WO2006025482A1 - プロトン伝導体およびそれを用いた燃料電池 - Google Patents

プロトン伝導体およびそれを用いた燃料電池 Download PDF

Info

Publication number
WO2006025482A1
WO2006025482A1 PCT/JP2005/015988 JP2005015988W WO2006025482A1 WO 2006025482 A1 WO2006025482 A1 WO 2006025482A1 JP 2005015988 W JP2005015988 W JP 2005015988W WO 2006025482 A1 WO2006025482 A1 WO 2006025482A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cation
proton
ionic liquid
proton conductor
Prior art date
Application number
PCT/JP2005/015988
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Ohno
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to EP05776899A priority Critical patent/EP1796193B1/en
Priority to JP2006532780A priority patent/JP4838134B2/ja
Priority to US11/574,699 priority patent/US8697309B2/en
Publication of WO2006025482A1 publication Critical patent/WO2006025482A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a proton conductor having a novel ionic liquid and a fuel cell using the same.
  • Nafion registered trademark
  • protons are transported using water contained in a fluorinated polymer membrane, and the water is operated at a solid polymer fuel cell operating temperature (60-80 ° C). In C), it gradually evaporates, and eventually the fluoropolymer membrane dries and the proton conductivity decreases.
  • the conventional polymer electrolyte fuel cell system using Nafion requires water to coexist in order to achieve high proton conductivity, so a humidification mechanism for humidifying the supply gas Is required.
  • a humidification mechanism for the supply gas is accompanied by a mechanism for precisely controlling the humidification amount according to the load fluctuation of the fuel cell, and further collects water from the exhaust gas.
  • the addition of a humidifying water re-supply mechanism linked with the mechanism required the system to be complicated, leading to an increase in the size of the system.
  • the water contained in the fluorinated polymer membrane freezes (such as in cold areas) and evaporates (such as under hot weather in summer) even when the fuel cell is not operating. ) I was afraid.
  • the present invention is based on the complexity of the entire system by adding a system such as a humidification mechanism, a recovery mechanism, and a resupply mechanism necessary for stably maintaining proton conduction in the operating environment of the fuel cell. It is an object of the present invention to provide a novel proton conductor comprising a zwitterionic ionic liquid that can solve the problem of drought and enlargement.
  • Another object of the present invention is to provide a fuel cell using the proton conductor.
  • a proton conductor comprising an ion liquid having a zwitterion in which an anion and a cation coexist in the same molecule and a proton donor.
  • the vapor pressure of the proton conductor of the present invention is extremely low at the operating temperature of the fuel cell. Therefore, the conductor does not scatter 1 and a stable proton conductor is obtained. Can be realized. Further, the ionic liquid contained in the proton conductor of the present invention is not attracted to one electrode because the cation and cation coexist in the same molecule constituting the ionic liquid.
  • the protons (hydrogen ions: H +) provided by the proton donor contained in can be selectively moved.
  • the conductor does not scatter even when the fuel cell is operated. Therefore, the recovery and re-supply system of the scattered conductor can be omitted. it can.
  • the proton conductor according to the present invention comprises an ionic liquid having a zwitterion in which a cation and a cation coexist in the same molecule, and a proton donor.
  • the ionic liquid having zwitterionic force of the present invention does not have protons (hydrogen ion source) in the molecule, when it is used as an electrolyte (proton conductor) of a fuel cell, it allows hydrogen ions to pass through the electrolyte. I can't. Therefore, it is necessary to mix H + (proton) with a proton donor (butatonic acid). Since the proton donor itself has a vapor pressure at the operating temperature of the fuel cell, the proton donor evaporates in the same manner as before even with a liquid proton conductor in which the ionic liquid and proton donor are mixed.
  • the combination of the novel zwitterionic ionic liquid and the proton donor prevents the proton donor from evaporating even at the operating temperature of the fuel cell. It was discovered that the phenomenon appears. Based on this knowledge, the inventors have completed the novel proton conductor of the present invention that does not have vapor pressure even at the operating temperature of the fuel cell and does not complicate the system.
  • the ionic liquid used in the proton conductor of the present invention is a force that also has a zwitterionic force in which a cation and a cation coexist in the same molecule. Thion is bound and contains normal type ionic liquids.
  • the above zwitterionic ionic liquid has (1) almost no vapor pressure, (2) ionic but low viscosity, (3) heat resistance and a wide liquid temperature range, (4) general Since it has a high ion density that cannot be achieved with a solution and has a high ion mobility, it has extremely high ion conductivity and (5) is a good solvent for various salts.
  • both cations and ions are fixed in the molecule, and the ions or forces in the ionic liquid move along the potential gradient, and these ions (charges) are unevenly distributed around the electrode. As a result, the electrical characteristics do not deteriorate during use. It is also advantageous in that a high-speed ion conduction path (electrolyte membrane or proton conductor) through which the hydrogen ions move can be constructed by mixing the proton donor with this and adding hydrogen ions. Furthermore, by mixing with a proton donor having a vapor pressure, the action of suppressing the evaporation of the proton donor can be effectively expressed.
  • the term “effectively expressed” means that the effect is effectively expressed in the operating temperature range of the fuel cell, and the ionic conductivity necessary for the proton conductor of the fuel cell can be secured. This is because even if a proton donor is added, the action of suppressing the evaporation of the proton donor can be maintained. When the proportion of the proton donor is too large, the effect of suppressing the evaporation of the proton donor due to the interaction with the zwitterionic ionic liquid is reduced, and the excess amount of the proton donor is evaporated.
  • the evaporation suppression effect due to the interaction with the zwitterionic ionic liquid is restored (expressed), and the transpiration of the proton donor is eliminated, so that the ionic conductivity is constant. There is no drop beyond the level.
  • the mixing ratio of the zwitterionic ionic liquid and the proton donor that maintains the effect of suppressing the evaporation of the proton donor can be confirmed in advance by examining the thermal weight loss rate shown in FIG. Therefore, it is possible to prevent the excessive proton donor from being evaporated without any problem.
  • the zwitterionic ionic liquid in which a cation and a cation coexist in the same molecule was created by the present inventors, and the existing ionic liquid is a proton conductor as described above.
  • the behavior (characteristics) when used in different ways is different.
  • basic ionic liquids and basic characteristics should not change.
  • a zwitterionic ionic liquid such as a desired imidazolium salt, pyridinium salt, or ammonium salt is synthesized by the manufacturing method (synthesis method) described later. (Design), especially limited It's not something to be done. Examples of suitable zwitterionic ionic liquids will be described below.
  • the cation portion of the zwitterionic ionic liquid is preferably an organic cation.
  • a cation-type atomic group is coordinated to a compound containing an element having a lone pair such as nitrogen, sulfur, oxygen, phosphorus, selenium, tin, iodine, and antimony.
  • an element having a lone pair such as nitrogen, sulfur, oxygen, phosphorus, selenium, tin, iodine, and antimony.
  • Any cation having at least one organic group formed as a result is not particularly limited.
  • organic ion ions examples include symmetric ammonium cations such as tetramethyl ammonium cation, tetraethyl ammonium cation, tetrapropyl ammonium cation, etc .; ethyltrimethyl ammonium cation, beryl Trimethyl ammonium cation, triethyl methyl ammonium cation, tripropyl propyl ammonium cation, jetyl dimethyl ammonium cation, tributyl dimethyl ammonium cation, triethyl isopropyl ammonium cation, N, N dimethylpyrrolidinium cation, N methyl N The carbon number of the shortest substituent such as ethylpyrrolidinium cation, triethylmethoxymethyl ammonium cation, etc.
  • symmetric ammonium cations such as tetramethyl ammonium cation, tetraethyl ammoni
  • Cations trimethylpropyl ammonium cation, trimethyl isopropyl ammonium cation, butyl trimethyl ammonium cation, allyl trimethyl ammonium cation, hexyl trimethyl ammonium cation, octyl trimethyl ammonium cation, dodecyl trimethyl ammonium cation
  • Asymmetric ammonium cations such as triethylmethoxyethoxymethyl ammonium cation and dimethyldipropyl ammonium cation
  • divalent ammonium cations such as hexamethonium cation; 1, 3 dimethylenoylimidazolium cation, 1 , 3 Symmetric imidazolium cations such as cetinoley imidazolium cation, 1, 3 dipropyl imidazolium cation, 1, 3 dipropyl imidazolium cation, 1, 3 dipropyl imidazolium cation,
  • the onion cation force specifically exemplified above is a force that may be included in the onion cation represented by the structural formula 1 ′ or the structural formula 1 shown below.
  • the present invention should not be limited at all by this.
  • R 7 , R 8 , R 9 and R 1C each independently represent an alkyl group, an aryl group, a heterocyclic group and an aralkyl group.
  • These R 7 , R 8 , R 9 and R 1G may have a substituent or a hetero atom in the structure, and R 7 , R 8 , R 9 and R 1C> are bonded to each other.
  • the ring may form a ring, and the adjacent cations R 7 , R 8 , R 9 and R 1G may be bonded to each other to form a polymer.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n A straight or branched chain having 1 to 30 carbon atoms such as butyl, isobutyl, sec butyl, tert butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc. Is mentioned.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a tolyl group, and a xylyl group.
  • the aryl group includes a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), hydroxyl group, alkoxy group (methoxy group, ethoxy group, propoxy group, butoxy group, etc.), force ruxyl group, acetyl group, One or more substituents such as a propanol group, a thiol group, an alkylthio group (such as a methylthio group, an ethylthio group, a propylthio group, and a ptylthio group), an amino group, an alkylamino group, and a dialkylamino group Moyo! /
  • heterocyclic group examples include a pyridyl group, a enyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a pyrrolidyl group, a piperazyl group, and a morpholinyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • R 8 , R 9 and R 1C may be pyrrolidinium, piveridinium, etc., which are bonded in one molecule to form a ring.
  • R 8, R 9 and the other R 7 cation R 10 is adjacent, R 8, R 9 and R 10 and forming combined even with the structure formed form a chain good.
  • a group bonded to a later-described cation is a divalent group in which one hydrogen atom is further removed from the monovalent group shown above. It is the basis of.
  • the onion cation is represented by the following structural formula 1
