WO2006028218A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2006028218A1
WO2006028218A1 PCT/JP2005/016643 JP2005016643W WO2006028218A1 WO 2006028218 A1 WO2006028218 A1 WO 2006028218A1 JP 2005016643 W JP2005016643 W JP 2005016643W WO 2006028218 A1 WO2006028218 A1 WO 2006028218A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
sucked
valve
refrigeration apparatus
Prior art date
Application number
PCT/JP2005/016643
Other languages
English (en)
French (fr)
Inventor
Katsumi Sakitani
Michio Moriwaki
Yume Inokuchi
Tetsuya Okamoto
Yoshinari Sasaki
Eiji Kumakura
Masakazu Okamoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP05782353.6A priority Critical patent/EP1795833A4/en
Priority to AU2005280900A priority patent/AU2005280900B2/en
Priority to US11/662,206 priority patent/US20090113907A1/en
Publication of WO2006028218A1 publication Critical patent/WO2006028218A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • an object of the present invention is to allow the compressor to draw a refrigerant in an appropriate wet state that achieves a coefficient of performance that is at or close to the maximum, thereby achieving energy saving operation. Disclosure of the invention
  • the first solution is premised on a refrigeration apparatus including a refrigerant circuit (20) having a compressor (31) and performing a refrigeration cycle. And this solution means that the refrigerant is brought into the operating state at that time.
  • Let the compressor (31) inhale in the wet condition that achieves the optimum coefficient of performance (COP).
  • the refrigerant circulates in the refrigerant circuit (20) to perform the vapor compression refrigeration cycle.
  • the dryness (wetness) of the refrigerant is set. Since the refrigerant of the set dryness is sucked into the compressor (31), the operation is surely performed with the highest coefficient of performance.
  • the second solution is premised on a refrigeration apparatus including a refrigerant circuit (20) having a compressor (31) and performing a refrigeration cycle.
  • the refrigerant is sucked into the compressor (31) in an overheated state during the cooling operation, and the refrigerant is sucked into the compressor (31) in a wet state during the heating operation.
  • the refrigerant circulates in the refrigerant circuit (20) to perform the vapor compression refrigeration cycle. Then, the target discharge temperature of the compressor (31) with the optimum coefficient of performance is set according to the operating conditions such as the high and low pressures of the refrigeration cycle and the compression efficiency of the compressor (31). In other words, if the dryness of the refrigerant is low, the discharge temperature of the compressor (31) is low, and conversely, if the dryness of the refrigerant is high, the discharge temperature of the compressor (31) is high. The discharge temperature of the compressor (31) corresponding to the dryness of the refrigerant is determined under the rolling conditions. As shown in Fig. 3 and Fig.
  • the compressor (31) since the wet refrigerant is sucked into the compressor (31), the compressor (31) is compared with the case where the superheated refrigerant is sucked. The discharge temperature decreases. Therefore, the motor of the compressor (31) can be prevented from being abnormally heated, and the deterioration of the refrigerating machine oil due to the high temperature is suppressed. As a result, the reliability of the compressor (31) is improved.
  • the fourth solution means is that in any one of the first to third solution means, an expansion valve (23) is provided in the refrigerant circuit (20). Then, the present solution adjusts the wet state of the refrigerant sucked in the compressor (31) by adjusting the opening degree of the expansion valve (23).
  • the fifth solving means is any one of the first to third solving means, wherein the refrigerant circuit (20) includes an evaporator (22, 24) and a compressor (31).
  • a gas-liquid separator (25) is provided between the inlet and the suction side.
  • the gas-liquid separator (25) has a flow rate adjusting valve (27) and guides the liquid refrigerant in the gas-liquid separator (25) to the suction side of the compressor (31) (26) With Yes.
  • the present invention adjusts the wet state of the suction refrigerant of the compressor (31) by adjusting the flow rate adjusting valve (27).
  • the sixth solving means is any one of the first to third solving means, wherein the refrigerant circuit (20) is connected to the compressor (31) by a motor of the compressor (31). An expander (33) mechanically connected via (32) is provided. Further, the refrigerant circuit (20) is provided in the bypass pipe (44) in which a part of the refrigerant directed to the expander (33) flows by bypassing the expander (33), and the bypass pipe (44). And a flow regulating valve (45). Then, the present solution adjusts the wet state of the suction refrigerant of the compressor (31) by adjusting the flow rate adjusting valve (45).
  • the opening degree of the flow control valve (45) is increased. That is, the amount of refrigerant flowing by bypassing the expander (33) is increased, and the amount of refrigerant flowing to the evaporator is increased. As a result, the amount of refrigerant that cannot be evaporated in the evaporator increases and the refrigerant in a damp state is sucked into the compressor (31).
  • the opening degree of the flow control valve (45) is reduced, that is, the expander ( Reduce the amount of refrigerant flowing to the evaporator by reducing the amount of refrigerant flowing by bypassing 33).
  • the amount of refrigerant that cannot be completely evaporated in the evaporator is reduced, and the refrigerant with low wetness is sucked into the compressor (31).
  • the opening degree of the flow rate adjustment valve (27) is adjusted on the assumption that the dryness of the refrigerant sucked into the compressor (31) is optimized, so that the expander (33)
  • the opening degree of the flow rate adjustment valve (27) is adjusted on the assumption that the dryness of the refrigerant sucked into the compressor (31) is optimized, so that the expander (33)
  • the refrigerant flow rate in the compressor (31) and the expander (33) is balanced. Therefore, more efficient operation is performed.
  • the seventh solving means is that in any one of the first to third solving means, the refrigerant circuit (20) is configured such that the high pressure of the refrigeration cycle is higher than the critical pressure of the refrigerant. Is configured.
  • the refrigerant is compressed to a pressure higher than the critical pressure by the compressor (31). That is, the refrigerant discharged from the compressor (31) is in a supercritical state. As a result, even when the wet refrigerant is sucked into the compressor (31), the liquid cooling medium does not exist at least in the discharge section, and so-called liquid compression is reliably avoided.
  • the refrigerant is carbon dioxide.
  • a device is provided.
  • the coefficient of performance (COP) is improved as compared with the case where the superheated refrigerant is sucked. be able to. Furthermore, if the refrigerant sucked in the compressor (31) is brought into a wet state where the coefficient of performance is the highest, the energy saving of operation can be maximized. Further, since the refrigerant in the wet state is sucked into the compressor (31), the discharge temperature of the compressor (31) can be lowered as compared with the case of sucking in the refrigerant in the overheated state, and the compressor (31) Degradation of refrigerating machine oil due to high temperature can be suppressed. Therefore, improve the reliability of the equipment Can do.
  • the refrigerant is sucked into the compressor (31) during the heating operation, at least the heating operation can be performed with an optimum coefficient of performance.
  • the refrigerant in each operating condition, is sucked into the compressor (31) in a wet state so that the discharge temperature of the compressor (31) becomes a predetermined temperature at which an optimum coefficient of performance is obtained. Since it is made to enter, it can operate reliably with the optimal coefficient of performance. Also, since the wet state of the refrigerant can be adjusted based on the discharge temperature of the compressor (31), the coefficient of performance of the refrigeration cycle can be easily controlled.
  • the refrigerant circuit (20) is configured to perform a supercritical cycle in which the high pressure of the refrigeration cycle is higher than the critical pressure of the refrigerant, the discharge of the compressor (31) The cooling medium is surely overheated. Therefore, even if the refrigerant in the wet state is sucked into the compressor (31), the refrigerant is already overheated at the discharge part of the compressor (31), so liquid compression in the compressor (31) is reliably prevented. can do. As a result, a highly reliable device can be provided.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigeration apparatus according to Embodiment 1.
  • FIG. 2 is a Mollier diagram showing refrigerant behavior in the refrigerant circuit during heating operation.
  • FIG. 3 is a simulation data table showing the relationship between the dryness of the refrigerant and the coefficient of performance during heating operation.
  • FIG. 4 is a simulation data graph showing the relationship between the dryness of the refrigerant and the coefficient of performance during heating operation.
  • the air conditioner (10) is provided with a refrigerant circuit (20).
  • the refrigerant circuit (20) is configured as a closed circuit by connecting a compressor (31), an indoor heat exchanger (22), and the like.
  • the refrigerant circuit (20) is filled with carbon dioxide (CO) as a refrigerant, and the refrigerant circulates in the vapor.
  • CO carbon dioxide
  • the four-way selector valve (21) includes four ports.
  • the four-way selector valve (21) has a first port connected to the discharge pipe (3a) of the compressor (31) and a second port connected to the compressor (31) via a gas-liquid separator (25).
