymer film 115 is moderate. Judge whether it is in a wet state. When it is determined that the predetermined range is exceeded, the control unit 36 requests the steam mixing units 34 and 35 to reduce the amount of steam generated.
  • the control unit 36 performs the steam mixing units 34, 35.
  • the amount of water vapor generated is required to be increased, and the polymer film 115 is prevented from drying.
  • the amount of water in the polymer film 115 can be measured by the measuring device 1A, and the amount of water in the polymer film 115 can be adjusted to an appropriate level. As a result, the power generation efficiency of the fuel cell 31 can be increased.
  • the small RF coil 114 is brought into contact with the surface of the polymer film 115 on the anode electrode 314 side and the surface of the force sword electrode 315, respectively, and the vicinity of the surface on the anode electrode 314 side, the force sword electrode. It is also possible to grasp the amount of moisture near the surface on the 315 side and grasp the relationship between the amount of moisture near the surface of each electrode 314, 315 and the power generation efficiency.
  • the fuel cell system 3 of the present embodiment provides useful data for searching for the cause of the decrease in power generation efficiency that occurs when the fuel cell 31 is operated for a long time as “the water content of the polymer membrane” t. Power can be provided.
  • control unit 36 adjusts the water vapor generation amount of both the water vapor mixing units 34 and 35 and the water vapor supply amount to the fuel cell 31, but is not limited to this. Adjust only the amount of water vapor generated in the mixing section 35 and the amount of water vapor supplied to the fuel cell 31.
  • the fuel cell system 3 is provided with the measuring device 1A.
  • the force is not limited to this, and each of the above embodiments and further includes a measuring device according to a sixth embodiment described later. It can also be.
  • This embodiment shows another example of the output unit of the water content measuring devices 1A, 1B, 2 of each of the above embodiments.
  • the output unit 132 obtains the moisture content for each measurement region of the plurality of small RF coils 114 (the power of the small RF coil 114 shown in FIG. And a display unit 132B for displaying the acquired moisture content in a partitioned area on the same screen.
  • the screen is divided into a plurality of regions in accordance with the arrangement position of small RF coil 114. Each area is displayed with a predetermined color according to the amount of water in the measurement area of each small RF coil 114.
  • each small RF coil 114 is set in each area of the display unit 132B.
  • the corresponding color it is possible to intuitively grasp the relationship between the measurement position of each small RF coil 114 and the amount of water.
  • Measurement was performed with the small RF coil of the measuring apparatus having the configuration described in the first embodiment being replaced with a standard solenoid coil (hereinafter referred to as a standard coil).
  • a standard coil a standard solenoid coil
  • the standard coil has a diameter of 25 mm and a length of 38 mm, which is sufficiently larger than the polymer film to be measured.
  • Such a standard coil can uniformly excite the nuclear magnetic field of the sample (polymer film) inserted inside, and has high measurement reliability.
  • a polymer film made by Asahi Glass Co., Ltd. having a film thickness of 500 m and dimensions of 15 mm ⁇ 15 mm was used.
  • the polymer membrane was placed in 3% hydrogen peroxide-hydrogen water maintained at 80 ° C. and stirred for 1 hour. Thereafter, the polymer membrane was put in the order of 1N hydrochloric acid and ion-exchanged water, and each solution was stirred for 1 hour (standardization treatment).
  • the polymer membrane was immersed in room temperature distilled water and stored.
  • the fuel cell is operated at 60-70 ° C.
  • the polymer film is disposed between the upper member 41 and the lower member 42 disposed in the cell.
  • a flow path through which humidified nitrogen gas flows is formed on the surface of the polymer film sandwiched between the upper member 41 and the lower member 42.
  • the flow path is formed in a 12.2 mm ⁇ 12.0 mm region on the polymer membrane surface, and nine channels are provided in this region.
  • each channel is 1. Omm, and the channel pitch is 1.4 mm.
  • the humidified nitrogen gas flow rate is 50mlZmin.
  • the humidified nitrogen gas is produced as follows, and is introduced into the humidified 'temperature raising cell 4.
  • nitrogen gas was washed with the first bubbler at room temperature, and then the nitrogen gas was also ejected from the porous glass plate having a pore diameter of 10 m in the second bubbler that had been temperature-controlled. As a result, humidified nitrogen gas having a predetermined water vapor concentration is generated.
  • the temperature of the humidification / temperature-raising cell 4 was controlled by flowing a liquid at 75 ° C. through the cell, and the polymer film was set to U equal to the temperature of the humidification / temperature-raising cell 4.
  • FIG. 16 shows the results of measuring the T relaxation time constant using the standard coil at each water vapor concentration while changing the water vapor concentration of the humidified nitrogen gas flowing through the humidification / temperature raising cell 4.
  • the error and fluctuation of the water vapor concentration are mainly caused by fluctuation of the bubbler temperature.
  • the temperature fluctuation of the bubbler is 0.5 ° C to + 0.5 ° C, and the corresponding fluctuation in water vapor concentration is calculated as 2% to + 2%.
  • Increase in vapor concentration increases the water content of the polymer membrane, allowing free movement within the polymer membrane. It is thought that water molecules increase.
  • the water content can be calculated.
  • the T relaxation time constant (Hahn) by the echo method is almost constant without depending on the water vapor concentration.
  • the moisture content of the membrane can be measured with local 'short-time' high sensitivity.
  • description will be made based on examples.
  • the amount of water in the sample was measured locally.
  • This device used a small RF coil and measured multi-echo signals using the CPMG method.
  • a Flemion (registered trademark) film having a thickness of 500 m and a size of 16 mm ⁇ 16 mm was used.
  • multi-echo signals were measured using the CPMG method to show that NMR signals can be acquired appropriately with a small RF coil.
  • a small RF coil with a diameter of 1.1 mm was used, and a pure sample was used. The result is shown in figure 2. This allows a small RF coil to properly irradiate a 90 ° -180 ° excitation pulse and reduce the T relaxation time constant of the pure water sample.
  • Figure 17 shows the results of measuring the T relaxation time constant using the CPMG method and the Hahn echo method, using the above-mentioned apparatus and changing the water content of the polymer film. Water vapor concentration on the horizontal axis
  • the degree indicates the water vapor concentration around the polymer membrane, and the membrane is in equilibrium with the water vapor concentration.
  • the echo signal is acquired using the Hahn echo method, and the signal intensity is imaged. Therefore, the T relaxation time constant (Hahn echo) depends on the moisture content of the film.
  • the T relaxation time constant (CPMG) is clear in the high and low water content regions.
  • the amount can be calculated.
  • image measurement is performed using the CPMG method, the moisture content and the T relaxation time constant
  • the NMR signal is converted into the amplitude and T relaxation.
  • Moisture content can also be calculated from the double-sided force of the time constant, and the moisture content in the polymer membrane can be measured with high sensitivity by obtaining multi-echo using the CPMG method.
  • the measurement time of CP MG method is less than 1 second, and the measurement time of moisture content by this method is reduced to less than 1 second.
  • the T (CPMG) equivalent to the standard coil is used.
  • T (CPMG) measurement was performed using copper sulfate aqueous solutions having different concentrations. Sample is dark
  • the sample was sealed in a container (inner dimensions 15 mm X 15 mm X gap 0.5 mm, wall thickness 0.12 mm).
  • the small surface coil is attached to the center of the sample container, and the distance between the coil and the aqueous solution is 0.15 mm including 30 m thick polyimide film.
  • a solenoid coil with a diameter of 25 mm and a length of 38 mm with a sufficiently large high-frequency magnetic field uniformity was used as a standard solenoid coil (standard coil).
  • FIG. 18 shows the measurement results.
  • the measurement results using the standard coil are also shown in FIG. 18 for comparison with the small coil.
  • the sample was sealed in a container having the same shape as the polymer membrane (inner dimensions 15 mm X 15 mm X gap 0.5 mm, wall thickness 0.12 mm).
  • the small surface coil is attached to the center of the sample container, and the distance between the coil and the aqueous solution is 0.15mm including 30m thick polyimide film.
  • the standard coil is a solenoid coil with a diameter of 25 mm and a length of 38 mm that is sufficiently larger than the sample and has good uniformity of high-frequency magnetic field irradiation. It is a standard solenoid coil that has been used in the past.
  • T (CPMG) of copper sulfate aqueous solution was measured using two small surface coils with diameters of 0.8 mm and 2. Omm.
  • Figure 20 shows the average value of T (CPMG) calculated by measuring 10-20 times in order, and the standard force.
  • the horizontal axis in Fig. 19 is T (CPMG) measured with a standard coil under the same sample and the same conditions.
  • the fine force in the figure represents the case where the broken line becomes the same T (CPMG) as the standard coil.
  • the bar shows the standard deviation indicating the variation in T (CPMG) calculated by measuring 10 to 20 times ( Figure 20).
  • the coil with a diameter of 2. Omm has the same T (CPMG) as the standard coil,
  • the coefficient of variation for a coil with a diameter of 2. Omm was 0.11 to 0.13.
  • T (CPMG) measured with a small coil is the standard coil. It may be longer than T (CPMG) measured in. In that case, using a standard sample in advance
  • the method can be performed using a constant calibration value regardless of the copper sulfate concentration. Specifically, T (CPMG) by CPMG method
  • the T (CPMG) increment is drawn from the prepared tape according to the geometric characteristics such as the coil shape and the number of turns, and a fixed value is subtracted from the calculated T (CPMG).
  • miniaturization of the coil decreases the NMR signal and increases the variation of T (CPMG).
  • the coefficient of variation at a diameter of 0.8 mm was 0.14 to 0.16, which was larger than the coefficient of variation of a coil with a diameter of 2. Om.
  • T (CPMG) becomes longer at 0.8 mm in diameter is the copper wire diameter compared to the coil diameter.
  • the excitation pulse intensity distribution that is so thick that cannot be ignored is non-uniform in the measurement region, and the free induction decay waveform after the 180-degree excitation pulse interferes with the echo.
  • each small surface coil is made by winding a polyurethane film conductor with a diameter of 50 / z m 3.5 times in a spiral and then sandwiching it with a 30 m thick adhesive polyimide film to maintain its shape.
  • the polymer membrane was standardized by the same method as in the reference example, and then immersed in distilled water at room temperature and stored.
  • the polymer membrane was pressed against dry tissue paper 3 times for 10 seconds to remove moisture from the polymer membrane surface.
  • the polymer film is then sandwiched between two cover glasses (dimensions 18mm x 18mm x wall thickness 0.12mm), and the surrounding area is removed to prevent drying.
  • Figure 21 shows the measurement results.
  • the values in Fig. 21 show the T relaxation measured 10 times for each coil.
  • the ratio is based on the average value of (CPMG).
  • error bars in the figure indicate the standard deviation of the measured values.
  • the average value is based on the average value of T relaxation time constant (CPMG) in the standard coil.
  • the variation in measurement is as follows: the standard deviation is 47 ms and the coefficient of variation is 0.047 for a small surface coil with a diameter of 2. Omm, and the standard deviation is 340 ms and the coefficient of variation is 0.31 for a small surface coil with a diameter of 0.8 mm. there were.
  • Example 2 Compared to Example 2, the reason for the large variation in measurement with a small surface coil with a diameter of 0.8 mm is that the signal-to-noise ratio is greatly reduced because the intensity of the echo signal from the polymer film is small. It can be considered.
  • the ratio of the T relaxation time constant (CPMG) in the surface coil depends on the diameter and geometry of the small surface coil.
  • the ratio is considered to be constant for small surface coils of the same shape, mainly depending on the nonuniformity of the excitation intensity distribution due to the shape.
  • this ratio is regarded as a correction factor due to the diameter of the small surface coil and the geometry of the small surface coil, and the value of the T relaxation time constant (CPMG) for the small surface coil is divided by this.
  • a sample is measured by a multi-channel measurement system using a plurality of small surface coils, and T (CPMG equivalent to a large solenoid coil is used. ) Verify that the value can be measured.
  • the small RF coil 114 in Fig. 8 was manufactured by winding a copper wire with a diameter of 50 m 3.5 times with an outer diameter of 2. Omm. In this example, two coils were used and each was placed on the same sample.
  • a channel connected to one of the two small RF coils 114 is referred to as a first channel, and the other is referred to as a second channel.
  • an aqueous copper sulfate solution having a low concentration was used as a sample. Open a hole (15mmX15mm) in the center of a 0.5mm thick acrylic plate (18mm x 18mm), and paste a 0.12mm thick cover glass (18mm XI 8mm) on both sides to create a gap of 0.5mm
  • the sample container was manufactured. The aqueous copper sulfate solution was sealed in the container.
  • the two coils were affixed on the cover glass of the sample container with an interval of about 5 mm, and were further fixed by pressing the coils with an acrylic plate.
  • Each coil was connected to an LC resonant circuit that resonated at the resonant frequency (43.5 MHz).
  • the sample, the two sets of coils, and the resonance circuit are fixed in the coil holder and placed in the center of the magnet.
  • the coil holder is covered with 0.05 mm thick copper foil to prevent external noise from entering the resonance circuit including two sets of coils in the center.
  • the coil holder is placed in a magnet (lTesla, 45mm air gap permanent magnet), and the signal line of each channel is connected to the "transmission / reception switching switch” (switch 161) and "amplifier". Two of these were used according to the number of channels.
  • the AD conversion board there was one "AD conversion board" for transferring the NMR signal after detection to the PC. For this reason, the NMR signals of all channels are added together and output, and the configuration is such that it is received by a single AD conversion board. If there are multiple AD conversion boards and there is software that can control them, the AD conversion board acquires each NMR signal independently and calculates the T (CPMG) value for each channel from the NMR signal. But
  • NMR signals can be sent from two channels simultaneously. When trying to receive, these signals may be mixed. Therefore, in this embodiment, the signals between channels are separated by shifting the timing of measurement in each channel.
  • CPMG measurement was performed on the 1st channel from 0 to 1 second, and CPMG measurement was performed on the 2nd channel 1 to 2 seconds after the completion.
  • T (CPMG) value measured in each channel should be the same value.
  • FIG. 22 is a diagram showing a table of results of calculating attenuation constants of acquired NMR signals.
  • the amount of methanol in the polymer film was measured using the measuring apparatus described in the first embodiment.
  • a polymer film (made by Asahi Glass Co., Ltd., trade name Flemion) having a dry film thickness of 500 m and a dry film size of 1 lmm ⁇ 11 mm was used.
  • a polymer film sufficiently prepared by a dryer was prepared. Then, the weight of the polymer membrane at the time of drying was measured (in this case, 90 mg). Next, this polymer membrane was immersed in methanol and left for more than one month.
  • the weight of the polymer film immersed in methanol was measured, and the mass of the polymer film at the time of drying was subtracted from this weight, and this was used as the amount of methanol contained in the polymer film.
  • the amount of methanol was 115 mg.
  • the polymer film with a methanol content of 115 mg was swollen and had a thickness of 0.6 mm, and the dimension in the plane was about 16 mm ⁇ about 16 mm!
  • a polymer film sufficiently prepared by a dryer was prepared. Then, the weight of the polymer film during drying was measured (in this case, 90 mg).
  • the polymer film soaked in methanol was appropriately dried with a dryer to adjust the amount of methanol contained in the polymer film.
  • the weight of the polymer membrane was measured, and from this weight, the mass of the polymer membrane at the time of drying was subtracted, and this was used as the amount of methanol contained in the polymer membrane.
  • the amount of methanol was 30 mg and o
  • the polymer film with a methanol content of 30 mg had a thickness of 0.5 mm, and the dimension in the plane was about 1 lmm X about 1 lmm.
  • the measuring apparatus described in the first embodiment was used.
  • the small surface coil of the measuring device used was a diameter of 2. Omm, 3.5 turns.
  • the CPMG method was used to obtain the intensity of even-numbered echo signals, and the T relaxation time constant (CPMG) was calculated from the attenuation of this intensity.
  • the polymer film was sandwiched between two cover glasses (thickness: 0.12 mm), and the periphery was sealed with a polyimide film. As a result, evaporation of methanol from the polymer film can be prevented.
  • Fig. 23 shows an example of an echo signal from a polymer film having a methanol content of 30 mg.
  • the T relaxation time constant (CPMG) is calculated from the echo signal attenuation curve shown in Fig. 23.
  • echo signal acquisition as shown in Fig. 23 is performed five times, and the T relaxation time constant (C
  • FIG. 24 shows an example of an echo signal from a polymer film having a methanol content of 115 mg.
  • the attenuation curve force of the echo signal shown in Fig. 24 is also calculated as the T relaxation time constant (CPMG).
  • CPMG T relaxation time constant
  • the standard deviation was 359.1 ms.
  • FIG. 25 shows the relationship between the amount of methanol contained in the polymer film and the T2 relaxation time constant.
  • FIG. 26 shows the relationship between the amount of methanol per unit volume (mgZmm 3 ) and the T2 relaxation time constant.
  • the T relaxation time constant (CPMG) increases and the methanol content increases.
  • the methanol content can be calculated by measuring the T relaxation time constant using the CPMG method.
  • the measurement time of water content can be shortened within 1 second.
  • a spiral-type small RF coil is used and the T relaxation time constant is measured by the CPMG method.
  • the force shown is a small RF coil with a diameter of 0.8 mm and 2. Omm. By making the diameter smaller, it becomes possible to measure the water content in the polymer film in a minute region.
  • the excitation oscillating magnetic field is not limited to this.
  • other modes can be adopted as long as NMR signal groups such as echo signal groups can be acquired.
  • the sample mounting table 116 may be omitted.
  • the moisture content of the component can be calculated locally by disposing the small RF coil 114 in the product.
  • the amount of the protic solvent in the polymer film is measured.
  • the present invention is not limited thereto, and for example, the amount of the solvent (protic solvent) remaining in the photoresist film is measured. May be.
  • a photoresist film is formed on the surface to be coated, it is heated at 100 ° C. to 200 ° C. and dried appropriately.
  • the mechanical strength of the photoresist film required in the exposure step can be imparted by appropriately drying the photoresist film.
  • the solvent in the resist is not completely dried, and a certain amount of solvent is left in the photoresist film so that the chemical reaction during exposure is performed appropriately. Is preferred.
  • the calibration curve table 126 stores calibration curve data indicating the correlation between the amount of moisture in the sample and the T relaxation time constant for each type of sample.
  • the calibration curve table 126 stores information (calibration curve) indicating the correlation between the amount of protonic solvent for each type of protic solvent contained in the sample and the T relaxation time constant.
  • the user When the user uses the measuring apparatus, the user inputs information for identifying the protic solvent to be measured (the type of protic solvent).
  • the data receiving unit 120 of the measuring apparatus receives this information and sends it to the moisture amount calculating unit 124.
  • a calibration curve corresponding to the type of received protonic solvent is obtained from the calibration curve table 126, and the amount of protonic solvent in the sample is calculated. To do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