  • R is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group, a heterocyclic group. Or it is an aralkyl group, Preferably it is a hydrogen atom or a C1-C18 alkyl group, More preferably, it is a C1-C8 alkyl group.
  • R ′ is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group, a heterocyclic group or an aralkyl group, preferably a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, more preferably a hydrogen atom, It is an alkyl group having 1 to 8 carbon atoms.
  • R ′′ is an alkylene group having 1 to 18 carbon atoms, an arylene group, a heterocyclic group or an aralkylene group, preferably an alkylene group having 1 to 18 carbon atoms, more preferably an alkylene group having 1 to 8 carbon atoms.
  • R, R ′ and R ′′ may have a substituent or a hetero atom in the structure.
  • R ′ and R ′′ may be bonded to each other to form a ring, and R, R ′ and R ′′ of adjacent cations may be bonded to form a polymer. Good.
  • alkyl group having 1 to 18 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group. And those having a linear or branched group having 1 to 18 carbon atoms, such as a group, hexyl group, heptyl group, octyl group, nor group, and decyl group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a tolyl group, and a xylyl group.
  • heterocyclic group examples include a pyridyl group, a enyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a pyrrolidyl group, a piperazyl group, and a morpholinyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • the R "group bonded to the eron moiety described later is a divalent group in which one hydrogen atom is further removed from the monovalent R group shown above.
  • the alkylene group having 1 to 18 carbon atoms includes a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, and a decylene group. And those having a straight chain or branched chain having 1 to 18 carbon atoms.
  • Examples of the arylene group include a phenylene group, a naphthylene group, a toluylene group, and a xylylene group.
  • Examples of the heterocyclic group include a pyridylene group, a chelenene group, an imidazolylene group, a biazolylene group, an oxazolylene group, a pyrrolidylene group, a piperazylene group, a morpholinylene group, and the like.
  • Examples of the aralkylene group include a benzylene group and a phenylene group.
  • R ′ and R ′′ may be pyrrolidinium, piperidinium, etc. that are bonded in one molecule to form a ring.
  • R and R may be combined with R, R and R" of other adjacent cations to form a chain.
  • R, R 'and R " may have a substituent or a hetero atom within the range without impairing the characteristics of the zwitterionic ionic liquid of the present invention.
  • substituents halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, iodine atoms), hydroxyl groups, alkoxy groups (methoxy groups, ethoxy groups, propoxy groups, butoxy groups, etc.), carboxyl groups, acetyl groups, propanol groups, Examples include thiol group, alkylthio group (methylthio group, ethylthio group, propylthio group, ptylthio group, etc.), amino group, alkylamino group, dialkylamino group, etc. In R, R 'and R ", these substituents are included. You may have one or more.
  • zion ion key-on part is preferably the following structural formula 2
  • R 1 and R 2 are each independently a substituted or unsubstituted monovalent hydrocarbon group or a fluorocarbon group having 1 to 5 carbon atoms. However, it is not limited to these.
  • R 1 and R 2 are each independently a substituted or unsubstituted monovalent hydrocarbon group, or It is not particularly limited as long as it is a fluorocarbon group having 1 to 5 carbon atoms (one (CF) F).
  • a halogen atom, a halogenated hydrocarbon group, particularly preferably a fluorine-substituted hydrocarbon group is preferred.
  • fluorine-substituted hydrocarbon groups include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, heptafluoroisopropyl group, nonafluoroisobutyl group, 2 1, 2, 2-trifluoroethyl group, 1,1-difluoroethyl group and other fluoroalkyl groups, pentafluorophenyl group, 2, 4, 6 trifluorophenol group and other Fluoroaralkyl groups such as fluoroaryl groups, heptafluorobenzoyl groups, 1,1-difluorobenzyl groups, and the like.
  • an electron-withdrawing group having 1 to 6 carbon atoms also referred to as an electron-withdrawing group
  • an electron-withdrawing group means a group whose substituent constant in Hammett's rule is higher than that of a hydrogen atom.
  • Suitable electron-withdrawing groups or groups having them include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, heptafluoroisopropyl group.
  • Nonafluoroisobutyl group 2,2,2-trifluoroethyl group, 1,1-difluoroethyl group and other fluoroalkyl groups, pentafluorophenyl group, 2,4,6 trifluorophenol
  • Fluorinated hydrocarbon groups fluorine-substituted hydrocarbon groups
  • fluoroaryl groups such as a group, fluoraralkyl groups such as heptafluor benzyl group, 1, 1 difluorobenzyl group; formyl group, Acyl groups such as acetyl group, propionyl group, petityl group, isoptylyl group, valeryl group, isovaleryl group, bivaloyl group, lauroyl group, etc.
  • Trifluoroacetyl group 2, 2-difluoropropiol group, perfluoropropiol group, perfluorobutyryl group, perfluoroisobutyryl group, perfluorovalery group
  • Fluoride groups such as ruthel groups (fluorine-substituted acyl groups); methoxycarbon groups, ethoxycarbonyl groups, tert-butoxycarbon groups, trifluoromethoxycarbol groups, perfluoro groups Ethoxycarbol group, perfluoro-tert butoxycarbol group, etc.
  • Substituted acyl groups having substituents other than fluorine sulfonyl groups such as methanesulfol group, ethanesulfol group, propanesulfol group, tert-butanesulfur group; trifluoromethanesulfurol Group, pentafluoroethane sulfone group, heptafluoropropane sulfone group, nonafluorobutane sulfone group, heptafluoroisopropane sulfone group, nonafluoroisobutane sulfone group Fluorinated sulfo groups (fluorine-substituted sulfo groups) such as 1, 2, 2, 2-trifluoroethane sulfo groups, 1, 1-difluoroethane sulfo groups; Mention may be made of fluorinated benzene sulfo groups such as pentafluoro
  • the fluorine-substituted hydrocarbon group specifically exemplified above and the electron-withdrawing group or the group having these are illustrated without distinction. Therefore, there is a case where the fluorine-substituted hydrocarbon group specifically exemplified above is not an electron-withdrawing group and may be included in a group having these groups. Thus, the present invention should not be limited in any way.
  • the proton donor used in the proton conductor of the present invention is not particularly limited.
  • the group power represented by is selected. However, as long as it is an acid (substance that gives H +) that is not limited to these, it may be appropriately selected according to the intended use.
  • R 3 is a hydrocarbon group having 1 to 5 carbon atoms or a fluorocarbon group having 1 to 5 carbon atoms (one (CF 3) F), and preferably 1 to 2 carbon atoms. It is a hydrocarbon group.
  • Specific examples include a methyl group and an ethyl group.
  • R 4 represents a hydrocarbon group having 1 to 5 carbon atoms or a fluorocarbon group having 1 to 5 carbon atoms (one (CF
  • R 5 and R 6 are each independently a substituted or unsubstituted monovalent hydrocarbon group or a fluorocarbon group having 1 to 5 carbon atoms (one (CF) F).
  • One of R 5 and R 6 is
  • a halogen atom, a halogenated hydrocarbon group, particularly preferably a fluorine-substituted hydrocarbon group is preferred.
  • fluorine-substituted hydrocarbon groups include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, heptafluoroisopropyl group, nonafluoroisobutyl group, 2 , 2, 2-trifluoroethyl group, 1,1-difluoroethyl group and other fluoroalkyl groups, pentafluorophenyl group, 2, 4, 6-trifluorophenol group, etc.
  • Examples thereof include fluoroaryl groups, heptafluor benzyl group, and fluoroaralkyl groups such as 1,1-difluorobenzyl group.
  • fluoroaryl groups heptafluor benzyl group
  • fluoroaralkyl groups such as 1,1-difluorobenzyl group.
  • linear or branched perfluoroalkyl groups having 1 to 6 carbon atoms, perfluorophenol groups, and perfluorocarbons having 7 to 9 carbon atoms.
  • Particularly preferred is an aralkyl group.
  • the other of R 5 and R 6 is a group having 1 to 6 carbons with an electron-withdrawing property (also referred to as an electron-withdrawing group) because of the high electrical conductivity of the onium salt.
  • a group having an electron withdrawing group is preferable.
  • the electron withdrawing group means a group having a substitution group constant in the Hammett rule higher than that of a hydrogen atom.
  • these suitable electron-withdrawing groups or groups having these include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, heptafluoroisopropyl.
  • the fluorine-substituted hydrocarbon group specifically exemplified above and the electron-withdrawing group or the group having these are exemplified without distinction. Therefore, there is a case where the fluorine-substituted hydrocarbon group specifically exemplified above is included in the electron-withdrawing group or the group having these. Thus, the present invention should not be limited at all. Having these very electron-withdrawing halogen atoms and halogenated alkyl groups in R 5 and R 6 has the effect of facilitating the dissociation of hydrogen ions (H +).
  • the structure of the salt which is the zwitterionic ionic liquid of the present invention
  • NMR nuclear magnetic resonance
  • thermodynamic properties for example, melting point, glass transition temperature, crystallization exothermic peak, no crystallization near room temperature (30 ° C), and over time, thermodynamically. Confirmation of a stable liquid state
  • DSC Denssion Thermal Scanning Calorimetry
  • the conductive property ionic conductivity ( ⁇ )
  • ionic conductivity
  • the solvent A for example, force capable of using acetone or the like is not limited thereto.
  • the solvent B include, but are not limited to, forces capable of using acetonitrile, acetone, and the like.
  • the solvent A in which the compound 1 is soluble and the solvent B in which the compound 2 is soluble may be the same or different. If both solvents are sparingly soluble or insoluble, it is necessary to stir well during the reaction process.
  • the amount of compound 2 used relative to compound 1 may be in the range of 1 to 2 moles relative to compound 1, but as shown in the above reaction formula, equimolar amounts of reactant 1 , By reacting 2, no by-product or unreacted product is produced, and the purification is easy, so the equimolar amount is preferred.
  • the mixing of the solution of compound 1 and the solution of compound 2 is performed at 0 to 10 ° C in order to prevent an undesirable reaction from proceeding during the mixing.
  • it is desirable to carry out the reaction preferably in the range of 0 to 0 ° C, particularly preferably about 0 ° C.
  • the temperature is raised to about 10 to 30 ° C and the reaction is carried out at that temperature in order to prevent the formation of by-products.
  • the reaction is performed in an inert gas atmosphere in order to prevent an oxidation reaction as a side reaction.
  • the inert gas atmosphere includes, for example, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the nitrogen atmosphere is preferably used.
  • reaction time varies depending on the types of compounds 1 and 2 to be used and the reaction temperature conditions, etc., as long as the reaction is almost completed, so the above-mentioned 5 days is a guide only.
  • the solvents A and B can be removed by, for example, vacuum drying, but are not limited thereto. Further, the residue after removing the solvent is not limited to the force that can be washed with, for example, acetone.