  • the suction port (3b) has a third port connected to one end of the outdoor heat exchanger (24) and a fourth port connected to one end of the indoor heat exchanger (22) via the connecting pipe (13).
  • the other end of the indoor heat exchanger (22) is connected to the other end of the outdoor heat exchanger (24) through a communication pipe (14) and an expansion valve (23).
  • This four-way selector valve (21) has a state in which the first port and the third port communicate with each other, and a state in which the second port and the fourth port communicate with each other (state on the broken line side shown in FIG. 1), The first port and the fourth port communicate with each other, and the second port and the third port communicate with each other (solid line side shown in FIG. 1).
  • the first port and the fourth port communicate with each other, and the second port and the third port communicate with each other (solid line side shown in FIG. 1).
  • the indoor heat exchanger (22) functions as an evaporator and the outdoor heat exchanger (24) functions as a radiator during cooling operation, while the outdoor heat exchanger (24) functions as an evaporator during heating operation.
  • the indoor heat exchanger (22) functions as a radiator.
  • the air conditioner (10) is connected to the compressor (31) during normal cooling operation.
  • a gas refrigerant in a predetermined superheated state is sucked, and a refrigerant having a predetermined dryness (wet state) is sucked into the compressor (31) during normal heating operation. That is, the present invention excludes special operations and conditions such as defrost operation, when the high pressure in the refrigeration cycle becomes abnormally high, or when the discharge temperature of the compressor (31) becomes abnormally high. Speak for normal driving!
  • the expansion valve in the cooling operation, is configured so that the refrigerant evaporates in the indoor heat exchanger (22) and becomes a gas refrigerant in a predetermined superheated state (for example, a superheat degree of 0 to 5 ° C).
  • the opening of (23) is set.
  • the opening degree of the expansion valve (23) is set so that the refrigerant evaporates in the outdoor heat exchanger (24) to a predetermined dryness (for example, 0.83 to 0.89). Is done.
  • the predetermined dryness is found by simulation, and the coefficient of performance (COP) of the air conditioner (10) during the heating operation is set to an optimal value.
  • COP coefficient of performance
  • the dryness of the refrigerant sucked into the compressor (31) peaks at 0.83 to 0.89.
  • the coefficient of performance decreases as the temperature decreases from the region and conversely increases, and as the degree of dryness exceeds 1.00 and the degree of superheat increases, the coefficient of performance decreases as well. I understand. From this, at least the dryness is less than 1.00, that is, when the wet refrigerant is sucked into the compressor (31), the coefficient of performance approaches the optimum point.
  • the high pressure of the refrigeration cycle was set to lOMPa
  • the low pressure was set to 3.5 MPa
  • the outlet temperature of the indoor heat exchanger (22) was set to 25 ° C
  • the compressor (31) This was performed under the operating conditions in which the compression efficiency was set at 70%.
  • the simulation was performed using carbon dioxide (CO 2) as a refrigerant. Therefore, the various types described above
  • the optimum dryness according to the operating conditions is set by finding the dryness with the best coefficient of performance while changing the operating conditions.
  • an operating condition based on the change is set, and the dryness (wet state) of the refrigerant according to the operating condition may be set.
  • the air conditioner (10) is configured to adjust the dryness of the refrigerant mainly by adjusting the evaporation capacity in the outdoor heat exchanger (24) by adjusting the opening degree of the expansion valve (23). Yes. In other words, to increase the dryness of the refrigerant, reduce the opening of the expansion valve (23) and In order to reduce the dryness of the expansion valve, the opening of the expansion valve (23) is increased.
  • the dryness of the refrigerant is also adjusted by adjusting the opening of the flow rate adjustment valve (27) of the liquid index pipe (26). That is, the flow rate of the liquid refrigerant led from the gas-liquid separator (25) to the compressor (31) is adjusted by adjusting the opening of the flow rate adjusting valve (27), and the wet state of the refrigerant is adjusted! .
  • the dryness of the refrigerant sucked into the compressor (31) is determined based on the discharge temperature of the compressor (31). That is, in the air conditioner (10), the degree of dryness of the refrigerant is adjusted by adjusting the opening degree of the expansion valve (23) and the flow rate adjustment valve (27) so that the discharge temperature of the compressor (31) becomes the target discharge temperature. Configured to adjust.
  • the target discharge temperature is set to a temperature at which the coefficient of performance is optimal. This is because when the dryness of the refrigerant sucked into the compressor (31) decreases, the discharge temperature of the compressor (31) also decreases, and conversely, when the dryness of the refrigerant increases, the discharge temperature of the compressor (31) increases.
  • the operation can be performed with the optimum performance coefficient obtained in the operation state at that time.
  • the four-way selector valve (21) is set to the broken line side shown in FIG.
  • the motor (32) is energized in this state, the refrigerant circulates in the refrigerant circuit (20) in the direction indicated by the one-dot chain line shown in FIG. 1, and a vapor compression refrigeration cycle is performed.
  • the flow control valve (27) of the liquid injection pipe (26) is set to a fully closed state.
  • the refrigerant compressed by the compressor (31) is discharged from the discharge pipe (3a). In this state, the refrigerant pressure is higher than its critical pressure.
  • the discharged refrigerant flows through the four-way switching valve (21) to the outdoor heat exchanger (24) and exchanges heat with outdoor air to dissipate heat.
  • This outdoor heat exchange The refrigerant that has dissipated heat in the exchanger (24) is depressurized to a predetermined pressure by the expansion valve (23), then evaporates by exchanging heat with indoor air in the indoor heat exchanger (22), and is overheated. It becomes. At that time, the indoor air is cooled.
  • the superheated gas refrigerant is sucked into the compressor (31) through the suction pipe (3b) through the four-way switching valve (21), and is compressed and discharged again.
  • the four-way selector valve (21) is set to the state on the solid line side shown in FIG.
  • the motor (32) is energized in this state
  • the refrigerant circulates in the refrigerant circuit (20) in the direction of the solid line shown in FIG. 1, and a vapor compression refrigeration cycle is performed.
  • the refrigerant state during the circulation is a cycle of A1 ⁇ B1 ⁇ C ⁇ D, as indicated by a one-dot chain line in FIG.
  • the flow rate adjustment valve (27) of the liquid injection pipe (26) is set to a fully closed state. Note that the cycle of A ⁇ B ⁇ C ⁇ D in FIG.
  • FIG. 2 shows a conventional refrigeration cycle in which the superheat degree of the refrigerant sucked in the compressor (31) is zero.
  • the refrigerant at point B discharged from the compressor dissipates heat at the radiator to become refrigerant at point C, and then is depressurized by the expansion mechanism to become refrigerant at point D, and then evaporates at the evaporator.
  • gas refrigerant (point A) with zero superheat is drawn into the compressor.
  • the refrigerant compressed by the compressor (31) is discharged from the discharge pipe (3a) (point B1 in FIG. 2).
  • the pressure of the refrigerant is higher than its critical pressure.
  • This discharged refrigerant flows through the four-way switching valve (21) to the indoor heat exchanger (22), and dissipates heat by exchanging heat with indoor air (point C in FIG. 2).
  • the room air is heated.
  • the refrigerant radiated by the indoor heat exchanger (22) is depressurized to a predetermined pressure by the expansion valve (23) (point D in FIG. 2), and then exchanges heat with the outdoor air by the outdoor heat exchanger (24). Evaporates (point A1 in Figure 2).
  • the evaporated refrigerant has a predetermined dryness (wet state) at which the coefficient of performance is optimum.
  • This wet refrigerant passes through the four-way selector valve (21), is sucked into the compressor (31) through the suction pipe (3b), is compressed again, becomes a superheated refrigerant, and is discharged. In this way, during heating operation, operation can be performed with an optimum coefficient of performance, and energy-saving operation can be achieved.
  • the high pressure or low pressure of the refrigeration cycle is changed to set new operating conditions, and the compressor (31) according to the operating conditions is set.
  • a target discharge temperature is set.
  • the discharge temperature of the compressor (31) is the target discharge temperature.
  • the degree of opening of the expansion valve (23) is adjusted so as to be equal, or the degree of opening of the flow rate adjusting valve (27) of the liquid injection pipe (26) is adjusted. Thereby, the dryness of the refrigerant sucked into the compressor (31) becomes the optimal dryness, and the operation can be performed with the optimum coefficient of performance corresponding to the operation conditions.
  • the refrigerant in the wet state is sucked into the compressor (31) during the normal heating operation, the results are higher than in the case of sucking in the refrigerant in the overheated state.
  • the coefficient (COP) can be improved.
  • the wet refrigerant having the optimum coefficient of performance according to the operating conditions is sucked into the compressor (31), the operation can be reliably performed with the optimum performance coefficient. As a result, energy saving operation can be further promoted.
