WO2006009299A1 - 溶接熱影響部の低温靭性が優れた溶接構造用鋼およびその製造方法 - Google Patents

溶接熱影響部の低温靭性が優れた溶接構造用鋼およびその製造方法 Download PDF

Info

Publication number
WO2006009299A1
WO2006009299A1 PCT/JP2005/013775 JP2005013775W WO2006009299A1 WO 2006009299 A1 WO2006009299 A1 WO 2006009299A1 JP 2005013775 W JP2005013775 W JP 2005013775W WO 2006009299 A1 WO2006009299 A1 WO 2006009299A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
toughness
affected zone
temperature toughness
Prior art date
Application number
PCT/JP2005/013775
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Fukunaga
Yasushi Mizutani
Rikio Chijiiwa
Yoshiyuki Watanabe
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to JP2006527834A priority Critical patent/JP4332554B2/ja
Priority to EP05767334A priority patent/EP1777315B1/en
Priority to US11/632,735 priority patent/US7857917B2/en
Publication of WO2006009299A1 publication Critical patent/WO2006009299A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the present invention relates to a high-strength thick steel plate for offshore structures having excellent weldability and excellent low temperature toughness of HAZ, and a method for producing the same.
  • the present invention can be widely applied to fields such as architecture, bridges, shipbuilding, and Meijin.
  • TiN Ti nitride
  • TiN Ti nitride
  • the Ti-Mg oxide dispersed in the matrix is reheated by the pinning effect.
  • a technology is known that not only suppresses grain growth at the time, but also refines the ferrite by the effect of promoting the formation of IGF to ensure HAZ toughness.
  • the technology to produce the above steel with excellent HAZ toughness The problem is that it requires a very complex process and is expensive.
  • JP-A-3-264614 discloses that TiN functions as a precipitation nucleus of MnS for the interaction of TiN and MnS formation, and solidification to make effective use of these precipitates.
  • An invention has been proposed in which the cooling rate should be 5.TCTCin (about 0.08 ° CZ s) or less in the range of 1000 to 600 ° C, but the reason for this is quantitatively stated. Therefore, the optimum cooling rate is unknown. Disclosure of the invention
  • the present invention provides a high-strength thick steel plate for offshore structures that has excellent weldability and HAZ low-temperature toughness that can be manufactured at low cost without using a complicated manufacturing method, and a manufacturing method thereof.
  • the gist of the present invention is as follows.
  • the welding heat effect described in (3) or (4) is characterized by cooling from a temperature of 800 ° C or higher to a temperature of 400 ° C or lower at a cooling rate of 5 ° C / s or higher.
  • welded structural steel with excellent low-temperature toughness of the HAZ is characterized by cooling from a temperature of 800 ° C or higher to a temperature of 400 ° C or lower at a cooling rate of 5 ° C / s or higher.
  • Figure 1 is a schematic diagram showing the effect of Mn and TiN on toughness values.
  • the present invention adds a large amount of Mn having a relatively low alloy cost, thereby ensuring a low cost and strength toughness, and a grain coarsening due to the pinning effect of TiN. It is a technology that attempts to secure excellent HA Z toughness by using the combined effect of promoting IGF generation by MnS or the effect of MnS.
  • Figure 1 schematically shows the effect of Mn and TiN on the toughness value, but as Mn increases, the toughness improves, especially when the amount of Mn added is 1.2% or more. However, when the amount of Mn added exceeds 2.5%, the effect is saturated, and when it exceeds 3.0%, the toughness is deteriorated. In addition, when TiN is dispersed by controlling the cooling rate during high-Mn steel forging, the toughness is improved in all Mn regions.
  • the crystal grain size obtained by the pinning effect of precipitates is 100 m or less, which is said to ensure sufficient excellent toughness, only when the particle size of precipitates is 0.4 m or less.
  • Thermally stable TiN does not decompose even during high-temperature and short-time heating such as welding, and suppresses the coarsening of crystal grain size, so the effect of obtaining high HA Z toughness is sufficiently maintained.
  • the particle size of the precipitate in order to obtain a flake having a structure with a crystal grain size of 100 m or less, the particle size of the precipitate must be 0.4 / im or less. Therefore, it is necessary to control the cooling rate of the sepal to 0.06 ° CZ s or more, preferably 0. Ore / s or more, more preferably 0.1 to / s or more. Due to the effect of the plate thickness, a large difference occurs in the cooling rate even between the same piece. In particular, there is a large temperature difference between the piece surface and the center of the piece, and the temperature history is also different. However, the cooling rate has been found to remain within a certain range. Therefore, by controlling the blade cooling rate, it is possible to control TiN, which was previously determined only by the Ti / N ratio.
  • the IGF formation promoting effect of MnS is particularly effective when the grain growth suppression effect of TiN during welding is not fully demonstrated. Ie This is the case when TiN is dissolved by heating. Due to the fact that a large amount of Mn of about 2.0% is added to the steel of the present invention and that MnS is formed in a relatively high temperature range, the amount of MnS produced at the welding temperature of the steel of the present invention has been It increases compared to steel with the added amount of Mn, and as a result, the frequency of IGF generation during cooling after welding increases. This effectively reduces the size of the HAZ organization.
  • the DQT method involves direct quenching (DQ) after hot rolling and tempering (T) treatment. Is desirable.
  • T treatment increases because it is cooled once and then reheated and kept at that temperature for a certain period of time. From the viewpoint of cost reduction, avoid T treatment as much as possible.
  • the steel of the present invention can ensure excellent toughness without being subjected to T treatment, a high performance steel plate can be produced without increasing the cost.
  • a steel material with even better toughness can be obtained by applying T treatment.
  • C is an element necessary to ensure strength, and an addition of 0.03% or more is necessary. However, adding a large amount may cause a decrease in HAZ toughness, so the upper limit is set to 0.12. %.
  • Si is used as a deoxidizer and is an effective element for increasing the strength of steel by solid solution strengthening.
  • the content is less than 0.05%, the effect is small, while 0.30% is reduced. If it is included in excess, HAZ toughness deteriorates.
  • Si was limited to 0.05 to 0.30%.
  • a more desirable content is 0.05 to 0.25%.
  • Mn is an effective element for increasing strength because it increases the strength of steel. Mn combines with S to form MnS, which acts as a nucleation of IGF and promotes the refinement of the weld heat affected zone, thereby suppressing degradation of HAZ toughness. Therefore, a content of 1.2% or more is necessary to maintain the desired strength while ensuring the toughness of the heat affected zone. However, it is said that toughness deteriorates when Mn exceeds 3.0%. For this reason, Mn was limited to 1.2-3.0%. The Mn content is preferably 1.5-2.5%.
  • S mainly forms MnS and exists in steel, and has the effect of making the microstructure after rolling and cooling fine.
  • the content of 0.015% or more lowers the toughness and ductility in the thickness direction. For this reason, S must be 0.015% or less.
  • S in order to obtain a fine graining effect using MnS as the nucleation of IGF, S must be added in an amount of 0.001% or more. Therefore, S was limited to 0.001 to 0.015%.
  • Cu is an effective element for securing the strength, but it causes a decrease in hot workability. In order to avoid this, it has been conventional to add approximately the same amount of Ni as the amount of Cu added. However, since Ni is an element with a very high cost, the addition of a large amount of Ni may be a factor that cannot achieve the low cost that is the purpose of the steel of the present invention. Therefore, in the steel of the present invention, Cu and Ni were not intentionally added, based on the idea of securing strength with Mn. However, when manufacturing slabs using scrap, about 0.05% of each may be inevitably mixed, so Cu + Ni was limited to 0.10% or less.
