WO2006025165A1 - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
WO2006025165A1
WO2006025165A1 PCT/JP2005/013782 JP2005013782W WO2006025165A1 WO 2006025165 A1 WO2006025165 A1 WO 2006025165A1 JP 2005013782 W JP2005013782 W JP 2005013782W WO 2006025165 A1 WO2006025165 A1 WO 2006025165A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
injection
chamber
control chamber
Prior art date
Application number
PCT/JP2005/013782
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Hotta
Yoshifumi Wakisaka
Kiyomi Kawamura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Denso Corporation filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP05767202.4A priority Critical patent/EP1780401B1/en
Priority to US11/632,662 priority patent/US8100345B2/en
Priority to CN200580024320XA priority patent/CN1989336B/zh
Publication of WO2006025165A1 publication Critical patent/WO2006025165A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • F02M57/026Construction details of pressure amplifiers, e.g. fuel passages or check valves arranged in the intensifier piston or head, particular diameter relationships, stop members, arrangement of ports or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/124Throttling of fuel passages to or from the pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/14Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons
    • F02M41/1405Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons pistons being disposed radially with respect to rotation axis
    • F02M41/1411Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons pistons being disposed radially with respect to rotation axis characterised by means for varying fuel delivery or injection timing
    • F02M41/1427Arrangements for metering fuel admitted to pumping chambers, e.g. by shuttles or by throttle-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/18Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps characterised by the pumping action being achieved through release of pre-compressed springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0056Throttling valves, e.g. having variable opening positions throttling the flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/005Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by control of air admission to the engine according to the fuel injected
    • F02M69/007Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by control of air admission to the engine according to the fuel injected by means of devices using fuel pressure deviated from main fuel circuit acting on air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/043Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit upstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • F02M69/18Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • F02M69/18Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
    • F02M69/24Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air the device comprising a member for transmitting the movement of the air throttle valve actuated by the operator to the valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • F02M69/26Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means varying fuel pressure in a fuel by-pass passage, the pressure acting on a throttle valve against the action of metered or throttled fuel pressure for variably throttling fuel flow to injection nozzles, e.g. to keep constant the pressure differential at the metering valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/32Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines with an air by-pass around the air throttle valve or with an auxiliary air passage, e.g. with a variably controlled valve therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/36Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/36Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages
    • F02M69/38Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages using fuel pressure, e.g. by varying fuel pressure in the control chambers of the fuel metering device
    • F02M69/383Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages using fuel pressure, e.g. by varying fuel pressure in the control chambers of the fuel metering device the fuel passing through different passages to injectors or to a drain, the pressure of fuel acting on valves to close or open selectively these passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/44Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for supplying extra fuel to the engine on sudden air throttle opening, e.g. at acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M71/00Combinations of carburettors and low-pressure fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/14Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons
    • F02M2041/1438Arrangements or details pertaining to the devices classified in F02M41/14 and subgroups
    • F02M2041/145Throttle valves for metering fuel to the pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/14Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons
    • F02M2041/1438Arrangements or details pertaining to the devices classified in F02M41/14 and subgroups
    • F02M2041/1455Shuttles per se, or shuttles associated with throttle valve for metering fuel admitted to the pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/43Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel
    • F02M2700/4302Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel whereby air and fuel are sucked into the mixture conduit
    • F02M2700/4323Throttling devices (not control systems thereof)