  • the performance coefficient is optimized under normal operation, which is completely different from, for example, defrosting operation or conventional liquid injection when the discharge temperature of the compressor (31) becomes abnormally high. it can.
  • the target discharge temperature of the compressor (31) corresponding to the dryness of the refrigerant with the optimum coefficient of performance is set, and the compressor is set so that the discharge temperature of the compressor (31) becomes the target discharge temperature. Since the dryness (wetness) of the refrigerant in (31) is adjusted, the coefficient of performance is surely optimal. You can drive.
  • the degree of dryness of the suction refrigerant in the compressor (31) is adjusted by adjusting the opening degree of the expansion valve (23) or the flow rate adjusting valve (27), the optimum results can be surely and easily obtained. It is possible to operate with a coefficient.
  • the outdoor heat exchange (24) force that is an evaporator since the refrigerant flowing out is in a gas-liquid two-phase wet state, the refrigerant oil in the heat exchange is easily removed by the refrigerant. More refrigeration oil is returned to 31), and poor lubrication in the compressor (31) can be suppressed. Therefore, the compressor (31) can be further protected in combination with the effects described above.
  • the air conditioner (10) of the present embodiment is replaced with a compressor (31) instead of the embodiment 1 having an expansion valve (23) as an expansion mechanism of the refrigeration cycle.
  • An expander (33) mechanically connected via a motor (32) is used.
  • the compressor (31), the motor (32), and the expander (33) are housed in a casing to constitute one unit.
  • the compressor (31) is composed of a positive displacement compressor such as a rotary compressor or a scroll compressor.
  • the expander (33) is composed of a positive displacement expander such as a rotary expander or a scroll expander.
  • the expander (33) includes a so-called two-stage expander that includes two cylinders, expands in the former cylinder, and then expands further in the latter cylinder. Yes.
  • the expander (33) is configured to recover power. That is, the energy generated by the expansion of the refrigerant in the expander (33) is used as rotational power for driving the compressor (31) to recover the power.
  • a bridge circuit (41) is provided between the connecting pipe (14) and the outdoor heat exchanger (24) in the outdoor unit (11).
  • This bridge circuit (41) is formed by connecting four check valves (CV1 to CV4) in a bridge shape. Specifically, in this bridge circuit (41), the inflow side of the first check valve (CV1) and the fourth check valve (CV4) is connected to the outflow port (3d) of the expander (33).
  • the outflow side of the valve (CV2) and the third check valve (CV3) is the inflow port (3c) of the expander (33), the outflow side of the first check valve (CV1) and the second check valve (CV2 ) Is connected to the other end of the indoor heat exchanger (22) via the connecting pipe (14), while the inflow side of the third check valve (CV3) and the outflow side of the fourth check valve (CV4) are the outdoor heat. Connected to the other end of the cross (24).
  • the refrigerant circuit (20) is provided with an injection pipe (42).
  • One end of the induction pipe (42) is between the bridge circuit (41) and the inflow port (3c) of the expander (33), and the other end is an intermediate port between the front and rear cylinders of the expander (33). (Not shown) are connected to each other.
  • the injection pipe (42) is provided with an injection valve (43).
  • This injection valve (43) is an electric valve for adjusting the flow rate of the refrigerant in the injection pipe (42), and constitutes a flow rate adjustment valve.
  • the refrigerant circuit (20) is provided with a bypass pipe (44).
  • the bypass pipe (44) has one end between the bridge circuit (41) and the inflow port (3c) of the expander (33), and the other end connected to the inflow port (3c) of the expander (33) and the bridge circuit. Connected to (41).
  • the bypass pipe (44) is provided with a bypass valve (45).
  • the bypass valve (45) is an electric valve for adjusting the refrigerant flow rate in the nopass pipe (44), and constitutes a flow rate adjusting valve. That is, in the bypass pipe (44), when the bypass valve (45) is in an open state, a part of the refrigerant flows from the bridge circuit (41) to the expander (33), bypassing the expander (33). It is structured as follows.
  • the compressor (31) sucks the gas refrigerant in a predetermined superheat state during the cooling operation, and the compressor (31) during the heating operation. It is configured to suck a predetermined wet state refrigerant.
  • the injection valve (43) is used so that the refrigerant evaporates in the indoor heat exchanger (22) to become a gas refrigerant in a predetermined superheated state (for example, a superheat degree of 0 to 5 ° C). Is set.
  • the opening degree of the injection valve (43) is set so that the refrigerant evaporates in the outdoor heat exchange (24) and becomes a refrigerant having a predetermined dryness (for example, 0.71 to 0.77).
  • the This predetermined dryness is set to a value that gives the best coefficient of performance, as shown in the lower table of Fig. 3 and the graph of line E in Fig. 4.
  • the high pressure of the refrigeration cycle is set to lOMPa
  • the low pressure is set to 3.5 MPa
  • the outlet temperature of the indoor heat exchanger (22) is set to 25 ° C, This was performed under operating conditions where the compression efficiency of the compressor (31) was set to 70%.
  • the air conditioner (10) of the present embodiment is configured to adjust the dryness of the refrigerant mainly by adjusting the opening of the injection valve (43) and the bypass valve (45). Specifically, the opening of only the injection valve (43) is adjusted while the above-mentioned no-pass valve (45) remains fully closed. For example, when the dryness of the refrigerant is increased. To reduce the opening of the indicator valve (43) and reduce the dryness of the refrigerant, increase the opening of the injection valve (43). When the opening of the injection valve (43) is fully opened and the refrigerant flow rate in the injection pipe (42) cannot be increased any further, the opening of the injection valve (43) remains fully open. Then, the opening degree of the binos valve (45) is adjusted. In the air conditioner (10), as in the first embodiment, the degree of dryness of the refrigerant is also adjusted by adjusting the opening of the flow rate adjustment valve (27) of the liquid injection pipe (26). Constructed.
  • the four-way switching valve (21) is set to the broken line side shown in FIG.
  • the motor (32) is energized in this state, the refrigerant circulates in the refrigerant circuit (20) in the direction indicated by the one-dot chain line shown in FIG. 5, and a vapor compression refrigeration cycle is performed.
  • the four-way selector valve (21) is switched to the state on the solid line side shown in FIG.
  • the motor (32) is energized in this state
  • the refrigerant circulates in the refrigerant circuit (20) in the direction indicated by the solid line in FIG. 5, and a vapor compression refrigeration cycle is performed.
  • the refrigerant state during the circulation is a cycle of A2 ⁇ B2 ⁇ C ⁇ D2, as shown by a solid line in FIG.
  • the bypass valve ( 45 ) and the flow rate adjustment valve (27) are set to a fully closed state.
  • the refrigerant discharged from the compressor (31) radiates heat by indoor heat exchange (22) (point C in FIG. 2).
  • a part of this refrigerant flows into the front cylinder of the expander (33) through the inflow port (3c), and the rest is injected. It flows into the intermediate port of the expander (33) through the suction pipe (42).
  • the refrigerant expands, and the internal energy is converted into the rotational power of the motor (32) and recovered as the power of the compressor (31) (point D2 in FIG. 2).
  • the expanded refrigerant flows out of the outflow port (3d) and flows to the outdoor heat exchanger (24) through the fourth check valve (CV4) of the bridge circuit (41).
  • the refrigerant evaporates by exchanging heat with the outdoor air (point A2 in FIG. 2).
  • the evaporated refrigerant has a predetermined dryness (wet state) at which the coefficient of performance is optimum.
  • the high-pressure pressure or low-pressure pressure of the refrigeration cycle is changed to set new operating conditions, and the compressor (31) according to the operating conditions is set.
  • a target discharge temperature is set.
  • the opening of the injection valve (43) is adjusted so that the discharge temperature of the compressor (31) becomes the target discharge temperature, and when the opening is fully opened, the opening of the bypass valve (45) is adjusted. Is done.
  • the opening degree of the flow rate adjusting valve (27) of the liquid injection pipe (26) is appropriately adjusted.
  • the refrigerant sucked into the compressor (31) is dried.
  • the degree of dryness becomes the optimum dryness, and the operation can be performed with the optimum coefficient of performance according to the operating conditions.
  • the present invention may be configured as follows with respect to the above embodiment.
  • liquid injection pipe (26) of the gas-liquid separator (25) may be omitted.
  • only the expansion valve (23) and the injection valve (43) may be adjusted to adjust the dryness of the refrigerant!
  • both the bypass pipe (44) and the injection pipe (42) are provided.
  • the flow rate adjusting valve dries the refrigerant. Adjust the degree ⁇ .
  • the air conditioner (10) that can be switched between the cooling operation and the heating operation is configured as the air conditioner (10).
  • the present invention provides a heating that has only a heating function. Of course, it may be applied to the device.
  • the present invention is useful as a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle.

