WO2006006393A1 - 脂肪酸アルキルエステルの製造方法 - Google Patents

脂肪酸アルキルエステルの製造方法 Download PDF

Info

Publication number
WO2006006393A1
WO2006006393A1 PCT/JP2005/011829 JP2005011829W WO2006006393A1 WO 2006006393 A1 WO2006006393 A1 WO 2006006393A1 JP 2005011829 W JP2005011829 W JP 2005011829W WO 2006006393 A1 WO2006006393 A1 WO 2006006393A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
fatty acid
catalyst
reaction
fine particles
Prior art date
Application number
PCT/JP2005/011829
Other languages
English (en)
French (fr)
Inventor
Keiichi Tsuto
Tetsuya Koshikawa
Original Assignee
Revo International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Revo International Inc. filed Critical Revo International Inc.
Priority to CN2005800237514A priority Critical patent/CN1984983B/zh
Priority to DK05765370.1T priority patent/DK1785478T3/da
Priority to US11/632,171 priority patent/US7488837B2/en
Priority to EP05765370A priority patent/EP1785478B1/en
Publication of WO2006006393A1 publication Critical patent/WO2006006393A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a fatty acid alkyl ester. More specifically, a method for producing fatty acid alkylesters at low cost by transesterification with alcohol using fats and oils derived from plants, etc., or waste edible oils discarded from restaurants, food factories, general households, etc. About.
  • Fatty acid alkyl esters are important as raw materials for oil and fat products, for example, various surfactants, in the oil and fat chemical industry. Therefore, the manufacturing process is one of the most important processes in the oil and chemical industry as a J11 process.
  • fatty acid alkyl esters are attracting attention as new energy alternatives to petroleum because they can be used as diesel fuel derived from biomass.
  • Edible oil used and discarded in restaurants, food factories, general households, etc., is treated with a coagulant and buried in the soil, or discarded as household waste and incinerated.
  • a coagulant used and discarded in restaurants, food factories, general households, etc.
  • fatty acid methyl esters from vegetable oils used for edible oils are similar to light oil in physical properties such as viscosity and specific gravity, and combustibility, and can be used without engine modification. However, it has recently been highlighted as a recyclable biofuel and is widely used in the United States and Europe.
  • the fatty acid alkyl ester contains trace amounts of alkali, glycerin and the like, and unless it is removed, excellent quality as a fuel cannot be obtained. For this reason, it is common to wash with a large amount of water, and the operation is complicated and wastewater treatment is expensive.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-313188
  • the present invention can satisfy the quality as a diesel fuel oil by using cheap crude edible oil before removing free fatty acids with edible oil or the like, and more inexpensive waste edible oil as a starting material, and can be produced.
  • the result is a low processing cost and a widespread use as an alternative to light oil! / ⁇ Efficient method for producing inexpensive fatty acid alkyl esters
  • the purpose is to provide. Providing such a powerful method will also provide a more rational and innovative process as the upstream process of oleochemical industry. Means for solving the problem
  • the present inventors have (1) that free fatty acids in fat and oil raw materials can be efficiently esterified with alcohol by a simple pretreatment reaction. Increases the specific surface area of the acid catalyst and improves the reaction efficiency by carrying out the esterification reaction using a resin foam that is supported by a catalyst that also has strong acidic fine particle power or modified to be strongly acidic. (2) In the transesterification reaction of fats and oils with alcohol, it is inherently highly active against the transesterification reaction. It is possible to dramatically improve the reaction efficiency by increasing the specific surface area of the alkali catalyst by supporting the alkaline alcohol-insoluble fine particle catalyst, which is considered to be active, on a predetermined resin foam and using it.
  • the alkali catalyst is not mixed in the product and the purification process can be simplified.
  • the present invention has been completed by finding three main points: that the glycerin and the like can be washed away (desorbed) and that the alcohol recovered after the washing can be reused for the reaction. .
  • a method for producing a fatty acid alkyl ester comprising an esterification reaction step of a free fatty acid and an alcohol in an oil and fat, a transesterification step of the fat and an alcohol, and a purification step of the fatty acid alkyl ester, At least one of the steps,
  • a method for producing a fatty acid alkyl ester which is carried out by a corresponding step of
  • step (b) Fixed to an alcohol-insoluble, alkaline earth metal-containing hydroxide, oxide and composite oxide, and an alcohol-insoluble solid.
  • step (b) the manufacturing method according to any one of the above, which is at least one selected from the group consisting of a hydroxide, oxide, composite oxide and carbonate of a rucali metal, [5]
  • the esterification reaction of step (a) and the transesterification reaction of Z or step (b) are carried out at a ratio of 10 to 80 parts by weight of alcohol with respect to 100 parts by weight of fats and oils.
  • [1] to [4] V 120 ° C.
  • step (d) The resin foam on which impurities are adsorbed in step (c) is washed with alcohol, and the washed alcohol is subjected to esterification reaction in step ( a ) and Z or transesterification in step (b).
  • step (d) The resin foam on which impurities are adsorbed in step (c) is washed with alcohol, and the washed alcohol is subjected to esterification reaction in step ( a ) and Z or transesterification in step (b).
  • [1] to [5] V further comprising a step of providing a reaction
  • the resin foam has a specific gravity of 0.0005-0.2, and is a hydrophilic and basic resin foam having continuous pores. Described manufacturing method,
  • step (a) The above-mentioned [1] and [4] to [7], wherein the foamed resin modified in step (a) is made of a crosslinkable resin having a sulfonated benzene ring. Manufacturing method described in the
  • step (b) The production method of the above-mentioned [9], wherein the resin foam in step (b) is formed by supporting catalyst fine particles on melamine resin foam via organic acidic fine particles and Z or inorganic acidic fine particles.
  • the average particle size of catalyst fine particles in step (b) is 0.1 to 10; ⁇ ⁇ , the average particle size of organic acidic fine particles is 0.1-100 ⁇ m, and the average particle size of inorganic acidic fine particles is 10 ⁇ :
  • a high-quality fatty acid alkyl ester for diesel fuel can be produced at low cost, so that it becomes possible to further spread the fuel, and at the same time, the fatty acid alkyl ester which is a upstream process in the oil and fat chemical industry.
  • the manufacturing process can be revolutionized.