  RF発振器102から発信した励起用高周波RFは、パルス制御部108による制御に基づいて変調器104にて変調され、パルス形状となる。生成されたRFパルスはRF増幅器106により増幅された後、小型RFコイル114へ送出される。小型RFコイル114は、このRFパルスを試料載置台116上に載置される試料の特定箇所に印加するとともに、RFパルスのエコー信号を検出する。エコー信号は、プリアンプ112により増幅された後、位相検波器110へ送出される。位相検波器110は、このエコー信号を検波し、A/D変換器118を経て演算部130へ送出する。演算部130は、エコー信号の強度から、T2緩和時定数を算出し、算出した前記T2緩和時定数から、試料中の特定箇所における前記水分量を算出する。    

Description

試料中のプロトン性溶媒量を局所的に測定する方法、装置 技術分野
[0001] 本発明は、試料中のプロトン性溶媒量を局所的に測定する方法、装置に関するも のである。
背景技術
[0002] 従来、 1H— NMRにより緩和時定数を測定し、これを材料開発に利用する試みが なされている。特許文献 1は、そのような技術の一例である。
[0003] 特許文献 1には、紙おむつ等に用いる吸水性榭脂の設計にあたり、 1H— NMR横 緩和時定数を含むパラメータを用いることが開示されている。ここでは、 1H-NMR 横緩和時定数は、榭脂の分子鎖の運動性に関連するパラメータとされ、横緩和時間 が短いほど、高分子鎖がからみあい、架橋されている程度が大きいとされている。 同文献では、 CPMG (Carr-Purcell-Meiboom-Gill)法により横緩和時定数を求めて いる。
[0004] 特許文献 1 :特開 2001— 106728号公報
発明の開示
[0005] し力しながら、こうした NMRの測定結果を物質中のプロトン性溶媒量の測定に応用 する技術、特に、物質中の特定箇所のプロトン性溶媒量 (例えば、水分量)を局所的 に測定する技術にっ 、ては、ほとんど開発例がなかった。
[0006] ここで、物質中に存在する水分子 (プロトン性溶媒)につ 、てスピン緩和時定数を求 めれば、水分量を算出することも可能と考えられる。また、傾斜磁場をかける手法を 用いれば、局所的に水分量を測定することも原理的には可能である。しかし、傾斜磁 場をかける手法では、 100秒以上という長い測定時間を要することとなり、実用的で ない。特に、物質中の特定箇所の水分量を局所的に測定し、その測定結果に基づ いて当該物質に水分を補給する等、測定結果をフィードバックして制御に用いる方 式を採用する場合、上記のように測定時間が長くなることは、大きな問題となる。
[0007] 本発明は、上記事情に鑑みなされたものであって、 NMRの測定結果を利用して物 質中の特定箇所の局所的プロトン性溶媒量を比較的短時間で測定する技術を提供 するものである。
[0008] 本発明によれば、
核磁気共鳴法を用いて試料中の特定箇所のプロトン性溶媒量を局所的に測定す る方法であって、
静磁場におかれた前記試料の特定箇所に対し、前記試料より小さ 、小型 RFコイル を用いて、励起用振動磁場を複数回、順次印加するとともに前記励起用振動磁場に 対応する複数のエコー信号を取得する第 1ステップと、
前記複数のエコー信号の強度から、 T緩和時定数を算出する第 2ステップと、
2
前記試料中のプロトン性溶媒量と τ緩和時定数との相関関係を示すデータを取得
2
し、該データと第 2ステップで算出された前記 T緩和時定数とから、前記試料中の特
2
定箇所における前記プロトン性溶媒量を求める第 3ステップと、
を含むことを特徴とする測定方法
が提供される。
[0009] また本発明によれば、
核磁気共鳴法を用いて試料中の特定箇所のプロトン性溶媒量を局所的に測定す る装置であって、
前記試料に対して静磁場を印加する静磁場印加部と、
前記試料に対し励起用振動磁場を印加するとともに、前記励起用振動磁場に対応 するエコー信号を取得する、前記試料より小さ 、小型 RFコイルと、
前記エコー信号の強度から、 T緩和時定数を算出し、算出した前記 T緩和時定数
2 2 から、試料中の特定箇所における前記プロトン性溶媒量を算出する演算部と、 を備えることを特徴とする測定装置
が提供される。
[0010] 本発明においては、小型 RFコイルを用いて、(0局所的に励起用振動磁場を印加 するとともに、 GO励起用振動磁場を印カロした箇所力も発せられるエコー信号を取得し 、得られたエコー信号から τ緩和時定数 (横緩和時定数)を求め、これに基づいてプ
2
口トン性溶媒量、例えば、水分量を測定する。小型 RFコイルにより測定対象となる部 位を限定してパルスエコー法を適用して ヽるため、局所的プロトン性溶媒量を短時間 で測定することができる。
[0011] なお、本明細書において、「静磁場」は、エコー信号および T緩和時定数の取得を
2
安定的に行うことが可能な程度に時間的に安定な磁場であれば、完全に安定な磁 場でなくてもよぐその範囲内で多少の変動があってもよい。
[0012] また、本明細書において、「エコー信号」は、励起用振動磁場に対応するとともに T
2 緩和時定数の算出が可能な NMR信号として機能する信号であればよい。
さらに、本明細書において、プロトン性溶媒とは、自分自身で解離してプロトンを生 じる溶媒をいう。プロトン性溶媒としては、たとえば、水;
メタノールおよびエタノール等のアルコール;
酢酸等のカルボン酸;
フエノーノレ;
液体アンモニア;
が挙げられる。
このうち、プロトン性溶媒を水やアルコールとした場合には、本発明におけるプロト ン性溶媒量をより、安定的に測定することができる。
[0013] 励起用振動磁場は、
(a) 90° パルス、および、
(b) (a)のパルスの時間 τ経過後からはじまり、時間 2 τの間隔で印加される η個の 1 80° ノ ノレス
力もなるパルスシーケンスとすることができる。こうすることにより、 Τ緩和時定数を正
2
確に求めることができる。
[0014] ここで、 90° パルスが第 1位相にあり、 η個の前記 180° パルス力 前記第 1位相と 90° ずれた第 2位相にあるようにすることができる。実際の測定系においては、静磁 場および励起用振動磁場の磁場不均一性が発生し、これが Τ緩和時定数の測定誤
2
差の要因となることがある。上記構成のパルスシーケンスは、 180° パルスとして上記 第 1位相と 90° ずれた第 2位相にあるものを用いているため、 180° パルスを印加す ることで、核磁ィ匕が回転座標系において反転し、これにより、上記磁場不均一性に由 来する測定誤差要因が解消される。第 2位相 180° パルスは、周期的に印加される ので、そのたびに測定誤差要因が解消されるので、正確な T緩和時定数を確実に
2
得ることができる。
[0015] また、上記パノレスシーケンスにくわえ、 90° パノレス (a)より時間 τだけ前の時刻に、 180° ノ ルスを印加するステップをカ卩えた別のシーケンスを実行するようにしてもよい 。 90° パルス(a)で取得した NMR信号の強度と、 180° パルス(b)での時間 τを適 宜選んで取得した NMR信号の強度とを比較することで、小型 RFコイルから照射する 励起用振動磁場の強度が、正確に 90° 、 180° に対応しているかを判断することが できる。二つのパルスの強度が 1対 2の関係にあり、磁化ベクトルをそれぞれ 90° お よび 180° に励起することが測定値の確力もしさと再現性を向上させる重要な要因と なる。この結果、装置の異常または調整の未熟さにより二つのパルスの関係が不適 切になった場合でも、測定を行う前の段階で異常を検知でき、測定値をより確力もし いちのとすることがでさる。
[0016] 本発明にお ヽて、前記小型 RFコイルに前記励起用振動磁場を発生させる RF信号 を生成する RF信号生成部と、
前記小型 RFコイルにより取得されたェコ一信号を検出するとともに、該ェコ一信号 を前記演算部に送出するエコー信号検出部と、
前記小型 RFコイル、前記 RF信号生成部および前記エコー信号検出部を接続する 分岐部に設けられ、前記小型 RFコイルと前記 RF信号生成部とが接続された状態と 、前記小型 RFコイルと前記エコー信号検出部とが接続された状態とを切り替えるスィ ツチ回路と、
をさらに備える構成とすることができる。
[0017] こうすること〖こより、小型 RFコイルカゝら試料に印加される励起用高周波パルス信号 の損失を低減し、この結果、 90° パルスおよび 180° パルスのパルス角を正確に制 御することが可能となる。
[0018] 本発明にお 、て、複数の前記小型 RFコイルを設け、試料の複数箇所に対し、励起 用振動磁場を印加するとともに前記励起用振動磁場に対応するエコー信号を取得し 、前記試料の複数箇所に対し Τ緩和時定数を算出し、前記 Τ緩和時定数に基づい て、前記試料の前記複数箇所における水分量を求める構成としてもょ 、。
[0019] さらに、上記複数箇所における水分量を求めた後、前記試料の前記複数箇所にお ける水分量に基づ ヽて前記試料の水分量分布を提示する構成としてもょ ヽ。
[0020] 力かる構成によれば、簡易な構成で多点同時測定が可能となる。複数の小型 RFコ ィルの配置は任意であり、測定対象の形状等に応じてアレイ化することができる。
[0021] 本発明の装置において、試料の種類毎に、試料中の水分量と T緩和時定数との
2
相関関係を示す情報、たとえば検量線を保有する記憶部を備え、前記演算部は、前 記記憶部から測定対象の試料に対応する前記情報を取得し、該情報に基づ!、て水 分量を算出する構成としてもよい。
[0022] 本発明において、試料は固体またはゲルカゝらなるマトリクスを含むものとし、演算部 は、マトリクス中に含まれる水分量を算出する構成とすることができる。
[0023] 本発明において、試料は、たとえば水分を含有する膜、たとえば、燃料電池等に用 いられる固体電解質膜 (高分子膜)とすることができる。こうした膜の水分量を測定す ることにより、膜が持つ特性'性状や、膜が置かれた環境下での膜の状態を的確に把 握でき、さらには、材料開発において目標とする膜の性能を定量的に掲げることが可 能となる。
[0024] また、本発明において、試料は、水を含む液体とし、演算部は、液体中の水分量を 算出する構成とすることちでさる。
[0025] 本発明によれば、小型コイルを用い、試料の特定箇所に対して局所的にマルチェ コ一法を適用する構成を採用しているため、試料中の特定箇所の局所的水分量を 短時間で測定することができる。
[0026] さらに、本発明では、小型 RFコイルは、平面型コイルであり、導線が右巻きに巻か れたコイル部と、導線が左巻きに巻かれたコイル部とを連結したものであることが好ま しい。
このように、一対のコイル部を連結した平面型の小型 RFコイル、いわゆる 8の字コィ ルを使用することで、より正確に水分量を計測することが可能となる。
[0027] さらには、本発明の測定装置は、小型 RFコイルおよび静磁場印加部を支持する支 持体を有し、支持体は、スティック状であり、その先端部に前記小型 RFコイルが取り 付けられて 、るものであってもよ 、。
このような構成によれば、使用者が支持体を把持し、その先端部を試料に接近させ るだけで、測定を行うことができるので、測定装置の操作性を向上させることができる
[0028] 本発明に係る測定方法および測定装置は、試料中のプロトン性溶媒量、例えば、 水分量を短時間で局所的に算出できる。このため、膜中の水分量測定、水分量分布 測定等に適用できる。たとえば、水素供給型燃料電池における固体電解質膜 (高分 子膜)の水分量をリアルタイムで測定するシステム等、計測された水分量に基づ 、て 燃料中の水分供給量を制御する技術等に好適に適用できる。
例えば、本発明によれば、高分子膜、この高分子膜を挟んで配置されたアノード電 極、および力ソード電極を有する燃料電池と、
前記燃料電池に酸化ガスを供給するための酸化ガス供給部と、
前記燃料電池に燃料ガスを供給するための燃料ガス供給部と、
前記燃料ガス供給部カゝら前記燃料電池に向カゝつて排出される前記燃料ガスに対し 、水蒸気を混合し、前記燃料ガスおよび水蒸気を前記燃料電池に供給する水蒸気 混合部と、
前記高分子膜中の水分量を測定する上述したいずれ力の測定装置と、 前記測定装置からの水分量の測定結果を取得し、この測定結果に基づいて、前記 水蒸気混合部から供給される水蒸気量を調整するように、前記水蒸気混合部を制御 する制御部とを備えることを特徴とする燃料電池システム
を提供することができる。
図面の簡単な説明
[0029] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
[0030] [図 1]本実施形態に係る局所的水分測定方法の概要を示すフローチャートである。
[図 2] (a)は、 CPMG法におけるパルスシーケンスの一例を示す図であり、 (b)は、ェ コー信号の一例を示す図である。
[図 3] (a)〜(d)は、 CPMG法の補償機能について説明するための図である。 圆 4]スピンエコー法により T緩和時定数を測定する原理を説明するための図である
2
[図 5]第一の実施形態に係る水分量測定装置の概略構成を示す図である。
[図 6]小型 RFコイルの一例を示す図である。
[図 7]励起用高周波パルスの印加およびエコー信号の検出を行う LC回路の一例を 示す図である。
圆 8]第二の実施形態にかかる測定装置の概略構成を示す図である。
圆 9]第二の実施形態に係る測定装置のスィッチ部の構成を示す図である。
圆 10]第三の実施形態に力かる測定装置を詳細に説明するブロック図である。
圆 11]第四の実施形態に力かる測定装置の要部を示す図である。
圆 12]第四の実施形態に力かる測定装置の小型 RFコイルを示す図である。
[図 13]第五の実施形態に力かる燃料電池システムを示すブロック図である。
圆 14]燃料電池の構造を示す図である。
[図 15]参考例の加湿 ·昇温セルを示す模式図である。
[図 16]加湿窒素ガスの水蒸気濃度と、 Τ緩和時定数との関係を示す図である。
2
[図 17]実施例 1にお 、て、 CPMG法を用いてマルチエコー信号を計測した結果を示 す図である。
[図 18]実施例 1にお 、て、 CPMG法を用いてマルチエコー信号を計測した結果を示 す図である。
[図 19]実施例 2において、 CPMG法を用いてマルチエコー信号を計測した結果を示 す図である。
[図 20]実施例 2において、算出した T (CPMG)の平均値、計測のばらつきを示す標
2
準偏差、標準偏差を平均値で徐した変動係数を示す図である。
圆 21]水分を含む高分子膜から算出された T緩和時定数を示す図である。
2
[図 22]実施例 4で算出した T緩和時定数 (CPMG)の結果の表を示す図である。
2