  • zwitterions in which a cation and a cation coexist in the same molecule of the product 3 obtained by the above synthesis method can be used as they are.
  • the amount of other general ionic liquids that are not zwitterions is not limited so long as it does not affect the operational effects of the proton conductor of the present invention and the cell characteristics of the fuel cell. It may be added.
  • unreacted products and by-products may remain due to production by changing the amount of reactants 1 and 2 used and the synthesis method. Although complicated or complicated purification operations can prevent such residues from being mixed, the production cost increases.
  • the ionic liquid of the present invention has a zwitterion in which a cation and a cation coexist in the same molecule.
  • the product 3 obtained by the reaction is identified and the product 3 is a zwitterionic ionic liquid. It can confirm that it is a body by NMR shown in the Example mentioned later.
  • the method for preparing the proton conductor according to the present invention is not particularly limited, and can be manufactured by a method specifically described in the examples described later. That is, the zwitterion in the above zwitterionic ionic liquid and the proton donor are weighed so as to have a predetermined molar ratio, and if necessary, the other additives shown above are weighed in an appropriate amount, By mixing and stirring in the solvent C and removing the solvent C, the target zwitterionic ionic liquid Z proton donor mixture can be obtained.
  • the blending ratio (molar ratio) between the zwitterion in the ionic liquid and the proton donor varies depending on the type of the zwitterion type ionic liquid and the proton donor. It is desirable to decide. Therefore, specific blending ratios are shown for the BImC4SZHTFSI mixture synthesized in the examples described later. However, these are merely preferred blending ratios in the case of the combination, and the present invention It is not limited to. As shown in FIG. 2 to be described later, such a suitable blending ratio is measured by measuring the temperature dependence of the weight reduction rate of the proton conductor, and is almost equal to the weight reduction rate of the zwitterion alone.
  • the range of the blending ratio (molar ratio) having a weight reduction rate equal to or higher than that may be determined.
  • the zwitterion (BI mC4S) does not have a vapor pressure at around 60-200 ° C, which is the operating temperature of the fuel cell, and its weight decreases when it exceeds 300 ° C. This may be due to thermal decomposition rather than evaporation due to evaporation pressure.
  • the solvent C for example, a low boiling point solvent such as methanol or ethanol can be used so that the zwitterionic ionic liquid and the proton donor are not evaporated in the removal operation in a later step.
  • This solvent C is used to lower the viscosity of the zwitterionic ionic liquid because it is relatively high in viscosity and to facilitate stirring and mixing with the proton donor. Therefore, depending on the viscosity of the zwitterionic ionic liquid, the zwitterionic ionic liquid and the proton donor may be simply stirred and mixed.
  • the solvent C can be removed by, for example, heating and vacuum drying, but is not limited thereto.
  • the obtained zwitterionic ionic liquid Z proton donor mixture is a proton conductor because the unit cell of a fuel cell as shown in FIG. This can be easily confirmed by the expected current flowing when the is operated. It can also be confirmed by measuring ionic conductivity as shown in Fig. 3.
  • a fuel cell according to the present invention is characterized by using the proton conductor of the present invention described above. This eliminates the problem of increased complexity and size of the entire system due to the addition of a humidifying mechanism, recovery mechanism, resupply mechanism, and other systems necessary to stably maintain proton conduction in the fuel cell operating environment.
  • An object is to provide a fuel cell that can be solved.
  • a fuel cell using a proton conductor made of the zwitterionic ionic liquid of the present invention a conventionally known fuel cell using a proton conductor such as Nafion (registered trademark) or phosphoric acid. It can be applied to fuel cells, and can be applied to polymer electrolyte fuel cells and phosphoric acid fuel cells.
  • Figure 4 shows a single cell structure of a fuel cell using the zwitterionic ionic liquid that is the proton conductor of the present invention.
  • the single cell structure is basically the same as a solid polymer type or phosphoric acid type fuel cell.
  • the proton conductor 3 using the zwitterionic ionic liquid of the present invention is impregnated into a supporting matrix 5 to form an electrolyte membrane 7.
  • the matrix 5 includes silicon carbide (SiC) and silica (SiO ) Inorganic porous materials and polymer membranes such as fluorine and hydrocarbons can be used.
  • a catalyst layer 9 made of platinum (Pt) -supported carbon or the like is provided on both surfaces of the electrolyte membrane 7 made of the matrix 5 in which the proton conductor 3 is immersed, and further on the outer side of the catalyst layer 9 is a fuel gas and air catalyst layer.
  • a gas diffusion layer 11 is provided to promote diffusion into 9.
  • This structure is sandwiched between separators 15 provided with passages 13 for guiding fuel gas and air. Further, in order to prevent hydrogen gas and air from leaking out of the battery, a sealing material 17 such as silicon rubber or Viton is provided on the outer peripheral (peripheral) portion of the side surface of the catalyst layer 9.
  • a sealing material 17 such as silicon rubber or Viton is provided on the outer peripheral (peripheral) portion of the side surface of the catalyst layer 9.
  • BImC4S 1-(-1-butylimidazolio) but ane 4 sulfonate
  • a solution of Ommol in acetone and an equimolar amount of 1,4 butanesultone acetononitrile solution are mixed at 0 ° C, and then the temperature is raised to room temperature, followed by stirring at room temperature for 5 days under a nitrogen atmosphere. Reacted. After the stirring was completed, the organic solvent acetone and acetonitrile were removed by vacuum drying under heating, and the residue was washed with acetone to obtain a zwitterionic ionic liquid BImC4S, a colorless and transparent viscous liquid.
  • the peak position (sigma shift) and peak splitting degree (multiplicity) differ depending on the bonding site of hydrogen atoms present in the molecule.
  • the peak area intensity varies in proportion to the number of hydrogen atoms (which are chemically equivalent) in the same environment.
  • the splitting degree (multiplicity) of a peak is split into a number obtained by adding 1 to the number of hydrogen atoms bonded to the carbon atom adjacent to the carbon atom to which the hydrogen atom of interest is bonded.
  • the peak of the elementary atom is hydrogen bonded to the carbon atom adjacent to the carbon atom to which the hydrogen atom of (i) is bonded.
  • the area intensity (integrated area intensity) of the peak corresponding to the hydrogen atom in (i) is 3 (denoted as “3H”) because there are three equivalent hydrogen atoms. Therefore, the peak corresponding to the hydrogen atom (i) has a multiplicity of 3 and an integrated area intensity of 3H (hereinafter referred to as (t, 3H).
  • the peak multiplicity and area intensity expected from the structure of BImC4S are (i) (t, 3H), (ii) (m, 2H), (iii) (m, 2H), (iv) (t, 2H), (v) (s, 1H), (vi) & (vii) (s, 2H) [ ⁇ : Hydrogen atoms (vi) and (vii) are not equivalent, so two (s, 1H) Force expected to be The hydrogen bonded to the heterocycle often appears as a single peak as an equivalent.
  • BImC4S and HTFSI are weighed to a predetermined molar ratio, mixed in methanol and stirred, and dried under heat and vacuum to obtain the target zwitterionic ionic liquid (BImC4S) Z as a proton conductor.
  • a protonic acid (HTFSI) mixture was obtained.
  • Ratio of BImC4S to HTFSI [HTFSI] Z [BImC4] ([] represents the number of moles) is preferred Or 0.5 or more and 1.0 or less, more preferably 0.5 or more and 0.67 or less. If the mixing ratio of HTFSI is too large, the proton conductor decreases during fuel cell operation due to evaporation of HTFSI with vapor pressure (see Fig. 2). On the other hand, if it is too small, the proton concentration in the conductor will be low and sufficient proton conductivity will not be obtained. Note that FIG. 2 has already been described in the method for preparing a proton conductor of the present invention, and therefore description thereof is omitted here.
  • H PO phosphoric acid
  • the Nius' plot is shown as a solid line in the figure.
  • the proton conductor BImC4SZHTFSI mixture obtained in this example is 160 ° C (in the figure, the intersection X of the ionic conductivity of phosphoric acid and the ionic conductivity of the proton conductor BImC4SZHTFSI X It can be seen that the ionic conductivity is higher than that of phosphoric acid. Also, from Fig.
  • the single cell structure of the fuel cell shown in FIG. 4 is obtained using the zwitterionic ionic liquid (BImC4 S) Z protonic acid (HTFSI) mixture which is the proton conductor obtained in this example.
  • the matrix 5 is impregnated and used as the electrolyte membrane 7.
  • a catalyst layer 9 made of platinum (Pt) -supported carbon is provided on both surfaces of the electrolyte membrane 7 made of the matrix 5 in which the proton conductor 3 is immersed.
  • a gas diffusion layer 11 for promoting diffusion of fuel gas and air to the catalyst layer 9 is provided. This was configured to be sandwiched between separators 15 provided with passages 13 for guiding fuel gas and air, and a seal material 17 was provided on the outer periphery (periphery) of the side surface of the catalyst layer 9.
  • FIG. 1 Chemical reaction formula for the synthesis of zwitterionic ionic liquid (BImC4S) prepared in Example 1 and an explanatory diagram for confirming the structure of the zwitterionic ionic liquid prepared in Example 1 by 1 H NMR 1 is a drawing showing the structural formula of HTFSI, which is a proton donor used in Example 1.
  • FIG. 1 Chemical reaction formula for the synthesis of zwitterionic ionic liquid (BImC4S) prepared in Example 1 and an explanatory diagram for confirming the structure of the zwitterionic ionic liquid prepared in Example 1 by 1 H NMR 1 is a drawing showing the structural formula of HTFSI, which is a proton donor used in Example 1.
  • FIG. 1 Chemical reaction formula for the synthesis of zwitterionic ionic liquid (BImC4S) prepared in Example 1 and an explanatory diagram for confirming the structure of the zwitterionic ionic liquid prepared in Example 1 by 1 H NMR 1 is a drawing showing the structural formula of HT
  • FIG. 2 is a graph showing the temperature dependence of the weight loss rate of the BImC4SZHTFSI mixture, which is the proton conductor produced in Example 1, and is a graph showing the thermogravimetric change (TGZ%) with respect to temperature (° C). It is. In addition, the thermogravimetric change curve for zwitterionic ionic liquid (BImC4S) alone is shown by the solid line (neat BImC4S).
  • FIG. 4 is a schematic cross-sectional view showing a single cell structure of a fuel cell using a zwitterionic ionic liquid (BImC4S) Z protonic acid (HTFSI) mixture which is a proton conductor obtained in this example.
  • a zwitterionic ionic liquid (BImC4S) Z protonic acid (HTFSI) mixture which is a proton conductor obtained in this example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

