WO2006006668A1 - 遠心送風機および遠心送風機を備えた空気調和装置 - Google Patents

遠心送風機および遠心送風機を備えた空気調和装置 Download PDF

Info

Publication number
WO2006006668A1
WO2006006668A1 PCT/JP2005/013039 JP2005013039W WO2006006668A1 WO 2006006668 A1 WO2006006668 A1 WO 2006006668A1 JP 2005013039 W JP2005013039 W JP 2005013039W WO 2006006668 A1 WO2006006668 A1 WO 2006006668A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
blade
centrifugal blower
centrifugal
blades
Prior art date
Application number
PCT/JP2005/013039
Other languages
English (en)
French (fr)
Inventor
Kanjirou Kinoshita
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP05765682A priority Critical patent/EP1783374A4/en
Priority to AU2005260828A priority patent/AU2005260828B8/en
Priority to US11/632,160 priority patent/US20070251680A1/en
Priority to CN200580023831XA priority patent/CN1985092B/zh
Publication of WO2006006668A1 publication Critical patent/WO2006006668A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a centrifugal blower and an air conditioner equipped with the centrifugal blower.
  • a well-known centrifugal blower includes a hub connected to a rotating shaft of a motor, a shroud disposed to face the outer peripheral portion of the hub at a predetermined interval, and the shroud and the hub.
  • Some have an impeller composed of a plurality of blades arranged at a predetermined interval along the circumferential direction between the outer peripheral portion (see Patent Document 1).
  • a hub in which a rotating shaft of a motor is connected to an axial center portion, and an outer peripheral portion of the hub are erected at predetermined intervals along the circumferential direction.
  • an impeller comprising a plurality of blades, and a bell mouth having an air suction port is provided on the air suction side of the impeller (see Patent Document 2).
  • Patent Document 1 JP-A-11-101194.
  • Patent Document 2 JP-A-10-185238.
  • the present invention has been made in view of the above points, and is excellent in mass productivity and capable of cost reduction, and is a low-noise and high-efficiency centrifugal fan and an air conditioner including the centrifugal fan Is intended to provide.
  • a hub 2 in which a rotating shaft 4a of a motor 4 is connected to an axial center portion, and an outer peripheral portion of the hub 2 along a circumferential direction.
  • An impeller 1 comprising a plurality of blades 3 standing up at a predetermined interval and having a leading edge 3a inclined forward in the rotation direction is provided, and an air suction port 6 is provided on the air suction side of the impeller 1.
  • the wind speed distribution at the exit portion of the blade 3 is improved, and aerodynamic performance can be improved and operation noise can be reduced.
  • the impeller 1 can be integrally formed, cost can be reduced, and mass productivity is excellent.
  • a hub 2 in which the rotating shaft 4a of the motor 4 is coupled to the shaft center portion, and a large number of the hub 2 are set up at predetermined intervals in the circumferential direction.
  • the impeller 1 is composed of a blade 3 that has a leading edge 3a that is not inclined even if the front edge 3a is directed in either the forward or backward direction of rotation.
  • a centrifugal blower in which a bell mouth 5 having a suction port 6 is disposed, and is sucked into the impeller 1 again from the blowing side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5. Circulated flow f
  • a blade represented by a radial plate fan In the impeller 1 provided with a circulating flow f that is sucked into the impeller 1 again from the blowout side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5 is formed.
  • the impeller 1 can be integrally formed, cost can be reduced, and mass productivity can be improved.
  • each blade 3 sucks the circulating flow f formed by the ring body 20.
  • the entire blade 3 in the impeller 1 can be inclined in the counter-rotating direction, that is, inclined in the opposite direction with respect to the rotating direction.
  • the blade 3 sucks the circulating flow f formed by the ring body 20.
  • the blade tip of the blade 3 in the impeller 1 can be inclined along the rotation direction.
  • the blade 3 sucks the circulating flow f formed by the ring body 20.
  • each blade 3 absorbs the circulating flow f formed by the ring body 20.
  • the inner diameter of the air suction port 6 in the bell mouth 5 is D, and the impeller 1
  • the inner diameter of the air suction port 6 in the bell mouth 5 is D, and the impeller 1
  • the leading edge of the leading edge cannot effectively work, hindering the improvement of aerodynamic performance.
  • ring bodies 9 and 20 having a predetermined width in the centrifugal direction can be attached to the tip end in the axial direction of the blade 3 in the impeller 1.
  • the ring bodies 9 and 20 that rotate together with the impeller 1 act as a rotating disk, and the rotational flow is induced in the outlet flow of the blade 3 by the viscous action of the rotating disk.
  • fan performance can be improved and noise can be reduced by rectifying the blowout flow and rectifying the circulation flow.
  • the centrifugal body width of the ring body 20 is H, and the outer diameter of the blade 3 in the impeller 1 is D.
  • the minimum specific noise Ks can be kept low, and it is possible to further improve the aerodynamic performance and reduce the operating noise.
  • a mixed flow diffuser 23 for guiding the air flow from the impeller 1 to the oblique rear side may be provided on the outlet side of the impeller 1.
  • a mixed flow centrifugal diffuser 23 for guiding the flow of air blown from the impeller 1 in the centrifugal direction from the oblique rear side may be provided on the blow side of the impeller 1.
  • a through space S can also be formed. It becomes fruit.
  • the stream line f of the air flow fluctuates greatly, and finally the circulating flow f passes through the flow path between the blades 3.
  • the outer diameter of the hub 2 constituting the impeller 1 is smaller than the outer diameter D of each blade 3.
  • the opening 22 is formed in the outer peripheral portion of each blade 3 on the hub side, and particularly when the above-described mixed flow diffuser 23 or mixed flow centrifugal diffuser 23 is provided, the blade 3 The blowout resistance of the air flow blown out from the fan becomes small.
  • the number of the blades 3, 3, ... in the impeller 1 is 5 to 15.
  • the minimum specific noise Ks can be kept low, effectively improving aerodynamic performance and reducing operating noise. Can make noise.
  • the number of blades 3 in the impeller 1 may be 20 to 50.
  • the maximum static pressure efficiency ratio can be made high, while the minimum specific noise level can be kept low. It is possible to improve performance and reduce driving noise.
  • the number of blades 3 in the impeller 1 is desirably 30 to 72 U.
  • the centrifugal blower of the above aspect is adopted as the blower X. You can also.
  • Such a configuration greatly contributes to the improvement of performance and cost reduction as an air conditioner because the effective working effect possessed by the centrifugal fan can be exhibited.
  • FIG. 1 is a longitudinal sectional view of a centrifugal blower X that works on the first embodiment of the present invention.
  • FIG. 2 is a front view of an impeller in a centrifugal blower X that is effective in the first embodiment.
  • FIG. 3 ( ⁇ ), ( ⁇ ), and (C) are three types of modifications of the centrifugal blower X that is useful for the first embodiment.
  • FIG. 6 is a characteristic diagram showing a change in minimum specific noise Ks with respect to D).
  • FIG. 5 (A) is a cross-sectional view of the main part showing the case of k ⁇ 0, and (B) is a cross-sectional view of the main part showing the case of k ⁇ 0.6.
  • FIG. 6 Vertical view of air conditioner Z incorporating centrifugal blower X, which is powerful in the first embodiment
  • 1 1 is a cross-sectional view.
  • FIG. 7 is a longitudinal sectional view of a centrifugal blower X that works on the second embodiment.
  • FIG. 8 (A) to (L) are modified examples of the centrifugal blower X that is useful for the second embodiment of the present invention.
  • 2 2 is a characteristic diagram showing changes in low specific noise ks.
  • FIG. 13 is a front view of an impeller in a centrifugal blower X that works on the third embodiment.
  • FIG. 6 is a characteristic diagram showing a change in minimum specific noise Ks with respect to D).
  • FIG. 1 A first figure.
  • FIG. 18 Vertical of air conditioner Z incorporating centrifugal blower X, which is powerful in the third embodiment
  • 3 3 is a sectional view.
  • ⁇ 24] A semi-longitudinal sectional view showing a modified example I of the centrifugal blower X that works on the fourth embodiment.
  • 5 ⁇ 31] is a semi-longitudinal sectional view showing a modified example II of the centrifugal blower X that works on the fifth embodiment.
  • FIG. 1 A first figure.
  • FIG.33 Modified example of centrifugal blower X that is useful for the fifth embodiment.
  • FIG. 1 A first figure.
  • Centrifugal blower powering the fifth embodiment is another contrast with modification III of X
  • FIG. 37 is a longitudinal sectional view showing a configuration of a centrifugal blower that works on the sixth embodiment.
  • FIG. 39 is a longitudinal sectional view showing a configuration of a centrifugal blower that works on the seventh embodiment.
  • ⁇ 40 It is a horizontal sectional view showing a configuration of a centrifugal blower that works on the eighth embodiment.
  • ⁇ 41 It is a longitudinal sectional view showing a configuration of a centrifugal blower that works on the eighth embodiment.
  • FIG. 42 is a horizontal sectional view showing a configuration of a main part of a test example of a centrifugal blower useful for the eighth embodiment.
  • FIG. 43 is a graph showing the relationship between the performance of the test example of the centrifugal blower according to the eighth embodiment and the number of blades.
  • FIG. 44 is a semi-longitudinal sectional view of a test example showing the configuration of a centrifugal blower according to an eighth embodiment.
  • FIG. 45 is a horizontal sectional view showing a configuration of a centrifugal blower that works on the ninth embodiment.
  • FIG. 46 is a longitudinal sectional view showing a configuration of a centrifugal blower that works on the ninth embodiment.
  • FIG. 47 is a horizontal sectional view showing a configuration of a centrifugal blower that is effective in the tenth embodiment.
  • FIG. 48 is a longitudinal sectional view showing a configuration of a centrifugal fan that is useful for the tenth embodiment.
  • FIG. 49 is a horizontal sectional view showing a configuration of a main part of a test example of a centrifugal blower useful for the tenth embodiment.
  • FIG. 50 is a graph showing the performance of a test example of the centrifugal fan according to the tenth embodiment in relation to the number of blades.
  • FIG. 51 is a horizontal sectional view showing the structure of a centrifugal blower that works in the eleventh embodiment.
  • FIG. 52 is a longitudinal sectional view showing the structure of a centrifugal blower that works in an eleventh embodiment.
  • FIG. 53 is a horizontal sectional view showing the structure of a centrifugal blower that is powerful in the twelfth embodiment.
  • FIG. 54 is a longitudinal sectional view showing the structure of a centrifugal blower that is powerful in the twelfth embodiment.
  • FIG. 55 is a semi-longitudinal sectional view showing the structure of a centrifugal blower that works in the thirteenth embodiment.
  • FIG. 56 is a semi-longitudinal sectional view showing a configuration of a main part of a centrifugal blower working on a thirteenth embodiment.
  • FIG. 57 is a horizontal sectional view showing the structure and operation of the main part of the centrifugal blower working on the thirteenth embodiment.
  • FIG. 58 is a horizontal sectional view showing the structure and operation of the main part of the centrifugal blower working on the thirteenth embodiment.
  • FIG. 59 is a semi-longitudinal sectional view showing the configuration of a centrifugal fan that is useful for the fourteenth embodiment.
  • FIG. 60 is a horizontal sectional view showing the structure and operation of the essential parts of a centrifugal blower useful for a fourteenth embodiment.
  • (First embodiment) 1 to 6 show the centrifugal fan X and the centrifugal fan X according to the first embodiment of the present invention.
  • Air conditioner z is shown.
  • the centrifugal blower X has a rotating shaft 4a of the motor 4 at the shaft center.
  • a disk-shaped hub 2 is connected to a disk-shaped hub 2 and a plurality of blades 3 erected at predetermined intervals in the circumferential direction on the outer periphery of the hub 2.
  • a bell mouth 5 having an air suction port 6 is disposed on the air suction side of 1, and
  • the impeller 1 has its leading edge inclined forward in the rotational direction, and the outer diameter side end portion 3b of each blade 3 is located closer to the impeller 1 than the inner diameter side end portion 3a. It is a swept-blade type (that is, a turbofan type) located on the rear side of the rotational direction M. In this way, since the ratio of the static pressure increase to the total pressure increase of the impeller 1 is large, the spiral scroll becomes unnecessary.
  • a concave portion 2 a for accommodating the motor 4 is formed in the axial center portion of the hub 2.
  • the motor fixing part 7 fixes the motor 4.
  • the bearing boss 8 pivots the rotating shaft 4a of the motor 4! /.
  • the reinforcing ring 9 connects the tip ends of each blade 3 in the axial direction.
  • the inner diameter D of the air suction port 6 of the bell mouth 5 is the same as that of the impeller 1.
  • a distribution space S is formed on the outer peripheral side), and is sucked into the impeller 1 again from the blowout side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the shape of the air suction port 6 in the bell mouth 5 may be a straight shape as shown in FIG. 3 (A) or a wedge shape as shown in FIG. 3 (B). As shown in Fig. 3 (C), a flare shape may be used.
  • the inner diameter of the air inlet 6 in the bell mouth 5 is D
  • the reinforcing rib 9 is the center, and the outer periphery of the reinforcing rib 9 is bent from the outlet side of the impeller 1.
  • a circulating flow f is formed which is sucked into the impeller 1 again through the back side of the air inlet 6 in the lumouth 5. Therefore, the air passing through the blade 3 after being sucked in from the air suction port 6
  • the main flow f is attracted to the tip side of the blade 3 by the circulating flow f, and the outlet portion of the blade 3
  • the wind speed distribution in minutes can be improved, and aerodynamic performance can be improved and driving noise can be reduced. Since the shroud does not require a shroud, the impeller 1 can be integrally formed, and the cost can be reduced and the mass productivity is excellent.
  • the minimum specific noise Ks can be kept low, and it is possible to further improve the aerodynamic performance and lower the operating noise.
  • the inner diameter of the blade 3 in the centrifugal blower X that is useful for the present embodiment is D, the blade
  • the outer diameter of 3 is D
  • the inner diameter of the air inlet 6 is D
  • the suction side center Q force of the air inlet 6 is diagonal.
  • FIG. 6 shows a ceiling-embedded air incorporating a centrifugal blower X that can be used in the present embodiment.
  • a harmony device z is shown.
  • the heat exchanger 15 and the centrifugal fan X are disposed in the air flow path 14 of the air flow W formed in the casing 13, and the motor fixing portion 7 that fixes the motor 4 is provided on the casing 13.
  • the optimum diameter of the suction port 6 can be made larger than that of the conventional one, and the pressure loss in the air filter 17 or the like can be kept small.
  • FIGS. 7 and 11 show the centrifugal fan X and the centrifugal fan X according to the second embodiment of the present invention.
  • Air conditioner Z is shown.
  • the impeller 1 in the centrifugal blower X is provided with the reinforcing belt in the first embodiment.
  • a ring body 20 having a predetermined width H in the centrifugal direction is attached.
  • Other configurations, functions, and effects are the same as those in the first embodiment, and a description thereof will be omitted.
  • the ring body 20 can have various shapes as shown in FIGS. 8 (A) to (L).
  • the following is just an example, and it should be noted that shapes other than those shown in the figures can be used! ⁇ .
  • the ring body 20 may be joined to the axial end face of the blade 3, and as shown in FIG. 8 (B), the ring body 20 is anti-hub.
  • the ring body 20 may be installed in a state inclined to the hub side as shown in Fig. 8 (D).
  • the end of the ring body 20 in the centrifugal direction may be an arcuate surface 20a, and the end of the ring body 20 in the centrifugal direction may be an arcuate surface 20a. It may be attached in a state of being curved and inclined toward the opposite hub side. In this case, the formation of the circulation flow f is promoted by the Coanda effect.
  • the surface of the ring body 20 on the side opposite to the hub may be a recess 20b.
  • the formation of the circulation flow f is promoted because a negative pressure is generated in the recess 20b.
  • the surface of the ring body 20 on the side opposite to the hub may be a recess 20b and attached to the hub in an inclined state. Also in this case, the formation of the circulation flow f is promoted as in the case shown in FIG. In addition, as shown in FIG.
  • the surface on the side of the hub may be a recess 20c. In this case, since a negative pressure is generated in the recess 20c, the formation of the circulating flow f is promoted.
  • the hub side surface of the ring body 20 is formed as a recess 20c and the hub side It may be attached in an inclined state. Also in this case, the formation of the circulating flow f is promoted as in the case shown in FIG. Also, as shown in Fig. 8 (I), the hub side surface of the ring body 20 is formed as a recess 20c and the hub side It may be attached in an inclined state. Also in this case, the formation of the circulating flow f is promoted as in the case shown in FIG. Also, as shown in Fig. 8
  • It may be formed of a member having a comparatively thick thickness, and the arc surfaces 20d and 20e may be formed on the attachment portion side and the centrifugal end portion side, respectively. In this case, a smooth circulation flow f is formed.
  • an inclined surface 2b inclined to the anti-wing root side is formed at a portion where the blade 3 is erected, while the ring body 20 is relatively formed.
  • the outer diameter of the blade 3 in the centrifugal blower X that is useful for this embodiment is D, the ring
  • the distance between the ring body 20 and the bell mouth 5 is L, and the minimum specific noise with respect to the variable LZD.
  • FIG. 11 shows a ceiling-embedded air incorporating a centrifugal blower X that can be used in the present embodiment. Harmonic device Z is shown. In this case, the flow of the air flow W formed in the casing 13
  • a heat exchanger and a centrifugal blower X are arranged in the air passage 14 to fix the motor 4 that fixes the motor 4.
  • the fixed portion 7 is integrated with the top plate 13 a of the casing 13.
  • Air conditioner Z Air conditioner Z
  • the air conditioner Z can be used because the effective effects of the centrifugal fan X can be exhibited.
  • the diameter can be made larger than the conventional one, and the pressure loss in the air filter 17 can be kept small.
  • the present invention is applied to one having a small number of blades 3 (that is, 5 to 15).
  • FIGS. 12 to 16 show the centrifugal fan X and the third preferred embodiment of the present invention.
  • the centrifugal blower X has a rotating shaft of the motor 4 at the shaft center.
  • a bell mouth 5 having an air suction port 6 is disposed on the air suction side of the impeller 1.
  • the impeller 1 has its leading edge inclined forward in the rotational direction, and the outer diameter side end 3b of each blade 3 is closer to the impeller 1 than the inner diameter side end 3a.
  • a swept wing type ie, turbofan type located on the rear side of the rotational direction M.
  • the spiral scroll can be dispensed with.
  • the number of blades 3 is the first and the second.
  • a concave portion 2a for accommodating the motor 4 is formed in the axial center portion of the hub 2.
  • the motor fixing part 7 fixes the motor 4.
  • the bearing boss 8 pivotally supports the rotating shaft 4 a of the motor 4.
  • the centrifugal method is the same as in the second embodiment.
  • a ring body 20 having a predetermined width H is attached in the direction.
  • the ring body 20 has a shape that inclines toward the hub 2 as it applies force in the centrifugal direction.
  • a circulation space S is formed on the back side of the bell mouth 5 (in other words, on the outer peripheral side), and the back side of the air inlet 6 in the bell mouth 5 from the blowing side of the impeller 1 The circulating flow sucked into the impeller 1 again through
  • the shape of the air suction port 6 in the bell mouth 5 may be a wedge shape or a flare shape, which may be a straight shape.
  • the inner diameter of the air suction port 6 in the bell mouth 5 is D
  • the number is 40.
  • the wind speed distribution is improved, and aerodynamic performance can be improved and driving noise can be reduced.
  • the shroud is unnecessary, the impeller 1 can be integrally formed, which can reduce the cost and is excellent in mass productivity.
  • the minimum specific noise Ks can be kept low, further improving the aerodynamic performance and lowering the operating noise.
  • —0. 3 ⁇ k (D -D) / (D-
  • the inner diameter of the blade 3 in the centrifugal blower X that is useful in the present embodiment is D, and the blade
  • the outer diameter of 3 is D
  • the inner diameter of the air inlet 6 is D
  • the suction side central force of the air inlet 6 is diagonal 4
  • centrifugal blower X In centrifugal blower X
  • Figure 15 shows the relationship between the outer diameter D of the blade 3 and the distance L between the ring body 20 and the bell mouth 5
  • the minimum specific noise Ks can be kept low in the range of LZD ⁇ 0.07.
  • BZD ⁇ 0.113 is set.
  • FIG. 18 shows a ceiling-embedded air incorporating a centrifugal blower X that is useful for the present embodiment.
  • Harmonic device Z is shown.