  • the method for producing a fatty acid alkyl ester of the present invention has the structure as described above, but the powerful invention embodies the knowledge of the above (1) to (3). ) Can be achieved by step (a), point (2) can be achieved by step (b), and point (3) can be achieved by step (c) (and step (d)). .
  • (1) makes it possible to use inexpensive raw materials at low cost.
  • the efficiency of the reactions related to (1) and (2) is that the reaction mode is a solid-liquid heterogeneous reaction, and the overall reaction rate is not a chemical reaction rate limitation but a diffusion rate limitation.
  • the catalyst can be contacted.
  • the use of catalyst fine particles having an average particle size of several tens / zm or less dramatically improves the reaction efficiency.
  • the resin foam of the present invention a melamine resin foam which is advantageous in terms of economical production is preferred, and a hydrophilic but basic resin foam is preferred.
  • the removal of impurities from the crude fatty acid ester, which is important for (3), is because most of the impurities are hydrophilic, such as glycerin, which is a by-product.
  • hydrophilic such as glycerin
  • the problem of generating large amounts of wastewater remains.
  • the reaction mixture after the ester exchange reaction is brought into contact with a predetermined resin foam to adsorb and remove hydrophilic glycerin and the like.
  • the main component ester is hydrophobic and difficult to adsorb, but hydrophilic glycerin and the like can be adsorbed and removed.
  • the adsorbate can be washed away (desorbed) with a large amount of alcohol. Since it can be reused, it can be a process that does not generate any drainage. (3) is particularly important for the production of fatty acid alkyl esters to satisfy the quality of fatty acid alkyl esters for diesel fuel.
  • One major feature of the method of the present invention is that a predetermined resin foam is used in each step.
  • the strong foam can be the same or different in each process! / ⁇ .
  • the purification of the fatty acid alkyl ester by step (c) is particularly effective.
  • the method for producing a fatty acid alkyl ester of the present invention comprises, as in the conventional method for producing a fatty acid alkyl ester, an esterification reaction step between a free fatty acid in an oil and an alcohol, an ester exchange reaction step between the oil and an alcohol, and Purification of fatty acid alkyl esters Have a degree.
  • Steps (a), (b) and (c) of the present invention correspond to the three steps, respectively.
  • at least one of the three steps is performed as step (a), (B) and (c) are performed according to the corresponding steps. From the viewpoint of producing a higher quality fatty acid alkyl ester at a lower cost, it is preferable to produce more fatty acid alkyl esters by adopting more steps from the steps (a) to (c).
  • oils and fats used as raw materials include rapeseed oil, sesame oil, soybean oil, corn oil, sunflower oil, palm oil, palm kernel oil, coconut oil, safflower oil, and a mixture of two or more thereof. Is mentioned. That is, the fats and oils of the present invention are usually a mixture of fatty acid tridalides having an unsaturated or saturated aliphatic alkyl group having about 8 to 22 carbon atoms.
  • Oils and fats suitable for fatty acid alkyl esters for diesel fuel include fatty acids having an unsaturated or saturated aliphatic alkyl group having about 10 to 18 carbon atoms that are liquid when converted to fatty acid alkyl esters. Those containing a large amount of triglyceride are preferred. More preferably, it contains a large amount of triglycerides of fatty acids having an unsaturated or saturated aliphatic alkyl group having about 12 to 18 carbon atoms.
  • the raw oil and fat one or a mixture of two or more selected from the group consisting of rapeseed oil, sesame oil, soybean oil, corn oil and palm oil is particularly preferably used.
  • animal oil such as beef tallow is very important in the oil and fat chemical industry, and therefore the present invention can be applied to tridalylide derived from animal oil if desired.
  • the raw material fats and oils of the present invention are not limited to unused clean oils, and may be waste edible oils. From the viewpoint of economic and social demands, it is desirable to use waste edible oils as raw material fats and oils. Waste cooking oil is degraded and usually contains 0.5 to 2% by weight free fatty acids.
  • the alcohol used for the esterification reaction and the transesterification reaction includes, for example, methyl alcohol (methanol), ethyl alcohol (ethanol), propyl alcohol (propanol), and butyl alcohol.
  • examples thereof include one or a mixture of two or more selected from the group consisting of alkyl alcohols having 1 to 4 carbon atoms such as (butanol).
  • the purity of the alcohol is not particularly limited, but a lower water content is more preferable.
  • the alkyl alcohols having 1 to 4 carbon atoms methyl alcohol and ethyl alcohol are more preferable, particularly as a methyl alcohol-powered diesel fuel oil.
  • the resin foam used in the present invention is not particularly limited as long as it can contribute to the expression of the desired effect of the present invention, but from the viewpoint of economy, ease of use, etc.
  • a hydrophilic and basic cocoa foam having a specific gravity of 0.005 to 0.2 and having continuous pores is preferably used.
  • the porosity of the resin foam is preferably 80 to 99.5%.
  • the specific gravity of the resin foam is obtained by measuring the weight of a resin foam having a constant volume (for example, a 10 cm square cube) and dividing the weight by the volume. Further, the porosity of the resin foam can be determined by calculating the volume occupied by the resin relative to the volume of the foam from the measured specific gravity of the foam and the true specific gravity of the resin.
  • Continuous pores refer to continuous pores that exist in a form in which individual pores are fused at one or more locations, rather than individual pores being present in a completely independent form. Specific examples of the resin foam used in the present invention will be described later.
  • Step (a) of the present invention relates to a method for forming a catalyst that esterifies free fatty acids in fats and oils with alcohol with high efficiency in one aspect.
  • the free fatty acids in the fats and oils are considered as ester raw materials, and the free fatty acids are converted into esters by esterification as a pretreatment prior to the main ester exchange reaction.
  • This free fatty acid is easily esterified with alcohol in the presence of a homogeneous acid catalyst.
  • esters of free fatty acids with alcohols have been carried out with an acid catalyst such as sulfuric acid.
  • an acid catalyst such as sulfuric acid.
  • neutralization with the alkali of the catalyst used in the transesterification reaction in the next step leads to loss of alkali catalyst, salt This is inconvenient.
  • a powerful ion exchange resin catalyst is generally a porous catalyst having fine pores having an average particle diameter of 0.5 to Lmm, but has a pore diameter of several tens of nm at most.