  • A1 is an element necessary for deoxidation like Si, but less than 0.001% In this case, deoxidation is not performed sufficiently, and excessive addition exceeding 0.050% deteriorates HAZ toughness. For this reason, A1 was limited to 0.001 to 0.050%.
  • Ti should be added in an amount of 0.005% or more in order to combine with N to form TiN in the steel. However, if Ti is added in an amount exceeding 0.030%, TiN is coarsened, which may reduce the effect of suppressing grain size coarsening by TiN, which is the object of the present invention. For this reason, Ti was limited to 0.005 to 0.030%.
  • Nb is an element that expands the non-recrystallized region of austenite and promotes finer ferrite, and also generates Nb carbides and ensures strength. is necessary. However, when Nb exceeding 0.10% is added, HAb embrittlement due to Nb carbide tends to occur, so Nb was limited to 0.005 to 0.10%.
  • N needs to be added in an amount of 0.0025% or more in order to form TiN in the steel by combining with Ti.
  • the upper limit of N is set to 0.0060% so that the effect of TiN can be maximized without greatly affecting HAZ toughness.
  • Mo, V, and Cr are all effective elements for improving the hardenability.
  • one or more kinds may be selected and contained as necessary.
  • V can optimize the effect of refining the structure as VN together with TiN.
  • V has the effect of promoting precipitation strengthening by VN.
  • the addition of Ca can control the form of MnS and further improve the low-temperature toughness. Therefore, Ca can be selected and added when strict AZ characteristics are required.
  • Mg has the effect of suppressing austenite grain growth in HAZ and making it finer, As a result, HAZ toughness is improved, so Mg can be selected and added especially when HAZ toughness is severe.
  • the addition amounts are Mo: 0.2% or less, V: 0.03% or less, Cr: 0.5% or less, Ca: 0.0035% or less, Mg: 0.0050% or less.
  • the reason for making the steel structure 80% or more of the steel structure is that it is a low-alloy steel, but it is necessary to be the main body in order to obtain sufficient strength while securing HAZ toughness. This is because it can be achieved if the ratio is 80% or more. Desirably 85% or more, more desirably 90% or more, should be paynite organizations.
  • the cooling rate from the vicinity of the freezing point to 800 ° C is preferably 0.06 to 0.6 ° C / s.
  • the particle size of the precipitate in order to maintain the crystal grain size below 100 m due to the pinning effect of the precipitate, the particle size of the precipitate must be 0.4 m or less. Requires a piece cooling rate of 0.06 ° C / s or more in the forging stage. Thermally stable TiN is present without being decomposed by high-temperature and short-time heating such as subsequent welding. Therefore, a pinning effect can be expected even during heating such as welding, and HAZ toughness can be ensured. it can.
  • the cooling rate from the vicinity of the freezing point to 800 ° C was limited to 0.06 to 0.6 ° CZ s for cooling of the shards after fabrication. In addition, 0.10 to 0.6 ° CZ s is preferable.
  • the heating temperature needs to be 1200 ° C or lower. The reason for this is that heating to a high temperature side exceeding 1200 ° C may cause redeposition of precipitates created by controlling the cooling rate during solidification. In addition, 1200 ° C is sufficient for the purpose of completing the phase transformation, and the coarsening of the crystal grains thought to occur at that time can be prevented in advance. Based on the above, the heating temperature was limited to 1200 ° C or less.
  • the present invention it is necessary to perform hot rolling at a cumulative reduction ratio of 40% or more in the non-recrystallization temperature range.
  • the reason for this is that an increase in the amount of reduction in the non-recrystallization temperature region contributes to the refinement of austenite grains during rolling, and as a result, has the effect of refining the ferrite grains and improving the mechanical properties. is there. Such an effect becomes significant when the cumulative rolling reduction in the non-recrystallized region is 40% or more. For this reason, the cumulative reduction in the non-recrystallized region was limited to 40% or more.
  • the slab needs to be cooled from a temperature of 800 ° C or higher to 400 ° C or lower at a cooling rate of 5 ° CZ s or higher.
  • the reason for cooling from 800 ° C or higher is that starting from below 800 ° C is disadvantageous from the viewpoint of hardenability, and the required strength may not be obtained.
  • the cooling rate is less than 5 ° C / s, it is not possible to obtain a steel with a uniform microstructure, and as a result, the effect of accelerated cooling is small.
  • the transformation is sufficiently completed when cooled to 400 ° C or below.
  • the steel of the present invention With the steel of the present invention, sufficient toughness is ensured even if cooling is continued to 400 ° C or lower at a cooling rate of 5 ° C / s or higher. It can be used as steel without any special T treatment.
  • the production conditions for the steel of the present invention are as follows. Limited to cooling to C or lower.
  • a high toughness value is required, and when tempering is performed after hot rolling, it is necessary to perform tempering at a temperature of 400 to 650 ° C.
  • tempering when tempering is performed, the driving force for crystal grain growth increases as the tempering temperature increases, but grain growth becomes prominent at temperatures exceeding 650 ° C.
  • tempering at less than 400 ° C may not be able to achieve the desired effect.
  • the tempering treatment after hot rolling was limited to tempering conditions of 400 to 650 ° C.
  • a slab made of molten steel having the chemical composition shown in Table 1 at the secondary cooling rate shown in Table 2 is hot pressed under the conditions shown in Table 2 to form a steel plate, and then evaluated for mechanical properties.
  • Various tests were conducted for this purpose.
  • Tensile test specimens were taken from 1 Z4 t part of the thickness of each steel plate, and YS (0.2% proof stress), TS, and EI were evaluated.
  • Base metal toughness was evaluated by the impact absorption energy value obtained by taking Charpy impact test at -40 ° C by collecting 2 IM V notch specimens from 1/4 t thickness of each steel plate.
  • the HAZ toughness was evaluated based on the shock absorption energy value obtained by the Charpy impact test at –40 ° C for a steel material that had been subjected to a reproducible thermal cycle test equivalent to 1 OkJZ welding heat input.
  • the cooling rate during fabrication shown in Table 2 is the cooling rate during secondary cooling calculated from the solidification results.
  • the vinyl fraction shown in Table 3 was evaluated by observing the structure of steel material etched with nital with an optical microscope. Felatively grain boundary Ferai ⁇ The parts other than MA were regarded as the bainette organization.
  • Table 3 summarizes the mechanical properties of each steel.
  • Steels 1 to 22 are shown for a steel plate as an example of the present invention. As is clear from Tables 1 and 2, these steel plates satisfy the requirements for chemical composition and production conditions, and as shown in Table 3, they have excellent base metal properties and are suitable for high heat input welding. 1 It can be seen that the Charpy impact energy value at 40 ° C is 150 J or more and has high toughness. Also, within the specified range, it can be seen that good toughness can be obtained even if Mo, V, Cr, Ca, Mg is added or tempered.
  • Steels 23 to 36 show comparative examples deviating from the present invention. These steels have Mn content (steel 23, 28), C content (steel 32, 33), Nb content (steel 24, 35), Ti content (steel 25), Si content (steel 26), A1.
  • Base material structure Base material properties HAZ properties Paynai strength Strength toughness Toughness fraction YS TS EL YR vE-40 (J) vE-40 (J) (%) (MP a) (MPa) (%) (%) (Av) (Av)
  • HAZ crystal grain coarsening due to welding is suppressed, and a high-level steel material having extremely stable HAZ toughness can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

本発明は、複雑な製造法を用いずに低コストにて製造できる、溶接性およびHAZの低温靱性に優れた海洋構造物向け高強度厚鋼板とその製造法を提供するもので、質量%で、C:0.03~0.12%、Si:0.05~0.30%、Mn:1.2~3.0%、P:0.015%以下、S:0.001~0.015%、Cu+Ni:0.10%以下、Al:0.001~0.050%、Ti:0.005~0.030%、Nb:0.005~0.10%、N:0.0025~0.0060%を含有した溶鋼を、連続鋳造法により鋳造し、その際の二次冷却における凝固点近傍から800℃までの冷却速度を0.06~0.6℃/sとした鋳片を得た後に熱間圧延し、800℃以上の温度から冷却することを特徴とする溶接熱影響部の低温靱性が優れた溶接構造用鋼とその製造法である。

Description

溶接熱影響部の低温靱性が優れた溶接構造用鋼およびその製造方法
技術分野
本発明は、 溶接性に優れ、 しかも HAZの低温靭性に優れた海洋構 造物向け高強度厚鋼板とその製造法に関するものである。 また、 本 発明は、 建築、 橋梁、 造船、明建機といった分野にも広く適用できる
背景技術
従来、 海洋構造物用鋼として用いられている高強度鋼について、 溶接性に優れた鋼の製造方法として、 熱間圧延後の冷却速度を制御 することで溶接性の指標である Pcmを低減させることができる技術 が知られている。 また HAZ (Heat Af lected Zone) における靱性に 優れた鋼の製造方法として、 例えば、 特開平 5— 171341号公報に記 載されているように、 鋼材に Tiを添加することで Ti酸化物 (以後 Ti 0) を核として粒内フェライ ト (Intragranular Ferrite; IGF) の 生成を促進させる技術が知られている。 さらに、 特公昭 55- 26164号 公報及び特開 2001— 164333号公報などに記載されているように、 Ti 窒化物 (以後 TiN) をマトリ ックスに分散させることで、 再熱時の マトリックスの粒成長をピン止め効果によって抑制し HAZ靱性を確 保する技術や、 特開平 11一 279684号公報に記載されているように、 マトリックス中に分散させた Ti一 Mg酸化物は、 ピン止め効果により 再熱時の粒成長を抑制するだけでなく、 IGFの生成促進効果により フェライ トを微細化させ、 HAZ靱性を確保するという技術が知られ ている。 しかしながら、 上記の HAZ靱性の優れた鋼を製造する技術 は、 非常に複雑なプロセスを要し、 かつ高コス トであるという問題 がある。
また、 TiOあるいは TiNを鋼中に均一に分散させ、 HAZ組織を微細 化する技術において、 最適な TiOおよび TiN粒子の化学成分値や粒子 径についても検討が行われている。 例えば、 特開 2001— 164333号公 報には、 Tiと Nの比 (Ti/N) が 1.0〜6.0である鋼材において、 溶 接前の鋼材中に粒子径が 0.01〜0.10 mである TiN粒子を 5 X 105〜 1 X 106個/ mm2含有させることで、 HAZ靱性の優れた鋼が製造でき ると記載されている。
しかしながら、 特開 2001— 164333号公報に記載された技術を用い て狙い通りの粒子を分散させるためには、 铸片の冷却段階である 90 0〜 1300°C間にて 10分以上の時効処理が必要であると記載されてい る。 このような高温での時効処理は非常に困難であり、 かつ熱効率 や生産能力の観点からも望ましくない。
一方、 特開平 7— 252586号公報によると、 鋼中に MnSが生成した 場合、 HAZ組織で MnSを核として IGFの生成が促進し実効的に結晶粒 径が微細化することから、 所望の靱性を確保することができる。 し かしながら、 明確な理由はないものの、 実用鋼における Mn添加量に は実際的に上限値が設定されているため、 得られる MnS量は IGF生成 促進効果を最大限に発揮させるには充分ではない。
また、 特開平 3— 264614号公報では、 TiNおよび MnS生成の相互作 用については、 TiNは MnSの析出核として機能するとされており、 ま た、 これらの析出物を有効に活用するための凝固時の冷却速度を 10 00〜 600°Cの範囲で 5. (TCZmin (約 0.08°CZ s ) 以下とすべきとす る発明が提案されているが、 その理由について定量的には述べられ ていない。 そのため、 最適な冷却速度は不明である。 発明の開示
本発明は、 複雑な製造法を用いずに低コス トにて製造可能な溶接 性および HAZの低温靭性に優れた海洋構造物向け高強度厚鋼板とそ の製造法を提供する。 本発明の要旨は、 以下の通りである。
( 1 ) 質量%で、 C : 0.03〜0.12%、 Si: 0.05〜0.30%、 Mn: 1. 2〜3.0%、 P : 0.015%以下、 S : 0.001〜0.015%、 Cu + Ni: 0.10 %以下、 A1 : 0.001〜0.050%、 Π: 0.005〜0.030 %、 Nb : 0.005〜0 .10%、 N : 0.0025〜0.0060 %を含有し、 残部が鉄および不可避的 不純物からなり、 鋼組織としてべイナイ ト組織を 80%以上有するこ とを特徴とする溶接熱影響部 (HAZ) の低温靱性が優れた溶接構造 用鋼。
( 2 ) 質量%で、 更に、 Mo: 0.2%以下、 V : 0.03%以下、, Cr: 0 .5%以下、 Ca: 0.0035 %以下、 Mg: 0.0050 %以下の一種または二種 以上を含有することを特徴とする ( 1 ) 記載の溶接熱影響部 (HAZ ) の低温靱性が優れた溶接構造用鋼。
( 3 ) 質量%で、 C : 0.03〜0.12%、 Si: 0.05〜0.30%、 Mn: 1. 2〜3.0%、 P : 0.015%以下、 S : 0.001〜0.015%、 Cu + Ni: 0.10 %以下、 A1 : 0.001〜0.050 %、 Ti: 0.005〜0.030 %、 Nb : 0.005〜0 .10%, N : 0.0025〜0.0060 %を含有し、 残部が鉄および不可避的 不純物からなる溶鋼を、 連続铸造法により铸造し、 その際の二次冷 却における凝固点近傍から 800°Cまでの冷却速度を 0.06〜0.6°C/ s とした铸片を得た後に熱間圧延することを特徴とする溶接熱影響部 (HAZ) の低温靱性が優れた溶接構造用鋼の製造法。
( 4 ) 質量%で、 更に、 Mo: 0.2%以下、 V : 0.03%以下、 Cr: 0 .5%以下、 Ca: 0.0035 %以下、 Mg: 0.0050 %以下の一種または二種 以上を含有することを特徴とする ( 3 ) 記載の溶接熱影響部 (HAZ ) の低温靱性が優れた溶接構造用鋼の製造法。 ( 5 ) 前記熱間圧延条件において、 前記铸片を 1200°C以下の温度 に再加熱後、 未再結晶温度域において累積圧下率で 40%以上の熱間 圧延をし、 850°C以上で熱間圧延を完了させた後、 800°C以上の温度 から 5 °C/ s以上の冷却速度で 400°C以下まで冷却することを特徴 とする ( 3 ) または ( 4 ) 記載の溶接熱影響部 (HAZ) の低温靱性 が優れた溶接構造用鋼の製造法。
( 6 ) ( 5 ) の製造法において、 前記熱間圧延して得られた鋼を 冷却し、 その後 400〜 650°Cで焼戻し処理を施すことを特徴とする溶 接熱影響部 (HAZ) の低温靱性が優れた溶接構造用鋼の製造法。 図面の簡単な説明
図 1は、 Mnおよび TiNの靱性値への影響を模式的に示した図であ る。 発明を実施するための最良の形態
本発明は、 前記した課題を解決するために、 比較的合金コス トの 低い Mnを多量添加することによって、 低コス トでかつ強度靱性を確 保しながら、 TiNのピン止め効果による結晶粒粗大化抑制効果ある いは、 MnSによる IGF生成促進効果を複合的に使う ことで、 優れた HA Z靱性を確保しょうとする技術である。
図 1は、 Mnおよび TiNの靱性値への影響について模式的に示した ものであるが、 Mnの増加に伴い靱性は向上し、 特に Mn添加量が 1.2 %以上になるとその効果は著しくなる。 しかしながら、 Mn添加量が 2.5%を超えたところでその効果が飽和し、 3.0%を超えると逆に靱 性が劣化している。 また、 高 Mn系鋼の铸造時における冷却速度を制 御して TiNを分散させたものについては、 すべての Mn領域において 靱性が向上する。 ( 1 ) で示した化学成分の範囲内で、 質量%で〇 : 0.08%、 Si : 0. 15% , Mn: 2.0%、 P : 0.008 % , S : 0.003 % , A1 : 0.021% , Ti : 0.01%、 Nb: 0.01%、 N : 0.005 %を含有した铸片について、 熱 力学計算を用いて平衡状態にて生成しうる TiN量を予測したところ 、 体積率 (TiNの体積 Z鋼の体積) で 4.08X であることが分つ た。 Rを結晶粒径、 7を析出物の粒子径、 f を析出物の体積率とし た Nishizawaの式 1、 および先の計算にて得られた体積率 (4.08X 1 0"4) を用いると、 析出物のピン止め効果によって得られる結晶粒 径が、 優れた靱性を十分に確保できるといわれている 100 m以下 となるのは、 析出物の粒子径が 0.4 m以下である場合のみである という結果が得られた。 熱的に安定な TiNは、 溶接等の高温短時間 加熱においても分解せず結晶粒径の粗大化を抑制するため、 高い HA Z靱性を得る効果は十分に維持される。
…(式1)
Figure imgf000007_0001
式 1 によると、 結晶粒径 100 m以下の組織を有する铸片を得る ためには、 析出物の粒子径を 0.4/i m以下にする必要がある。 その ため、 錶片の冷却速度を 0.06°CZ s以上、 望ましくは 0. Ore/ s以 上、 更に望ましくは 0. 1で/ s以上に制御することが必要となる。 板厚の効果により、 同一鍀片間でも冷却速度に大きな差異が生じる 。 特に铸片表面と铸片中心部では温度差が大きく、 温度履歴もそれ ぞれ異なる。 しかし、 冷却速度は一定の範囲にとどまることがわか つている。 したがって、 铸片冷却速度を制御することで、 従来は Ti /N比でのみ取り決められていた TiNの制御が可能となる。
一方、 MnSによる IGF生成促進効果は溶接の際の TiNによる粒成長 抑制効果が充分に発揮されなかった場合特に有効である。 すなわち 、 T iNが加熱によって溶解してしまった場合である。 本発明鋼には 2 . 0 %程度の多量の Mnが添加されていること、 および MnSが比較的高 温域にて生成する事実から、 本発明鋼の溶接温度における MnSの生 成量は従来量の Mnを添加した鋼に比べて増加し、 結果的に溶接後の 冷却における I GFの生成頻度が増大する。 このため、 実効的に HAZ組 織が微細化される。
また、 高強度かつ高靱性を有する厚板の製造については様々な方 法があげられるが、 靱性を確保するためには熱延後に直接焼入れ ( DQ) した後に焼戻し (T ) 処理を施す DQT法が望ましい。 しかしな がら、 T処理は一旦冷却した後に再加熱してその温度で一定時間保 持する工程のためコス トが上昇する。 コス ト低減の観点からは、 可 能な限り T処理は避けたい。 ところが、 本発明鋼は T処理を施すこ となく優れた靭性を確保できるために、 コス トを上昇させることな く高性能鋼板を製造することができる。 ただし、 特に靱性を要求さ れる場合は、 T処理を施すことにより、 さらに優れた靱性を有する 鋼材を得ることができる。
以下に本発明の限定理由について説明する。 まず、 本発明鋼材の 組成限定理由について説明する。 以下の組成についての%は、 質量 %を意味する。
Cは強度を確保するために必要な元素であり、 0. 03 %以上の添加 が必要であるが、 多量の添加は HAZの靱性低下を招くおそれがある ために、 その上限値を 0. 12 %とする。
S iは脱酸剤として用いられ、 また固溶強化により鋼の強度を増加 させるのに有効な元素であるが、 0. 05 %未満の含有量ではその効果 が少なく、 一方 0. 30 %を超えて含有させると、 HAZ靱性が劣化する 。 このため、 S iは 0. 05〜0. 30 %に限定した。 なお、 さらに望ましい 含有量は 0. 05〜0. 25 %である。 Mnは、 鋼の強度を増加するため高強度化には有効な元素である。 また Mnは Sと結合して MnSを生成するが、 これが IGFの生成核となり 溶接熱影響部の微細化を促進することで、 HAZ靱性の劣化を抑制す る。 そのため、 所望の強度を維持しつつ、 溶接熱影響部の靱性を確 保するためには 1.2%以上の含有量が必要である。 ただし、 3.0%を 超える Mnを添加すると、 逆に靭性が劣化すると言われている。 この ため、 Mnは 1.2〜3.0%に限定した。 なお、 Mn量は 1.5〜2.5%が望ま しい。
Pは、 粒界に偏祈して鋼の靱性を劣化させるので、 できるだけ低 減することが望ましいが、 0.015%までは許容できるため、 0.015% 以下に限定した。
Sは、 主に MnSを形成して鋼中に存在し、 圧延冷却後の組織を微 細にする作用を有するが、 0.015%以上の含有は、 板厚方向の靱性 • 延性を低下させる。 このため、 Sは 0.015%以下であることが必 須である。 また、 MnSを IGFの生成核として用い細粒化効果を得るた めには、 Sは 0.001%以上の添加が必要である。 そのため、 Sは 0.0 01〜0.015%に限定した。
Cuは従来強度を確保するために有効な元素であるが、 熱間加工性 の低下をもたらす。 これを回避するために Cu添加量とほぼ同量の N i を添加することが従来行われてきた。 ところが、 Niは、 非常にコス 卜の高い元素であるため、 Niを多量に添加することは本発明鋼の目 的である低コス ト化を達成できない要因となり うる。 そこで本発明 鋼では、 Mnにより強度を確保する思想に立ち、 Cuおよび Niは意図的 に添加しないこととした。 しかし、 スクラップを用いてスラブを製 造する場合、 それぞれ 0.05%程度は不可避的に混入してしまうおそ れがあるため、 Cu + Niを 0.10%以下に限定した。
A1は、 Siと同様に脱酸のため必要な元素であるが、 0.001%未満 では脱酸が充分に行われず、 0.050 %を超える過度の添加は HAZ靱性 を劣化させる。 このため、 A1は 0.001〜0.050 %に限定した。
Tiは、 Nと結合して鋼中に TiNを形成させるために、 0.005 %以上 の添加が望まれる。 ただし、 0.030 %を超えて Tiを添加すると、 TiN を粗大化させ、 本発明の目的である TiNによる結晶粒径粗大化抑制 効果を低下させるおそれがある。 このため、 Tiは 0.005〜0.030%に 限定した。
Nbは、 オーステナイ トの未再結晶域を拡大して、 フェライ トの細 粒化を促進する効果があるとともに、 Nb炭化物を生成し強度の確保 をもたらす元素であるため、 0.005 %以上の含有が必要である。 し かしながら、 0.10%を超える Nbを添加すると、 Nb炭化物による HAZ 脆化が生じやすくなるため、 Nbは 0.005〜0.10%に限定した。
Nは、 Tiと結合して鋼中に TiNを形成させるために、 0.0025 %以 上の添加が必要である。 ただし、 Nは固溶強化元素としても非常に 大きな効果があるため、 多量に添加すると HAZ靱性を劣化するおそ れがある。 そのため、 HAZ靱性に大きな影響を与えず TiNの効果を最 大限に得られるように、 Nの上限を 0.0060 %とした。
Mo, V, Crは、 いずれも焼入れ性向上に有効な元素であり、 TiN による組織細粒化効果を最適化するため、 必要に応じ一種または二 種以上を選択して含有してもよい。 なかでも Vは、 TiNとともに VN として組織微細化効果を最適化することができ、 加えて、 VNによる 析出強化を促進させる効果を有する。 さらに、 Mo, V, Crの含有に より Ar 3点が低下することから、 フェライ ト粒の微細化効果がさら に大きくなることが期待される。 また、 Caの添加により、 MnSの形 態が制御でき、 低温靱性がさらに向上するため、 厳しレ^ AZ特性を 要求される場合は Caを選択して添加できる。 さらに、 Mgは、 HAZに おけるオーステナイ トの粒成長を抑制し細粒化させる作用があり、 その結果 HAZ靱性が向上することから、 特に HAZ靱性が厳しい場合に は Mgを選択して添加できる。 その添加量は、 Mo: 0.2 %以下、 V : 0 .03%以下、 Cr : 0.5%以下、 Ca: 0.0035 %以下、 Mg: 0.0050 %以下 である。
一方、 0.2%を超える Moおよび 0.5%を超える Crを添加した場合、 溶接性や靱性を損ないかつコス トも上昇することが考えられ、 0.03 %を超える Vを添加した場合、 溶接性や靱性を損なうため、 これら を上限とした。 また、 0.0035 %を超える Caの添加は、 鋼の清浄度を 損ない、 水素誘起割れ感受性を高めてしまうので、 0.0035 %を上限 とした。 Mgは 0.005%を超える添加を行ってもオーステナイ ト細粒 化効果代が小さくコス ト上得策ではないため、 0.005 %を上限とし た。
鋼組織を 80%以上べィナイ ト組織とする理由は、 低合金鋼であり ながら H A Z靱性を確保しつつ、 十分な強度を得るためにはべイナィ ト組織主体であることが必要であり、 それが 80%以上であれば達成 ができるからである。 望ましくは 85%以上、 さらに望ましくは 90% 以上がペイナイ ト組織であることがよい。
次に、 本発明鋼材の製造条件について説明する。
铸造後の铸片の冷却について、 凝固点近傍から 800°Cまでの冷却 速度が 0.06〜0.6°C/ sであることが好ましい。 Nishizawaの式によ ると、 析出物によるピン止め効果により結晶粒径を 100^ m以下に 維持するためには、 析出物の粒子径が 0.4 m以下である必要があ り、 その達成のためには铸造段階にて 0.06°C/ s以上の铸片冷却速 度が必要となる。 熱的に安定な TiNは、 その後の溶接等の高温短時 間加熱でも分解することはなく存在するため、 溶接などの加熱時に おいてもピン止め効果が期待でき、 HAZ靱性を確保することができ る。 しかしながら、 铸片冷却速度が大きくなりすぎると、 微細析出 物の量が増大し、 铸片の脆化を引き起こすことが懸念される。 その ため、 铸造後の銬片の冷却については、 凝固点近傍から 800°Cまで の冷却速度を 0. 06〜0. 6°CZ s に限定した。 なお、 0. 10〜0. 6°CZ s が好ましい。
加熱温度については、 1200°C以下の温度であることが必要である 。 この理由としては、 1200°C超の高温側に加熱されることで、 凝固 時に冷却速度を制御して造り込んだ析出物が再溶解してしまう可能 性があるからである。 また、 相変態を完了させる目的では 1200°Cで 充分であり、 そのときに生じると考えられる結晶粒の粗大化も、 あ らかじめ防ぐことができるからである。 以上より、 加熱温度を 1200 °C以下に限定した。
本発明では、 未再結晶温度域において累積圧下率で 40%以上の熱 間圧延を行う必要がある。 その理由として、 未再結晶温度域におけ る圧下量の増加は、 圧延中のオーステナイ ト粒の微細化に寄与し、 結果としてフェライ ト粒を微細化し機械的性質を向上させる効果が あるからである。 このような効果は、 未再結晶域での累積圧下率が 40%以上で顕著になる。 このため、 未再結晶域での累積圧下量を 40 %以上に限定した。
また、 铸片は 850°C以上で熱間圧延を完了させた後、 800°C以上の 温度から 5 °CZ s以上の冷却速度で 400°C以下まで冷却する必要が ある。 800°C以上から冷却する理由として、 800°C未満より冷却を開 始すると焼入れ性の観点から不利となり、 所要の強度が得られない 可能性があるからである。 また、 冷却速度が 5 °C/ s未満では、 均 一なミクロ組織を有した鋼を得ることが期待できないため、 結果的 に加速冷却の効果が小さい。 また、 一般に 400°C以下まで冷却すれ ば変態は充分に完了する。 さらに、 本発明鋼においては、 5 °C/ s 以上の冷却速度にて 400°C以下まで冷却を続けても充分な靭性を確 保できるため、 特に T処理を施さずに鋼材として使用できる。 上記 の理由により、 本発明鋼の製造条件として、 鋼片を 850°C以上まで に熱間圧延を完了させた後、 800°C以上の温度から 5 °C / s以上の 冷却速度で 400°C以下まで冷却することに限定した。
特に高い靱性値が要求され、 熱間圧延後に焼戻し処理を施す場合 は、 400〜 650°Cの焼戻し温度で行う必要がある。 焼戻し処理を行う 場合、 焼戻し温度が高温になるほど結晶粒成長の駆動力が大きくな るが、 650°Cを超えると粒成長が顕著になる。 また、 400°C未満の焼 戻し処理では、 その効果が充分に得られないことが考えられる。 こ れらの理由により、 熱間圧延後に焼戻し処理をする場合は、 400〜6 50°Cの焼戻し処理条件にて行う ことに限定した。 実施例
次に、 本発明の実施例について述べる。
表 1 の化学成分を有する溶鋼を表 2に示す二次冷却速度で鍀造し たスラブを、 表 2にて示す条件にて熱間圧廷を行い鋼板とした後、 機械的性質を評価するために各種試験を行った。 引張試験片は各鋼 板の板厚の 1 Z4 t部位から JIS 4号試験片を採取し、 YS (0.2%耐 力) 、 TS, EIを評価した。 母材靱性は各鋼板の板厚 1 / 4 t より 2 IM Vノッチ試験片を採取し、 —40°Cでシャルピー衝撃試験を行い得 られる衝撃吸収エネルギー値にて評価した。 HAZ靭性は、 溶接入熱 1 OkJZ讓相当の再現熱サイクル試験を実施した鋼材を、 —40°Cでの シャルピ一衝撃試験により得られる衝撃吸収エネルギー値によって 評価した。 なお、 表 2に示す銬造時の冷却速度は、 凝固実績より計 算にて算出した二次冷却時の冷却速度である。 また、 表 3に示すベ ィナイ ト分率は、 ナイタールにてエッチングした鋼材の組織を光学 顕微鏡で観察することによって評価した。 便宣的に粒界フェライ 卜 および MA以外の部分をべイナィ ト組織とみなした。
表 3 には、 各鋼における機械的性質をまとめたものを示す。 鋼 1 〜 22は本発明の例である鋼板について示したものである。 表 1およ び表 2から明らかなように、 これらの鋼板は化学成分と製造条件の 各要件を満足しており、 表 3に示すように、 母材特性が優れ、 大入 熱溶接においても一 40°Cでのシャルピー衝撃エネルギー値は 150 J 以上と高靱性を有していることがわかる。 また、 規定範囲内であれ ば、 Mo, V , Cr, Ca, Mgを添加しても、 焼戻し処理を施しても良好 な靱性が得られることがわかる。
一方、 鋼 23〜 36は本発明から逸脱した比較例を示したものである 。 これらの鋼は、 それぞれ Mn量 (鋼 23, 28) 、 C量 (鋼 32, 33) 、 Nb量 (鋼 24, 35) 、 T i量 (鋼 25) 、 S i量 (鋼 26) 、 A1量 (鋼 34) 、 N量 (鋼 27) 、 Mo, V量 (鋼 29) 、 C r量 (鋼 27) 、 Ca, Mg量 (鋼 31 ) 、 鍀造時の冷却速度 (鋼 25) 、 焼戻し処理 (鋼 30) 、 累積圧下率 (鋼 28, 32) 、 再加熱温度 (鋼 31) 、 圧延後の冷却開始温度 (鋼 36 ) 、 ベイナイ ト分率 (鋼 32 , 35) の条件が発明のものと異なってい るため、 HAZ靱性が劣っているといえる。
/ O0090SAV 6S6v:/fcl£ s/-/-20sos
Figure imgf000015_0001
表 2
製造条件
铸造時の
再加熱温 累積圧下
板厚 冷却速度
率 冷却開始温度 冷却速度 焼戻し (mm) (°C/s) 度
(°C) (¾) ro (°C/s) (。c)
1 60 0.18 1150 50 848 6 ―
2 60 0.08 1100 40 832 10 ―
3 60 0.23 1150 50 842 12 ―
4 60 0.41 1150 40 821 5 ―
5 60 0.09 1200 60 847 10 ―
6 60 0.19 1150 50 816 10 ―
7 60 0.22 1150 40 822 8 500
8 80 0.11 1150 50 834 10 550
9 60 0.09 1150 40 850 10 ― 本 10 60 0.10 1150 50 844 10 ― 発 11 60 0.32 1150 60 812 9 ― 明 12 60 0.15 1150 50 834 10 ― 鋼 13 50 0.12 1150 40 844 15 一
14 50 0.16 1150 50 847 10 ―
15 60 0.24 1150 50 826 18 ―
16 60 0.19 1150 50 809 10 ―
17 80 0.12 1150 40 819 8 ―
18 60 0.16 1200 50 815 6 ―
19 50 0.15 1150 50 843 10 ―
20 60 0.21 1200 40 820 16 一
21 60 0.18 1150 60 831 12 ―
22 50 0.16 1150 40 816 9 ―
23 60 0.08 1150 40 810 10
24 60 0.13 1150 50 805 8
25 60 0.02 1150 50 824 10
26 60 0.10 1150 60 813 10 ―
27 60 0.09 1150 50 842 5 ―
28 60 0.07 1150 30 822 10 ― 比
29 60 0.08 1150 50 816 12 ― 較
30 80 0.15 1150 50 841 10 660 鋼
31 60 0.09 1250 50 830 10 ―
32 60 0.10 1150 35 826 9 ―
33 60 0.09 1150 50 813 3 ―
34 60 0.09 1150 50 818 10 ―
35 60 0.09 1150 50 835 10 ―
36 60 0.09 1150 50 740 10 ― 表 3
母材組織 母材特性 HAZ特性 ペイナイ卜 強度 靱性 靱性 分率 YS TS EL YR vE-40 (J) vE-40 (J) (%) (MP a) (MPa) (%) (%) (Av) (Av)
1 85 480 648 22 74 272 170
2 91 508 706 21 72 258 161
3 96 556 762 18 73 261 163
4 99 592 789 21 75 250 155
5 95 553 747 19 74 260 163
6 94 532 739 22 72 259 162
7 81 525 611 17 86 269 168
8 80 502 597 20 84 271 169
9 89 501 686 22 73 273 171 本 10 80 457 601 18 76 268 167 発 11 86 485 655 20 74 267 167 明 12 88 500 676 16 74 265 166 鋼 13 82 446 619 23 72 268 168
14 97 576 769 19 75 271 169
15 81 437 615 21 71 284 178
16 98 627 825 17 76 255 159
17 86 426 553 20 77 273 170
18 84 420 553 18 76 281 175
19 81 408 517 22 79 285 178
20 87 439 577 21 76 274 171
21 91 459 621 23 74 276 173
22 84 480 639 20 75 277 173
23 83 453 629 17 72 249 41
24 98 591 778 17 76 230 38
25 88 498 682 21 73 231 38
26 95 549 753 11 73 206 34
27 94 533 740 21 72 173 29
28 99 721 962 16 75 148 25 比
29 97 538 769 16 70 195 33 較
30 85 560 651 26 86 208 35 鋼
31 87 495 669 31 74 227 38
32 67 339 471 24 72 243 40
33 98 628 884 16 71 228 38
34 81 446 612 16 73 236 39
35 66 337 456 16 74 253 42
36 73 378 525 16 72 240 40 産業上の利用可能性
本発明によれば溶接による HAZの結晶粒粗大化を抑制し、 極めて H AZ靱性の安定な高水準の鋼材が得られる。