 燃料電池の作動環境において安定してプロトン伝導体を維持するために必要となる加湿機構、回収機構、再供給機構等のシステムの付加による、システム全体の複雑化及び大型化の問題を解決することのできる双性イオン型イオン液体からなる新規のプロトン伝導体を提供する。同一分子中にアニオンとカチオンが共存する双性イオンを有するイオン液体と、プロトン供与体とを有することを特徴とするプロトン伝導体。

Description

明 細 書
プロトン伝導体およびそれを用いた燃料電池
技術分野
[0001] 本発明は、新規なイオン液体を有するプロトン伝導体およびこれを用いた燃料電池 に関するものである。
背景技術
[0002] プロトン伝導体を用いた燃料電池としては、ナフイオン (Nafion) (登録商標)(以下 、同様である)に代表されるフッ素系高分子膜を電解質とする固体高分子形燃料電 池やリン酸型燃料電池がある。
[0003] ナフイオン (Nafion) (登録商標)は、フッ素系高分子膜に内包された水を利用して プロトンが輸送されるが、水は固体高分子形燃料電池の作動温度(60〜80°C)にお いて徐々に蒸発し、やがて該フッ素系高分子膜が乾燥してプロトン伝導度が低下す る。そのため、ナフイオン (Nafion) (登録商標)を用いた従来の固体高分子形燃料 電池の系では、高いプロトン伝導性の発現に水の共存が必要となるため、供給ガス を加湿するための加湿機構が必要となる。さらに燃料電池力も排出されるガスに含ま れている水を回収することで、加湿機構が保有する水の容量を低減できるため、燃料 電池の排ガス力 水を回収する機構を付加することが望ましい。しかし、移動体用の エネルギー供給源としてみた場合、このような供給ガスの加湿機構は、燃料電池の 負荷変動に応じて加湿量を精密に制御する機構を伴い、さらに排ガスからの水の回 収機構を連動させた加湿水の再供給機構の付加が求められるためシステムを複雑 化させ、さらにシステムの大型化にもつながるという問題があった。また、自動車の場 合、フッ素系高分子膜に内包されている水は、燃料電池が作動していない状態でも 、周辺環境により凍ったり(寒冷地など)、蒸発してしまう(夏季の炎天下など)おそれ かあつた。
[0004] リン酸型燃料電池は、 SiC (シリコンカーバイド)などの多孔質材に含浸させたリン酸 によりプロトンが輸送される。しかしながら、リン酸は、該リン酸型燃料電池の作動温 度(200°C前後)において蒸気圧を持っため液体を補充する必要があり、例えば、 JP —A— 9— 153371にあるように飛散したリン酸を回収、再供給するシステムが必要 である。そのため、システムを複雑ィ匕させ、さらにシステムの大型ィ匕にもつながるという 問題点があった。
発明の開示
[0005] そこで、本発明は、燃料電池の作動環境において安定してプロトン伝導を維持する ために必要となる加湿機構、回収機構、再供給機構等のシステムの増設による、シス テム全体の複雑ィ匕及び大型化の問題を解決することのできる双性イオン型イオン液 体からなる新規のプロトン伝導体を提供することを目的とする。
[0006] また、本発明は、上記プロトン伝導体を使用してなる燃料電池を提供することを目 的とする。
[0007] 上記諸目的は、同一分子中にァニオンとカチオンが共存する双性イオンを有するィ オン液体と、プロトン供与体とを有してなるプロトン伝導体により達成される。
[0008] 本発明のプロトン伝導体によれば、燃料電池の作動温度において、本発明のプロト ン伝導体の蒸気圧は極めて低 、ため、伝導体が飛散しな 1、安定したプロトン伝導体 を実現することができる。また本発明のプロトン伝導体中に含まれるイオン液体は、ィ オン液体を構成する同一分子中にカチオンとァ-オンが共存するため片方の電極に 引き寄せられることがなぐ本発明のプロトン伝導体中に含まれるプロトン供与体によ り与えられるプロトン (水素イオン: H+)を選択的〖こ移動させることができる。
[0009] また、本発明のプロトン伝導体を用いた燃料電池によれば、燃料電池の作動時に おいても伝導体が飛散しないため、飛散した伝導体の回収 '再供給システムを省略 することができる。
発明を実施するための最良の形態
[0010] 以下、本発明の実施の形態について説明する。
[0011] 本発明に係るプロトン伝導体は、同一分子中にァ-オンとカチオンが共存する双性 イオンを有するイオン液体と、プロトン供与体とを有してなるものである。
[0012] イオン液体としては、既にェチルメチルイミダゾリウムカチオンと BF一、 PF―、 (CF
4 6 3
SO ) N—などを組み合わせたェチルメチルイミダゾリゥム塩などが知られている。こ
2 2
れらの一般的なイオン液体は、蒸気圧がほとんどないため、これを燃料電池のプロト ン伝導体に用いた場合、飛散する問題は解消できる。し力しながら、これらの一般的 なイオン液体では、プロトン (H+)を安定に存在させる場として設計されて!、な 、ので 、イオン液体を構成するァ-オンとカチオンとが電極間に生じる電位勾配に沿って引 き寄せられ、それぞれの電極周辺に移動してしまう。そのため電荷が偏ってしまい電 極特性が大幅に低下するなど、プロトン伝導体としての利用は困難であった。
[0013] そこで、本発明では、イオン液体自身の移動を抑えることができれば、プロトンを選 択的に移動させることができるとの考えに基づき、新たに、同一分子内にカチオンと ァ-オンが共存する双性イオン力 なるイオン液体 (以下、単に双性イオン型イオン 液体ともいう)を創生したものである。該双性イオン型イオン液体では、該イオン液体 を構成するカチオンとァニオンの両方が分子内に固定されており、電位勾配に沿つ た移動を制限でき、電極間に固定できる。そのため、 目的イオンのみが移動する高速 イオン伝導パスの構築ができる。電荷が偏ることがないので、電気特性を低下するこ とがない点で有利である。更に、本発明の双性イオン力もなるイオン液体は、分子内 にプロトン (水素イオン源)を持たないため、燃料電池の電解質 (プロトン伝導体)に用 いた場合、電解質中に水素イオンを通すことができない。そこで、プロトン供与体 (プ 口トン酸)を混ぜて H+ (プロトン)をカ卩える必要がある。カゝかるプロトン供与体自身は燃 料電池の動作温度で蒸気圧を持っため、上記イオン液体とプロトン供与体とを混ぜ た液体系のプロトン伝導体でも、従来と同様にプロトン供与体が蒸発してプロトン伝 導度が低下することが容易に予想された。しカゝしながら、後述する実施例の図 3で示 すように、新規な双性イオン型イオン液体とプロトン供与体との組合せでは、燃料電 池の動作温度でもプロトン供与体が蒸発しなくなる現象が発現することを見出したも のである。かかる知見に基づき、燃料電池での作動温度においても、蒸気圧を持た ず、システムを複雑化させることのない、本発明の新規なプロトン伝導体を完成する に至ったものである。
[0014] 以下、本発明のプロトン伝導体につき、詳しく説明する。
[0015] 本発明のプロトン伝導体に用いられるイオン液体は、同一分子中にァ-オンとカチ オンが共存する双性イオン力もなるものである力 該双性イオンのほか、ァ-オンと力 チオンが結合して ヽな 、通常タイプのイオン液体等を含有して 、てもよ 、。 [0016] 上記双性イオン型イオン液体では、(1)蒸気圧がほとんどない、(2)イオン性である が低粘性、(3)耐熱性であり液体温度範囲が広い、(4)一般の溶液では達成できな い高いイオン密度を有し、かつイオン移動度も大きいため、極めてイオン伝導性が高 い、(5)様々な塩の良溶媒である、などの特徴を有する。更にカチオンとァ-オンの 両方が分子内に固定されており、電位勾配に沿ってイオン液体のァ-オンないし力 チオンが分かれて移動し電極周辺にこれらのイオン (電荷)が偏在することがないの で、使用に際し、電気特性が低下することがない。また、これにプロトン供与体を混ぜ て水素イオンを加えることで、該水素イオンが移動する高速イオン伝導パス (電解質 膜ないしプロトン伝導体)が構築できる点でも有利である。更に、蒸気圧を持つプロト ン供与体との混合により、該プロトン供与体の蒸発を抑制する作用を効果的に発現し 得るものである。ここで、効果的に発現するとしたのは、燃料電池の作動温度域でそ の効力を有効に発現し、また、燃料電池のプロトン伝導体として必要なイオン伝導度 を確保することのできる程度にプロトン供与体を配合しても、該プロトン供与体の蒸発 を抑制する作用を保持し得るためである。なお、プロトン供与体の配合比率が大きく 過ぎると、双性イオン型イオン液体との相互作用によるプロトン供与体の蒸発抑制作 用効果が低下し、過剰分のプロトン供与体が蒸発するが、この過剰分のプロトン供与 体が蒸散すれば、双性イオン型イオン液体との相互作用による蒸発抑制作用効果が 回復 (発現)するようになり、プロトン供与体の蒸散はなくなるため、イオン伝導度が一 定レベル以上に低下することはない。また、プロトン供与体の蒸発抑制作用効果が 保たれる双性イオン型イオン液体とプロトン供与体の配合比率に関しては、図 3に示 す熱重量減少率を調べることで事前に確認することができるので、こうした過剰分の プロトン供与体の蒸発を招くことも問題なく防止することができる。
[0017] 上記同一分子中にァ-オンとカチオンが共存する双性イオン型イオン液体は、本 発明者が創生したものであり、既存のイオン液体とは上記したようにプロトン伝導体と して利用した際の挙動 (特徴)が異なるものである。ただし、一般的なイオン液体と基 本的な特徴 (上記(1)〜(5)等)は変わらな ヽ。カゝかる双性イオン型イオン液体として は、後述する製造方法 (合成法)等により所望のイミダゾリウム塩、ピリジ-ゥム塩、ァ ンモ-ゥム塩等の双性イオン型イオン液体を合成 (設計)し得るものであり、特に制限 されるものではな ヽ。以下に好適な双性イオン型イオン液体の例を説明する。
[0018] 上記双性イオン型イオン液体のカチオン部として好ましくは、ォ-ゥムカチオンであ る。
[0019] 上記ォ-ゥムカチオンとしては、例えば、窒素、硫黄、酸素、リン、セレン、錫、ヨウ 素、アンチモン等の孤立電子対を有する元素を含んだ化合物に陽イオン型の原子 団が配位して生ずる少なくとも一つの有機基を有するカチオンであればよぐ特に制 限されない。本発明で使用できる有機才-ゥムイオンを例示すれば、テトラメチルアン モ-ゥムカチオン、テトラエチルアンモ-ゥムカチオン、テトラプロピルアンモ-ゥムカ チオン等の対称アンモ-ゥムカチオン類;ェチルトリメチルアンモ-ゥムカチオン、ビ -ルトリメチルアンモ-ゥムカチオン、トリェチルメチルアンモ-ゥムカチオン、トリェチ ルプロピルアンモ-ゥムカチオン、ジェチルジメチルアンモ-ゥムカチオン、トリブチ ルェチルアンモ-ゥムカチオン、トリェチルイソプロピルアンモ-ゥムカチオン、 N、 N ジメチルピロリジ -ゥムカチオン、 N メチル N ェチルピロリジ -ゥムカチオン、 トリェチルメトキシメチルアンモ-ゥムカチオン等の最短の置換基の炭素数が最長の 置換基の炭素数の 50%以上 100%未満である(以下擬対称ともいう。)アンモニゥム カチオン類;トリメチルプロピルアンモ-ゥムカチオン、トリメチルイソプロピルアンモ- ゥムカチオン、ブチルトリメチルアンモ-ゥムカチオン、ァリルトリメチルアンモ-ゥムカ チオン、へキシルトリメチルアンモ-ゥムカチオン、ォクチルトリメチルアンモ-ゥムカ チオン、ドデシルトリメチルアンモ-ゥムカチオン、トリェチルメトキシエトキシメチルァ ンモ-ゥムカチオン、ジメチルジプロピルアンモ-ゥムカチオン等の非対称アンモ-ゥ ムカチオン類;へキサメトニゥムカチオン等の 2価アンモ-ゥムカチオン類; 1, 3 ジメ チノレイミダゾリウムカチオン、 1, 3 ジェチノレイミダゾリウムカチオン、 1, 3 ジプロピ ルイミダゾリウムカチオン、 1, 3 ジプロピルイミダゾリウムカチオン等の対称イミダゾリ ゥムカチオン類; 1 ェチル 3—メチルイミダゾリウムカチオン、 1—メチルー 3—プロ ピノレイミダゾリウムカチオン、 1 イソプロピルー3 プロピノレイミダゾリウムカチオン、 1 tert ブチル 3—イソプロピルイミダゾリウムカチオン等の非対称イミダゾリゥムカ チオン類; N ェチルピリジ-ゥムカチオン、 N ブチルピリジ-ゥムカチオン等のピリ ジ-ゥムカチオン類;トリメチルスルホユウムカチオン、トリェチルスルホ -ゥムカチォ ントリプチルスルホユウムカチオン等の対称スルホユウムカチオン類;ジェチルメチル スルホユウムカチオン等の擬対称スルホユウムカチオン類;ジメチルプロピルスルホ二 ゥム、ジメチルへキシルスルホ -ゥム等の非対称スルホ-ゥムカチオン類;テトラメチ ノレホスホ-ゥムカチオン、テトラエチノレホスホ-ゥムカチオン、テトラプロピノレホスホ- ゥムカチオン、テトラブチルホスホ-ゥムカチオン、テトラオクチルホスホ -ゥムカチォ ン、テトラフエ-ルホスホ-ゥムカチオン等の対称ホスホ-ゥムカチオン類;トリメチル ェチルホスホ-ゥムカチオン、トリェチルメチルホスホ-ゥムカチオン等の擬対称ホス ホ-ゥムカチオン類;へキシルトリメチルホスホ-ゥムカチオン、トリメチルォクチルホス ホ-ゥムカチオン等の非対称ホスホ-ゥムカチオン類等を挙げることができる。なお、 上記に具体的に例示したォニゥムカチオンと、下記に示す構造式 1 'や構造式 1で表 されるォ-ゥムカチオンは区別することなく例示している。そのため上記に具体的に 例示したォニゥムカチオン力 下記に示す構造式 1 'や構造式 1で表されるォニゥム カチオンに含まれるケースもある力 これにより本発明が何ら制限されるべきものでは ない。