[図 23]実施例 5でのエコー信号の減衰曲線を示す図である。
[図 24]実施例 5でのエコー信号の減衰曲線を示す図である。
圆 25]高分子膜中に含まれるメタノール量と、 T緩和時定数との関係を示す図である [図 26]単位体積あたりのメタノール量 (mgZmm3)と、 T緩和時定数との関係を示す
2
図である。
[図 27]第六の実施形態に力かる出力部のブロック図である。
[図 28]第六の実施形態に力かる表示部を示す図である。
発明を実施するための最良の形態
[0031] 本発明の実施の形態について、図面を用いて説明する。以下に述べる実施形態で は、励起用振動磁場を、高周波パルスシーケンスとして与える例について説明する。 尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省 略する。
[0032] (測定原理)
はじめに、後述する各実施形態におけるプロトン性溶媒量の測定手順について、 測定原理とともに説明する。
以下、測定対象となるプロトン性溶媒としては、水を例にあげて説明する。
[0033] 図 1は、本実施形態に係る局所的水分測定方法の概要を示すフローチャートであ る。はじめに、試料を磁石の配置された空間に置き、試料に静磁場を印加する(S 10 2)。この状態で、試料に対して励起用高周波パルスを印加し、これに対応するェコ 一信号を取得する(S 104)。次いで、このエコー信号から T緩和時定数を算定する(
2
S106)。この T緩和時定数から、試料中の局所的水分量を測定する(S108)。具体
2
的には、試料中の水分量と τ緩和時定数との相関関係を示すデータを取得し、この
2
データと上記 τ緩和時定数とから、試料中の特定箇所における局所的な水分量を
2
求める。その後、結果を出力する(S110)。以下、各ステップの詳細について説明す る。
[0034] (i)ステップ 104 (励起用高周波パルスの印加およびエコー信号の取得)
ステップ 104について、以下、詳細に説明する。ステップ 104では、試料に対し励 起用高周波パルスを印加する力 この励起用高周波パルスは、複数のパルス力 な るパルスシーケンスとし、これに対応するエコー信号群を取得するようにすることが好 ましい。こうすることにより、 T緩和時定数を正確に求めることができる。ノ ルスシーケ ンスは、以下の(a)、 (b)からなるものとすることが好ましい。
(a) 90° パルス、および、
(b) (a)のパルスの時間 τ経過後からはじまり、時間 2 τの間隔で印加される η個の 1 80° ノ ノレス
[0035] Τ緩和時定数と試料中の水分量との相関関係を明確に把握するためには、振動
2
磁場の与え方を適切にすることが重要となる。上記のようなパターンとすることにより、 τ緩和時定数と試料中の水分量との相関関係を明確に把握することが可能となる。
2
上記のパルスシーケンスを用いる方法によれば、 90° 励起パルスの τ時間後に、そ の 2倍の励起パルス強度を持つ 180° 励起パルスを印加して、磁化ベクトル Μの位 相が xy平面(回転座標系)上で乱れていく途中でその位相の乱れを反転させ、 2 τ 時間後には位相を収束させて Τ減衰曲線上にのるエコー信号を得ることができる。
2
[0036] ここで、 90° パルスが第 1位相にあり、 η個の 180° パルス力 第 1位相と 90° ずれ た第 2位相にあるパルスシーケンスとすれば、 Τ緩和時定数と試料中の水分量との
2
明確な相関関係を安定的に取得することができる。 CPMG法は、このようなパルスシ 一ケンスを与える方法の一例である。 Τ
2緩和時定数の測定に用いる Τ
2緩和時定数 の与え方として、 Hahnエコー法が知られている力 水分量の測定には CPMG法の 方が適している。以下、 CPMG法および CPMG法と Hahnエコー法の比較について 説明する。
[0037] [CPMG法]
静磁場中に置かれた水素原子核は静磁場に沿った方向 (便宜上、 Z方向とする)に 正味の磁化ベクトルを持ち、特定の周波数 (これを共鳴周波数と呼ぶ)の RF波を Z軸 に垂直な X軸方向で外部力 照射することで磁ィ匕ベクトルは Y軸の正方向に傾斜し、 核磁気共鳴信号 (NMR信号と呼ぶ)を観測することができる。この際、最大強度の N MR信号を取得するために照射された X軸方向の励起パルスを 90° ノ ルスと呼ぶ。
[0038] 通常の Hahnエコー法では、磁化ベクトルを 90° パルスによって Y軸の正方向に傾 斜させた後、さらに τ時間後に X軸方向に外部から 180° 励起パルス(90° パルス の 2倍のエネルギを持つパルス)を照射して、磁ィ匕ベクトルを Υ軸の負方向に反転さ せる。この結果、 2 τ時間後に磁ィ匕ベクトルが Υ軸の負の方向上で収束し、大きな振 幅を持つエコー信号が観測される。 90° と 180° パルスとの時間間隔 τを順次変え て、エコー信号のピーク強度を指数関数でフィッティングすることで、 Hahnエコー法 による T (横)緩和時定数を算出することができる。
2
[0039] 一方、 CPMG法では、図 2 (a)に示すようなパルスシーケンスを与え、図 2 (b)に示 すようなエコー信号を得る。まず、磁化ベクトルを 90° パルスによって Y軸の正方向 に傾斜させた後、 τ時間後に「Y軸方向」に外部から 180° 励起パルス (Hahnに比 ベて、 X軸と Y軸が変る。この意味で、 90° 位相がずれた励起波形となる。)を照射し て、磁ィ匕ベクトルを「Y軸を対称軸として」反転させる。この結果、 2 τ時間後には磁ィ匕 ベクトルが Υ軸の「正の方向」上で収束し、大きな振幅を持つエコー信号が観測され る。さらに、 3 て時間後に磁ィ匕ベクトルに「Υ軸方向」に外部から 180° 励起パルスを 照射して、再度、 Υ軸の「正の方向」上で収束させて、 4 τ時間後に大きな振幅を持 つエコー信号を観測する。さらに、同様の 2 て間隔で、 180° パルスを照射し続ける 。この間、 2 τ , 4 τ , 6 τ , · · ·の偶数番目のエコー信号のピーク強度を抽出し、指数 関数でフィッティングすることで、 CPMG法による Τ
2 (横)緩和時定数を算出すること ができる。
[0040] CPMG法では、上記のように磁ィヒベクトルを「Y軸を対称軸として」反転させるため
、後述する補償機能が発現する。
[0041] [Hahnエコー法と CPMG法の相違]
Hahnエコー法と CPMG法は、以下の点で相違する、
(0CPMG法では、 180° 励起パルスが Y軸方向であり、収束するエコーは Y軸の正 方向のみとなる。 Hahnエコーでは、 Y軸の正から負方向へとエコー信号の収束が移 動する。
(ii)CPMG法では、(a)静磁場の不均一性、(b) RFコイルが照射する励起パルス強 度の不均一性があった場合でも、それを補償することができ、正確な T緩和時定数
2
を計測できる。
(iiOCPMG法では、補償機能として、上記 (a)、 (b)を原因とした、不可逆な位相分散 過程が生じないように、同一の Y軸の正方向に常に位相を収束させるような 180° 励 起パルスを用いている n [0042] 以下、上記 (a)および (b)につ 、て補足する。
(a)静磁場の不均一性は以下の要因で生ずる。
'磁石自身が製造過程の都合上、完全な均一磁場にはな 、。
•被計測物である試料とそれを入れる容器や周囲空気が持つそれぞれの磁化率の 相違により磁場の不均一性が生ずる。
• RFコイル、容器など、装置を構成する材料が持つ磁ィ匕率がそれぞれ異なるため〖こ 磁場の不均一性が生ずる。
•地磁気、建物、床材などの装置が設置された周囲環境により磁場が歪められて、磁 場の不均一性が生ずる。
•磁石が置かれた周囲環境の影響を受け、磁石温度が変動したり、温度分布が生ず るなどの時間的な変動や空間的な温度むらのために、磁場の不均一性が生ずる。
[0043] (b) RFコイルが照射する励起パルス強度の不均一性は以下の要因で生ずる。
•有限長のコイルでは、照射される励起パルス強度が位置によって異なる。例えば、 コイルの中心では強ぐ端に行くほど弱くなる。これにより励起パルス強度の不均一性 が生ずる。
• RFコイルの製作過程において、導線を均一間隔で対称に卷くことは困難であること 、また、共振回路としてのコンデンサーに接続する配線部では必ず非対称になること から、励起パルス強度に不均一性が生ずる。
•照射するパルス強度は、上の二つの要因も受けて、完全には「90° 」「180° 」励起 パルスに調整することは困難である。
[0044] [CPMG法の補償機能]
上述した CPMG法の補償機能について、図 3を参照して説明する。なお、図で示さ れる座標は、回転座標系である。試料の中に、静磁場の不均一性が無視できるよう な小さな領域の核磁化として、 Pと Qを考える。 Pにおける磁場が Qにおける磁場より 強いものとする。このとき、図 3 (a)に示すように、 90° パルスを x'軸方向へ印加する と、 P、 Qの核磁ィ匕は、回転座標系で同じ場所 (y'軸)から歳差運動を始め、時間の 経過とともに、 Pの位相が Qの位相より進んだものとなる(図 3 (b) )。そこで、 90° パル スから時間 τ経過した時点で y'軸方向に 180° パルスを印加すると、 P、 Qの核磁化 は y'軸の周りに 180° 回転し、パルスを印加する前と y'軸に関して対称な配置にな る(図 3 (c) )。この配置では、より進んだ位相をもっていた核磁化 P力 逆に Qより遅れ た位相をもっため、これカゝらさらに時間 τ経過した時刻では、どちらの核磁化も同時 に 軸に達することになる(図 3 (d) )。このような関係は、試料の中のあらゆる領域 の核磁ィ匕について成り立つため、すべての核磁化は、この時刻に y,軸に集まり、そ の結果、大きな NMR信号が得られる。
[0045] 以上のように、 CPMG法では、はじめに x'軸方向へ 90° パルスを印加し、次いで y
'軸方向に 180° パルスを印加しているため、図 3 (c)で示したように、 P、 Qの核磁化 は x'y'平面内で反転する。その後、一定周期毎に y'軸方向へ 180° パルスが印加 され、 x'y'平面内における核磁ィ匕の反転が起こる。この核磁ィ匕の反転が起こるたび に、補償機能が良好に発現する。たとえば、(a)磁場の不均一性、(b)RFコイルが照 射する励起パルス強度の不均一性等の原因により、 P、 Qの位置が x'y'平面上方ま たは下方の位置にずれた場合でも、 x'y'平面内で核磁ィ匕が反転することにより、ず れが補償される。 CPMG法において T 2緩和時定数と水分量との相関が明確に表れ やすいのは、この補償機能によるものと推察される。
[0046] (ii)ステップ 106 (T 2緩和時定数の測定)
τ 2緩和時定数は、スピンエコー法を利用することにより的確に測定することができる
(図 4)。
共鳴励起された磁ィ匕ベクトル M は時間と共に緩和していく。この際に実際に観測 される磁気共鳴信号の時間変化は、スピン一格子緩和時定数 τ、スピン スピン緩 和時定数 τのみでは表すことができない別の時定数の τ *により緩和していく。この
2 2
様子が図 4の最下段に信号強度の時間変化として 90° 励起パルスの直後から示さ れている。一般的に、この波線で示された実際に計測される磁気共鳴信号強度は急 速に減衰し、その時定数 T 2 *は T 2よりも短い。この T 2緩和による減衰曲線よりも実際 に観測される減衰信号が速く減衰してしまう原因は静磁場マグネットの作る外部静磁 場の不均一性、試料の磁気的性質や形状による試料内磁場の不均一性などにより 試料の全体に渡って均一な磁場が確保されていないことによる。このような実際に計 測される磁気共鳴信号の時間変化を自由誘導減衰と呼ぶ。 [0047] この試料や装置特性としての磁場の不均一性による位相のずれを補正する方法と して「スピンエコー」がある。これは 90° 励起パルスの τ時間後に、その 2倍の励起パ ルス強度を持つ 180° 励起パルスを印加して、磁化ベクトル Μの位相が xy平面上で 乱れていく途中でその位相の乱れを反転させ、 2 τ時間後には位相を収束させて Τ
2 減衰曲線上にのるエコー信号を得るという手法である。これにより
•試料や装置特性としての磁場の不均一性の最小化
•信号強度の定量化 (減衰曲線は τ緩和時定数。装置には依存しない。 )
2
などが可能となる。
[0048] スピンエコーを使用した際のエコー信号の強度 S は、 TR》TEの場合には以下の
SE
式 (A)で表される。
[0049] (数 1)
Figure imgf000015_0001
[0050] ここで、 pは位置 (X, y, z)の関数としての対象核種の密度分布、 TRは 90° 励起 パルスの繰り返し時間(100msから 10s程度)、 TEはエコー時間(2t、 1msから 100 ms程度)、 Aは RFコイル検出感度やアンプ等の装置特性を表す定数である。
[0051] T減衰曲線上にのるエコー信号群と、上記式 (A)から、 T緩和時定数を求めること
2 2
ができる。
詳細に説明すると、 2 τ間隔で、 180° ノルスを照射し続け、 2 τ , 4 τ , 6 τ , · · · の偶数番目のエコー信号のピーク強度を取得する。この複数のエコー信号のピーク 強度は時間とともに、徐々に小さくなる。時間とともに減衰する複数のエコー信号の 強度を、指数関数でフィッティングし、上記式 (Α)から、 Τ
2緩和時定数を求めることが できる。
[0052] (iii)ステップ 108 (水分量の測定)
ステップ 108では、緩和時定数から水分量を算出する。試料中の水分量と T緩和
2 時定数とは、正の相関を持つ。水分量の増加につれて τ 2緩和時定数が増大する。こ の相関関係は、試料の種類や形態等により異なるので、あらかじめ、水分濃度がわ カゝつている測定対象試料と同種の試料について検量線を作成しておくことが望まし い。すなわち、水分量が既知の複数の標準試料に対して水分量と τ緩和時定数との
2
関係を測定し、この関係を表す検量線をあら力じめ求めておくことが望ましい。このよ うにして作成した検量線を参照することで、 τ緩和時定数測定値カゝら試料中の水分
2
量を算出することができる。
[0053] 以下、緩和時定数力 水分量を求める方法と理論、および、 CPMG法が水分量測 定に適する理由について、詳細に説明する。
[0054] [Τ緩和時定数から水分量を求める方法と理論]
2
ナフイオン (登録商標)膜などの高分子材料には、分子鎖の形状によって水分子が 入り込める程度の隙間がある。水分子は高分子に吸着しているものと、空間を自由に 運動しているものとがあり、吸着し、運動が束縛された状態の水分子の τ緩和時定
2
数は短くなり、逆に、自由にランダムに運動できる水分子では τ緩和時定数は長くな
2
る。