Claims

請 求 の 範 囲
C : 0.03〜0.12%、
Si: 0.05〜0.30%、
Mn: 1.2〜3.0%、
P : 0.015%以下、
S : 0.001〜0.015%、
Cu + Ni: 0.10%以下、
A1 : 0.001〜0.050 %、
Ti: 0.005〜0.030 %、
Nb: 0.005〜0.10%、
N : 0.0025〜0.0060 %
を含有し、 残部が鉄および不可避的不純物からなり、 鋼組織とし てべイナィ ト組織を 80%以上有することを特徴とする溶接熱影響部 の低温靱性が優れた溶接構造用鋼。
2. 質量%で、 更に、
Mo: 0.2%以下、
V : 0.03%以下、
Cr: 0.5%以下、
Ca: 0.0035 %以下、
Mg: 0.0050 %以下
の一種または二種以上を含有することを特徴とする請求項 1記載 の溶接熱影響部の低温靱性が優れた溶接構造用鋼。
3. 質量%で、
C : 0.03〜0.12%、
Si: 0.05〜0.30%、 Mn: 1.ト 3.0%、
P : 0.015%以下、
S : 0.001〜0.015%、
Cu + Ni : 0.10%以下、
A1 : 0.001〜0.050 %、
Ti : 0.005〜0.030 % ,
Nb: 0.005〜0.100%、
N : 0.0025〜0.0060 %
を含有し、 残部が鉄および不可避的不純物からなる溶鋼を、 連続 铸造法により铸造し、 その際の二次冷却における凝固点近傍から 80 0°Cまでの冷却速度を 0.06〜0.6°CZ s とした铸片を得た後に熱間圧 延することを特徴とする溶接熱影響部の低温靱性が優れた溶接構造 用鋼の製造法。
4. 質量%で、 更に、
Mo: 0.2%以下、
V : 0.03%以下、
Cr: 0.5%以下、
Ca: 0.0035 %以下、
Mg: 0.0050%以下
の一種または二種以上を含有することを特徴とする請求項 3記載 の溶接熱影響部の低温靱性が優れた溶接構造用鋼の製造法。
5. 前記熱間圧延条件において、 前記铸片を 1200°C以下の温度に 再加熱後、 未再結晶温度域において累積圧下率で 40%以上の熱間圧 延をし、 850°C以上で熱間圧延を完了させた後、 800°C以上の温度か ら 5で s以上の冷却速度で 400°C以下まで冷却することを特徴と する請求項 3または 4に記載の溶接熱影響部の低温靱性が優れた溶 接構造用鋼の製造法。
6 . 請求項 5の製造法において、 前記熱間圧延して得られた鋼を 冷却し、 その後 400〜650°Cで焼戻し処理を施すこと特徴とする溶接 熱影響部の低温靱性が優れた溶接構造用鋼の製造法。
PCT/JP2005/013775 2004-07-21 2005-07-21 溶接熱影響部の低温靭性が優れた溶接構造用鋼およびその製造方法 WO2006009299A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006527834A JP4332554B2 (ja) 2004-07-21 2005-07-21 溶接熱影響部の低温靱性が優れた溶接構造用鋼の製造方法
EP05767334A EP1777315B1 (en) 2004-07-21 2005-07-21 Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
US11/632,735 US7857917B2 (en) 2004-07-21 2005-07-21 Method of production of steel for welded structures excellent in low temperature toughness of weld heat affected zone