[0020] 即ち、本発明で使用できる有機ォニゥムイオンとしては、下記に例示する構造式 1 ' [0021] [化 1]
(1')
Figure imgf000007_0001
[0022] で表されるもの、更には後述する構造式 1で表されるものなどが挙げられる力 これら に制限されるものではな 、。
[0023] 上記構造式 1,中、 R7、 R8、 R9及び R1C)は、それぞれ独立して、アルキル基、ァリー ル基、複素環基およびァラルキル基をそれぞれ表す。これらの R7、 R8、 R9及び R1Gは 、その構造中に置換基、ヘテロ原子を持ってもよぐまた R7、 R8、 R9及び R1C>は、それ ぞれが結合して環を形成してもよぐさらには隣接するカチオンの R7、 R8、 R9及び R1G は、それぞれが結合して、ポリマー状になってもよい。
[0024] 上記アルキル基としては、メチル基、ェチル基、 n—プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、ペンチル基、へキシ ル基、ヘプチル基、ォクチル基、ノニル基、デシル基などの炭素数 1〜30の直鎖また は分枝を有するものが挙げられる。
[0025] 上記ァリール基としては、フエニル基、ナフチル基、トルィル基、キシリル基などが挙 げられる。
[0026] 上記ァリール基は、ハロゲン原子 (フッ素原子、塩素原子、臭素原子、ヨウ素原子) 、水酸基、アルコキシ基 (メトキシ基、エトキシ基、プロポキシ基、ブトキシ基など)、力 ルボキシル基、ァセチル基、プロパノィル基、チオール基、アルキルチオ基 (メチルチ ォ基、ェチルチオ基、プロピルチオ基、プチルチオ基など)、アミノ基、アルキルアミノ 基、ジアルキルアミノ基などの置換基を 1な 、し複数個有して 、てもよ!/、。
[0027] 上記複素環基としては、ピリジル基、チェニル基、イミダゾリル基、ピラゾリル基、ォ キサゾリル基、イソォキサゾリル基、ピロリジ -ル基、ピペラジ-ル基、モルホリニル基 などが挙げられる。
[0028] 上記ァラルキル基としては、ベンジル基、フエネチル基などが挙げられる。
[0029] また、上記 、 R8、 R9及び R1C)は、一分子内で結合して環を成したピロリジ-ゥム、 ピベリジニゥムなどであってもよ 、。
[0030] さらに、上記 、 R8、 R9及び R10が隣接する他のカチオンの R7、 R8、 R9及び R10と結 合して鎖を成した構造であっても良 、。
[0031] また、上記 、 R8、 R9及び R1C)のうち、後述するァ-オン部と結合する基は、上記に 示す 1価の基から、更に水素原子が 1つ外れた 2価の基である。
[0032] ォニゥムカチオンとしてより好ましくは、下記構造式 1
[0033] [化 2]
Figure imgf000008_0001
[0034] で表されるものである。
[0035] ここで、式中、 Rは、水素原子、炭素数 1〜18のアルキル基、ァリール基、複素環基 またはァラルキル基であり、好ましくは水素原子、または炭素数 1〜18のアルキル基 であり、より好ましくは炭素数 1〜8のアルキル基である。 R'は、水素原子、炭素数 1 〜18のアルキル基、ァリール基、複素環基またはァラルキル基であり、好ましくは水 素原子、炭素数 1〜18のアルキル基あり、より好ましくは水素原子、炭素数 1〜8のァ ルキル基である。 R"は、炭素数 1〜18のアルキレン基、ァリーレン基、複素環基また はァラルキレン基であり、好ましくは炭素数 1〜18のアルキレン基であり、より好ましく は炭素数 1〜8のアルキレン基である。また、 R、 R'及び R"は、その構造中に置換基 、ヘテロ原子を持っていてもよい。また R'及び R"は、それぞれが結合して環を形 成してもよぐさらには隣接するカチオンの R、 R'、 R"は、それぞれが結合して、ポリマ 一状になってもよい。
[0036] 上記炭素数 1〜18のアルキル基としては、メチル基、ェチル基、 n—プロピル基、ィ ソプロピル基、 n—ブチル基、イソブチル基、 sec—ブチル基、 tert—ブチル基、ペン チル基、へキシル基、ヘプチル基、ォクチル基、ノ-ル基、デシル基などの炭素数 1 〜18の直鎖または分枝を有するものが挙げられる。
[0037] 上記ァリール基としては、フエニル基、ナフチル基、トルィル基、キシリル基などが挙 げられる。
[0038] 上記複素環基としては、ピリジル基、チェニル基、イミダゾリル基、ピラゾリル基、ォ キサゾリル基、イソォキサゾリル基、ピロリジ -ル基、ピペラジ-ル基、モルホリニル基 などが挙げられる。
[0039] 上記ァラルキル基としては、ベンジル基、フエネチル基などが挙げられる。
[0040] また、後述するァ-オン部と結合する R"基は、上記に示す 1価の R基から、更に水 素原子が 1つ外れた 2価の基である。
[0041] 具体的には、上記炭素数 1〜18のアルキレン基としては、メチレン基、エチレン基、 プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オタチレン 基、ノニレン基、デシレン基などの炭素数 1〜18の直鎖または分枝を有するものが挙 げられる。
[0042] 上記ァリーレン基としては、フエ二レン基、ナフチレン基、トルイレン基、キシリレン基 などが挙げられる。 [0043] 上記複素環基としては、ピリジレン基、チェ-レン基、イミダゾリレン基、ビラゾリレン 基、ォキサゾリレン基、ピロリジ-レン基、ピぺラジュレン基、モルホリニレン基などが 挙げられO o c OSHMMM =る。
[0044] 上記ァラルキレン基としては、ベンジレン基、フエネチレン基などが挙げられる。
[0045] また、上記 R'及び R"は、一分子内で結合して環を成したピロリジ-ゥム、ピペリ ジニゥムなどであってもよ 、。
[0046] さらに、上記 R及び R"が隣接する他のカチオンの R、 R及び R"と結合して鎖を 成した構造であっても良 、。
[0047] 更に、本発明の双性イオン型イオン液体の特性を損なわな 、範囲内であれば、 R、 R'及び R"の構造中に置換基、ヘテロ原子を持ってもよい。力かる置換基として、ハロ ゲン原子 (フッ素原子、塩素原子、臭素原子、ヨウ素原子)、水酸基、アルコキシ基 (メ トキシ基、エトキシ基、プロポキシ基、ブトキシ基など)、カルボキシル基、ァセチル基 、プロパノィル基、チオール基、アルキルチオ基 (メチルチオ基、ェチルチオ基、プロ ピルチオ基、プチルチオ基など)、アミノ基、アルキルアミノ基、ジアルキルアミノ基な どが挙げられる。 R、 R'及び R"では、これらの置換基を 1ないし複数個有していてもよ い。
[0048] また、該双性イオンのァ-オン部としては、好ましくは、下記構造式 2
[0049] [化 3]
Figure imgf000010_0001
o
[0050] で表される群力 選ばれてなるものである。
[0051] ここで、上記式中、 R1及び R2は、それぞれ独立で、置換若しくは非置換の一価の 炭化水素基、または炭素数 1から 5のフッ化炭素基をそれぞれ表す。ただし、これらに 制限されるものではない。
[0052] 上記 R1及び R2は、それぞれ独立で、置換若しくは非置換の一価の炭化水素基、ま たは炭素数 1から 5のフッ化炭素基(一(CF ) F)であれば特に限定されないが、耐
2 n
酸ィ匕性が高いという理由からは、ハロゲン原子、ハロゲンィ匕炭化水素基、特に好まし くはフッ素置換炭化水素基であるのが好適である。これらフッ素置換炭化水素基を具 体的に例示すると、トリフルォロメチル基、ペンタフルォロェチル基、ヘプタフルォロ プロピル基、ノナフルォロブチル基、ヘプタフルォロイソプロピル基、ノナフルォロイソ ブチル基、 2, 2, 2—トリフルォロェチル基、 1, 1ージフルォロェチル基等のフルォロ アルキル基類、ペンタフルォロフエ-ル基、 2, 4, 6 トリフルオロフェ-ル基等のフ ルォロアリール基類、ヘプタフルォ口べンジル基、 1, 1ージフルォロベンジル基等の フルォロアラルキル基等を挙げることができる。これらの中でも、イオン伝導度が高い という理由から、炭素数 1〜6の直鎖状若しくは分岐状のパーフルォロアルキル基、 パーフルオロフェ-ル基、炭素数 7〜9のパーフルォロアラルキル基であるのが特に 好適である。更に、上記 R1及び R2としては、ォ -ゥム塩の電気伝導度が高いという理 由からは、炭素数 1〜6の電子吸引性を有する基 (電子吸引基ともいう。)又は電子吸 引基を有する基であるのが好適である。なお、ここで電子吸引基とは、 Hammett則 に於ける置換基定数が、水素原子より高い基を意味する。これら好適な電子吸引基 ないしこれらを有する基を具体的に例示すると、トリフルォロメチル基、ペンタフルォ 口ェチル基、ヘプタフルォロプロピル基、ノナフルォロブチル基、ヘプタフルォロイソ プロピル基、ノナフルォロイソブチル基、 2, 2, 2—トリフルォロェチル基、 1, 1ージフ ルォロェチル基等のフルォロアルキル基類、ペンタフルォロフエ-ル基、 2, 4, 6 ト リフルオロフェ-ル基等のフルォロアリール基類、ヘプタフルォ口べンジル基、 1, 1 ジフルォロベンジル基等のフルォロアラルキル基類等のフッ化炭化水素基類 (フッ素 置換された炭化水素基);ホルミル基、ァセチル基、プロピオニル基、プチリル基、イソ プチリル基、バレリル基、イソバレリル基、ビバロイル基、ラウロイル基等のァシル基類
;トリフルォロアセチル基、 2, 2—ジフルォロプロピオ-ル基、パーフルォロプロピオ -ル基、パーフルォロブチリル基、パーフルォロイソブチリル基、パーフルォロバレリ ル基等のフッ化ァシル基類 (フッ素置換されたァシル基);メトキシカルボ-ル基、エト キシカルボ-ル基、 tert ブトキシカルボ-ル基、トリフルォロメトキシカルボ-ル基、 パーフルォロエトキシカルボ-ル基、パーフルオロー tert ブトキシカルボ-ル基等 のフッ素以外の置換基を有する置換ァシル基類;メタンスルホ-ル基、エタンスルフ ォ-ル基、プロパンスルフォ-ル基、 tert—ブタンスルフォ-ル基等のスルフォ-ル基 類;トリフルォロメタンスルフォ-ル基、ペンタフルォロェタンスルフォ-ル基、ヘプタフ ルォロプロパンスルフォ-ル基、ノナフルォロブタンスルフォ-ル基、ヘプタフルォロ イソプロパンスルフォ-ル基、ノナフルォロイソブタンスルフォ-ル基、 2, 2, 2—トリフ ルォロェタンスルフォ-ル基、 1, 1ージフルォロェタンスルフォ-ル基等のフッ化スル フォ-ル基類(フッ素置換されたスルフォ-ル基);ペンタフルォロベンゼンスルフォ- ル基、 2, 4, 6—トリフルベンゼンスルフォ-ル基等のフッ化ベンゼンスルフォ-ル基 類等を挙げることができる。ここでも、上記に具体的に例示したフッ素置換炭化水素 基と、電子吸引基ないしこれらを有する基は区別することなく例示している。そのため 上記に具体的に例示したフッ素置換炭化水素基が、電子吸引基な 、しこれらを有す る基に含まれるケースもある力 これにより本発明が何ら制限されるべきものではない
[0053] 次に、本発明のプロトン伝導体に用いられるプロトン供与体としては、特に制限され るべきものではない。好ましくは、下記構造式 3
[0054] [化 4]
(3)
Figure imgf000012_0001
[0055] で表される群力 選ばれてなるものである。ただし、これらに制限されるものではなぐ 酸 (H+を与える物質)であればよぐ使用目的に応じて適宜選択すればよい。
[0056] ここで、上記 R3は、炭素数 1から 5の炭化水素基、または炭素数 1から 5のフッ化炭 素基(一 (CF ) F)であり、好ましくは炭素数 1から 2の炭化水素基である。 R3として具