[0055] 水を吸収することで膨潤する高分子材料の場合には、含有する水の増加と共に、 隙間が大きくなる。したがって、含有水分を次第に増カロさせていくと、水は、まず高分 子に吸着し、一通り吸着が高分子の全面に行き渡ったら、次に、隙間に水が溜まり始 める。このため、乾燥した高分子材料では、高分子に吸着した水ば力りであるために Τ
2緩和時定数は短ぐ水分含有量が多くなるに従って、空間を満たす自由な水が増 えて、 τ 2緩和時定数が長くなる。
[0056] 試料全体の Τ緩和時定数は、最も単純な式で表した場合には、以下の式で表され
2
る。
1/τ (全体) = (吸着した水の量) Ζ (吸着した水の τ ' ) + (自由な水の量) Ζ (自由
2 2
な水の Τ,,)· · ·(1)
2
[0057] 観測者はこの Τ (全体)を計測することになる。空間を満たす自由な水が増えると Τ
2 2
(全体)が大きくなることから、 τ (全体)の測定結果より高分子中の水の量を求めるこ
2
とが可能となる。
[0058] [CPMG法が水分量測定に適する理由]
(1)式においては、吸着した水と自由な水とに分類して項を分けた力 さらに詳細 にみると、局所的な静磁場不均一性を感じている水と、均一な静磁場を感じている水 とがある。このことを考慮すると、上記(1)式は以下のようになる。
1ZT (全体) =xZT +y/T +z/T +w/T · · ·式(2)
2 2 (al) 2 (a2) 2 (bl) 2 (b2)
X:吸着した水であって局所的な静磁場不均一性を感じて 、る水の量
y:吸着した水であって均一な静磁場を感じている水の量
z :自由な水であって局所的な静磁場不均一性を感じている水の量
W :自由な水であって均一な静磁場を感じている水の量
τ 吸着した水であって局所的な静磁場不均一性を感じている水の緩和時定数
2 (al)
τ 吸着した水であって均一な静磁場を感じている水の緩和時定数
2 (a2)
τ 自由な水であって局所的な静磁場不均一性を感じて 、る水の緩和時定数
2 (bl)
τ 自由な水であって均一な静磁場を感じて 、る水の緩和時定数
2 (b2)
[0059] 不均一な磁場ができる理由は、水と高分子膜では磁ィ匕率が異なるために、バルタ な水での静磁場と、高分子内での静磁場が異なるために、同じ静磁場を印カロしたとし ても、バルタな水を通過する磁場強度と、高分子内を通過する磁場強度が異なり、結 果として、界面で磁場のひずみが生ずることに因る。
[0060] 上述のように、高分子中の水は、それぞれ様々な状態にあり、「静磁場が均一な場 所と不均一な場所」という静磁場の視点で見た分類と、「水分子が高分子内の空隙の 広 、領域に 、るの力 それとも壁面に吸着して 、るの力」 t 、う高分子内での水の状 態の視点で見た分類の両面力も考える必要がある。
[0061] 上記式(2)において、 xZT および ζΖΤ の項が存在するため、補償機能の
2 (al) 2 (bl)
有無に起因する緩和時定数の測定精度の差異が生じると考えられる。
[0062] エコーにより磁ィ匕ベクトルが収束するまでの間に、分子の拡散による移動により磁 場が均一から不均一へ、不均一力も均一へと変化したとき、スピンに不可逆過程が 生じ、 Hahnエコーではもはやエコーが同じ状態には収束しなくなる。一方、 CPMG ではそのような均一と不均一間でのやり取りがあつたとしても、エコーが同じ状態に戻 ることができると!/ヽぅ補償機能を有して ヽる。不可逆な位相分散過程が生じな ヽように 、同一の Y軸の正方向に常に位相を収束させるような 180° 励起パルスを用いてい るためである。 CPMG法は、このような補償機能を有するため、 xZT および ζΖΤ
2 (al)
の項の値を正確に見積もることができるものと考えられ、この結果、 Hahnエコー
2 (bl) 法に比べて T緩和時定数と水分量との相関を正確に算定できるものと考えられる。
2
[0063] 次に、図 1のフローチャートにより示した局所的水分測定方法を実現する装置の例 について説明する。
[0064] (第一の実施形態)
図 5は、本実施形態に係る水分量測定装置 1Aの概略構成を示す図である。この測 定装置 1Aは、試料中の特定箇所の水分量を局所的に測定するものであり、試料 11 5を載置する試料載置台 116、試料 115に対して静磁場を印加する磁石 113 (静磁 場印加部)、試料 115の特定箇所に設けられた小型 RFコイル 114、および、小型 RF コイル 114により取得されたエコー信号に基づいて水分量を算出する演算部 130を 備える。
[0065] 試料載置台 116は、試料 115を載置する台であり、所定の形状、材質のものを用い ることがでさる。
[0066] 試料 115は、測定対象となる試料である。試料 115は、膜、塊状物質等の固体、液 体、寒天、ゼリー状物質等のゲル等、種々の形態のものとすることができる。膜状物 質の場合、局所的水分量の測定結果が安定的に得られる。特に、固体電解質膜等 のように、膜中に水分を保持する性質の膜を試料とした場合、測定結果が一層、安 定的に得られる。
[0067] 磁石 113は、試料 115に対して静磁場を印加する。この静磁場が印加された状態 で励起用高周波パルスが試料に印加され、 Τ
2緩和時定数の測定がなされる。
[0068] 小型 RFコイル 114は、試料 115の特定箇所に対し、励起用振動磁場を印加すると ともに、励起用振動磁場に対応するエコー信号を取得する。
[0069] 小型 RFコイル 114は、試料全体の大きさの 1Z2以下とすることが好ましぐ 1/10 以下とすることがより好ましい。このようなサイズとすることにより、試料中の局所的水 分量を短時間で正確に測定することが可能となる。なお、試料の大きさとは、たとえば 、試料を載置したときの投影面積とすることができ、小型 RFコイル 114の専有面積を 、上記投影面積の好ましくは 1Z2以下、より好ましくは、 1Ζ10以下とすることで、短 時間で正確な測定が可能となる。小型 RFコイル 114の大きさは、たとえば、直径 10 mm以下とすることが好まし 、。 [0070] 小型 RFコイル 114は、たとえば図 6に示すようなものを用いることができる。図示し たような平面型コイルを用いることで、計測領域を限定し、局所的な測定を行うことが できる。このような渦巻き型のコイルの計測領域は幅がコイルの直径程度、深さがコィ ル半径程度である。また、このコイルは、通常のソレノイド型コイルと異なり、平面状で あるために、図 6右側の図に示すように、平面状の試料の上に貼り付けるだけで、 N MR信号を取得することができる。上記の例では平面型の渦巻き型コイルを用いたが 、これに限られず種々の形態のものを用いることができる。たとえば、平面型の 8の字 コイル等も利用可能である。 8の字コイルは、右巻きおよび左巻きの 2つの渦巻き型 のコイル部を含むものである。また、渦巻き型コイルは巻いたコイルの軸方向に感度 を有するのに対し、 8の字コイルは巻いた 2つの渦巻き型のコイル部の面と平行な方 向の磁場変動を検出することができる。
[0071] 小型 RFコイル 114は、単数でも複数でもよい。複数とすれば、試料 115中の水分 量分布を測定することが可能となる。この場合、試料 115の表面に沿って 2次元的に 配置すれば、試料表面における 2次元水分量分布を求めることができる。また、試料 115中に 3次元的に配置すれば、試料中における 3次元水分量分布を求めることが できる。
[0072] 小型 RFコイル 114により印加される振動磁場 (励起用振動磁場)は、 RF発振器 10 2、変調器 104、 RF増幅器 106、パルス制御部 108および小型 RFコイル 114の連携 により生成される。すなわち、 RF発振器 102から発信した励起用高周波 RFは、パル ス制御部 108による制御に基づいて変調器 104にて変調され、パルス形状となる。 生成された RFパルスは RF増幅器 106により増幅された後、小型 RFコイル 114へ送 出される。小型 RFコイル 114は、この RFパルスを試料載置台 116上に載置される試 料の特定箇所に印加する。そして、印加された RFパルスのエコー信号を小型 RFコ ィル 114が検出する。このエコー信号は、プリアンプ 112により増幅された後、位相検 波器 110へ送出される。位相検波器 110は、このエコー信号を検波し、 AZD変^^ 118へ送出する。 AZD変換器 118はエコー信号を AZD変換した後、演算部 130 へ送出する。
[0073] 以上、励起用高周波パルスの印加およびエコー信号の検出について述べた力 こ れらは、小型コイルを含む LC回路により実現することができる。図 7は、このような LC 回路の一例を示す図である。共振回路のコイル部 (インダクタンス部)は、前述したよ うに小型 RFコイルとしている。核磁気共鳴 (NMR)法は、磁場中に置かれた原子核 のスピン共鳴現象により核磁化の運動を NMR信号として検出することで原子数密度 とスピン緩和時定数を計測することができる。 lTeslaの磁場中でのスピン共鳴周波 数は約 43MHz (この周波数帯を Radio frequencyと呼ぶ)であり、その周波数帯を 高感度に選択的に検出するために、図 7に示すような LC共振回路が用いられる。
[0074] 小型 RFコイル 114が試料 115に印加する励起用高周波パルスは、たとえば、
(a) 90° パルス、および、
(b) (a)のパルスの時間 τ経過後からはじまり、時間 2 τの間隔で印加される η個の 1 80° ノ ノレス
力もなるパルスシーケンスとすることができる。 Τ緩和時定数と試料中の水分量との
2
相関関係を明確に把握するためには、振動磁場の与え方を適切にすることが重要と なる。上記のようなパターンとすることにより、 τ
2緩和時定数と試料中の水分量との相 関関係が明確に把握することが可能となる。
[0075] ここで、 90° パルスが第 1位相にあり、 η個の 180° パルス力 第 1位相と 90° ずれ た第 2位相にあるパルスシーケンスとすれば、 Τ緩和時定数と試料中の水分量との
2
明確な相関関係を安定的に取得することができる。
[0076] なお、小型 RFコイル 114を用いる場合、上記 (a)および (b)の励起ノ ルス強度の調 整が困難となる場合がある。たとえば、測定対象の領域、つまり小型 RFコイル 114で 囲まれた領域のうち、中央部と周縁部とで励起のされかたに差異が生じてしまい、全 体を均一の励起角度となるように、つまり(a)および (b)における励起磁場の強度比 が一定となるように励起することが困難となる場合がある。(a)および (b)における励 起角度比がばらつくと、正確な T測定が困難となる。
2
[0077] そこで、このような場合には、パルス制御部 108が、上記パルスシーケンスにくわえ 、 90° パルス(a)より時間 τだけ前の時刻に、 180° パルスを印加するステップをカロ えた別のシーケンスを実行するようにする。そして、これら 2つのシーケンスに対応す る 180° パルス (b)の減衰曲線の挙動を比較することにより、 90° パルス(a)および 180° ノ ルス (b)の励起ノ ルス強度が正確である力否かを判別できる。この結果、装 置の異常等により励起パルス強度がずれた場合でも、測定を行う前の段階で異常を 検知でき、測定値をより正確なものとすることができる。
[0078] 以上、試料周辺の装置構成について説明した。つづいて、エコー信号の処理プロ ックについて説明する。
[0079] 演算部 130は、エコー信号の強度から、 T緩和時定数を算出し、算出した前記 T
2 2 緩和時定数から、試料中の特定箇所における前記水分量を算出する。
[0080] 演算部 130の内部では、まず、データ受付部 120によりエコー信号が取得され、次 いで、緩和時定数算出部 122による T緩和時定数が算出される。
2
[0081] T緩和時定数が算出されると、そのデータは水分量算出部 124へ送出される。水
2
分量算出部 124は、検量線テーブル (記憶部) 126にアクセスし、試料に対応する検 量線データを取得する。検量線テーブル 126には、試料の種類毎に、試料中の水分 量と T緩和時定数との相関関係を示す検量線データが格納されて!ヽる。
2
[0082] 水分量算出部 124は、取得された検量線データと、上記のようにして算出された T
2 緩和時定数とを用い、試料中の水分量を算出する。算出された水分量は、出力部 13 2によりユーザに提示される。提示の型式は様々な態様が可能であり、ディスプレイ 上の表示、プリンタ出力、ファイル出力等、特に制限はない。
[0083] 本実施形態では、試料内部、試料表面または試料近傍に小型 RFコイル 114を複 数個配置している。これにより、試料の複数箇所に対して、励起用振動磁場の印加 およびこれに対応するエコー信号の取得を行うことができるように構成されて 、る。水 分量分布算定部 128は、試料中の複数箇所における水分量に基づき、試料中の水 分量分布を算出する。出力部 132は、この水分量分布を出力する。
[0084] 上記装置において、励起用高周波パルスは、 CPMG法によるものを用いることが 好ましい。こうすることにより、 T緩和時定数と試料中の水分量との明確な相関関係
2
を安定的に取得することができる。
[0085] (第二の実施形態)
本実施形態は、水分量測定装置の他の例に関する。図 8は、本実施形態の水分量 測定装置の構成を示す図である。 [0086] 図 8に示した測定装置 IBの基本構成は第一の実施形態(図 5)に示した測定装置 1Aと同様であるが、さらに、スィッチ部 161を有する点が異なる。
[0087] スィッチ部 161は、小型 RFコイル 114、 RF信号生成部およびエコー信号検出部を 接続する分岐部に設けられて ヽる。
[0088] RF信号生成部は、 RF発振器 102、変調器 104および RF増幅器 106からなり、小 型 RFコイル 114に励起用振動磁場を発生させる RF信号を生成する。エコー信号検 出部は、プリアンプ 112、位相検波器 110および AZD変翻 118から構成され、小 型 RFコイル 114により取得されたェコ一信号を検出するとともに、ェコ一信号を演算 部 130に送出する。
[0089] スィッチ部 161は、
小型 RFコイル 114と RF信号生成部 (RF増幅器 106)とが接続された第 1状態、およ び、
小型 RFコイル 114とエコー信号検出部 (位相検波器 110)とが接続された第 2状態 とを切り替える機能を有する。