  • the flow of the air flow W formed in the casing 13 A heat exchanger and a centrifugal blower X are arranged in the air passage 14 to fix the motor 4 that fixes the motor 4.
  • the fixed portion 7 is integrated with the top plate 13 a of the casing 13.
  • Air conditioner Z is suction drip
  • the appropriate aperture can be made larger than that of the conventional one, and the pressure loss in the air filter 17 can be suppressed to a small extent.
  • each blade 3 in the impeller 1 may be inclined at substantially the same inclination angle as the inclination angle of the ring body 20. Even in this case, D, D,
  • each blade 3 in the impeller 1 is inclined at an inclination angle substantially the same as the inclination angle of the ring body 20, and the inlet side end portion of each blade 3 is connected to the hub. Try to tilt the impeller 1 so that it approaches the centripetal direction of the impeller 1 as you move to the side. Even in this case, the relationship between D, D, D, H, L, and B is the same as described above.
  • each blade 3 in the impeller 1 is inclined at an inclination angle substantially the same as the inclination angle of the ring body 20, and the inlet side end portion of each blade 3 is connected to the hub. It may be inclined to approach the centripetal direction of the impeller 1 as it is directed toward the side, and a selection 21 may be formed at the inlet side end. In this way, the blowing sound is reduced because the formation of the boundary layer on the blade surface is suppressed.
  • FIG. 22 shows a centrifugal blower X that can be used in the fourth embodiment of the present invention.
  • the outer diameter D of the hub 2 constituting the impeller 1 is set smaller than the outer diameter D of each blade 3.
  • BZD ⁇ 0.08 is set.
  • each blade 3 in the impeller 1 may be inclined at substantially the same inclination angle as the inclination angle of the ring body 20. Even in this case, D, D,
  • each blade 3 in the impeller 1 is inclined at substantially the same inclination angle as the inclination angle of the ring body 20, and the inlet side end portion of each blade 3 is connected to the hub.
  • the relationship between D, D, D, H, L, and B is the same as described above.
  • each blade 3 in the impeller 1 is inclined at substantially the same inclination angle as the inclination angle of the ring body 20, and the inlet side end portion of each blade 3 is connected to the hub. It may be inclined to approach the centripetal direction of the impeller 1 as it is directed toward the side, and a selection 21 may be formed at the inlet side end. In this way, the blowing sound is reduced because the formation of the boundary layer on the blade surface is suppressed.
  • the impeller 1 may be a mixed flow fan type in which the outer peripheral side of the hub 2 (that is, the portion where the blade 3 is provided) is inclined. Even in this case, D, D, D
  • the impeller 1 is a mixed flow fan type in which the outer peripheral side of the hub 2 (that is, the portion where the blade 3 is provided) is inclined, and the inlet side end of each blade 3 is connected to the hub side. Try to tilt it so that it approaches the centripetal direction of the impeller 1 as you go. Even in this case, the relationship between D, D, D, H, L, and B is the same as described above.
  • centrifugal blower X that is useful for the present embodiment can also be incorporated into the air conditioner.
  • FIG. 29 shows a centrifugal blower X that can be used in the fifth embodiment of the present invention.
  • the outer diameter D of the hub 2 constituting the impeller 1 is set smaller than the outer diameter D of each blade 3.
  • a mixed flow centrifugal diffuser 23 is provided on the blowout side of the impeller 1 to guide the blown air flow from the impeller 1 from the obliquely rear side to the centrifugal direction.
  • an opening 22 is formed in the outer peripheral portion of each blade 3 on the hub side, and the blowing resistance force S of the air flow blown from the blade 3 is reduced, and the air blown from the impeller 1 is reduced. It is possible to efficiently recover the static pressure of the dynamic pressure in the flow and improve the performance (that is High efficiency, low noise).
  • Other configurations and operational effects are the same as those in the third embodiment, and thus description thereof is omitted.
  • each blade 3 in the impeller 1 may be inclined at substantially the same inclination angle as the inclination angle of the ring body 20. Even in this case, D
  • each blade 3 in the impeller 1 is inclined at substantially the same inclination angle as the inclination angle of the ring body 20, and the inlet side end portion of each blade 3 is connected to the hub. Try to tilt the impeller 1 so that it approaches the centripetal direction of the impeller 1 as you move to the side. Even in this case, the relationship between D, D, D, H, L, and B is the same as described above.
  • the present invention is applied to one having a large number of blades 3, 3, ... (ie, 30 to 50).
  • the centrifugal blower X in FIG. 32 is a blade of the centrifugal blower X according to the third embodiment described above.
  • a mixed-flow centrifugal diffuser 23 similar to that shown in FIGS. 29 to 31 is provided for the structure of the car and the bell mouth.
  • centrifugal fan X according to the modified example I of the third embodiment shown in Fig. 19 (Fig. 33) and the conventional centrifugal fan with a shroud are mixed with a centrifugal flow centrifugal separator.
  • the ring body 20 is provided on the outer periphery of the tip end in the axial direction of the blade 3 as described above, and the main flow is generated by the circulating flow f formed by the ring body 20 as described above.
  • the noise reduction effect is shown in Fig. 34 because the air velocity distribution of the air flow finally blown out becomes uniform throughout the whole as shown in Fig. 35. It is much larger than the conventional centrifugal blower with shroud.
  • FIG. 36 and FIG. 37 show an impeller of a centrifugal blower that can be used in the sixth embodiment of the present invention.
  • the impeller 1 of this centrifugal blower includes a disk-shaped hub 2 in which the rotating shaft 4a of the motor 4 is connected to the shaft center, and the hub 2 And a plurality of blades 3 erected at predetermined intervals along the circumferential direction.
  • Each blade 3 of the impeller 1 has an inner diameter side end 3a that is a front edge thereof inclined forward in the rotation direction, and an outer diameter side end 3b that is a rear edge is an inner diameter side end 3a. It is located behind the impeller 1 in the rotational direction M, and the camber line is regarded as a swept wing type (so-called turbofan type) convex in the rotational direction!
  • the number of blades 3 of the impeller 1 is set to 20 to 50, for example, and a ring body 20 having a predetermined width H in the centrifugal direction is attached to the outer periphery of the bell mouth side end. It has been.
  • the bell mouth side end portions of the ring body 20 and the blades 3 are each configured to incline toward the hub 2 according to the directional force in the centrifugal direction, as in FIG.
  • Other configurations are basically the same as those of the above-described embodiments.
  • Such an impeller 1 is configured in combination with a bell mouth 5 similar to those of the above-described embodiments without providing a shroud. Even if the centrifugal blower of this embodiment is used, the following beneficial effects similar to those of the above embodiments can be obtained.
  • the presence of the ring body 20 forms a circulating flow f that is sucked into the impeller 1 again from the blowout side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the impeller 1 can be integrally formed, the structure can be simplified, the cost can be reduced, and the mass productivity can be improved.
  • FIG. 38 and FIG. 39 show an impeller of a centrifugal blower that is effective in the seventh embodiment of the present invention.
  • the impeller 1 of the centrifugal blower includes a disk-shaped hub 2 in which a rotating shaft 4a of a motor 4 is connected to an axial center portion, and an outer peripheral portion of the hub 2. Consists of a plurality of blades 3 standing at predetermined intervals in the circumferential direction
  • Each blade 3 of the impeller 1 has an inner diameter side end portion 3a that is a front edge thereof inclined forward in the rotation direction, and an outer diameter side end portion 3b that is a rear edge is an inner diameter side end portion 3a. It is located behind the impeller 1 in the rotational direction M, and the camber line is recessed in the rotational direction. Untyped).
  • the number of blades 3 of the impeller 1 is set to 20 to 50, for example, and a ring body 20 having a predetermined width H in the centrifugal direction is attached to the outer periphery of the bell mouth side end. It has been.
  • the bell mouth side end portions of the ring body 20 and the blades 3 are each configured to incline toward the hub 2 according to the directional force in the centrifugal direction, as in FIG.
  • Other configurations are basically the same as those of the above-described embodiments.
  • Such an impeller 1 is configured in combination with a bell mouth 5 similar to those of the above-described embodiments without providing a shroud. Even if the centrifugal blower of this embodiment is used, the following beneficial effects similar to those of the above embodiments can be obtained.
  • the presence of the ring body 20 forms a circulating flow f that is sucked into the impeller 1 again from the outlet side of the impeller 1 through the back side of the air inlet 6 in the bell mouth 5.
  • the impeller 1 can be integrally formed, the structure can be simplified, the cost can be reduced, and the mass productivity can be improved.
  • FIG. 40 and FIG. 41 show an impeller of a centrifugal blower that can be used in the eighth embodiment of the present invention.
  • the impeller 1 of the centrifugal blower includes a disc-shaped hub 2 having a shaft 4 connected to the rotating shaft 4a of the motor 4, and an outer peripheral portion of the hub 2. It consists of a plurality of blades 3 erected at predetermined intervals along the circumferential direction.
  • Each blade 3 of the impeller 1 has an inner diameter side end portion 3a that is a front edge thereof inclined forward in the rotation direction, and an outer diameter side end portion 3b that is a rear edge is an inner diameter side end portion 3a. It is positioned behind the impeller 1 in the rotational direction M, and the camber line is a receding blade type (so-called turbofan type) with a straight line.
  • the number of blades 3 of the impeller 1 is set to a large number of, for example, 20 to 50, and a ring body having a predetermined width H in the centrifugal direction on the outer periphery of the bell mouth side end portion thereof With 20 It is installed.
  • the bell mouth side end portions of the ring body 20 and the blade 3 are configured to incline toward the hub 2 side as they are directed in the centrifugal direction, respectively, as in FIG. .
  • Other configurations are basically the same as those of the above-described embodiments.
  • the presence of the ring body 20 forms a circulating flow f that is sucked into the impeller 1 again from the blowout side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the wind speed distribution at the exit of the blades 3 is improved evenly, improving aerodynamic performance and lowering operating noise.
  • the impeller 1 can be integrally formed, the structure can be simplified and the cost can be reduced, and the mass productivity can be improved.
  • each blade 3 As described above is positioned behind the rotational direction M of the impeller 1 with respect to the inner diameter side end 3a, and the camber line is a receding blade having a linear shape.
  • the centrifugal blower used for the measurement has the impeller configuration shown in FIGS. 40 and 41.
  • FIG. 45 and FIG. 46 show a centrifugal blower that can be used in the ninth embodiment of the present invention.
  • the impeller 1 of this centrifugal blower includes a disc-shaped hub 2 in which the rotating shaft 4a of the motor 4 is coupled to the shaft center, and a circle on the outer periphery of the hub 2. It is composed of a plurality of blades 3 erected at predetermined intervals along the circumferential direction.
  • Each blade 3 of the impeller 1 has an inner diameter side end portion 3a which is a leading edge thereof, which is not inclined in any direction forward or backward in the rotational direction M, and the camber line is in the radial direction. It is a radial wing type (so-called radial plate fan type) that extends in a straight line.
  • the number of blades 3 of the impeller 1 is set to a large number of, for example, 30 to 72, and a ring body having a predetermined width H in the centrifugal direction on the outer periphery of the bell mouth side end. 20 is attached.
  • the bell mouth side end portions of the ring body 20 and the blades 3 are configured to incline toward the hub 2 side as they are directed in the centrifugal direction, respectively, as in FIG. 44 described above. Yes.
  • Other configurations are basically the same as those of the above-described embodiments.
  • the presence of the ring body 20 forms a circulating flow f that is sucked into the impeller 1 again from the blowout side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the wind speed distribution at the exit part of blade 3 is improved evenly and aerodynamics It is possible to improve performance and reduce driving noise.
  • the impeller 1 can be integrally formed, and the cost can be greatly reduced by simplifying the structure and improving mass production.
  • FIGS. 47 and 48 show a centrifugal fan blade wheel that can be used in the tenth embodiment of the present invention.
  • the impeller 1 of this centrifugal blower includes a disk-shaped hub 2 in which the rotating shaft 4a of the motor 4 is connected to the shaft center portion, and an outer peripheral portion of the hub 2. It consists of a plurality of blades 3 erected at predetermined intervals along the circumferential direction.
  • Each blade 3 of the impeller 1 has an inner diameter side end portion 3a that is a leading edge thereof that is not inclined in the forward or backward direction of the rotational direction M, and the camber line is in the rotational direction M. It is a radial blade type that is slightly inclined backward (the first variation of the radial plate fan).
  • the number of blades 3 of the impeller 1 is set to a large number of, for example, 30 to 72, and a ring body having a predetermined width H in the centrifugal direction on the outer periphery of the bell mouth side end portion thereof 20 is attached.
  • the ring mouth side end portions of the ring body 20 and the blades 3 are formed so as to incline toward the hub 2 side in the centrifugal direction as in the case of FIG.
  • Other configurations are basically the same as those of the above-described embodiments.
  • the presence of the ring body 20 forms a circulating flow f that is sucked into the impeller 1 again from the blowout side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the wind speed distribution at the exit of the blades 3 is improved evenly, improving aerodynamic performance and lowering operating noise. Since no shroud is required, the impeller 1 can be integrally molded, and the simplification of the structure and the improvement of mass productivity The cost can be reduced and the mass productivity is excellent.
  • FIG. 51 and FIG. 52 show a centrifugal fan blade wheel that can be used in the eleventh embodiment of the present invention.
  • the impeller 1 of this centrifugal blower includes a disc-shaped hub 2 having a shaft 4 connected to a rotating shaft 4a of a motor 4, and an outer peripheral portion of the hub 2. It consists of a plurality of blades 3 erected at predetermined intervals along the circumferential direction.
  • Each blade 3 of the impeller 1 has an inner diameter side end portion 3a which is a front edge thereof, which is not inclined in any direction forward or backward in the rotational direction M, and the camber line is forward in the rotational direction M. It is regarded as a radial wing type (second variation of the radial plate fan) The
  • the number of blades 3 of the impeller 1 is set to a large number of, for example, 30 to 72 as described above, and a predetermined width H in the centrifugal direction is provided on the outer periphery of the bell mouth side end portion.
  • a ring body 20 is provided.
  • the end portions on the bell mouth side of the ring body 20 and the blades 3 are formed so as to be inclined toward the hub 2 side in the centrifugal direction as in the case of FIG.
  • Other configurations are basically the same as those of the above-described embodiments.
  • the presence of the ring body 20 forms a circulating flow f that is sucked into the impeller 1 again from the blowout side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the impeller 1 can be integrally formed, and the cost can be greatly reduced by simplifying the structure and improving mass productivity.
  • FIG. 53 and FIG. 54 show a centrifugal fan blade wheel that can be used in the twelfth embodiment of the present invention.
  • the impeller 1 of this centrifugal blower includes a disk-shaped hub 2 in which the rotating shaft 4a of the motor 4 is connected to the shaft center, and the hub 2 And a plurality of blades 3 erected along the circumferential direction along the circumferential direction at a predetermined interval.
  • Each blade 3 of the impeller 1 is of a radial blade type (radial tip fan type with an exit angle 0 of about 90 °) in which the camber line has a concave curve in the rotational direction.
  • the number of blades 3 of the impeller 1 is set to, for example, 20 to 50, as in the sixth, seventh, and eighth embodiments.
  • a ring body 20 having a predetermined width H is attached.
  • the ring body 20 Similarly to the case of FIG. 44 described above, the end portions of the blade 3 on the bell mouth side are each configured to incline toward the hub 2 side toward the centrifugal direction.
  • Other configurations are basically the same as those of the above-described embodiments.
  • the presence of the ring body 20 forms a circulating flow f that is sucked into the impeller 1 again from the blowout side of the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the wind speed distribution at the exit of the blades 3 is evenly improved, and aerodynamic performance can be improved and operation noise can be reduced.
  • the impeller 1 can be integrally formed, and the cost can be greatly reduced by simplifying the structure and improving mass productivity.
  • FIGS. 55 to 58 show the configuration of the main part of a centrifugal blower that is useful for the thirteenth embodiment of the present invention.
  • the impeller 1 of this centrifugal blower is a disk-shaped hub in which the rotating shaft of the motor is connected to the shaft center portion as in the above embodiments. 2 and a plurality of blades 3 erected on the outer peripheral portion of the hub 2 along the circumferential direction at a predetermined interval.
  • Each blade 3 of this impeller 1 is of a forward inclined blade type 3A (Fig. 57) whose whole is inclined at a predetermined angle forward in the rotational direction M, or a reverse inclined blade type 3B ( Figure 58).
  • the number of blades 3 of the impeller 1 is set to a large number of 30 to 72, for example, on the outer periphery of the bell mouth side end. Is provided with a ring body 20 having a predetermined width H in the centrifugal direction. In the case of the present embodiment, the ring mouth side end portions of the ring body 20 and the blades 3 are formed so as to incline toward the hub 2 side in the centrifugal direction, as is apparent from FIG. Other configurations are described above. It is the same as that of each embodiment
  • the ring body 20 forms a circulation flow f in which the blowing side force of the impeller 1 is again sucked into the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the main air flow f passing through the root 3 is attracted to the tip side of the blade 3 by the circulating flow f.
  • the wind speed distribution at the exit part of the blade 3 is improved, so that aerodynamic performance can be improved and the noise of operation can be reduced.
  • the impeller 1 can be integrally formed, the structure can be simplified, the cost can be reduced, and the mass productivity can be improved.
  • the blade 3 (3B) acts in a direction in which it is difficult to suck the circulating flow f formed by the ring body 20.
  • the blade 3 (3B) acts in a direction in which it is difficult to suck the circulating flow f formed by the ring body 20.
  • FIG. 59 and FIG. 60 show a centrifugal blower useful for the fourteenth embodiment of the present invention. The structure of the main part of the is shown.
  • the impeller 1 of this centrifugal blower is a disc-shaped hub in which the rotating shaft of the motor is connected to the shaft center as in the above embodiments. 2 and a plurality of blades 3 erected on the outer peripheral portion of the hub 2 along the circumferential direction at a predetermined interval.
  • Each blade 3 of the impeller 1 has a forward-tilt type 3A in which only its blade tip 3C is inclined at a predetermined angle forward in the rotational direction M, or a reverse-tilt type 3B of the opposite side. (Folding line L).
  • the number of blades 3 of the impeller 1 is set to a large number of 30 to 72, for example, on the outer periphery of the bell mouth side end. Is provided with a ring body 20 having a predetermined width H in the centrifugal direction. In the case of the present embodiment, the ring mouth side end portions of the ring body 20 and the blades 3 are formed so as to incline toward the hub 2 side toward the centrifugal direction, as is apparent from FIG. Other configurations are basically the same as those of the above-described embodiments.
  • the ring body 20 forms a circulating flow f in which the blowing side force of the impeller 1 is again sucked into the impeller 1 through the back side of the air suction port 6 in the bell mouth 5.
  • the main air flow f passing through the root 3 is attracted to the tip side of the blade 3 by the circulating flow f.
  • the shroud does not require a shroud
  • the impeller 1 can be integrally formed, the structure can be simplified and the cost can be reduced, and the mass productivity can be improved.