2 n
体的には、例えば、メチル基、ェチル基などが挙げられる。
[0057] R4は、炭素数 1から 5の炭化水素基、または炭素数 1から 5のフッ化炭素基(一(CF
2
) F)であり、好ましくは炭素数 1から 2の炭化水素基である。 R4として具体的には、例 えば、メチル基、ェチル基などが挙げられる。 [0058] 上記 R5と R6は、それぞれ独立で、置換若しくは非置換の一価の炭化水素基、また は炭素数 1から 5のフッ化炭素基(一(CF ) F)である。このうち R5及び R6の一方は、
2 n
耐酸ィ匕性が高いという理由から、ハロゲン原子、ハロゲンィ匕炭化水素基、特に好まし くはフッ素置換炭化水素基であるのが好適である。これらフッ素置換炭化水素基を具 体的に例示すると、トリフルォロメチル基、ペンタフルォロェチル基、ヘプタフルォロ プロピル基、ノナフルォロブチル基、ヘプタフルォロイソプロピル基、ノナフルォロイソ ブチル基、 2, 2, 2—トリフルォロェチル基、 1, 1ージフルォロェチル基等のフルォロ アルキル基類、ペンタフルォロフエ-ル基、 2, 4, 6—トリフルオロフェ-ル基等のフ ルォロアリール基類、ヘプタフルォ口べンジル基、 1, 1ージフルォロベンジル基等の フルォロアラルキル基等を挙げることができる。これらの中でも、イオン伝導度が高い という理由から、炭素数 1〜6の直鎖状若しくは分岐状のパーフルォロアルキル基、 パーフルオロフェ-ル基、炭素数 7〜9のパーフルォロアラルキル基であるのが特に 好適である。
[0059] また、上記 R5及び R6の他方は、ォ -ゥム塩の電気伝導度が高いという理由から、炭 素数 1〜6の電子吸引性を有する基 (電子吸引基ともいう。)又は電子吸引基を有す る基であるのが好適である。なお、ここで電子吸引基とは、 Hammett則に於ける置 換基定数が、水素原子より高い基を意味する。これら好適な電子吸引基ないしこれら を有する基を具体的に例示すると、トリフルォロメチル基、ペンタフルォロェチル基、 ヘプタフルォロプロピル基、ノナフルォロブチル基、ヘプタフルォロイソプロピル基、 ノナフルォロイソブチル基、 2, 2, 2—トリフルォロェチル基、 1, 1ージフルォロェチ ル基等のフルォロアルキル基類、ペンタフルォロフエ-ル基、 2, 4, 6—トリフルォロ フエ-ル基等のフルォロアリール基類、ヘプタフルォ口べンジル基、 1, 1ージフルォ 口ベンジル基等のフルォロアラルキル基類等のフッ化炭化水素基類 (フッ素置換され た炭化水素基);ホルミル基、ァセチル基、プロピオニル基、プチリル基、イソプチリル 基、バレリル基、イソバレリル基、ビバロイル基、ラウロイル基等のァシル基類;トリフル ォロアセチル基、 2, 2—ジフルォロプロピオ-ル基、パーフルォロプロピオ-ル基、 パーフルォロブチリル基、パーフルォロイソブチリル基、パーフルォロバレリル基等の フッ化ァシル基類(フッ素置換されたァシル基);メトキシカルボ-ル基、エトキシカル ボ-ル基、 tert—ブトキシカルボ-ル基、トリフルォロメトキシカルボ-ル基、パーフル ォロエトキシカルボ-ル基、パーフルオロー tert—ブトキシカルボ-ル基等のフッ素 以外の置換基を有する置換ァシル基類;メタンスルホ-ル基、エタンスルフォ -ル基 、プロパンスルフォ-ル基、 tert—ブタンスルフォ-ル基等のスルフォ-ル基類;トリフ ルォロメタンスルフォ-ル基、ペンタフルォロェタンスルフォ-ル基、ヘプタフルォロ プロパンスルフォ-ル基、ノナフルォロブタンスルフォ-ル基、ヘプタフルォロイソプロ パンスルフォ-ル基、ノナフルォロイソブタンスルフォ-ル基、 2, 2, 2—トリフルォロ エタンスルフォ-ル基、 1, 1—ジフルォロェタンスルフォ-ル基等のフッ化スルフォ- ル基類(フッ素置換されたスルフォ-ル基);ペンタフルォロベンゼンスルフォ-ル基、 2, 4, 6—トリフルベンゼンスルフォ-ル基等のフッ化ベンゼンスルフォ-ル基類等を 挙げることができる。ここでも、上記に具体的に例示したフッ素置換炭化水素基と、電 子吸引基ないしこれらを有する基は区別することなく例示している。そのため上記に 具体的に例示したフッ素置換炭化水素基が、電子吸引基ないしこれらを有する基に 含まれるケースもある力 これにより本発明が何ら制限されるべきものではない。これ らの非常に電子吸引性の強いハロゲン原子やハロゲン化アルキル基を R5と R6に持 つことにより、水素イオン (H+)の解離を容易にする効果がある。
[0060] また、本発明の双性イオン型イオン液体である塩の構造確認は、後述する実施例 で示すように NMRなどを用いて行うことができる。また、熱力学的特性 (例えば、融 点やガラス転移温度や結晶化の発熱ピークの有無、ひ ヽては室温付近(30°C)で結 晶化せず、経時的に、熱力学的に安定な液体状態を呈することの確認)は、 DSC ( 示差走査熱分析)測定を用いて行うことができる。さらに導電特性 (イオン導電率( σ ) )は、複素インピーダンス測定により求めることができる。更に、他の諸特性として、 粘度( r? )、密度( /0 )、 DSC測定力 求めたガラス転移温度 (Tg)、パルス磁場勾配 NMR (PGSE— NMR)力も求めた自己拡散係数 (D)を得ることができる。また、イン ピーダンス測定から求めたモル導電率( Λ )と自己拡散係数を Nernst— Einstein
imp
式に導入して求めたモル導電率(Λ )との比(Haven Ratio)を算出することにより
diff
、イオンが系中でキヤリヤーとして伝導に寄与する割合を見積もることができる。
[0061] 次に、本発明に係る双性イオン型イオン液体の製造方法として、上記した構造式 1 で表されるカチオン部と、構造式 2で表されるァ-オン部で構成される双性イオン型 イオン液体の好適な合成法の 1つである、第 3級ァミンとアルキルスルトンの 1段階反 応による下記反応式 (4)で示される合成法を例にとり説明するが、本発明はこれら〖こ 何ら制限されるものではない。かかる合成法は、本発明者らが創生したものであって 、合成の際に副生成物が生じないため精製も簡単であり、ミクロイオンの混入を防ぐ ことができる。即ち、イオン液体は塩をよく溶解させるため、副生成物として塩が生成 された場合、この塩を完全に除去するのは困難である。そのため、以下に説明する合 成法は、純粋な双性イオン型イオン液体を得る上で極めて有効であると言える。
[0062] [化 5]
Figure imgf000015_0001
[0063] 上記反応式 4に示すように、溶媒 Aに第 3級ァミン (以下、化合物 1とする)を溶解し た溶液と、溶媒 Bに、化合物 1に対し等モル量のアルキルスルトン (以下、化合物 2と する)を溶解した溶液とを、 0〜10°C程度で混合し、その後 10〜30°Cまで温度を上 げ、不活性ガス雰囲気下、当該温度にて 5日間程度撹拌して反応させる。撹拌終了 後、溶媒 A、 Bを除去し、残留物を洗浄して、無色透明な粘性液体である双性イオン 型イオン液体 (以下、生成物 3とする)を得ることができる。
[0064] 上記反応において、上記溶媒 Aとしては、例えば、アセトンなどを用いることができ る力 これらに制限されるものではない。溶媒 Bとしては、例えば、ァセトニトリル、ァセ トンなどを用いることができる力 これらに制限されるものではない。また、化合物 1が 可溶な溶媒 Aと化合物 2が可溶な溶媒 Bとは、同一であっても異なっていても良い。 両溶媒が難溶な ヽし不溶である場合には、反応過程で十分に攪拌を行う必要がある
[0065] また、上記反応において、化合物 1に対する化合物 2の使用量は、化合物 1に対し 1〜2モル量の範囲であればよいが、上記反応式に示すように等モル量の反応物 1、 2を反応させることで、副生成物や未反応物が生じないため、精製も簡単であることか ら、好ましくは等モル量である。
[0066] また、上記反応において、化合物 1の溶液と化合物 2の溶液を混合する際、 0〜10 °Cで行うのは、混合中に好ましくない反応が進行するのを防止するためである。上記 理由から、好ましくは 0〜10°Cの範囲、特に好ましくは 0°C程度で行うのが望ましい。
[0067] 混合後、 10〜30°C程度まで温度を上げ、当該温度にて反応を行うのは副生成物 の生成を防止するためである。上記理由から、好ましくは 10〜30°Cの範囲、特に好 ましくは室温まで温度を上げ、当該温度にて反応を行うのが望ましい。
[0068] また、不活性ガス雰囲気下で反応を行うのは副反応としての酸化反応を防止する ためである。該不活性ガス雰囲気としては、例えば、窒素雰囲気、アルゴン雰囲気な どが挙げられる力 コストの理由から、好ましくは窒素雰囲気で行うのがよい。
[0069] 反応時間は、反応がほぼ完結すればよぐ使用する化合物 1、 2の種類や反応温度 条件等によっても異なることから、上記 5日間程度はあくまでも、その目安である。
[0070] 反応終了後、上記溶媒 A、 Bは、例えば、真空乾燥などにより除去することができる 力 これらに制限されるものではない。また、溶媒除去後の残留物は、例えば、ァセト ンなどにより洗浄することができる力 これらに制限されるものではない。
[0071] なお、本発明の双性イオン型イオン液体では、上記合成法により得られた生成物 3 の同一分子中にァ-オンとカチオンが共存する双性イオンをそのまま用いることがで きる。ただし、これらに制限されるものではなぐ本発明のプロトン伝導体の作用効果 、更には燃料電池の電池特性に影響を及ぼさない範囲であれば、双性イオンでない 他の一般的なイオン液体を適量添加してもよい。また、製造条件によっては、反応物 1および 2の使用量や合成法を変えて製造することで、未反応物や副生成物が残留 することもある。複雑ないし煩雑な精製操作によりこうした残留物の混入を防止するこ ともできるが製造コストが増加する。そのため、本発明のプロトン伝導体の作用効果、 更には燃料電池の電池特性に影響を及ぼさな 、程度であれば、こうした残留物が本 発明のイオン液体に含まれていてもよい。こうしたことから、本発明のイオン液体では 、同一分子中にァ-オンとカチオンが共存する双性イオンを有するとしたものである。
[0072] また、反応により得られた生成物 3の同定及び該生成物 3が双性イオン型イオン液 体であることは、後述する実施例で示す NMRにより確認することができる。
[0073] 次に、本発明に係るプロトン伝導体の調製方法としては、特に制限されるべきもの ではなぐ後述する実施例に具体的に説明する方法により製造可能である。即ち、上 記双性イオン型イオン液体中の双性イオンと、プロトン供与体とを所定のモル比にな るよう秤量し、必要があれば、上記に示す他の添加剤を適量秤量し、溶媒 C中で混 合'撹拌し、溶媒 Cを除去することで、 目的物の双性イオン型イオン液体 Zプロトン供 与体混合体を得ることができる。
[0074] イオン液体中の双性イオンと、プロトン供与体との配合比率 (モル比)は、双性ィォ ン型イオン液体及びプロトン供与体の種類に応じて異なるため、適宜最適な範囲を 決定する事が望ましい。よって、後述する実施例で合成した BImC4SZHTFSI混合 体につき、具体的な配合比率を示しているが、これらはあくまで当該組合せの場合で の好適な配合比率を示しているに過ぎず、本発明はこれらに限定されない。かかる 好適な配合比率は、後述する図 2に示すように、プロトン伝導体の重量減少率の温 度依存性を測定し、双性イオン単独での重量減少率に比してほぼ同等な ヽしは同等 以上の重量減少率を有する配合比率 (モル比)の範囲を決定すればよい。但し、図 2 から分かるように、プロトン供与体が過剰な場合には(図中の双性イオン型イオン液 体:プロトン供与体 = 1: 1 (モル比)の重量減少率の曲線を参照のこと。 )、既に説明 したように該プロトン供与体が蒸発する。そのため、重量減少率が 100°Cあたりから 徐々に減少する。し力しながら、 350°Cを超えた当たりで(図中の双性イオン型イオン 液体:プロトン供与体 = 2 : 1や 1. 5 : 1 (モル比)の重量減少率と合流する点 P参照の こと。)、プロトン供与体の蒸発が無くなる。そのため、双性イオン型イオン液体:プロト ン供与体 = 2 : 1や 1. 5 : 1 (モル比)の重量減少率の曲線と重なるようになる。なお、 燃料電池の作動温度である 60〜200°C前後では蒸気圧を持たな 、双性イオン (BI mC4S)も、 300°Cを超える当たりで重量減少が生じる。これは蒸発圧による蒸散とい うよりもむしろ熱分解することが原因と思われる。双性イオン型イオン液体:プロトン供 与体 = 2 : 1や 1. 5 : 1 (モル比)のプロトン伝導体(BImC4SZHTFSI混合体)では、 双性イオンとプロトン供与体の相互作用により、双性イオンの熱分解反応が抑制され て 、るために、熱重量減少率が双性イオン (BImC4S)よりも更に穏やかになって!/ヽ ると思われる。