  • fats and oils In the liquid phase reaction of fats and oils, non-polar and molecular size, fats and oils have high diffusion resistance, so the active surface in the pores does not contribute much to the reaction, and the reaction is mainly on the external surface that can come into contact with the fats and oils. Arise. Therefore, the active specific surface area of the ion exchange resin catalyst is reduced, and there remains a problem in the reaction efficiency.
  • reaction rate per unit catalyst amount Is small (Biomass Handbook P.138 Japan Energy Society 2002) and further improvement in reaction efficiency is desired.
  • the particle size of the catalyst should be reduced.
  • the specific surface area (external specific surface area effective for the reaction of oils and fats as described above) is 25, compared with that of 0.5 mm particle size. ⁇ 2 50 times.
  • a resin foam formed by supporting a catalyst made of strongly acidic fine particles may be strongly acidic catalyst fine particles or catalyst fine particles!
  • the body is used for esterification of free fatty acids.
  • the strong acidity means a property as an acid that can be substantially completely ionized in water, and specifically, the strength and acidity before and after the acidity of sulfuric acid.
  • the catalyst used in step (a) of the present invention is not particularly limited as long as it can catalyze the esterification reaction between free fatty acids in fats and oils!
  • sulfuric acid, para-toluenesulfonic acid, benzenesulfonic acid, etc. are the most efficient catalysts as homogeneous catalysts for the reaction.
  • organic acidic fine particles obtained by introducing a sulfonic acid group into a polystyrene-based resin.
  • the polystyrene-based resin is preferably a copolymerized resin of styrene and other monomers such as methyl methacrylate, particularly a copolymerized resin of styrene and divinylbenzene crosslinked. Fats can be used.
  • Such organic acid fine particles can be obtained, for example, by preparing resin particles by emulsion polymerization, suspension polymerization or other methods and then sulfonating with hot concentrated sulfuric acid. Alternatively, a commercially available strong acid ion exchange resin particle can be crushed and used.
  • fine particles having strength such as fluorinated sulfone resin, water-resistant super strong acid WO / ZrO are also recommended.
  • the average particle diameter of the catalyst fine particles is not particularly limited, but considering the production cost, improvement in reaction efficiency by increasing the specific surface area, and balance of resistance to fluid flow, 0.1 to: LOO / It is more preferable that zm is 0.5 to 50 m, which is suitable and preferable for carrying on the resin foam (that is, in the present invention, the operation of adsorption / fixation). It is known that the larger the particle, the greater the resistance of the fluid flow and the smaller the binding force of the particle to other substances (new chemical engineering "fine particle engineering", Kikuo Okuyama et al. , P. 174, Ahm Co., Ltd. (1992) can fix such a problem by carrying out the fixing process by the mechanical action described later.
  • the average particle diameter in the present specification is determined as the number average diameter of the fixed direction diameter by an electron micrograph.
  • the catalyst fine particles used in the step (a) are strongly acidic, it is preferable to employ a basic resin foam as the resin foam for supporting it.
  • the reason for this is that the acid-base interaction (literature: “easy-to-understand coating technology by Yuji Harasaki p. 20 Riko Publishing Co., Ltd. This is because the term acid-base interaction is used for physical bonds such as hydrogen bonds and van der Waals forces, not for chemical bonds. That is, in this specification, the term “support” means that the resin foam is adsorbed and fixed through such a physical bonding force.
  • Examples of basic rosin foams include amino melamine melamine, urea benzoguanamine, benzoguanamine rosin, and foams such as nylon and polyurethane.
  • melamine resin, benzoguanamine resin, nylon and polyurethane foam are preferred because of their excellent heat resistance and chemical resistance.
  • Melamine greaves foams that are strongly basic and easy to manufacture or obtain (for example, commercially available and inexpensively sold as kitchen abrasives) have high chemical resistance and high mechanical strength. Especially preferred.
  • the melamine rosin foam has a pore diameter of 10 to: LOOO / zm, and these pores are continuous pores having a part penetrating each other.
  • the specific gravity is 0.005-0.05 and the porosity is 95-99%.
  • the apparent volume is reduced to a fraction. If this feature is used, for example, when impregnated with an aqueous dispersion of fine resin particles at normal pressure, and then dried and compressed, the pore diameter becomes smaller by 4 nm, and fine particles having a relatively large diameter are machined. It can be fixed properly. In other words, relatively small slag fine particles can be fixed by the above-mentioned acid-base interaction, and relatively large succinic fine particles can be fixed by such a mechanical action. It is possible to carry fine resin particles having a diameter in a range.
  • a small piece of melamine resin foam for example, 5 to: LOmm in size
  • Sphere or square piece for example, 5 to: LOmm in size
  • the fine particles are allowed to penetrate into the melamine rosin foam. After filtering the excess liquid, slowly remove the liquid contained in the melamine rosin foam for 4 hours.
  • the dried melamine resin foam is packed while being compressed into a reactor for esterifying the raw oil.
  • the particle concentration of the dispersion of polystyrene fine particles is 20% by volume, and the melamine resin foam after filtration is filled with the same concentration of liquid. After drying, the melamine resin foam also contains 20% by volume of fine particles. When this foam is compressed to 1Z2, the foam is filled with fine particles of 50 m or less at 40% by volume with respect to the reactor volume.
  • the catalytic activity (referred to as volume efficiency of the reactor, that is, activity per unit volume of the reactor) is the ratio of the particle sizes. (Particle size ratio: 10 or more)
  • X O. 4 4 times or more.
  • the activity improves as the average particle size of the catalyst fine particles decreases. Since it is technically and economically difficult to reduce the average particle size of the sulfone-polystyrene, the average particle size of the fine particles is determined. Is preferably in the range as described above.
  • the foamed resin foam carrying the catalyst having the strong acid fine particle force as described above is used for esterification of free fatty acid, and it is economical to form the catalyst economically. Based on the idea that it is most important in the production of fatty acid alkyl esters.
  • a resin foam modified to be strongly acidic is used in addition to the resin foam formed by supporting catalyst fine particles. In the latter case, the catalyst fine particles are supported on the resin foam and used. The same effect as that of the embodiment can be obtained.
  • the resin foam that has been modified to be strongly acidic refers specifically to a resin foam that has a strongly acidic functional group introduced therein.