Definitions

  • the present invention relates to a fuel injection device, and in particular, the fuel stored in the fuel reservoir is ejected from the nozzle hole when the needle opens the nozzle hole by depressurization of the fuel in the injection control chamber, and the fuel pressure in the injection control chamber is increased.
  • the present invention relates to a fuel injection device in which the injection of fuel from the nozzle hole is stopped by closing the nozzle hole by $ 21.
  • the pressure in the injection control chamber 3 is reduced to near atmospheric pressure by connecting the injection control chamber 3 to the drain 22 through the orifice 35 by the injection control valve 7.
  • the needle 51 moves to the injection control chamber 3 side and the injection hole 2 3 Opens.
  • the fuel stored in the fuel reservoir 52 is ejected from the nozzle hole 23 into the combustion chamber of the internal combustion engine (not shown).
  • the pressure increase piston 10 When the pressure in the pressure increase control chamber 10 0 2 is reduced to near atmospheric pressure by connecting the pressure increase control chamber 10 2 with the drain 2 2 by the pressure increase control valve 8, the pressure increase piston 10 is activated. As a result, the pressure of the fuel in the pressure increasing chamber 10 3 increases, and the pressure of the fuel stored in the fuel reservoir 5 2 increases. As a result, the fuel stored in the fuel reservoir 52 can be pressurized and injected.
  • the pressure increasing chamber 10 03 communicates with the injection control chamber 3 through the orifice 60, so that the pressure in the pressure increasing chamber 10 03 increased by the pressure increasing piston 10 is stored in the fuel reservoir 5. In addition to 2, the fuel is also supplied to the injection control chamber 3 through the orifice 60.
  • the pressure in the pressure increasing chamber 10 3 increased by the pressure increasing piston 10 is injected into the injection control chamber via the orifice 60 in addition to the fuel reservoir 52. 3 is also supplied.
  • the injection control chamber 3 communicates with the drain 22 through the orifice 35, a part of the fuel increased by the pressure-increasing piston 10 is drained through the injection control chamber 3. 2 will be discharged to 2. Shi Therefore, there is a problem that it is difficult to efficiently inject the fuel stored in the fuel reservoir 52 by increasing the pressure by the pressure increasing piston 10.
  • the fuel injection device according to the present invention employs the following configuration in order to achieve at least a part of the above-described object.
  • a fuel injection device includes: a fuel reservoir that stores fuel supplied from a fuel supply source; a dollar that opens and closes an injection hole through which the fuel stored in the fuel reservoir ejects; An injection control chamber that is supplied with fuel pressure from the fuel supply source, and the needle is stored in the fuel reservoir by opening the nozzle hole by depressurizing the fuel in the injection control chamber.
  • the fuel injection device stops fuel injection from the nozzle hole by closing the nozzle hole due to the pressure increase of the fuel in the injection control chamber and closing the nozzle hole.
  • the fuel pressure is supplied from the fuel supply source to the fuel reservoir and the injection control chamber so that the fuel supply pressure to the fuel reservoir is lower than the fuel supply pressure to the injection control chamber.
  • the fuel supply pressure from the fuel supply source and the injection control are controlled so that the fuel supply pressure to the fuel reservoir is lower than the fuel supply pressure to the injection control chamber.
  • the needle By supplying fuel pressure to the chamber, the needle It is possible to increase the force acting on the nozzle hole side. Therefore, in the valve closing process in which the dollar closes the nozzle hole, the moving speed to the nozzle hole side of the dollar can be increased. According to the present invention, when the dollar closes the nozzle hole, This can improve the fuel injection shortage.
  • the fuel injection device in the valve closing process, fuel pressure is supplied from the fuel supply source to the fuel reservoir via the first throttle portion, and from the fuel supply source via the second throttle portion.
  • the fuel pressure is supplied to the injection control chamber, and the flow passage area of the first throttle portion can be smaller than the flow passage area of the second throttle portion.
  • the fuel supply pressure from the fuel supply source is reduced so that the fuel supply pressure to the fuel reservoir is lower than the fuel supply pressure to the injection control chamber. Fuel pressure can be supplied to the control chamber.
  • the fuel pressure in the valve closing process, may be supplied from the injection control chamber to the fuel reservoir via the throttle portion.
  • the fuel supply pressure from the fuel supply source to the fuel reservoir and the injection control chamber is such that the fuel supply pressure to the fuel reservoir is lower than the fuel supply pressure to the injection control chamber. The fuel pressure can be supplied.
  • the fuel injection device may further include a pressure increasing device that increases the pressure of the fuel stored in the fuel reservoir by the operation of the pressure increasing piston.
  • the pressure increasing device communicates with the fuel reservoir, the pressure increasing chamber is increased by the operation of the pressure increasing piston, and the pressure increasing piston is connected to the pressure increasing chamber side.
  • the pressure chamber is supplied with pressure for pressing from the fuel supply source, and the pressure is controlled to control the operation of the pressure boosting piston by supplying pressure for pressing the pressure boosting piston to the pressure chamber side.
  • the pressure chamber is pressed against the pressure increasing chamber side by the pressure in the pressurizing chamber, the area pressed against the pressure chamber side by the pressure in the pressure increasing chamber, It may be set smaller than the sum of the area pressed to the pressurizing chamber side by the pressure in the room. In this way, in the valve closing process in which the needle closes the nozzle hole, even if the fuel supply pressure to the fuel reservoir communicating with the pressure increase chamber is lower than the fuel supply pressure to the injection control chamber, the pressure increase piston is surely secured. It is possible to return to the initial position.
  • the fuel flow rate that flows out from the injection control chamber in the valve opening stroke in which the needle opens the nozzle hole flows into the injection control chamber in the valve closing stroke.
  • the fuel injection rate in the valve opening process can be adjusted.
  • the fuel injection rate characteristic can be appropriately changed according to the operating state of the internal combustion engine.
  • the fuel injection rate of the fuel supply source is controlled so that the fuel injection rate in the valve opening stroke is suppressed below a predetermined injection rate.
  • the pressure can also be adjusted. In this way, it is possible to realize a fuel injection rate characteristic in which the injection rate at the initial injection is suppressed during low-load operation of the internal combustion engine.
  • the valve opening caused by the flow rate of the fuel flowing out from the injection control chamber being smaller than the flow rate of the fuel flowing into the injection control chamber
  • the fuel pressure in the fuel supply source may be adjusted so that the fuel injection rate drop during the stroke is compensated. In this way, it is possible to realize a fuel injection rate characteristic that can obtain a high injection rate at an early stage during high-load operation of the internal combustion engine.
  • a control valve that selectively communicates the injection control chamber with the fuel supply source or drain, and a control valve provided between the control valve and the injection control chamber, the fuel from the injection control chamber to the control valve is provided.
  • a one-way orifice that has a smaller flow path area when fuel flows from the control valve to the injection control chamber than the flow path area when fuel flows.
  • the pressure increasing device communicates with the fuel reservoir and controls the operation of the pressure increasing piston and the pressure increasing chamber that is increased by the operation of the pressure increasing piston. Therefore, the fuel supply pressure from the pressure increasing chamber to the injection control chamber is shut off, and the fuel pressure and pressure increase in the injection control chamber are controlled.
  • the fuel pressure in the pressure control chamber may be controlled by a common control valve. In this way, it is possible to efficiently perform the operation of injecting fuel by increasing the pressure by the pressure increasing piston.
  • the communication between the pressure increasing chamber and the injection control chamber may be cut off.
  • the pressure increasing chamber is connected to the injection control chamber via a check valve, and the check valve allows fuel flow from the injection control chamber to the pressure increasing chamber. At the same time, the flow of fuel from the pressure increasing chamber to the injection control chamber can be cut off. In this way, it is possible to prevent the fuel boosted by the pressure boosting piston from being supplied to the injection control chamber.
  • the pressure increasing chamber is connected to the pressure increasing control chamber via a check valve, and the check valve flows fuel from the pressure increasing control chamber to the pressure increasing chamber.
  • the flow of fuel from the pressure increasing chamber to the pressure increasing control chamber can be cut off. In this way, it is possible to prevent the fuel boosted by the booster piston from being supplied to the booster control chamber.
  • the fuel injection device includes a fuel reservoir that stores fuel supplied from a fuel supply source, a dollar that opens and closes an injection hole through which the fuel stored in the fuel reservoir is ejected, and a needle.
  • An injection control chamber in which the pressure of the fuel for pressing toward the hole side is supplied from the fuel supply source, a fuel injection section having the pressure increasing piston that increases the pressure of the fuel stored in the fuel reservoir by the operation of the pressure increasing piston
  • the fuel stored in the fuel reservoir is ejected from the nozzle hole when the needle opens the nozzle hole by depressurizing the fuel in the injection control chamber, and the needle is ejected from the pressure increase of the fuel in the injection control chamber.
  • a fuel injection device in which the injection of fuel from the nozzle hole stops by closing the nozzle hole, and the flow rate of the fuel flowing out of the injection control chamber during the valve opening process in which the needle opens the nozzle hole, Close in the closing process
  • the fuel flows into and out of the injection control chamber so that it is less than the flow rate of fuel flowing into the control chamber, and in the fuel reservoir when the boosting piston is activated by adjusting the fuel pressure in the fuel supply source.
  • the gist is that the fuel injection rate in the valve opening process can be adjusted by adjusting the fuel pressure.
  • the fuel injection rate characteristic can be appropriately changed according to the operating state of the internal combustion engine by adjusting the fuel injection rate in the valve opening stroke in which the dollar opens the nozzle hole.
  • the fuel injection device includes a fuel reservoir that stores fuel supplied from a fuel supply source, a needle that opens and closes an injection hole through which the fuel stored in the fuel reservoir is ejected, and a needle that is connected to the injection hole side.
  • An injection control chamber in which the pressure of the fuel for pressing the fuel is supplied from the fuel supply source, a fuel injection section having the pressure increasing device for increasing the pressure of the fuel stored in the fuel reservoir by the operation of the pressure increasing piston The fuel stored in the fuel reservoir is ejected from the nozzle hole by opening the nozzle hole due to the pressure reduction of the fuel in the injection control chamber, and the fuel pressure in the injection control chamber is increased by the pressure increase.
  • a fuel injection device in which the injection of fuel from the nozzle hole stops when the dollar closes the nozzle hole, and the pressure increasing device communicates with the fuel reservoir and has a pressure increasing chamber that is increased by the operation of the pressure increasing piston.
  • the supply of fuel to control the operation of the booster piston A pressure increase control chamber in which the supply pressure is controlled, and the fuel supply from the pressure increase chamber to the injection control chamber is interrupted, and the fuel pressure in the injection control chamber and the fuel in the pressure increase control chamber
  • the gist is that the pressure is controlled by a common control valve.
  • the present invention it is possible to prevent the fuel boosted by the booster piston from being supplied to the injection control chamber, so that the operation of injecting the fuel by boosting the fuel by the booster piston can be performed efficiently. Can do.
  • FIG. 1 is a diagram schematically showing the configuration of the fuel injection device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an outline of the configuration of the pressure booster in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an outline of the configuration of the fuel injection device used for the analysis of the fuel injection rate and the like.
  • FIG. 4 is a diagram showing an outline of the configuration of the fuel injection device used for analyzing the fuel injection rate and the like.
  • Fig. 5 shows the analysis results of the fuel injection rate.
  • FIG. 6 is a diagram schematically showing the configuration of the fuel injection device according to the second embodiment of the present invention.
  • Fig. 7 shows the results of analysis such as the fuel injection rate.
  • Fig. 8 shows the analysis results of the fuel injection rate.
  • FIG. 9 is a diagram showing the actual opening area characteristics of the fuel injection nozzle.
  • FIG. 10 is a diagram showing an outline of another configuration of the fuel injection device according to the embodiment of the present invention.
  • FIG. 11 is a diagram showing an outline of another configuration of the fuel injection device according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing an outline of the configuration of the fuel injection device in the related art.
  • FIG. 1 and 2 are diagrams schematically showing the configuration of the fuel injection device according to the first embodiment of the present invention.
  • FIG. 1 shows the overall configuration
  • FIG. 2 shows the configuration of the pressure booster.
  • the fuel injection device of the present embodiment is applied to, for example, a compression ignition type internal combustion engine, and includes a fuel pressurizing pump 1, a common pressure accumulation chamber (common rail) 2, and an injector 99.
  • the injector 99 is provided corresponding to each cylinder, and includes a fuel injection nozzle 5, a control valve 9, and a pressure booster 100.
  • the fuel injection control using the fuel injection device of the present embodiment is executed by the controller 30.
  • the fuel pressurizing pump 1 pumps up fuel stored in a tank (not shown) and supplies it to the common pressure storage chamber 2.
  • the common pressure accumulating chamber 2 stores the fuel supplied from the fuel pressurizing pump 1 at a predetermined pressure.
  • the common pressure accumulation chamber 2 is provided with a pressure sensor (not shown), and the pressure of the fuel in the common pressure accumulation chamber 2 (common rail pressure) is detected by this pressure sensor.
  • the detection value of the pressure sensor is input to the controller 30, and the control of the regulator (not shown) provided in the common pressure accumulation chamber 2 is controlled so that the fuel pressure in the common pressure accumulation chamber 2 becomes the set pressure. Performed by controller 30.
  • the set pressure here is, for example, a value of about 40 to 14 OMPa, and a larger value is set in the controller 30 as the engine speed and required torque (drive load) are higher.
  • An injection control chamber 3 and a fuel reservoir 52 are formed in the fuel injection nozzle 5.
  • An injection hole 23 is formed at the tip of the fuel injection nozzle 5, and a needle 51 that opens and closes communication between the fuel reservoir 52 and the injection hole 23 is slid in the fuel injection nozzle 5. It is housed in the house.
  • the fuel injection nozzle 5 can inject the fuel stored in the fuel reservoir 52 by the operation of the needle 51 into the combustion chamber of an internal combustion engine (not shown) from the injection hole 23.
  • the injection control chamber 3 is connected to a common pressure accumulating chamber 2 and a drain 2 2 via an injection control chamber orifice (throttle portion) 3 3, a pipe line 7 1, and a control valve 9.
  • the fuel pressure in the injection control chamber 3 presses the needle 51 toward the nozzle hole 23 side.
  • the injection control chamber orifice 3 3 is provided at the entrance / exit of the injection control chamber 3.
  • the fuel reservoir 52 is connected to the pressure booster 100 via the pipe line 72. The pressure of the fuel in the fuel reservoir 52 pushes the needle 51 toward the injection control chamber 3 side. Further, the needle valve closing spring 53 generates a force that urges the dollar 51 to the nozzle hole 23 side.
  • the area BN 1 where 21 dollars 5 1 is pressed to the injection hole 2 3 side by the fuel pressure in the injection control chamber 3 is controlled by the needle 5 1 by the fuel pressure in the fuel reservoir 5 2.
  • the area of the surface pressed to the chamber 3 side is set equal to BN 2.
  • the pressure increasing device 100 has a pressure increasing piston 10, and can increase the pressure of the fuel stored in the fuel reservoir 52 by the operation of the pressure increasing piston 10.
  • a pressurizing chamber 10 01, a pressure increasing chamber 10 3, and a pressure increasing control chamber 10 2 are formed in the pressure increasing device 100.
  • the pressurizing chamber 10 0 1 is connected to the common pressure accumulating chamber 2 via a pipe 74, and the pressure of the fuel from the common pressure accumulating chamber 2 is supplied to the pressurizing chamber 10 01.
  • the pressure of the fuel in the pressurizing chamber 10 0 1 pushes the boosting piston 10 toward the pressurizing chamber 1 0 3.
  • the pressure-increasing control chamber 10 2 is connected to the common pressure accumulating chamber 2 and the drain 2 2 via the pipe line 7 3 and the control valve 9. Further, the pressure-increasing control chamber 10 0 2 is connected to the pressure-increasing chamber 10 0 3 and the fuel reservoir 5 2 through the fuel supply orifice (throttle portion) 61 and the fuel supply check valve (check valve) 6 2.
  • the fuel supply check valve 6 2 allows the flow of fuel from the pressure-increasing control chamber 10 02 to the pressure-increasing chamber 1 0 3 and the fuel reservoir 5 2, and the pressure-increasing chamber 1 0 3
  • the flow of fuel from the fuel reservoir 52 to the pressure increase control chamber 102 is shut off.
  • the pressure of the fuel in the pressure increasing control chamber 102 presses the pressure increasing piston 10 toward the pressurizing chamber 101 side.
  • the pressure increasing chamber 103 and the fuel reservoir 52 are connected via a pipe 72.
  • the booster piston 10 includes a large-diameter portion 10-1 that receives the pressure of the fuel in the booster control chamber 102 at one end toward the pressurizing chamber 101 side, and an inner end of the booster chamber 103 at one end.
  • the other end of the large-diameter portion 10-1 is connected to the other end of the large-diameter portion 10-1, and the other end of the large-diameter portion 10-1 is connected to the other end.
  • a medium-diameter portion 10-3 that receives the pressure of the fuel in the pressurizing chamber 101 at the end toward the pressure-increasing chamber 103.
  • the area B 1 of the surface where the booster piston 10 (the other end of the medium diameter portion 10-3) is pressed toward the booster chamber 103 by the pressure of the fuel in the 3 ⁇ 41 pressure chamber 101 is equal to the booster piston 10
  • the area B 3 of the surface (one end of the large-diameter portion 10-1) pressed against the pressurizing chamber 101 side by the pressure of the fuel in the pressure-increasing control chamber 102 and the pressure-increasing piston 10 (one end of the small-diameter portion 10_2) ) Is set smaller than the sum of the area B 4 of the surface pressed to the pressurizing chamber 101 side by the pressure of the fuel in the pressurizing chamber 103. Since d3> d2, B1> B4.
  • a back pressure chamber 104 is further formed in the pressure booster 100 of this embodiment.
  • the back pressure chamber 104 communicates with the external drain 22 through the orifice (throttle portion) 105, so that atmospheric pressure is supplied to the back pressure chamber 104.
  • the control valve 9 includes a first state (a state on the left side in FIG. 1) in which the pressure increase control chamber 102 and the injection control chamber 3 are communicated with the common pressure accumulation chamber 2, and a drainage of the pressure increase control chamber 102 and the injection control chamber 3. It is possible to switch between the second state (the state on the right side of Fig. 1) that communicates with 22 and.
  • the fuel pressure in the common accumulator 2 Common rail pressure
  • the pressure of the fuel in the common pressure accumulating chamber 2 is also supplied to the pressure increasing chamber 103 and the fuel reservoir 5 2 through the fuel supply orifice 61 and the fuel supply check valve 62.
  • the fuel in the pressure increase control chamber 10 2 and the fuel in the injection control chamber 3 are discharged to the drain 2 2, and the pressure in the pressure increase control chamber 1 0 2
  • the pressure in the injection control chamber 3 drops and approaches atmospheric pressure.
  • the fuel pressure in the pressure increase control chamber 102 and the fuel pressure in the injection control chamber 3 are controlled by the common control valve 9. The fuel flows into and out of the injection control chamber 3 through the injection control chamber orifice 33.
  • the controller 30 controls the pressure in the common pressure accumulation chamber 2 so that the fuel pressure in the common pressure accumulation chamber 2 becomes the set pressure. Then, the controller 30 performs switching control of the control valve 9 in order to control the fuel injection timing.
  • the flow passage area A 1 of the fuel supply orifice 61 is smaller than the flow passage area A 2 of the injection control chamber orifice 3 3.
  • Channel areas A l and A 2 are set. Further, since the pressure increasing chamber 10 3 is not connected to the injection control chamber 3 by a pipe line, the communication between the pressure increasing chamber 10 3 and the injection control chamber 3 is blocked.
  • the control valve 9 When the fuel is not injected, the control valve 9 is kept in the first state.
  • the pressure of the fuel in the pressurizing chamber 10 01, the pressure increasing chamber 1 0 3, and the pressure increasing control chamber 1 0 2 is the same as that of the fuel in the common pressure accumulating chamber 2. It is equal to the pressure (common rail pressure).