Abstract

 蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備えている。そして、圧縮機(31)には、冷媒を運転条件に応じた最適な成績係数となる湿り状態で吸入させる。また、その運転条件が変化すると、膨張弁(23)の開度調整によって圧縮機(31)の吸入冷媒を新たな運転条件に応じた最適な成績係数となる湿り状態に調整する。

Description

明 細 書
冷凍装置
技術分野
[0001] 本発明は、冷凍装置に関し、特に、最適な COP (成績係数)で運転可能な冷凍装 置に係るものである。
背景技術
[0002] 従来より、例えば特開 2003— 106609号公報に開示されているように、冷媒が循 環して蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られている。 この冷凍装置には、圧縮機と凝縮器と膨張弁と蒸発器とが接続されてなる冷媒回路 が形成されている。そして、上記膨張弁は、圧縮機へ所定の過熱度のついたガス冷 媒を吸入させるように開度調整される。これにより、圧縮機が湿り圧縮して損傷するの を防止している。
[0003] —解決課題一
しかしながら、従来の冷凍装置では、過熱状態の高温のガス冷媒が圧縮機へ吸入 されるため、吐出温度が高温となって圧縮機の効率が低下してしまい、冷凍装置の 成績係数 (COP)を考慮すると最適とは!、えなかった。
[0004] 一方、圧縮機は、本来、損傷しない限り湿り状態の冷媒を吸入させても問題はない ものであり、従来では安全を見越して過剰に乾き状態とした冷媒を吸入させるようにし ている。
[0005] そこで、本発明者らは、圧縮機へ吸入させる冷媒の乾き度 (湿り状態)と成績係数と の関係について調べたところ、成績係数が最高となる冷媒の乾き度 (湿り状態)を見 出した。したがって、本発明の目的とするところは、最高またはそれに近い成績係数 となる適正な湿り状態の冷媒を圧縮機へ吸入させ、省エネ運転を図ることである。 発明の開示
[0006] 本発明が講じた解決手段は、以下に示すものである。
[0007] 第 1の解決手段は、圧縮機 (31)を有して冷凍サイクルを行う冷媒回路 (20)を備え た冷凍装置を前提としている。そして、本解決手段は、冷媒をその時の運転状態に ぉ 、て最適な成績係数 (COP)となる湿り状態で上記圧縮機 (31)へ吸入させる。
[0008] 上記の解決手段では、冷媒回路 (20)にお 、て冷媒が循環して蒸気圧縮式冷凍サ イタルが行われる。そして、例えば図 3および図 4に示すように、冷凍サイクルの高圧 圧力および低圧圧力、また圧縮機 (31)の圧縮効率などが運転条件として設定された 運転状態ごとに最適な成績係数 (COP)となる冷媒の乾き度 (湿り状態)が設定される 。上記圧縮機 (31)へは、設定された乾き度の冷媒が吸入されるので、確実に最高の 成績係数で運転が行われる。
[0009] また、第 2の解決手段は、圧縮機 (31)を有して冷凍サイクルを行う冷媒回路 (20)を 備えた冷凍装置を前提としている。そして、本解決手段は、冷房運転時は冷媒を過 熱状態で上記圧縮機 (31)へ吸入させ、暖房運転時は冷媒を湿り状態で上記圧縮機 (31)へ吸入させる。
[0010] 上記の解決手段では、冷媒回路 (20)にお 、て冷媒が循環して蒸気圧縮式冷凍サ イタルが行われる。そして、少なくとも通常の暖房運転時において、常時圧縮機 (31) へ湿り状態、すなわち乾き度が 1. 00未満の冷媒が吸入されるので、図 3および図 4 に示すシミュレーションの結果力 分力るように、乾き度が 1. 00以上の過熱状態の 冷媒を吸入させる場合と比べて明らかに成績係数 (COP)が向上する。この結果、装 置の省エネが図られる。また、運転条件ごとに成績係数が最高となる最適な乾き度の 冷媒を圧縮機 (31)へ吸入させれば、一層の省エネが図られる。
[0011] また、第 3の解決手段は、圧縮機 (31)を有して冷凍サイクルを行う冷媒回路 (20)を 備えた冷凍装置を前提としている。そして、本解決手段は、その時の運転状態にお Vヽて成績係数 (COP)が最適となる上記圧縮機 (31)の目標吐出温度を設定し、冷媒 を上記圧縮機 (31)の吐出温度が目標吐出温度となる湿り状態で上記圧縮機 (31)へ 吸入させる。
[0012] 上記の解決手段では、冷媒回路 (20)にお 、て冷媒が循環して蒸気圧縮式冷凍サ イタルが行われる。そして、冷凍サイクルの高圧圧力および低圧圧力、また圧縮機 (3 1)の圧縮効率などの運転条件に応じて成績係数が最適となる圧縮機 (31)の目標吐 出温度が設定される。つまり、冷媒の乾き度が低いと、圧縮機 (31)の吐出温度が低く なり、逆に冷媒の乾き度が高くなると、圧縮機 (31)の吐出温度が高くなるので、各運 転条件の下で冷媒の乾き度に対応する圧縮機 (31)の吐出温度が定められる。このこ と力ら、図 3および図 4に示すように、各運転条件において成績係数が最適となる冷 媒の乾き度 (湿り状態)が定められ、その冷媒の乾き度に対応する圧縮機 (31)の目 標吐出温度が設定されることになる。したがって、上記圧縮機 (31)の吐出温度が目 標吐出温度となる湿り状態で冷媒を圧縮機 (31)へ吸入させれば、確実に最適な成 績係数で運転が行われる。
[0013] さらに、上記第 1〜第 3の解決手段では、圧縮機 (31)へ湿り状態の冷媒が吸入され るので、過熱状態の冷媒が吸入される場合に比べて、圧縮機 (31)の吐出温度が低 下する。したがって、上記圧縮機 (31)のモータが異常に加熱されるのを防止でき、ま た冷凍機油の高温による劣化が抑制される。この結果、圧縮機 (31)への信頼性が向 上する。
[0014] また、第 4の解決手段は、上記第 1〜第 3の何れか 1の解決手段において、上記冷 媒回路 (20)に膨張弁 (23)が設けられて 、る。そして、本解決手段は、上記膨張弁 (2 3)の開度を調節することによって圧縮機 (31)の吸入冷媒の湿り状態を調節する。
[0015] 上記の解決手段では、例えば、圧縮機 (31)の吸入冷媒の湿り加減を増大させる場 合、すなわち吸入冷媒の乾き度を低くする場合、膨張弁 (23)の開度を大きくして蒸 発器へ流す冷媒流量を増大させる。これにより、蒸発器において蒸発しきれない冷 媒量が増大し、圧縮機 (31)へより湿った状態の冷媒が吸入される。逆に、上記圧縮 機 (31)の吸入冷媒の湿り加減を減少させる場合、すなわち吸入冷媒の乾き度を高く する場合には、膨張弁 (23)の開度を小さくして蒸発器へ流す冷媒流量を低減する。 これにより、蒸発器において蒸発しきれない冷媒量が減少し、圧縮機 (31)へ湿り加 減の少ない冷媒が吸入される。したがって、各運転条件に応じて成績係数が最高と なる冷媒の乾き度を設定し、その乾き度に基づいて膨張弁 (23)を開度調整すれば、 各運転条件において成績係数が最高となる省エネ運転が行われる。
[0016] また、第 5の解決手段は、上記第 1〜第 3の何れか 1の解決手段において、上記冷 媒回路 (20)は、蒸発器 (22,24)と圧縮機 (31)の吸入側との間に気液分離器 (25)が 設けられている。そして、上記気液分離器 (25)は、流量調整弁 (27)を有して気液分 離器 (25)の液冷媒を圧縮機 (31)の吸入側へ導く液インジヱクシヨン管 (26)を備えて いる。さらに、本発明は、上記流量調整弁 (27)を調節することによって圧縮機 (31)の 吸入冷媒の湿り状態を調節する。
[0017] 上記の解決手段では、例えば、圧縮機 (31)の吸入冷媒の湿り加減を増大させる場 合、すなわち吸入冷媒の乾き度を低くする場合、流量調整弁 (27)の開度を大きくし て圧縮機 (31)へ吸入させる液冷媒の流量を増大させる。逆に、上記圧縮機 (31)の 吸入冷媒の湿り加減を減少させる場合、すなわち吸入冷媒の乾き度を高くする場合 には、流量調整弁 (27)の開度を小さくして圧縮機 (31)へ吸入させる液冷媒の流量を 低減する。したがって、各運転条件に応じて成績係数が最高となる冷媒の乾き度を 設定し、その乾き度に基づいて流量調整弁 (27)を開度調整すれば、各運転条件に おいて成績係数が最高となる省エネな運転が行われる。
[0018] また、第 6の解決手段は、上記第 1〜第 3の何れか 1の解決手段において、上記冷 媒回路 (20)は、圧縮機 (31)に該圧縮機 (31)のモータ (32)を介して機械的に接続さ れた膨張機 (33)が設けられている。また、上記冷媒回路 (20)は、膨張機 (33)へ向か う冷媒の一部が膨張機 (33)をバイパスして流れるバイパス管 (44)と、該バイパス管 (4 4)に設けられる流量調整弁 (45)とを備えている。そして、本解決手段は、上記流量 調整弁 (45)を調節することによって圧縮機 (31)の吸入冷媒の湿り状態を調節する。
[0019] 上記の解決手段では、例えば、圧縮機 (31)の吸入冷媒の湿り加減を増大させる場 合、すなわち吸入冷媒の乾き度を低くする場合、流量調整弁 (45)の開度を大きくし、 つまり膨張機 (33)をバイパスして流れる冷媒量を増大させて蒸発器へ流す冷媒流量 を増大させる。これにより、蒸発器において蒸発しきれない冷媒量が増大し、圧縮機 ( 31)へより湿った状態の冷媒が吸入される。逆に、上記圧縮機 (31)の吸入冷媒の湿り 加減を減少させる場合、すなわち吸入冷媒の乾き度を高くする場合には、流量調整 弁 (45)の開度を小さくし、つまり膨張機 (33)をバイパスして流れる冷媒量を減少させ て蒸発器へ流す冷媒流量を低減する。これにより、蒸発器において蒸発しきれない 冷媒量が減少し、圧縮機 (31)へ湿り加減の少ない冷媒が吸入される。したがって、 各運転条件に応じて成績係数が最高となる冷媒の乾き度を設定し、その乾き度に基 づ 、て流量調整弁 (45)を開度調整すれば、各運転条件にお!、て成績係数が最高と なる省エネ運転が行われる。 [0020] また、上記の解決手段では、膨張機 (33)で冷媒が膨張することによって発生したェ ネルギが回転動力に変換され、モータ (32)を介して圧縮機 (31)の動力として回収さ れる。この種の圧縮機 (31)および膨張機 (33)は、容積型のものが用いられることが 通例であるため、運転条件の変化によって圧縮機 (31)と膨張機 (33)における冷媒流 通量のバランスが崩れることがある。その場合でも、上述したように、圧縮機 (31)へ吸 入される冷媒の乾き度を最適とすることを前提として流量調整弁 (27)を開度調整を 行うことによって膨張機 (33)へ流す冷媒流量を調整することにより、圧縮機 (31)と膨 張機 (33)とにおける冷媒流量がバランスする。したがって、一層効率の高い運転が 行われる。