  • a strong foam can be prepared, for example, by sulfonating a foam made of polystyrene-based resin.
  • the resin foam formed by modification to strong acid is preferably a crosslinkable resin having a sulfonated benzene ring.
  • foams for example, introduce sulfonic acid groups into benzene rings in the foams of phenolic resin and benzoguanamine resin. It can be prepared from Kotoko.
  • the step (a) of the present invention is more strongly acidic than using a foamed resin modified to be strongly acidic. It is more preferable to carry out using a resin foam formed by supporting a catalyst comprising fine particles.
  • the reaction conditions for the esterification reaction of the free fatty acid in the fats and oils with alcohol in the present invention may be in accordance with conventional conditions.
  • the reaction temperature is preferably 120 ° C or lower, but is not particularly limited.
  • the reaction temperature is preferably 50 to 120 ° C. from the viewpoint that it can be economically operated because it is not subject to the legal restrictions of the reactor pressure vessel.
  • ⁇ Tanol is particularly preferably 55-64 ° C.
  • the ratio of the alcohol to be reacted with the oil and fat raw material is preferably 10 to 80 parts by weight and more preferably 13 to 40 parts by weight with respect to 100 parts by weight of the oil and fat.
  • These may be set similarly to the ester exchange reaction in the next step. That is, it is advantageous that the free fatty acid is esterified by the esterification reaction and then used as it is in the transesterification reaction.
  • the transesterification reaction in the next step is preferably operated continuously under the same conditions except that the esterification reaction and the type of catalyst are changed (that is, the acid catalyst is changed to an alkaline catalyst). Even if an acid catalyst is used, the transesterification reaction can be promoted by using many catalysts having a large catalytic activity. Therefore, the present invention does not exclude the case where the catalyst is not changed between the esterification reaction and the transesterification reaction.
  • step (a) In general, as the conditions for the esterification reaction in step (a), alcohol is used in a ratio of 10 to 80 parts by weight with respect to 100 parts by weight of fat and oil, and the reaction temperature is set to 50 to 120 ° C. Is preferred.
  • step (b) of the present invention in some aspects, by optimizing the form of the alkali solid catalyst, the reaction efficiency of the transesterification reaction is practically increased to a high level, and the formation is economical.
  • a transesterification reaction is carried out on a resin foam, and a catalyst comprising alkaline fine particles (alkaline catalyst fine particles).
  • the ester exchange reaction proceeds between an ester (mainly tridallylide) contained in the fat and the alcohol, in the presence of particles, catalyst fine particles or an alkaline catalyst).
  • alcohol-insoluble alkaline earth oxides or alkali metal salt-immobilized hydrophilic substances immobilized on an insoluble solid support are used as pellets, which is a liquid phase reaction system for nonpolar oils and fats. Therefore, since the catalytic activity in which the diffusion resistance of fats and oils in the pores is large is almost limited to the surface, the activity is insufficient for practical use.
  • the improvement of the solid catalyst activity by a physical method is considered to be to reduce the particle size and increase the specific surface area.
  • the specific surface area is increased 1000 times, and thus the activity is increased 1000 times.
  • the influence of the pores of the catalyst is the same as described in the esterification reaction and can be evaluated by the external surface area.
  • the touch filled with such small particles In the medium tower, operation becomes impossible due to pressure loss, etc., and when used in a suspended state, it becomes difficult to separate the catalyst by filtration after the reaction. Therefore, in the present invention, a catalyst having alkaline fine particle force is supported on a predetermined resin foam and used.
  • alkaline refers to the basicity of a compound containing an alkaline earth metal and an alkali metal.
  • the catalyst having alkaline fine particle force since the catalyst having alkaline fine particle force is used, it can be easily supported on the surface of the resin foam, and therefore, the resin foam having an acidic surface is suitable as the foam. The reason is that it can be supported by the acid-base interaction described above.
  • the resin foam may be chlorinated resin or the like, but these have a small acid-base interaction. Furthermore, the ability to list highly acidic, carboxyl group-modified polymers as candidates Can cause carboxyl groups to react with alcohols during ester exchange and be esterified. Suitable rosin foams include fluorinated sulfone rosin as a good candidate, but are not practical in terms of manufacturing costs.
  • step (b) various resin foams modified to strong acid as described in [I] above may be used.
  • a resin foam excellent in chemical resistance and mechanical strength is preferable to use.
  • the viewpoint power that is preferable is that it consists of a crosslinkable resin having a sulfonated benzene ring.
  • a resin foam prepared by introducing a sulfonic acid group into a benzene ring in a foam of phenol resin or benzoguanamine resin is suitable.
  • these foams are not practical in terms of manufacturing cost!
  • a "more economical" resin foam capable of directly supporting alkaline catalyst fine particles is desired.
  • the commercially available strong acid ion exchange resin has pores of several tens of nanometers, and alkaline catalyst fine particles.
  • the effect of 2 mm pellet surface force on the surface of 0.5 mm particle is obtained, and the efficiency is improved by about 4 times.
  • inorganic acid substances are also candidates for replacing the resin foam.
  • silica or silica Z alumina is a candidate for support. It is.
  • the production of these materials with a structure similar to that of a foamed resin is costly and is not practical at this point in time.
  • organic acid fine particles and Z or organic acid fine particles are used in the melamine rosin foam suitably used for supporting the catalyst in the esterification reaction described above.
  • a catalyst carrying a catalyst such as alkaline fine particles is used. That is, organic acidic fine particles and Z or inorganic acidic fine particles are coated in advance on the surface of the melamine resin foam, and the alkaline catalyst fine particles are supported on the foam by the acid-base interaction described above.
  • the advantage of the adsorption and immobilization of the catalyst fine particles by the acid-base interaction is that, when the oil and fat and alcohol and the catalyst fine particles come into contact with each other, even if the catalyst fine particles collapse and peel off from the acidic fine particles, It can be easily adsorbed and fixed to other acidic fine particles, and there is a very low risk that the catalyst fine particles are mixed into the reaction mixture after the transesterification reaction.
  • Another advantage is that the catalyst can be easily regenerated by replacing the catalyst with a new LV, for example, by passing an aqueous dispersion of catalyst fine particles through the resin foam.