Abstract

 軸心部にモータ4の回転軸4aが連結されるハブ2と、ハブ2の外周部に円周方向に沿い所定間隔をおいて立設され、その前縁3aが回転方向前方に向って傾斜した複数の羽根3とからなる羽根車1を備え、羽根車1の空気吸込側に、空気吸込口6を有するベルマウス5を配設してなる遠心送風機が提供される。羽根車1の吹出側からベルマウス5における空気吸込口6の背面側を通って再度前記羽根車1に吸い込まれる循環流f2が形成される。

Description

明 細 書
遠心送風機および遠心送風機を備えた空気調和装置
技術分野
[0001] 本願発明は、遠心送風機および遠心送風機を備えた空気調和装置に関するもの である。
背景技術
[0002] 一般に良く知られている遠心送風機としては、モータの回転軸に連結されるハブと 、該ハブの外周部に対して所定間隔をもって対向配置されるシユラウドと、該シュラウ ドと前記ハブの外周部との間にて円周方向に沿い所定間隔を隔てて配置される複数 の羽根とからなる羽根車を備えたものがある(特許文献 1参照)。
[0003] また、シュラウドを有していない遠心送風機としては、軸心部にモータの回転軸が連 結されるハブと、該ハブの外周部に円周方向に沿い所定間隔をおいて立設された複 数の羽根とからなる羽根車を備え、該羽根車の空気吸込側に、空気吸込口を有する ベルマウスを配設してなるものがある(特許文献 2参照)。
特許文献 1:特開平 11― 101194号公報。
特許文献 2 :特開平 10— 185238号公報。
[0004] ところが、上記特許文献 1に開示されて ヽる遠心送風機の場合、羽根の外径側端 部が内径側端部より羽根車の回転方向後側に位置する後退翼タイプの遠心送風機 (即ち、ターボファン)として多用されており、シュラウドとハブの外周部との間に多数 の羽根を配置するという複雑な構造となっている。そのため、羽根車を製作するに当 たってハブと羽根とを一体成形したものに、別途製作したシュラウドを接合する必要 があり、量産性やコスト面で問題がある。
[0005] 一方、上記特許文献 2に開示されて ヽる遠心送風機の場合、羽根の外径側端部が 内径側端部より羽根車の回転方向前側に位置する前進翼タイプの遠心送風機 (即 ち、シロッコファン)として多用されており、羽根車は簡素な構造となっている。しかし、 渦巻きケーシングを付設しないと、空力性能や運転音特性が劣化するので、量産性 やコストの面で問題がある。 発明の開示
[0006] 本願発明は、上記の点に鑑みてなされたもので、量産性に優れ、コスト低減が可能 であって、低騒音かつ高効率の遠心送風機およびその遠心送風機を備えた空気調 和装置を提供することを目的とするものである。
[0007] 本願発明では、上記課題を解決するための第 1の態様として、軸心部にモータ 4の 回転軸 4aが連結されるハブ 2と、該ハブ 2の外周部に円周方向に沿い所定間隔をお いて立設され、その前縁 3aが回転方向前方に向って傾斜した複数の羽根 3とからな る羽根車 1を備え、該羽根車 1の空気吸込側に、空気吸込口 6を有するベルマウス 5 を配設してなる遠心送風機であって、前記羽根車 1の吹出側から前記ベルマウス 5に おける空気吸込口 6の背面側を通って再度前記羽根車 1に吸 、込まれる循環流 fを
2 形成し得るように構成して ヽる。
[0008] このように構成したことにより、例えばターボファンに代表されるような後退翼形状の 羽根を備えた羽根車 1において、当該羽根車 1の吹出側からベルマウス 5における空 気吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f 力形成されること
2
となる。
[0009] その結果、羽根 3を通る空気主流 f が循環流 f によって羽根 3の先端側に引き寄せ
1 2
られることとなり、羽根 3の出口部分における風速分布が改善され、空力性能の向上 と運転音の低騒音化とを図ることができる。
[0010] し力も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、コスト低減を図 ることができるとともに、量産性に優れたものとなる。
本願発明では、上記課題を解決するための第 2の態様として、軸心部にモータ 4の 回転軸 4aが連結されるハブ 2と、該ハブ 2の外周部に円周方向所定間隔に多数立設 され、その前縁 3aが回転方向前方および回転方向後方の何れの方向に向力つても 傾斜していない羽根 3とからなる羽根車 1を備え、該羽根車 1の空気吸込側に、空気 吸込口 6を有するベルマウス 5を配設してなる遠心送風機であって、前記羽根車 1の 吹出側から前記ベルマウス 5における空気吸込口 6の背面側を通って再度前記羽根 車 1に吸 、込まれる循環流 f
2を形成し得るように構成して 、る。
[0011] このように構成したことにより、例えばラジアルプレートファンに代表されるような羽根 を備えた羽根車 1においても、当該羽根車 1の吹出側からベルマウス 5における空気 吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f が形成されることと
2
なる。
[0012] その結果、各羽根 3を通る空気主流 f が循環流 f によって各羽根 3の先端側に引き
1 2
寄せられることとなり、各羽根 3の出口部分における風速分布が改善され、空力性能 の向上と運転音の低騒音化を図ることができる。
[0013] し力も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、コスト低減を図 ることができるとともに、量産性に優れたものとなる。
前記羽根車 1における羽根 3の全体が、回転方向に沿って傾斜して 、ることが望ま しい。
[0014] このような構成によると、各羽根 3がリング体 20によって形成される循環流 f を吸い
2 込む方向に作用し、強い循環流 f が形成される。
2
また、ベルマウス 5の空気吸込口 6の内径を大きくした場合でも、上記の強い循環 流 f が各羽根 3の内側まで深く入り込まず、リング体 20付近でスムーズに循環する。
2
その結果、より良好な送風性能を実現することができる。
[0015] さらに、前記羽根車 1における羽根 3の全体を、反回転方向に傾斜、すなわち、回 転方向に対して反対側に傾斜させることも可能である。
このような構成によると、羽根 3がリング体 20によって形成される循環流 f を吸い込
2 みにくい方向に作用する。
[0016] また、ベルマウス 5の空気吸込口 6の内径を小さくした場合でも、上記の強い循環流 f が羽根 3の内側まで深く入り込まず、リング体 20付近でスムーズに循環する。その
2
結果、やはり良好な送風性能を実現することができる。
[0017] さらに、前記羽根車 1における羽根 3の翼端を、回転方向に沿って傾斜させることも 可能である。
このような構成によると、羽根 3がリング体 20によって形成される循環流 f を吸い込
2 む方向に作用し、強い循環流 f が形成される。
2
[0018] また、ベルマウス 5の空気吸込口 6の内径を大きくした場合でも、上記の強い循環 流 f が羽根 3の内側まで深く入り込まず、リング体 20付近でスムーズに循環する。そ の結果、より良好な送風性能を実現することができる。
[0019] さらに、前記羽根車 1における羽根 3の翼端を、回転方向と反対側に傾斜させること も可能である。
このような構成によると、各羽根 3がリング体 20によって形成される循環流 fを吸い
2 込みにくい方向に作用する。
[0020] また、ベルマウス 5の空気吸込口 6の内径を小さくした場合でも、上記の強い循環流 f が各羽根 3の内側まで深く入り込まず、リング体 20付近でスムーズに循環する。そ
2
の結果、やはり良好な送風性能を実現することができる。
[0021] さらに、前記ベルマウス 5における空気吸込口 6の内径を D、前記羽根車 1におけ
0
る羽根 3の内径を D、該羽根 3の外径を Dとしたとき、 0く(D— D )Z(D— D )く 0
1 2 0 1 2 1
. 6となるように設定することもできる。
[0022] そのように構成した場合、羽根 3の枚数が少ない時 (例えば、 5枚〜 15枚の時)にお いて、図 4に示すように、最低比騒音 Ksを低く抑え得ることとなり、より一層の空力性 能の向上と運転音の低騒音化とを図ることができる。
[0023] なお、(D -D ) / (D -D )≥0. 6となると、羽根 3の枚数が少ない時には、図 5 (
0 1 2 1
B)に示すように、羽根 3の前縁端部において発生する逆流 f が強くなるとともに、羽 根 3の後縁先端部における循環流 f が弱くなり、空力性能の向上を阻害する。
2
[0024] また、 0≥ (D -D ) / (D— D )となると、羽根 3の枚数が少ない時には、図 5 (A)
0 1 2 1
に示すように、羽根 3における前縁先端部が有効に作用できなくなり、空力性能の向 上を阻害する。
[0025] さらに、前記ベルマウス 5における空気吸込口 6の内径を D、前記羽根車 1におけ
0
る羽根 3の内径を D、該羽根 3, 3 · ·の外径を Dとしたとき、 0. 3く(D— D )Z(D
1 2 0 1
— D )く 0. 3となるように設定することもできる。
2 1
[0026] そのように構成した場合、羽根 3の枚数が多い時 (例えば、 30枚〜 50枚の時)にお いて、図 14に示すように、最低比騒音 Ksを低く抑え得ることとなり、より一層の空力性 能の向上と運転音の低騒音化とを図ることができる。
[0027] なお、(D -D ) / (D -D )≥0. 3となると、羽根 3の枚数が多い時には、羽根 3の
0 1 2 1
前縁端部において発生する逆流が強くなるとともに、羽根 3の後縁先端部における循 環流 f が弱くなり、空力性能の向上を阻害する。
2
[0028] また、 0. 3≥ (D -D ) / (D—D )となると、羽根 3の枚数が多い時には、羽根 3
0 1 2 1
における前縁先端部が有効に作用できなくなり、空力性能の向上を阻害する。
さらに、前記羽根車 1における羽根 3の軸方向先端部に、遠心方向に所定の幅を 有するリング体 9, 20を付設することもできる。そのように構成した場合、羽根車 1と共 回りするリング体 9, 20が回転円板として作用し、回転円板の粘性作用により、羽根 3 の出口流れに回転方向の流れが誘起され、その結果、吹出流れの整流化と循環流 の整流化によるファン性能の向上および静音化を図ることができる。
[0029] 前記リング体 20の遠心方向幅を H、前記羽根車 1における羽根 3の外径を Dとした
2 とき、 0. 05<ki=H/D < 0. 225となるように設定することもできる。そのように構成
2
した場合、図 9に示すように、最低比騒音 Ksを低く抑え得ることとなり、より一層の空 力性能の向上と運転音の低騒音化とを図ることができる。
[0030] ところで、 0. l≤ki=H/D≤0. 15とするのが低騒音化を図る上力 より望ましい
2 なお、 ki HZD≤0. 05となると、効果が小さくなるし、 ki=H/D≥0· 225とな
2 2
ると、循環流の形成に悪影響を与えることとなって、羽根 3の後縁先端部における循 環流が弱くなり、空力性能の向上を阻害する。
[0031] 前記羽根車 1の吹出側に、該羽根車 1からの吹出空気流を斜め後方側に案内する 斜流ディフューザ 23を設けることもできる。そのように構成した場合、羽根車 1から吹 き出される空気流における動圧の静圧回復が効率良く行えることとなり、性能向上( 即ち、高効率、低騒音)に大いに寄与する。
[0032] さらに、前記羽根車 1の吹出側に、該羽根車 1からの吹出空気流を斜め後方側から 遠心方向に案内する斜流遠心ディフューザ 23を設けることもできる。そのように構成 した場合、羽根車 1から吹き出される空気流における動圧の静圧回復と、吹出される 風の風速分布の均一化とが効率良く行えることとなり、性能向上 (即ち、高効率、低 騒音)に大いに寄与する。
[0033] 前記ベルマウス 5における空気吸込口 6の外周側に、前記循環流 f が通過し得る流
2
通空間 Sを形成することもでき、そのように構成した場合、循環流 fの形成が容易確 実となる。
[0034] 前記羽根車 1における各羽根 3の出口側高さを B、該羽根 3の外径を Dとしたとき、
2
B/D≥0. 113に設定することもできる。そのように構成した場合、羽根車 1の出口
2
側における空気流の流線 f 1がゆらぐという不具合が解消することとなり、安定した性能 が得られる。
[0035] なお、 BZD <0. 113となると、風量が増加するにつれて、羽根車 1の出口側にお
2
ける空気流の流線 f が大きくゆらぐこととなり、ついに循環流 f が羽根 3の間の流路を
1 2
閉塞し、性能が急に低下する。
[0036] さらに、前記羽根車 1を構成するハブ 2の外径を、前記各羽根 3の外径 Dより小さく
2 設定することもできる。そのように構成した場合、各羽根 3におけるハブ側の外周部に 開口 22が形成されることとなり、特に前記した斜流ディフューザ 23又は斜流遠心ディ フューザ 23が設けられた場合には、羽根 3から吹き出される空気流の吹出抵抗が小 さくなる。
[0037] 前記羽根車 1における各羽根 3の出口側高さを B、該羽根 3の外径を Dとしたとき、
2
B/D≥0. 08に設定することもできる。そのように構成した場合、羽根車 1における
2
各羽根 3の出口側高さ Bが小さくなつても、羽根車 1の出口側における空気流の流線 f 1がゆらぐという不具合が解消することとなり、安定した性能が得られる。
[0038] なお、 BZD <0. 08となると、羽根車 1の出口側における空気流の流線 f が大きく
2 1 ゆらぐこととなり、ついには循環流 fが羽根 3の間の流路を閉塞し、性能が急に低下
2
する。
[0039] さらに、前記羽根車 1における羽根 3, 3· ·の枚数は 5枚から 15枚が望ましい。この 場合、本願発明によれば、図 4に示すように、羽根 3の枚数が少ない時においても、 最低比騒音 Ksを低く抑え得ることができ、効果的に空力性能の向上と運転音の低騒 音ィ匕とを図ることができる。
[0040] 前記羽根車 1における羽根 3の枚数は 20枚から 50枚にすることも可能である。例え ば、図 14および図 43に示すように、羽根 3の枚数が多い時において、特に最高静圧 効率比を高くできる一方、最低比騒音レベルを低く抑え得ることができ、より有効に空 力性能の向上と運転音の低騒音化とを図ることができる。 [0041] 前記羽根車 1における羽根 3の枚数は 30枚から 72枚とすることが望ま U、。
図 14および図 50に示すように、羽根 3の枚数が 30枚から 72枚程度の多い時に おいて、特に有効に最高静圧効率比を高くできる一方、最低比騒音レベルを可及的 に低く抑え得ることができ、より有効に空力性能の向上と運転音の低騒音化とを図る ことができる。
[0042] さらに、ケーシング 13内に形成された通風路 14に、熱交 15と送風機 Xとを配 設してなる空気調和装置において、前記送風機 Xとして、上記の態様の遠心送風機 を採用することもできる。そのように構成した場合、遠心送風機の保有する有効な作 用効果が発揮できるところから、空気調和装置としての性能向上およびコスト低減に 大いに寄与する。
図面の簡単な説明
[0043] [図 1]本願発明の第 1の実施の形態に力かる遠心送風機 Xの縦断面図である。