[0021] また、第 7の解決手段は、上記第 1〜第 3の何れか 1の解決手段において、上記冷 媒回路 (20)が、冷凍サイクルの高圧圧力が冷媒の臨界圧力より高くなるように構成さ れている。
[0022] 上記の解決手段では、圧縮機 (31)によって冷媒がその臨界圧力より高い圧力まで 圧縮される。すなわち、上記圧縮機 (31)の吐出冷媒は、超臨界状態となっている。こ れにより、圧縮機 (31)へ湿り状態の冷媒が吸入されても、少なくとも吐出部では液冷 媒が存在しなくなり、いわゆる液圧縮が確実に回避される。
[0023] また、第 8の解決手段は、上記第 7の解決手段において、上記冷媒が二酸化炭素 である。
[0024] 上記の解決手段では、冷媒が二酸化炭素(CO )であるので、地球環境に優 、装
2
置が提供される。
[0025] 効果
したがって、第 1の解決手段によれば、圧縮機 (31)へ湿り状態の冷媒を吸入させる ようにしたので、過熱状態の冷媒を吸入させる場合に比べて、成績係数 (COP)を向 上させることができる。さらに、圧縮機 (31)の吸入冷媒を成績係数が最高となる湿り 状態にすれば、運転の省エネを最大限に図ることができる。また、圧縮機 (31)へ湿り 状態の冷媒を吸入させることから、圧縮機 (31)の吐出温度を過熱状態の冷媒を吸入 させる場合に比べて低下させることができると共に、圧縮機 (31)における冷凍機油の 高温による劣化を抑制することができる。したがって、機器の信頼性を向上させること ができる。
[0026] 特に、第 2の解決手段によれば、暖房運転時において、圧縮機 (31)へ湿り状態の 冷媒を吸入させるようにしたので、少なくとも暖房運転を最適な成績係数で行うことが できる。また、第 3の解決手段によれば、各運転条件において、圧縮機 (31)の吐出温 度が最適な成績係数となる所定温度になるように冷媒を湿り状態で圧縮機 (31)へ吸 入させるようにしたので、確実に最適な成績係数で運転を行うことができる。また、圧 縮機 (31)の吐出温度に基づ 、て冷媒の湿り状態を調節すればよ!、ので、容易に冷 凍サイクルの成績係数を制御することができる。
[0027] また、第 4〜第 6の解決手段によれば、膨張弁 (23)、各流量調整弁 (27,45)の開度 調整によって圧縮機 (31)の吸入冷媒の湿り状態を調整するようにしたので、各種運 転条件に応じて最適な成績係数に対応する冷媒の乾き度を設定すれば、幅広 、運 転条件において確実に成績係数が最高となる運転を行うことができる。
[0028] 特に、第 6の解決手段によれば、運転条件の変化によって膨張機 (33)を流通する 冷媒量と圧縮機 (31)を流通する冷媒量とのバランスが崩れた場合でも、圧縮機 (31) の吸入冷媒が最適な乾き度となることを前提として、流量調整弁 (45)の開度調整に よって膨張機 (33)へ流す冷媒流量を調整できるので、膨張機 (33)と圧縮機 (31)の 流通冷媒量をバランスさせることができる。これにより、一層の効率改善を図ることが できる。
[0029] また、第 7の解決手段によれば、冷媒回路 (20)を冷凍サイクルの高圧圧力が冷媒 の臨界圧力より高い超臨界サイクルを行うように構成したので、圧縮機 (31)の吐出冷 媒が確実に過熱状態となる。したがって、圧縮機 (31)へ湿り状態の冷媒を吸入させ ても、圧縮機 (31)の吐出部では既に冷媒が過熱状態となるので、圧縮機 (31)におけ る液圧縮を確実に防止することができる。この結果、信頼性の高い装置を提供するこ とがでさる。
[0030] また、第 8の解決手段によれば、冷媒にニ酸ィ匕炭素を用いるようにしたので、地球 環境に優 、装置を提供することができる。
図面の簡単な説明
[0031] [図 1]図 1は、実施形態 1に係る冷凍装置を示す冷媒回路図である。 [図 2]図 2は、暖房運転時の冷媒回路における冷媒挙動を示すモリエル線図である。
[図 3]図 3は、暖房運転時における冷媒の乾き度と成績係数との関係について示すシ ミュレーシヨンのデータ表である。
[図 4]図 4は、暖房運転時における冷媒の乾き度と成績係数との関係について示すシ ミュレーシヨンのデータグラフである。
[図 5]図 5は、実施形態 2に係る冷凍装置を示す冷媒回路図である。
発明を実施するための最良の形態
[0032] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0033] 《発明の実施形態 1》
本実施形態の空調機(10)は、本発明に係る冷凍装置を構成している。図 1に示す ように、上記空調機(10)は、いわゆるセパレート型のものであって、室外機(11)と室 内機 (12)とを備えて!/ヽる。上記室外機 (11)には、圧縮機 (31)、四路切換弁 (21)、室 外熱交 (24)、膨張弁 (23)および気液分離器 (25)が収納されている。上記室内 機(12)には、室内熱交換器 (22)が収納されている。上記室外機(11)は屋外に設置 され、室内機(12)は屋内に設置されている。また、この室外機(11)と室内機(12)とは 、一対の連絡配管(13,14)で接続されている。
[0034] 上記空調機(10)には、冷媒回路 (20)が設けられている。この冷媒回路 (20)は、圧 縮機 (31)や室内熱交 (22)などが接続されて閉回路に構成されている。また、こ の冷媒回路 (20)は、冷媒として二酸ィ匕炭素 (CO )が充填され、冷媒が循環して蒸気
2
圧縮式冷凍サイクルを行うように構成されて 、る。
[0035] 上記圧縮機 (31)は、機械的に接続されたモータ (32)によって駆動し、例えば全密 閉型で高圧ドーム型のスクロール圧縮機により構成されている。そして、この圧縮機( 31)は、冷媒をその臨界圧力より高い圧力まで圧縮するように構成されている。すな わち、上記冷媒回路 (20)では、蒸気圧縮式冷凍サイクルの高圧圧力が二酸化炭素 の臨界圧力より高くなる。上記室外熱交 (24)および室内熱交 (22)は、何れ もクロスフィン型のフィン.アンド ·チューブ熱交^^で構成されて ヽる。上記室外熱交 翻 (24)では、冷媒回路 (20)を循環する冷媒が室外空気と熱交換する。一方、上 記室内熱交換器 (22)では、冷媒回路 (20)を循環する冷媒が室内空気と熱交換する [0036] 上記四路切換弁 (21)は、 4つのポートを備えている。この四路切換弁 (21)は、その 第 1のポートが圧縮機 (31)の吐出管 (3a)に、第 2のポートが気液分離器 (25)を介し て圧縮機 (31)の吸入管 (3b)に、第 3のポートが室外熱交翻 (24)の一端に、第 4の ポートが連絡配管(13)を介して室内熱交換器 (22)の一端にそれぞれ接続されて!ヽ る。上記室内熱交換器 (22)の他端は、連絡配管(14)および膨張弁 (23)を介して室 外熱交翻 (24)の他端に接続されている。この四路切換弁 (21)は、第 1のポートと 第 3のポートとが連通し且つ第 2のポートと第 4のポートとが連通する状態(図 1に示す 破線側の状態)と、第 1のポートと第 4のポートとが連通し且つ第 2のポートと第 3のポ ートとが連通する状態(図 1に示す実線側の状態)とに切り換わるように構成されて ヽ る。
[0037] 上記冷媒回路 (20)は、四路切換弁 (21)の切換によって冷房運転と暖房運転とに 切り換わるように構成されている。つまり、上記四路切換弁 (23)が図 1の破線側の状 態に切り換わると、冷媒回路 (20)は、室外熱交換器 (24)で冷媒が放熱し、室内熱交 換器 (22)で冷媒が蒸発する冷房運転で冷媒が循環する。また、上記四路切換弁 (23 )が図 1の実線側の状態に切り換わると、冷媒回路 (20)は、室内熱交換器 (22)で冷 媒が放熱し、室外熱交換器 (24)で冷媒が蒸発する暖房運転で冷媒が循環する。す なわち、冷房運転時には室内熱交換器 (22)が蒸発器として、室外熱交換器 (24)が 放熱器としてそれぞれ機能し、一方暖房運転時には室外熱交 (24)が蒸発器と して、室内熱交 (22)が放熱器としてそれぞれ機能するように構成されている。
[0038] 上記気液分離器 (25)には、液インジェクション管 (26)が設けられて 、る。具体的に 、この液インジェクション管 (26)は、一端が気液分離器 (25)の液貯留部に接続され、 他端が圧縮機 (31)の吸入管(3b)に接続されている。そして、この液インジェクション 管 (26)は、気液分離器 (25)に貯留された液冷媒を圧縮機 (31)の吸入側へ導くよう に構成されている。この液インジェクション管(26)には、該液インジェクション管(26) を流れる液冷媒の流量を調整するための電動弁により構成された流量調整弁 (27) が設けられている。
[0039] 上記空調機(10)は、本発明の特徴として、通常の冷房運転時には圧縮機 (31)へ 所定の過熱状態のガス冷媒を吸入させ、通常の暖房運転時には圧縮機 (31)へ所定 の乾き度 (湿り状態)の冷媒を吸入させるように構成されている。すなわち、本発明は 、デフロスト運転や、冷凍サイクルにおける高圧圧力が異常高圧となった場合や、圧 縮機 (31)の吐出温度が異常高温になった場合などの特別な運転および条件を除い た通常運転時を対象として!ヽる。
[0040] 具体的に、冷房運転の場合、室内熱交換器 (22)において冷媒が蒸発して所定の 過熱状態 (例えば、過熱度 0〜5°C)のガス冷媒となるように、膨張弁 (23)の開度が設 定される。一方、暖房運転の場合、室外熱交換器 (24)において冷媒が蒸発して所定 の乾き度 (例えば、 0. 83〜0. 89)となるように、膨張弁 (23)の開度が設定される。
[0041] この所定の乾き度は、シミュレーションによって見出されたものであり、暖房運転時 における空調機(10)の成績係数 (COP)が最適となる数値に設定されて 、る。つまり 、このシミュレーションでは、図 3の上段の表および図 4の F線のグラフに示すように、 圧縮機 (31)へ吸入させる冷媒の乾き度が 0. 83〜0. 89をピークとして、その領域か ら低くなるに従っても、逆に高くなるに従っても成績係数が低下し、さらに乾き度が 1. 00を越えて過熱度が高くなるに従っても、同様に成績係数が一層低下していること が分かる。このことから、少なくとも乾き度が 1. 00未満、すなわち湿り状態の冷媒を 圧縮機 (31)へ吸入させることで成績係数が最適点に近づくことが分力る。