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-213510 2004-07-21
JP2004213510 2004-07-21
JP2005010581 2005-01-18
JP2005-010581 2005-01-18

Publications (1)

Publication Number Publication Date
WO2006009299A1 true WO2006009299A1 (ja) 2006-01-26

Family

ID=35785396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013775 WO2006009299A1 (ja) 2004-07-21 2005-07-21 溶接熱影響部の低温靭性が優れた溶接構造用鋼およびその製造方法

Country Status (6)

Country Link
US (1) US7857917B2 (ja)
EP (1) EP1777315B1 (ja)
JP (2) JP4332554B2 (ja)
KR (2) KR20080090574A (ja)
TW (2) TW200940723A (ja)
WO (1) WO2006009299A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277679A (ja) * 2006-04-11 2007-10-25 Nippon Steel Corp 高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法
JP2007277689A (ja) * 2006-04-11 2007-10-25 Nippon Steel Corp 優れた母材および溶接熱影響部靭性を有する高生産性高強度鋼板及びその製造方法
JP2007277681A (ja) * 2006-04-11 2007-10-25 Nippon Steel Corp 優れた溶接熱影響部靭性を有する高強度鋼板の製造方法
JP2008223081A (ja) * 2007-03-12 2008-09-25 Kobe Steel Ltd 溶接熱影響部の靭性に優れた高張力厚鋼板
JP2009046751A (ja) * 2007-08-22 2009-03-05 Jfe Steel Kk 船舶用耐食鋼材およびその製造方法
JP2009046750A (ja) * 2007-08-22 2009-03-05 Jfe Steel Kk 船舶用耐食鋼材およびその製造方法
JP2009242852A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 大入熱溶接用鋼材
JP2009242853A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 大入熱溶接用鋼材
KR100944850B1 (ko) * 2006-11-13 2010-03-04 가부시키가이샤 고베 세이코쇼 용접 열영향부의 인성이 우수한 후강판
WO2012070353A1 (ja) * 2010-11-22 2012-05-31 新日本製鐵株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
WO2012070358A1 (ja) * 2010-11-22 2012-05-31 新日本製鐵株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
WO2012070360A1 (ja) * 2010-11-22 2012-05-31 新日本製鐵株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP2012140710A (ja) * 2012-02-22 2012-07-26 Jfe Steel Corp 船舶用耐食鋼材およびその製造方法
JP2012167371A (ja) * 2012-02-22 2012-09-06 Jfe Steel Corp 船舶用耐食鋼材およびその製造方法
WO2012133879A1 (ja) * 2011-03-28 2012-10-04 Jfeスチール株式会社 板厚方向の耐疲労特性に優れた厚鋼板およびその製造方法、その厚鋼板を用いた隅肉溶接継手
JP2012214885A (ja) * 2011-03-28 2012-11-08 Jfe Steel Corp 板厚方向の耐疲労特性に優れた厚鋼板およびその製造方法
US8623154B2 (en) 2010-04-30 2014-01-07 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel for electron-beam welding, and manufacturing method
TWI469846B (zh) * 2011-03-28 2015-01-21 Jfe Steel Corp A thick steel sheet excellent in fatigue resistance in the thickness direction and a method for producing the same, and a thick welded steel joint
US10500817B2 (en) 2010-04-30 2019-12-10 Nippon Steel Corporation Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765470A (zh) * 2007-05-06 2010-06-30 纽科尔公司 具有微合金添加剂的薄铸造带材产品及其制造方法
US20110262298A1 (en) * 2009-01-15 2011-10-27 Yoshiyuki Watanabe Steel for welded structures excellent in high temperature strength and low temperature toughness and method of production of same
KR101185289B1 (ko) 2010-08-30 2012-09-21 현대제철 주식회사 용접부 저온 인성이 우수한 고강도 강판 및 그 제조 방법
RU2532791C1 (ru) 2010-09-03 2014-11-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный стальной лист, имеющий высокое сопротивление разрушению и hic
KR101850571B1 (ko) * 2010-11-22 2018-04-19 신닛테츠스미킨 카부시키카이샤 전자 빔 용접 조인트 및 전자 빔 용접용 강재와 그의 제조 방법
KR101867111B1 (ko) * 2010-11-22 2018-06-12 신닛테츠스미킨 카부시키카이샤 전자 빔 용접 조인트 및 전자 빔 용접용 강재와 그 제조 방법
JP5695458B2 (ja) * 2011-03-22 2015-04-08 株式会社神戸製鋼所 靱性および歪時効特性に優れた厚鋼板
KR101382906B1 (ko) * 2011-12-27 2014-04-08 주식회사 포스코 용접부 인성과 연성이 우수한 후강판의 제조방법 및 이를 이용한 용접구조물
CN102909334A (zh) * 2012-11-16 2013-02-06 内蒙古包钢钢联股份有限公司 一种含Cr低合金钢TDC76连铸坯裂纹控制方法
KR101482341B1 (ko) * 2012-12-26 2015-01-13 주식회사 포스코 용접 후 열처리 저항성이 우수한 압력용기용 강판 및 그 제조 방법
CN104057053B (zh) * 2013-06-14 2016-03-30 攀钢集团攀枝花钢铁研究院有限公司 一种低合金钢宽厚板坯的连铸方法
CN116219304A (zh) * 2023-02-28 2023-06-06 武汉钢铁有限公司 一种采用csp生产具有良好板形的船体用钢及生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175815A (ja) * 1988-09-28 1990-07-09 Nippon Steel Corp 靭性の優れた溶接構造用高張力鋼材の製造方法
JPH0657371A (ja) * 1992-08-13 1994-03-01 Kobe Steel Ltd 溶接性の優れた建築用低降伏比耐火鋼材
JPH06279848A (ja) * 1993-03-26 1994-10-04 Nippon Steel Corp 降伏点制御圧延形鋼
JP2837732B2 (ja) * 1990-03-14 1998-12-16 新日本製鐵株式会社 低温靭性の優れた大入熱溶接用鋼の製造方法
JP2003293089A (ja) * 2002-04-09 2003-10-15 Nippon Steel Corp 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP3468168B2 (ja) * 1999-08-26 2003-11-17 住友金属工業株式会社 経済性および靱性に優れた高張力鋼板
JP2004003012A (ja) * 2002-04-26 2004-01-08 Jfe Steel Kk 溶接熱影響部靭性に優れた高強度鋼板及びその製造方法
JP2004143555A (ja) * 2002-10-25 2004-05-20 Jfe Steel Kk 耐応力腐食割れ性に優れた低温用鋼材の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128821A (en) * 1976-04-12 1977-10-28 Nippon Steel Corp Preparation of high tensile steel having superior low temperature toughness and yield point above 40 kg/pp2
JPS5526164A (en) 1978-08-14 1980-02-25 Fuji Kikai Seisakusho Kk Product supplying device
JPS61106722A (ja) * 1984-10-30 1986-05-24 Kawasaki Steel Corp 大入熱溶接用高張力鋼の製造方法
JP2653594B2 (ja) 1991-12-18 1997-09-17 新日本製鐵株式会社 溶接熱影響部靭性の優れた厚鋼板の製造方法
JP2776174B2 (ja) 1992-09-11 1998-07-16 住友金属工業株式会社 高張力・高靱性微細ベイナイト鋼の製造法
JPH07252586A (ja) 1994-01-21 1995-10-03 Nippon Steel Corp 多層盛溶接熱影響部のctodおよび大入熱溶接熱影響部靭性に優れた溶接構造用鋼
JP3749616B2 (ja) 1998-03-26 2006-03-01 新日本製鐵株式会社 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
JP3492282B2 (ja) 1999-09-30 2004-02-03 新日本製鐵株式会社 溶接熱影響部靱性に優れた溶接構造用鋼
JP3525905B2 (ja) * 2001-03-29 2004-05-10 Jfeスチール株式会社 溶接熱影響部の靱性に優れた構造用鋼材の製造方法
FR2847592B1 (fr) 2002-11-27 2007-05-25 Ispat Unimetal Acier pour deformation a froid ou a chaud, piece mecanique prete a l'emploi realisable avec cet acier et son procede de fabrication