  • Examples of the organic acidic fine particles include fine particles such as sulfonated polystyrene and sulfoethylated cell openings, and examples of the inorganic acidic fine particles include silica ultrafine particles and silica Z alumina ultrafine particle force.
  • the coating of organic acidic fine particles and Z or inorganic acidic fine particles on the surface of the melamine rosin foam is performed by physically and Z or chemically modifying the surface of the foam using these fine particles. Can be performed.
  • the physical modification may be performed, for example, in the same manner as in the case of supporting the catalyst having strong acidic fine particle power on the melamine resin foam in [I].
  • chemically modifying according to the organic acidic fine particles and Z or inorganic acidic fine particles used for the modification, considering the reactivity with melamine resin, the appropriate chemical reaction format is selected and the reaction is performed. What is necessary is just to carry out by implementing.
  • the average particle size of the alkaline catalyst fine particles, organic acidic fine particles, and inorganic acidic fine particles used is not particularly limited. However, the smaller the particle size of the alkaline catalyst fine particles, the lower the catalyst efficiency. However, when considering other points such as production efficiency and economy, the average particle diameter of the catalyst is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 3 ⁇ m.
  • the average particle size of the organic acidic fine particles is 0.1 to: LOO / zm is more preferable, and is preferably 0.5 to 50 / ⁇ ⁇ .
  • the average particle size of the inorganic acidic fine particles is 10 to: LOOnm is preferred. When silica is used as the inorganic acidic fine particles, a commercially available silica sol having an average particle diameter of 10 to 50 nm is preferably used.
  • the suspension of alkaline catalyst fine particles having, for example, an average particle size of L m Pass the liquid (using water or methanol as the solvent).
  • L m is because it is a fine particle that can be produced relatively inexpensively.
  • the alkaline catalyst fine particles are adsorbed on the melamine resin foam, a clear liquid is initially observed at the column outlet, but when the adsorption saturation is reached, a turbid liquid begins to appear. This is the end of adsorption. Next, it is washed with sufficient water or methanol and then dried.
  • the amount of the alkaline catalyst fine particles supported is determined by the adsorption area in the foam and the particle diameter of the alkaline catalyst fine particles.
  • the foam is almost 0.5 to: LO volume%. Enter the range.
  • the active specific surface area of the catalyst is approximately (2000 (particle size ratio) X 0.01 to 0.05) Z2 (compared to 2 mm pellets).
  • Half the adsorption surface) 10-50 times. Although not calculated, the activity can be expected to increase by about 10 times.
  • the alkaline catalyst is not particularly limited, but is fixed to an alcohol-insoluble, alkaline earth metal-containing hydroxide, oxide and composite oxide, and an alcohol-insoluble solid.
  • An alkali metal hydroxide, an oxide, a composite oxide, and a carbonate having at least one kind of power selected from the group also having a power are preferably used.
  • Examples of such catalysts include alkaline earth metal compounds such as calcium carbonate, hydroxide calcium, and calcium titanate, and sodium hydroxide hydroxide immobilized on iron oxide, zircoure, zeolite, and the like.
  • alkali metal compounds such as potassium hydroxide, sodium tungstate, potassium niobate, sodium carbonate, and potassium carbonate.
  • Alkaline catalysts that are inherently highly active are preferred, not to mention, for example, An alkaline catalyst having relatively low reaction activity can also be applied.
  • a patent document Japanese Patent Laid-Open No. 2002-294277
  • an alkali solid catalyst used in a transesterification reaction between fats and alcohols calcium oxide is considered to have low catalytic activity.
  • the morphologies provided by the present invention provide reaction efficiencies that can withstand industrial applications. Experimental confirmation has shown that calcium carbonate does not adsorb free fatty acids when the free fatty acid concentration is less than 0.2% by weight. Therefore, since it is not deactivated even by a small amount of free fatty acid generated by the decomposition of the ester during the transesterification reaction, calcium oxide can be used as one of inexpensive and suitable catalysts in the present invention. .
  • the average particle size of these alkaline catalyst fine particles is recommended to be 0.1 to: LO ⁇ m, but considering the balance between the manufacturing cost, the improvement of catalyst activity, and the resistance to fluid flow. Then, it is desirable that it is especially 0.5-3 / ⁇ ⁇ .
  • the average particle size of the alkaline catalyst fine particles can be adjusted to a submicron force of several m or less by pulverizing the particles with a fine pulverizer such as a bead mill, a ball mill, or a colloid mill.
  • the reaction conditions for the transesterification reaction between the oil and fat in the present invention may be in accordance with conventional conditions.
  • the reaction temperature is preferably 120 ° C or lower, but is not particularly limited.
  • the reaction temperature is preferably 50 to 120 ° C. from the viewpoint that the reactor can be operated economically because it is not subject to the regulation of “pressure vessel”.
  • 55-64 ° C. is particularly preferable in the case of alcohol phenol.
  • the ratio of the alcohol to be reacted with the oil and fat raw material is preferably 10 to 80 parts by weight and more preferably 13 to 40 parts by weight with respect to 100 parts by weight of the oil and fat.
  • the conditions for the transesterification in step (b) are 10 to 80 parts by weight of alcohol with respect to 100 parts by weight of fat and oil, and the reaction temperature is 50 to 120 ° C. Is preferable.
  • the step (c) of the present invention is used in the production of diesel fuel oil using fats and oils such as edible oil as a raw material. And a method for satisfying the quality as diesel fuel oil. Further, according to the present invention, it is possible to provide a method that does not produce an emission having a manufacturing process capability, and this can be achieved by carrying out step (d). Such a method can be said to be a method for producing a fatty acid alkyl ester for diesel fuel, particularly a fatty acid methyl ester, capable of sufficiently reducing the production cost and environmental burden.
  • the reaction mixture after the transesterification reaction is specifically the upper layer obtained by separating the layers after removing the excess alcohol after the transesterification reaction, That is, it refers to a crude fatty acid alkyl ester that is a light liquid, but a profitable reaction mixture may be obtained according to a conventional method.
  • the fatty acid alkyl ester is purified for the following reason.
  • reaction intermediates monodallyceride, diglyceride, and unreacted tridallylide remain. However, if these residual amounts are large, the quality as fuel oil is not satisfied, and it is desirable to reduce them as much as possible.