[0042] 上記シミュレーションは、冷凍サイクルの高圧圧力が lOMPaに、低圧圧力が 3. 5 MPaに設定され、室内熱交換器 (22)の出口温度が 25°Cに設定され、圧縮機 (31) の圧縮効率が 70%に設定された運転条件の下で行ったものである。また、このシミュ レーシヨンは、冷媒にニ酸ィ匕炭素(CO )を用いて行った。したがって、上述した各種
2
運転条件を変えながら、成績係数が最適となる乾き度を見つけ出すことによって運転 条件に応じた最適な乾き度が設定される。これにより、外気温度等が変化した場合、 それに基づく運転条件が設定され、その運転条件に応じた冷媒の乾き度 (湿り状態) を設定すればよいことになる。
[0043] 上記空調機(10)では、主として膨張弁 (23)の開度調整によって室外熱交換器 (24 )における蒸発能力を調整することにより、冷媒の乾き度を調整するように構成されて いる。つまり、冷媒の乾き度を高くする場合には、膨張弁 (23)の開度を小さくし、冷媒 の乾き度を低くする場合には、膨張弁 (23)の開度を大きくする。また、上記空調機(1
0)では、液インジヱクシヨン管 (26)の流量調整弁 (27)の開度を調整することによって も冷媒の乾き度を調整するように構成されている。つまり、上記流量調整弁 (27)の開 度調整によって気液分離器 (25)から圧縮機 (31)へ導く液冷媒の流量を調整し、冷 媒の湿り状態を調整して!/ヽる。
[0044] また、上記圧縮機 (31)へ吸入させる冷媒の乾き度は、圧縮機 (31)の吐出温度に基 づいて判定される。すなわち、上記空調機(10)では、圧縮機 (31)の吐出温度が目標 吐出温度となるように膨張弁 (23)や流量調整弁 (27)の開度を調節して冷媒の乾き 度を調節するように構成されている。上記目標吐出温度は、成績係数が最適となる 温度に設定されている。これは、圧縮機 (31)へ吸入される冷媒の乾き度が低くなると 、圧縮機 (31)の吐出温度も低くなり、逆に冷媒の乾き度が高くなると、圧縮機 (31)の 吐出温度が高くなり、運転条件ごとに冷媒の乾き度に対応する圧縮機 (31)の吐出温 度が定められる。したがって、運転条件ごとに最適な成績係数となる冷媒の乾き度が 設定され、その冷媒の乾き度に対応する圧縮機 (31)の吐出温度を目標吐出温度と して設定する。これにより、運転条件が変化しても、その運転条件に応じた圧縮機 (3
1)の目標吐出温度が設定されるので、その時の運転状態で得られる最適な成績係 数で運転を行うことができる。
[0045] 運転動作
上記空調機(10)の運転動作について説明する。ここでは、通常の冷房運転時およ び暖房運転時の動作にっ 、て説明する。
[0046] 〈冷房運転〉
上記冷房運転時には、四路切換弁 (21)が図 1に示す破線側の状態に設定される。 この状態でモータ (32)に通電すると、冷媒回路 (20)で冷媒が図 1に示す一点鎖線の 矢示の方向に循環して蒸気圧縮式冷凍サイクルが行われる。なお、上記液インジェ クシヨン管 (26)の流量調整弁 (27)は、全閉状態に設定されて!、る。
[0047] 上記圧縮機 (31)で圧縮された冷媒は、吐出管 (3a)より吐出される。この状態で、冷 媒の圧力は、その臨界圧力よりも高くなつている。この吐出冷媒は、四路切換弁 (21) を通って室外熱交換器 (24)へ流れ、室外空気と熱交換して放熱する。この室外熱交 換器 (24)で放熱した冷媒は、膨張弁 (23)で所定圧力まで減圧された後、室内熱交 換器 (22)にて室内空気と熱交換して蒸発し、過熱状態のガス冷媒となる。その際、 室内空気が冷却される。この過熱状態のガス冷媒は、四路切換弁 (21)を通って吸入 管 (3b)より圧縮機 (31)へ吸入され、再び圧縮されて吐出される。
[0048] 〈暖房運転〉
上記暖房運転時には、四路切換弁 (21)が図 1に示す実線側の状態に設定される。 この状態でモータ (32)に通電すると、冷媒回路 (20)で冷媒が図 1に示す実線の矢示 の方向に循環して蒸気圧縮式冷凍サイクルが行われる。その循環の際の冷媒状態 は、図 2に一点鎖線で示すように、 A1→B1→C→Dのサイクルとなる。また、上記液 インジェクション管 (26)の流量調整弁 (27)は、全閉状態に設定されている。なお、図 2における A→B→C→Dのサイクルは、圧縮機 (31)の吸入冷媒の過熱度がゼロであ る従来の冷凍サイクルを示したものである。この従来の冷凍サイクルでは、圧縮機より 吐出された B点の冷媒が放熱器で放熱して C点の冷媒となり、続いて膨張機構で減 圧されて D点の冷媒となり、その後蒸発器で蒸発して過熱度ゼロのガス冷媒 (A点)と なって圧縮機へ吸入される。
[0049] この暖房運転において、圧縮機 (31)で圧縮された冷媒は、吐出管 (3a)より吐出さ れる(図 2の B1点)。この状態で、冷媒の圧力は、その臨界圧力よりも高くなつている 。この吐出冷媒は、四路切換弁 (21)を通って室内熱交換器 (22)へ流れ、室内空気 と熱交換して放熱する(図 2の C点)。その際、室内空気が加熱される。この室内熱交 翻 (22)で放熱した冷媒は、膨張弁 (23)で所定圧力まで減圧された後(図 2の D点 )、室外熱交 (24)にて室外空気と熱交換して蒸発する(図 2の A1点)。この状態 で、蒸発した冷媒は、成績係数が最適となる所定の乾き度 (湿り状態)になっている。 この湿り状態の冷媒は、四路切換弁 (21)を通って吸入管 (3b)より圧縮機 (31)へ吸入 され、再び圧縮されて過熱状態の冷媒となり、吐出される。このように、暖房運転時に は、最適な成績係数で運転を行うことができ、省エネ運転を図ることができる。
[0050] 次に、上述した状態で外気温度等が変化すると、冷凍サイクルの高圧圧力や低圧 圧力等が変更されて新たな運転条件が設定され、その運転条件に応じた圧縮機 (31 )の目標吐出温度が設定される。そして、上記圧縮機 (31)の吐出温度が目標吐出温 度となるように膨張弁 (23)の開度が調整され、もしくは液インジェクション管 (26)の流 量調整弁 (27)の開度が調整される。これにより、圧縮機 (31)へ吸入される冷媒の乾 き度が最適な乾き度となり、運転条件に応じた最適な成績係数で運転を行うことがで きる。
[0051] また、この暖房運転では、常に圧縮機 (31)へ湿り状態の冷媒が吸入されるので、従 来のように過熱状態の冷媒を吸入させる場合と比べて、圧縮機 (31)の吐出温度が著 しく低下する。したがって、上記モータ (32)が異常高温となるのを防止することができ 、また圧縮機 (31)内の冷凍機油が高温に加熱されて劣化するのを抑制することがで きる。この結果、装置の信頼性を向上させることができる。
[0052] また、通常、上記圧縮機 (31)より冷媒と共に吐出された冷凍機油の一部は、蒸発 器まで流れるが、蒸発器力 流出する冷媒が完全なガス状態であるために蒸発器に 溜まり易くなる。ところが、本実施形態の場合、蒸発器である室外熱交 (24)から 流出する冷媒が湿り状態、つまり気液二相状態であるため、ガス状態の冷媒よりも熱 交換器より冷凍機油を連行し易い。したがって、従来に比べて、圧縮機 (31)へ戻さ れる冷凍機油が多くなるので、圧縮機 (31)における潤滑不良を抑制することができる
[0053] 一実施形態の効果
以上説明したように、本実施形態によれば、通常の暖房運転時に圧縮機 (31)へ湿 り状態の冷媒を吸入させるようにしたので、過熱状態の冷媒を吸入させる場合に比べ て、成績係数 (COP)を向上させることができる。特に、運転条件に応じて成績係数 が最適となる湿り状態の冷媒を圧縮機 (31)へ吸入させているので、確実に最適な成 績係数で運転を行うことができる。この結果、省エネ運転を一層図ることができる。
[0054] また、例えば、デフロスト運転や、圧縮機 (31)の吐出温度が異常高温になった場合 における従来の液インジェクションなどとは全く異なり、通常運転の下で成績係数を 最適とすることができる。
[0055] さらに、成績係数が最適となる冷媒の乾き度に対応する圧縮機 (31)の目標吐出温 度を設定し、圧縮機 (31)の吐出温度が目標吐出温度になるように圧縮機 (31)の吸 入冷媒の乾き度 (湿り状態)を調整するようにしたので、確実に成績係数が最適となる 運転を行うことができる。
[0056] また、上記膨張弁 (23)または流量調整弁 (27)の開度調整によって圧縮機 (31)の 吸入冷媒の乾き度を調整するようにしたので、確実に且つ容易に最適な成績係数で 運転を行うことができる。
[0057] また、圧縮機 (31)へは湿り状態の冷媒が吸入されることから、圧縮機 (31)の吐出温 度が著しく低下し、モータ (32)や冷凍機油を保護することができる。この結果、装置 の信頼性を向上させることができる。
[0058] また、蒸発器である室外熱交 (24)力 流出する冷媒が気液二相の湿り状態で あることから、その冷媒によって熱交 内の冷凍機油が除去され易いので、圧縮 機 (31)へ戻される冷凍機油が多くなり、圧縮機 (31)における潤滑不良を抑制するこ とができる。したがって、上述した効果と相まって圧縮機 (31)をより一層保護すること ができる。
[0059] 《発明の実施形態 2》
本実施形態の空調機(10)は、図 5に示すように、上記実施形態 1が冷凍サイクルの 膨張機構として膨張弁 (23)を備えるようにしたのに代えて、圧縮機 (31)にモータ (32 )を介して機械的に接続された膨張機 (33)を用いるようにしたものである。
[0060] 具体的に、上記圧縮機 (31)とモータ (32)と膨張機 (33)とは、ケーシングに収納され て 1つのユニットを構成している。上記圧縮機 (31)は、例えば、ロータリ式圧縮機ゃス クロール式圧縮機などの容積型圧縮機で構成されている。上記膨張機 (33)は、例え ば、ロータリ式膨張機やスクロール式膨張機などの容積型膨張機で構成されて!ヽる。
[0061] 上記膨張機 (33)は、図示しないが、 2つのシリンダを備え、前段のシリンダで膨張し た後、続いて後段のシリンダでさらに膨張する、いわゆる 2段式膨張機により構成され ている。そして、上記膨張機 (33)は、動力を回収するように構成されている。つまり、 上記膨張機 (33)において冷媒が膨張することにより発生するエネルギを回転動力と して圧縮機 (31)の駆動に利用し、動力を回収するようにしている。