[0090] スィッチ部 161は、このような「送受信切り替えスィッチ」の役目を果たす。この役目 は、 RF power— ampで増幅された励起パルスを小型 RFコイル 114に伝送する際 には、受信系のプリアンプ 112を切り離して大電圧力も保護し、励起後に NMR信号 を受信する際には、 RF増幅器 106から漏れてくる増幅用大型トランジスタが発するノ ィズを受信系のプリアンプ 112に伝送しな 、ように遮断することである。小型 RFコィ ル 114を用いて計測する場合には、微弱な信号を取り扱うため、以下の理由でスイツ チ部 161が必要となる。一方、小型 RFコイル 114を用いない大型計測システムでは 、 「クロスダイオード」を用いれば充分に対処ができる。なお、クロスダイオードは、所 定値以上の電圧が印加された際にオン状態となり、所定値未満の場合にはオフ状態 となるダイオードである。
[0091] 小型 RFコイル 114を用いる場合に特に「送受信切り替えスィッチ」すなわちスィッチ 部 161が必要な理由は以下の通りである。
(i)本計測システムの小型コイルで検出できる試料体積は、大型コイルに比べて小さ くなる。この検出可能な試料体積は、おおよそ、(コイルの内側面積 Xコイル半径の 深さ)である。体積に比例して減少する微弱な NMR信号を、低ノイズ、高感度で計測 するためには、送信系において、 RF増幅器 106の増幅用大型トランジスタ力も漏れ てくるノイズを遮断することが必要となる。また、受信系では高感度のプリアンプ 112 を使用する必要がある。高感度のプリアンプ 112の使用に当たっては、送信時に小 型コイルに送られる大電圧の励起パルスカゝらプリアンプ 112を保護できるように、プリ アンプ 112を切断しなければならな!/、。
(ii)試料体積内の核磁ィ匕を励起する際に、適切な励起パルスパワーで、具体的には 、 90度パルスと 180度パルスの強度が 1 : 2となるように、核磁化を励起する必要があ る。励起パルスパワーの調整を適切に行うことができないと、 目標としている CPMG 法のパルス系列とはならず、計測される T (CPMG)値の信頼性が低下するため、デ
2
ータがばらつく。この現象は、従来のクロスダイオードを用いて、小型コイルの送受信 切り替えを行う際には顕著に現れる。大型コイルでは、励起パルス強度が非常に大き ぐクロスダイオードでの損失が無視できるほど小さいとみなせる力 小型コイルの場 合には、励起ノ ルス強度が大型コイルのそれよりも小さいために、クロスダイオードで の損失が無視できない。このため、適切な励起パルス強度とするためには損失が極 力少な ヽ「送受信切り替えスィッチ」が必要となる。
[0092] 上記分岐部にスィッチ部 161を設けることにより、小型 RFコイル 114から試料 115 に印加される励起用高周波パルス信号の損失を低減し、この結果、 90° パルスおよ び 180° パルスのパルス角を正確に制御することが可能となる。パルス角の正確な 制御は、パルスエコー法における補償効果を確実に得る上で重要な技術的課題で あり、本実施形態では、カゝかる課題をスィッチ部 161の配設により解決している。
[0093] また、局所計測のための RF検出コイルは微小化し、 NMR受信時の低ノイズ化が、 計測の確力 しさを確実なものとするためには重要な因子となる。 NMR信号を受信 する際に、プリアンプ 112に入り込むノイズには、 RF波の送信系が主にあり、励起用 パルスを増幅する RF増幅器 106からの「RF波の漏れ」や「大電力増幅器が発するノ ィズ」がある。 NMR信号の受信時には、送信側カゝら漏れてくる励起波をスィッチ部 1 61で確実に遮断し、低ノイズで NMR信号を受信する必要がある。本実施形態では、 力かる課題についても、スィッチ部 161の配設により解決している。 [0094] スィッチ部 161は、種々の構成を採用することができる。図 9はスィッチ部 161の構 成の一例を示す回路図である。
[0095] (第三の実施形態)
本実施形態は、以上の実施形態に記載の水分量測定装置 1A, 1Bの水分量算出 部 124における水分算出方法の別の例に関する。図 10は、本実施形態の水分量算 出部 124および検量線テーブル 126の構成を示す図である。
[0096] 図 10に示すように、水分量算出部 124は、試料中の水分量を算出する計算部 173 、および計算部 173で算出された値を、小型 RFコイル 114の大きさに応じて補正す る補正部 175を有する。検量線テーブル 126は、補正部 175における補正に関する 補正パラメータまたは補正式が記憶された補正パラメータ記憶部 177を有する。
[0097] 計算部 173においては、小型 RFコイル 114で検出されたエコー信号力も T緩和時
2 定数が算出されるが、本実施形態においては、励起磁場を印加する小型 RFコイル 1 14が小型であるため、大型のソレノイドコイル等を用いた測定の場合と測定値がずれ る場合がある。
[0098] このような場合には、補正部 175において、必要に応じて水分量の値を補正するこ とができる。補正パラメータ記憶部 177には、小型 RFコイル 114の大きさに応じた補 正パラメータおよび補正方法が記憶されており、補正部 175は、補正パラメータ記憶 部 177からこれらの情報を取得して補正を行う。
[0099] 小型 RFコイル 114を用いた場合、基本的には、試料よりも大きい RFコイルを用い たときと同等の測定値が得られる力 後述する実施例に示されるように、 RFコイルを 小型化した場合、試料の励起のされ方に差異が生じやすいため、一般的に、磁場の 不均一性や SN比の低下等、測定値の誤差をもたらす要因が発生する。これに対し、 小型 RFコイルの配置やスィッチ部を設ける構成の採用等により、上記要因を排除し 、RFコイルのサイズが測定値に与える影響を低減することが可能である。
[0100] しかしながら、小型 RFコイル 114を極小化した場合には、 RFコイルのサイズが測定 値に与える影響が現れる場合がある。この影響につ!ヽて本発明者らが検討した結果 、小型 RFコイル 114で得られた測定値に所定の定数を用いて換算することで、正確 な値が得られることが明らかになった。換算は、所定の定数を乗算する、あるいは所 定の定数を加算するという態様があり、試料の性質等に応じて選択される。測定対象 となる試料を用いた予備実験により、上記定数をあらかじめ求めておくことで、サイズ の影響のない正確な測定値を得ることができる。
[0101] なお、小型 RFコイル 114を極小化した際に、測定値に影響を与える場合がある理 由は、以下の通りである。
[0102] 大型円筒状コイルの場合には、コイルの内部に試料を挿入することで、励起用振動 磁場は試料全体に照射され、磁ィ匕を均一にまたはほぼ均一に励起することが可能で ある。大型円筒型コイルについては、もともと均一に照射できるようにコイルが設計 · 製造されている。
[0103] 一方、小型 RFコイル 114の場合には、試料よりもコイルが小さいために、試料全体 を均一には励起できない。コイルの中心付近が最も強く振動磁場を受け、それから遠 ざかるにつれて、振動磁場による励起パルス強度は弱くなる。
[0104] この不均一な励起によって放出される NMR信号には、さまざまな励起角度を持つ 磁ィ匕が混在し、磁ィ匕の位相も同一にはそろわない場合がある。このため、それらの総 和としてコイルで受信される NMR信号は、均一励起の場合とは異なる様子となりえる 。均一励起の場合とは異なる様子としては、たとえば、左右対称なきれいな山型のェ コーピークではな力つたり、その最大強度位置が時間的に前後にずれたりする様子 が挙げられる。
[0105] このような「不均一励起パルスから放出される NMR信号」から CPMG法により T (C
2
MPG)を算出すると、結果として、均一励起の大型コイルとは異なる値となる場合が ある。
[0106] (第四の実施形態)
本実施形態の測定装置 2では、図 11に示すように、磁石 (静磁場印加部) 213と、 小型 RFコイル 214とが支持体 201に取り付けられている。他の点は、前記各実施形 態と同様である。
磁石 213は、前記各実施形態の測定装置 1A, 1Bの磁石 113よりも小さい小型の 磁石である。前記各実施形態では、磁石 113により、試料 115全体に静磁場を印加 していたが、本実施形態では、磁石 213を使用することにより、試料 115の特定箇所 に静磁場を印加することとなる。
[0107] 支持体 201はスティック状の筐体である。
この支持体 201の先端部の端面の中央には、突起部 201 Aが形成されている。 支持体 201の内部には、磁石 213が収納されている。磁石 213からの静磁場 Hは
0
、支持体 201の中心軸と同じ方向となっている。
この場合には、支持体 201の中心軸と垂直方向に励起用振動磁場 Hが加えられ る必要があり、図 12にも示すように、 2個の渦巻き状 (リング状)のコイル部 214Aを連 結した、いわゆる「8の字型」または、「バタフライ型」の小型 RFコイル 214が使用され る。
一対のコイル部 214Aは、静磁場方向と略直交する方向にそって配置されており、 一方のコイル部 214Aは、導線が右巻きに巻かれたものであり、他方のコイル部 214 Aは、導線が左巻きにまかれたものである。
[0108] このような小型 RFコイル 214は、支持体 201の先端部の端面に形成された突起部 201 Aの表面に固定されて!、る。
このような構成においては、静磁場 H方向と小型 RFコイル 214の励起用振動磁場
0
Hの方向とは直交するので、 NMR信号を受信できる。
このような測定装置 2を用いる場合には、支持体 201の先端に取り付けられた小型 RFコイル 214を、試料に接触させればよい。
本実施形態では、支持体 201に静磁場 Hを印加する小型の磁石 213を取り付け
0
ているため、前記各実施形態で示したような大型の磁石 113が不要となり、測定装置
2の小型化を図ることができる。
さらに、支持体 201は、スティック状であるため、使用者が支持体 201を把持し、そ の先端部を試料に接触させるだけで、測定を行うことができるので、測定装置の操作 性を向上させることができる。
[0109] (第五の実施形態)
図 13, 14を参照して、第五の実施形態について説明する。
本実施形態は、第一の実施形態の測定装置 1Aを備えた燃料電池システム 3に関 する。 図 13に示すように、燃料電池システム 3は、測定装置 1Aと、燃料電池 31と、燃料 電池 31に酸化ガス (酸素や空気等)を供給する酸化ガス供給部 32と、燃料電池 31 に燃料ガス (水素ガス等)を供給する燃料ガス供給部 33と、酸化ガス供給部 32から 燃料電池 31に向カゝつて供給される酸ィ匕ガスおよび、燃料ガス供給部 33から燃料電 池 31に向かって供給される燃料ガスに水蒸気を混合する水蒸気混合部 34, 35と、 制御部 36とを有する。
[0110] 燃料電池 31は、図 14に示すように、高分子膜 (試料) 115と、この高分子膜 115の 両側に設けられた触媒層 311A, 311Bと、多孔質の拡散層 312A, 312Bと、セパレ ータ 313A, 313Bとを有する。
触媒層 311Aと、拡散層 312Aとで、アノード電極 314が構成され、触媒層 311Bと 拡散層 312Bとで、力ソード電極 315が構成される。
セパレータ 313Aには、燃料ガスが供給され、燃料ガスの流路となる溝が形成され ている。
また、セパレータ 313Bには、酸ィ匕ガスが供給され、酸化ガスの流路となる溝が形成 されている
[0111] 酸ィ匕ガス供給部 32は、燃料電池 31に対して酸ィ匕ガスを供給するためのものであり 、燃料ガス供給部 33は、燃料電池 31に対して燃料ガスを供給するためのものである 酸化ガス供給部 32と燃料電池 31との間には、水蒸気混合部 34が設けられている 。水蒸気混合部 34では、水蒸気を発生させ、酸化ガス供給部 32から燃料電池 31〖こ 向かって供給される酸化ガスに水蒸気を混合する。このようにして水蒸気と混合され た酸化ガスが、燃料電池 31に供給される。
同様に、燃料ガス供給部 33と、燃料電池 31との間にも、水蒸気混合部 35が設けら れている。この水蒸気混合部 35では、水蒸気を発生させ、燃料ガス供給部 33から燃 料電池 31に向カゝつて供給される燃料ガスに水蒸気を混合している。水蒸気と混合し た燃料ガスは、燃料電池 31に送られる。
このように、水蒸気を酸化ガス、燃料ガスに混合することで燃料電池 31の高分子膜 115を湿潤させている。 [0112] 燃料電池 31の高分子膜 115中の水分量の測定を行う場合には、前記測定装置 1 Aの複数の小型 RFコイル 114を高分子膜 115の表面に接触させる。これにより、高 分子膜 115中の水分量の測定を行うことができる。
制御部 36は測定装置 1Aおよび水蒸気混合部 34, 35に接続されている。 制御部 36では、測定装置 1Aからの水分量の測定結果および、水分量の分布を取 得し、この測定結果に基づいて、水蒸気混合部 34, 35で生成され、燃料電池 31〖こ 供給される水蒸気量を調整するように、水蒸気混合部 34, 35を制御する。
[0113] 例えば、燃料電池 31の発電を行っている場合には、アノード電極 314側で発生し た水素イオンの移動に伴 、、高分子膜 115中の水分がアノード電極 314側力もカソ ード電極 315側に移動する。
また、力ソード電極 315側での水素イオンと酸素ガスとの反応により水が生成する。 そのため、高分子膜 115中、特に力ソード電極 315側の水分量が過剰となることがあ る。水分量が過剰となると、セパレータ 313Bの流路内に水が凝集し、酸化ガスの流 れを妨げることとなり、発電効率が下がる可能性がある。
一方で、高分子膜 115に充分な水蒸気が供給されず、高分子膜 115が乾燥してい る状態になると、プロトン伝導性が低下し、燃料電池 31の発電効率が低下する。従つ て、高分子膜 115が乾燥状態となり、プロトン伝導性が低下することは好ましくない。
[0114] そこで、制御部 36では、測定装置 1Aから水分量の分布を取得するとともに、取得 した分布における水分量の値が所定の範囲内にあるかどうか、すなわち、高分子膜 1 15が適度な湿潤状態となっているかどうか判断する。所定の範囲を超えると判断した 場合には、制御部 36は、水蒸気混合部 34, 35に対し、生成する水蒸気量を減らす ように要求する。
[0115] 一方、測定装置 1Aから取得した水分量の分布における水分量の値が所定の範囲 外であり、水分量が少ないと判断した場合には、制御部 36は、水蒸気混合部 34, 35 に対し、生成する水蒸気量を増やすように要求し、高分子膜 115の乾燥を防止する。 このような燃料電池システム 3では、測定装置 1Aにより、高分子膜 115中の水分量 を測定し、高分子膜 115中の水分量を適度なものに調整することができる。これによ り、燃料電池 31の発電効率を高めることができる。 [0116] また、高分子膜 115のアノード電極 314側の表面、力ソード電極 315側の表面それ ぞれに、小型 RFコイル 114を当接させて、アノード電極 314側の表面近傍、力ソード 電極 315側の表面近傍の水分量をそれぞれ把握し、各電極 314, 315表面近傍の 水分量と、発電効率との関係を把握することもできる。