  • the unreacted reaction intermediate can be reduced to an extent that there is no problem by increasing the reaction efficiency of the transesterification reaction between the fat and the alcohol, but glycerin must be purified and removed, which is a serious problem.
  • the fatty acid methyl ester and the monoglyceride amphiphile! / Solubilized in camellia oil! / Mid-hydrophilic dalyserin may separate and settle due to environmental changes such as storage time and temperature.
  • monodaricelide and diglyceride are also dissolved in light oil, and the degree of solubility of dalyserin is reduced, increasing the possibility of separation and sedimentation. If such a phenomenon occurs during storage and in the fuel piping system of an automobile, various problems occur and it is not suitable as diesel fuel. Of course, it goes without saying that it is necessary to reduce residual methanol and moisture as much as possible.
  • a method for producing a fatty acid alkyl ester is known.
  • a fatty acid alkyl ester is obtained by reacting fats and oils (fatty acid tridalylide) with alcohol in the presence of an acid or alkali catalyst, and this is purified to remove an acid or alkali catalyst and remove other water-soluble substances.
  • an acid or alkali catalyst There is a way to wash with water.
  • Impurities to be reduced contained in the fatty acid alkyl ester after the reaction and layer separation which are the subject of the present invention are mainly by-product glycerin, and also the amphiphilic (having a hydrophilic part) monodallyceride of the reaction intermediate. And diglyceride.
  • the reaction mixture of the present invention is obtained by the operation in the step (b), the mixture does not substantially contain an alkaline catalyst.
  • the substance to be reduced is hydrophilic and the fatty acid alkyl ester is hydrophobic. In view of the characteristics of these impurities, in the present invention, it is preferable to purify the fatty acid alkyl ester in step (c).
  • the fatty acid alkyl ester may be hydrophobic and sometimes has a carbo group, but is basic from the viewpoint of acid-base interaction.
  • Glycerin, monoglyceride, and diglyceride are sometimes hydrophilic, but are acidic because they have an alcoholic OH group from the viewpoint of acid-base interaction. Therefore, from the viewpoint of hydrophilicity and hydrophobicity and from the viewpoint of acid-base interaction, as the resinous foam, the basic resinous foam suitably used in the steps (a) and (b) is preferable.
  • the foam has a high specific surface area with respect to the ability to adsorb impurities, and the foam is packed into a column to form an adsorption tower, and a crude fatty acid alkyl ester is passed through to contact the foam.
  • adsorb and remove hydrophilic glycerin, monodallylide and diglyceride very efficiently.
  • the adsorbent having a foamed resin strength can also be regenerated.
  • the adsorbed glycerin and monog Riselide and diglyceride are desorbed.
  • the binding strength of glycerin foam and glycerin is a weak bond based on hydrophilicity and hydrophobicity, and is a bond based on acid-base interaction, which is not a neutralization-reactive bond. This is because it is a physical connection. Therefore, in the case of a large amount of alcohol having a relatively high hydrophilicity, particularly methanol, most of glycerin, monodalylide and diglyceride are desorbed due to adsorption equilibrium.
  • This methanol containing glycerin, monodalylide, and diglyceride is reused in the esterification reaction of free fatty acids and the transesterification reaction of fats and alcohols, because the contents do not adversely affect the reaction. it can.
  • Glycerin, monodallylide is reused in the esterification reaction of free fatty acids and the transesterification reaction of fats and alcohols, because the contents do not adversely affect the reaction. it can.
  • step (c) Since diglyceride is a reaction by-product and reaction intermediate, it cannot be separated again as a by-product or never accumulated because it is supplied to the catalytic reaction process. There is no occurrence of this. Therefore, in the present invention, when performing the above steps (a) to (c), the resin foam on which impurities are adsorbed in step (c) is washed with alcohol, and the washed alcohol is washed with step (a). It is particularly preferred to further combine the esterification reaction in step Z and the step (d) used for the transesterification reaction in step Z or step (b).
  • the fatty acid methyl ester for diesel fuel is the most important quality item for fuel.
  • Products with a glycerin content of less than 0.02% by weight can be manufactured without installing wastewater treatment facilities.
  • Strong acid type ion exchange resin (organo 15DRY: sulfonic acid group type, average particle size 0.6 ⁇ 0.8mm, dry product) is pulverized, and 270 mesh pass (50 ⁇ m or less) strongly acidic catalyst fine particles 20 g ready. This was added to lOOmL methanol to obtain a catalyst fine particle dispersion.
  • the raw material was supplied to start the esterification reaction (reduction of free fatty acids).
  • the esterification reaction was performed under the following conditions.
  • Reaction pressure Normal pressure (0. IMPa)
  • the amount of free fatty acid decreased from 1.8 wt% to 0.1 wt%, and the reaction rate was 94.4%.
  • reaction liquid was subjected to a transesterification reaction step and a purification step to obtain a fatty acid alkyl ester satisfying the quality as a diesel fuel.
  • Example 1 As in Example 1, except that the column packing material was 10 mL of acid type ion exchange resin (organo 15DRY: sulfonic acid group type, average particle size 0.6 to 0.8 mm, dry product) Reaction was performed. Also in this case, as in Example 1, pretreatment was carried out by washing and immersing with methanol for a sufficient time.
  • acid type ion exchange resin organic 15DRY: sulfonic acid group type, average particle size 0.6 to 0.8 mm, dry product
  • reaction solution was subjected to a transesterification step in the same manner as in Example 1.
  • the residual free fatty acid turned the alkaline catalyst into stalagmite, or the fatty acid was adsorbed and poisoned, and the reaction rate was significantly reduced. Fatty acid alkyl esters could not be obtained efficiently, and quality evaluation as a diesel fuel was not possible.
  • a column filled with 10 mL of a melamine resin foam obtained by coating the surface with a pulverized product of strong acid ion exchange resin (sulfone-polystyrene fine particles) similar to that shown in Example 1 Prepared.
  • the column was immersed in methanol for a sufficient time, and then the catalyst fine particle dispersion was passed to support (adsorb and immobilize) the alkaline catalyst fine particles.
  • the supported amount of catalyst fine particles was 0.32 g according to the difference in the solid content measured before and after using the dispersion.
  • the column was thoroughly washed with methanol to prepare for the reaction experiment.