[0062] 上記圧縮機 (31)や膨張機 (33)のケーシングには、圧縮機 (31)用の吐出管 (3a)お よび吸入管 (3b)の他に、冷媒が膨張機 (33)の前段のシリンダに流入する流入ポート (3c)と、後段のシリンダ力も膨張後の冷媒がケ一シング外に流出する流出ポート (3d) とが設けられている。
[0063] 上記冷媒回路 (20)は、室外機(11)における連絡配管(14)と室外熱交 (24)と の間にブリッジ回路 (41)が設けられている。このブリッジ回路 (41)は、 4つの逆止弁( CV1〜CV4)をブリッジ状に接続したものである。具体的に、このブリッジ回路 (41)は 、第 1逆止弁 (CV1)および第 4逆止弁 (CV4)の流入側が膨張機 (33)の流出ポート (3 d)に、第 2逆止弁 (CV2)および第 3逆止弁 (CV3)の流出側が膨張機 (33)の流入ポ ート (3c)に、第 1逆止弁 (CV1)の流出側および第 2逆止弁 (CV2)の流入側が連絡配 管(14)を介して室内熱交換器 (22)の他端に、第 3逆止弁 (CV3)の流入側および第 4 逆止弁 (CV4)の流出側が室外熱交 (24)の他端にそれぞれ接続されて ヽる。
[0064] 上記冷媒回路 (20)には、インジェクション管 (42)が設けられて 、る。このインジエタ シヨン管 (42)は、一端がブリッジ回路 (41)と膨張機 (33)の流入ポート (3c)との間に、 他端が膨張機 (33)における前段および後段のシリンダの中間ポート(図示せず)にそ れぞれ接続されて 、る。上記インジェクション管 (42)には、インジェクション弁 (43)が 設けられている。このインジェクション弁(43)は、インジェクション管(42)における冷媒 流量を調節するための電動弁であって、流量調節弁を構成して!/、る。
[0065] また、上記冷媒回路 (20)には、バイパス管 (44)が設けられて 、る。このバイパス管( 44)は、一端がブリッジ回路 (41)と膨張機 (33)の流入ポート (3c)との間に、他端が膨 張機 (33)の流入ポート (3c)とブリッジ回路 (41)との間にそれぞれ接続されて ヽる。上 記バイパス管(44)には、バイパス弁 (45)が設けられて 、る。このバイパス弁 (45)は、 ノ ィパス管 (44)における冷媒流量を調節するための電動弁であって、流量調整弁を 構成している。すなわち、上記バイパス管 (44)は、バイパス弁 (45)が開状態におい て、ブリッジ回路 (41)から膨張機 (33)へ向力 冷媒の一部が膨張機 (33)をバイパス して流れるように構成されて 、る。
[0066] 本実施形態の空調機(10)では、上記実施形態 1と同様に、冷房運転時には圧縮 機 (31)へ所定の過熱状態のガス冷媒を吸入させ、暖房運転時には圧縮機 (31)へ所 定の湿り状態の冷媒を吸入させるように構成されている。具体的に、冷房運転の場合 、室内熱交換器 (22)において冷媒が蒸発して所定の過熱状態 (例えば、過熱度 0〜 5°C)のガス冷媒となるように、インジェクション弁 (43)の開度が設定される。一方、暖 房運転の場合、室外熱交翻 (24)において冷媒が蒸発して所定の乾き度 (例えば、 0. 71-0. 77)の冷媒となるようにインジェクション弁 (43)の開度が設定される。この 所定の乾き度は、図 3の下段の表および図 4の E線のグラフに示すように、成績係数 が最適となる数値に設定されている。なお、このシミュレーションも、実施形態 1と同様 に、冷凍サイクルの高圧圧力が lOMPaに、低圧圧力が 3. 5MPaに設定され、室内 熱交換器 (22)の出口温度が 25°Cに設定され、圧縮機 (31)の圧縮効率が 70%に設 定された運転条件の下で行ったものである。
[0067] そして、本実施形態の空調機(10)では、主としてインジェクション弁 (43)およびバイ パス弁 (45)の開度調整によって冷媒の乾き度を調整するように構成されている。具 体的には、上記ノ ィパス弁 (45)が全閉状態のままで、インジェクション弁 (43)のみを 開度調整するようになっており、例えば、冷媒の乾き度を高くする場合にはインジ タ シヨン弁 (43)の開度を小さくし、冷媒の乾き度を低くする場合にはインジェクション弁( 43)の開度を大きくする。そして、上記インジェクション弁 (43)の開度が全開となり、ィ ンジェクシヨン管 (42)における冷媒流量がそれ以上増やせない状態になった場合に は、インジェクション弁 (43)の開度が全開状態のままで上記バイノス弁 (45)の開度を 調整するように構成されている。また、上記空調機(10)では、実施形態 1と同様に、 液インジェクション管 (26)の流量調整弁 (27)の開度を調整することによつても冷媒の 乾き度を調整するように構成されて ヽる。
[0068] 運転動作
上記空調機(10)の動作について説明する。なお、ここでは、上記実施形態 1の運 転動作と異なる点について説明する。
[0069] 〈冷房運転〉
上記冷房運転時には、四路切換弁 (21)が図 5に示す破線側の状態に設定される。 この状態でモータ (32)に通電すると、冷媒回路 (20)で冷媒が図 5に示す一点鎖線の 矢示の方向に循環して蒸気圧縮式冷凍サイクルが行われる。なお、上記バイパス弁
(45)および流量調整弁 (27)は、全閉状態に設定されて!、る。
[0070] 上記室外熱交換器 (24)で放熱した冷媒は、ブリッジ回路 (41)の第 3逆止弁 (CV3) を通過した後、一部が流入ポート (3c)を通って膨張機 (33)の前段のシリンダへ流入 し、残りがインジェクション管 (42)を通って膨張機 (33)の中間ポートに流入する。この 膨張機 (33)では、冷媒が膨張し、その内部エネルギがモータ (32)の回転動力に変 換されて圧縮機 (31)の動力として回収される。そして、この膨張後の冷媒は、流出ポ ート (3d)力 流出し、ブリッジ回路 (41)の第 1逆止弁 (CV1)を通って室内熱交換器 ( 22)へ流れる。この室内熱交換器 (22)では、冷媒が室内空気と熱交換して蒸発し、 過熱状態のガス冷媒となる。
[0071] 〈暖房運転〉
上記暖房運転時には、四路切換弁 (21)が図 5に示す実線側の状態に切り換えられ る。この状態でモータ (32)に通電すると、冷媒回路 (20)で冷媒が図 5に示す実線の 矢示の方向に循環して蒸気圧縮式冷凍サイクルが行われる。その循環の際の冷媒 状態は、図 2に実線で示すように、 A2→B2→C→D2のサイクルとなる。なお、上記 バイパス弁 (45)および流量調整弁 (27)は、全閉状態に設定されて!ヽる。
[0072] 上記圧縮機 (31)の吐出冷媒 (図 2の B2点)は、室内熱交翻 (22)で放熱する(図 2の C点)。この冷媒は、ブリッジ回路 (41)の第 2逆止弁 (CV2)を通過した後、一部が 流入ポート (3c)を通って膨張機 (33)の前段のシリンダへ流入し、残りがインジェクショ ン管 (42)を通って膨張機 (33)の中間ポートに流入する。この膨張機 (33)では、冷媒 が膨張し、その内部エネルギがモータ (32)の回転動力に変換されて圧縮機 (31)の 動力として回収される(図 2の D2点)。そして、この膨張後の冷媒は、流出ポート(3d) 力 流出し、ブリッジ回路 (41)の第 4逆止弁 (CV4)を通って室外熱交 (24)へ流 れる。この室外熱交換器 (24)では、冷媒が室外空気と熱交換して蒸発する(図 2の A 2点)。この状態で、蒸発した冷媒は、成績係数が最適となる所定の乾き度 (湿り状態 )になっている。
[0073] 次に、上述した状態で外気温度等が変化すると、冷凍サイクルの高圧圧力や低圧 圧力等が変更されて新たな運転条件が設定され、その運転条件に応じた圧縮機 (31 )の目標吐出温度が設定される。そして、上記圧縮機 (31)の吐出温度が目標吐出温 度となるようにインジェクション弁 (43)の開度が調整され、その開度が全開になるとバ ィパス弁 (45)の開度が調整される。もしくは、上記液インジェクション管(26)の流量調 整弁 (27)の開度が適宜調整される。これにより、圧縮機 (31)へ吸入される冷媒の乾 き度が最適な乾き度となり、運転条件に応じた最適な成績係数で運転を行うことがで きる。
[0074] また、本実施形態の空調機(10)では、運転条件の変化により、膨張機 (33)を流通 する冷媒量と圧縮機 (31)を流通する冷媒量とのバランスが崩れた場合、圧縮機 (31) の吸入冷媒が最適な乾き度となることを前提として、インジェクション管 (42)から冷媒 の一部を導入することにより、さらにバイパス管 (44)によって冷媒の一部を膨張機 (33 )に対してバイパスさせることにより、膨張機 (33)と圧縮機 (31)の流通冷媒量をバラン スさせることができる。これにより、動力回収率を向上させることができるので、一層省 エネ運転を行うことができる。なお、その他の構成、作用および効果は、実施形態 1と 同様である。
[0075] 《その他の実施形態》
本発明は、上記実施形態について、以下のような構成としてもよい。
[0076] 例えば、上記各実施形態にお!、て、気液分離器 (25)における液インジェクション管
(26)の流量調整弁 (27)の開度調整のみで冷媒の乾き度を調整するようにしてもよ!、
[0077] また、上記各実施形態にお!、て、気液分離器 (25)の液インジェクション管 (26)を省 略するようにしてもよい。つまり、各実施形態において、膨張弁 (23)やインジェクショ ン弁 (43)のみを開度調整して冷媒の乾き度を調整するようにしてもよ!、。
[0078] また、上記実施形態 2では、バイパス管 (44)およびインジェクション管 (42)の両方を 設けるようにしたが、本発明は、何れか一方のみを設けてその流量調整弁で冷媒の 乾き度を調整するようにしてもょ ヽ。
[0079] また、上記各実施形態では、冷房運転および暖房運転が切換可能な空調機(10) を空調機 (10)を構成するようにしたが、本発明は、暖房機能のみを備えた暖房装置 に適用するようにしてもょ 、ことは勿論である。
産業上の利用可能性
[0080] 以上説明したように、本発明は、蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた 冷凍装置として有用である。