1
[図 2]第 1の実施の形態に力かる遠心送風機 Xにおける羽根車の正面図である。
1
[図 3] (Α)、 (Β)及び (C)は、第 1の実施の形態に力かる遠心送風機 Xの 3種の変形
1
例の要部を示す断面図である。
[図 4]第 1の実施の形態に力かる遠心送風機 Xにおける変数 k= (D -D ) / (D -
1 0 1 2
D )に対する最低比騒音 Ksの変化を示す特性図である。
1
[図 5] (A)は k≤0の場合を示す要部断面図であり、(B)は k≥0. 6の場合を示す要 部断面図である。
[図 6]第 1の実施の形態に力かる遠心送風機 Xを組み込んだ空気調和装置 Zの縦
1 1 断面図である。
[図 7]第 2の実施の形態に力かる遠心送風機 Xの縦断面図である。
2
[図 8] (A)〜 (L)は本願発明の第 2の実施の形態に力かる遠心送風機 Xの変形例の
2 要部を示す断面図である。
[図 9]第 2の実施の形態に力かる遠心送風機 Xにおける変数 ki=HZDに対する最
2 2 低比騒音 ksの変化を示す特性図である。
[図 10]第 2の実施の形態に力かる遠心送風機 Xにおける変数 LZDに対する最低
2 2
比騒音 ksの変化を示す特性図である。 圆 11]第 2の実施の形態に力かる遠心送風機 Xを組み込んだ空気調和装置 Zの縦
2 2 断面図である。
圆 12]第 3の実施の形態に力かる遠心送風機 Xの縦断面図である。
3
[図 13]第 3の実施の形態に力かる遠心送風機 Xにおける羽根車の正面図である。
3
圆 14]第 3の実施の形態に力かる遠心送風機 Xにおける変数 k= (D -D ) / (D -
3 0 1 2
D )に対する最低比騒音 Ksの変化を示す特性図である。
1
[図 15]第 3の実施の形態に力かる遠心送風機 Xにおける LZDに対する最大比騒
3 2
音 Ksの変化を示す特性図である。
圆 16]第 3の実施の形態に力かる遠心送風機 Xにおける風量に対する静圧の変化
3
を示す特性図である。
[図 17]第 3の実施の形態に力かる遠心送風機 Xにおける BZDに対する最大流量
3 2
係数 φ max (劣化なしの場合を基準値 = 1としている)の変化を示す特性図である。
[図 18]第 3の実施の形態に力かる遠心送風機 Xを組み込んだ空気調和装置 Zの縦
3 3 断面図である。
圆 19]第 3の実施の形態に力かる遠心送風機 Xの変形例 Iを示す半縦断面図である
3 圆 20]第 3の実施の形態に力かる遠心送風機 Xの変形例 IIを示す半縦断面図であ
3
る。
圆 21]第 3の実施の形態に力かる遠心送風機 Xの変形例 ΙΠを示す半縦断面図であ
3
る。
圆 22]第 4の実施の形態に力かる遠心送風機 Xの半縦断面図である。
4
[図 23]第 4の実施の形態に力かる遠心送風機 Xにおける BZDに対する最大流量
3 2
係数 φ max (劣化なしの場合を基準値 = 1としている)の変化を示す特性図である。 圆 24]第 4の実施の形態に力かる遠心送風機 Xの変形例 Iを示す半縦断面図である
4
[図 25]第 4の実施の形態にかかる遠心送風機 Xの変形例 IIを示す半縦断面図であ
4
る。
圆 26]第 4の実施の形態に力かる遠心送風機 Xの変形例 ΙΠを示す半縦断面図であ る。
圆 27]第 4の実施の形態に力かる遠心送風機 Xの変形例 IVを示す半縦断面図であ
4
る。
圆 28]第 4の実施の形態に力かる遠心送風機 Xの変形例 Vを示す半縦断面図であ
4
る。
圆 29]第 5の実施の形態に力かる遠心送風機 Xの半縦断面図である。
5
圆 30]第 5の実施の形態に力かる遠心送風機 Xの変形例 Iを示す半縦断面図である
5 圆 31]第 5の実施の形態に力かる遠心送風機 Xの変形例 IIを示す半縦断面図であ
5
る。
圆 32]第 5の実施の形態に力かる遠心送風機 Xの変形例 IIIの構成を示す半縦断面
5
図である。
[図 33]第 5の実施の形態に力かる遠心送風機 Xの変形例 ΠΙとの対比例(図 19のもの
5
に対応)の構成と作用を示す半縦断面図である。
圆 34]第 5の実施の形態に力かる遠心送風機 Xの変形例 IIIとの別の対比例である
5
従来のシュラウド付き遠心送風機の構成を示す半縦断面図である。
圆 35]第 5の実施の形態に力かる遠心送風機 Xの変形例 IIIの騒音低減効果を対比
5
例と比較して示すグラフである。
圆 36]第 6の実施の形態に力かる遠心送風機の構成を示す水平断面図である。 圆 37]第 6の実施の形態に力かる遠心送風機の構成を示す縦断面図である。
圆 38]第 7の実施の形態に力かる遠心送風機の構成を示す水平断面図である。 圆 39]第 7の実施の形態に力かる遠心送風機の構成を示す縦断面図である。
圆 40]第 8の実施の形態に力かる遠心送風機の構成を示す水平断面図である。 圆 41]第 8の実施の形態に力かる遠心送風機の構成を示す縦断面図である。
圆 42]第 8の実施の形態に力かる遠心送風機の供試例の要部の構成を示す水平断 面図である。
圆 43]第 8の実施の形態にかかる遠心送風機の供試例の性能を羽根枚数との関係 を示すグラフである。 [図 44]第 8の実施の形態にカゝかる遠心送風機の構成を示す供試例の半縦断面図で ある。
[図 45]第 9の実施の形態に力かる遠心送風機の構成を示す水平断面図である。
[図 46]第 9の実施の形態に力かる遠心送風機の構成を示す縦断面図である。
[図 47]第 10の実施の形態に力かる遠心送風機の構成を示す水平断面図である。
[図 48]第 10の実施の形態に力かる遠心送風機の構成を示す縦断面図である。
[図 49]第 10の実施の形態に力かる遠心送風機の供試例の要部の構成を示す水平 断面図である。
[図 50]第 10の実施の形態にかかる遠心送風機の供試例の性能を羽根枚数との関係 で示すグラフである。
[図 51]第 11の実施の形態に力かる遠心送風機の構成を示す水平断面図である。
[図 52]第 11の実施の形態に力かる遠心送風機の構成を示す縦断面図である。
[図 53]第 12の実施の形態に力かる遠心送風機の構成を示す水平断面図である。
[図 54]第 12の実施の形態に力かる遠心送風機の構成を示す縦断面図である。
[図 55]第 13の実施の形態に力かる遠心送風機の構成を示す半縦断面図である。
[図 56]第 13の実施の形態に力かる遠心送風機の要部の構成を示す半縦断面図で ある。
[図 57]第 13の実施の形態に力かる遠心送風機の要部の構成と作用を示す水平断面 図である。
[図 58]第 13の実施の形態に力かる遠心送風機の要部の構成と作用を示す水平断面 図である。
[図 59]第 14の実施の形態に力かる遠心送風機の構成を示す半縦断面図である。
[図 60]第 14の実施の形態に力かる遠心送風機の要部の構成と作用を示す水平断面 図である。
発明を実施するための最良の形態
以下、添付の図面を参照して、本願発明の幾つかの好適な実施の形態について 詳述する。
(第 1の実施の形態) 図 1ないし図 6には、本願発明の第 1の実施の形態に力かる遠心送風機 Xおよび
1 空気調和装置 zが示されている。
1
[0045] この遠心送風機 Xは、図 1および図 2に示すように、軸心部にモータ 4の回転軸 4a
1
が連結される円板形状のハブ 2と、該ハブ 2の外周部において円周方向に所定間隔 をおいて立設された複数の羽根 3とからなる羽根車 1を備えており、該羽根車 1の空 気吸込側には、空気吸込口 6を有するベルマウス 5が配設されている。
[0046] この羽根車 1は、図 2に示すように、その前縁が回転方向前方に向かって傾斜し、 各羽根 3の外径側端部 3bが内径側端部 3aより羽根車 1の回転方向 Mの後側に位置 する後退翼タイプ (即ち、ターボファンタイプ)とされている。このようにすると、羽根車 1の全圧上昇に占める静圧上昇の割合が大きいので、渦巻きスクロールが不要となる
[0047] また、前記ハブ 2の軸心部には、前記モータ 4を収納するための凹部 2aが形成され ている。モータ固定部 7はモータ 4を固定している。軸受ボス 8はモータ 4の回転軸 4a を枢支して!/、る。補強リング 9は各羽根 3の軸方向先端部を連結して 、る。
[0048] そして、前記ベルマウス 5における空気吸込口 6の内径 Dは、前記羽根車 1におけ
0
る羽根 3の内径 Dより大きく設定されている。また、前記ベルマウス 5の背面側 (換言
1
すれば、外周側)には、流通空間 Sが形成されており、前記羽根車 1の吹出側から前 記ベルマウス 5における空気吸込口 6の背面側を通って再度前記羽根車 1に吸 、込 まれる循環流 f
2を、容易且つ確実に形成し得るように構成されている。
[0049] ところで、前記ベルマウス 5における空気吸込口 6の形状は、図 3 (A)に示すように 、ストレート形状としてもよぐ図 3 (B)に示すように、クサビ形状としてもよぐ図 3 (C) に示すように、フレア形状としてもよい。
[0050] 本実施の形態においては、前記ベルマウス 5における空気吸込口 6の内径を D、
0 前記羽根車 1における羽根 3の内径を D、該羽根 3の外径を Dとしたとき、 0< (D
1 2 0
D ) / (D -D ) < 0. 6となるように設定とされている。なお、羽根 3の枚数は 10枚と
1 2 1
されている。
[0051] 上記のように構成した遠心送風機においては、次のような作用効果が得られる。即 ち、上記の構成では、補強リブ 9を中心として、その外周に羽根車 1の吹出側からベ ルマウス 5における空気吸込口 6の背面側を通って再度羽根車 1に吸い込まれる循 環流 f が形成される。そのため、空気吸込口 6から吸込まれた後に羽根 3を通る空気
2
主流 f が当該循環流 f によって羽根 3の先端側に引き寄せられて、羽根 3の出口部
1 2
分における風速分布が改善され、空力性能の向上と運転音の低騒音化とを図ること ができる。し力も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、コスト 低減を図ることができるとともに、量産性に優れたものとなる。
[0052] また、本実施の形態においては、前記ベルマウス 5における空気吸込口 6の内径を D、前記羽根車 1における羽根 3の内径を D、該羽根 3の外径を Dとしたとき、 0<k
0 1 2
= (D -D ) / (D -D ) < 0. 6となるように設定されている。このようにすると、図 4に
0 1 2 1
示すように、最低比騒音 Ksを低く抑え得ることとなり、より一層の空力性能の向上と運 転音の低騒音化とを図ることができる。
[0053] なお、 0≥k= (D -D ) / (D— D )となると、図 5 (A)に示すように、羽根 3におけ
0 1 2 1
る前縁先端部が有効に作用できなくなり、空力性能の向上を阻害する。また、 k= (D -D ) / (D -D )≥0. 6となると、図 5 (B)に示すように、羽根 3の前縁端部におい
0 1 2 1
て発生する逆流 が強くなるとともに、羽根 3の後縁先端部における循環流 f が弱く
2 なり、空力性能の向上を阻害する。
[0054] ちなみに、本実施の形態に力かる遠心送風機 Xにおける羽根 3の内径を D、羽根
1 1
3の外径を D、空気吸込口 6の内径を Dとし、空気吸込口 6の吸込側中心 Q力 斜め
2 0
45度前方 lmの位置にマイク 12を設置して、 k= (D— D
0 1 )Z(D— D )を変数とし、
2 1
最低比騒音 Ksの変化を調べたところ、図 4に示す結果が得られた。上記結果によれ ば、 0<k< 0. 6の範囲において良好な運転音特性が得られていることが分かる。
[0055] 図 6には、本実施の形態に力かる遠心送風機 Xを組み込んだ天井埋込式の空気
1
調和装置 zが示されている。
1
この場合、ケーシング 13内に形成された空気流 Wの通風路 14に、熱交 15と 遠心送風機 Xとが配設され、モータ 4を固定するモータ固定部 7は、ケーシング 13の
1
天板 13aと一体とされている。この空気調和装置 Zは、吸込グリル 16、エアフィルタ 1 7、ドレンパン 18、及び、空気吹出口 19を備えている。
[0056] このようにすると、遠心送風機 Xの有する有効な作用効果が発揮できるところから、 空気調和装置 zとしての性能向上およびコスト低減に大いに寄与する。また、空気
1
吸込口 6の最適口径を従来のものより大きくすることができ、エアフィルタ 17等におけ る圧力損失を小さく抑えることができる。
[0057] (第 2の実施の形態)
図 7および図 11には、本願発明の第 2の実施の形態に力かる遠心送風機 Xおよび
2 空気調和装置 Zが示されている。
2
[0058] この場合、遠心送風機 Xにおける羽根車 1には、第 1の実施の形態における補強リ
2
ング 9に代えて、遠心方向に所定の幅 Hを有するリング体 20が付設されている。その 他の構成および作用効果は、第 1の実施の形態におけると同様なので説明を省略す る。
[0059] ところで、リング体 20は、図 8 (A)〜 (L)に示すように、種々の形状とすることができ る。なお、以下に示すものは、あくまでも一例であって、図示以外の形状とすることが でさることは勿!^である。
[0060] 即ち、図 8 (A)に示すように、羽根 3の軸方向端面にリング体 20を接合するようにし てもよく、図 8 (B)に示すように、リング体 20が反ハブ側に傾斜した状態で取り付けら れていてもよぐ図 8 (C)に示すように、リング体 20がハブ側に傾斜した状態で取り付 けられていてもよぐ図 8 (D)に示すように、リング体 20の遠心方向端部が円弧面 20a とされていてもよく、図 8 (E)に示すように、リング体 20の遠心方向端部が円弧面 20a とされ且つ全体が反ハブ側に湾曲傾斜した状態で取り付けられていてもよい。この場 合、コアンダ効果により循環流 f の形成が促進される。
2
[0061] また、図 8 (F)に示すように、リング体 20の反ハブ側の面が凹部 20bとされていても よい。この場合、凹部 20bに負圧が生じるところから、循環流 fの形成が促進される。
2
また、図 8 (G)に示すように、リング体 20の反ハブ側の面が凹部 20bとされ且つハブ 側に傾斜した状態で取り付けられていてもよい。この場合にも、図 8 (F)に示す場合と 同様に、循環流 fの形成が促進される。また、図 8 (H)に示すように、リング体 20のハ
2
ブ側の面が凹部 20cとされていてもよい。この場合、凹部 20cに負圧が生じるところか ら、循環流 f の形成が促進される。
2
[0062] また、図 8 (I)に示すように、リング体 20のハブ側の面が凹部 20cとされ且つハブ側 に傾斜した状態で取り付けられていてもよい。この場合にも、図 8 (H)に示す場合と 同様に、循環流 fの形成が促進される。また、図 8 CF)に示すように、リング体 20を比
2
較的厚みを有する部材で構成し且つ取付部側および遠心方向端部側にそれぞれ円 弧面 20d, 20eを形成するようにしてもよい。この場合、スムーズな循環流 f が形成で
2 きる。
[0063] また、図 8 (K)に示すように、リング体 20を比較的厚みを有する部材で構成し且つ 取付部側および遠心方向端部側にそれぞれ円弧面 20d, 20eを形成するとともに、 ハブ側に傾斜した状態で取り付けられるようにしてもよい。この場合にも、図 8 CF)に示 す場合と同様に、スムーズな循環流 fが形成できる。
2