これにより、アノード電極 314側、或いは、力ソード電極 315側のどちらからの側の 水蒸気の供給が、発電効率に有効であるかどうかを把握することも可能である。 さらに、本実施形態の燃料電池システム 3は、燃料電池 31が長時間運転された際 に生じる発電効率の低下の原因を探るための有用なデータを「高分子膜の含水量」 t 、う視点力 提供することができる。
[0117] なお、本実施形態では、制御部 36により、水蒸気混合部 34, 35双方の水蒸気生 成量、および燃料電池 31への水蒸気供給量を調整したが、これに限らず、例えば、 水蒸気混合部 35の水蒸気生成量および燃料電池 31への水蒸気供給量のみを調 整してちょい。
さらに、本実施形態では、燃料電池システム 3は、測定装置 1Aを備えるものとした 力 これに限らず、前記各実施形態、さらには、後述する第六実施形態の測定装置 の何れもを備えるものとすることもできる。
[0118] (第六の実施形態)
図 27,28を参照して、本実施形態について説明する。
本実施形態は、前記各実施形態の水分量測定装置 1A, 1B,2の出力部の別の例 を示す。
出力部 132は、水分量算出部 124で算出した、複数の小型 RFコイル 114 (図 28に は、小型 RFコイル 114を図示する力 小型 RFコイル 214でもよい)の測定領域毎の 水分量を取得する測定データ取得部 132Aと、取得した水分量を同一画面の区画さ れた領域に表示する表示部 132Bとを有する。
表示部 132Bでは、図 28に示すように、小型 RFコイル 114の配置位置に応じて、 画面が複数の領域に区画されている。各領域は、各小型 RFコイル 114の測定領域 の水分量に応じて、所定の色が表示される。
このように、表示部 132Bの各領域に各小型 RFコイル 114の測定領域の水分量に 応じた色を表示することで、各小型 RFコイル 114での計測位置と、水分量との関係 を直感的に把握することができる。
これにより、使用者にとって使い勝手のよい測定装置とすることができる。 実施例
[0119] (参考例)
本参考例では、高分子膜 (試料)の T
2緩和時定数が水分含有量に対して強い依存 性を持つことにつ 、ての確認を行った。
[0120] [装置構成]
第一の実施形態で説明した構成の測定装置の小型 RFコイルを、標準的なソレノィ ドコイル (以下、標準コイルという)にカゝえて計測を行った。
標準コイルの直径は 25mm、長さは 38mmであり、測定対象となる高分子膜よりも 充分に大きい。
このような標準コイルでは内部に挿入された試料 (高分子膜)の核磁ィ匕を均一に励 起でき、計測の信頼性が高い。
[0121] [試料]
試料として、膜厚 500 m、寸法 15mm X 15mmの高分子膜 (旭硝子株式会社製 )を用いた。
80°Cに保持した 3%過酸ィ匕水素水に、前記高分子膜を入れ、 1時間攪拌した。そ の後、 1N塩酸、イオン交換水の順に、前記高分子膜を入れ、各溶液において、 1時 間攪拌した (標準化処理)。
その後、室温の蒸留水に高分子膜を浸し、保管した。
[0122] [高分子膜の加湿、昇温]
高分子膜を 75°Cに昇温し、所定の水蒸気濃度雰囲気中で加湿するために、図 15 に示す加湿 ·昇温セル 4を製作した。
高分子膜を 75°Cとしたのは、高分子膜を燃料電池に使用することを想定したから である。燃料電池は 60〜70°Cで運転される。
図 15に示す加湿 ·昇温セル 4中では、高分子膜は、セル中に配置される上部部材 41と、下部部材 42との間に挟まれて配置される。 また、上部部材 41と、下部部材 42とに挟まれた高分子膜の表面上には加湿窒素 ガスが流れる流路が形成されている。流路は、高分子膜表面上の 12. 2mm X 12. 0 mmの領域内に形成されており、この領域内に 9本設けられている。
各流路の幅と、深さは 1. Ommであり、流路のピッチは 1. 4mmである。 加湿窒素ガス流量は 50mlZminである。
[0123] 加湿窒素ガスは、以下のようにして製造され、加湿'昇温セル 4に導入される。
まず、窒素ガスを室温の第一のバブラ一で洗浄した後、温調された第二のバブラ一 において、細孔径 10 mの多孔質ガラス板力も窒素ガスを噴出させた。これにより、 所定の水蒸気濃度の加湿窒素ガスが生成されることとなる。
加湿後の加湿窒素ガスが凝縮しな 、ように、加湿窒素ガスが通過する全ての配管 を 77°Cにして、加湿窒素ガスを加湿 ·昇温セル 4に導入した。
加湿'昇温セル 4の温調は、セル内に 75°Cの液体を流すことで行い、高分子膜は 加湿 ·昇温セル 4の温度と等 U、とした。
このようにして加湿 ·昇温セル 4中に所定の水蒸気濃度の加湿窒素ガスを導入し、 4 時間以上、定常状態を保った。これにより、所定の水分量の高分子膜を得た。
[0124] [高分子膜の水分含有量測定]
加湿 ·昇温セル 4を流れる加湿窒素ガスの水蒸気濃度を変え、各水蒸気濃度にお いて、前記標準コイルを用い、 T緩和時定数を計測した結果を図 16に示す。図 16
2
には、 CPMG法と Hahnエコー法のそれぞれを用いて測定した結果が示されて!/、る なお、 CPMG法による T緩和時定数(CPMG)のばらつきは、 18ms
2 〜26msであ つた o
また、水蒸気濃度の誤差および変動は、バブラ一温度の変動が主な要因である。 バブラ一の温度変動は 0. 5°C〜 + 0. 5°Cであり、これに対応する水蒸気濃度の 変動は 2%〜+ 2%と算出される。
[0125] 図 16に示すように、水蒸気濃度が増加するにつれてほぼ比例的
に CPMG法による T緩和時定数(CPMG)が増加することが分かる。これにより、水
2
蒸気濃度の増加が高分子膜の含水量を増力 tlさせ、高分子膜内を自由に運動できる 水分子が増加して 、ると考えられる。
従って、 CPMG法による T緩和時定数 (CPMG)を計測することで、高分子膜中の
2
含水量を算出することができるといえる。
一方、 Hahnエコー法により、 T緩和時定数 (Hahn)を計測した場合には、 Hahn
2
エコー法による T緩和時定数 (Hahn)は、水蒸気濃度に依存せず、略一定となって
2
しまうことがわかる。
[0126] (実施例 1)
核磁気共鳴 (NMR)法を元に、(i)小型 RFコイルを用いた局所計測と、(ii)高分子 膜の T緩和時定数が水分含有量に対して強い依存性を持つことを利用して、高分
2
子膜の水分含有量を局所 '短時間'高感度での計測が可能となる。以下、実施例に 基づいて説明する。
[0127] [装置構成]
第一の実施形態で説明した構成の測定装置を用い、試料中の水分量を局所的に 測定した。この装置では、小型 RFコイルを用い、 CPMG法を用いてマルチエコー信 号を計測した。
[0128] [試料]
試料として、膜厚 500 m、寸法 16mm X 16mmのフレミオン(登録商標)膜を用い た。
[0129] [予備実験]
はじめに、小型 RFコイルにより適切に NMR信号が取得できることを示すために、 C PMG法を用いてマルチエコー信号を計測した。ここでは、直径 1. 1mmの小型 RFコ ィルを用い、試料としては純粋を使用した。結果を図 2に示す。これにより、小型 RFコ ィルが 90° —180° 励起パルスを適切に照射し、純水試料の T緩和時定数がソレ
2
ノイドコイルと同等に計測できていることが分かる。
[0130] [高分子膜の水分含有量測定]
上記装置を用い、高分子膜の水分含有量を変化させ、 CPMG法と Hahnエコー法 のそれぞれを用いて T緩和時定数を計測した結果を図 17に示す。横軸の水蒸気濃
2
度は、高分子膜の周囲の水蒸気濃度を示しており、膜はその水蒸気濃度に平衡な 水分含有量を有する。すなわち、横軸は、高分子膜の水分含有量と見なしてよい。こ の図から、膜の水分含有量の増加に従って、 CPMG法による T緩和時定数は長くな
2
る力 Hahnエコー法による T緩和時定数は一定であることが分かる。
2
[0131] 通常の NMR計測では、 Hahnエコー法を用いてエコー信号を取得し、信号強度を 画像ィ匕させているために、 T緩和時定数 (Hahnエコー)が膜の水分含有量には依
2
存せず、水分分布に高濃度と低濃度の領域があつたとしても、 T緩和時定数 (Hahn
2
エコー)によるコントラストの相違ができず、単純に水分含有量に比例する。このため に、 Hahnエコー法による計測は水分含有量に対して鈍感な計測法となる。
[0132] これに対し、 CPMG法では、水分含有量と共に T緩和時定数 (CPMG)は長くなり
2
、水分含有量が高濃度の領域と低濃度領域では T緩和時定数 (CPMG)の明確な
2
差が生ずる。このため、 CPMG法により T緩和時定数を計測することで、水分含有
2
量が算出できる。また、 CPMG法で画像計測を行えば、水分含有量と T緩和時定数
2
(CPMG)の両方の増大効果で、コントラストが増強されて計測できる。
[0133] 以上のように本実施例で用いた装置、方法によれば、 NMR信号を振幅と T緩和
2 時定数の両面力も水分含有量を算出することができ、 CPMG法を用いマルチエコー を取得することで、高感度で高分子膜内の水分含有量を計測することができる。 CP MG法の計測時間は 1秒以下であり、この方法による水分含有量の計測時間は 1秒 以下に短縮される。
[0134] (実施例 2)
本実施例では、小型表面コイルを用いた場合に、標準コイルと同等の T (CPMG)
2 が計測できることを検証した。時間的に安定した試料の硫酸銅水溶液を用いて T (C
2
PMG)計測を行った。
[0135] まず、濃度が異なる硫酸銅水溶液を用いて T (CPMG)計測を行った。試料は、濃
2
度が 0、 2. 5、 5. OmmolZlの硫酸銅水溶液とした。それらの濃度の相違によって T
2 緩和時定数は異なる。
[0136] 試料は容器(内側寸法 15mm X 15mm X隙間 0. 5mm,肉厚 0. 12mm)内に封 入した。小型表面コイルは試料容器中央に貼り付けられ、コイルと水溶液の距離は 3 0 m厚のポリイミドフィルムを含んで 0. 15mmである。また、比較のため、試料よりも 充分に大きぐ高周波磁場照射の均一性が良い直径 25mm、長さ 38mmのソレノィ ドコイルを標準的なソレノイドコイル (標準コイル)として用いた。
[0137] 図 18は、測定結果を示す図である。ここでは、標準コイルによる計測結果も、小型 コイルとの比較のために図 18中に併記した。
[0138] また、 T緩和時定数の異なる試料として、蒸留水と 1. 2mmolZlの硫酸銅水溶液
2
を用いた。試料は高分子膜と同じ形状の容器(内側寸法 15mm X 15mm X隙間 0. 5mm,肉厚 0. 12mm)内に封入した。小型表面コイルは試料容器中央に貼り付けら れ、コイルと水溶液の距離は 30 m厚のポリイミドフィルムを含んで 0. 15mmである 。また、標準コイルとは、試料よりも充分に大きぐ高周波磁場照射の均一性が良い 直径 25mm、長さ 38mmのソレノイドコイルのことで、それは従来から用いられている 標準的なソレノイドコイルである。
[0139] コイル直径が緩和時定数の計測精度に与える影響を調べるために、直径 0. 8mm 、 2. Ommの二つの小型表面コイルを用いて硫酸銅水溶液の T (CPMG)を計測し
2
た。その結果を図 19と、図 20に示す。
図 20には、上力も順に、 10〜20回計測して算出した T (CPMG)の平均値、標準
2
コイルでの T (CPMG)の平均値を基準とした場合の比率 (括弧内の数値)、計測の
2
ばらつきを示す標準偏差、標準偏差を平均値で徐した変動係数を示した。
図 19の横軸は、同一試料、同一条件の下、標準コイルで計測した T (CPMG)で
2
あり、図中の細力 、破線が標準コイルと同じ T (CPMG)となった場合を表す。エラー
2
バーは、 10〜20回計測して算出した T (CPMG)のばらつきを示す標準偏差(図 20
2
の標準偏差)である。
[0140] これらの図より、直径 2. Ommのコイルでは標準コイルと同じ T (CPMG)となり、直
2
径 2. Ommのコイルにおける変動係数は、 0. 11〜0. 13であった。
これに対し、直径 0. 8mmのコイルでは、 T (CPMG)の平均値が、標準コイルの T
2 2
(CPMG)に比べ、 1. 32〜: L 54倍に長くなつた。また、直径 0. 8mmのコイルの変 動係数は 0. 14〜0. 16であり、直径 2. Ommのコイルの変動係数に比べて増加した
[0141] また図 19および図 20より、小型コイルで計測した際の T (CPMG)は、標準コイル で計測した T (CPMG)よりも長くなる場合がある。その場合、予め標準試料を用いて
2
、その増加分を較正する必要がある。図 20より、その手法は、硫酸銅濃度によらず、 一定の較正値を用いて行うことができる。具体的には、 CPMG法により T (CPMG)
2 を算出した後に、コイル形状、巻き数などの幾何学特性により予め用意されたテープ ルから T (CPMG)の増分を引き出し、求められた T (CPMG)から一定値だけ引く
2 2
力 一定割合だけ除算するかによって補正を行い、較正する。
[0142] また、コイルの小型化は NMR信号を低下させ、 T (CPMG)のばらつきを増加させ
2
る。前述したように、直径 0. 8mmでの変動係数は 0. 14〜0. 16であり、直径 2. Om mのコイルの変動係数に比べて増加した。
[0143] 直径 0. 8mmでの T (CPMG)が長くなる理由として、コイル直径に比べて銅線径
2
が無視できない程に太ぐ励起パルス強度分布が測定領域内で不均一となり、 180 度励起パルス後の自由誘導減衰波形とエコーが干渉したために、見かけ上、 T (CP
2
MG)が長くなつたものと推察される。
[0144] (実施例 4)
本実施例では、小型表面コイルおよび標準コイルを用いて、高分子膜からの T
2緩 和時定数を CPMG法により、計測した。
ここでは、参考例と同様の高分子膜を使用した。
また、小型表面コイルとしては、直径が 0. 8mmのものと、直径が 2. Ommのものと を使用した。各小型表面コイルは、それぞれ直径 50 /z mのポリウレタン皮膜付導線 を渦巻き状に 3. 5回巻いた後、形状を保つように 30 m厚の粘着性ポリイミドフィル ムで挟み込んだものである。