  • the pressure-increasing piston 10 is urged toward the pressurizing chamber 1001, and is fixed at the initial position by a stopper (not shown). Therefore, if the control valve 9 is in the first state, In this case, the fuel pressure is not boosted by the pressure booster 100.
  • the control valve 9 When the control valve 9 is in the first state, the fuel pressure in the injection control chamber 3 and the fuel reservoir 52 is equal to the fuel pressure (common rail pressure) in the common pressure accumulation chamber 2. At this time, the needle 51 is biased toward the nozzle hole 2 3 by the needle valve closing spring 53, thereby closing the nozzle hole 23. Therefore, when the control valve 9 is in the first state, the needle 51 does not operate and fuel is not injected. On the other hand, at the time of fuel injection, the control valve 9 is switched from the first state to the second state. When the control valve 9 is switched to the second state, the pressure-increasing control chamber 1002 communicates with the drain 222, and the pressure in the pressure-increasing control chamber 102 is reduced to near atmospheric pressure.
  • the force F b 1 + F b 2 acting on the pressure-increasing chamber 10 0 acting on the pressure-increasing piston 51 due to the fuel pressure is the force F b 3 + F b 4 acting on the pressure chamber 1 0 1 side Above.
  • the pressure-increasing piston 10 is actuated to increase the pressure of the fuel in the pressure-increasing chamber 103, and the pressure of the fuel stored in the fuel reservoir 52 is increased.
  • B 1 / B 4 is the pressure increase ratio.
  • the injection control chamber 3 communicates with the drain 22 through the injection control chamber orifice 33, thereby reducing the pressure in the injection control chamber 3 and reducing the atmospheric pressure. Become close. At this time, the force acting on the needle 51 to the injection control chamber 3 side exceeds the force to the injection hole 23 side. Therefore, the needle 51 is activated and moved to the injection control chamber 3 side, and the injection hole 23 is opened (valve opening process). As a result, the fuel stored in the fuel reservoir 52 is ejected from the nozzle hole 23 into the combustion chamber of the internal combustion engine (not shown). As described above, the fuel stored in the fuel reservoir 52 is boosted by the pressure booster 100, so that the fuel can be injected by being boosted by the pressure booster 100.
  • the operation of the pressure increase piston 10 and the needle 5 1 also works. Therefore, in a state where the fuel in the injection control chamber 3 is not depressurized, the needle 51 moves to the injection control chamber 3 side due to the pressure increase of the fuel in the fuel reservoir 52, and the nozzle hole 23 opens. There is no.
  • the pressure increasing piston 10 when the pressure increasing piston 10 is operated to move toward the pressure increasing chamber 10 3, the volume of the back pressure chamber 10 4 is increased.
  • the back pressure chamber 10 4 communicates with the external drain 2 2, and external atmospheric pressure is supplied to the back pressure chamber 10 4. Therefore, the pressure in the back pressure chamber 10 4 is kept at atmospheric pressure, and the pressure in the back pressure chamber 10 4 is prevented from becoming smaller than the atmospheric pressure (becomes negative pressure). Therefore, generation of cavitation and erosion due to negative pressure is prevented.
  • the control valve 9 When stopping fuel injection, the control valve 9 is switched from the second state to the first state.
  • the control valve 9 When the control valve 9 is switched to the first state, the common rail pressure is supplied into the pressure increase control chamber 1 0 2.
  • the force F b 3 + F b 4 on the pressurizing chamber 10 0 1 acting on the pressure-increasing piston 10 due to the fuel pressure is the force F b 1 + F b 2 on the pressure increasing chamber 1 0 2 side Therefore, the pressure-increasing piston 10 moves to the pressurizing chamber 1001 side and is returned to the initial position.
  • the common rail pressure is supplied into the injection control chamber 3 through the injection control chamber orifice 33.
  • the common rail pressure is supplied to the fuel reservoir 5 2 through the fuel supply orifice 61. 21
  • One dollar 5 1 receives a force toward the nozzle hole 2 3 side by the needle valve closing spring 5 3, so that the force toward the nozzle hole 2 3 side acting on the needle 5 1 is applied to the injection control chamber 3 side. Overpower. Therefore, when the needle 51 moves to the nozzle hole 23 side, the nozzle hole 23 is closed (valve closing process), and fuel injection from the nozzle hole 23 stops.
  • the fuel pressure is supplied from the common pressure accumulating chamber 2 to the injection control chamber 3 through the injection control chamber orifice 33.
  • fuel pressure is supplied from the common pressure accumulating chamber 2 to the fuel reservoir 5 2 through the fuel supply orifice 61.
  • the flow passage area of the fuel supply orifice 61 Since A 1 is smaller than the flow path area A 2 of the injection control chamber orifice 33, the flow rate into the fuel reservoir 52 is smaller than the flow rate into the injection control chamber 3.
  • valve closing stroke fuel is supplied from the common pressure accumulation chamber 2 to the fuel reservoir 52 and the injection control chamber 3 so that the fuel supply pressure to the fuel reservoir 52 is lower than the fuel supply pressure to the injection control chamber 3. Pressure is supplied. Therefore, in the valve closing stroke, the force toward the nozzle hole 23 acting on the needle 51 can be increased, and the moving speed (valve closing speed) of the needle 51 toward the nozzle hole 23 can be increased.
  • the fuel is supplied from the common pressure accumulating chamber 2 to the pressure increasing chamber 103 via the fuel supply orifice 61, so that the fuel pressure in the pressure increasing chamber 103 is increased.
  • the pressure on the pressurizing chamber 10 1 side acting on the pressure-increasing piston 10 becomes lower than the fuel pressure in the control chamber 102 and the fuel pressure in the pressurizing chamber 101 Fb 4 Decreases.
  • the force Fb3 + Fb4 to the pressurization chamber 101 side by the fuel pressure is the force to the pressurization chamber 103 side Fb1 It is possible to reliably maintain a state larger than + Fb 2. In order for the boosting piston 10 to return to the initial position, the following equation (1) must be satisfied.
  • the pressure increasing piston 10 moves toward the pressurizing chamber 101 and returns to the initial position, the volume of the back pressure chamber 104 decreases.
  • the back pressure chamber 104 communicates with the external drain 22, the fuel in the back pressure chamber 104 decreases as the volume of the back pressure chamber 104 decreases. Drained. Therefore, the pressure in the back pressure chamber 104 is kept at atmospheric pressure,
  • FIG. 5 shows the calculation results.
  • Fig. 5 (A) shows the waveforms of the pressure in the pressure increase control chamber 102 and the pressure in the pressure increase chamber 103 with respect to the crank angle.
  • FIG. 5 (B) shows the waveform of the pressure in the injection control chamber 3 with respect to the crank angle
  • Fig. 5 (C) shows the waveform of the displacement of the needle 51 with respect to the crank angle
  • Fig. 5 (D) shows the fuel injection rate (mm 3 The waveform for the crank angle of Zs) is shown.
  • the pressure increasing chamber 103 is connected to the injection control chamber 3 via the fuel supply orifice (throttle portion) 63, and the pressure increasing chamber 103 and Fuel pressure is supplied to the fuel reservoir 52 from the injection control chamber 3 through the fuel supply orifice 63.
  • the fuel supply orifice 61 and the fuel supply check valve 62 are omitted, and the pipe line for connecting the pressure increase control chamber 102 and the pressure increase chamber 103 is also omitted.
  • the fuel supply orifice 61 is omitted as compared with the configuration shown in FIG.
  • injection control chamber orifice 33 inner diameter is 0.36 mm
  • fuel supply orifices 61 and 63 inner diameter is 0.1 mm
  • common pressure accumulation The pressure in chamber 2 (common rail pressure) was 135 MPa.
  • the fuel pressure is supplied from the injection control chamber 3 to the fuel reservoir 52 through the fuel supply orifice 63, so that the inflow flow rate to the fuel reservoir 52 is controlled by injection control. Less than the inflow flow rate to chamber 3. Therefore, even in the configuration shown in FIG.
  • the fuel pressure in the pressure increasing chamber 103 can be suppressed by the configuration shown in FIG.
  • the valve closing speed of the needle 51 can be made faster than the configuration shown in FIG. 4 as shown in part C of FIG. 5 (C).
  • the fuel in the pressure-increasing chamber 10 3 increased by the pressure-increasing piston 10 3 is injected not only from the fuel reservoir 5 2 but also from the fuel supply orifice 6 3 to the injection control chamber 3. Will also be supplied. Therefore, as shown in part A 1 of FIG. 5 (A), the pressure in the pressure-increasing chamber 103 during the injection period is lower than that shown in FIGS. 1 and 4, and part A 2 in FIG. 5 (D). As shown in Fig. 4, the maximum injection rate during the injection period is also lower than that shown in Figs.
  • the fuel in the pressure-increasing chamber 10 3 increased by the pressure-increasing piston 10 can be applied only to the pressure increase of the fuel stored in the fuel reservoir 52. . Therefore, the pressure in the pressure increasing chamber 10 3 during the injection period can be kept higher than the configuration shown in FIG. 3 as shown in A 1 part of FIG. 5 (A). As shown in Fig. 3, the maximum injection rate during the injection period can be kept higher than the configuration shown in Fig. 3. However, in the configuration shown in FIG. 4, during the valve closing stroke, the fuel pressure in the pressure increasing chamber 103 (fuel reservoir 5 2) is not suppressed as shown in part B of FIG. 5 (A).
  • the fuel in the pressure-increasing chamber 10 3 increased by the pressure-increasing piston 10 can be applied only to the pressure increase of the fuel stored in the fuel reservoir 52. Therefore, as shown in part A1 of Fig. 5 (A), the pressure in the pressure increasing chamber 10 3 during the injection period can be kept higher than that shown in Fig. 3, and part A2 in Fig. 5 (D). As shown in Fig. 3, the maximum injection rate during the injection period can be kept higher than that shown in Fig. 3.
  • the force to the nozzle hole 2 3 acting on the needle 5 1 can be increased, and the valve closing speed of the needle 5 1 can be increased.
  • the valve closing speed of the needle 5 1 can be increased.
  • 1 0 1 side force F b 3 + F b 4 can be reliably kept larger than the pressure chamber 1 0 3 side force F bl + F b 2. Therefore, the pressure increasing piston 10 can be reliably returned to the initial position.
  • the present embodiment it is possible to prevent the fuel boosted by the pressure boosting piston 10 from being discharged to the drain 22 via the injection control chamber 3, and the pressure boosting chamber thus boosted.
  • the fuel in 10 3 can act only on the pressure increase of the fuel stored in the fuel reservoir 52. Therefore, it is possible to efficiently perform the operation of injecting the fuel by the pressure-increasing piston 10.
  • FIG. 6 is a diagram showing an outline of the configuration of the fuel injection device according to the second embodiment of the present invention.
  • a one-way orifice 34 is provided between the control valve 9 and the injection control chamber 3 as compared with the configuration shown in FIG.
  • the one-way orifice 3 4 is composed of an injection rate control orifice (throttle part) 3 1, an injection rate control check valve (check valve) 3 2, and an injection control chamber orifice (throttle part) 3 3.
  • the injection rate control orifice 31 and the injection control chamber orifice 3 3 are provided at the entrance / exit of the injection control chamber 3 in parallel with each other.
  • the injection rate control check valve 3 2 is provided in series with the injection rate control orifice 31, and allows fuel flow from the control valve 9 to the injection control chamber 3. Shut off fuel flow from 3 to control valve 9.
  • An injection rate control orifice 31 can be formed in the injection rate control check valve 32 and integrated.
  • the flow passage area A 1 of the fuel supply orifice 61 is The flow area A 1, A 2, A 3 is set to be smaller than the sum of the flow area A 2 of the injection control chamber orifice 3 3 and the flow area A 3 of the injection rate control orifice 3 1. .
  • the other configuration is the same as the configuration shown in FIG. 1 of the first embodiment, and a description thereof will be omitted.
  • the injection control chamber 3 communicates with the drain 2 2 via the injection control chamber orifice 3 3 in the one-way orifice 3 4,
  • the pressure in the injection control chamber 3 decreases and approaches atmospheric pressure.
  • the needle 51 is activated and moved to the injection control chamber 3 side, and the injection hole 23 is opened (valve opening process).
  • the flow of fuel through the injection rate control orifice 31 is blocked by the injection rate control check valve 32.
  • the injection rate control orifice 3 1 and the injection control chamber orifice which are in parallel with each other in the one-way orifice 34 Common rail pressure is supplied into the injection control chamber 3 through 3 3.
  • the needle 51 moves to the nozzle hole 23 side and the nozzle hole 23 is closed (valve closing process).
  • the outflow of fuel through the injection rate control orifice 31 is blocked during the valve opening process in which the needle 51 opens the nozzle hole 23, and the needle 51 passes through the nozzle hole 23.
  • the closing valve closing stroke fuel is allowed to flow through the injection rate control orifice 3 1. Therefore, the flow rate of the fuel flowing out from the injection control chamber 3 during the valve opening stroke is smaller than the flow rate of the fuel flowing into the injection control chamber 3 during the valve closing stroke.
  • the controller 30 controls the fuel pressure in the fuel reservoir 52 when the pressure-increasing piston 10 is operated by the fuel pressure control in the common pressure accumulating chamber 2.
  • the fuel injection rate in the valve opening stroke can be controlled. Details of the control of the fuel injection rate in the valve opening process will be described below.
  • the controller 30 controls the pressure of the fuel in the common pressure accumulating chamber 2 so that the fuel injection rate during the valve opening stroke is suppressed to a predetermined injection rate or less during low load operation of the internal combustion engine.
  • the predetermined injection rate here is set so as to obtain an injection rate characteristic in which the initial injection rate is suppressed, a so-called Dell evening injection rate characteristic.
  • the internal combustion machine During low-load operation of Seki, the lift speed (opening speed) of the needle 51 during the valve opening stroke can be suppressed, so the fuel injection rate during the valve opening stroke can be suppressed, and the initial injection rate can be suppressed.
  • the obtained delta injection rate characteristic can be obtained. Therefore, NO x suppression and combustion noise reduction can be realized.
  • fuel flows into the injection control chamber 3 through the injection rate control orifice 3 1 in addition to the injection control chamber orifice 3 3, so that the valve closing speed of the needle 51 is increased. It is possible to ensure a good injection cut. Therefore, a good atomization state of the injected fuel can be secured, and stable combustion can be realized.
  • the flow rate of the fuel flowing out from the injection control chamber 3 during the valve opening stroke is smaller than the flow rate of the fuel flowing into the injection control chamber 3 during the valve closing stroke, so that the valve is opened during high load operation of the internal combustion engine. If the fuel injection rate in the stroke is suppressed, it becomes difficult to secure a high output of the internal combustion engine. Therefore, the controller 30 is configured to control the fuel injection rate in the valve opening stroke that occurs when the flow rate of the fuel flowing out from the injection control chamber 3 is smaller than the flow rate of the fuel flowing into the injection control chamber 3 during high-load operation of the internal combustion engine.
  • the fuel pressure in the common accumulator 2 is controlled so that the decrease is compensated.
  • the fuel pressure (common rail pressure) in the common pressure accumulator 2 is obtained so that an injection rate characteristic that can obtain a high injection rate early without suppressing the initial injection rate, or a so-called rectangular injection rate characteristic. ) Is controlled.
  • the force that pressurizes the pressure-increasing piston 10 toward the pressure-increasing chamber 1 0 3 during the operation of the pressure-increasing piston 1 0 increases as the common rail pressure increases, so the moving speed of the pressure-increasing piston 1 0 during operation is the same as the common rail pressure.
  • the lift speed of the needle 51 increases as the pressure in the injection control chamber 3 is relatively lower than the pressure in the fuel reservoir 52.
  • the controller 30 increases the fuel pressure (common rail pressure) in the common accumulator chamber 2 as the load of the internal combustion engine increases, thereby realizing the Dell injection ratio characteristic during low-load operation.
  • the rectangular injection rate characteristics can be realized during high-load operation. Since other operations are the same as those in the first embodiment, description thereof will be omitted.
  • FIG. 6 Using the analysis model of the fuel injection device configured as shown in FIG. 6, the pressure of the fuel reservoir 52, the displacement of the needle 51, and the fuel injection rate were calculated.
  • Figures 7 and 8 show the calculation results.
  • Fig. 7 shows the calculation results during partial load operation
  • Fig. 8 shows the calculation results during full load operation.
  • 7 (A) and 8 (A) show the waveform of the pressure in the fuel reservoir 52 with respect to the crank angle
  • FIGS. 7 (B) and 8 (B) show the waveform of the displacement of the needle 51 with respect to the crank angle.
  • Figures 7 (C) and 8 (C) show the waveforms of fuel injection rate (mm 3 / ms) versus crank angle.
  • the injection control chamber orifice 33 was provided (the injection rate control orifice 31 and the injection rate control check valve 32 were omitted).
  • the analysis model was also calculated as a reference for comparison. .
  • the engine speed and fuel injection amount are 40 MPa, 2660 rpm, and 30 mm 3 respectively, and the common rail pressure, engine rotation speed, and fuel injection amount at full load operation are 135 MPa, 5000 rpm, and It was 1 10 mm 3.
  • the inner diameter of the injection rate control orifice 31 was 0.32 mm
  • the inner diameter of the injection control chamber orifice 33 was 0.16 mm.
  • the inner diameter of the injection control chamber orifice 33 is The thickness was 0.36 mm.
  • the fuel flows out of the injection control chamber 3 only through the injection control chamber orifice 3 3 by closing the injection rate control check valve 32 during the valve opening stroke. Therefore, in the valve opening stroke, the pressure drop speed in the injection control chamber 3 is slow, and the lift speed of the needle 51 is slower than the reference for comparison as shown in part B of FIG. 7 (B). However, as the lift speed of the needle 51 slows down, the fuel ejected from the nozzle hole 23 becomes smaller than the reference for comparison. Therefore, as shown in part A of FIG. Is higher than the reference for comparison.
  • the internal combustion engine when the internal combustion engine is operated at a high load, it is possible to realize the Dell evening injection rate characteristic in which the initial injection rate is suppressed, so that it is possible to suppress NOX and reduce combustion noise.
  • the internal combustion engine at the time of high load operation of the internal combustion engine, a rectangular injection rate characteristic that can obtain a high injection rate at an early stage can be realized, so that a high output of the internal combustion engine can be secured.
  • the fuel supply orifice (throttle portion) 65 and Fuel supply check valve (check valve) 6 6 is provided.
  • the pressure-increasing chamber 10 3 is connected to the pressure-increasing control chamber 10 2 through a fuel supply check valve, a clutch valve 66, a fuel supply orifice 65, and a pipe line 73.
  • the pressure increasing chamber 103 is connected to the injection control chamber 3 via a fuel supply check valve 66, a fuel supply orifice 65, a pipe line 71, and a one-way orifice 34.
  • the fuel supply check valve 6 6 allows the flow of fuel from the pressure increase control chamber 1 '0 2 and the injection control chamber 3 to the pressure increase chamber 10 3, and from the pressure increase chamber 10 3.
  • the flow of fuel to the pressure increase control chamber 1 0 2 and the injection control chamber 3 is shut off.
  • the flow passage area A 4 of the fuel supply orifice 65 is set smaller than the sum of the flow passage area A 2 of the injection control chamber orifice 33 and the flow passage area A 3 of the injection rate control orifice 31. .
  • the force to the nozzle hole 23 acting on the needle 51 during the valve closing stroke can be increased, so that a good injection interruption can be realized. Then, it is possible to prevent the fuel boosted by the pressure boosting piston 10 from being discharged to the drain 22 via the injection control chamber 3, so that the fuel is boosted by the pressure boosting screw.
  • the operation of increasing the pressure by the ton 10 and injecting can be performed efficiently.
  • the fuel supply orifice (throttle part) 6 3 And a check valve for fuel supply (check valve) 6 4 is provided.
  • the pressure-increasing chamber 103 is connected to the injection control chamber 3 via a fuel supply orifice 63 and a fuel supply check valve 64.
  • the fuel supply check valve 6 4 allows the flow of fuel from the injection control chamber 3 to the pressure increasing chamber 10 3 and also controls the flow of fuel from the pressure increasing chamber 10 3 to the injection control chamber 3. Cut off. It is also possible to form a fuel supply orifice 63 in the fuel supply check valve 64 and to integrate them. According to the configuration shown in FIG.
  • the fuel pressure is supplied from the injection control chamber 3 to the fuel reservoir 5 2 through the fuel supply orifice 6 3 and the fuel supply check valve 6 4 in the valve closing process. .
  • the fuel pressure from the common pressure accumulation chamber 2 and the injection control are controlled so that the fuel supply pressure to the fuel reservoir 52 is lower than the fuel supply pressure to the injection control chamber 3.
  • Fuel pressure is supplied to chamber 3. Therefore, it is possible to increase the force to the nozzle hole 2 3 acting on the two dollars 51 and realize a good injection cut.
  • the fuel supplied by the booster piston 10 can be prevented from being discharged to the drain 22 via the injection control chamber 3 by the fuel supply check valve 6 4. The operation of increasing the pressure by 10 and injecting can be performed efficiently.
  • an injection control chamber orifice 33 may be provided instead of the one-way orifice 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 噴射制御室の燃料の減圧によりニードルが噴孔を開けることで燃料溜りに貯溜された燃料が噴孔から噴射され、噴射制御室の燃料の増圧によりニードルが噴孔を閉じることで噴孔からの燃料噴射が停止される。ニードルが噴孔を閉じる閉弁行程においては、燃料溜りへの燃料の供給圧力が噴射制御室への燃料の供給圧力より低くなるように、共通蓄圧室から燃料溜り及び噴射制御室へ燃料の圧力が供給される。これによって、閉弁行程において、ニードルに作用する噴孔側への力を増大させることができ、ニードルの閉弁速度を速めることができる。

Description

明 細 書 燃料噴射装置 「技術分野」
本発明は、 燃料噴射装置に関し、 特に、 噴射制御室の燃料の減圧によりニード ルが噴孔を開けることで燃料溜りに貯溜された燃料が噴孔から噴出し、 噴射制御 室の燃料の増圧により二一ドルが噴孔を閉じることで噴孔からの燃料の噴出が停 止する燃料噴射装置に関する。
「背景技術」
この種の燃料噴射装置の関連技術が特許第 2 8 8 5 0 7 6号明細書及び国際公 開第 0 0 Z 5 5 4 9 6号パンフレットに開示されている。 以下、 この関連技術の 燃料噴射装置について図 1 2を用いて説明する。
燃料を噴射する時期においては、 噴射制御バルブ 7により噴射制御室 3をオリ フィス 3 5を介してドレイン 2 2と連通させることで噴射制御室 3内の圧力を大 気圧近くまで低下させる。 このとき、 二一ドル 5 1に作用する噴射制御室 3側へ の力が噴孔 2 3側への力を上まわるため、 ニードル 5 1が噴射制御室 3側へ移動 して噴孔 2 3が開く。 これによつて、 燃料溜り 5 2に貯溜された燃料が噴孔 2 3 から図示しない内燃機関の燃焼室内へ噴出する。
また、 増圧制御バルブ 8により増圧制御室 1 0 2をドレイン 2 2と連通させる ことで増圧制御室 1 0 2内の圧力を大気圧近くまで低下させると、 増圧ピストン 1 0が作動して増圧室 1 0 3内の燃料の圧力が増大し、 燃料溜り 5 2に貯溜され た燃料の圧力が増大する。 これによつて、 燃料溜り 5 2に貯溜された燃料を増圧 して噴射することができる。 なお、 増圧室 1 0 3がオリフィス 6 0を介して噴射 制御室 3と連通していることで、 増圧ピストン 1 0により増圧された増圧室 1 0 3内の圧力が燃料溜り 5 2の他にオリフィス 6 0を介して噴射制御室 3にも供給 される。 これによつて、 噴射制御室 3をドレイン 2 2と連通させない状態で増圧 制御室 1 0 2をドレイン 2 2と連通させたときに、 ニードル 5 1が噴射制御室 3 側へ移動して噴孔 2 3が開くのを防止している。
一方、 燃料の噴射を停止するときは、 噴射制御バルブ 7により噴射制御室 3と ドレイン 2 2との連通を遮断する。 このとき、 共通蓄圧室.2からチェック弁 5 9 及びオリフィス 6 0を介して噴射制御室 3へ燃料の圧力が供給されることでニー ドル 5 1に作用する噴孔 2 3側への力が噴射制御室 3側への力を上まわるため、 ニードル 5 1が噴孔 2 3側へ移動して噴孔 2 3が閉じる。 そして、 燃料溜り 5 2 及び増圧室 1 0 3にも、 共通蓄圧室 2からチェック弁 5 9を介して燃料が供給さ れる。
また、 増圧制御バルブ 8により増圧制御室 1 0 2を共通蓄圧室 (コモンレー ル) 2と連通させることで増圧制御室 1 0 2内の圧力をコモンレール圧力に増大 させると、 増圧ピストン 1 0の上下の圧力が必要に応じてつり合い、 ばね 9 8の 力によって作動した増圧ピストン 1 0が初期位置へ戻される。
その他の背景技術として、 特公昭 4 7— 3 8 6 4 8号公報、 国際公開第 0 1 / 1 4 7 2 7号パンフレツト、 米国特許第 6 4 2 7 6 6 4号明細書、 及び Kenj i Fu nai他, Inj ect ion Rate Shaping Technology wi th Common Rai l Fuel Sys tem (EC D-U2) " , SAE TECHNICAL PAPER SERIES 960107, 1996/2が開示されている。
図 1 2に示す燃料噴射装置においては、 燃料の噴射を停止するときに、 共通蓄 圧室 2からチェック弁 5 9及びオリフィス 6 0を介して噴射制御室 3へ供給され た燃料の圧力がニードル 5 1を噴孔 2 3側へ押圧する。 しかし、 共通蓄圧室 2か らチェック弁 5 9を介して燃料溜り 5 2へ供給された燃料の圧力がニードル 5 1 を噴射制御室 3側へ押圧することで、 ニードル 5 1が噴孔 2 3を閉じる動作の妨 げとなる。 したがって、 二一ドル 5 1が噴孔 2 3を閉じるときの燃料の噴射切れ が悪化してしまい、 噴射された燃料の微粒化状態が悪化してしまうという問題点 がある。
また、 図 1 2に示す燃料噴射装置においては、 増圧ピストン 1 0により増圧さ れた増圧室 1 0 3内の圧力が燃料溜り 5 2の他にオリフィス 6 0を介して噴射制 御室 3にも供給される。 燃料を噴射するときには、 噴射制御室 3がオリフィス 3 5を介してドレイン 2 2と連通しているため、 増圧ピストン 1 0により増圧され た燃料の一部が噴射制御室 3を介してドレイン 2 2へ排出されることになる。 し たがって、 燃料溜り 5 2に貯溜された燃料を増圧ピストン 1 0により効率よく増 圧して噴射することが困難であるという問題点がある。
また、 内燃機関の低負荷運転時には、 燃焼騒音の低減のために、 噴射初期にお ける燃料噴射率を抑制できることが望ましい。 一方、 内燃機関の高負荷運転時に は、 高出力を確保するために、 噴射初期における燃料噴射率を抑制せずに早期に 高噴射率を確保できることが望ましい。 このように、 内燃機関の運転状態に応じ て燃料噴射率特性を適切に変更できることが望ましい。
本発明は、 二一ドルが噴孔を閉じるときの燃料の噴射切れを改善することがで きる燃料噴射装置を提供することを目的の 1つとする。 また、 本発明は、 燃料を 増圧ピストンにより増圧して噴射する動作を効率よく行うことができる燃料噴射 装置を提供することを目的の 1つとする。 また、 本発明は、 内燃機関の運転状態 に応じて燃料噴射率特性を適切に変化させることができる燃料噴射装置を提供す ることを目的の 1つとする。
「発明の開示」
本発明に係る燃料噴射装置は、 上述の目的の少なくとも一部を達成するために 以下の構成を採った。
本発明に係る燃料噴射装置は、 燃料供給源から供給された燃料を貯溜する燃料 溜りと、 燃料溜りに貯溜された燃料が噴出する噴孔を開閉する二一ドルと、 ニー ドルを噴孔側へ押圧するための燃料の圧力が燃料供給源から供給される噴射制御 室と、 を有する燃料噴射部を備え、 噴射制御室の燃料の減圧によりニードルが噴 孔を開けることで燃料溜りに貯溜された燃料が噴孔から噴出し、 噴射制御室の燃 料の増圧により二一ドルが噴孔を閉じることで噴孔からの燃料の噴出が停止する 燃料噴射装置であって、 二一ドルが噴孔を閉じる閉弁行程において、 燃料溜りへ の燃料の供給圧力が噴射制御室への燃料の供給圧力より低くなるように、 燃料供 給源から燃料溜り及び噴射制御室へ燃料の圧力が供給されることを要旨とする。 この本発明においては、 ニードルが噴孔を閉じる閉弁行程において、 燃料溜り への燃料の供給圧力が噴射制御室への燃料の供給圧力より低くなるように、 燃料 供給源から燃料溜り及び噴射制御室へ燃料の圧力が供給されることで、 ニードル に作用する噴孔側への力を増大させることができる。 したがって、 二一ドルが噴 孔を閉じる閉弁行程において、 二一ドルの噴孔側への移動速度を速めることがで きるので、 この本発明によれば、 二一ドルが噴孔を閉じるときの燃料の噴射切れ を改善することができる。
本発明に係る燃料噴射装置では、 前記閉弁行程において、 燃料供給源から第 1 の絞り部を介して燃料溜りへ燃料の圧力が供給されるとともに、 燃料供給源から 第 2の絞り部を介して噴射制御室へ燃料の圧力が供給され、 第 1の絞り部の流路 面積が第 2の絞り部の流路面積より小さいものとすることもできる。 こうすれば、 二一ドルが噴孔を閉じる閉弁行程において、 燃料溜りへの燃料の供給圧力が噴射 制御室への燃料の供給圧力より低くなるように、 燃料供給源から燃料溜り及び噴 射制御室へ燃料の圧力を供給することができる。
本発明に係る燃料噴射装置では、 前記閉弁行程において、 噴射制御室から絞り 部を介して燃料溜りへ燃料の圧力が供給されるものとすることもできる。 こうす れば、 ニードルが噴孔を閉じる閉弁行程において、 燃料溜りへの燃料の供給圧力 が噴射制御室への燃料の供給圧力より低くなるように、 燃料供給源から燃料溜り 及び噴射制御室へ燃料の圧力を供給することができる。
本発明に係る燃料噴射装置では、 増圧ピストンの作動により燃料溜りに貯溜さ れた燃料の圧力を増大させる増圧装置をさらに備えるものとすることもできる。 増圧装置を備える態様の本発明に係る燃料噴射装置では、 増圧装置は、 燃料溜 りと連通し増圧ピストンの作動により増圧される増圧室と、 増圧ピストンを増圧 室側へ押圧するための圧力が燃料供給源から供給される加圧室と、 増圧ピストン を加圧室側へ押圧するための圧力が供給され増圧ピストンの作動を制御するため に該圧力が制御される制御室と、 を有し、 増圧ピストンに関し、 加圧室内の圧力 により増圧室側へ押圧される面積は、 増圧室内の圧力により加圧室側へ押圧され る面積と、 制御室内の圧力により加圧室側へ押圧される面積との和より小さく設 定されているものとすることもできる。 こうすれば、 ニードルが噴孔を閉じる閉 弁行程において、 増圧室と連通する燃料溜りへの燃料の供給圧力が噴射制御室へ の燃料の供給圧力より低くなる場合でも、 増圧ピストンを確実に初期位置へ戻す ことができる。 増圧装置を備える態様の本発明に係る燃料噴射装置では、 ニードルが噴孔を開 ける開弁行程において噴射制御室から流出する燃料の流量が前記閉弁行程におい て噴射制御室へ流入する燃料の流量より少なくなるように、 噴射制御室における 燃料の流入出が行われ、 燃料供給源における燃料の圧力の調整により増圧ビス卜 ンが作動したときの燃料溜りにおける燃料の圧力を調整することで、 前記開弁行 程における燃料噴射率の調整が可能であるものとすることもできる。. こうすれば、 内燃機関の運転状態に応じて燃料噴射率特性を適切に変化させることができる。 この本発明に係る燃料噴射装置では、 燃料が噴射される内燃機関の低負荷運転 時には、 前記開弁行程における燃料噴射率が所定の噴射率以下に抑制されるよう に、 燃料供給源における燃料の圧力を調整するものとすることもできる。 こうす れば、 内燃機関の低負荷運転時に、 噴射初期における噴射率が抑制された燃料噴 射率特性を実現することができる。
この本発明に係る燃料噴射装置では、 燃料が噴射される内燃機関の高負荷運転 時には、 噴射制御室から流出する燃料の流量が噴射制御室へ流入する燃料の流量 より少ないことにより生じる前記開弁行程における燃料噴射率の低下分が補償さ れるように、 燃料供給源における燃料の圧力を調整するものとすることもできる。 こうすれば、 内燃機関の高負荷運転時に、 早期に高噴射率が得られる燃料噴射率 特性を実現することができる。
この本発明に係る燃料噴射装置では、 噴射制御室を燃料供給源またはドレイン と選択的に連通させる制御バルブと、 制御バルブと噴射制御室との間に設けられ、 噴射制御室から制御バルブへ燃料が流れるときの流路面積が制御バルブから噴射 制御室へ燃料が流れるときの流路面積より小さいワンウェイオリフィスと、 を備 えるものとすることもできる。 こうすれば、 二一ドルが噴孔を開ける開弁行程に おいて噴射制御室から流出する燃料の流量を、 ニードルが噴孔を閉じる閉弁行程 において噴射制御室へ流入する燃料の流量より少なくすることができる。
増圧装置を備える態様の本発明に係る燃料噴射装置では、 増圧装置は、 燃料溜 りと連通し増圧ピストンの作動により増圧される増圧室と、 増圧ピストンの作動 を制御するために燃料の供給圧力が制御される増圧制御室と、 を有し、 増圧室か ら噴射制御室への燃料の供給が遮断されており、 噴射制御室の燃料の圧力及び増 圧制御室の燃料の圧力が共通の制御バルブにより制御されるものとすることもで きる。 こうすれば、 燃料を増圧ピストンにより増圧して噴射する動作を効率よく 行うことができる。
この本発明に係る燃料噴射装置では、 増圧室と噴射制御室との連通が遮断され ているものとすることもできる。 こうすれば、 増圧ピストンにより増圧された燃 料が噴射制御室へ供給されるのを防止することができる。
この本発明に係る燃料噴射装置では、 増圧室が噴射制御室と逆止弁を介して接 続されており、 該逆止弁は、 噴射制御室から増圧室への燃料の流れを許容すると ともに、 増圧室から噴射制御室への燃料の流れを遮断するものとする.こともでき る。 こうすれば、 増圧ピストンにより増圧された燃料が噴射制御室へ供給される のを防止することができる。
この本発明に係る燃料噴射装置では、 増圧室が増圧制御室と逆止弁を介して接 続されており、 該逆止弁は、 増圧制御室から増圧室への燃料の流れを許容すると ともに、 増圧室から増圧制御室への燃料の流れを遮断するものとすることもでき る。 こうすれば、 増圧ピストンにより増圧された燃料が増圧制御室へ供給される のを防止することができる。
また、 本発明に係る燃料噴射装置は、 燃料供給源から供給された燃料を貯溜す る燃料溜りと、 燃料溜りに貯溜された燃料が噴出する噴孔を開閉する二一ドルと、 ニードルを噴孔側へ押圧するための燃料の圧力が燃料供給源から供給される噴射 制御室と、 を有する燃料噴射部と、 増圧ピストンの作動により燃料溜りに貯溜さ れた燃料の圧力を増大させる増圧装置と、 を備え、 噴射制御室の燃料の減圧によ りニードルが噴孔を開けることで燃料溜りに貯溜された燃料が噴孔から噴出し、 噴射制御室の燃料の増圧によりニードルが噴孔を閉じることで噴孔からの燃料の 噴出が停止する燃料噴射装置であって、 ニードルが噴孔を開ける開弁行程におい て噴射制御室から流出する燃料の流量が、 ニードルが噴孔を閉じる閉弁行程にお いて噴射制御室へ流入する燃料の流量より少なくなるように、 噴射制御室におけ る燃料の流入出が行われ、 燃料供給源における燃料の圧力の調整により増圧ピス トンが作動するときの燃料溜りにおける燃料の圧力を調整することで、 前記開弁 行程における燃料噴射率の調整が可能であることを要旨とする。 この本発明によれば、 二一ドルが噴孔を開ける開弁行程における燃料噴射率を 調整することで、 内燃機関の運転状態に応じて燃料噴射率特性を適切に変化させ ることができる。
また、 本発明に係る燃料噴射装置は、 燃料供給源から供給された燃料を貯溜す る燃料溜りと、 燃料溜りに貯溜された燃料が噴出する噴孔を開閉するニードルと、 ニードルを噴孔側へ押圧するための燃料の圧力が燃料供給源から供給される噴射 制御室と、 を有する燃料噴射部と、 増圧ピストンの作動により燃料溜りに貯溜さ れた燃料の圧力を増大させる増圧装置と、 を備え、 噴射制御室の燃料の減圧によ り二一ドルが噴孔を開けることで燃料溜りに貯溜された燃料が噴孔から噴出し、 噴射制御室の燃料の増圧により二一ドルが噴孔を閉じることで噴孔からの燃料の 噴出が停止する燃料噴射装置であって、 増圧装置は、 燃料溜りと連通し増圧ビス トンの作動により増圧される増圧室と、 増圧ピストンの作動を制御するために燃 料の供給圧力が制御される増圧制御室と、 を有し、 増圧室から噴射制御室への燃 料の供給が遮断されており、 噴射制御室の燃料の圧力及び増圧制御室の燃料の圧 力が共通の制御バルブにより制御されることを要旨とする。
この本発明によれば、 増圧ピストンにより増圧された燃料が噴射制御室へ供給 されるのを防止することができるので、 燃料を増圧ピストンにより増圧して噴射 する動作を効率よく行うことができる。
「図面の簡単な説明」
図 1は、 本発明の第 1実施形態に係る燃料噴射装置の構成の概略を示す図であ る。
図 2は、 本発明の第 1実施形態における増圧装置の構成の概略を示す図である。 図 3は、 燃料噴射率等の解析に用いた燃料噴射装置の構成の概略を示す図であ る。
図 4は、 燃料噴射率等の解析に用いた燃料噴射装置の構成の概略を示す図であ る。
図 5は、 燃料噴射率等の解析結果を示す図である。
図 6は、 本発明の第 2実施形態に係る燃料噴射装置の構成の概略を示す図であ る。
図 7は、 燃料噴射率等の解析結果を示す図である。
図 8は、 燃料噴射率等の解析結果を示す図である。
図 9は、 燃料噴射ノズルの実開口面積特性を示す図である。
図 1 0は、 本発明の実施形態に係る燃料噴射装置の他の構成の概略を示す図で ある。
図 1 1は、 本発明の実施形態に係る燃料噴射装置の他の構成の概略を示す図で ある。
図 1 2は、 関連技術における燃料噴射装置の構成の概略を示す図である。
「発明を実施するための最良の形態」
以下、 本発明の好適な実施形態を図面に従って説明する。
( 1 ) 第 1実施形態
図 1 , 2は、 本発明の第 1実施形態に係る燃料噴射装置の構成の概略を示す図 であり、 図 1は全体構成、 図 2は増圧装置の構成を示す。 本実施形態の燃料噴射 装置は、 例えば圧縮着火式内燃機関に適用されるものであり、 燃料加圧ポンプ 1、 共通蓄圧室 (コモンレール) 2、 及びインジェクタ 9 9を備えている。 そして、 インジェクタ 9 9は、 各気筒に対応して設けられており、 燃料噴射ノズル 5、 制 御バルブ 9、 及び増圧装置 1 0 0を備えている。 なお、 本実施形態の燃料噴射装 置を用いた燃料噴射制御は、 コントローラ 3 0によって実行される。
燃料加圧ポンプ 1は、 図示しないタンクに蓄えられた燃料を汲み上げて共通蓄 圧室 2へ供給する。 共通蓄圧室 2は、 燃料加圧ポンプ 1から供給された燃料を所 定圧力で蓄える。 共通蓄圧室 2には圧力センサ (図示せず) が設けられており、 この圧力センサにより共通蓄圧室 2内における燃料の圧力 (コモンレール圧力) が検出される。 圧力センサの検出値はコントローラ 3 0に入力され、 共通蓄圧室 2内における燃料の圧力が設定圧力となるように、 共通蓄圧室 2に設けられたレ ギユレ一夕 (図示せず) の制御がコントローラ 3 0によって行われる。 なお、 こ こでの設定圧力は、 例えば 4 0〜1 4 O M P a程度の値であり、 機関回転速度及 び要求トルク (駆動負荷) が高いほど大きい値がコントローラ 3 0内で設定され る。
燃料噴射ノズル 5内には、 噴射制御室 3及び燃料溜り 5 2が形成されている。 そして、 燃料噴射ノズル 5の先端部には噴孔 2 3が形成されており、 燃料噴射ノ ズル 5内には燃料溜り 5 2と噴孔 2 3との連通を開閉するニードル 5 1が摺動自 在に収容されている。 燃料噴射ノズル 5は、 ニードル 5 1の作動により燃料溜り 5 2に貯溜された燃料を噴孔 2 3から図示しない内燃機関の燃焼室内へ噴射する ことができる。
噴射制御室 3は、 噴射制御室オリフィス (絞り部) 3 3、 管路 7 1、 及び制御 バルブ 9を介して共通蓄圧室 2及びドレイン 2 2と接続されている。 噴射制御室 3内の燃料の圧力は、 ニードル 5 1を噴孔 2 3側へ押圧する。 噴射制御室オリフ イス 3 3は、 噴射制御室 3の出入口に設けられている。 そして、 燃料溜り 5 2は、 管路 7 2を介して増圧装置 1 0 0と接続されている。 燃料溜り 5 2内の燃料の圧 力は、 ニードル 5 1を噴射制御室 3側へ押圧する。 また、 ニードル閉弁用ばね 5 3は、 二一ドル 5 1を噴孔 2 3側へ付勢する力を発生している。 なお、 二一ドル 5 1が噴射制御室 3内の燃料の圧力により噴孔 2 3側へ押圧される面の面積 B N 1は、 ニードル 5 1が燃料溜り 5 2内の燃料の圧力により噴射制御室 3側へ押圧 される面の面積 B N 2と等しく設定されている。
増圧装置 1 0 0は、 増圧ピストン 1 0を有しており、 増圧ピストン 1 0の作動 により燃料溜り 5 2に貯溜された燃料の圧力を増大させることができる。 増圧装 置 1 0 0内には、 加圧室 1 0 1、 増圧室 1 0 3、 及び増圧制御室 1 0 2が形成さ れている。
加圧室 1 0 1は管路 7 4を介して共通蓄圧室 2と接続されており、 加圧室 1 0 1には共通蓄圧室 2からの燃料の圧力が供給される。 加圧室 1 0 1内の燃料の圧 力は、 増圧ピストン 1 0を増圧室 1 0 3側へ押圧する。 増圧制御室 1 0 2は、 管 路 7 3及び制御バルブ 9を介して共通蓄圧室 2及びドレイン 2 2と接続されてい る。 さらに、 増圧制御室 1 0 2は、 燃料供給用オリフィス (絞り部) 6 1及び燃 料供給用チェック弁 (逆止弁) 6 2を介して増圧室 1 0 3及び燃料溜り 5 2と接 続されている。 ここでの燃料供給用チェック弁 6 2は、 増圧制御室 1 0 2から増 圧室 1 0 3及び燃料溜り 5 2への燃料の流れを許容するとともに、 増圧室 1 0 3 及び燃料溜り 52から増圧制御室 102への燃料の流れを遮断する。 燃料供給用 チェック弁 62内に燃料供給用オリフィス 61を形成して一体化することも可能 である。 増圧制御室 102内の燃料の圧力は、 増圧ピストン 10を加圧室 101 側へ押圧する。 なお、 増圧室 103と燃料溜り 52は、 管路 72を介して接続さ れている。
図 2に示すように、 増圧ピストン 10は、 一端にて増圧制御室 102内の燃料 の圧力を加圧室 101側へ受ける大径部 10— 1と、 一端にて増圧室 103内の 燃料の圧力を加圧室 101側へ受け他端に大径部 10— 1の一端が連結された小 径部 10— 2と、 一端に大径部 10— 1の他端が連結され他端にて加圧室 101 内の燃料の圧力を増圧室 103側へ受ける中径部 10— 3と、 により構成される。 ここで、 大径部 10— 1の外径 d 1、 小径部 10— 2の外径 d 2、 及び中径部 1 0— 3の外径 d 3に関して、 d l>d 3>d 2の関係が成立している。 この関係 により、 増圧ピストン 10 (中径部 10— 3の他端) が ¾1圧室 101内の燃料の 圧力により増圧室 103側へ押圧される面の面積 B 1は、 増圧ピストン 10 (大 径部 10— 1の一端) が増圧制御室 102内の燃料の圧力により加圧室 101側 へ押圧される面の面積 B 3と、 増圧ピストン 10 (小径部 10 _ 2の一端) が増 圧室 103内の燃料の圧力により加圧室 101側へ押圧される面の面積 B 4との 和より小さく設定される。 なお、 d 3>d 2であるため、 B 1>B4である。 そして、 本実施形態の増圧装置 100内には、 背圧室 104がさらに形成され ている。 背圧室 104はオリフィス (絞り部) 105を介して外部のドレイン 2 2と連通していることで、 背圧室 104には大気圧が供給される。 増圧ピストン 10は、 背圧室 104内の燃料の圧力 (大気圧) を、 大径部 10— 1の他端にて 増圧室 103側へ受ける。 なお、 増圧ピストン 10 (大径部 10— 1の他端) が 背圧室 104内の燃料の圧力を増圧室 103側へ受ける面の面積を B 2とすると、 B 1 + B 2=B 3 + B 4の関係が成立する。
制御バルブ 9は、 増圧制御室 102及び噴射制御室 3を共通蓄圧室 2と連通さ せる第 1状態 (図 1の左側の状態) と、 増圧制御室 102及び噴射制御室 3をド レイン 22と連通させる第 2状態 (図 1の右側の状態) と、 の切り換えが可能で ある。 制御バルブ 9を第 1状態に切り換えると、 共通蓄圧室 2内の燃料の圧力 (コモンレール圧力) が増圧制御室 1 0 2及び噴射制御室 3に供給される。 さら に、 燃料供給用オリフィス 6 1及び燃料供給用チェック弁 6 2を介して増圧室 1 0 3及び燃料溜り 5 2にも共通蓄圧室 2内の燃料の圧力が供給される。 一方、 制 御バルブ 9を第 2状態に切り換えると 増圧制御室 1 0 2内の燃料及び噴射制御 室 3内の燃料がドレイン 2 2へ排出され、 増圧制御室 1 0 2内の圧力及び噴射制 御室 3内の圧力が低下して大気圧近くになる。 このように、 本実施形態では、 増 圧制御室 1 0 2内の燃料の圧力及び噴射制御室 3内の燃料の圧力が共通の制御バ ルブ 9により制御される。 なお、 噴射制御室 3における燃料の流入出は、 噴射制 御室オリフィス 3 3を介して行われる。
コントローラ 3 0は、 共通蓄圧室 2内における燃料の圧力が設定圧力となるよ うに、 共通蓄圧室 2内の圧力制御を行う。 そして、 コントローラ 3 0は、 燃料噴 射時期の制御を行うために、 制御バルブ 9の切り換え制御を行う。
以上のように構成された本実施形態に係る燃料噴射装置においては、 燃料供給 用オリフィス 6 1の流路面積 A 1が噴射制御室ォリフィス 3 3の流路面積 A 2よ り小さくなるように、 流路面積 A l, A 2が設定されている。 また、 増圧室 1 0 3が噴射制御室 3と管路により接続されていないことで、 増圧室 1 0 3と噴射制 御室 3との連通が遮断されている。
次に、 本実施形態に係る燃料噴射装置の動作について説明する。
燃料を噴射しない時期においては、 制御バルブ 9を第 1状態に保つ。 制御バル ブ 9が第 1状態にあるときは、 加圧室 1 0 1、 増圧室 1 0 3、 及び増圧制御室 1 0 2内の燃料の圧力は、 共通蓄圧室 2内の燃料の圧力 (コモンレール圧力) に等 しくなつている。 このとき、 加圧室 1 0 1内の圧力により中径部 1 0— 3の他端 に作用する増圧室 1 0 3側への力 F b 1、 背圧室 1 0 4内の圧力により大径部 1 0 - 1の他端に作用する増圧室 1 0 3側への力 F b 2、 増圧制御室 1 0 2内の圧 力により大径部 1 0— 1の一端に作用する加圧室 1 0 1側への力 F b 3.、 及び増 圧室 1 0 3内の圧力により小径部 1 0— 2の一端に作用する加圧室 1 0 1側への 力 F b 4に関して、 F b 1 + F b 2 < F b 3 + F b 4の関係が成立している。 そ のため、 増圧ピストン 1 0は、 加圧室 1 0 1側へ付勢されて図示しないストッパ 一により初期位置に固定される。 したがって、 制御バルブ 9が第 1状態にあると きは、 増圧装置 1 0 0による燃料の増圧は行われない。
また、 制御バルブ 9が第 1状態にあるときは、 噴射制御室 3及び燃料溜り 5 2 の燃料の圧力が、 共通蓄圧室 2内の燃料の圧力 (コモンレール圧力) に等しくな つている。 このとき、 ニードル 5 1は、 ニードル閉弁用ばね 5 3により噴孔 2 3 側へ付勢されていることで、 噴孔 2 3を閉じている。 したがって、 制御バルブ 9 が第 1状態にあるときは、 ニードル 5 1は作動せず、 燃料の噴射は行われない。 一方、 燃料を噴射する時期においては、 制御バルブ 9を第 1状態から第 2状態 に切り換える。 制御バルブ 9を第 2状態に切り換えると、 増圧制御室 1 0 2がド レイン 2 2と連通することで、 増圧制御室 1 0 2内の圧力が低下して大気圧近く になる。 このとき、 燃料の圧力により増圧ピストン 5 1に作用する増圧室 1 0 3 側への力 F b 1 + F b 2が加圧室 1 0 1側への力 F b 3 + F b 4を上まわる。 そ のため、 増圧ピストン 1 0が作動して増圧室 1 0 3内の燃料の圧力が増大し、 燃 料溜り 5 2に貯溜された燃料の圧力が増大する。 なお、 B 1 / B 4が増圧比であ る。
また、 制御バルブ 9を第 2状態に切り換えると、 噴射制御室 3が噴射制御室ォ リフィス 3 3を介してドレイン 2 2と連通することで、 噴射制御室 3内の圧力が 低下して大気圧近くになる。 このとき、 ニードル 5 1に作用する噴射制御室 3側 への力が噴孔 2 3側への力を上まわる。 そのため、 ニードル 5 1が作動して噴射 制御室 3側へ移動し、 噴孔 2 3が開く (開弁行程) 。 これによつて、 燃料溜り 5 2に貯溜された燃料が噴孔 2 3から図示しない内燃機関の燃焼室内へ噴出する。 前述したように、 燃料溜り 5 2に貯溜された燃料は増圧装置 1 0 0により増圧さ れるため、 燃料を増圧装置 1 0 0により増圧して噴射することができる。