  • Reaction pressure Normal pressure (0. IMPa)
  • a transesterification reaction was carried out in the same manner as in Example 2 except that a catalyst obtained by calcining calcium carbonate (CaO) at 800 ° C as a catalyst was pulverized to 2 to 3 mm and packed in 10 mL of the column.
  • the ester production rate obtained was 16.1%.
  • the obtained reaction mixture was subjected to a purification step to obtain a fatty acid alkyl ester. Since the ester is apt to react, it naturally does not satisfy the quality as a diesel fuel.
  • the column was filled with a melamine resin foam molded into a cylindrical shape, and a crude fatty acid methyl ester (obtained in Example 2) was passed through to conduct an experiment for adsorption removal of glycerin.
  • the volume of the melamine rosin foam was 10 mL, and the flow rate of the crude fatty acid methyl ester was 20 gZh.
  • the liquid total amount of column outlet is a also gas chromatography measurement, glycerol 40 ppm (0. 004 weight 0/0) were included.
  • the obtained fatty acid methyl ester satisfied the quality as a diesel fuel.
  • a fatty acid alkyl ester that can revolutionize the production process of a fatty acid alkyl ester, which is a upstream process in the oil and fat chemical industry, and can produce a high-quality fatty acid alkyl ester for diesel fuel at low cost.
  • a manufacturing method is provided. Such a method can greatly contribute to the further spread of biofuels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

 本発明は、油脂中の遊離脂肪酸とアルコールとのエステル化反応工程、油脂とアルコールとのエステル交換反応工程、及び脂肪酸アルキルエステルの精製工程を有する脂肪酸アルキルエステルの製造方法であって、前記3つの工程の少なくともいずれか1つの工程を、 (a)強酸性微粒子からなる触媒を担持してなるか、又は強酸性に変性してなる樹脂発泡体と油脂及びアルコールとを接触させて、油脂中の遊離脂肪酸とアルコールとのエステル化反応を行う工程、 (b)アルカリ性微粒子からなる触媒を担持してなる樹脂発泡体と油脂及びアルコールとを接触させて、油脂とアルコールとのエステル交換反応を行う工程、及び (c)エステル交換反応後の反応混合物を樹脂発泡体と接触させて不純物を吸着除去し、脂肪酸アルキルエステルを精製する工程、 のうちの対応する工程により行う、脂肪酸アルキルエステルの製造方法に関する。

Description

明 細 書
脂肪酸アルキルエステルの製造方法
技術分野
[0001] 本発明は、脂肪酸アルキルエステルの製造方法に関する。さらに詳しくは、植物等 由来の油脂、又はこれを利用するレストラン、食品工場、一般家庭などから廃棄され る廃食用油を原料として、アルコールとのエステル交換反応により脂肪酸アルキルェ ステルを安価に製造する方法に関する。
背景技術
[0002] 脂肪酸アルキルエステルは、油脂化学工業にお!、て油脂製品、例えば各種界面 活性剤等の原料として重要である。したがって、その製造プロセスは油脂化学工業に おける J 11上プロセスとして最も重要なプロセスの 1つである。
[0003] 一方、脂肪酸アルキルエステルは、ノィォマス由来のディーゼル燃料として使用可 能なことから、石油代替の新エネルギーとして注目されている。
[0004] レストラン、食品工場、一般家庭等で使用されて廃棄される食用油 (廃食用油)は、 凝固剤により処理して土中に埋めたり、家庭用ごみとしてそのまま捨てられ、焼却す る等の方法により処理されるのが一般的であった力 近年、地球環境浄化の理念の 高まりに伴 、、これら廃食用油につ 、ても有効再利用の動きが活発化し始めて 、る。 その一つとして、メタノールとのエステル交換反応により脂肪酸メチルエステルを得て 、ディーゼル燃料に適した油を製造する試みが始まって ヽる。
[0005] すなわち、食用油に用いられる植物油からの脂肪酸メチルエステルは、粘度、比重 などの物性や、燃焼性が軽油に類似しており、エンジンの改造をしなくても使用でき るバイオディーゼル燃料としての可能性が古くから指摘されていたが、最近、リサイク ル可能なバイオ燃料として脚光を浴び、とくに米国や欧州で広く利用されている。
[0006] し力しながら、欧米では、主として新 U、食用油由来の脂肪酸メチルエステルが利 用されていて、軽油に比べてコスト高のために、主に軽油との混合系で使用されてい る。食用油には、約 3重量%程度の遊離脂肪酸が含まれており、アルカリ処理を施し 、脂肪酸石鹼として遊離脂肪酸を除去する必要力 高価となっている。また廃食用油 を使用する場合でも、劣化して通常、遊離脂肪酸が 0. 5〜2重量%程度含まれてい る。いずれにしても安価な原料油脂を使用するためには、この遊離脂肪酸の問題を 解決する必要がある。従来技術では NaOHや KOHの均一アルカリ触媒を用いて脂 肪酸石鹼として収率及び触媒を犠牲にして脂肪酸アルキルエステルが製造されてお り、コスト高の一因となっている(例えば、特許文献 1参照)。