参考例と同様の方法で高分子膜に標準化処理を施し、その後、室温の蒸留水に浸 して保管した。
この高分子膜を乾燥したティッシュぺーパに 10秒間、 3回押し付けて、高分子膜表 面の水分を取った。
そして、この高分子膜を二枚のカバーガラス(寸法 18mm X 18mm X肉厚 0. 12m m)に挟み、乾燥しないように周囲をポリイミ
ドフィルムで密閉した。小型表面コイルはポリイミドフィルムの中央に貼り付けられ、コ ィルと水溶液の距離は 30 μ m厚のポリイミドフィルムを含んで 0. 15mmであった。 また、計測時の高分子膜の温度は、 23°Cであった。
図 21に、測定結果を示す。図 21の数値は、各コイルにおいて 10回測定した T緩
2 和時定数 (CPMG)の平均値であり、括弧内の数字は標準コイルでの T緩和時定数
2
(CPMG)の平均値を基準とした場合の比率を表す。さらに、図中のエラーバーは計 測値の標準偏差を示す。
図 21から、直径 2. Ommの小型表面コイルでは標準コイルとほぼ同等の T緩和時
2 定数(CPMG)の値が計測されていることがわかる。また、直径 0. 8mmの小型表面 コイルでは、実施例 2での硫酸銅水溶液での計測結果と同様に、 T緩和時定数 (CP
2
MG)の値が増加している。直径 0. 8mmの小型表面コイルで計測した T緩和時定
2 数の平均値は、標準コイルでの T緩和時定数 (CPMG)の平均値を基準とした場合
2
、 1. 20倍となる。
計測のばらつきは、直径 2. Ommの小型表面コイルでは標準偏差が 47ms、変動 係数が 0. 047であり、直径 0. 8mmの小型表面コイルでは標準偏差が 340ms、変 動係数が 0. 31であった。
実施例 2に比べて、直径 0. 8mmの小型表面コイルでの計測のばらつきが大きくな つた理由としては、高分子膜からのエコー信号の強度が小さぐ信号対雑音比が大き く低下して 、ることが考えられる。
また、標準コイルでの τ緩和時定数 (CPMG)に対する直径 0. 8mmの小型表面コ
2
ィルでの T緩和時定数 (CPMG)の比率力 実施例 2に比べて減少していることがわ
2
かる。
実施例 3でも延べたが、標準コイルでの T緩和時定数 (CPMG)に対する、小型表
2
面コイルでの T緩和時定数 (CPMG)の比率は、小型表面コイルの直径や、幾何形
2
状による励起強度分布の不均一性に主に依存し、同一形状の小型表面コイルであ れば前記比率は、一定になると考えられる。
そのため、この比率を小型表面コイルの直径や、小型表面コイルの幾何形状による 補正因子と見なして、小型表面コイルでの T緩和時定数 (CPMG)の値をこれで除
2
すれば、標準コイルでの計測値に換算できる。 [0146] (実施例 4)
本実施例では、第二の実施形態に記載の装置(図 8)において、複数の小型表面コ ィルを用い、複数チャンネル計測システムによって試料を測定し、大型ソレノイドコィ ルと同等な T (CPMG)値が計測できることを検証した。
2
[0147] 図 8における小型 RFコイル 114は、直径 50 mの銅線を外径 2. Ommで 3. 5回卷 いて製作した。本例では、 2個のコイルを用い、それぞれを同一試料上に配置した。 以下、二つの小型 RFコイル 114の一方に接続されるチャンネルを第 1チャンネルと 呼び、他方を第 2チャンネルと呼ぶ。
[0148] 試料として、薄い濃度の硫酸銅水溶液を用いた。厚さ 0. 5mmのアクリル板(18m m X 18mm)の中心に穴(15mmX 15mm)を開け、その両側に 0. 12mm厚のカバ 一ガラス(18mm X I 8mm)を貼り付けて、隙間 0. 5mmの試料容器を製作した。硫 酸銅水溶液はその容器内に密閉した。
[0149] 二つのコイルは、その試料容器のカバーガラスの上に約 5mmの間隔をあけて貼り 付けられ、さらにアクリル板でコイルを押さえつけて固定した。各コイルには、それぞ れ、共鳴周波数 (43. 5MHz)で共振する LC共振回路を接続した。
[0150] 試料、二組のコイルおよび共振回路は、コイルホルダーの中で固定され、磁石中心 部に入れられる。コイルホルダーは 0. 05mm厚の銅箔が内部に張られており、中心 部にある二組のコイルを含む共振回路に外部ノイズが入り込むことを防いでいる。
[0151] コイルホルダーは磁石(lTesla、 45mmエアーギャップ永久磁石)の中に配置され 、各チャンネルの信号線は「送受信切り替えスィッチ」(スィッチ部 161)と「増幅器」に 接続される。これらはチャンネル数に合わせて二組用いた。
[0152] 本実施例では、検波後の NMR信号を PCへ転送するための「AD変換ボード」を 1 台とした。このため、すべてのチャンネルの NMR信号を足し合わせて出力がなされ、 それを 1台の AD変換ボードで受け取る構成とした。なお、 AD変換ボードが複数枚あ り、それらを制御できるソフトウェアがあれば、 AD変換ボードはそれぞれの NMR信 号を独立に取得し、 NMR信号から T (CPMG)値をチャンネルごとに算出することが
2
できる。
[0153] さらに、「AD変換ボード」を 1台とすると、同時に二つのチャンネルから NMR信号を 受信しょうとすると、これらの信号が混ざり合う場合がある。そこで、本実施例では、各 チャンネルでの計測を行うタイミングをずらすことで、チャンネル間の信号を分離した
。具体的には、 0秒から 1秒までは第 1チャンネルでの CPMG計測を行い、それが終 了した後の 1秒から 2秒で第 2チャンネルでの CPMG計測を行った。
[0154] 計測ソフトウェアで表示された NMR信号を確認したところ、第 1チャンネル、第 2チ ヤンネルともにほぼ同じ程度の減衰定数で NMR信号が小さくなることが分力ゝつた。
[0155] 本実施例では、一つの容器の中に密閉された同一の硫酸銅水溶液を 2つの小型 R
Fコイルを用い 2チャンネルで計測した。したがって、それぞれのチャンネルで計測さ れた T (CPMG)値は同一の値になるはずである。
2
[0156] 図 22は、取得された NMR信号の減衰定数を算出した結果の表を示す図である。
図 22より、 2組の小型表面コイルを用いて同一試料の T (CPMG)を計測した結果、
2
ほぼ同一の値を得ることができた。これより、本システムを用いれば、複数コイルを用 いて試料の T (CPMG)分布を計測することができると言え、アレイ化の実証ができた
2
[0157] (実施例 5)
本実施例では、前記第一の実施形態に記載の測定装置を使用し、高分子膜中の メタノール量の測定を行った。
[0158] [試料]
本実施例では、メタノールの含有量の異なる以下の 2種類の高分子膜の測定を行 つた o
'メタノール含有量 30mgの高分子膜
'メタノール含有量 115mgの高分子膜
なお、高分子膜としては、乾燥状態における膜厚 500 m、乾燥状態における寸法 1 lmm X 11mmの高分子膜 (旭硝子株式会社製、商品名フレミオン)を用いた。
[0159] 以下に試料の調整方法について述べる。
[メタノール含有量 115mgの高分子膜の調整方法]
まず、充分にドライヤーで乾燥させた高分子膜を用意した。そして、乾燥時の高分 子膜の重量を測定した (ここでは、 90mgであった)。 次に、この高分子膜をメタノールに浸し、 1ヶ月以上放置した。
メタノールに浸した前記高分子膜の重量を測定し、この重量から乾燥時の高分子 膜の質量をひき、これを高分子膜に含まれるメタノール量とした。ここでは、メタノール 量は 115mgであった。
なお、メタノール含有量 115mgの高分子膜は、膨潤しており、厚さ 0. 6mmであり、 平面における寸法が約 16mm X約 16mmとなつて!、た。
[0160] [メタノール含有量 30mgの高分子膜の調整方法]
充分にドライヤーで乾燥させた高分子膜を用意した。そして、乾燥時の高分子膜の 重量を測定した (ここでは、 90mgであった)。
一方、メタノールに浸した高分子膜をドライヤーで適度に乾燥させて、高分子膜に 含まれるメタノール量を調整した。
その後、高分子膜の重量を測定し、この重量から乾燥時の高分子膜の質量をひき 、これを高分子膜に含まれるメタノール量とした。ここでは、メタノール量は 30mgであ つた o
なお、メタノール含有量 30mgの高分子膜は、厚さ 0. 5mmであり、平面における寸 法が約 1 lmm X約 1 lmmとなっていた。
[0161] [装置構成]
第一の実施形態に記載の測定装置を用いた。
測定装置の小型表面コイルとしては、直径 2. Omm, 3. 5回巻きのものを使用した
[0162] [測定方法]
CPMG法を用い、偶数番目のエコー信号の強度を取得し、この強度の減衰から、 T緩和時定数 (CPMG)を算出した。
2
ここで、測定を行う際には、高分子膜を 2枚のカバーガラス (厚さ 0. 12mm)により はさみ、その周囲をポリイミドフィルムで密閉した。これにより、高分子膜からのメタノ ールの蒸発を防止することができる。
高分子膜中のメタノール量を測定する際には、小型コイルをカバーガラスに当接さ せた。 [0163] メタノール含有量 30mgの高分子膜からのエコー信号の一例を図 23に示す。
そして、図 23に示したエコー信号の減衰曲線から T緩和時定数 (CPMG)を算出
2
した。
なお、ここでは、図 23に示すようなエコー信号の取得を 5回行い、 T緩和時定数 (C
2
PMG)の算出を 5回行った。 T2緩和時定数(CPMG)の平均値は 428. 5msであり、 その標準偏差は 88. 3msであった。
[0164] 次に、メタノール含有量 115mgの高分子膜の T緩和時定数 (CPMG)の測定を行
2
つた o
図 24に、メタノール含有量 115mgの高分子膜からのエコー信号の一例を示す。 次に、図 24に示したエコー信号の減衰曲線力も T緩和時定数 (CPMG)を算出し
2
た。
なお、本実施例では、メタノール含有量 115mgの高分子膜からの T緩和時定数(
2
CPMG)の取得を 6回行った。 T緩和時定数(CPMG)の平均値は 1715. 9msであ
2
り、その標準偏差は 359. 1msであった。
[0165] 図 25に、高分子膜中に含まれるメタノール量と、 T2緩和時定数との関係を示す。
また、高分子膜のメタノールの含有による膨潤を考慮し、図 26には、単位体積あた りのメタノール量 (mgZmm3)と、 T2緩和時定数との関係を示す。
メタノール含有量と共に T緩和時定数 (CPMG)は長くなり、メタノール含有量が高
2
濃度の領域と低濃度領域では T緩和時定数 (CPMG)に明確な差が生ずる。
2
これにより、 CPMG法により T緩和時定数を計測することで、メタノール含有量が算
2
出できることがわかる。
[0166] 本実施例に係る装置、方法により得られる利点を以下に列挙する。
[0167] 第一に、高分子膜に貼り付けた小型 RFコイルにより、そのコイル直径程度の局所 領域の膜内水分含有量が計測できる。
[0168] 第二に、水分含有量の計測時間が 1秒以内に短縮できる。本実施例では、渦巻き 型の小型 RFコイルを用い、 CPMG法により T緩和時定数を計測するため、コイル直
2
径程度の局所領域の水分含有量を高感度でかつ 1秒程度の短時間で計測すること ができる。本実施例では、直径 0. 8mm、 2. Ommの小型 RFコイルを示した力 この 直径をより小さくすることで、微小領域での高分子膜内の水分含有量の計測が可能 となる。
[0169] 第三に、高分子膜が持つ水分含有量に依存した T緩和時定数 (CPMG)の変化
2
を利用して 、るため、従来にな 、高感度の計測が可能となる。
[0170] 第四に、高精度で水分含有量を短時間に計測できることを利用して、膜の水分含 有量を監視し、適切な水分含有量になるように膜を湿潤させる水蒸気、または水の供 給量を制御することが可能となる。
[0171] 第五に、小型 RFコイルを高分子膜の厚さよりも小型化することで、表面近傍のみの 膜内水分含有量の計測が可能となる。
[0172] 第六に、高分子膜の厚さよりも小型の RFコイルを高分子膜の燃料側と酸化剤側の 両側に貼り付けることで、膜の両側の水分含有量の監視ができ、どちらの側力も水蒸 気加湿することがより有効かが分かり、より適切な膜の水分含有量の制御が可能とな る。
[0173] 以上、図面を参照して本発明の好ましい実施形態および実施例について述べたが
、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
[0174] なお、以上の実施形態および実施例においては、励起用振動磁場を、高周波パル スシーケンスとして与える例について説明したが、励起用振動磁場はこれに限られる ものではない。たとえば、エコー信号群等の NMR信号群を取得できるものであれば これ以外の態様を採用することもできる。
[0175] また、図 5の装置構成において、試料載置台 116を省略してもよい。試料 115があ る製品の構成部材である場合、その製品中に小型 RFコイル 114を配置することによ り、当該構成部材の水分量を局所的に算出することができる。
さらに、前記実施形態、実施例においては、高分子膜中のプロトン性溶媒量を測定 したが、これに限らず、例えば、フォトレジスト膜中に残存する溶媒 (プロトン性溶媒) の量を測定してもよい。
一般に、フォトレジスト膜を被塗布面に形成した後、 100°C〜200°Cで加熱され、適 度に乾燥される。このようにフォトレジスト膜を適度に乾燥することで、露光工程での 必要とされるフォトレジスト膜の機械的強度を付与することができる。 ここで、フォトレジスト膜をソフトベータする際には、レジスト中の溶媒を完全に乾燥 させず、露光時の化学反応が適切に行われるよう、溶媒を一定量、フォトレジスト膜 中に残存させることが好ましい。本発明の測定装置により、フォトレジスト膜中に残存 する溶媒量を把握することで、所望の溶媒量を有するフォトレジスト膜を得ることが可 能となる。
さらに、前記各実施形態では、検量線テーブル 126には、試料の種類毎に、試料 中の水分量と T緩和時定数との相関関係を示す検量線データが格納されているとし
2
たが、これに限られるものではない。
例えば、検量線テーブル 126に、試料中に含まれるプロトン性溶媒の種類毎のプロ トン性溶媒量と、 T緩和時定数との相関関係を示す情報 (検量線)が格納されていて
2
ちょい。
ユーザが、測定装置を使用する際に、測定対象となるプロトン性溶媒を特定するた めの情報 (プロトン性溶媒の種類)を入力する。測定装置のデータ受付部 120では、 この情報を受付、水分量算出部 124に送出する。
水分量算出部 124において、プロトン性溶媒量を算出する際には、受け付けたプロ トン性溶媒の種類に応じた検量線を検量線テーブル 126から取得し、試料中のプロ トン性溶媒量を算出する。