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175815A (ja) * 1988-09-28 1990-07-09 Nippon Steel Corp 靭性の優れた溶接構造用高張力鋼材の製造方法
JP2837732B2 (ja) * 1990-03-14 1998-12-16 新日本製鐵株式会社 低温靭性の優れた大入熱溶接用鋼の製造方法
JPH0657371A (ja) * 1992-08-13 1994-03-01 Kobe Steel Ltd 溶接性の優れた建築用低降伏比耐火鋼材
JPH06279848A (ja) * 1993-03-26 1994-10-04 Nippon Steel Corp 降伏点制御圧延形鋼
JP3468168B2 (ja) * 1999-08-26 2003-11-17 住友金属工業株式会社 経済性および靱性に優れた高張力鋼板
JP2003293089A (ja) * 2002-04-09 2003-10-15 Nippon Steel Corp 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP2004003012A (ja) * 2002-04-26 2004-01-08 Jfe Steel Kk 溶接熱影響部靭性に優れた高強度鋼板及びその製造方法
JP2004143555A (ja) * 2002-10-25 2004-05-20 Jfe Steel Kk 耐応力腐食割れ性に優れた低温用鋼材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1777315A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277689A (ja) * 2006-04-11 2007-10-25 Nippon Steel Corp 優れた母材および溶接熱影響部靭性を有する高生産性高強度鋼板及びその製造方法
JP2007277681A (ja) * 2006-04-11 2007-10-25 Nippon Steel Corp 優れた溶接熱影響部靭性を有する高強度鋼板の製造方法
JP2007277679A (ja) * 2006-04-11 2007-10-25 Nippon Steel Corp 高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法
KR100944850B1 (ko) * 2006-11-13 2010-03-04 가부시키가이샤 고베 세이코쇼 용접 열영향부의 인성이 우수한 후강판
JP2008223081A (ja) * 2007-03-12 2008-09-25 Kobe Steel Ltd 溶接熱影響部の靭性に優れた高張力厚鋼板
JP2009046751A (ja) * 2007-08-22 2009-03-05 Jfe Steel Kk 船舶用耐食鋼材およびその製造方法
JP2009046750A (ja) * 2007-08-22 2009-03-05 Jfe Steel Kk 船舶用耐食鋼材およびその製造方法
JP2009242852A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 大入熱溶接用鋼材
JP2009242853A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 大入熱溶接用鋼材
US8623154B2 (en) 2010-04-30 2014-01-07 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel for electron-beam welding, and manufacturing method
US10500817B2 (en) 2010-04-30 2019-12-10 Nippon Steel Corporation Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same
WO2012070358A1 (ja) * 2010-11-22 2012-05-31 新日本製鐵株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP5135560B2 (ja) * 2010-11-22 2013-02-06 新日鐵住金株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP5135559B2 (ja) * 2010-11-22 2013-02-06 新日鐵住金株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP5177325B2 (ja) * 2010-11-22 2013-04-03 新日鐵住金株式会社 電子ビーム溶接継手及び電子ビーム溶接継手用鋼板とその製造方法
CN103221564A (zh) * 2010-11-22 2013-07-24 新日铁住金株式会社 电子束焊接接头及电子束焊接用钢材和其制造方法
WO2012070360A1 (ja) * 2010-11-22 2012-05-31 新日本製鐵株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
WO2012070353A1 (ja) * 2010-11-22 2012-05-31 新日本製鐵株式会社 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
WO2012133879A1 (ja) * 2011-03-28 2012-10-04 Jfeスチール株式会社 板厚方向の耐疲労特性に優れた厚鋼板およびその製造方法、その厚鋼板を用いた隅肉溶接継手
JP2012214885A (ja) * 2011-03-28 2012-11-08 Jfe Steel Corp 板厚方向の耐疲労特性に優れた厚鋼板およびその製造方法
TWI469846B (zh) * 2011-03-28 2015-01-21 Jfe Steel Corp A thick steel sheet excellent in fatigue resistance in the thickness direction and a method for producing the same, and a thick welded steel joint
JP2012140710A (ja) * 2012-02-22 2012-07-26 Jfe Steel Corp 船舶用耐食鋼材およびその製造方法
JP2012167371A (ja) * 2012-02-22 2012-09-06 Jfe Steel Corp 船舶用耐食鋼材およびその製造方法

Also Published As

Publication number Publication date
EP1777315A4 (en) 2008-05-07
KR20080090574A (ko) 2008-10-08
TW200940723A (en) 2009-10-01
TWI327170B (en) 2010-07-11
JPWO2006009299A1 (ja) 2008-05-01
JP4332554B2 (ja) 2009-09-16
JP5267297B2 (ja) 2013-08-21
KR100892385B1 (ko) 2009-04-10
JP2009174059A (ja) 2009-08-06
TW200609361A (en) 2006-03-16
KR20070027715A (ko) 2007-03-09
EP1777315A1 (en) 2007-04-25
US20070193664A1 (en) 2007-08-23
US7857917B2 (en) 2010-12-28
EP1777315B1 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4332554B2 (ja) 溶接熱影響部の低温靱性が優れた溶接構造用鋼の製造方法
JP4022958B2 (ja) 溶接熱影響部靱性に優れた高靱性厚鋼板およびその製造方法
JP6460292B1 (ja) 高Mn鋼およびその製造方法
JP4410836B2 (ja) 低温靭性の優れた780MPa級高張力鋼板の製造方法
JP4673784B2 (ja) 優れた溶接熱影響部靭性を有する高強度鋼板およびその製造方法
JP2016534230A (ja) 高硬度熱間圧延鋼材製品及びその製造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
JP4085826B2 (ja) 伸びおよび伸びフランジ性に優れた二相型高張力鋼板およびその製造方法
US11795519B2 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP4926447B2 (ja) 耐溶接割れ性に優れた高張力鋼の製造方法
JP4523893B2 (ja) 母材及び溶接熱影響部の靱性に優れた引張強度590N/mm2級の溶接構造用鋼およびその製造方法
JP5477089B2 (ja) 高強度高靭性鋼の製造方法
JP2019199649A (ja) 非調質低降伏比高張力厚鋼板およびその製造方法
JP4096839B2 (ja) 超大入熱溶接熱影響部靱性に優れた低降伏比高張力厚鋼板の製造方法
JP4673785B2 (ja) 優れた母材および溶接熱影響部靭性を有する高生産性高強度鋼板及びその製造方法
JP5935843B2 (ja) スポット溶接性に優れた冷延鋼板およびその製造方法
JP3879440B2 (ja) 高強度冷延鋼板の製造方法
JP2005187853A (ja) 超大入熱溶接熱影響部靭性に優れた高強度厚鋼板の製造方法
JP3369435B2 (ja) 低温靱性に優れた非調質高張力鋼材の製造方法
JPWO2019050010A1 (ja) 鋼板およびその製造方法
JP2002363685A (ja) 低降伏比高強度冷延鋼板
JP4539100B2 (ja) 超大入熱溶接熱影響部靭性に優れた非調質高強度厚鋼板の製造方法
JP7207199B2 (ja) 鋼材及びその製造方法
KR101546132B1 (ko) 극후 강판 및 그 제조 방법
JP4742597B2 (ja) 非調質高張力鋼の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527834

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007193664

Country of ref document: US

Ref document number: 11632735

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580024252.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005767334

Country of ref document: EP

Ref document number: 1020077001343

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 1020077001343

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005767334

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632735

Country of ref document: US