[0064] また、図 8 (L)に示すように、ハブ 2において、羽根 3が立設されている部分に反羽 根側に傾斜する傾斜面 2bを形成する一方、リング体 20を比較的厚みを有する部材 で構成し且つ取付部側および遠心方向端部側にそれぞれ円弧面 20d, 20eを形成 し、さらに、リング体 20を羽根 3の先端部に形成した傾斜面 3c (前記ハブ 2の傾斜面 2bと同一傾斜)に取り付けるようにしてもよい。この場合、成形時における金型の抜き 方向を外周側とすることができる。
[0065] ちなみに、本実施の形態に力かる遠心送風機 Xにおける羽根 3の外径を D、リング
2 2 体 20の遠心方向幅を Hとし、空気吸込口 6の吸込側中心 Q力 斜め 45度前方 lmの 位置にマイク 12を設置して、変数 ki=HZDに対する最低比騒音 Ksの変化を調べ
2
たところ、図 9の結果が得られた。
[0066] 上記の結果によれば、 0. 05<ki<0. 225の範囲において良好な運転音特性が 得られていることが分かる。ところで、 0. l<kiく 0. 15の範囲とするのがより好ましい 。なお、 ki=HZD≤0. 05となると、効果が小さくなるし、 ki=H/D≥0. 225となる と、循環流の形成に悪影響を与えることとなって、羽根 3の後縁先端部における循環 流が弱くなり、空力性能の向上を阻害する。
[0067] また、リング体 20とベルマウス 5との距離を Lとし、変数 LZDに対する最低比騒音
2
Ksの変化を調べたところ、図 10の結果が得られた。上記の結果によれば、 LZD≥
2
0. 169の範囲において、良好な運転音特性が得られていることが分かる。
[0068] 図 11には、本実施の形態に力かる遠心送風機 Xを組み込んだ天井埋込式の空気 調和装置 Zが示されている。この場合、ケーシング 13内に形成された空気流 Wの通
2
風路 14に、熱交 と遠心送風機 Xとが配設され、モータ 4を固定するモータ固
2
定部 7は、ケーシング 13の天板 13aと一体とされている。空気調和装置 Zは吸込ダリ
2 ル 16、エアフィルタ 17、ドレンパン 18、及び空気吹出口 19を有する。このようにする と、遠心送風機 Xの有する有効な作用効果が発揮できるところから、空気調和装置 Z
2
としての性能向上およびコスト低減に大いに寄与する。また、空気吸込口 6の最適口
2
径を従来のものより大きくすることができ、エアフィルタ 17における圧力損失を小さく 抑えることができる。
[0069] 上記各実施の形態に力かる遠心送風機の場合、羽根 3の枚数が少ない (即ち、 5枚 〜 15枚)ものに適用される。
(第 3の実施の形態)
図 12ないし図 16には、本願発明の第 3の実施の形態に力かる遠心送風機 Xおよ
3 び空気調和装置 zが示されている。
3
[0070] この遠心送風機 Xは、図 12および図 13に示すように、軸心部にモータ 4の回転軸
3
4aが連結される円板形状のハブ 2と、該ハブ 2の外周部に円周方向に沿って所定間 隔をおいて立設された複数の羽根 3とからなる羽根車 1を備えており、該羽根車 1の 空気吸込側には、空気吸込口 6を有するベルマウス 5が配設されている。
[0071] この羽根車 1は、図 13に示すように、その前縁が回転方向前方に向かって傾斜し、 各羽根 3の外径側端部 3bが内径側端部 3aより羽根車 1の回転方向 Mの後側に位置 する後退翼タイプ (即ち、ターボファンタイプ)である。この場合、羽根車 1の全圧上昇 に占める静圧上昇の割合が大き 、ので、渦巻きスクロールが不要とすることもできる。 なお、本実施の形態にカゝかる遠心送風機 Xの場合、羽根 3の枚数は、第 1および第
3
2の実施の形態に力かる遠心送風機 X , Xにおける羽根枚数に比べて多く設定され
1 2
ている(例えば、 30枚〜 50枚)。
[0072] また、前記ハブ 2の軸心部には、前記モータ 4を収納するための凹部 2aが形成され ている。モータ固定部 7はモータ 4を固定している。軸受ボス 8はモータ 4の回転軸 4a を枢支している。
[0073] また、本実施の形態の羽根車 1には、第 2の実施の形態におけると同様に、遠心方 向に所定の幅 Hを有するリング体 20が付設されている。本実施の形態の場合、該リ ング体 20は、遠心方向に向力うに従ってハブ 2側に傾斜する形状とされている。
[0074] 前記ベルマウス 5の背面側 (換言すれば、外周側)には、流通空間 Sが形成されて おり、前記羽根車 1の吹出側から前記ベルマウス 5における空気吸込口 6の背面側を 通って再度前記羽根車 1に吸い込まれる循環流 f
2を容易且つ確実に形成し得るよう に構成されている。前記ベルマウス 5における空気吸込口 6の形状は、第 1の実施の 形態におけると同様に、ストレート形状としてもよぐクサビ形状あるいは、フレア形状 としてちよい。
[0075] 本実施の形態においては、前記ベルマウス 5における空気吸込口 6の内径を D、
0 前記羽根車 1における羽根 3の内径を D、該羽根 3の外径を Dとしたとき、
1 2
-0. 3< (D -D ) / (D -D ) < 0. 3となるように設定されている。なお、羽根 3の
0 1 2 1
枚数は 40枚とされている。
[0076] 上記のように構成した遠心送風機においては、次のような作用効果が得られる。
即ち、羽根車 1の吹出側からベルマウス 5における空気吸込口 6の背面側を通って 再度羽根車 1に吸い込まれる循環流 f
2が形成される。そのため、羽根 3を通る空気主 流 f が循環流 f によって羽根 3の先端側に引き寄せられ、羽根 3の出口部分における
1 2
風速分布が改善され、空力性能の向上と運転音の低騒音化を図ることができる。しか も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、コスト低減を図ること ができるとともに、量産性に優れたものとなる。
[0077] また、本実施の形態においては、前記ベルマウス 5における空気吸込口 6の内径を D、前記羽根車 1における羽根 3の内径を D、該羽根 3の外径を Dとしたとき、 0.
0 1 2
3<k= (D— D )Z(D— D )く 0· 3となるように設定されている。このようにすると、
0 1 2 1
図 14に示すように、最低比騒音 Ksを低く抑えることができ、より一層の空力性能の向 上と運転音の低騒音化とを図ることができる。なお、—0. 3≥k= (D -D ) / (D -
0 1 2
D )となると、羽根 3に 'BRWける前縁先端部が有効に作用しなくなり、空力性能の向
1
上を阻害する。また、 k= (D -D ) / (D -D )≥0. 3となると、羽根 3の前縁端部に
0 1 2 1
おいて発生する逆流 f が強くなるとともに、羽根 3の後縁先端部における循環流 fが
2 弱くなり、空力性能の向上が阻害される。 [0078] ちなみに、本実施の形態に力かる遠心送風機 Xにおける羽根 3の内径を D、羽根
3 1
3の外径を D、空気吸込口 6の内径を Dとし、空気吸込口 6の吸込側中心力 斜め 4
2 0
5度前方 lmの位置にマイクを設置して、 k= (D -D ) / (D— D )を変数とし、最低
0 1 2 1
比騒音 Ksの変化を調べたところ、図 14に示す結果が得られた。上記の結果によれ ば、—0. 3<k< 0. 3の範囲において良好な運転音特性が得られていることが分か る。
[0079] また、遠心送風機 Xにおける羽根 3の外径 Dとリング体 20の遠心方向幅 Hとの関
3 2
係については、第 2の実施の形態におけるのと同様である。遠心送風機 Xにおける
3 羽根 3の外径 Dとリング体 20とベルマウス 5との距離 Lとの関係については、図 15に
2
示す通りであり、 LZD≥0. 07の範囲において最低比騒音 Ksを低く抑えることがで
2
きる。 L/D < 0. 07においては、最低比騒音 Ksが急激に増大する。
2
[0080] ところで、羽根車 1における各羽根 3の出口側高さ Bが小さくなると、羽根車 1の出口 側における空気流の流線 f
1のゆらぎが大きくなり、ついには循環流 f
2が羽根 3間の流 路を閉塞する。すると、図 16の実線で示すように、空力性能が急降下し、図 16の点 線で示すヒステリシス特性が発生するという不具合が発生する。なお、この場合、羽 根枚数には関係しない。
[0081] そこで、本実施の形態においては、 BZD≥0. 113に設定している。このようにす
2
ると、羽根車 1の出口側における空気流の流線 f
1がゆらぐという不具合が解消され、 図 16の 2点鎖線で示すように、安定した性能が得られる。なお、 BZD < 0. 113とな
2
ると、羽根車 1の出口側における空気流の流線が大きくゆらぐこととなり、ついには循 環流 f が羽根 3間の流路を閉塞し、性能が急に低下する。
2
[0082] ちなみに、本実施の形態に力かる遠心送風機 Xにおける BZDに対する最大流量
3 2
係数 φ max (劣化なしの場合を基準値 = 1としている)の変化を調べたところ、図 17 に示す結果が得られた。ここで、 φ max = QmaxZ60 ( π D B) u , u = π D N, Q
2 2 2 2 max:全開風量 (m3Zmin)、 N :回転数 (rpm)である。図 17の結果から、 B/D≥0
2
. 113において、最大流量係数 φ maxが基準値 = 1を示すことが分かる。
[0083] 図 18には、本実施の形態に力かる遠心送風機 Xを組み込んだ天井埋込式の空気
3
調和装置 Zが示されている。この場合、ケーシング 13内に形成された空気流 Wの通 風路 14に、熱交 と遠心送風機 Xとが配設され、モータ 4を固定するモータ固
3
定部 7は、ケーシング 13の天板 13aと一体とされている。空気調和装置 Zは吸込ダリ
3 ル 16、エアフィルタ 17、ドレンパン 18、及び、空気吹出口 19を有する。このようにす ると、遠心送風機 Xの
3 有する有効な作用効果が発揮できるところから、空気調和装 置 Zとしての性能向上およびコスト低減に大いに寄与する。また、空気吸込口 6の最
3
適口径を従来のものより大きくすることができ、エアフィルタ 17における圧力損失を小 さく抑免ることができる。
[0084] ついで、第 3の実施の形態に力かる遠心送風機 Xの変形例について説明する。
3
(変形例 I)
図 19に示すように、羽根車 1における各羽根 3のチップ側端部を、リング体 20の傾 斜角と略同一の傾斜角で傾斜させるようにしてもよい。この場合においても、 D、 D、
0 1
D、 H、 L、 Bの関係については前述したと同様である。
2
[0085] (変形例 II)
図 20に示すように、羽根車 1における各羽根 3のチップ側端部を、リング体 20の傾 斜角と略同一の傾斜角で傾斜させるとともに、各羽根 3の入口側端部を、ハブ側に向 力うに従って羽根車 1の求心方向に近付くように傾斜させるようにしてもょ 、。この場 合においても、 D、 D、 D、 H、 L、 Bの関係については前述したと同様である。
0 1 2
[0086] (変形例 III)
図 21に示すように、羽根車 1における各羽根 3のチップ側端部を、リング体 20の傾 斜角と略同一の傾斜角で傾斜させるとともに、各羽根 3の入口側端部を、ハブ側に向 力うに従って羽根車 1の求心方向に近付くように傾斜させ且つ該入口側端部に、セレ ーシヨン 21を形成するようにしてもよい。このようにすると、羽根面における境界層の 形成が抑制されるところから、送風音が低減する。この場合においても、 D、 D、 D、
0 1 2
H、 L、 Bの関係については前述したと同様である。
[0087] (第 4の実施の形態)
図 22には、本願発明の第 4の実施の形態にカゝかる遠心送風機 Xが示されている。
4
この場合、羽根車 1を構成するハブ 2の外径 Dを、各羽根 3の外径 Dより小さく設定
3 2
している。このようにすると、各羽根 3におけるハブ側の外周部に開口 22が形成され ることとなり、後に述べるように斜流ディフューザ 23が設けられた場合(図 29参照)に は、羽根 3から吹き出される空気流の吹出抵抗が小さくなる。その他の構成および作 用効果は、第 3の実施の形態におけると同様なので、説明を省略する。
[0088] 本実施の形態においても、第 3の実施の形態におけると同様に、羽根車 1における 各羽根 3の出口側高さ Bが小さくなると、羽根車 1の出口側における空気流の流線 f
1 のゆらぎが大きくなり、ついには循環流 fが羽根 3の間の流路を閉塞し、図 16の実線
2
で示すように、空力性能が急に低下し、図 16の点線で示すヒステリシス特性が発生 するという不具合が発生する。この場合、羽根枚数には関係しない。
[0089] そこで、本実施の形態においては、 BZD≥0. 08に設定している。 BZDの上限
2 2 を第 3の実施の形態の場合より小さく設定した理由は、各羽根 3におけるハブ側の外 周部に開口 22が形成されることによる。このようにすると、羽根車 1の出口側における 空気流の流線 f がゆらぐという不具合が解消され、図 15に 2点鎖線で示すように、安
1
定した性能が得られる。なお、 BZD < 0. 08となると、羽根車 1の出口側における空
2
気流の流線が大きくゆらぐこととなり、ついには循環流 f が羽根 3, 3 · ·間の流路を閉
2
塞し、性能が急降下する。
[0090] ちなみに、本実施の形態に力かる遠心送風機 Xにおける BZDに対する最大流量
4 2
係数 φ max (劣化なしの場合を基準値 = 1としている)の変化を調べたところ、図 23 の結果が得られた。ここで、 φ max = QmaxZ60 ( π D B) u、 u = π D N、 Qmax:
2 2 2 2 全開風量 (m3Zmin)、 N :回転数 (rpm)である。図 23の結果から、 B/D≥0. 08に
2 おいて、最大流量係数 φ maxが基準値 = 1を示すことが分かる。
[0091] ついで、第 4の実施の形態に力かる遠心送風機 Xの変形例について説明する。
4
(変形例 I)
図 24に示すように、羽根車 1における各羽根 3のチップ側端部を、リング体 20の傾 斜角と略同一の傾斜角で傾斜させるようにしてもよい。この場合においても、 D、 D、
0 1
D、 H、 L、 Bの関係については前述したと同様である。
2
[0092] (変形例 II)
図 25に示すように、羽根車 1における各羽根 3のチップ側端部を、リング体 20の傾 斜角と略同一の傾斜角で傾斜させるとともに、各羽根 3の入口側端部を、ハブ側に向 力うに従って羽根車 1の求心方向に近付くように傾斜させるようにしてもょ 、。この場 合においても、 D、 D、 D、 H、 L、 Bの関係については前述したと同様である。
0 1 2
[0093] (変形例 III)
図 26に示すように、羽根車 1における各羽根 3のチップ側端部を、リング体 20の傾 斜角と略同一の傾斜角で傾斜させるとともに、各羽根 3の入口側端部を、ハブ側に向 力うに従って羽根車 1の求心方向に近付くように傾斜させ且つ該入口側端部に、セレ ーシヨン 21を形成するようにしてもよい。このようにすると、羽根面における境界層の 形成が抑制されるところから、送風音が低減する。この場合においても、 D、 D、 D、
0 1 2
H、 L、 Bの関係については前述したと同様である。
[0094] (変形例 IV)
図 27に示すように、羽根車 1を、ハブ 2における外周側(即ち、羽根 3が設けられる 部分)が傾斜している斜流ファンタイプとしてもよい。この場合においても、 D、 D、 D