Claims

請求の範囲
[1] 核磁気共鳴法を用いて試料中の特定箇所のプロトン性溶媒量を局所的に測定す る方法であって、
静磁場におかれた前記試料の特定箇所に対し、前記試料より小さ 、小型 RFコイル を用いて、励起用振動磁場を複数回、順次印加するとともに前記励起用振動磁場に 対応する複数のエコー信号を取得する第 1ステップと、
前記複数のエコー信号の強度から、 T
2緩和時定数を算出する第 2ステップと、 前記試料中のプロトン性溶媒量と τ緩和時定数との相関関係を示すデータを取得
2
し、該データと第 2ステップで算出された前記 T緩和時定数とから、前記試料中の特
2
定箇所における前記プロトン性溶媒量を求める第 3ステップと、
を含むことを特徴とする測定方法。
[2] 前記プロトン性溶媒は、水であることを特徴とする請求項 1に記載の測定方法。
[3] 前記小型 RFコイルとして、平面型コイルを用いることを特徴とする請求項 2に記載 の測定方法。
[4] 前記第 1ステップにおいて、所定のパルスシーケンスで前記励起用振動磁場を印 加することを特徴とする請求項 2に記載の測定方法。
[5] 前記第 1ステップにおいて、
(a) 90° パルス、および、
(b) (a)のパルスの時間 τ経過後からはじまり、時間 2 τの間隔で印加される η個の 1 80° ノ ノレス
力もなるパルスシーケンスで、前記励起用振動磁場を印加することを特徴とする請求 項 4に記載の測定方法。
[6] 前記 90° パルスが第 1位相にあり、
η個の前記 180° パルス力 前記第 1位相と 90° ずれた第 2位相にある ことを特徴とする請求項 5に記載の測定方法。
[7] 前記第 1ステップおよび前記第 3ステップにおける前記パノレスシーケンスは、前記 9
0° パルスより時間 τだけ前の時刻に印加される 180° パルスを含むことを特徴とす る請求項 5に記載の測定方法。
[8] 前記第 1ステップにお!、て、複数の前記小型 RFコイルを用い、前記試料の複数箇 所に対し、励起用振動磁場を印加するとともに、前記励起用振動磁場に対応するェ コー信号を取得し、
前記第 2ステップにおいて、前記試料の複数箇所に対し T緩和時定数を算出し、
2
前記第 3ステップにおいて、前記 T緩和時定数に基づいて、前記試料の前記複数
2
箇所における水分量を求める、
ことを特徴とする請求項 2に記載の測定方法。
[9] 前記第 3ステップの後、前記試料の前記複数箇所における水分量に基づいて前記 試料の水分量分布を提示する第 4ステップをさらに含むことを特徴とする請求項 8に 記載の測定方法。
[10] 前記試料が水分を含有する膜であることを特徴とする請求項 2に記載の測定方法。
[11] 核磁気共鳴法を用いて試料中の特定箇所のプロトン性溶媒量を局所的に測定す る装置であって、
前記試料に対して静磁場を印加する静磁場印加部と、
前記試料に対し励起用振動磁場を印加するとともに、前記励起用振動磁場に対応 するエコー信号を取得する、前記試料より小さ 、小型 RFコイルと、
前記エコー信号の強度から、 T緩和時定数を算出し、算出した前記 T緩和時定数
2 2 から、試料中の特定箇所における前記プロトン性溶媒量を算出する演算部と、 を備えることを特徴とする測定装置。
[12] 前記プロトン性溶媒は、水であることを特徴とする請求項 11に記載の測定装置。
[13] 前記小型 RFコイルは、平面型コイルであることを特徴とする請求項 12に記載の測 定装置。
[14] 前記小型 RFコイルは、平面型コイルであり、
導線が右巻きに巻かれたコイル部と、導線が左巻きにまかれたコイル部とを連結し たものであることを特徴とする請求項 11に記載の測定装置。
[15] 前記小型 RFコイルおよび
前記静磁場印加部を支持する支持体を有し、
前記支持体は、スティック状であり、その先端部に前記小型 RFコイルが取り付けら れて 、ることを特徴とする請求項 11に記載の測定装置。
[16] 試料の種類毎に、試料中の水分量と T緩和時定数との相関関係を示す情報を保
2
有する記憶部をさらに備え、
前記演算部は、前記記憶部から測定対象の試料に対応する前記情報を取得し、 該情報に基づいて水分量を算出することを特徴とする請求項 12に記載の測定装置
[17] 前記小型 RFコイルは、所定のパルスシーケンスで前記励起用振動磁場を印加す ることを特徴とする請求項 12に記載の測定装置。
[18] 前記小型 RFコイルは、
(a) 90° パルス、および、
(b) (a)のパルスの時間 τ経過後からはじまり、時間 2 τの間隔で印加される η個の 1 80° ノ ノレス
力もなるパルスシーケンスで、前記励起用振動磁場を印加することを特徴とする請求 項 17に記載の測定装置。
[19] 前記 90° パルスが第 1位相にあり、
η個の前記 180° パルス力 前記第 1位相と 90° ずれた第 2位相にある ことを特徴とする請求項 18に記載の測定装置。
[20] 前記ノ ルスシーケンスは、前記 90° パルスより時間てだけ前の時刻に印加される 1
80° パルスを含むことを特徴とする請求項 18に記載の測定装置。
[21] 前記小型 RFコイルを複数備え、該複数の小型 RFコイルは、前記試料の複数箇所 に対し、励起用振動磁場を印加するとともに、前記励起用振動磁場に対応するェコ 一信号を取得し、
前記演算部は、前記試料の前記複数箇所における水分量を算出する、 ように構成されて 、ることを特徴とする請求項 12に記載の測定装置。
[22] 前記試料の水分量分布を提示する出力部をさらに備え、
前記演算部は、前記試料の前記複数箇所における水分量に基づいて前記試料の 水分量分布を算出し、
前記出力部は、前記演算部により算出された前記水分量分布を提示する ことを特徴とする請求項 21に記載の測定装置。
[23] 前記演算部が、
前記エコー信号の強度から水分量計算値を計算する計算部と、
前記水分量計算値に対し、前記小型 RFコイルのサイズに応じた補正を施し、前記 水分量を算出する補正部と、
を含むことを特徴とする請求項 12に記載の測定装置。
[24] 前記小型 RFコイルに前記励起用振動磁場を発生させる RF信号を生成する RF信 号生成部と、
前記小型 RFコイルにより取得されたェコ一信号を検出するとともに、該ェコ一信号 を前記演算部に送出するエコー信号検出部と、
前記小型 RFコイル、前記 RF信号生成部および前記エコー信号検出部を接続する 分岐部に設けられ、前記小型 RFコイルと前記 RF信号生成部とが接続された状態と 、前記小型 RFコイルと前記エコー信号検出部とが接続された状態とを切り替えるスィ ツチ回路と、
をさらに備えることを特徴とする請求項 12に記載の測定装置。
[25] 請求項 11に記載の測定装置において、
前記小型 RFコイルを複数備えるとともに、前記試料のプロトン性溶媒量分布を提示 する出力部をさらに備え、
該複数の小型 RFコイルは、前記試料の複数箇所に対し、励起用振動磁場を印加 するとともに、前記励起用振動磁場に対応するエコー信号を取得し、
前記演算部は、前記試料の前記複数箇所におけるプロトン性溶媒量を算出し、 前記出力部は、前記演算部で算出した前記試料の前記複数箇所毎のプロトン性 溶媒量を取得する測定データ取得部と、
前記測定データ取得部で取得したプロトン性溶媒量を、一画面の区画された領域 に表示する表示部とを有することを特徴とする測定装置。
PCT/JP2005/016771 2004-09-13 2005-09-12 試料中のプロトン性溶媒量を局所的に測定する方法、装置 WO2006030743A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006535878A JP4849623B2 (ja) 2004-09-13 2005-09-12 試料中のプロトン性溶媒量を局所的に測定する方法、装置
US11/575,173 US7808237B2 (en) 2004-09-13 2005-09-12 Method and instrument of locally measuring protic solvent content in samples

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-265535 2004-09-13
JP2004265535 2004-09-13
JP2005-118138 2005-04-15
JP2005118138 2005-04-15

Publications (1)

Publication Number Publication Date
WO2006030743A1 true WO2006030743A1 (ja) 2006-03-23

Family

ID=36059996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016771 WO2006030743A1 (ja) 2004-09-13 2005-09-12 試料中のプロトン性溶媒量を局所的に測定する方法、装置

Country Status (3)

Country Link
US (1) US7808237B2 (ja)
JP (1) JP4849623B2 (ja)
WO (1) WO2006030743A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062561A1 (fr) * 2006-11-22 2008-05-29 Keio University Dispositif de mesure, pile à combustible comportant un tel dispositif, et procédé de mesure
WO2008142840A1 (ja) * 2007-05-11 2008-11-27 Keio University 測定装置および測定方法
JP2012088340A (ja) * 2005-04-11 2012-05-10 Keio Gijuku 磁気共鳴法を用いて試料中のプロトン性溶媒の挙動を局所的に測定する測定装置、測定方法、プログラム
US9632154B2 (en) 2007-11-06 2017-04-25 T2 Biosystems, Inc. Small magnet and RF coil for magnetic resonance relaxometry

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI128224B (fi) * 2010-08-31 2020-01-15 Vaisala Oyj Matalakenttäinen ydinmagneettiresonanssilaite kiintoaineiden ja lietteiden vesipitoisuuden mittaamiseksi
DE202013100627U1 (de) * 2013-02-12 2013-03-18 Aspect Imaging Ltd. Vorrichtung zur MRT-Bildgebung der nahen Oberfläche von Gewebeproben
US20170160214A1 (en) * 2014-06-06 2017-06-08 Nanonord A/S A method for determining the amount of h2o in a sample
US20220214292A1 (en) * 2019-04-05 2022-07-07 The Regents Of The University Of California Portable nmr instrumentation and methods for analysis of body fluids

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127785A (en) * 1975-04-30 1976-11-08 Hokkaido Daigaku Measuring method of information around the surface of the substances t o be measured applying the nucleus magnet resonance phenomenon
JPH0258933B2 (ja) * 1984-03-10 1990-12-11 Nippon Electron Optics Lab
JPH07198635A (ja) * 1993-12-29 1995-08-01 Kobe Steel Ltd 果実の糖度評価方法
JPH07255700A (ja) * 1994-03-24 1995-10-09 Ge Yokogawa Medical Syst Ltd Mri用rfコイル
JP3047364B2 (ja) * 1993-03-31 2000-05-29 株式会社島津製作所 農産物の非破壊品質評価法
JP3071132B2 (ja) * 1995-10-09 2000-07-31 株式会社貝印刃物開発センター ヘアカーラにおけるヘア挟持体の構造
JP2004170297A (ja) * 2002-11-21 2004-06-17 Rikogaku Shinkokai 導電性部材間の水分分布測定方法、高分子膜の水分分布測定セル及び高分子膜の水分分布測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265844A (ja) 1988-09-01 1990-03-06 Hitachi Medical Corp 核磁気共鳴イメージング装置の受信コイル
IL117443A (en) * 1996-03-11 2000-06-29 Numalog Ltd NMR concrete analysis
JP2001106728A (ja) 1999-10-06 2001-04-17 Mitsubishi Chemicals Corp 高吸水性樹脂
US6522137B1 (en) * 2000-06-28 2003-02-18 Schlumberger Technology Corporation Two-dimensional magnetic resonance imaging in a borehole
EP1620743A1 (en) * 2003-04-24 2006-02-01 Koninklijke Philips Electronics N.V. Improved mr ductography
US7345479B2 (en) * 2005-12-29 2008-03-18 Intel Corporation Portable NMR device and method for making and using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127785A (en) * 1975-04-30 1976-11-08 Hokkaido Daigaku Measuring method of information around the surface of the substances t o be measured applying the nucleus magnet resonance phenomenon
JPH0258933B2 (ja) * 1984-03-10 1990-12-11 Nippon Electron Optics Lab
JP3047364B2 (ja) * 1993-03-31 2000-05-29 株式会社島津製作所 農産物の非破壊品質評価法
JPH07198635A (ja) * 1993-12-29 1995-08-01 Kobe Steel Ltd 果実の糖度評価方法
JPH07255700A (ja) * 1994-03-24 1995-10-09 Ge Yokogawa Medical Syst Ltd Mri用rfコイル
JP3071132B2 (ja) * 1995-10-09 2000-07-31 株式会社貝印刃物開発センター ヘアカーラにおけるヘア挟持体の構造
JP2004170297A (ja) * 2002-11-21 2004-06-17 Rikogaku Shinkokai 導電性部材間の水分分布測定方法、高分子膜の水分分布測定セル及び高分子膜の水分分布測定装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARMENEAN M. ET AL: "Solenoidal and Planar Microcoils for NMR Spectroscopy.", PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY., vol. 4, 17 September 2003 (2003-09-17) - 21 September 2003 (2003-09-21), CANCUN, MEXICO, pages 3045 - 3048, XP010693905 *
BECKER F.(TRANSLATED BY KAZUYUKI AKASAKA, TOSHIAKI IMOTO ): "Pulse oyobi Fourier Henkan NMR.", YOSHIOKA SHOTEN., 25 June 1976 (1976-06-25), pages 30 - 38, XP002999809 *
ITO K. ET AL: "Jiki Kyomei Gazoho ni yoru Kotai Kobunshi Denkaishitsu Makunai no Suibunshi no Nodo Bunpu Sokutei to Yuso Keisu no Sanshutsu. ( Investigation of water molecule concentration distribution and transport coefficient in solid polymer electrolyte membrane by magnetic resonance imaging)", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS., vol. 68, no. 666, 2002, pages 253 - 259, XP002999810 *
OGAWA K. ET AL: "Kogata Hyomen Coil ni yoru Nenryo Denchiyo Kotai konbunshimaku no kyokusho Seibun keisokuho no kaihatsu. ( Development of a local NMR sensor for wetness monitoring of polymer electrolyte membrane using a planar surface coil)", THE 42TH NATIONAL HEAT TRANSFER SYMPOSIUM KOEN RONBUNSHU., June 2005 (2005-06-01), pages 99 - 100, XP002999811 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088340A (ja) * 2005-04-11 2012-05-10 Keio Gijuku 磁気共鳴法を用いて試料中のプロトン性溶媒の挙動を局所的に測定する測定装置、測定方法、プログラム
JP4997380B2 (ja) * 2005-04-11 2012-08-08 学校法人慶應義塾 試料中のプロトン性溶媒の易動性を局所的に測定する方法、試料中のプロトン性溶媒の易動性を局所的に測定する装置
WO2008062561A1 (fr) * 2006-11-22 2008-05-29 Keio University Dispositif de mesure, pile à combustible comportant un tel dispositif, et procédé de mesure
WO2008142840A1 (ja) * 2007-05-11 2008-11-27 Keio University 測定装置および測定方法
JPWO2008142840A1 (ja) * 2007-05-11 2010-08-05 学校法人慶應義塾 測定装置および測定方法
JP5257994B2 (ja) * 2007-05-11 2013-08-07 学校法人慶應義塾 測定装置および測定方法
US9632154B2 (en) 2007-11-06 2017-04-25 T2 Biosystems, Inc. Small magnet and RF coil for magnetic resonance relaxometry

Also Published As

Publication number Publication date
JP4849623B2 (ja) 2012-01-11
US7808237B2 (en) 2010-10-05
US20090140736A1 (en) 2009-06-04
JPWO2006030743A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
JP5469689B2 (ja) 磁気共鳴法を用いて試料中のプロトン性溶媒の挙動を局所的に測定する測定装置、測定方法、プログラム
WO2006030743A1 (ja) 試料中のプロトン性溶媒量を局所的に測定する方法、装置
US7449883B2 (en) Method and apparatus for measuring change in magnetic induction of a magnetic material with respect to temperature
Seifert et al. Patient safety concept for multichannel transmit coils
JP4798350B2 (ja) 磁気共鳴法を用いて試料中のプロトン性溶媒の挙動の分布を測定する測定装置、測定方法およびプログラム
JP5170686B2 (ja) 核磁気共鳴法を用いた測定装置および測定方法
JP4997620B2 (ja) 核磁気共鳴法を用いて膜の透過特性を測定する測定装置および測定方法
JP5337569B2 (ja) 燃料電池システム
Tsushima et al. Magnetic resonance imaging of water in operating polymer electrolyte membrane fuel cells
US8289022B2 (en) Magnetic resonance compatible magnetic field detection, based on diffuse reflectance of nano-magnet sets
CN102472806A (zh) 利用被赋予轨道角动量的光进行磁共振pH测量
JP5212972B2 (ja) 計測装置および計測方法
JP2004170297A (ja) 導電性部材間の水分分布測定方法、高分子膜の水分分布測定セル及び高分子膜の水分分布測定装置
Zhang et al. Spatial and temporal mapping of water content across Nafion membranes under wetting and drying conditions
Aguilera et al. The parallel-plate resonator: an RF probe for MR and MRI studies over a wide frequency range
JP5257994B2 (ja) 測定装置および測定方法
JP5337413B2 (ja) 燃料電池用測定装置および燃料電池システム
Ramírez Aguilera et al. Optimization of a parallel‐plate RF probe for high resolution thin film imaging
JP5046203B2 (ja) 測定装置およびこれを備える燃料電池、ならびに測定方法
JP5046203B6 (ja) 測定装置およびこれを備える燃料電池、ならびに測定方法
JP2016145723A (ja) セルモデル、計測システム及び同時計測方法
JP5513783B2 (ja) 測定装置および燃料電池システム
JP6917251B2 (ja) 測定解析装置、燃料電池システム及び測定解析方法
CN217085237U (zh) 一种利用流动的液体来精确测量磁场的仪器
JP2014098716A (ja) 測定装置および燃料電池システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535878

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11575173

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase