WO2006019007A1 - 差動コンパレータ回路、テストヘッド、及び試験装置 - Google Patents

差動コンパレータ回路、テストヘッド、及び試験装置 Download PDF

Info

Publication number
WO2006019007A1
WO2006019007A1 PCT/JP2005/014543 JP2005014543W WO2006019007A1 WO 2006019007 A1 WO2006019007 A1 WO 2006019007A1 JP 2005014543 W JP2005014543 W JP 2005014543W WO 2006019007 A1 WO2006019007 A1 WO 2006019007A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
difference
outputs
differential
Prior art date
Application number
PCT/JP2005/014543
Other languages
English (en)
French (fr)
Inventor
Toshiaki Awaji
Takashi Sekino
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to JP2006531634A priority Critical patent/JP4819684B2/ja
Priority to DE112005001957T priority patent/DE112005001957T5/de
Priority to US11/202,391 priority patent/US7123025B2/en
Publication of WO2006019007A1 publication Critical patent/WO2006019007A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio

Definitions

  • the present invention relates to a differential comparator circuit, a test head, and a test apparatus.
  • the present invention relates to a differential comparator circuit mounted on a test apparatus that tests a device under test that outputs a differential signal.
  • FIG. 1 shows a configuration of a test apparatus 10 according to a conventional technique.
  • the test apparatus 10 includes a subtraction circuit 14, an H side comparison circuit 16, and an L side comparison circuit 18.
  • the subtraction circuit 14 amplifies the differential signal output from the device under test (hereinafter referred to as “DUT”) 12 with an amplification factor ⁇ , and outputs the difference.
  • the side comparison circuit 16 compares the signal output from the subtraction circuit 14 with the side threshold (VrefH) and outputs a comparison result.
  • the L-side comparison circuit 18 compares the signal output from the subtraction circuit 14 with the L-side threshold value (VrefL) and outputs a comparison result.
  • the test apparatus 10 measures the cross point of the differential signal output from the DUT 12 by providing the subtraction circuit 14. In such a subtraction circuit 14, when the amplification factor ⁇ is constant, the cross point of the differential signal output from the DUT 12 can be measured.
  • FIG. 2 shows a first example of the configuration of the amplifier circuit included in the subtraction circuit 14 according to the prior art.
  • FIG. 3 shows a second example of the configuration of the amplifier circuit included in the subtraction circuit 14 according to the prior art.
  • a high speed can be realized, but the gain is small.
  • the nonlinearity of the gain increases and the gain cannot be kept constant.
  • an object of the present invention is to provide a test apparatus that can solve the above-described problems.
  • This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • a differential comparator circuit mounted on a test apparatus for testing a device under test that outputs a differential signal including a non-inverted signal and an inverted signal.
  • a differential signal subtraction circuit that calculates and outputs a differential signal indicating the difference between the inverted signal and the inverted signal, and a first comparison voltage generated based on the ground potential of the device under test and the ground potential of the device under test.
  • a first threshold value subtraction circuit that calculates and outputs a first threshold voltage indicating a difference from a reference voltage generated based on the first threshold voltage, and outputs a comparison result by comparing the difference signal with the first threshold voltage. And a comparison circuit.
  • the differential signal subtraction circuit amplifies the difference between the non-inverted signal and the inverted signal with a predetermined amplification factor and outputs a differential signal
  • the first threshold value subtracting circuit outputs the first comparison voltage and the reference voltage.
  • the first threshold voltage may be output by amplifying the difference between the first threshold voltage and the differential signal subtraction circuit at a predetermined amplification factor.
  • a second threshold voltage indicating a difference between the second comparison voltage generated based on the ground potential of the device under test and the reference voltage generated based on the ground potential of the device under test is calculated.
  • the second comparator circuit may detect and output that the difference signal is smaller than the second threshold voltage by detecting that the voltage is greater than the voltage.
  • the first comparison circuit may detect and output that the inverted signal is larger than the non-inverted signal
  • the second comparison circuit may detect and output that the inverted signal is smaller than the non-inverted signal.
  • the differential signal subtraction circuit amplifies the difference between the non-inverted signal and the inverted signal with a predetermined amplification factor and outputs a difference signal
  • the second threshold subtraction circuit outputs the second comparison voltage and the reference voltage.
  • the second threshold voltage may be output by amplifying the difference between the two and the difference signal with a predetermined amplification factor same as that of the differential signal subtraction circuit.
  • a test module is generated based on a differential signal subtraction circuit that calculates and outputs a differential signal indicating a difference between a non-inverted signal and an inverted signal, and a ground potential of the device under test.
  • a first threshold subtraction circuit that calculates and outputs a first threshold voltage indicating a difference between the first comparison voltage and the reference voltage generated based on the ground potential of the device under test;
  • a first comparison circuit that compares the threshold voltage and outputs a comparison result.
  • a test apparatus for testing a device under test that outputs a differential signal including a non-inverted signal and an inverted signal, and includes a test module for measuring the differential signal.
  • the test module calculates a differential signal indicating a difference between the non-inverted signal and the inverted signal and outputs it, a first comparison voltage generated based on the ground potential of the device under test,
  • the first threshold subtraction circuit that calculates and outputs the first threshold voltage that indicates the difference from the reference voltage generated based on the ground potential of the test device, and compares and compares the difference signal and the first threshold voltage And a first comparison circuit for outputting a result.
  • FIG. 1 is a diagram showing a configuration of a test apparatus 10 according to a conventional technique.
  • FIG. 2 is a diagram illustrating a first example of a configuration of an amplifier circuit included in the subtraction circuit 14.
  • FIG. 3 is a diagram showing a second example of the configuration of the amplifier circuit included in the subtraction circuit 14.
  • FIG. 4 is a diagram showing an example of the configuration of a test apparatus 100 according to an embodiment of the present invention.
  • FIG. 5 is a view showing a modification of the differential comparator circuit 118.
  • FIG. 4 is an example of the configuration of the test apparatus 100 according to an embodiment of the present invention.
  • the test apparatus 100 includes a performance board (PB) 102 on which a DUT 101 is mounted, and a test head 104 in which a plurality of test modules 106 are built.
  • the plurality of test modules 106 mounted on the test head 104 include a test module for analog tests and a test module for digital tests.
  • differential signals including non-inverted signals and inverted signals are included.
  • the configuration and operation of the test module 106 for testing the DUT 101 that outputs the signal will be described.
  • the test module 106 includes a first threshold subtraction circuit 108, a differential signal subtraction circuit 110, a second threshold subtraction circuit A differential comparator circuit 118 including a value subtraction circuit 112, an H side comparison circuit 114, and an L side comparison circuit 116, and DA converters 120, 122, 124, and 126 are included.
  • the first threshold subtraction circuit 108, the differential signal subtraction circuit 110, and the second threshold subtraction circuit 112 are subtraction circuits using operational amplifiers having the same gain, and are input with the same amplification factor ⁇ . Amplifies the signal to be transmitted.
  • the differential signal subtraction circuit 110 inputs a non-inverted signal output from the DUT 101 from a positive input terminal, and inputs an inverted signal output from the DUT 101 from a negative input terminal. Then, the differential signal subtracting circuit 110 calculates a difference signal indicating the difference between the non-inverted signal and the inverted signal by amplifying the difference between the non-inverted signal and the inverted signal by a predetermined amplification factor ⁇ . The output is supplied to the side comparison circuit 114 and the L side comparison circuit 116.
  • the DA converter 120 generates the first comparison voltage (VrefH) from the first comparison voltage data (D) using the ground potential of the DUT 101 supplied from the performance board ( ⁇ ) 102 as a reference.
  • the DA converter 122 generates a reference voltage (Vref) from the reference voltage data (D) using the ground potential of the DUT 101 supplied from the performance board (PB) 102 as a reference, and supplies it to the first threshold subtraction circuit 108.
  • Vref a reference voltage
  • the DA converter 124 uses the second comparison voltage data (D) as the second comparison voltage (Vref) based on the ground potential of the DUT 101 supplied from the performance board (PB) 102.
  • the DA converter 126 generates a reference voltage (Vref) from the reference voltage data (D) using the ground potential of the DUT 101 supplied from the performance board (PB) 102 as a reference, and generates a second threshold subtraction circuit 112.
  • the differential comparator circuit 118 does not have to include the DA converters 122 and 126.
  • the ground potential of the DUT 101 supplied from the performance board (PB) 102 may be supplied to the first threshold value subtracting circuit 108 and the second threshold value subtracting circuit 112 as the reference voltage (Vref).
  • the first threshold value subtracting circuit 108 inputs the first comparison voltage (VrefH) generated by the DA converter 120 based on the ground potential of the DUT 101 from the positive input terminal, and DA based on the ground potential of the DUT 101. Negative reference voltage (Vref) generated by converter 122 Input from the input terminal. Then, the first threshold subtraction circuit 108 amplifies the difference between the first comparison voltage (VrefH) and the reference voltage (Vref) by the same amplification factor o as that of the differential signal subtraction circuit 110. The first threshold voltage indicating the difference between the first comparison voltage (VrefH) and the reference voltage (Vref) is calculated and output and supplied to the H-side comparison circuit 114.
  • the second threshold value subtracting circuit 112 inputs the second comparison voltage (VrefL) generated by the DA converter 124 based on the ground potential of the DUT 101 from the positive input terminal, and DA based on the ground potential of the DUT 101.
  • the reference voltage (Vref) generated by the converter 126 is input from the negative input terminal.
  • the second threshold subtraction circuit 112 amplifies the difference between the second comparison voltage (VrefL) and the reference voltage (Vref) by the same amplification factor o as that of the differential signal subtraction circuit 110.
  • the second threshold voltage indicating the difference between the second comparison voltage (VrefL) and the reference voltage (Vref) is calculated and output, and supplied to the L-side comparison circuit 116.
  • the first comparison voltage (VrefH), the second comparison voltage (VrefL), and the reference voltage (Vref) are generated by a DA converter circuit connected to the ground potential of the DUT101, and are used as a first threshold subtraction circuit 1 08 and the second threshold value subtraction circuit 112.
  • the H-side comparison circuit 114 receives the differential signal supplied from the differential signal subtraction circuit 110 and the first threshold voltage supplied from the first threshold subtraction circuit 108. Then, the H-side comparison circuit 114 compares the difference signal with the first threshold voltage, detects that the difference signal is greater than the first threshold voltage, and outputs it as a comparison result. That is, the H-side comparison circuit 114 detects and outputs that the inverted signal included in the differential signal output from the DUT 101 is larger than the non-inverted signal.
  • the L-side comparison circuit 116 receives the difference signal supplied from the differential signal subtraction circuit 110 and the second threshold voltage supplied from the second threshold subtraction circuit 112.
  • the L-side comparison circuit 116 compares the difference signal with the second threshold voltage, detects that the difference signal is smaller than the second threshold voltage, and outputs it as a comparison result. That is, the L-side comparison circuit 116 detects that the inverted signal included in the differential signal output from the DUT 101 is smaller than the non-inverted signal and outputs the detected signal.
  • the differential signal subtraction circuit 110 Measurement errors due to gain nonlinearity can be reduced, and differential signal crosspoints can be measured accurately. For this reason, a test device with a differential comparator circuit 118 is installed. According to the apparatus 100, it is possible to accurately test the DUT 101 that outputs a differential signal.
  • the differential signal input to the differential signal subtraction circuit 110, the first comparison voltage (VrefH) and the reference voltage (Vref) input to the first threshold value subtraction circuit 108, and the second threshold value Since the common noise of the ground potential of DU T101 is superimposed on all of the second comparison voltage (VrefL) and the reference voltage (Vref) input to the subtraction circuit 11 2, the differential signal subtraction circuit 110 The common noise is canceled by the first threshold value subtracting circuit 108 and the second threshold value subtracting circuit 112, and the H side comparison circuit 114 and the L side comparison circuit 116 can output an accurate comparison result. Therefore, according to the test apparatus 100 equipped with the differential comparator circuit 118, it is possible to accurately test the DUT 101 that outputs a differential signal.
  • FIG. 5 shows a modification of the configuration of the differential comparator circuit 118 according to the present embodiment.
  • the differential comparator circuit 118 includes a first differential signal amplification unit 200, a second differential signal amplification unit 270, a first threshold amplification unit 201, a second threshold amplification unit 202, an H-side comparison circuit 204, L side comparison circuit 206, resistor 208, resistor 210, resistor 248, and resistor 250 are provided.
  • the first differential signal amplifier 200 includes a transistor 212, a resistor 214, a transistor 216, a resistor 218, and a current source 220.
  • the second differential signal amplifying unit 270 includes a transistor 252, a resistor 254, a transistor 256, a resistor 258, and a current source 260.
  • the first threshold amplification unit 201 includes a transistor 222, a resistor 224, a transistor 226, a resistor 228, and a current source 230.
  • the second threshold amplification unit 202 includes a transistor 232, a resistor 234, a transistor 236, a resistor 238, and a current source 240.
  • the first differential signal amplification unit 200 and the resistors 208 and 210 constitute a differential amplification circuit
  • the second differential signal amplification unit 270 and the resistors 248 and 250 constitute a differential amplification circuit
  • the amplifier 201 and the resistors 208 and 210 constitute a differential amplifier circuit
  • the second threshold amplifier 202 and the resistors 208 and 210 constitute a differential amplifier circuit.
  • the first differential signal amplifying unit 200, the second differential signal amplifying unit 270, the first threshold value amplifying unit 201, and the second threshold value amplifying unit 202 have the same configuration, and each includes transistors, resistors, and resistors. And the current source have the same characteristics.
  • first differential signal amplification unit 200 the second differential signal amplification unit 270, the first threshold amplification unit 201, and the second threshold amplification unit 202 amplify the input signals with the same amplification factor. Output.
  • first differential signal amplification section 200 a non-inverted signal included in the differential signal output from DUT 101 is applied to transistor 212, and an inverted signal included in the differential signal output from DUT 101 is applied to transistor 216. Is done.
  • the first differential signal amplification unit 200 amplifies the non-inverted signal and the inverted signal, inputs the amplified non-inverted signal to the positive input terminal of the L-side comparison circuit 206, and compares the amplified inverted signal with the L-side comparison. Input to the negative input terminal of circuit 206.
  • the second differential signal amplifying unit 270 the non-inverted signal included in the differential signal output from the DUT 101 is applied to the transistor 252 and the inverted signal included in the differential signal output from the DUT 101 is applied to the transistor 256. Is done. Then, the second differential signal amplifying unit 270 amplifies the non-inverted signal and the inverted signal, inputs the amplified non-inverted signal to the positive input terminal of the H-side comparison circuit 204, and compares the amplified inverted signal with the H-side comparison. Input to negative input terminal of circuit 204
  • the reference voltage (Vref) generated based on the ground potential of the DUT 101 is applied to the transistor 222, and the first comparison voltage (VrefH generated based on the ground potential of the DUT 101) is applied. ) Is applied to transistor 216. Then, the first threshold amplification unit 201 amplifies the reference voltage (Vref) and the first comparison voltage (VrefH), inputs the amplified reference voltage (Vref) to the positive input terminal of the H-side comparison circuit 204, and amplifies it. The first comparison voltage (VrefH) is input to the negative input terminal of the H side comparison circuit 204.
  • a reference voltage (Vref) generated based on the ground potential of the DUT 101 is applied to the transistor 232, and a second comparison voltage (VrefL generated based on the ground potential of the DUT 101) is applied.
  • VrefL the second comparison voltage
  • the second threshold amplification unit 202 amplifies the reference voltage (Vref) and the second comparison voltage (VrefL), inputs the amplified reference voltage (Vref) to the positive input terminal of the L-side comparison circuit 206, and amplifies it.
  • the second comparison voltage (VrefL) is input to the negative input terminal of the L side comparison circuit 206.
  • the H-side comparison circuit 204 compares the potential of the positive input terminal and the potential of the negative input terminal, and outputs a comparison result. That is, the H-side comparison circuit 204 determines that the sum of the voltage of the non-inverted signal input from the second differential signal amplifier 270 and the reference voltage (Vref) input from the first threshold amplifier 201 is the second It is detected that the voltage of the inverted signal input from the differential signal amplifier 270 is greater than the sum of the first comparison voltage (VrefH) input from the first threshold amplifier 201 and the comparison result And output.
  • the L-side comparison circuit 206 compares the potential of the positive input terminal and the potential of the negative input terminal, and outputs a comparison result. That is, the L-side comparison circuit 206 is configured such that the sum of the voltage of the non-inverted signal input from the first differential signal amplifier 200 and the reference voltage (Vref) input from the second threshold amplifier 202 is the first. Detects that the voltage of the inverted signal input from the differential signal amplifier 200 is smaller than the sum of the second comparison voltage (VrefL) input from the second threshold amplifier 2002, and outputs the result as a comparison result. .
  • the first differential signal amplification unit 200, the second differential signal amplification unit 270, the first threshold amplification unit 201, and the second threshold amplification unit 202 are configured by a differential amplification circuit.
  • the operation of the differential con- verter circuit 118 can be increased at high speed.
  • the first differential signal amplification unit 200, the second differential signal amplification unit 270, the first threshold amplification unit 201, and the second threshold amplification unit 202 with a differential amplification circuit having the same gain, The measurement error due to the nonlinearity of the gains of the first differential signal amplifying unit 200 and the second differential signal amplifying unit 270 can be reduced, and the cross point of the differential signal can be accurately measured. Therefore, according to the test apparatus 100 equipped with the differential comparator circuit 118, it is possible to accurately test the DUT 101 that outputs a differential signal.
  • a differential comparator circuit capable of accurately measuring a differential signal can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

 非反転信号及び反転信号を含む差動信号を出力する被試験デバイスを試験する試験装置に搭載される差動コンパレータ回路であって、非反転信号と反転信号との差分を示す差分信号を算出して出力する差動信号引算回路と、被試験デバイスのグランド電位に基づいて生成された第1比較電圧と被試験デバイスのグランド電位に基づいて生成された基準電圧との差分を示す第1閾値電圧を算出して出力する第1閾値引算回路と、差分信号と第1閾値電圧とを比較して比較結果を出力する第1比較回路とを備える。

Description

明 細 書
差動コンパレータ回路、テストヘッド、及び試験装置
技術分野
[0001] 本発明は、差動コンパレータ回路、テストヘッド、及び試験装置に関する。特に本 発明は、差動信号を出力する被試験デバイスを試験する試験装置に搭載される差 動コンパレータ回路に関する。文献の参照による組み込みが認められる指定国につ いては、下記の出願に記載された内容を参照により本出願に組み込み、本出願の記 載の一部とする。
特願 2004— 236808 出願日 平成 16年 8月 16日
背景技術
[0002] 図 1は、従来技術に係る試験装置 10の構成を示す。試験装置 10は、引算回路 14 、 H側比較回路 16、及び L側比較回路 18を備える。引算回路 14は、被試験デバィ ス (以下、「DUT」という。) 12から出力された差動信号を増幅率 αで増幅し、差分を 取って出力する。そして、 Η側比較回路 16は、引算回路 14から出力された信号を Η 側閾値 (VrefH)と比較して比較結果を出力する。また、 L側比較回路 18は、引算回 路 14から出力された信号を L側閾値 (VrefL)と比較して比較結果を出力する。この ように、試験装置 10は、引算回路 14を設けることにより、 DUT12が出力する差動信 号のクロスポイントを測定する。このような引算回路 14において、増幅率 αが一定で ある場合には、 DUT12が出力する差動信号のクロスポイントを測定することができる
発明の開示
発明が解決しょうとする課題
[0003] 図 2は、従来技術に係る引算回路 14が有する増幅回路の構成の第 1の例を示す。
図 2に示した増幅回路において、利得 Gが非常に大きい場合、増幅率 αは、 oc =— R /R となり、利得 Gの非線形性を無視することができる。し力しながら、このよう
OUT IN
な増幅回路では、利得を大きくして、高速ィ匕を実現することが困難である。
[0004] 図 3は、従来技術に係る引算回路 14が有する増幅回路の構成の第 2の例を示す。 図 3に示した増幅回路では、高速ィ匕を実現することはできるが、利得が小さい。その ため、利得の非線形性が大きくなつてしまい、増幅率を一定に維持することができな い。
[0005] そこで本発明は、上記の課題を解決することができる試験装置を提供することを目 的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより 達成される。また従属項は本発明の更なる有利な具体例を規定する。
課題を解決するための手段
[0006] 本発明の第 1の形態によると、非反転信号及び反転信号を含む差動信号を出力す る被試験デバイスを試験する試験装置に搭載される差動コンパレータ回路であって 、記非反転信号と反転信号との差分を示す差分信号を算出して出力する差動信号 引算回路と、被試験デバイスのグランド電位に基づいて生成された第 1比較電圧と被 試験デバイスのグランド電位に基づいて生成された基準電圧との差分を示す第 1閾 値電圧を算出して出力する第 1閾値引算回路と、差分信号と第 1閾値電圧とを比較 して比較結果を出力する第 1比較回路とを備える。
[0007] 差動信号引算回路は、非反転信号と反転信号との差分を所定の増幅率で増幅し て差分信号を出力し、第 1閾値引算回路は、第 1比較電圧と基準電圧との差分を、差 動信号引算回路と同一の所定の増幅率で増幅して第 1閾値電圧を出力してもよい。
[0008] 被試験デバイスのグランド電位に基づ ヽて生成された第 2比較電圧と被試験デバィ スのグランド電位に基づいて生成された基準電圧との差分を示す第 2閾値電圧を算 出して出力する第 2閾値引算回路と、差分信号と第 2閾値電圧とを比較して、比較結 果を出力する第 2比較回路とをさらに備え、第 1比較回路は、差分信号が第 1閾値電 圧より大きいことを検出して出力し、第 2比較回路は、差分信号が第 2閾値電圧より小 さいことを検出して出力してもよい。
[0009] 第 1比較回路は、反転信号が非反転信号より大きいことを検出して出力し、第 2比 較回路は、反転信号が非反転信号より小さいことを検出して出力してもよい。
[0010] 差動信号引算回路は、非反転信号と反転信号との差分を所定の増幅率で増幅し て差分信号を出力し、第 2閾値引算回路は、第 2比較電圧と基準電圧との差分を、差 動信号引算回路と同一の所定の増幅率で増幅して第 2閾値電圧を出力してもよい。 [0011] 本発明の第 2の形態によると、非反転信号及び反転信号を含む差動信号を出力す る被試験デバイスを試験する試験装置のテストヘッドであって、差動信号を測定する テストモジュールを備え、テストモジュールは、非反転信号と反転信号との差分を示 す差分信号を算出して出力する差動信号引算回路と、被試験デバイスのグランド電 位に基づ 、て生成された第 1比較電圧と被試験デバイスのグランド電位に基づ 、て 生成された基準電圧との差分を示す第 1閾値電圧を算出して出力する第 1閾値引算 回路と、差分信号と第 1閾値電圧とを比較して比較結果を出力する第 1比較回路とを 有する。
[0012] 本発明の第 3の形態によると、非反転信号及び反転信号を含む差動信号を出力す る被試験デバイスを試験する試験装置であって、差動信号を測定するテストモジユー ルを備え、テストモジュールは、非反転信号と反転信号との差分を示す差分信号を 算出して出力する差動信号引算回路と、被試験デバイスのグランド電位に基づいて 生成された第 1比較電圧と被試験デバイスのグランド電位に基づいて生成された基 準電圧との差分を示す第 1閾値電圧を算出して出力する第 1閾値引算回路と、差分 信号と第 1閾値電圧とを比較して比較結果を出力する第 1比較回路とを有する。
[0013] なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなぐこ れらの特徴群のサブコンビネーションも又発明となりうる。
発明の効果
[0014] 本発明によれば、差動信号を正確に測定できる差動コンパレータ回路を提供でき る。
図面の簡単な説明
[0015] [図 1]従来技術に係る試験装置 10の構成を示す図である。
[図 2]引算回路 14が有する増幅回路の構成の第 1の例を示す図である。
[図 3]引算回路 14が有する増幅回路の構成の第 2の例を示す図である。
[図 4]本発明の一実施形態に係る試験装置 100の構成の一例を示す図である。
[図 5]差動コンパレータ回路 118の変形例を示す図である。
符号の説明
[0016] 100 試験装置 101 DUT
102 パフォーマンスボード
104 テストヘッド
106 テストモジュール
108 第 1閾値引算回路
110 差動信号引算回路
112 第 2閾値引算回路
114 H側比較回路
116 L側比較回路
118 差動コンパレータ回路
120 DAコンバータ
122 DAコンノータ
124 DAコンノータ
126 DAコンバータ
200 第 1差動信号増幅部
201 第 1閾値増幅部
202 第 2閾値増幅部
204 H側比較回路
206 L側比較回路
208 抵抗
210 抵抗
212 トランジスタ
214 抵抗
216 トランジスタ
218 抵抗
220 電流源
222 トランジスタ 226 トランジスタ
228 抵抗
230 電流源
232 トランジスタ
234 抵抗
236 トランジスタ
238 抵抗
240 電流源
248 抵抗
250 抵抗
252 トランジスタ
254 抵抗
256 トランジスタ
258 抵抗
260 電流源
270 第 2差動信号増幅部
発明を実施するための最良の形態
[0017] 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の 範囲に係る発明を限定するものではなぐ又実施形態の中で説明されている特徴の 組み合わせの全てが発明の解決手段に必須であるとは限らな!/、。
[0018] 図 4は、本発明の一実施形態に係る試験装置 100の構成の一例である。試験装置 100は、 DUT101が載置されるパフォーマンスボード(PB) 102と、複数のテストモジ ユール 106を内蔵するテストヘッド 104とを備える。テストヘッド 104に搭載される複数 のテストモジュール 106には、アナログ試験用のテストモジュール、デジタル試験用 のテストモジュール等があるが、本実施形態においては、非反転信号及び反転信号 を含む差動信号を出力する DUT101を試験するためのテストモジュール 106の構成 及び動作にっ 、て説明する。
[0019] テストモジュール 106は、第 1閾値引算回路 108、差動信号引算回路 110、第 2閾 値引算回路 112、 H側比較回路 114、 L側比較回路 116を含む差動コンパレータ回 路 118、並びに DAコンバータ 120、 122、 124、及び 126を有する。第 1閾値引算回 路 108、差動信号引算回路 110、及び第 2閾値引算回路 112は、同一の利得を有 するオペアンプを用いた引算回路であり、同一の増幅率 αにより入力される信号を 増幅する。
[0020] 差動信号引算回路 110は、 DUT101から出力された非反転信号を正入力端子か ら入力し、 DUT101から出力された反転信号を負入力端子から入力する。そして、 差動信号引算回路 110は、非反転信号と反転信号との差分を所定の増幅率 αで増 幅することにより、非反転信号と反転信号との差分を示す差分信号を算出して出力し 、 Η側比較回路 114及び L側比較回路 116に供給する。
[0021] DAコンバータ 120は、パフォーマンスボード(ΡΒ) 102から供給された DUT101の グランド電位を基準として、第 1比較電圧データ (D )から第 1比較電圧 (VrefH)を
H
生成して第 1閾値引算回路 108に供給する。また、 DAコンバータ 122は、パフォー マンスボード (PB) 102から供給された DUT101のグランド電位を基準として、基準 電圧データ (D )から基準電圧 (Vref)を生成して第 1閾値引算回路 108に供給する
R
。また、 DAコンバータ 124は、パフォーマンスボード(PB) 102から供給された DUT 101のグランド電位を基準として、第 2比較電圧データ (D )から第 2比較電圧 (Vref
L)を生成して第 2閾値引算回路 112に供給する。また、 DAコンバータ 126は、パフ オーマンスボード(PB) 102から供給された DUT101のグランド電位を基準として、 基準電圧データ (D )から基準電圧 (Vref)を生成して第 2閾値引算回路 112に供給
R
する。
[0022] なお、差動コンパレータ回路 118は、 DAコンバータ 122及び 126を有さなくてもよ い。この場合、パフォーマンスボード(PB) 102から供給された DUT101のグランド電 位が、基準電圧 (Vref)として第 1閾値引算回路 108及び第 2閾値引算回路 112に 供給されてもよい。
[0023] 第 1閾値引算回路 108は、 DUT101のグランド電位に基づいて DAコンバータ 120 によって生成された第 1比較電圧 (VrefH)を正入力端子から入力し、 DUT101のグ ランド電位に基づいて DAコンバータ 122によって生成された基準電圧 (Vref)を負 入力端子から入力する。そして、第 1閾値引算回路 108は、第 1比較電圧 (VrefH)と 基準電圧 (Vref)との差分を、差動信号引算回路 110と同一の所定の増幅率 oで増 幅することにより、第 1比較電圧 (VrefH)と基準電圧 (Vref)との差分示す第 1閾値 電圧を算出して出力し、 H側比較回路 114に供給する。
[0024] 第 2閾値引算回路 112は、 DUT101のグランド電位に基づいて DAコンバータ 124 によって生成された第 2比較電圧 (VrefL)を正入力端子から入力し、 DUT101のグ ランド電位に基づいて DAコンバータ 126によって生成された基準電圧 (Vref)を負 入力端子から入力する。そして、第 2閾値引算回路 112は、第 2比較電圧 (VrefL)と 基準電圧 (Vref)との差分を、差動信号引算回路 110と同一の所定の増幅率 oで増 幅することにより、第 2比較電圧 (VrefL)と基準電圧 (Vref)との差分示す第 2閾値電 圧を算出して出力し、 L側比較回路 116に供給する。
[0025] 第 1比較電圧 (VrefH)、第 2比較電圧 (VrefL)、及び基準電圧 (Vref)は、 DUT1 01のグランド電位に接続された DA変換回路によって生成され、第 1閾値引算回路 1 08及び第 2閾値引算回路 112に供給される。
[0026] H側比較回路 114は、差動信号引算回路 110から供給された差分信号、及び第 1 閾値引算回路 108から供給された第 1閾値電圧を入力する。そして、 H側比較回路 1 14は、差分信号と第 1閾値電圧とを比較し、差分信号が第 1閾値電圧より大きいこと を検出して比較結果として出力する。即ち、 H側比較回路 1 14は、 DUT101が出力 する差動信号が含む反転信号が非反転信号より大きいことを検出して出力する。
[0027] L側比較回路 116は、差動信号引算回路 110から供給された差分信号、及び第 2 閾値引算回路 112から供給された第 2閾値電圧を入力する。そして、 L側比較回路 1 16は、差分信号と第 2閾値電圧とを比較し、差分信号が第 2閾値電圧より小さいこと を検出して比較結果として出力する。即ち、 L側比較回路 116は、 DUT101が出力 する差動信号が含む反転信号が非反転信号より小さいことを検出して出力する。
[0028] 以上のように、差動信号引算回路 110と同一の利得を有する第 1閾値引算回路 10 8及び第 2閾値引算回路 112を設けることによって、差動信号引算回路 110の利得 の非線形性による測定誤差を低減させることができ、正確に差動信号のクロスポイン トを測定することができる。そのため、差動コンパレータ回路 1 18が搭載された試験装 置 100によれば、差動信号を出力する DUT101を精度よく試験することができる。
[0029] また、差動信号引算回路 110に入力される差動信号、第 1閾値引算回路 108に入 力される第 1比較電圧 (VrefH)及び基準電圧 (Vref)、並びに第 2閾値引算回路 11 2に入力される第 2比較電圧 (VrefL)及び基準電圧 (Vref)のすべてに対して、 DU T101のグランド電位力ものコモンノイズが重畳されるので、差動信号引算回路 110、 第 1閾値引算回路 108、及び第 2閾値引算回路 112によってコモンノイズが打ち消さ れ、 H側比較回路 114及び L側比較回路 116にお 、て正確な比較結果を出力する ことができる。そのため、差動コンパレータ回路 118が搭載された試験装置 100によ れば、差動信号を出力する DUT101を精度よく試験することができる。
[0030] 図 5は、本実施形態に係る差動コンパレータ回路 118の構成の変形例を示す。本 例に係る差動コンパレータ回路 118は、第 1差動信号増幅部 200、第 2差動信号増 幅部 270、第 1閾値増幅部 201、第 2閾値増幅部 202、 H側比較回路 204、 L側比較 回路 206、抵抗 208、抵抗 210、抵抗 248、及び抵抗 250を有する。第 1差動信号増 幅部 200は、トランジスタ 212、抵抗 214、トランジスタ 216、抵抗 218、及び電流源 2 20を含む。第 2差動信号増幅部 270は、トランジスタ 252、抵抗 254、トランジスタ 25 6、抵抗 258、及び電流源 260を含む。第 1閾値増幅部 201は、トランジスタ 222、抵 抗 224、トランジスタ 226、抵抗 228、及び電流源 230を含む。第 2閾値増幅部 202 は、トランジスタ 232、抵抗 234、トランジスタ 236、抵抗 238、及び電流源 240を含む
[0031] 第 1差動信号増幅部 200並びに抵抗 208及び 210により差動増幅回路が構成され 、第 2差動信号増幅部 270並びに抵抗 248及び 250により差動増幅回路が構成され 、第 1閾値増幅部 201並びに抵抗 208及び 210により差動増幅回路が構成され、第 2閾値増幅部 202並びに抵抗 208及び 210により差動増幅回路が構成される。なお 、第 1差動信号増幅部 200、第 2差動信号増幅部 270、第 1閾値増幅部 201、及び 第 2閾値増幅部 202は、同一の構成であり、それぞれが含むトランジスタ、抵抗、及 び電流源は、同一の特性を有する。即ち、第 1差動信号増幅部 200、第 2差動信号 増幅部 270、第 1閾値増幅部 201、及び第 2閾値増幅部 202は、同一の増幅率で入 力される信号を増幅して出力する。 [0032] 第 1差動信号増幅部 200において、 DUT101から出力された差動信号が含む非 反転信号がトランジスタ 212に印加され、 DUT101から出力された差動信号が含む 反転信号がトランジスタ 216に印加される。そして、第 1差動信号増幅部 200は、非 反転信号及び反転信号を増幅し、増幅した非反転信号を L側比較回路 206の正入 力端子に入力し、増幅した反転信号を L側比較回路 206の負入力端子に入力する。
[0033] 第 2差動信号増幅部 270において、 DUT101から出力された差動信号が含む非 反転信号がトランジスタ 252に印加され、 DUT101から出力された差動信号が含む 反転信号がトランジスタ 256に印加される。そして、第 2差動信号増幅部 270は、非 反転信号及び反転信号を増幅し、増幅した非反転信号を H側比較回路 204の正入 力端子に入力し、増幅した反転信号を H側比較回路 204の負入力端子に入力する
[0034] 第 1閾値増幅部 201において、 DUT101のグランド電位に基づいて生成された基 準電圧 (Vref)がトランジスタ 222に印加され、 DUT101のグランド電位に基づいて 生成された第 1比較電圧 (VrefH)がトランジスタ 216に印加される。そして、第 1閾値 増幅部 201は、基準電圧 (Vref)及び第 1比較電圧 (VrefH)を増幅し、増幅した基 準電圧 (Vref)を H側比較回路 204の正入力端子に入力し、増幅した第 1比較電圧 ( VrefH)を H側比較回路 204の負入力端子に入力する。
[0035] 第 2閾値増幅部 202において、 DUT101のグランド電位に基づいて生成された基 準電圧 (Vref)がトランジスタ 232に印加され、 DUT101のグランド電位に基づいて 生成された第 2比較電圧 (VrefL)がトランジスタ 236に印加される。そして、第 2閾値 増幅部 202は、基準電圧 (Vref)及び第 2比較電圧 (VrefL)を増幅し、増幅した基 準電圧 (Vref)を L側比較回路 206の正入力端子に入力し、増幅した第 2比較電圧 ( VrefL)を L側比較回路 206の負入力端子に入力する。
[0036] H側比較回路 204は、正入力端子の電位と負入力端子の電位とを比較して、比較 結果を出力する。即ち、 H側比較回路 204は、第 2差動信号増幅部 270から入力さ れた非反転信号の電圧と第 1閾値増幅部 201から入力された基準電圧 (Vref)との 和が、第 2差動信号増幅部 270から入力された反転信号の電圧と第 1閾値増幅部 2 01から入力された第 1比較電圧 (VrefH)との和より大きいことを検出して比較結果と して出力する。
[0037] L側比較回路 206は、正入力端子の電位と負入力端子の電位とを比較して、比較 結果を出力する。即ち、 L側比較回路 206は、第 1差動信号増幅部 200から入力さ れた非反転信号の電圧と第 2閾値増幅部 202から入力された基準電圧 (Vref)との 和が、第 1差動信号増幅部 200から入力された反転信号の電圧と第 2閾値増幅部 2 02から入力された第 2比較電圧 (VrefL)との和より小さいことを検出して比較結果と して出力する。
[0038] 以上のように、第 1差動信号増幅部 200、第 2差動信号増幅部 270、第 1閾値増幅 部 201、及び第 2閾値増幅部 202を差動増幅回路で構成することによって、差動コン ノルータ回路 118の動作を高速ィ匕することができる。また、第 1差動信号増幅部 200 、第 2差動信号増幅部 270、第 1閾値増幅部 201、及び第 2閾値増幅部 202を同一 の利得を有する差動増幅回路で構成することによって、第 1差動信号増幅部 200及 び第 2差動信号増幅部 270の利得の非線形性による測定誤差を低減させることがで き、正確に差動信号のクロスポイントを測定することができる。そのため、差動コンパレ ータ回路 118が搭載された試験装置 100によれば、差動信号を出力する DUT101 を精度よく試験することができる。
[0039] 以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施 形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良をカロ えることができる。そのような変更又は改良を加えた形態も本発明の技術的範囲に含 まれ得ることが、請求の範囲の記載から明らかである。
産業上の利用可能性
[0040] 上記説明から明らかなように、本発明によれば、差動信号を正確に測定できる差動 コンパレータ回路を提供できる。

Claims

請求の範囲
[1] 非反転信号及び反転信号を含む差動信号を出力する被試験デバイスを試験する 試験装置に搭載される差動コンパレータ回路であって、
前記非反転信号と前記反転信号との差分を示す差分信号を算出して出力する差 動信号引算回路と、
前記被試験デバイスのグランド電位に基づいて生成された第 1比較電圧と前記被 試験デバイスのグランド電位に基づいて生成された基準電圧との差分を示す第 1閾 値電圧を算出して出力する第 1閾値引算回路と、
前記差分信号と前記第 1閾値電圧とを比較して比較結果を出力する第 1比較回路 と
を備える差動コンパレータ回路。
[2] 前記差動信号引算回路は、前記非反転信号と前記反転信号との差分を所定の増 幅率で増幅して前記差分信号を出力し、
前記第 1閾値引算回路は、前記第 1比較電圧と前記基準電圧との差分を、前記差 動信号引算回路と同一の前記所定の増幅率で増幅して前記第 1閾値電圧を出力す る
請求項 1に記載の差動コンパレータ回路。
[3] 前記被試験デバイスのグランド電位に基づいて生成された第 2比較電圧と前記被 試験デバイスのグランド電位に基づいて生成された基準電圧との差分を示す第 2閾 値電圧を算出して出力する第 2閾値引算回路と、
前記差分信号と前記第 2閾値電圧とを比較して、比較結果を出力する第 2比較回 路と
をさらに備え、
前記第 1比較回路は、前記差分信号が前記第 1閾値電圧より大きいことを検出して 出力し、
前記第 2比較回路は、前記差分信号が前記第 2閾値電圧より小さいことを検出して 出力する
請求項 1に記載の差動コンパレータ回路。
[4] 前記第 1比較回路は、前記反転信号が前記非反転信号より大きいことを検出して 出力し、
前記第 2比較回路は、前記反転信号が前記非反転信号より小さいことを検出して 出力する
請求項 3に記載の差動コンパレータ回路。
[5] 前記差動信号引算回路は、前記非反転信号と前記反転信号との差分を所定の増 幅率で増幅して前記差分信号を出力し、
前記第 2閾値引算回路は、前記第 2比較電圧と前記基準電圧との差分を、前記差 動信号引算回路と同一の前記所定の増幅率で増幅して前記第 2閾値電圧を出力す る
請求項 3に記載の差動コンパレータ回路。
[6] 非反転信号及び反転信号を含む差動信号を出力する被試験デバイスを試験する 試験装置のテストヘッドであって、
前記差動信号を測定するテストモジュール
を備え、
前記テストモジュールは、
前記非反転信号と前記反転信号との差分を示す差分信号を算出して出力する差 動信号引算回路と、
前記被試験デバイスのグランド電位に基づいて生成された第 1比較電圧と前記被 試験デバイスのグランド電位に基づいて生成された基準電圧との差分を示す第 1閾 値電圧を算出して出力する第 1閾値引算回路と、
前記差分信号と前記第 1閾値電圧とを比較して比較結果を出力する第 1比較回路 と
を有するテストヘッド。
[7] 非反転信号及び反転信号を含む差動信号を出力する被試験デバイスを試験する 試験装置であって、
前記差動信号を測定するテストモジュール
を備え、 前記テストモジュールは、
前記非反転信号と前記反転信号との差分を示す差分信号を算出して出力する差 動信号引算回路と、
前記被試験デバイスのグランド電位に基づいて生成された第 1比較電圧と前記被 試験デバイスのグランド電位に基づいて生成された基準電圧との差分を示す第 1閾 値電圧を算出して出力する第 1閾値引算回路と、
前記差分信号と前記第 1閾値電圧とを比較して比較結果を出力する第 1比較回路 と
を有する試験装置。
PCT/JP2005/014543 2004-08-16 2005-08-08 差動コンパレータ回路、テストヘッド、及び試験装置 WO2006019007A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006531634A JP4819684B2 (ja) 2004-08-16 2005-08-08 差動コンパレータ回路、テストヘッド、及び試験装置
DE112005001957T DE112005001957T5 (de) 2004-08-16 2005-08-08 Differenzkomparatorschaltung, Prüfkopf und Prüfvorrichtung
US11/202,391 US7123025B2 (en) 2004-08-16 2005-08-11 Differential comparator circuit, test head, and test apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004236808 2004-08-16
JP2004-236808 2004-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/202,391 Continuation US7123025B2 (en) 2004-08-16 2005-08-11 Differential comparator circuit, test head, and test apparatus

Publications (1)

Publication Number Publication Date
WO2006019007A1 true WO2006019007A1 (ja) 2006-02-23

Family

ID=35799396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014543 WO2006019007A1 (ja) 2004-08-16 2005-08-08 差動コンパレータ回路、テストヘッド、及び試験装置

Country Status (4)

Country Link
US (1) US7123025B2 (ja)
JP (1) JP4819684B2 (ja)
DE (1) DE112005001957T5 (ja)
WO (1) WO2006019007A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152477A (ja) * 2014-02-17 2015-08-24 株式会社メガチップス 半導体集積回路の試験回路及び試験方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248061B2 (en) * 2004-09-14 2007-07-24 Denso Corporation Transmission device for transmitting a signal through a transmission line between circuits blocks having different power supply systems
JP4746510B2 (ja) * 2006-02-21 2011-08-10 愛三工業株式会社 負荷駆動系の異常診断システムおよび燃料ポンプ制御システム
DE102006017239B4 (de) * 2006-04-12 2011-06-16 Infineon Technologies Austria Ag Differentieller Levelshifter mit automatischem Fehlerabgleich
CN110798219B (zh) * 2019-10-16 2023-10-03 中国兵器工业集团第二一四研究所苏州研发中心 一种差分信号处理电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252800A (ja) * 1999-02-26 2000-09-14 Ando Electric Co Ltd 差動信号用比較器および差動信号比較方法
JP2002208843A (ja) * 2000-11-24 2002-07-26 Agilent Technol Inc 差動信号の交差点に従って論理出力信号を送り出すための回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772923B1 (fr) * 1997-12-23 2000-03-17 Sextant Avionique Circuit electronique de surveillance de tension electrique
JP2002164750A (ja) * 2000-11-24 2002-06-07 Nippon Precision Circuits Inc 差動型比較回路
US6836127B2 (en) * 2001-07-27 2004-12-28 Hewlett-Packard Development Company, L.P. Dual switching reference voltages

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252800A (ja) * 1999-02-26 2000-09-14 Ando Electric Co Ltd 差動信号用比較器および差動信号比較方法
JP2002208843A (ja) * 2000-11-24 2002-07-26 Agilent Technol Inc 差動信号の交差点に従って論理出力信号を送り出すための回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152477A (ja) * 2014-02-17 2015-08-24 株式会社メガチップス 半導体集積回路の試験回路及び試験方法

Also Published As

Publication number Publication date
US20060033509A1 (en) 2006-02-16
DE112005001957T5 (de) 2007-07-26
JPWO2006019007A1 (ja) 2008-05-08
JP4819684B2 (ja) 2011-11-24
US7123025B2 (en) 2006-10-17

Similar Documents

Publication Publication Date Title
US9237406B2 (en) Speaker impedance measurement
JP4119060B2 (ja) 試験装置
WO2005106513A1 (ja) 直流試験装置
WO2006019007A1 (ja) 差動コンパレータ回路、テストヘッド、及び試験装置
KR101024220B1 (ko) 전력 인가 회로 및 시험 장치
JP4776724B2 (ja) 補正回路及び試験装置
JP2011053095A (ja) 電流監視装置
WO2005116672A1 (ja) 電源電流測定装置、及び試験装置
JPWO2008059766A1 (ja) 測定回路及び試験装置
JP5282370B2 (ja) 圧力センサ装置
JP2007040771A (ja) ノイズ測定用半導体装置
CN211557236U (zh) Ab类放大器和数字输入ab类放大器
TWI418804B (zh) 具最小共模誤差的電壓感測測量單元
JP2007294028A (ja) テスト回路およびテスト方法
US10031537B2 (en) Differential probe with common-mode offset
JP2009033726A (ja) バッファ回路、増幅回路、および、試験装置
JP4859353B2 (ja) 増幅回路、及び試験装置
JP2007033270A (ja) センサ回路及び回路ユニット
JP2009287956A (ja) 半導体試験装置
JP2827233B2 (ja) 半導体試験装置
JP2008005104A (ja) シングル差動変換回路
JP2004356874A (ja) センサ入力装置
JP4207107B2 (ja) Icテスタ
JPS6348478A (ja) 電子回路
JP2002181852A (ja) 電流電圧測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11202391

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11202391

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531634

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050019578

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005001957

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

122 Ep: pct application non-entry in european phase