[0075] 上記溶媒 Cとしては、後工程での除去操作で、双性イオン型イオン液体やプロトン 供与体が蒸発されないように、例えば、メタノール、エタノールなどの低沸点溶媒を用 いることができるが、これらに制限されるものではない。この溶媒 Cが、双性イオン型ィ オン液体は比較的粘度が高いため、より低粘性にして、プロトン供与体との攪拌 '混 合を容易にするために用いるものである。よって、双性イオン型イオン液体の粘度に よっては、単に双性イオン型イオン液体とプロトン供与体とを攪拌 ·混合するだけでも 良い。
[0076] 上記溶媒 Cは、例えば、加熱真空乾燥などにより除去することができるが、これらに 制限されるものではない。
[0077] 得られた双性イオン型イオン液体 Zプロトン供与体混合体が、プロトン導電体であ ることは、実施例の図 4に示すような燃料電池の単セルを組んで、実際に電池を作動 させた際に、所期の電流が流れることにより簡単に確認することができる。また、図 3 に示すようなイオン伝導度を測定することによつても確認可能である。
[0078] 次に、本発明に係る燃料電池は、上記した本発明のプロトン伝導体を使用すること を特徴とするものである。これにより、燃料電池の作動環境において安定してプロトン 伝導を維持するために必要となる加湿機構、回収機構、再供給機構等のシステムの 増設による、システム全体の複雑ィ匕及び大型化の問題を解決することのできる燃料 電池を提供することを目的とする。
[0079] よって、本発明の双性イオン型イオン液体からなるプロトン伝導体を用いた燃料電 池としては、ナフイオン (Nafion) (登録商標)、リン酸といったプロトン伝導体を用い ていた従来公知の燃料電池に適用可能であり、固体高分子形燃料電池、リン酸型燃 料電池などに適用できる。図 4に本発明のプロトン伝導体である双性イオン型イオン 液体を用いた燃料電池の単セル構造を示す。カゝかる単セル構造は、基本的に、固体 高分子形やリン酸型の燃料電池と同様の構成である。
[0080] 図 4に示すように、本発明の燃料電池 1において、本発明の双性イオン型イオン液 体を用いたプロトン伝導体 3は、支持用のマトリクス 5に含浸して電解質膜 7として使 用することができる。上記マトリクス 5としては、シリコンカーバイト(SiC)やシリカ(SiO )の無機系多孔質体や、フッ素系や炭化水素系などの高分子膜を使用することがで きる。プロトン伝導体 3を浸漬したマトリクス 5からなる電解質膜 7の両面には白金 (Pt) 担持カーボンなどで形成される触媒層 9が設けられ、またそのさらに外側には燃料ガ スおよび空気の触媒層 9への拡散を促すガス拡散層 11が設けられて 、る。これを燃 料ガスおよび空気を導くための通路 13が設けられたセパレータ 15により挟み込む構 造となっている。また、触媒層 9の側面外周(周縁)部には、水素ガスや空気が電池 外へリークするのを防止するために、シリコンゴムやバイトンなどのシール材 17が設 けられている。以上が、本発明のプロトン伝導体である双性イオン型イオン液体を用 いた燃料電池の基本的な単セル構造の概略説明であるが、本発明はこれらに制限 されるものではない。
実施例
[0081] 以下に、本発明を実施例を用いてより具体的に説明する。
[0082] 実施例 1
(1)双性イオン型イオン液体(Zwitterionic liquid)の合成と同定
本実施例では、双性イオン型イオン液体として、 1— (― 1— butylimidazolio) but ane 4 sulfonate (以下、 BImC4Sと表す)の合成例を示す(図 1参照のこと)。
[0083] 図 1に示す合成法にあるように、 n—ブチルイミダゾール(n— butylimidazole) 21.
Ommolのアセトン溶液と、等モル量の 1, 4 ブタンスルトン(1, 4 butanesultone )のァセトニトリル溶液を 0°Cで混合し、その後室温まで温度を上げ、窒素雰囲気下、 室温にて 5日間撹拌して反応させた。撹拌終了後、加熱真空乾燥して有機溶媒のァ セトンおよびァセトニトリルを飛ばし、残留物をアセトンで洗浄して、無色透明な粘性 液体である双性イオン型イオン液体の BImC4Sを得た。
[0084] 得られた双性イオン型イオン液体の構造の確認は、 ¾ NMRにより行った。 ¾
NMRでは、分子中に存在する水素原子の結合部位によってピーク位置 (ィ匕学シフ ト)、ピークの分裂度 (多重度)が異なる。また同一の環境にある (化学的等価である) 水素原子の数に比例してピークの面積強度が異なる。ピークの分裂度(多重度)は一 般的に、着目する水素原子が結合する炭素原子の隣接炭素原子に接合する水素原 子の数に 1をカ卩えた数に分裂する。例えば、図 1の双性イオン型イオン液体の構造式 中の(i)で示す水
素原子のピークは、(i)の水素原子が結合する炭素原子の隣接炭素原子に結合する 水素
原子の数は 2 ( (ii)の水素原子)なので、 2+ 1 = 3に分裂する。また、(i)の水素原子 に相当するピークの面積強度 (積分面積強度)は、等価な水素原子が 3つあるので 3 ("3H"と記述)となる。したがって水素原子 (i)に相当するピークは、多重度 3、積分 面積強度 3Hとなる(以後、(t, 3H)と示す。多重度は s = singlet (l重)、 t=triplet ( 3重)、 m=multiplet (4重以上)で示す)。したがって BImC4Sの構造から予想され るピークの多重度および面積強度は、 (i) (t, 3H)、 (ii) (m, 2H)、 (iii) (m, 2H)、 (i v) (t, 2H)、 (v) (s, 1H)、 (vi) & (vii) (s, 2H) [註:水素原子 (vi)と (vii)は等価で はないので 2つの(s, 1H)になると予想される力 複素環に結合する水素は等価のも のとして一つのピークで現れることが多い。この系でも構造が既知の分子において、 複素環の (vi)と (vii)に相当する水素のピークは分離せず、一本のピーク(s, 2H)で 現れる]、 (viii) (t, 2H)ゝ (ix) (m, 2H)ゝ (x) (m, 2H)ゝ (xi) (t, 2H)である。化学 シフトは構造が既知の分子力 予想することができ、構造力 予想される化学シフト、 多重度および面積強度 ίま、 δ =0. 85 (t, 3H)、 1. 2 (m, 2H)、 1. 7 (m, 2H)、 1. 0〜2. 0 (m, 2H)、 1. 0〜2. 0 (m, 2H)、 2. 4 (t, 2H)、 4. 1〜4. 2 (t, 2H)、 4. 1 〜4. 2 (t, 2H)、 7. 7 (s, 2H)、 9. 1 (s, 1H)となる。一方,観測された NMRピーク は、 0. 84 (t, 3H)、 1. 19 (m, 2H)、 1. 47 (m, 2H)、 1. 72 (m, 2H)、 1. 83 (m, 2H)、 2. 39 (t, 2H)、 4. l l (t, 2H)、 4. 15 (t, 2H)、 7. 73 (s, 2H)、 9. 20 (s, 1 H)で予想値とほぼ一致することから、目的物の合成を確認できた。
[0085] (2)双性イオン型イオン液体 Zプロトン酸混合体の製造
本実施例では、双性イオン型イオン液体に前出の BImC4Sを、プロトン供与体とし て HTFSI (構造は図 1参照)を使用した製造例を示す。
[0086] BImC4Sと HTFSIを所定のモル比になるよう秤量し、メタノール中で混合 '撹拌し、 加熱真空乾燥することで、プロトン伝導体として目的物の、双性イオン型イオン液体( BImC4S) Zプロトン酸 (HTFSI)混合体を得た。
[0087] BImC4Sと HTFSIの比率 [HTFSI]Z[BImC4] ([ ]はモル数を表す)は、好まし くは 0. 5以上 1. 0以下、より好ましくは 0. 5以上 0. 67以下である。 HTFSIの混合比 が大きすぎると蒸気圧をもつ HTFSIの蒸発により燃料電池の運転時にプロトン伝導 体が減少する(図 2参照)。逆に小さすぎると伝導体内のプロトン濃度が低くなり充分 なプロトン伝導度が得られない。なお、図 2については、既に本発明のプロトン伝導 体の調製方法にて説明しているため、ここでの説明は省略する。
[0088] 図 3に [HTFSI]Z[BImC4] =0. 5のときのプロトン伝導体のイオン伝導度のァレ 二ウス.プロットを示す。併せて、リン酸 (H PO )のイオン伝導度の温度依存性 (ァレ
3 4
二ウス'プロット)を図中、実線で示した。また、燃料電池の電解質に求められるイオン 伝導度 σ =0. 1、更には σ =0. 2、 0. 3を一点破線で示した。図 3より、本実施例で 得られたプロトン伝導体の BImC4SZHTFSI混合体では、 160°C (図中、リン酸のィ オン伝導度と、プロトン伝導体の BImC4SZHTFSI混合体のイオン伝導度の交点 X での温度)以上においてリン酸よりも高いイオン伝導度を示すことがわかる。また、図 3より、 [HTFSI] /[BImC4] =0. 5のときのプロトン伝導体では、 140°C以上にな れば燃料電池の電解質に求められるイオン伝導度 σ =0. 1を満足させることができ る。このことから、リン酸型の燃料電池は勿論のこと、フッ素系高分子膜のプロトン伝 導体に水を用いて 、るため、作動温度が 100°C以下に制約されて!、た固体高分子 形の燃料電池でも、こうした制約を受けないことから、十分に適用しえることが確認で きた。即ち、既存の固体高分子形の燃料電池では、作動温度が高い方力 Sイオン伝導 度が高くなるにもかかわらず、水が蒸発しな 、ようにわざわざ低温域で行って 、ただ けである。従って動作温度を 140°C以上にして燃料電池の構成部材の耐熱性は十 分に確保できるものが既に使用ないし開発されており、すぐに適用可能である。
[0089] 次に、本実施例で得られたプロトン伝導体である双性イオン型イオン液体 (BImC4 S) Zプロトン酸 (HTFSI)混合体を用いて図 4に示す燃料電池の単セル構造を作製 した。本実施例の燃料電池 1において、本実施例で得られた双性イオン型イオン液 体からなるプロトン伝導体([HTFSI] Z[BImC4] =0. 5の BImC4SZHTFSI混合 体) 3は、支持用のマトリクス 5に含浸して電解質膜 7として使用する。マトリクス 5として は、 SiCの多孔質体を使用した。プロトン伝導体 3を浸漬したマトリクス 5からなる電解 質膜 7の両面には白金 (Pt)担持カーボンで形成される触媒層 9を設け、またそのさら に外側には燃料ガスおよび空気の触媒層 9への拡散を促すガス拡散層 11を設けた 。これを燃料ガスおよび空気を導くための通路 13が設けられたセパレータ 15により 挟み込む構造とし、触媒層 9の側面外周(周縁)部には、シール材 17を設けた構造と した。力かる燃料電池の単セルを組んで、実際に電池を作動させた際に、所期の電 流が流れることにより、得られた双性イオン型イオン液体 Zプロトン供与体混合体が、 プロトン導電体であることを確認することができた。 図面の簡単な説明
[図 1]実施例 1で作製した双性イオン型イオン液体 (BImC4S)合成の化学反応式と、 実施例 1で作製した双性イオン型イオン液体の1 H NMRによる構造確認用の説明 図と、実施例 1で用いたプロトン供与体である HTFSIの構造式とを表す図面である。
[図 2]実施例 1で作製したプロトン伝導体である BImC4SZHTFSI混合体の重量減 少率の温度依存性を示す図面であって、温度 (°C)に対する熱重量変化 (TGZ%) を表すグラフである。併せて、双性イオン型イオン液体 (BImC4S)だけでの熱重量 変化曲線を図中、実線 (neat BImC4S)で示した。
[図 3]実施例 1で作製したプロトン伝導体である BImC4SZHTFSI混合体の [HTFS l]/[BImC4] =0. 5のときのイオン伝導度の温度依存性 (ァレニウス ·プロット)を示 す。
[図 4]本実施例で得られたプロトン伝導体である双性イオン型イオン液体 (BImC4S) Zプロトン酸 (HTFSI)混合体を用いた燃料電池の単セル構造を示す断面概略図で ある。