0 1 2
、 H、 L、 Bの関係については前述したと同様である。
[0095] (変形例 V)
図 28に示すように、羽根車 1を、ハブ 2における外周側(即ち、羽根 3が設けられる 部分)が傾斜している斜流ファンタイプとし且つ各羽根 3の入口側端部を、ハブ側に 向力うに従って羽根車 1の求心方向に近付くように傾斜させるようにしてもょ 、。この 場合においても、 D、 D、 D、 H、 L、 Bの関係については前述したと同様である。
0 1 2
[0096] なお、本実施の形態に力かる遠心送風機 Xも、空気調和装置に組み込むことがで
4
さることは勿!^である。
(第 5の実施の形態)
図 29には、本願発明の第 5の実施の形態にカゝかる遠心送風機 Xが示されている。
5
この場合、羽根車 1を構成するハブ 2の外径 Dを、各羽根 3の外径 Dより小さく設定
3 2
するとともに、前記羽根車 1の吹出側には、該羽根車 1からの吹出空気流を斜め後方 側から、さらに遠心方向に案内する斜流遠心ディフューザ 23が設けられている。この ようにすると、各羽根 3におけるハブ側の外周部に開口 22が形成されることとなり、羽 根 3から吹き出される空気流の吹出抵抗力 S小さくなるとともに、羽根車 1から吹き出さ れる空気流における動圧の静圧回復が効率良く行えることとなり、性能向上 (即ち、 高効率、低騒音)に大いに寄与する。その他の構成および作用効果は、第 3の実施 の形態におけると同様なので、説明を省略する。
[0097] ついで、第 5の実施の形態に力かる遠心送風機 Xの変形例について説明する。
5
(変形例 I)
図 30に示すように、羽根車 1における各羽根 3のチップ側端部を、リング体 20の傾 斜角と略同一の傾斜角で傾斜させるようにしてもよい。この場合においても、 D
0、 D 1、
D、 H、 L、 Bの関係については前述したと同様である。
2
[0098] (変形例 II)
図 31に示すように、羽根車 1における各羽根 3のチップ側端部を、リング体 20の傾 斜角と略同一の傾斜角で傾斜させるとともに、各羽根 3の入口側端部を、ハブ側に向 力うに従って羽根車 1の求心方向に近付くように傾斜させるようにしてもょ 、。この場 合においても、 D、 D、 D、 H、 L、 Bの関係については前述したと同様である。
0 1 2
[0099] 上記第 3〜第 5の実施の形態に力かる遠心送風機の場合、羽根 3, 3 · ·の枚数が多 い(即ち、 30枚〜 50枚)ものに適用される。
なお、本実施の形態に力かる遠心送風機 X
4も、空気調和装置に組み込むことがで きることは勿論である。また、渦巻きケーシングの場合も同様な効果が得られることは 勿論である。
[0100] (変形例 III)
図 32の遠心送風機 Xは、上述した第 3の実施の形態に係る遠心送風機 Xの羽根
5 3 車およびベルマウスの構造に対して、図 29〜図 31のものと同様の斜流遠心ディフユ 一ザ 23を設けたことを特徴とするものである。
[0101] このようにすると、図示のように羽根車 1の各羽根 3の出口部における風速分布は、 上述したリング体 20のガイド作用により吸込口側で大きくなる一方、ハブ 2側で相対 的に小さくなる。しかし、その後、ハブ 2側に偏位する斜流方向のディフューザ通路を 通ることによって、ハブ 2側の吹出空気が斜流方向に増速された後、最終的に遠心 方向の吹出口力 吹き出されることになり、遠心方向の吹出口力 吹き出される吹出 流の吹出速度は全体に亘つて均一なものとなる。したがって、送風効率が向上すると ともに、静音性能が有効に向上する。 [0102] この作用を確認するために、例えば前述の図 19に示す第 3の実施の形態の変形 例 Iに係る遠心送風機 X (図 33)および従来のシュラウド付き遠心送風機に斜流遠心
3
ディフューザ 23を設けたもの(図 34)各々の風速分布と対比して見ると、次のようにな る。
[0103] すなわち、先ず図 34の従来のシュラウド付き遠心送風機では、ベルマウス 5の空気 吸込口 6から吸込まれた空気流がハブ 2側に偏位して流れることにより、各羽根 3の 出口部における風速分布力 空気吸込口 6で小さぐハブ 2側で大きくなり、ハブ 2側 に大きく偏位したものとなる。
[0104] しかも、同ハブ 2側に偏位した流れが斜流遠心ディフューザ 23の斜流方向の通路 を通ることによって一層大きく後方に偏位し、そのまま遠心方向に吹き出されるので、 最終的に吹き出される空気流の風速分布は大きく後方に偏位したものとなる。
[0105] これに対して、図 33に示す第 3の実施の形態の変形例 Iに係る遠心送風機 Xの場
3 合には、すでに述べたようにシュラウドレスで、し力も羽根 3の軸方向先端部外周にリ ング体 20が設けられており、同リング体 20によって形成される循環流 f によって主流
2
f が羽根 3の先端側に引き寄せられるので、その分、羽根 3の出口部分における風速
1
分布が相当に改善される。し力 逆に、リング体 20部分の吹出空気が大きぐ吹出口 全体として見ると、必ずしも均一にはならない。
[0106] これに対して、本実施の形態の変形例 ΠΙに係る半径方向に通路形状が変化する 半径方向移行形の斜流遠心ディフューザ 23を有する遠心送風機 Xの場合には、図
5
32のように最終的に遠心方向の吹出口力 吹き出される空気流の風速分布が全体 に亘つて均一になることから、その騒音低減効果は、図 35に示すように、図 34に示 す従来のシュラウド付き遠心送風機の場合に比べて遥かに大きい。
[0107] (第 6の実施の形態)
図 36および図 37には、本願発明の第 6の実施の形態に力かる遠心送風機の羽根 車が示されている。
[0108] この遠心送風機の羽根車 1は、例えば図 36および図 37に示すように、軸心部にモ ータ 4の回転軸 4aが連結される円板形状のハブ 2と、該ハブ 2の外周部に円周方向 に沿って所定間隔をおいて立設された複数の羽根 3とから構成されている。 [0109] この羽根車 1の各羽根 3は、その前縁である内径側端部 3aが回転方向前方に向か つて傾斜し、後縁である外径側端部 3bが内径側端部 3aより羽根車 1の回転方向 M の後側に位置しており、キャンバー線が回転方向に凸の後退翼タイプ (いわゆる、タ ーボファンタイプ)とされて!/、る。
[0110] そして、上記羽根車 1の羽根 3の枚数は、例えば 20枚〜 50枚に設定され、そのべ ルマウス側端部の外周には遠心方向に所定の幅 Hを有するリング体 20が付設され ている。本実施の形態の場合、該リング体 20および羽根 3のベルマウス側端部は、 図 24のものと同様に、それぞれ遠心方向に向力 に従ってハブ 2側に傾斜する形状 とされている。その他の構成は、上述した各実施の形態のものと基本的に同様である このような羽根車 1を、シュラウドを設けることなぐ上記各実施の形態のものと同様 のベルマウス 5と組合せて構成した本実施の形態の遠心送風機にぉ 、ても、上記各 実施の形態のものと同様の次のような有益な作用効果が得られる。
[0111] すなわち、上記リング体 20の存在により、羽根車 1の吹出側からベルマウス 5にお ける空気吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f が形成さ
2 れるので、羽根 3を通る空気主流 fが循環流 f によって羽根 3の先端側に効果的に引
1 2
き寄せられることになり、羽根 3の出口部分における風速分布が均等に改善され、空 力性能の向上と運転音の低騒音化を図ることができる。
[0112] し力も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、構造の簡素化 、コスト低減を図ることができるとともに、量産性に優れたものとなる。
(第 7の実施の形態)
図 38および図 39には、本願発明の第 7の実施の形態に力かる遠心送風機の羽根 車が示されている。この遠心送風機の羽根車 1は、例えば図 38および図 39に示すよ うに、軸心部にモータ 4の回転軸 4aが連結される円板形状のハブ 2と、該ハブ 2の外 周部に円周方向に所定間隔をおいて立設された複数の羽根 3とから構成されている
[0113] この羽根車 1の各羽根 3は、その前縁である内径側端部 3aが回転方向前方に向か つて傾斜し、後縁である外径側端部 3bが内径側端部 3aより羽根車 1の回転方向 M の後側に位置し、キャンバー線が回転方向に凹の後退翼タイプ (いわゆる、ターボフ アンタイプ)とされている。
[0114] そして、上記羽根車 1の羽根 3の枚数は、例えば 20枚〜 50枚に設定され、そのべ ルマウス側端部の外周には遠心方向に所定の幅 Hを有するリング体 20が付設され ている。本実施の形態の場合、該リング体 20および羽根 3のベルマウス側端部は、 図 24のものと同様に、それぞれ遠心方向に向力 に従ってハブ 2側に傾斜する形状 とされている。その他の構成は、上述した各実施の形態のものと基本的に同様である このような羽根車 1を、シュラウドを設けることなぐ上記各実施の形態のものと同様 のベルマウス 5と組合せて構成した本実施の形態の遠心送風機にぉ 、ても、上記各 実施の形態のものと同様の次のような有益な作用効果が得られる。
[0115] すなわち、上記リング体 20の存在により、羽根車 1の吹出側からベルマウス 5にお ける空気吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f が形成さ
2 れるので、羽根 3を通る空気主流 fが循環流 f によって羽根 3の先端側に効果的に引
1 2
き寄せられることになり、羽根 3の出口部分における風速分布が均等に改善され、空 力性能の向上と運転音の低騒音化を図ることができる。
[0116] し力も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、構造の簡素化 、コスト低減を図ることができるとともに、量産性に優れたものとなる。
(第 8の実施の形態)
図 40および図 41には、本願発明の第 8の実施の形態に力かる遠心送風機の羽根 車が示されている。この遠心送風機の羽根車 1は、例えば図 40および図 41に示すよ うに、軸心部にモータ 4の回転軸 4aが連結される円板形状のハブ 2と、該ハブ 2の外 周部に円周方向に沿って所定間隔をおいて立設された複数の羽根 3とから構成され ている。
[0117] この羽根車 1の各羽根 3は、その前縁である内径側端部 3aが回転方向前方に向か つて傾斜し、後縁である外径側端部 3bが内径側端部 3aより羽根車 1の回転方向 M の後側に位置し、キャンバー線が直線状の後退翼タイプ (いわゆる、ターボファンタイ プ)とされている。
[0118] そして、上記羽根車 1の羽根 3の枚数は、例えば 20枚〜 50枚の多数枚に設定され 、そのベルマウス側端部の外周には遠心方向に所定の幅 Hを有するリング体 20が付 設されている。本実施の形態の場合、該リング体 20および羽根 3のベルマウス側端 部は、図 24のものと同様に、それぞれ遠心方向に向力うに従ってハブ 2側に傾斜す る形状とされている。その他の構成は、上述した各実施の形態のものと基本的に同様 である
このような羽根車 1を、シュラウドを設けることなぐ上記各実施の形態のものと同様 のベルマウス 5と組合せて構成した本実施の形態の遠心送風機にぉ 、ても、上記各 実施の形態のものと同様の次のような有益な作用効果が得られる。
[0119] すなわち、上記リング体 20の存在により、羽根車 1の吹出側からベルマウス 5にお ける空気吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f が形成さ
2 れるので、羽根 3を通る空気主流 fが循環流 f によって羽根 3の先端側に効果的に引
1 2
き寄せられることになり、羽根 3の出口部分における風速分布が均等に改善され、空 力性能の向上と運転音の低騒音化を図ることができる。し力も、シュラウドが不要なの で、羽根車 1の一体成形が可能となり、構造の簡素化、コスト低減を図ることができる とともに、量産性に優れたものとなる。
[0120] 今、上記のような各羽根 3の外径側端部 3bが内径側端部 3aよりも羽根車 1の回転 方向 Mの後側に位置し、かつキャンバー線が直線状の後退翼を採用した羽根車を 採用して構成した遠心送風機について、その羽根枚数をパラメータとして、最高静圧 効率比 (基準値 1. 0)と最低比騒音レベル比 (基準値レベル ±0)を測定した結果を 図 43のグラフに示す。
[0121] 測定に供した遠心送風機は、上記図 40および図 41に示した羽根車構成のもので 、各羽根 3の入口角 0 、出口角 0 は、図 42に示すように 0 = 25° 、 0 = 50° 、
1 2 1 2 そして、羽根 3の入口高さ B、出口高さ B、ベルマウス 25の空気吸込口 6の内径 D、
1 2 0 羽根 3の内径 D、外径 Dは、それぞれ図 44に示すように B = 35mm、 B = 30mm、
1 2 1 2
D = 130mm, D = 110mm, D = 160mmのものである。
0 1 2
[0122] 図 43の測定結果力も判断すると、羽根 3の枚数が 20枚よりも少ない場合には、上 述の循環流 f が図 44の; T で示すように羽根 3の内側に大きく入り込むために性能
2 2
が劣化する。一方、羽根枚数が 50枚を超えると、羽根 3の前縁間の間隔 Pが狭くなり すぎるために性能が劣化する。 [0123] これに対し、羽根 3の枚数が 20枚から 50枚の場合には、上述のような問題が生じ にくぐ静圧効率比が高い一方、比騒音レベル比を可及的に低く抑えることができる 。つまり、送風効率をアップさせながら、静音性能を有効に向上させることができるこ とがわかる。
[0124] これと同様の羽根枚数による性能向上は、上記第 6、第 7および後に述べる第 12の 各実施の形態の構成の場合にも略同様に期待することができる。
(第 9の実施の形態)
図 45および図 46には、本願発明の第 9の実施の形態に力かる遠心送風機が示さ れている。この遠心送風機の羽根車 1は、例えば図 45および図 46に示すように、軸 心部にモータ 4の回転軸 4aが連結される円板形状のハブ 2と、該ハブ 2の外周部に 円周方向にそって所定間隔をおいて立設された複数の羽根 3とから構成されている
[0125] この羽根車 1の各羽根 3は、その前縁である内径側端部 3aが回転方向 Mの前方お よび後方の何れの方向に向かっても傾斜せず、キャンバー線が半径方向に直線状 に延びるラジアル翼タイプ(いわゆる、ラジアルプレートファンタイプ)とされている。
[0126] そして、上記羽根車 1の羽根 3の枚数は、例えば 30枚〜 72枚の多数枚に設定され 、そのベルマウス側端部の外周には遠心方向に所定の幅 Hを有するリング体 20が付 設されている。本実施の形態の場合、該リング体 20および羽根 3のベルマウス側端 部は、前述の図 44のものと同様に、それぞれ遠心方向に向力うに従ってハブ 2側に 傾斜する形状とされている。その他の構成は、上述した各実施の形態のものと基本 的に同様である
このような羽根車 1を、シュラウドを設けることなく上記各実施の形態のものと同様の ベルマウス 5と組合せて構成した本実施の形態の遠心送風機にぉ 、ても、上記各実 施の形態のものと同様の次のような有益な作用効果が得られる。