増圧室 1 0 3内の燃料が増圧ピストン 1 0により増圧されるときは、 燃料供給 用チェック弁 6 2により増圧室 1 0 3から増圧制御室 1 0 2への燃料の流出が遮 断される。 さらに、 増圧室 1 0 3と噴射制御室 3との連通が遮断されているため、 増圧室 1 0 3から噴射制御室 3へ燃料が流出することもなく、 増圧された燃料が ドレイン 2 2へ排出されることもない。 したがって、 増圧ピストン 1 0により増 圧された増圧室 1 0 3内の燃料を、 燃料溜り 5 2に貯溜された燃料の増圧のみに 作用させることができるので、 燃料溜り 5 2に貯溜された燃料を増圧ピストン 1 0により効率よく増圧することができる。
なお、 本実施形態では、 増圧制御室 1 0 2内の燃料の圧力及び噴射制御室 3内 の燃料の圧力が共通の制御バルブ 9により制御されるため、 増圧ピストン 1 0の 作動とともにニードル 5 1も作動する。 したがって、 噴射制御室 3内の燃料の減 圧がされない状態で、 燃料溜り 5 2内の燃料の増圧によりニードル 5 1が噴射制 御室 3側へ移動し、 噴孔 2 3が開いてしまうことはない。
また、 増圧ピストン 1 0が作動して増圧室 1 0 3側へ移動するときは、 背圧室 1 0 4の容積が増大する。 ただし、 背圧室 1 0 4は外部のドレイン 2 2と連通し ており、 背圧室 1 0 4には外部の大気圧が供給される。 そのため、 背圧室 1 0 4 内の圧力は大気圧に保たれ、 背圧室 1 0 4内の圧力が大気圧より小さくなる (負 圧になる) のが防止される。 したがって、 負圧によるキヤビテ一シヨンやエロ一 ジョンの発生が防止される。
そして、 燃料の噴射を停止するときは、 制御バルブ 9を第 2状態から第 1状態 に切り換える。 制御バルブ 9を第 1状態に切り換えると、 増圧制御室 1 0 2内に コモンレール圧力が供給される。 このとき、 燃料の圧力により増圧ピストン 1 0 に作用する加圧室 1 0 1側への力 F b 3 + F b 4が増圧室 1 0 2側への力 F b 1 + F b 2を上まわるため、 増圧ピストン 1 0が加圧室 1 0 1側へ移動して初期位 置へ戻される。
また、 制御バルブ 9を第 1状態に切り換えると、 噴射制御室オリフィス 3 3を 介して噴射制御室 3内にコモンレール圧力が供給される。 それとともに、 燃料供 給用オリフィス 6 1を介して燃料溜り 5 2にコモンレール圧力が供給される。 二 一ドル 5 1はニードル閉弁用ばね 5 3により噴孔 2 3側への力を受けているので、 ニードル 5 1に作用する噴孔 2 3側への力が噴射制御室 3側への力を上まわる。 そのため、 ニードル 5 1が噴孔 2 3側へ移動することで噴孔 2 3が閉じ (閉弁行 程) 、 噴孔 2 3からの燃料の噴出が停止する。
ニードル 5 1が噴孔 2 3を閉じる閉弁行程においては、 共通蓄圧室 2から噴射 制御室オリフィス 3 3を介して噴射制御室 3へ燃料の圧力が供給される。 それと ともに、 共通蓄圧室 2から燃料供給用オリフィス 6 1を介して燃料溜り 5 2へ燃 料の圧力が供給される。 本実施形態では、 燃料供給用オリフィス 6 1の流路面積 A 1が噴射制御室ォリフィス 33の流路面積 A 2より小さいことにより、 燃料溜 り 52への流入流量が噴射制御室 3への流入流量より少なくなる。 そのため、 閉 弁行程においては、 燃料溜り 52への燃料の供給圧力が噴射制御室 3への燃料の 供給圧力より低くなるように、 共通蓄圧室 2から燃料溜り 52及び噴射制御室 3 へ燃料の圧力が供給される。 したがって、 閉弁行程において、 ニードル 51に作 用する噴孔 23側への力を増大させることができ、 ニードル 51の噴孔 23側へ の移動速度 (閉弁速度) を速めることができる。
なお、 増圧ピストン 10の戻し動作時には、 共通蓄圧室 2から燃料供給用オリ フィス 61を介して増圧室 103へ燃料が供給されるため、 増圧室 103内の燃 料の圧力が増圧制御室 102内の燃料の圧力及び加圧室 101内の燃料の圧力よ り低くなり、 増圧ピストン 10 (小径部 10— 2の一端) に作用する加圧室 10 1側への力 Fb 4が低下する。 ただし、 以下に示す増圧ピストン 10の面積 B 1 〜B 4の設定により、 燃料の圧力による加圧室 101側への力 F b 3 + F b 4が 増圧室 103側への力 Fb 1 +Fb 2より大きい状態を確実に保つことができる。 増圧ピストン 10が初期位置へ戻るには、 以下の (1) 式が成立する必要があ る。
F b 3 + F b 4>F b 1 + F b 2 (1)
(1) において、 Fb 2は他に比べて非常に小さいことから無視することがで きる。 さらに、 コモンレール圧力を P c、 燃料供給用オリフィス 61による圧力 低下を P l o s sとすると、 以下の (2) 式が得られる。
P c X B 3 + (P c -P 1 o s s ) XB4>P c XB l (2)
(2) 式を変形すると、 以下の (3) 式が得られる。
P 1 o s s< (B 3+B4-B 1) XP c/B4 (3)
(3) 式が成立するように、 P l o s s, B 1, B 3, B 4を設定することで、 増圧ピストン 10を初期位置へ戻す力を発生させることができ、 増圧ピストン 1 0を確実に初期位置へ戻すことができる。
また、 増圧ピストン 10が加圧室 101側へ移動して初期位置へ戻るときは、 背圧室 104の容積が減少する。 ただし、 背圧室 104は外部のドレイン 22と 連通しているため、 背圧室 104の容積の減少とともに背圧室 104内の燃料が ドレインされる。 したがって、 背圧室 104内の圧力は大気圧に保たれ、 背圧室
104の容積の減少による圧力上昇が防止される。
次に、 本願発明者が行った解析の結果について説明する。
図 1, 3, 4に示す構成の燃料噴射装置の解析モデルを用いて、 増圧制御室 1
02の圧力、 増圧室 103の圧力、 噴射制御室 3の圧力、 二一ドル 51の変位、 及び燃料噴射率を計算した。 その計算結果を図 5に示す。 図 5 (A) は増圧制御 室 102の圧力及び増圧室 103の圧力のクランク角度に対する波形を示し、 図
5 (B) は噴射制御室 3の圧力のクランク角度に対する波形を示し、 図 5 (C) はニードル 51の変位のクランク角度に対する波形を示し、 図 5 (D) は燃料噴 射率 (mm3Zs) のクランク角度に対する波形を示す。
図 3に示す構成においては、 図 1に示す構成と比較して、 増圧室 103が燃料 供給用オリフィス (絞り部) 63を介して噴射制御室 3と接続されており、 増圧 室 103及び燃料溜り 52には、 噴射制御室 3から燃料供給用オリフィス 63を 介して燃料の圧力が供給される。 そして、 燃料供給用オリフィス 61及び燃料供 給用チェック弁 62が省略されており、 増圧制御室 102と増圧室 103を接続 するための管路も省略されている。 また、 図 4に示す構成においては、 図 1に示 す構成と比較して、 燃料供給用オリフィス 61が省略されている。
なお、 各構成の解析においては、 増圧ピストン 10の仕様を、 B l = l. 96
XB4、 B 2 = 0. 1.1 XB4、 B 3 = 1. 07 XB4とし、 噴射制御室オリフ イス 33の内径を 0. 36 mm、 燃料供給用オリフィス 61 , 63の内径を 0. lmmとし、 共通蓄圧室 2内の圧力 (コモンレール圧力) を 135MP aとした。 図 3に示す構成において、 閉弁行程では、 噴射制御室 3から燃料供給用オリフ イス 63を介して燃料溜り 52へ燃料の圧力が供給されることで、 燃料溜り 52 への流入流量が噴射制御室 3への流入流量より少なくなる。 そのため、 図 3に示 す構成においても、 閉弁行程では、 燃料溜り 52への燃料の供給圧力が噴射制御 室 3への燃料の供給圧力より低くなるように、 共通蓄圧室 2から燃料溜り 52及 び噴射制御室 3へ燃料の圧力が供給される。 したがって、 閉弁行程において、 図
5 (A) の B部に示すように増圧室 103 (燃料溜り 52) の燃料の圧力を図 4 に示す構成より抑えることができるので、 ニードル 51に作用する噴孔 23側へ の力を増大させることができ、 図 5 ( C ) の C部に示すようにニードル 5 1の閉 弁速度を図 4に示す構成より速めることができる。
ただし、 図 3に示す構成においては、 増圧ピストン 1 0により増圧された増圧 室 1 0 3内の燃料が燃料溜り 5 2だけでなく燃料供給用オリフィス 6 3を介して 噴射制御室 3にも供給されることになる。 したがって、 図 5 (A) の A 1部に示 すように噴射期間中の増圧室 1 0 3内の圧力が図 1, 4に示す構成より低下し、 図 5 (D ) の A 2部に示すように噴射期間中の最高噴射率も図 1, 4に示す構成 より低下することになる。
また、 図 4に示す構成においては、 増圧ピストン 1 0により増圧された増圧室 1 0 3内の燃料を、 燃料溜り 5 2に貯溜された燃料の増圧のみに作用させること ができる。 したがって、 図 5 (A) の A 1部に示すように噴射期間中の増圧室 1 0 3内の圧力を図 3に示す構成より高く保つことができ、 図 5 (D) の A 2部に 示すように噴射期間中の最高噴射率を図 3に示す構成より高く保つことができる。 ただし、 図 4に示す構成において、 閉弁行程では、 図 5 (A) の B部に示すよ うに増圧室 1 0 3 (燃料溜り 5 2 ) の燃料の圧力が抑制されない。 したがって、 二一ドル 5 1に作用する噴孔 2 3側への力が低下し、 図 5 ( C ) の C部に示すよ うに二一ドル 5 1の閉弁速度が図 1 , 3に示す構成より低下することになる。 そして、 図 1に示す構成において、 閉弁行程では、 図 5 (A) の B部に示すよ うに増圧室 1 0 3 (燃料溜り 5 2 ) の燃料の圧力を図 4に示す構成より抑えるこ とができるので、 ニードル 5 1に作用する噴孔 2 3側への力を増大させることが でき、 図 5 ( C ) の C部に示すようにニードル 5 1の閉弁速度を図 4に示す構成 より速めることができる。 さらに、 図 1に示す構成においては、 増圧ピストン 1 0により増圧された増圧室 1 0 3内の燃料を、 燃料溜り 5 2に貯溜された燃料の 増圧のみに作用させることができるので、 図 5 (A) の A 1部に示すように噴射 期間中の増圧室 1 0 3内の圧力を図 3に示す構成より高く保つことができ、 図 5 (D ) の A 2部に示すように噴射期間中の最高噴射率を図 3に示す構成より高く 保つことができる。
以上説明したように、 本実施形態によれば、 閉弁行程において、 ニードル 5 1 に作用する噴孔 2 3側への力を増大させることができ、 ニードル 5 1の閉弁速度 を速めることができるので、 良好な噴射切れを実現することができる。 したがつ て、 噴射された燃料の良好な微粒化状態を実現することができ、 安定した燃焼を 実現することができる。
そして、 本実施形態によれば、 増圧ピストン 1 0を初期位置へ戻すときに、 増 圧室 1 0 3内の燃料の圧力が低下しても、 増圧ピストン 1 0に作用する加圧室 1 0 1側への力 F b 3 + F b 4が増圧室 1 0 3側への力 F b l + F b 2より大きい 状態を確実に保つことができる。 したがって、 増圧ピストン 1 0を確実に初期位 置へ戻すことができる。
また、 本実施形態によれば、 増圧ピストン 1 0により増圧された燃料が噴射制 御室 3を介してドレイン 2 2へ排出されるのを防止することができ、 増圧された 増圧室 1 0 3内の燃料を、 燃料溜り 5 2に貯溜された燃料の増圧のみに作用させ ることができる。 したがって、 燃料を増圧ピストン 1 0により増 して噴射する 動作を効率よく行うことができる。
( 2 ) 第 2実施形態
図 6は、 本発明の第 2実施形態に係る燃料噴射装置の構成の概略を示す図であ る。 本実施形態においては、 図 1に示す構成と比較して、 制御バルブ 9と噴射制 御室 3の間にワンウェイオリフィス 3 4が設けられている。
ワンウェイオリフィス 3 4は、 噴射率制御用オリフィス (絞り部) 3 1、 噴射 率制御用チェック弁 (逆止弁) 3 2、 及び噴射制御室オリフィス (絞り部) 3 3 により構成される。 噴射率制御用オリフィス 3 1及び噴射制御室オリフィス 3 3 は、 互いに並列して噴射制御室 3の出入口に設けられている。 噴射率制御用チェ ック弁 3 2は、 噴射率制御用オリフィス 3 1と直列して設けられており、 制御バ ルブ 9から噴射制御室 3への燃料の流れを許容するとともに、 噴射制御室 3から 制御バルブ 9への燃料の流れを遮断する。 噴射率制御用チェック弁 3 2内に噴射 率制御用オリフィス 3 1を形成して一体化することも可能である。 以上の構成の ワンウェイオリフィス 3 4により、 噴射制御室 3から制御バルブ 9へ燃料が流れ る.ときの流路面積が制御パルプ 9から噴射制御室 3へ燃料が流れるときの流路面 積より小さくなる。
そして、 本実施形態においては、 燃料供給用オリフィス 6 1の流路面積 A 1が 噴射制御室オリフィス 3 3の流路面積 A 2と噴射率制御用オリフィス 3 1の流路 面積 A 3の和より小さくなるように、 流路面積 A 1 , A 2 , A 3が設定されてい る。 なお、 他の構成については、 第 1実施形態の図 1に示す構成と同様であるた め説明を省略する。
次に、 本実施形態に係る燃料噴射装置の動作について説明する。