Claims

請求の範囲 [1] 同一分子中にァニオンとカチオンが共存する双性イオンを有するイオン液体と、プ 口トン供与体とを有してなるプロトン伝導体。 [2] 前記双性イオンのカチオン部が、ォ-ゥムカチオンである請求項 1に記載のプロトン 伝導体。 [3] 前記ォニゥムカチオン力 下記構造式 1
[化 1]
Figure imgf000023_0001
(ここで、式中、 Rは、水素原子、炭素数 1〜18のアルキル基であり、 R'は、水素原子 、炭素数 1〜18のアルキル基であり、 R"は、炭素数 1〜18のアルキレン基である。 ) で表される請求項 2に記載のプロトン伝導体。
前記双性イオンのァ-オン部が、下記構造式 2
[化 2]
Figure imgf000023_0002
(ここで、式中、 R1及び R2は、それぞれ独立で、置換若しくは非置換の一価の炭化水 素基、または炭素数 1から 5のフッ化炭素基である。)で表される群力 選ばれてなる ものである請求項 1〜3のいずれか 1項に記載のプロトン伝導体。
前記プロトン供与体が、下記構造式 3
[化 3]
Figure imgf000024_0001
O
(ここで、式中、 R3は、炭素数 1から 5の炭化水素基、または炭素数 1から 5のフッ化炭 素基であり、 R4は、炭素数 1から 5の炭化水素基、または炭素数 1から 5のフッ化炭素 基であり、 R5と R6は、それぞれ独立で、置換若しくは非置換の一価の炭化水素基、ま たは炭素数 1から 5のフッ化炭素基である。 )で表される群力 選ばれてなるものであ る請求項 1〜4のいずれ力 1項に記載のプロトン伝導体。
請求項 1〜5のいずれか 1項に記載のプロトン伝導体を使用してなる燃料電池。 請求項 1〜4のいずれか 1項に記載の双性イオン力 なるイオン液体。 on
PCT/JP2005/015988 2004-09-03 2005-09-01 プロトン伝導体およびそれを用いた燃料電池 WO2006025482A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05776899A EP1796193B1 (en) 2004-09-03 2005-09-01 Proton conductor and fuel cell using the same
JP2006532780A JP4838134B2 (ja) 2004-09-03 2005-09-01 プロトン伝導体およびそれを用いた燃料電池
US11/574,699 US8697309B2 (en) 2004-09-03 2005-09-01 Proton conductor and fuel cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-256869 2004-09-03
JP2004256869 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006025482A1 true WO2006025482A1 (ja) 2006-03-09

Family

ID=36000131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015988 WO2006025482A1 (ja) 2004-09-03 2005-09-01 プロトン伝導体およびそれを用いた燃料電池

Country Status (4)

Country Link
US (1) US8697309B2 (ja)
EP (1) EP1796193B1 (ja)
JP (1) JP4838134B2 (ja)
WO (1) WO2006025482A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294241A (ja) * 2006-04-25 2007-11-08 Jsr Corp プロトン伝導膜
JP2008177135A (ja) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd 燃料電池用触媒電極およびその製造方法
JP2008243638A (ja) * 2007-03-28 2008-10-09 Toyota Central R&D Labs Inc 複合電解質及び固体高分子型燃料電池
JP2009016172A (ja) * 2007-07-04 2009-01-22 Nissan Motor Co Ltd 膜電極接合体及びその製造方法
JP2014531036A (ja) * 2011-10-25 2014-11-20 エムエスアーアウアー ゲーエムベーハーMsa Auer Gmbh アンモニア及びアミンを検出するための、電解質としてイオン液体を備えた電気化学式ガスセンサ
WO2015151977A1 (ja) * 2014-03-31 2015-10-08 リンテック株式会社 双性イオン化合物およびイオン伝導体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006623A1 (de) * 2009-07-16 2011-01-20 Basf Se Verfahren zum betrieb einer brennstoffzelle
DE112010003228A5 (de) * 2009-07-16 2013-06-06 Basf Se Verfahren zum Betrieb einer Brennstoffzelle und zugehörige Brennstoffzelle
WO2011006625A1 (de) * 2009-07-16 2011-01-20 Basf Se Verfahren zum betrieb einer brennstoffzelle und zugehörige brennstoffzelle
CN103012796B (zh) * 2011-09-23 2014-07-16 北京师范大学 一种制备聚砜的方法
GB201309668D0 (en) 2013-05-30 2013-07-17 Isis Innovation Organic semiconductor doping process
DE102014009675A1 (de) * 2014-06-30 2015-12-31 Forschungszentrum Jülich GmbH Elektolytsystem für eine Brennstoffzelle
WO2017124020A1 (en) * 2016-01-15 2017-07-20 The Board Of Trustees Of The Leland Stanford Junior University Highly stretchable, transparent, and conductive polymer
CN115304518B (zh) * 2022-08-03 2023-10-31 苏州旭珀禾科技有限公司 一种具有生物相容性的两性离子化合物及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850932A1 (fr) 1996-12-30 1998-07-01 Centre National De La Recherche Scientifique (Cnrs) Sels d'anions hétérocycliques, et leurs utilisations comme matéreiaux à conductin ionique
JP2000251906A (ja) * 1999-03-01 2000-09-14 Agency Of Ind Science & Technol 固体高分子電解質膜及びこれを用いたバイポーラ膜型燃料電池
JP2003123791A (ja) 2001-10-09 2003-04-25 Masayoshi Watanabe プロトン伝導体及びこれを用いた燃料電池
WO2003035609A1 (en) 2001-10-25 2003-05-01 3M Innovative Properties Company Zwitterionic imides
JP2003242996A (ja) 2002-02-14 2003-08-29 Toyota Motor Corp 高分子電解質及び燃料電池
US20040057835A1 (en) 2002-09-24 2004-03-25 Kirby Brian J. Method for improving the performance of electrokinetic micropumps
JP2004220837A (ja) 2003-01-10 2004-08-05 Toyota Motor Corp 高分子電解質及び高分子電解質の製造方法並びに燃料電池
JP2005166598A (ja) 2003-12-05 2005-06-23 Samsung Sdi Co Ltd 固体高分子電解質および燃料電池
JP2005228588A (ja) 2004-02-13 2005-08-25 Sony Corp プロトン伝導体及び電気化学デバイス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153371A (ja) 1995-11-30 1997-06-10 Toshiba Corp リン酸型燃料電池
EP1515346B1 (en) * 2002-06-19 2008-09-03 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
WO2005055286A2 (en) * 2003-12-01 2005-06-16 Konarka Technologies, Inc. Zwitterionic compounds and photovoltaic cells containing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850932A1 (fr) 1996-12-30 1998-07-01 Centre National De La Recherche Scientifique (Cnrs) Sels d'anions hétérocycliques, et leurs utilisations comme matéreiaux à conductin ionique
US20030052310A1 (en) 1996-12-30 2003-03-20 Christophe Michot Perfluorinated amide salts and their uses as ionic conducting materials
JP2000251906A (ja) * 1999-03-01 2000-09-14 Agency Of Ind Science & Technol 固体高分子電解質膜及びこれを用いたバイポーラ膜型燃料電池
JP2003123791A (ja) 2001-10-09 2003-04-25 Masayoshi Watanabe プロトン伝導体及びこれを用いた燃料電池
WO2003035609A1 (en) 2001-10-25 2003-05-01 3M Innovative Properties Company Zwitterionic imides
JP2003242996A (ja) 2002-02-14 2003-08-29 Toyota Motor Corp 高分子電解質及び燃料電池
US20040057835A1 (en) 2002-09-24 2004-03-25 Kirby Brian J. Method for improving the performance of electrokinetic micropumps
JP2004220837A (ja) 2003-01-10 2004-08-05 Toyota Motor Corp 高分子電解質及び高分子電解質の製造方法並びに燃料電池
JP2005166598A (ja) 2003-12-05 2005-06-23 Samsung Sdi Co Ltd 固体高分子電解質および燃料電池
JP2005228588A (ja) 2004-02-13 2005-08-25 Sony Corp プロトン伝導体及び電気化学デバイス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROCHIMICA ACTA, vol. 48, no. 14-16, 30 June 2003 (2003-06-30), pages 2079 - 2083
See also references of EP1796193A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294241A (ja) * 2006-04-25 2007-11-08 Jsr Corp プロトン伝導膜
JP2008177135A (ja) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd 燃料電池用触媒電極およびその製造方法
JP2008243638A (ja) * 2007-03-28 2008-10-09 Toyota Central R&D Labs Inc 複合電解質及び固体高分子型燃料電池
JP2009016172A (ja) * 2007-07-04 2009-01-22 Nissan Motor Co Ltd 膜電極接合体及びその製造方法
JP2014531036A (ja) * 2011-10-25 2014-11-20 エムエスアーアウアー ゲーエムベーハーMsa Auer Gmbh アンモニア及びアミンを検出するための、電解質としてイオン液体を備えた電気化学式ガスセンサ
WO2015151977A1 (ja) * 2014-03-31 2015-10-08 リンテック株式会社 双性イオン化合物およびイオン伝導体

Also Published As

Publication number Publication date
JP4838134B2 (ja) 2011-12-14
US20070231647A1 (en) 2007-10-04
JPWO2006025482A1 (ja) 2008-05-08
EP1796193A4 (en) 2010-12-01
US8697309B2 (en) 2014-04-15
EP1796193B1 (en) 2011-12-14
EP1796193A1 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
WO2006025482A1 (ja) プロトン伝導体およびそれを用いた燃料電池
Drvarič Talian et al. Fluorinated ether based electrolyte for high-energy lithium–sulfur batteries: Li+ solvation role behind reduced polysulfide solubility
Ganapatibhotla et al. PEGylated imidazolium ionic liquid electrolytes: thermophysical and electrochemical properties
Mandai et al. Phase diagrams and solvate structures of binary mixtures of glymes and Na salts
RU2374257C2 (ru) Ионная жидкость, содержащая ион фосфония, и способ ее получения
JP2004307814A (ja) シリカゲル組成物、プロトン交換膜電極膜複合体、及び燃料電池
US20130180591A1 (en) Electrolyte formulations
JP2007523066A (ja) 複素環がグラフトされたモノマー及び関連するポリマー、並びにハイブリッド無機−有機ポリマー膜
US8524388B2 (en) Superbase-derived protic ionic liquids
US10673095B2 (en) Electrochemical cells having ionic liquid-containing electrolytes
Morales-Ugarte et al. Electrochemical impedance spectroscopy and x-ray photoelectron spectroscopy study of lithium metal surface aging in imidazolium-based ionic liquid electrolytes performed at open-circuit voltage
WO2005078838A1 (ja) プロトン伝導体及び電気化学デバイス
JP2018172266A (ja) リチウム塩錯化合物、リチウム二次電池用添加剤、及び、リチウム塩錯化合物の製造方法
US20040222401A1 (en) Electrochemically stable onium salts and electrolytes containing such for electrochemical capacitors
KR20120120314A (ko) 전해질 조성물
Shah et al. Structural and ion dynamics in fluorine-free oligoether carboxylate ionic liquid-based electrolytes
Pozo-Gonzalo et al. Understanding of the electrogenerated bulk electrolyte species in sodium-containing ionic liquid electrolytes during the oxygen reduction reaction
JP6371157B2 (ja) イオン液体、レドックスフロー二次電池用電解液、レドックスフロー二次電池および塩
Krueger et al. Redox mediators for faster lithium peroxide oxidation in a lithium–oxygen cell: a scanning electrochemical microscopy study
JP5852656B2 (ja) 官能化フルオロアルキルフルオロリン酸塩
Rollins et al. Kinetics and thermodynamics of hydrogen oxidation and oxygen reduction in hydrophobic room-temperature ionic liquids
JP2010058046A (ja) プロトン性溶媒除去剤及びプロトン性溶媒除去方法
JP5532593B2 (ja) 燃料電池
JP4094924B2 (ja) 有機−無機ハイブリッド型プロトン伝導材料及び燃料電池
JP6010252B2 (ja) 双性イオン化合物およびイオン伝導体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532780

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005776899

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11574699

Country of ref document: US

Ref document number: 2007231647

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005776899

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11574699

Country of ref document: US