[0127] すなわち、上記リング体 20の存在により、羽根車 1の吹出側からベルマウス 5にお ける空気吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f が形成さ
2 れるので、羽根 3を通る空気主流 fが循環流 f によって羽根 3の先端側に有効に引き
1 2
寄せられることになり、羽根 3の出口部分における風速分布が均等に改善され、空力 性能の向上と運転音の低騒音化とを図ることができる。
[0128] し力も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、構造の簡素化 、量産化の向上により、大幅なコスト低減を図ることができるようになる。
(第 10の実施の形態)
図 47および図 48には、本願発明の第 10の実施の形態に力かる遠心送風機の羽 根車が示されている。この遠心送風機の羽根車 1は、例えば図 47および図 48に示 すように、軸心部にモータ 4の回転軸 4aが連結される円板形状のハブ 2と、該ハブ 2 の外周部に円周方向にそって所定間隔をおいて立設された複数の羽根 3とから構成 されている。
[0129] この羽根車 1の各羽根 3は、その前縁である内径側端部 3aが回転方向 Mの前方お よび後方の何れの方向にも傾斜せず、かつキャンバー線が回転方向 Mの後方に少 し傾斜したラジアル翼タイプ (上記ラジアルプレートファンの第 1の変形タイプ)とされ ている。
[0130] そして、上記羽根車 1の羽根 3の枚数は、例えば 30枚〜 72枚の多数枚に設定され 、そのベルマウス側端部の外周には遠心方向に所定の幅 Hを有するリング体 20が付 設されている。本実施の形態の場合、該リング体 20および羽根 3のベルマウス側端 部は、図 44の場合同様に、それぞれ遠心方向に向かうに従ってハブ 2側に傾斜する 形状とされている。その他の構成は、上述した各実施の形態のものと基本的に同様 である
このような羽根車 1を、シュラウドを設けることなぐ上記各実施の形態のものと同様 のベルマウス 5と組合せて構成した本実施の形態の遠心送風機にぉ 、ても、上記各 実施の形態のものと同様の次のような有益な作用効果が得られる。
[0131] すなわち、上記リング体 20の存在により、羽根車 1の吹出側からベルマウス 5にお ける空気吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f が形成さ
2 れるので、羽根 3を通る空気主流 f が循環流 f によって羽根 3の先端側に効果的に引
1 2
き寄せられることになり、羽根 3の出口部分における風速分布が均等に改善され、空 力性能の向上と運転音の低騒音化を図ることができる。し力も、シュラウドが不要なの で、羽根車 1の一体成形が可能となり、構造の簡素化、量産性の向上により、大幅な コスト低減を図ることができるとともに、量産性に優れたものとなる。
[0132] 今、本実施の形態の遠心送風機について、その羽根枚数をパラメータとして、最高 静圧効率比 (基準値 1. 0)と最低比騒音レベル比 (基準値レベル ±0)を測定した結 果を、図 50のグラフに示す。
[0133] 測定に供した遠心送風機は、上記図 47および図 48に示した羽根車構成のもので 、各羽根 3の入口角 0 、出口角 0 は、図 49に示すように 0 = 90° 、 0 = 75° 、
1 2 1 2 そして、羽根 3, 3 ' ' 'の入ロ高さ 、出口高さ B、ベルマウス 5の空気吸込口 6の内
1 2
径 D、羽根車 1の羽根 3の内径 D、外径 Dは、 B = 25mm、 B = 20mm、 D = 130
0 1 2 1 2 0 mm、 D = 90mm、 D = 150mmのものである。
1 2
[0134] 図 50の測定結果力も判断すると、本構成の場合、羽根 3の枚数が 30枚よりも少な い場合には、上述の循環流 fが図 44の f ' で示すように羽根 3の内側に大きく入り込
2 2
むために吸込性能が劣化する。一方、羽根枚数が 72枚を超えると、羽根 3の前縁部 3a, 3a間の間隔 Pが狭くなりすぎるために性能が劣化する。
[0135] これに対し、羽根 3の枚数が 30枚から 72枚の場合には、上述のような問題が生じ にくぐ静圧効率比が高い一方、比騒音レベル比を十分に低く抑えることができる。 つまり、送風効率をアップさせながら、静音性能を有効に向上させることができること がわカゝる。
[0136] これと同様の羽根枚数による性能向上は、上記第 9および次に述べる第 11の各実 施の形態の構成の場合にも略同様に期待することができる。
(第 11の実施の形態)
図 51および図 52には、本願発明の第 11の実施の形態に力かる遠心送風機の羽 根車が示されている。この遠心送風機の羽根車 1は、例えば図 51および図 52に示 すように、軸心部にモータ 4の回転軸 4aが連結される円板形状のハブ 2と、該ハブ 2 の外周部に円周方向にそって所定間隔をおいて立設された複数の羽根 3とから構成 されている。
[0137] この羽根車 1の各羽根 3は、その前縁である内径側端部 3aが回転方向 Mの前方お よび後方の何れの方向にも傾斜せず、キャンバー線が回転方向 Mの前方に少し傾 斜したラジアル翼タイプ (上記ラジアルプレートファンの第 2の変形タイプ)とされて ヽ る。
[0138] そして、上記羽根車 1の羽根 3の枚数は、上記同様に例えば 30枚〜 72枚の多数 枚に設定され、そのベルマウス側端部の外周には遠心方向に所定の幅 Hを有するリ ング体 20が付設されている。本実施の形態の場合、該リング体 20および羽根 3のべ ルマウス側端部は、図 44のものと同様に、それぞれ遠心方向に向かうに従ってハブ 2側に傾斜する形状とされている。その他の構成は、上述した各実施の形態のものと 基本的に同様である
このような羽根車 1を、シュラウドを設けることなぐ上記各実施の形態のものと同様 のベルマウス 5と組合せて構成した遠心送風機にぉ 、ても、上記各実施の形態のも のと同様の次のような有益な作用効果が得られる。
[0139] すなわち、上記リング体 20の存在により、羽根車 1の吹出側からベルマウス 5にお ける空気吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f が形成さ
2 れるので、羽根 3を通る空気主流 f が循環流 f によって羽根 3の先端側に効果的に引
1 2
き寄せられることになり、羽根 3の出口部分における風速分布が均等に改善され、空 力性能の向上と運転音の低騒音化を図ることができる。
[0140] し力も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、構造の簡素化 、量産性の向上により、大幅なコスト低減を図ることができるようになる。
(第 12の実施の形態)
図 53および図 54には、本願発明の第 12の実施の形態に力かる遠心送風機の羽 根車が示されている。
[0141] この遠心送風機の羽根車 1は、例えば図 53および図 54に示すように、軸心部にモ ータ 4の回転軸 4aが連結される円板形状のハブ 2と、該ハブ 2の外周部に円周方向 に沿 、所定間隔をお 、て立設された複数の羽根 3とから構成されて 、る。
[0142] この羽根車 1の各羽根 3は、そのキャンバー線が回転方向に凹の曲線となったラジ アル翼タイプ(出口角 0 が約 90° のラジアルチップファンタイプ)とされている。
2
そして、上記羽根車 1の羽根 3の枚数は、上記実施の形態 6, 7, 8のものと同様に 例えば 20枚〜 50枚に設定され、そのベルマウス側端部の外周には遠心方向に所定 の幅 Hを有するリング体 20が付設されている。本実施の形態の場合、該リング体 20 および羽根 3のベルマウス側端部は、上述の図 44のものと同様に、それぞれ遠心方 向に向かうに従ってハブ 2側に傾斜する形状とされている。その他の構成は、上述し た各実施の形態のものと基本的に同様である
このような羽根車 1を、シュラウドを設けることなぐ上記各実施の形態のものと同様 のベルマウス 5と組合せて構成した本実施の形態の遠心送風機にぉ 、ても、上記各 実施の形態のものと同様の次のような有益な作用効果が得られる。
[0143] すなわち、上記リング体 20の存在により、羽根車 1の吹出側からベルマウス 5にお ける空気吸込口 6の背面側を通って再度羽根車 1に吸 、込まれる循環流 f が形成さ
2 れるので、羽根 3を通る空気主流 f が循環流 f によって羽根 3の先端側に有効に引き
1 2
寄せられることになり、羽根 3の出口部分における風速分布が均等に改善され、空力 性能の向上と運転音の低騒音化とを図ることができる。
[0144] し力も、シュラウドが不要なので、羽根車 1の一体成形が可能となり、構造の簡素化 、量産性の向上により、大幅なコスト低減を図ることができる。
(第 13の実施の形態)
次に図 55ないし図 58には、本願発明の第 13の実施の形態に力かる遠心送風機 の要部の構成が示されて ヽる。
[0145] この遠心送風機の羽根車 1は、例えば図 55ないし図 58に示すように、上記各実施 の形態のものと同様に軸心部にモータの回転軸が連結される円板形状のハブ 2と、 該ハブ 2の外周部に円周方向に沿い所定間隔をおいて立設された複数の羽根 3とか ら構成されている。
[0146] この羽根車 1の各羽根 3は、その全体が回転方向 Mの前方に所定角傾斜した前傾 翼タイプのもの 3A (図 57)、又はその逆の後傾翼タイプのもの 3B (図 58)とされてい る。
[0147] そして、それら何れのタイプのものにあっても、上記羽根車 1の羽根 3の枚数は、例 えば 30枚〜 72枚の多数枚に設定され、そのベルマウス側端部の外周には遠心方向 に所定の幅 Hを有するリング体 20が付設されている。本実施の形態の場合、該リング 体 20および羽根 3のベルマウス側端部は、図 55から明らかなように、それぞれ遠心 方向に向かうに従ってハブ 2側に傾斜する形状とされている。その他の構成は、上述 した各実施の形態のものと同様である
このような羽根車 1を、シュラウドを設けることなぐ上記各実施の形態のものと同様 のベルマウス 5と組合せて構成した本実施の形態の遠心送風機にぉ 、ても、上記各 実施の形態のものと同様の次のような作用効果が得られる。
[0148] すなわち、リング体 20により、羽根車 1の吹出側力もベルマウス 5における空気吸込 口 6の背面側を通って再度羽根車 1に吸い込まれる循環流 f が形成されるので、羽
2
根 3を通る空気主流 f が循環流 f によって羽根 3の先端側に引き寄せられることになり
1 2
、羽根 3の出口部分における風速分布が改善され、空力性能の向上と運転音の低騒 音化を図ることができる。し力も、シュラウドが不要なので、羽根車 1の一体成形が可 能となり、構造の簡素化、コスト低減を図ることができるとともに、量産性に優れたもの となる。
[0149] このような構成の場合、さらにベルマウス 5の空気吸込口 6の内径 Dとの関係で、つ
0
ぎのような特有の作用効果を生じる。
(A) 羽根 3が前傾羽根 3Aの場合
この場合、例えば図 57に示されるように、羽根 3 (3A)がリング体 20によって形成さ れる循環流 f f
2を吸い込む方向に作用し、強い循環流 2が形成される。
[0150] また、図 55中に符号 6Aで示すように、ベルマウス 5の空気吸込口 6の内径 Dを大
0 きくした場合でも、上記強い循環流 f が羽根 3 (3A)の内側まで深く入り込まず、リング
2
体 20付近でスムーズに循環する。その結果、良好な送風性能を実現することができ る。
[0151] (B) 羽根 3が後傾羽根 3Bの場合
この場合、例えば図 58に示されるように、羽根 3 (3B)がリング体 20によって形成さ れる循環流 fを吸い込みにくい方向に作用する。また、図 55中に符号 6Bで示すよう
2
に、ベルマウス 5の空気吸込口 6の内径 Dを小さくした場合でも、上記循環流 fが羽
0 2 根 3 (3B)の内側まで深く入り込まず、リング体 20付近でスムーズに循環する。その結 果、やはり良好な送風性能を実現することができる。
[0152] (第 14の実施の形態)
次に図 59および図 60には、本願発明の第 14の実施の形態に力かる遠心送風機 の要部の構成が示されて ヽる。
[0153] この遠心送風機の羽根車 1は、例えば図 59および図 60に示すように、上記各実施 の形態のものと同様に軸心部にモータの回転軸が連結される円板形状のハブ 2と、 該ハブ 2の外周部に円周方向に沿い所定間隔をおいて立設された複数の羽根 3とか ら構成されている。
[0154] この羽根車 1の各羽根 3は、その翼端 3Cのみが回転方向 Mの前方に所定角傾斜 した前傾翼タイプのもの 3 A、又はその逆の後傾翼タイプのもの 3Bとされている(折り 曲げライン L)。
[0155] そして、それら何れのタイプのものにあっても、上記羽根車 1の羽根 3の枚数は、例 えば 30枚〜 72枚の多数枚に設定され、そのベルマウス側端部の外周には遠心方向 に所定の幅 Hを有するリング体 20が付設されている。本実施の形態の場合、該リング 体 20および羽根 3のベルマウス側端部は、図 59から明らかなように、それぞれ遠心 方向に向かうに従ってハブ 2側に傾斜する形状とされている。その他の構成は、基本 的に上述した各実施の形態のものと同様である
このような羽根車 1を、図 59のように上記各実施の形態のものと同様のベルマウス 5 と組合せて構成した遠心送風機にぉ 、ても、上記各実施の形態のものと同様の次の ような作用効果が得られる。
[0156] すなわち、リング体 20により、羽根車 1の吹出側力もベルマウス 5における空気吸込 口 6の背面側を通って再度羽根車 1に吸い込まれる循環流 f が形成されるので、羽
2
根 3を通る空気主流 f が循環流 f によって羽根 3の先端側に引き寄せられることになり
1 2
、羽根 3の出口部分における風速分布が改善され、空力性能の向上と
運転音の低騒音化を図ることができる。し力も、シュラウドが不要なので、羽根車 1の 一体成形が可能となり、構造の簡素化とコストの低減を図ることができるとともに、量 産性に優れたものとなる。
[0157] このような構成の場合、さらにベルマウス 5の空気吸込口 6の内径 Dとの関係で、つ
0
ぎのような特有の作用効果を生じる。
(A) 羽根 3の翼端 3Cが回転方向前方に傾斜した前傾羽根 3Aの場合 この場合、例えば図 60に示されるように、羽根 3 (3A)がリング体 20によって形成さ れる循環流 f
2を吸い込む方向に作用し、比較的に強い循環流 f
2が形成される。
[0158] また、図 59中に符号 6Aで示すように、ベルマウス 5の空気吸込口 6の内径 Dを大
0 きくした場合でも、上記比較的強い循環流 f が羽根 3 (3A)の内側まで深く入り込まず
2
、リング体 20付近でスムーズに循環する。その結果、良好な送風性能を実現すること ができる。
[0159] (B) 羽根 3翼端 3Cが回転方向後方に傾斜した後傾羽根 3Bの場合
この場合、例えば図 60に示されるように、羽根 3 (3B)がリング体 20によって形成さ れる循環流 f
2を吸い込みにくい方向に作用する。
[0160] また、図 59中に符号 6Bで示すように、ベルマウス 5の空気吸込口 6の内径 Dを小さ
0 くした場合でも、上記強い循環流 fが羽根 3 (3B)の内側まで深く入り込まず、リング
2
体 20付近でスムーズに循環する。その結果、やはり良好な送風性能を実現すること ができる。