燃料を噴射するために制御バルブ 9を第 1状態から第 2状態に切り換えると、 噴射制御室 3がワンウェイオリフィス 3 4内の噴射制御室ォリフィス 3 3を介し てドレイン 2 2と連通することで、 噴射制御室 3内の圧力が低下して大気圧近く になる。 これによつて、 ニードル 5 1が作動して噴射制御室 3側へ移動し、 噴孔 2 3が開く (開弁行程) 。 ただし、 噴射率制御用オリフィス 3 1を介した燃料の 流出については、 噴射率制御用チェック弁 3 2により遮断される。 一方、 燃料の 噴射を停止するために制御バルブ 9を第 2状態から第 1状態に切り換えると、 ヮ ンウェイオリフィス 3 4内の互いに並列関係にある噴射率制御用オリフィス 3 1 及び噴射制御室オリフィス 3 3を介して噴射制御室 3内にコモンレール圧力が供 給される。 これによつて、 ニードル 5 1が噴孔 2 3側へ移動して噴孔 2 3が閉じ る (閉弁行程) 。 このように、 本実施形態では、 ニードル 5 1が噴孔 2 3を開け る開弁行程において噴射率制御用オリフィス 3 1を介した燃料の流出が遮断され、 ニードル 5 1が噴孔 2 3を閉じる閉弁行程において噴射率制御用オリフィス 3 1 を介した燃料の流入が許容される。 したがって、 開弁行程において噴射制御室 3 から流出する燃料の流量が、 閉弁行程において噴射制御室 3へ流入する燃料の流 量より少なくなる。
そして、 本実施形態においては、 コントローラ 3 0は、 共通蓄圧室 2内におけ る燃料の圧力制御により増圧ピストン 1 0が作動したときの燃料溜り 5 2におけ る燃料の圧力を制御することで、 開弁行程における燃料噴射率を制御することが できる。 以下、 開弁行程における燃料噴射率の制御の詳細について説明する。 コントローラ 3 0は、 内燃機関の低負荷運転時には、 開弁行程における燃料噴 射率が所定の噴射率以下に抑制されるように、 共通蓄圧室 2内における燃料の圧 力を制御する。 ここでの所定の噴射率は、 初期噴射率が抑制された噴射率特性、 いわゆるデル夕噴射率特性が得られるように設定される。 これによつて、 内燃機 関の低負荷運転時には、 開弁行程におけるニードル 5 1のリフト速度 (開弁速 度) を抑制することができるので、 開弁行程における燃料噴射率を抑制すること ができ、 初期噴射率が抑制されたデルタ噴射率特性を得ることができる。 したが つて、 N O xの抑制及び燃焼騒音の低減を実現することができる。 また、 閉弁行 程においては、 噴射制御室オリフィス 3 3の他に噴射率制御用オリフィス 3 1も 介して噴射制御室 3へ燃料が流入するため、 ニードル 5 1の閉弁速度を速めるこ とができ、 良好な噴射切れを確保することができる。 したがって、 噴射された燃 料の良好な微粒化状態を確保することができ、 安定した燃焼を実現することがで さる。
ただし、 本実施形態では、 開弁行程において噴射制御室 3から流出する燃料の 流量が閉弁行程において噴射制御室 3へ流入する燃料の流量より少なくなるため、 内燃機関の高負荷運転時に開弁行程における燃料噴射率が抑制されてしまうと、 内燃機関の高出力の確保が困難となる。 そこで、 コントローラ 3 0は、 内燃機関 の高負荷運転時には、 噴射制御室 3から流出する燃料の流量が噴射制御室 3へ流 入する燃料の流量より少ないことにより生じる開弁行程における燃料噴射率の低 下分が補償されるように、 共通蓄圧室 2内における燃料の圧力を制御する。 ここ では、 初期噴射率が抑制されずに早期に高噴射率が得られる噴射率特性、 いわゆ る矩形噴射率特性が得られるよう.に、 共通蓄圧室 2内における燃料の圧力 (コモ ンレール圧力) が制御される。
増圧ピストン 1 0の作動時に増圧ピストン 1 0を増圧室 1 0 3側へ加圧する力 は、 コモンレール圧力が高いほど大きいため、 作動時の増圧ピストン 1 0の移動 速度はコモンレール圧力が高いほど速くなる。 したがって、 コモンレール圧力が 高いほど、 噴射初期における燃料溜り 5 2の圧力上昇が速くなる。 その上、 ニー ドル 5 1では、 噴射制御室 3内の圧力が燃料溜り 5 2内の圧力より相対的に低い ほど、 ニードル 5 1のリフト速度が速くなる。 また、 噴射制御室 3からの燃料の 流出流量が抑制されることで二一ドル 5 1のリフト速度が抑制されたとしても、 コモンレール圧力が高くて燃料溜り 5 2の圧力上昇が速い場合は、 逃げ場の無い 燃料溜り 5 2内の燃料の圧力が増圧によって一段と高められることになる。 以上 の作用によって、 内燃機関の高負荷運転時には、 低負荷運転時よりコモンレール 圧力を上昇させることで、 開弁行程における燃料噴射率の低下を補償することが でき、 矩形噴射率特性を得ることができる。 したがって、 内燃機関の高出力を確 保することができる。 また、 閉弁行程においては、 低負荷運転時と同様に、 二一 ドル 51の閉弁速度を速めることができ、 良好な噴射切れを確保することができ る。 ·
以上のように、 コントローラ 30は、 内燃機関の負荷が高いほど共通蓄圧室 2 内における燃料の圧力 (コモンレール圧力) を増大させることで、 低負荷運転時 にはデル夕噴射率特性を実現することができるとともに、 高負荷運転時には矩形 噴射率特性を実現することができる。 なお、 他の動作については、 第 1実施形態 と同様であるため説明を省略する。
次に、 本願発明者が行った解析の結果について説明する。
図 6に示す構成の燃料噴射装置の解析モデルを用いて、 燃料溜り 52の圧力、 ニードル 51の変位、 及び燃料噴射率を計算した。 その計算結果を図 7, 8に示 す。 ここで、 図 7は部分負荷運転時での計算結果を示し、 図 8は全負荷運転時で の計算結果を示す。 そして、 図 7 (A) 及び図 8 (A) は燃料溜り 52の圧力の クランク角度に対する波形を示し、 図 7 (B) 及び図 8 (B) はニードル 51の 変位のクランク角度に対する波形を示し、 図 7 (C) 及び図 8 (C) は燃料噴射 率 (mm3/ms) のクランク角度に対する波形を示す。 さらに、 ワンウェイォ リフィス 34の代わりに噴射制御室オリフィス 33のみを設けた (噴射率制御用 オリフィス 31及び噴射率制御用チェック弁 32を省略した) 解析モデルについ ても、 比較用基準として計算を行った。
なお、 解析においては、 増圧ピストン 10の仕様を、 B l = l. 96 XB4、 B 2 = 0. 1 1 XB4、 B 3 = 1. 07 X B 4とし、 部分負荷運転時でのコモン レール圧力、 機関回転速度、 及び燃料噴射量をそれぞれ 40MP a、 2660 r pm、 及び 30mm3とし、 全負荷運転時でのコモンレール圧力、 機関回転速度、 及び燃料噴射量をそれぞれ 135MP a、 5000 r pm、 及び 1 10 mm3と した。 そして、 図 6に示す構成の解析においては、 噴射率制御用オリフィス 31 の内径を 0. 32mm、 噴射制御室オリフィス 33の内径を 0. 16mmとした。 また、 前述の比較用基準の解析においては、 噴射制御室オリフィス 33の内径を 0 . 3 6 mmとした。
図 6に示す構成の部分負荷運転時には、 開弁行程において噴射率制御用チエツ ク弁 3 2が閉じることで噴射制御室ォリフィス 3 3のみを介して噴射制御室 3か ら燃料が流出する。 そのため、 開弁行程においては、 噴射制御室 3内の圧力低下 速度が遅く、 図 7 ( B ) の B部に示すようにニードル 5 1のリフト速度が比較用 基準より遅くなる。 ただし、 ニードル 5 1のリフト速度が遅くなることで噴孔 2 3から噴出する燃料が比較用基準より少なくなるため、 図 7 (A) の A部に示す ように開弁行程における燃料溜り 5 2の圧力が比較用基準より高くなる。 ただし、 コモンレール圧力が低い部分負荷運転時では、 二一ドル 5 1のリフト速度が抑制 される方の影響が強く、 図 7 ( C ) の C部に示すように開弁行程における燃料噴 射率が比較用基準より抑制される。 したがって、 図 6に示す構成の部分負荷運転 時には、 図 7 ( C ) に示すように良好なデルタ噴射率特性を実現することができ、 N O Xの抑制及び燃焼騒音の低減を実現することができる。
また、 図 6に示す構成の全負荷運転時には、 部分負荷運転時と同様に噴射制御 室 3内の圧力低下速度が遅く、 図 8 ( B ) の B部に示すように開弁行程における ニードル 5 1のリフト速度が比較用基準より遅くなる。 ただし、 図 9に示すよう に、 ニードル 5 1のリフト量が大きい領域ほど燃料噴射ノズル 5の実開口面積の 変化が小さくなるため、 ニードル 5 1のリフト量を抑制されることによる燃料噴 射率への影響が生じにくくなる。 これに加えて、 噴孔 2 3から噴出する燃料が少 なくなることによる燃料溜り 5 2の圧力の増加は、 全負荷運転時の方が部分負荷 運転時より大きい。 数値で示すならば、 噴射初期に図 6に示す構成のニードル変 位が比較用基準のニードル変位のほぼ半分となるタイミング (図 7, 8とも矢印 で示す) での燃料溜り 5 2の圧力増加割合が、 部分負荷運転時では 3 0 %増
(比較用基準の 3 7 M P aから図 6に示す構成の 4 8 M P a ) であるのに対し、 全負荷運転時では 4 0 %増 (比較用基準の 1 5 O M P aから図 6に示す構成の 2 1 O M P a ) となっている。 以上の作用によって、 コモンレール圧力が高い全負 荷運転時では、 燃料溜り 5 2の圧力が増加することによる影響が強く、 図 8
( C ) の C部に示すようにニードル 5 1のリフト速度が抑制されても開弁行程に おける燃料噴射率が部分負荷運転時ほど抑制されない。 したがって、 図 6に示す 構成の全負荷運転時には、 図 8 ( C ) に示すように比較用基準とほぼ同等の矩形 噴射率特性を確保することができ、 内燃機関の高出力を確保することができる。 以上説明したように、 本実施形態においても、 良好な噴射切れを実現すること ができるとともに、 燃料を増圧ピストン 1 0により増圧して噴射する動作を効率 よく行うことができる。 さらに、 本実施形態においては、 内燃機関の高負荷運転 時には、 初期噴射率が抑制されたデル夕噴射率特性を実現することができるので、 N O Xの抑制及び燃焼騒音の低減を実現することができる。 一方、 内燃機関の高 負荷運転時には、 早期に高噴射率が得られる矩形噴射率特性を実現することがで きるので、 内燃機関の高出力を確保することができる。 以上のように、 本実施形 態によれば、 内燃機関の運転状態に応じて燃料噴射率特性を適切に変化させるこ とができる。
以下、 本実施形態の変形例について説明する。
図 1 0に示す構成においては、 図 6に示す構成と比較して、 燃料供給用オリフ イス 6 1及び燃料供給用チェック弁 6 2の代わりに、 燃料供給用オリフィス (絞 り部) 6 5及び燃料供給用チェック弁 (逆止弁) 6 6が設けられている。 増圧室 1 0 3は、 燃料供給用チエツ,ク弁 6 6、 燃料供給用オリフィス 6 5、 及び管路 7 3を介して増圧制御室 1 0 2と接続されている。 さらに、 増圧室 1 0 3は、 燃料 供給用チェック弁 6 6、 燃料供給用オリフィス 6 5、 管路 7 1、 及びワンウェイ オリフィス 3 4を介して噴射制御室 3と接続されている。 ここでの燃料供給用チ エック弁 6 6は、 増圧制御室 1' 0 2及び噴射制御室 3から増圧室 1 0 3への燃料 の流れを許容するとともに、 増圧室 1 0 3から増圧制御室 1 0 2及び噴射制御室 3への燃料の流れを遮断する。 燃料供給用チェック弁 6 6内に燃料供給用オリフ イス 6 5を形成して一体化することも可能である。 そして、 燃料供給用オリフィ ス 6 5の流路面積 A 4が噴射制御室オリフィス 3 3の流路面積 A 2と噴射率制御 用オリフィス 3 1の流路面積 A 3の和より小さく設定されている。
図 1 0に示す構成によっても、 閉弁行程において、 ニードル 5 1に作用する噴 孔 2 3側への力を増大させることができるので、 良好な噴射切れを実現すること ができる。 そして、 増圧ピストン 1 0により増圧された燃料が噴射制御室 3を介 してドレイン 2 2へ排出されるのを防止することができるので、 燃料を増圧ビス トン 1 0により増圧して噴射する動作を効率よく行うことができる。
また、 図 1 1に示す構成においては、 図 6に示す構成と比較して、 燃料供給用 オリフィス 6 1及び燃料供給用チェック弁 6 2の代わりに、 燃料供給用オリフィ ス (絞り部) 6 3及び燃料供給用チェック弁 (逆止弁) 6 4が設けられている。 そして、 増圧室 1 0 3は、 燃料供給用オリフィス 6 3及び燃料供給用チェック弁 6 4を介して噴射制御室 3と接続されている。 ここでの燃料供給用チェック弁 6 4は、 噴射制御室 3から増圧室 1 0 3への燃料の流れを許容するとともに、 増圧 室 1 0 3から噴射制御室 3への燃料の流れを遮断する。 燃料供給用チェック弁 6 4内に燃料供給用オリフィス 6 3を形成して一体化することも可能である。 図 1 1に示す構成によれば、 閉弁行程において、 噴射制御室 3から燃料供給用 オリフィス 6 3及び燃料供給用チェック弁 6 4を介して燃料溜り 5 2へ燃料の圧 力が供給される。 これによつて、 閉弁行程においては、 燃料溜り 5 2への燃料の 供給圧力が噴射制御室 3への燃料の供給圧力より低くなるように、 共通蓄圧室 2 から燃料溜り 5 2及び噴射制御室 3へ燃料の圧力が供給される。 したがって、 二 一ドル 5 1に作用する噴孔 2 3側への力を増大させることができ、 良好な噴射切 れを実現することができる。 そして、 増圧ピストン 1 0により増圧された燃料が 噴射制御室 3を介してドレイン 2 2へ排出されるのを燃料供給用チェック弁 6 4 により防止することができるので、 燃料を増圧ビストン 1 0により増圧して噴射 する動作を効率よく行うことができる。
なお、 図 1 0, 1 1に示す構成においては、 ワンウェイオリフィス 3 4の代わ りに噴射制御室オリフィス 3 3が設けられていてもよい。
以上、 本発明を実施するための形態について説明したが、 本発明はこうした実 施形態に何等限定されるものではなく、 本発明の要旨を逸脱しない範囲内におい て、 種々なる形態で実施し得ることは勿論である。