Claims

請求の範囲
[1] 圧縮機 (31)を有して冷凍サイクルを行う冷媒回路 (20)を備えた冷凍装置であつ て、
冷媒をその時の運転状態にぉ 、て最適な成績係数 (COP)となる湿り状態で上記 圧縮機 (31)へ吸入させる
ことを特徴とする冷凍装置。
[2] 圧縮機 (31)を有して冷凍サイクルを行う冷媒回路 (20)を備えた冷凍装置であつ て、
冷房運転時は冷媒を過熱状態で上記圧縮機 (31)へ吸入させ、暖房運転時は冷 媒を湿り状態で上記圧縮機 (31)へ吸入させる
ことを特徴とする冷凍装置。
[3] 圧縮機 (31)を有して冷凍サイクルを行う冷媒回路 (20)を備えた冷凍装置であつ て、
その時の運転状態において成績係数 (COP)が最適となる上記圧縮機 (31)の目 標吐出温度を設定し、冷媒を上記圧縮機 (31)の吐出温度が目標吐出温度となる湿 り状態で上記圧縮機 (31)へ吸入させる
ことを特徴とする冷凍装置。
[4] 請求項 1〜3の何れ力 1項において、
上記冷媒回路 (20)は、膨張弁 (23)が設けられ、
上記膨張弁 (23)の開度を調節することによって圧縮機 (31)の吸入冷媒の湿り状 態を調節する
ことを特徴とする冷凍装置。
[5] 請求項 1〜3の何れ力 1項において、
上記冷媒回路 (20)は、蒸発器 (22,24)と圧縮機 (31)の吸入側との間に気液分離 器 (25)が設けられ、
上記気液分離器 (25)は、流量調整弁 (27)を有して気液分離器 (25)の液冷媒を 圧縮機 (31)の吸入側へ導く液インジェクション管(26)を備える一方、
上記流量調整弁 (27)を調節することによって圧縮機 (31)の吸入冷媒の湿り状態 を調節する
ことを特徴とする冷凍装置。
[6] 請求項 1〜3の何れ力 1項において、
上記冷媒回路 (20)は、圧縮機 (31)に該圧縮機 (31)のモータ (32)を介して機械 的に接続された膨張機 (33)が設けられると共に、
上記冷媒回路 (20)は、膨張機 (33)へ向力 冷媒の一部が膨張機 (33)をバイパス して流れるバイパス管 (44)と、該バイパス管 (44)に設けられる流量調整弁 (45)とを備 え、
上記流量調整弁 (45)を調節することによって圧縮機 (31)の吸入冷媒の湿り状態 を調節する
ことを特徴とする冷凍装置。
[7] 請求項 1〜3の何れ力 1項において、
上記冷媒回路 (20)は、冷凍サイクルの高圧圧力が冷媒の臨界圧力より高くなるよ うに構成されている
ことを特徴とする冷凍装置。
[8] 請求項 7において、
上記冷媒は、二酸化炭素である
ことを特徴とする冷凍装置。
PCT/JP2005/016643 2004-09-09 2005-09-09 冷凍装置 WO2006028218A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05782353.6A EP1795833A4 (en) 2004-09-09 2005-09-09 COOLER
AU2005280900A AU2005280900B2 (en) 2004-09-09 2005-09-09 Refrigeration apparatus
US11/662,206 US20090113907A1 (en) 2004-09-09 2005-09-09 Refrigeration Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004262176A JP2006078087A (ja) 2004-09-09 2004-09-09 冷凍装置
JP2004-262176 2004-09-09

Publications (1)

Publication Number Publication Date
WO2006028218A1 true WO2006028218A1 (ja) 2006-03-16

Family

ID=36036500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016643 WO2006028218A1 (ja) 2004-09-09 2005-09-09 冷凍装置

Country Status (7)

Country Link
US (1) US20090113907A1 (ja)
EP (1) EP1795833A4 (ja)
JP (1) JP2006078087A (ja)
KR (1) KR20070067121A (ja)
CN (1) CN100501270C (ja)
AU (1) AU2005280900B2 (ja)
WO (1) WO2006028218A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989460B1 (ko) 2006-10-30 2010-10-22 다이킨 고교 가부시키가이샤 냉동장치의 열원유닛 및 냉동장치
WO2021205540A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905018B2 (ja) * 2006-09-25 2012-03-28 ダイキン工業株式会社 冷凍装置
WO2008044456A1 (en) * 2006-10-11 2008-04-17 Panasonic Corporation Rotary expander
KR100788459B1 (ko) 2006-11-02 2007-12-24 주식회사 대우일렉트로닉스 냉매유량 조절기능을 가지는 히트펌프 공기조화기
JP4258553B2 (ja) 2007-01-31 2009-04-30 ダイキン工業株式会社 熱源ユニット及び冷凍装置
JP5401857B2 (ja) * 2008-07-28 2014-01-29 株式会社デンソー 蒸気圧縮式冷凍サイクル
WO2010084552A2 (en) * 2009-01-20 2010-07-29 Panasonic Corporation Refrigeration cycle apparatus
JP5381584B2 (ja) * 2009-09-30 2014-01-08 ダイキン工業株式会社 冷凍システム
JP5659560B2 (ja) * 2010-05-28 2015-01-28 株式会社デンソー 冷凍サイクル装置
JP5887902B2 (ja) * 2011-12-14 2016-03-16 パナソニック株式会社 冷凍サイクル装置
WO2014080464A1 (ja) * 2012-11-21 2014-05-30 三菱電機株式会社 空気調和装置
JP2014181869A (ja) * 2013-03-21 2014-09-29 Fujitsu General Ltd 空気調和機
JP6266942B2 (ja) * 2013-10-10 2018-01-24 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP6017058B2 (ja) 2013-10-24 2016-10-26 三菱電機株式会社 空気調和装置
JP6366742B2 (ja) * 2015-01-23 2018-08-01 三菱電機株式会社 空気調和装置
CN105115062B (zh) * 2015-08-21 2018-03-30 Tcl空调器(中山)有限公司 空调室外机和空调器
CN105783136B (zh) * 2016-04-14 2019-04-02 海信(山东)空调有限公司 一种室外空调机及空调系统
CN107576096A (zh) * 2017-09-12 2018-01-12 海信(山东)空调有限公司 压缩机单元及空调系统
CN108444128B (zh) * 2018-05-14 2019-05-24 西安交通大学 一种跨临界co2湿压缩热泵系统及其操作方法
JP7275876B2 (ja) * 2019-06-07 2023-05-18 株式会社デンソー 冷凍サイクル装置
CN111059683B (zh) * 2019-12-03 2021-04-02 珠海格力电器股份有限公司 防止压缩机吸气带液发生液击的控制方法、空调器
CN112432341A (zh) * 2020-12-08 2021-03-02 合肥美的暖通设备有限公司 空调系统的控制方法、空调系统和可读存储介质
IT202100007316A1 (it) * 2021-03-25 2022-09-25 Ariston S P A Metodo di gestione di una pompa di calore operante con un fluido operativo a basso impatto ambientale
JP2022157187A (ja) * 2021-03-31 2022-10-14 ダイキン工業株式会社 ヒートポンプ装置
CN114608181B (zh) * 2022-03-21 2023-12-26 青岛海尔空调电子有限公司 电子膨胀阀的控制方法、装置、介质及空气源热泵机组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173682A (ja) * 1997-12-10 1999-07-02 Sanyo Electric Co Ltd 空気調和装置
JP2001116371A (ja) * 1999-10-20 2001-04-27 Daikin Ind Ltd 空気調和装置
JP2001194015A (ja) * 1999-10-18 2001-07-17 Daikin Ind Ltd 冷凍装置
JP2003336897A (ja) * 2002-05-22 2003-11-28 Matsushita Electric Ind Co Ltd ヒートポンプ風呂給湯機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494149A (en) * 1978-01-06 1979-07-25 Hitachi Ltd Freezer
JPH04155157A (ja) * 1990-10-19 1992-05-28 Hitachi Ltd スクロール圧縮機を用いた冷凍サイクル
US6118099A (en) * 1998-11-12 2000-09-12 Daimlerchrysler Corporation Controller for heating in reversible air conditioning and heat pump HVAC system for electric vehicles
JP3227651B2 (ja) * 1998-11-18 2001-11-12 株式会社デンソー 給湯器
JP2000234814A (ja) * 1999-02-17 2000-08-29 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置
CN100449224C (zh) * 1999-10-18 2009-01-07 大金工业株式会社 冷冻设备
JP3750457B2 (ja) * 2000-02-04 2006-03-01 三菱電機株式会社 冷凍空調装置
JP3812389B2 (ja) * 2001-09-17 2006-08-23 株式会社デンソー 冷凍サイクル装置
JP3897681B2 (ja) * 2002-10-31 2007-03-28 松下電器産業株式会社 冷凍サイクル装置の高圧冷媒圧力の決定方法
JP2004225928A (ja) * 2003-01-20 2004-08-12 Daikin Ind Ltd 冷凍装置
JP4375171B2 (ja) * 2004-08-31 2009-12-02 ダイキン工業株式会社 冷凍装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173682A (ja) * 1997-12-10 1999-07-02 Sanyo Electric Co Ltd 空気調和装置
JP2001194015A (ja) * 1999-10-18 2001-07-17 Daikin Ind Ltd 冷凍装置
JP2001116371A (ja) * 1999-10-20 2001-04-27 Daikin Ind Ltd 空気調和装置
JP2003336897A (ja) * 2002-05-22 2003-11-28 Matsushita Electric Ind Co Ltd ヒートポンプ風呂給湯機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795833A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989460B1 (ko) 2006-10-30 2010-10-22 다이킨 고교 가부시키가이샤 냉동장치의 열원유닛 및 냉동장치
WO2021205540A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 冷凍サイクル装置
JP7309045B2 (ja) 2020-04-07 2023-07-14 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
KR20070067121A (ko) 2007-06-27
US20090113907A1 (en) 2009-05-07
EP1795833A4 (en) 2014-12-24
EP1795833A1 (en) 2007-06-13
CN100501270C (zh) 2009-06-17
AU2005280900A1 (en) 2006-03-16
AU2005280900B2 (en) 2009-03-05
CN101014813A (zh) 2007-08-08
JP2006078087A (ja) 2006-03-23

Similar Documents

Publication Publication Date Title
WO2006028218A1 (ja) 冷凍装置
JP3925545B2 (ja) 冷凍装置
KR101355689B1 (ko) 공기 조화 장치 및 그 어큐뮬레이터
EP1757879B1 (en) Refrigerant cycle apparatus
JP4781390B2 (ja) 冷凍サイクル装置
WO2006013938A1 (ja) 冷凍装置
JP5375919B2 (ja) ヒートポンプ
JP6846685B2 (ja) 空気調和装置
JP2015148406A (ja) 冷凍装置
JP4214021B2 (ja) エンジンヒートポンプ
JP2007232265A (ja) 冷凍装置
JP5659908B2 (ja) ヒートポンプ装置
JP4407000B2 (ja) Co2冷媒を用いた冷凍システム
JP5383802B2 (ja) 蒸気圧縮サイクル装置
WO2020203708A1 (ja) 冷凍サイクル装置
JP4084915B2 (ja) 冷凍システム
JP7375167B2 (ja) ヒートポンプ
JP2009204304A (ja) 冷凍空調装置
JP4023386B2 (ja) 冷凍装置
KR102313304B1 (ko) 이산화탄소 공기조화기
JP5790675B2 (ja) ヒートポンプ
KR20050043089A (ko) 히트 펌프
JP2007147228A (ja) 冷凍装置
KR100588846B1 (ko) 히트펌프 공기조화기
JP2013092369A5 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005280900

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11662206

Country of ref document: US

Ref document number: 200580030120.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005280900

Country of ref document: AU

Date of ref document: 20050909

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005280900

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005782353

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077007764

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005782353

Country of ref document: EP