Claims

請求の範囲
[1] 軸心部にモータ (4)の回転軸 (4a)が連結されるハブ(2)と、該ハブ(2)の外周部に 円周方向に沿い所定間隔をおいて立設され、その前縁 (3a)が回転方向前方に向つ て傾斜した複数の羽根 (3)とからなる羽根車 (1)を備え、該羽根車 (1)の空気吸込側 に、空気吸込口(6)を有するベルマウス(5)を配設してなる遠心送風機であって、前 記羽根車(1)の吹出側力 前記ベルマウス(5)における空気吸込口(6)の背面側を 通って再度前記羽根車(1)に吸い込まれる循環流 (f )
2を形成し得るように構成したこ とを特徴とする遠心送風機。
[2] 軸心部にモータ (4)の回転軸 (4a)が連結されるハブ(2)と、該ハブ(2)の外周部に 円周方向に沿い所定間隔をおいて立設され、その前縁 (3a)が回転方向前方および 回転方向後方の何れの方向に向力つても傾斜して 、な 、複数の羽根(3)とからなる 羽根車(1)を備え、該羽根車(1)の空気吸込側に、空気吸込口(6)を有するベルマ ウス(5)を配設してなる遠心送風機であって、前記羽根車(1)の吹出側から前記べ ルマウス(5)における空気吸込口(6)の背面側を通って再度前記羽根車(1)に吸い 込まれる循環流 (f )を形成し得るように構成したことを特徴とする遠心送風機。
2
[3] 前記羽根車(1)における羽根(3)の全体が、回転方向に沿って傾斜していることを 特徴とする請求項 2記載の遠心送風機。
[4] 前記羽根車(1)における羽根(3)の全体が、回転方向とは反対側に傾斜しているこ とを特徴とする請求項 2記載の遠心送風機。
[5] 前記羽根車(1)における羽根(3)の翼端が、回転方向に沿って傾斜していることを 特徴とする請求項 1および 2のいずれか一項記載の遠心送風機。
[6] 前記羽根車(1)における羽根(3)の翼端が、回転方向とは反対側に傾斜しているこ とを特徴とする請求項 1および 2のいずれか一項記載の遠心送風機。
[7] 前記ベルマウス(5)における空気吸込口(6)の内径を D、前記羽根車(1)における
0
羽根(3)の内径を D、該羽根(3)の外径を Dとしたとき、
1 2
0< (D -D ) / (D -D ) < 0. 6となるように設定したことを特徴とする請求項 1乃至
0 1 2 1
6の 、ずれか一項記載の遠心送風機。
[8] 前記ベルマウス(5)における空気吸込口(6)の内径を D、前記羽根車(1)における 羽根(3)の内径を D、該羽根(3)の外径を Dとしたとき、
1 2
-0. 3< (D -D ) / (D -D ) < 0. 3となるように設定したことを特徴とする請求項
0 1 2 1
1乃至 6のいずれか一項記載の遠心送風機。
[9] 前記羽根車(1)における羽根(3)の軸方向先端部には、遠心方向に所定の幅を有 するリング体(9) , (20)を付設したことを特徴とする請求項 1乃至 8のいずれか一項 記載の遠心送風機。
[10] 前記リング体(20)の遠心方向幅を H、前記羽根車(1)における羽根(3)の外径を Dとしたとき、 0. 05<ki=H/D < 0. 225となるように設定したことを特徴とする請
2 2
求項 9記載の遠心送風機。
[11] 前記羽根車(1)の吹出側には、該羽根車(1)からの吹出空気流を斜め後方側に案 内する斜流ディフューザ(23)を設けたことを特徴とする請求項 1乃至 10のいずれか 一項記載の遠心送風機。
[12] 前記羽根車 (1)の吹出側には、該羽根車 (1)からの吹出空気流を斜め後方側から 遠心方向に案内する斜流および遠心ディフューザ (23)を設けたことを特徴とする請 求項 1乃至 10の 、ずれか一項記載の遠心送風機。
[13] 前記ベルマウス(5)における空気吸込口(6)の外周側には、前記循環流 (f )が通
2 過し得る流通空間(S)を形成したことを特徴とする請求項 1乃至 12のいずれか一項 記載の遠心送風機。
[14] 前記羽根車(1)における各羽根(3)の出口側高さを B、該羽根(3)の外径を Dとし
2 たとき、 BZD≥0. 113に設定したことを特徴とする請求項 1乃至 13のいずれか一
2
項記載の遠心送風機。
[15] 前記羽根車(1)を構成するハブ (2)の外径 Dを、前記各羽根(3)の外径 Dより小さ
3 2 く設定したことを特徴とする請求項 1乃至 13のいずれか一項記載の遠心送風機。
[16] 前記羽根車(1)における各羽根(3)の出口側高さを B、該羽根(3)の外径を Dとし
2 たとき、 B/D≥0. 08に設定したことを特徴とする請求項 15記載の遠心送風機。
2
[17] 前記羽根車(1)における羽根(3)の枚数が 5枚力も 15枚であることを特徴とする請 求項 1乃至 16のいずれか一項記載の遠心送風機。
[18] 前記羽根車(1)における羽根(3)の枚数が 20枚から 50枚であることを特徴とする 請求項 1乃至 16のいずれか一項記載の遠心送風機。
[19] 前記羽根車(1)における羽根(3)の枚数が 30枚から 72枚であることを特徴とする 請求項 2乃至 16のいずれか一項記載の遠心送風機。
[20] ケーシング( 13)内に形成された通風路( 14)に、熱交 (15)と送風機 (X)とを 配設してなる空気調和装置であって、前記送風機 (X)として、請求項 1乃至 19のい ずれか一項記載の遠心送風機を採用したことを特徴とする空気調和装置。
PCT/JP2005/013039 2004-07-14 2005-07-14 遠心送風機および遠心送風機を備えた空気調和装置 WO2006006668A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05765682A EP1783374A4 (en) 2004-07-14 2005-07-14 CENTRIFUGAL FAN AND AIR CONDITIONING WITH CENTRIFUGAL FAN
AU2005260828A AU2005260828B8 (en) 2004-07-14 2005-07-14 Centrifugal blower and air conditioner with centrifugal blower
US11/632,160 US20070251680A1 (en) 2004-07-14 2005-07-14 Centrifugal Blower and Air Conditioner with Centrifugal Blower
CN200580023831XA CN1985092B (zh) 2004-07-14 2005-07-14 离心式鼓风机及具有离心式鼓风机的空调装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-207288 2004-07-14
JP2004207288 2004-07-14
JP2004-366076 2004-12-17
JP2004366076 2004-12-17
JP2005195654A JP3879764B2 (ja) 2004-07-14 2005-07-05 遠心送風機
JP2005-195654 2005-07-05

Publications (1)

Publication Number Publication Date
WO2006006668A1 true WO2006006668A1 (ja) 2006-01-19

Family

ID=35784004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013039 WO2006006668A1 (ja) 2004-07-14 2005-07-14 遠心送風機および遠心送風機を備えた空気調和装置

Country Status (6)

Country Link
US (1) US20070251680A1 (ja)
EP (1) EP1783374A4 (ja)
JP (1) JP3879764B2 (ja)
CN (1) CN1985092B (ja)
AU (1) AU2005260828B8 (ja)
WO (1) WO2006006668A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2108845A1 (en) * 2007-01-29 2009-10-14 Mitsubishi Electric Corporation Multiblade centrifugal fan
JP2020063683A (ja) * 2018-10-15 2020-04-23 日立建機株式会社 建設機械

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895955B2 (ja) * 2007-09-25 2012-03-14 日立アプライアンス株式会社 乾燥機及び洗濯乾燥機
JP4872997B2 (ja) * 2008-02-28 2012-02-08 ダイキン工業株式会社 送風機及び該送風機を備えた空気調和機
KR101486550B1 (ko) * 2010-11-16 2015-01-23 삼성전자 주식회사 송풍용 원심팬 및 이를 갖는 냉장고
JP5097847B1 (ja) * 2011-07-01 2012-12-12 シャープ株式会社 照明装置
WO2013005596A1 (ja) * 2011-07-01 2013-01-10 シャープ株式会社 冷却装置およびそれを用いた照明装置
JP5213999B2 (ja) * 2011-07-01 2013-06-19 シャープ株式会社 冷却装置
US8776394B2 (en) * 2011-10-04 2014-07-15 Whirlpool Corporation Blower for a laundry treating appliance
KR101400665B1 (ko) * 2012-06-12 2014-05-27 선문대학교 산학협력단 원심형 송풍장치
CN102748816A (zh) * 2012-08-08 2012-10-24 南昌航空大学 环流式节能空调器
CN102954041B (zh) * 2012-11-20 2015-09-02 石狮市通达电机有限公司 离心式鼓风机及包含该种离心式鼓风机的空调机
JP6142285B2 (ja) 2013-03-21 2017-06-07 パナソニックIpマネジメント株式会社 片吸込み型遠心送風機
JP6288516B2 (ja) * 2014-12-03 2018-03-07 三菱重工業株式会社 インペラ、及び回転機械
CN107615566B (zh) * 2015-09-14 2021-02-05 松下知识产权经营株式会社 温度调节单元、温度调节系统、车辆
ES2837106T3 (es) * 2016-03-14 2021-06-29 Soler & Palau Res Sl Unidad de ventilación
JP6844526B2 (ja) * 2017-12-26 2021-03-17 パナソニックIpマネジメント株式会社 多翼遠心ファン
CN108240355A (zh) * 2018-02-08 2018-07-03 浙江帅康电气股份有限公司 一种带有缓冲仓的蜗壳及包含该蜗壳的油烟机
JP6673385B2 (ja) * 2018-02-22 2020-03-25 ダイキン工業株式会社 ターボファン、及び空気調和機の室内機
WO2019194638A1 (ko) * 2018-04-06 2019-10-10 엘지전자 주식회사 팬어셈블리 및 공기조화기
CN111845995A (zh) * 2020-08-28 2020-10-30 广东省智能制造研究所 一种低噪声负压爬壁机器人

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1528797A (fr) 1967-04-17 1968-06-14 Lyonnaise Ventilation Perfectionnements aux ventilateurs centrifuges
JPS5049711A (ja) * 1973-09-05 1975-05-02
FR2317620A1 (fr) 1975-07-10 1977-02-04 Sueddeutsche Kuehler Behr Installation de refroidissement peu bruyante, en particulier pour vehicules automobiles
US4202296A (en) 1976-12-21 1980-05-13 Suddeutsche Kuhlerfabrik Julius Fr. Behr GmbH & Co. K.G. Cooling system for internal combustion engines
JPH09126189A (ja) * 1995-10-30 1997-05-13 Zexel Corp 送風ファン
JP2715839B2 (ja) * 1992-02-28 1998-02-18 株式会社デンソー 遠心式送風機
JPH10185238A (ja) 1996-12-20 1998-07-14 Fujitsu General Ltd 送風装置
JPH11101194A (ja) 1997-09-30 1999-04-13 Daikin Ind Ltd 遠心送風機及び該遠心送風機を備えた空気調和機
DE19903359A1 (de) 1998-02-02 1999-08-05 Denso Corp Zentrifugal-Gebläseeinheit
JP2000320490A (ja) * 1999-05-07 2000-11-21 Mitsubishi Heavy Ind Ltd 多翼送風機
JP3131598B2 (ja) * 1997-07-17 2001-02-05 株式会社ゼクセルヴァレオクライメートコントロール ブロワユニット
JP2001173596A (ja) 1999-12-21 2001-06-26 Mitsubishi Heavy Ind Ltd 多翼送風機
JP2002156128A (ja) * 2000-09-05 2002-05-31 Lg Electronics Inc 空気調和機用ターボファン
JP2002357196A (ja) * 2001-05-30 2002-12-13 Matsushita Seiko Co Ltd 遠心ファン
JP3404858B2 (ja) * 1994-02-07 2003-05-12 株式会社デンソー 遠心多翼送風機
JP2003172297A (ja) * 2001-12-07 2003-06-20 Calsonic Kansei Corp シロッコファン
JP2004360670A (ja) * 2003-05-09 2004-12-24 Daikin Ind Ltd 遠心送風機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1049976A (en) * 1964-11-18 1966-11-30 Davidson & Co Ltd Improvements in or relating to fans
SE443408B (sv) * 1979-09-28 1986-02-24 Sueddeutsche Kuehler Behr Radialflekt for verme- eller luftkonditioneringsanleggningar i fordon
DE2940773C2 (de) * 1979-10-08 1986-08-14 Punker GmbH, 2330 Eckernförde Hochleistungs-Radialventilator
FR2564531B1 (fr) * 1984-05-15 1992-04-30 Solyvent Ventec Ste Lyonn Vent Ventilateur centrifuge
US4884946A (en) * 1987-05-04 1989-12-05 Belanger, Inc. Blower housing construction
US4747275A (en) * 1987-09-18 1988-05-31 Carrier Corporation Apparatus for controlling flow through a centrifugal impeller
US5352089A (en) * 1992-02-19 1994-10-04 Nippondenso Co., Ltd. Multi-blades fan device
DE4335686B4 (de) * 1993-10-20 2006-07-27 Robert Bosch Gmbh Gebläse
US5988979A (en) * 1996-06-04 1999-11-23 Honeywell Consumer Products, Inc. Centrifugal blower wheel with an upwardly extending, smoothly contoured hub
US5855469A (en) * 1997-07-17 1999-01-05 Iowa State University Research Foundation, Inc. End seal design for blower
JP3268279B2 (ja) * 1999-01-18 2002-03-25 三菱電機株式会社 空気調和機
KR100413177B1 (ko) * 2001-10-17 2003-12-31 학교법인 선문학원 원심 다익 팬

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1528797A (fr) 1967-04-17 1968-06-14 Lyonnaise Ventilation Perfectionnements aux ventilateurs centrifuges
JPS5049711A (ja) * 1973-09-05 1975-05-02
FR2317620A1 (fr) 1975-07-10 1977-02-04 Sueddeutsche Kuehler Behr Installation de refroidissement peu bruyante, en particulier pour vehicules automobiles
US4202296A (en) 1976-12-21 1980-05-13 Suddeutsche Kuhlerfabrik Julius Fr. Behr GmbH & Co. K.G. Cooling system for internal combustion engines
JP2715839B2 (ja) * 1992-02-28 1998-02-18 株式会社デンソー 遠心式送風機
JP3404858B2 (ja) * 1994-02-07 2003-05-12 株式会社デンソー 遠心多翼送風機
JPH09126189A (ja) * 1995-10-30 1997-05-13 Zexel Corp 送風ファン
JPH10185238A (ja) 1996-12-20 1998-07-14 Fujitsu General Ltd 送風装置
JP3131598B2 (ja) * 1997-07-17 2001-02-05 株式会社ゼクセルヴァレオクライメートコントロール ブロワユニット
JPH11101194A (ja) 1997-09-30 1999-04-13 Daikin Ind Ltd 遠心送風機及び該遠心送風機を備えた空気調和機
DE19903359A1 (de) 1998-02-02 1999-08-05 Denso Corp Zentrifugal-Gebläseeinheit
JP2000320490A (ja) * 1999-05-07 2000-11-21 Mitsubishi Heavy Ind Ltd 多翼送風機
JP2001173596A (ja) 1999-12-21 2001-06-26 Mitsubishi Heavy Ind Ltd 多翼送風機
JP2002156128A (ja) * 2000-09-05 2002-05-31 Lg Electronics Inc 空気調和機用ターボファン
JP2002357196A (ja) * 2001-05-30 2002-12-13 Matsushita Seiko Co Ltd 遠心ファン
JP2003172297A (ja) * 2001-12-07 2003-06-20 Calsonic Kansei Corp シロッコファン
JP2004360670A (ja) * 2003-05-09 2004-12-24 Daikin Ind Ltd 遠心送風機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1783374A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2108845A1 (en) * 2007-01-29 2009-10-14 Mitsubishi Electric Corporation Multiblade centrifugal fan
US7967557B2 (en) 2007-01-29 2011-06-28 Mitsubishi Electric Corporation Multiblade centrifugal blower
EP2108845A4 (en) * 2007-01-29 2011-10-26 Mitsubishi Electric Corp CENTRIFUGAL FAN WITH SEVERAL SHOVELS
JP2020063683A (ja) * 2018-10-15 2020-04-23 日立建機株式会社 建設機械
WO2020080260A1 (ja) * 2018-10-15 2020-04-23 日立建機株式会社 建設機械
JP7207933B2 (ja) 2018-10-15 2023-01-18 日立建機株式会社 建設機械
US11680583B2 (en) 2018-10-15 2023-06-20 Hitachi Construction Machinery Co., Ltd. Construction machine

Also Published As

Publication number Publication date
JP2006194235A (ja) 2006-07-27
AU2005260828A1 (en) 2006-01-19
EP1783374A4 (en) 2010-02-24
EP1783374A1 (en) 2007-05-09
JP3879764B2 (ja) 2007-02-14
US20070251680A1 (en) 2007-11-01
CN1985092B (zh) 2011-09-07
AU2005260828B2 (en) 2009-01-15
CN1985092A (zh) 2007-06-20
AU2005260828B8 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2006006668A1 (ja) 遠心送風機および遠心送風機を備えた空気調和装置
JP4035237B2 (ja) 軸流送風機
JP4581992B2 (ja) 遠心送風機および該遠心送風機を備えた空気調和装置
JP4358965B2 (ja) 遠心型羽根車および空気清浄装置
US8870541B2 (en) Centrifugal multiblade fan
JP5832804B2 (ja) 遠心式ファン
JP4779627B2 (ja) 多翼送風機
JP4426776B2 (ja) 送風用遠心羽根車
WO2012008238A1 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
WO2004097225A1 (ja) 多翼遠心送風機
JP2018132012A (ja) 電動送風機および電動掃除機、ならびにインペラの製造方法
JP2003232295A (ja) 遠心ファンおよびその遠心ファンを備えた加熱調理器
JP2715839B2 (ja) 遠心式送風機
JP4505885B2 (ja) 送風機及びこれを用いた空気調和機並びに空気清浄機
JP6844526B2 (ja) 多翼遠心ファン
JP4269092B2 (ja) 多翼遠心ファン
JP3130089U (ja) 遠心送風機
WO2020241095A1 (ja) 送風機
JP2006125229A (ja) シロッコファン
KR100824149B1 (ko) 원심 송풍기 및 원심 송풍기를 구비한 공기 조화 장치
JP3902193B2 (ja) 多翼遠心送風機
JP3476085B2 (ja) 多翼送風ファン
JP7317235B2 (ja) 多翼羽根車および遠心送風機
JP2002285996A (ja) 多翼送風ファン
JP7446469B2 (ja) 多翼遠心送風機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11632160

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580023831.X

Country of ref document: CN

Ref document number: 1020077000947

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005765682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005260828

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005260828

Country of ref document: AU

Date of ref document: 20050714

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005260828

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020077000947

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005765682

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632160

Country of ref document: US