Claims

1 . 燃料供給源から供給された燃料を貯溜する燃料溜りと、 燃料溜りに貯溜され た燃料が噴出する噴孔を開閉する二一ドルと、 ニードルを噴孔側へ押圧するため の燃料の圧力が燃料供給源から供給される噴射制御室と、 を有する燃料噴射部を 備え、
噴射制御室の燃料の減圧によりニードルが噴孔を開けることで燃料溜りに貯溜 された燃料が噴孔から噴出し、 噴射制御室の燃料の増圧によりニードルが噴孔を 閉じることで噴孔からの燃料の請噴出が停止する燃料噴射装置であつて、
ニードルが噴孔を閉じる閉弁行程において、 燃料溜りへの燃料の供給圧力が噴 射制御室への燃料の供給圧力より低くなるように、 燃料供給源から燃料溜り及び 噴射制御室へ燃料の圧力が供給されることを特徴とする燃料噴射装置。
2 . 請求の範囲 1に記載の燃料噴射装置であって、
前記閉弁行程において、 燃料供給源から第 1の絞り部を介して燃料溜りへ燃料 の圧力が供給されるとともに、 燃料供給源から第 2の絞り部を介して噴射制御室 へ燃料の圧力が供給され、
第 1の絞り部の流路面積が第 2の絞り部の流路面積より小さいことを特徴とす る燃料噴射装置。
3 . 請求の範囲 1に記 *^の燃料噴射装置であって、
前記閉弁行程において、 噴射制御室から絞り部を介して燃料溜りへ燃料の圧力 が供給されることを特徴とする燃料噴射装置。
4 . 請求の範囲 1に記載の燃料噴射装置であって、
増圧ピストンの作動により燃料溜りに貯溜された燃料の圧力を増大させる増圧 装置をさらに備えることを特徴とする燃料噴射装置。
5 . 請求の範囲 4に記載の燃料噴射装置であって、
増圧装置は、 燃料溜りと連通し増圧ピストンの作動により増圧される増圧室と、 増圧ピストンを増圧室側へ押圧するための圧力が燃料供給源から供給される加圧 室と、 増圧ピストンを加圧室側へ押圧するための圧力が供給され増圧ピストンの 作動を制御するために該圧力が制御される制御室と、 を有し、
増圧ピストンに関し、 加圧室内の圧力により増圧室側へ押圧される面積は、 増 圧室内の圧力により加圧室側へ押圧される面積と、 制御室内の圧力'により加圧室 側へ押圧される面積との和より小さく設定されていることを特徴とする燃料噴射 装置。
6 . 請求の範囲 4に記載の燃料噴射装置であって、
二一ドルが噴孔を開ける開弁行程において噴射制御室から流出する燃料の流量 が前記閉弁行程において噴射制御室へ流入する燃料の流量より少なくなるように、 噴射^御室における燃料の流入出が行われ、
燃料供給源における燃料の圧力の調整により増圧ピストンが作動したときの燃 料溜りにおける燃料の圧力を調整することで、 前記開弁行程における燃料噴射率 の調整が可能であることを特徴とする燃料噴射装置。
7 . 請求の範囲 6に記載の燃料噴射装置であって、
燃料が噴射される内燃機関の低負荷運転時には、 前記開弁行程における燃料噴 射率が所定の噴射率以下に抑制されるよ に、 燃料供給源における燃料の圧力を 調整することを特徴とする燃料噴射装置。
8 . 請求の範囲 6に記載の燃料噴射装置であって、
燃料が噴射される内燃機関の高負荷運転時には、 噴射制御室から流出する燃料 の流量が噴射制御室へ流入する燃料の流量より少ないことにより生じる前記開弁 行程における燃料噴射率の低下分が補償されるように、 燃料供給源における燃料 の圧力を調整することを特徴とする燃料噴射装置。 '
9 . 請求の範囲 6に記載の燃料噴射装置であって、
噴射制御室を燃料供給源またはドレインと選択的に連通させる制御バルブと、 制御バルブと噴射制御室との間に設けられ、 噴射制御室から制御バルブへ燃料 が流れるときの流路面積が制御バルブから噴射制御室へ燃料が流れるときの流路 面積より小さいワンウェイオリフィスと、
を備えることを特徴とする燃料噴射装置。
1 0 . 請求の範囲 4に記載の燃料噴射装置であって、
増圧装置は、 燃料溜りと連通し増圧ピストンの作動により増圧される増圧室と、 増圧ピストンの作動を制御するために燃料の供給圧力が制御される増圧制御室と、 を有し、
増圧室から噴射制御室への燃料の供給が遮断されており、
噴射制御室の燃料の圧力及び増圧制御室の燃料の圧力が共通の制御バルブによ り制御されることを特徴とする燃料噴射装置。
1 1 . 請求の範囲 1 0に記載の燃料噴射装置であって、
増圧室と噴射制御室との連通が遮断されていることを特徴とする燃料噴射装置。
1 2 . 請求の範囲 1 0に記載の燃料噴射装置であって、
増圧室が噴射制御室と逆止弁を介して接続されており、
該逆止弁は、 噴射制御室から増圧室への燃料の流れを許容するとともに、 増圧 室から噴射制御室への燃料の流れを遮断することを特徴とする燃料噴射装置。
1 3 . 請求の範囲 1 0に記載の燃料噴射装置であって、
増圧室が増圧制御室と逆止弁を介して接続されており、
該逆止弁は、 増圧制御室から増圧室への燃料の流れを許容するとともに、 増圧 室から増圧制御室への燃料の流れを遮断することを特徴とする燃料噴射装置。
1 4 . 燃料供給源から供給された燃料を貯溜する燃料溜りと、 燃料溜りに貯溜さ れた燃料が噴出する噴孔を開閉するニードルと、 ニードルを噴孔側へ押圧するた めの燃料の圧力が燃料供給源から供給される噴射制御室と、 を有する燃料噴射部 と、
増圧ピストンの作動により燃料溜りに貯溜された燃料の圧力を増大させる増圧 装置と、
を備え、
噴射制御室の燃料の減圧によりニードルが噴孔を開けることで燃料溜りに貯溜 された燃料が噴孔から噴出し、 噴射制御室の燃料の増圧によりニードルが噴孔を 閉じることで噴孔からの燃料の噴出が停止する燃料噴射装置であって、
ニードルが噴孔を開ける開弁行程において噴射制御室から流出する燃料の流量 が、 ニードルが噴孔を閉じる閉弁行程において噴射制御室へ流入する燃料の流量 より少なくなるように、 噴射制御室における燃料の流入出が行われ、
燃料供給源における燃料の圧力の調整により増圧ピストンが作動するときの燃 料溜りにおける燃料の圧力を調整することで、 前記開弁行程における燃料噴射率 の調整が可能であることを特徴とする燃料噴射装置。
1 5 . 燃料供給源から供給された燃料を貯溜する燃料溜りと、 燃料溜りに貯溜さ れた燃料が噴出する噴孔を開閉するニードルと、 ニードルを噴孔側へ押圧するた めの燃料の圧力が燃料供給源から供給される噴射制御室と、 を有する燃料噴射部 と、
増圧ピストンの作動により燃料溜りに貯溜された燃料の圧力を増大させる増圧 装置と、
を備え、
噴射制御室の燃料の減圧によりニードルが噴孔を開けることで燃料溜りに貯溜 された燃料が噴孔から噴出し、 噴射制御室の燃料の増圧によりニードルが噴孔を 閉じることで噴孔からの燃料の噴出が停止する燃料噴射装置であって、
増圧装置は、 燃料溜りと連通し増圧ピストンの作動により増圧される増圧室と、 増圧ピストンの作動を制御するために燃料の供給圧力が制御される増圧制御室と、 を有し、
増圧室から噴射制御室への燃料の供給が遮断されており、
噴射制御室の燃料の圧力及び増圧制御室の燃料の圧力が共通の制御バルブによ り制御されることを特徴とする燃料噴射装置。
PCT/JP2005/013782 2004-07-21 2005-07-21 燃料噴射装置 WO2006025165A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05767202.4A EP1780401B1 (en) 2004-07-21 2005-07-21 Fuel injection device
US11/632,662 US8100345B2 (en) 2004-07-21 2005-07-21 Fuel injection device
CN200580024320XA CN1989336B (zh) 2004-07-21 2005-07-21 燃料喷射装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004212664A JP3994990B2 (ja) 2004-07-21 2004-07-21 燃料噴射装置
JP2004-212664 2004-07-21

Publications (1)

Publication Number Publication Date
WO2006025165A1 true WO2006025165A1 (ja) 2006-03-09

Family

ID=35895925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013782 WO2006025165A1 (ja) 2004-07-21 2005-07-21 燃料噴射装置

Country Status (5)

Country Link
US (1) US8100345B2 (ja)
EP (1) EP1780401B1 (ja)
JP (1) JP3994990B2 (ja)
CN (1) CN1989336B (ja)
WO (1) WO2006025165A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003324A2 (en) * 2006-03-23 2008-12-17 Toyota Jidosha Kabushiki Kaisha Injection fuel pressure intensifier

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE529810C2 (sv) * 2006-04-10 2007-11-27 Scania Cv Ab Insprutningsorgan för en förbränningsmotor
JP4720601B2 (ja) * 2006-04-25 2011-07-13 井関農機株式会社 作業機用エンジン
JP4519143B2 (ja) * 2007-01-19 2010-08-04 株式会社デンソー インジェクタ
JP2008196391A (ja) 2007-02-13 2008-08-28 Toyota Central R&D Labs Inc 燃料噴射装置
JP2008310110A (ja) * 2007-06-15 2008-12-25 Konica Minolta Business Technologies Inc 画像形成装置
FI20115392A0 (fi) * 2011-04-21 2011-04-21 Waertsilae Finland Oy Hydraulijärjestelmä ja käyttömenetelmä
JP2013007341A (ja) * 2011-06-24 2013-01-10 Denso Corp 燃料噴射状態推定装置
US10982635B2 (en) * 2012-05-29 2021-04-20 Delphi Technologies Ip Limited Fuel injector and method for controlling the same
CN102943726A (zh) * 2012-10-22 2013-02-27 安徽中鼎动力有限公司 一种设有分配泵的燃油喷射系统及包括该系统的柴油机
JP6562028B2 (ja) * 2017-04-11 2019-08-21 トヨタ自動車株式会社 内燃機関の制御装置
EP3234340B1 (en) * 2014-12-19 2020-07-08 Volvo Truck Corporation Injection system of an internal combustion engine and automotive vehicle including such an injection system
JP6463638B2 (ja) * 2015-01-20 2019-02-06 株式会社Soken 燃料噴射弁の制御装置
DE102016105625B4 (de) * 2015-03-30 2020-10-08 Toyota Jidosha Kabushiki Kaisha Kraftstoffeinspritzvorrichtung für Brennkraftmaschine
CN104847553A (zh) * 2015-04-09 2015-08-19 中国第一汽车股份有限公司无锡油泵油嘴研究所 可优化喷油速率且可增压式共轨喷油器
DK179161B1 (en) * 2016-05-26 2017-12-18 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A large two-stroke compression-ignited internal combustion engine with fuel injection system for low flashpoint fuel and a fuel valve therefore
GB2560513A (en) 2017-03-13 2018-09-19 Ap Moeller Maersk As Fuel injection system
US10895233B2 (en) * 2019-05-16 2021-01-19 Caterpillar Inc. Fuel system having fixed geometry flow regulating valve for limiting injector cross talk

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821332A (ja) * 1994-07-08 1996-01-23 Mitsubishi Motors Corp 蓄圧式燃料噴射装置
WO1997008452A1 (fr) * 1995-08-29 1997-03-06 Isuzu Motors Limited Dispositif d'injection de carburant du type a accumulation
JP2002202021A (ja) * 2000-12-20 2002-07-19 Robert Bosch Gmbh 燃料噴射装置
JP2003511626A (ja) * 1999-10-14 2003-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のための燃料噴射システムのための液圧支援式圧力変換器
JP2003512574A (ja) * 1999-10-15 2003-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関用の燃料噴射系のための圧力変換装置
JP2005083237A (ja) * 2003-09-08 2005-03-31 Nippon Soken Inc 内燃機関用インジェクタ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697342A (en) 1994-07-29 1997-12-16 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
FR2777947B1 (fr) * 1998-04-27 2000-11-17 Inst Francais Du Petrole Procede de combustion par auto-allumage controle et moteur 4 temps associe avec conduit de transfert entre cylindres et soupape dediee
US6113000A (en) 1998-08-27 2000-09-05 Caterpillar Inc. Hydraulically-actuated fuel injector with intensifier piston always exposed to high pressure actuation fluid inlet
DE19910970A1 (de) 1999-03-12 2000-09-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE19939428A1 (de) 1999-08-20 2001-03-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Durchführung einer Kraftstoffeinspritzung
DE19939423A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE10002273A1 (de) * 2000-01-20 2001-08-02 Bosch Gmbh Robert Einspritzeinrichtung und Verfahren zum Einspritzen von Fluid
DE10008554A1 (de) * 2000-02-24 2001-08-30 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
US6676044B2 (en) * 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
DE10031582A1 (de) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Druckgesteuerter Injektor mit gesteuerter Düsennadel
DE10218904A1 (de) * 2001-05-17 2002-12-05 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10123914B4 (de) * 2001-05-17 2005-10-20 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung mit Druckübersetzungseinrichtung und Druckübersetzungseinrichtung
WO2002093001A1 (de) 2001-05-17 2002-11-21 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung
DE20110130U1 (de) * 2001-06-19 2002-10-24 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10229419A1 (de) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Druckübersetzter Kraftstoffinjektor mit schnellem Druckabbau bei Einspritzende
JP4308487B2 (ja) 2002-07-11 2009-08-05 株式会社豊田中央研究所 燃料噴射装置における燃料噴射方法
DE10247210A1 (de) 2002-10-10 2004-04-22 Robert Bosch Gmbh Filteranordnung für Kraftstoffeinspritzsysteme
DE10247903A1 (de) 2002-10-14 2004-04-22 Robert Bosch Gmbh Druckverstärkte Kraftstoffeinspritzeinrichtung mit innenliegender Steuerleitung
DE10249840A1 (de) * 2002-10-25 2004-05-13 Robert Bosch Gmbh Kraftstoff-Einspritzeinrichtung für Brennkraftmaschine
DE10315016A1 (de) * 2003-04-02 2004-10-28 Robert Bosch Gmbh Kraftstoffinjektor mit leckagefreiem Servoventil
WO2004088122A1 (de) * 2003-04-02 2004-10-14 Robert Bosch Gmbh Servoventilangesteuerter kraftstoffinjektor mit druckübersetzer
DE10335059A1 (de) * 2003-07-31 2005-02-17 Robert Bosch Gmbh Schaltventil für einen Kraftstoffinjektor mit Druckübersetzer
DE102004010760A1 (de) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit Nadelhubdämpfung
DE102004017304A1 (de) * 2004-04-08 2005-10-27 Robert Bosch Gmbh Servoventilangesteuerter Kraftstoffinjektor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821332A (ja) * 1994-07-08 1996-01-23 Mitsubishi Motors Corp 蓄圧式燃料噴射装置
WO1997008452A1 (fr) * 1995-08-29 1997-03-06 Isuzu Motors Limited Dispositif d'injection de carburant du type a accumulation
JP2003511626A (ja) * 1999-10-14 2003-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関のための燃料噴射システムのための液圧支援式圧力変換器
JP2003512574A (ja) * 1999-10-15 2003-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関用の燃料噴射系のための圧力変換装置
JP2002202021A (ja) * 2000-12-20 2002-07-19 Robert Bosch Gmbh 燃料噴射装置
JP2005083237A (ja) * 2003-09-08 2005-03-31 Nippon Soken Inc 内燃機関用インジェクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1780401A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003324A2 (en) * 2006-03-23 2008-12-17 Toyota Jidosha Kabushiki Kaisha Injection fuel pressure intensifier
EP2003324A4 (en) * 2006-03-23 2009-11-11 Toyota Motor Co Ltd INJECTION FUEL PRESSURE MULTIPLIER

Also Published As

Publication number Publication date
US20080041977A1 (en) 2008-02-21
JP3994990B2 (ja) 2007-10-24
CN1989336B (zh) 2012-07-18
EP1780401A1 (en) 2007-05-02
CN1989336A (zh) 2007-06-27
US8100345B2 (en) 2012-01-24
JP2006029281A (ja) 2006-02-02
EP1780401A4 (en) 2011-05-11
EP1780401B1 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2006025165A1 (ja) 燃料噴射装置
US6491017B1 (en) Combined stroke/pressure controlled fuel injection method and system for an internal combustion engine
US6619263B1 (en) Fuel injection system for an internal combustion engine
US20050252490A1 (en) Method and device for shaping the injection pressure in a fuel injector
US6675773B1 (en) Method and apparatus for performing a fuel injection
US20100132667A1 (en) Fuel injection system with pressure boosting
KR20020074481A (ko) 분사 장치 및 유체 분사 방법
US8161947B2 (en) Pressure boosting system for at least one fuel injector
JP3555588B2 (ja) コモンレール式燃料噴射装置
JP4241601B2 (ja) 燃料噴射装置および燃料噴射方法
US6810856B2 (en) Fuel injection system
JP4134979B2 (ja) 内燃機関用燃料噴射装置
JP3991470B2 (ja) 噴射弁
JP4458118B2 (ja) 燃料噴射装置
JP4635980B2 (ja) 燃料供給システム
JP2008304017A (ja) 3方切替弁およびそれを用いた燃料噴射装置
JP4329704B2 (ja) 燃料噴射装置
JP2008232026A (ja) インジェクタ
JP4045922B2 (ja) 内燃機関用燃料噴射装置
JP2005076510A (ja) 燃料噴射装置及びその制御装置
JP3465909B2 (ja) ディーゼルエンジンの燃料噴射装置
JP3948258B2 (ja) 増圧式燃料噴射装置及び増圧式燃料噴射方法
JP4924413B2 (ja) 内燃機関の燃料供給装置
JP2684687B2 (ja) 燃料噴射装置
JP3832037B2 (ja) 蓄圧式燃料噴射装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11632662

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580024320.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005767202

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005767202

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632662

Country of ref document: US