[0007] また、従来技術では、均一アルカリ触媒力 副生成物のグリセリンに殆どすベて含ま れ、当該グリセリンを有効利用するために、その精製に多大のコストがかかっている。
[0008] 反応後の脂肪酸アルキルエステルにしても微量のアルカリ、グリセリンなどが含まれ ており、これを除去しないと燃料としての優良な品質にはならない。このために、多量 の水で水洗するのが一般的で、操作が複雑で排水の処理にもコストがかかって 、る。
[0009] 上記のように、従来技術では、ディーゼル燃料用の脂肪酸アルキルエステルの製 造方法として、安価な原料を用い、しかも加工費も安価である方法はな力 た。
特許文献 1:特開平 6— 313188号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、食用油等で遊離脂肪酸を除去する前の安価な粗食用油やさらに安価 な廃食用油を出発原料として用いる、ディーゼル燃料油としての品質を満足し得、か つ製造プロセスの簡素化と排出物を低減若しくは実質的に不発生にすることで、結 果として加工費を安く抑え、軽油代替燃料として普及しやす!/ヽ安価な脂肪酸アルキ ルエステルの効率的な製造方法の提供を目的とする。力かる方法の提供は、油脂化 学工業の川上プロセスとして、より合理的な革新的プロセスを提供することにもなる。 課題を解決するための手段
[0011] 本発明者らは、上記課題を達成するために鋭意検討した結果、(1)油脂原料中の 遊離脂肪酸を簡便な前処理反応でアルコールにより効率的にエステル化し得ること 、具体的には、強酸性微粒子力もなる触媒を担持してなるか、又は強酸性に変性し てなる榭脂発泡体を用いてエステルイ匕反応を行うことで酸触媒の比表面積の増大を 図り反応効率を向上させて遊離脂肪酸のエステル化を効率化し得ること、 (2)油脂と アルコールとのエステル交換反応において、元来、エステル交換反応に対して高活 性とされるアルカリ性のアルコール不溶性微粒子力 なる触媒を所定の榭脂発泡体 に担持させて用いてアルカリ触媒の比表面積の増大を図ることで飛躍的に反応効率 を向上させ得ること、しかも反応生成物中にアルカリ触媒が混入せず、精製工程が簡 略ィ匕され得ること、 (3)エステル交換反応後に行われる過剰アルコールの除去およ びグリセリンを主成分とする重液を分層分離した後に得られる軽液 (粗脂肪酸アルキ ルエステル)に含まれる微量のグリセリンなど親水性の不純物を親水性の榭脂発泡 体で吸着除去できること、し力も榭脂発泡体の再生では、多量のアルコールで吸着し たグリセリンなどの洗浄除去 (脱着)が可能で、この洗浄後回収されるアルコールが反 応に再使用できること、の大きく 3つの点を見出し本発明を完成した。
すなわち、本発明は、
〔1〕 油脂中の遊離脂肪酸とアルコールとのエステルイ匕反応工程、油脂とアルコール とのエステル交換反応工程、及び脂肪酸アルキルエステルの精製工程を有する脂肪 酸アルキルエステルの製造方法であって、前記 3つの工程の少なくともいずれか 1つ の工程を、
(a)強酸性微粒子力もなる触媒を担持してなるか、又は強酸性に変性してなる榭脂 発泡体と油脂及びアルコ一ルとを接触させて、油脂中の遊離脂肪酸とアルコールと のエステル化反応を行う工程、
(b)アルカリ性微粒子力 なる触媒を担持してなる榭脂発泡体と油脂及びアルコール とを接触させて、油脂とアルコールとのエステル交換反応を行う工程、及び
(c)エステル交換反応後の反応混合物を榭脂発泡体と接触させて不純物を吸着除 去し、脂肪酸アルキルエステルを精製する工程、
のうちの対応する工程により行う、脂肪酸アルキルエステルの製造方法、
〔2〕 工程 (a)の触媒が榭脂微粒子にスルホン酸基を導入してなるものである前記〔1
〕記載の製造方法、
〔3〕 工程 (a)の触媒微粒子の平均粒径が 0. 1〜: LOO /z mである前記〔1〕又は〔2〕 記載の製造方法、
〔4〕 工程 (b)の触媒微粒子力 アルコール不溶性の、アルカリ土類金属を含む水酸 化物、酸化物及び複合酸化物、並びにアルコール不溶性固体に固定ィ匕された、了 ルカリ金属の水酸化物、酸化物、複合酸化物及び炭酸塩からなる群より選ばれる少 なくとも 1種力もなるものである、前記〔1〕〜〔3〕 V、ずれか記載の製造方法、 〔5〕 工程 (a)のエステルイ匕反応及び Z又は工程 (b)のエステル交換反応を油脂 10 0重量部に対してアルコール 10〜80重量部の割合で行い、その際、反応温度を 50 〜120°Cとする前記〔1〕〜〔4〕 V、ずれか記載の製造方法、
〔6〕 (d)工程 (c)で不純物が吸着した榭脂発泡体をアルコールで洗浄し、洗浄後の アルコールを工程 (a)でのエステルイ匕反応及び Z又は工程 (b)でのエステル交換反 応に供する工程を、さらに有する前記〔1〕〜〔5〕 V、ずれか記載の製造方法、
〔7〕 榭脂発泡体が、比重が 0. 005-0. 2であって、連続細孔を有する親水性かつ 塩基性の榭脂発泡体である前記〔 1〕〜〔6〕 、ずれか記載の製造方法、
〔8〕 工程 (a)の強酸性に変性してなる榭脂発泡体がスルホン化されたベンゼン環を 有する架橋性榭脂からなるものである前記〔 1〕及び〔4〕〜〔7〕 、ずれか記載の製造 方法、
〔9〕 榭脂発泡体がメラミン榭脂発泡体である前記〔1〕〜〔7〕 V、ずれか記載の製造方 法、
〔10〕 工程 (b)の榭脂発泡体が触媒微粒子をメラミン榭脂発泡体に有機酸性微粒 子及び Z又は無機酸性微粒子を介して担持してなるものである前記〔9〕記載の製造 方法、並びに
〔11〕 工程 (b)の触媒微粒子の平均粒径が 0. 1〜10 ;ζ ΐη、有機酸性微粒子の平 均粒径が 0. 1-100 ^ m,無機酸性微粒子の平均粒径が 10〜: LOOnmである前記〔 10〕記載の製造方法、
に関する。
発明の効果
本発明によれば、安価に高品質のディーゼル燃料用脂肪酸アルキルエステルを製 造することができるので、ノィォ燃料の一層の普及が可能となる、と同時に油脂化学 工業における川上プロセスである脂肪酸アルキルエステルの製造プロセスが革新さ れ得る。
発明を実施するための最良の形態 [0014] 本発明の脂肪酸アルキルエステルの製造方法は前記の通りの構成を有するもので あるが、力かる発明は前記(1)〜(3)の知見を具現ィ匕したものであり、(1)の点につ いては工程 (a)により、(2)の点については工程 (b)により、(3)の点については工程 (c) (及び工程 (d) )により、それぞれ達成され得る。
[0015] すなわち(1)で安価な原料を低コストで使いこなすことを可能にする。(1)及び(2) にかかわる反応の効率は、反応様式が固液の異相系反応であり、総括の反応速度 が化学反応律速ではなく拡散律速であるので、原料はより多くの触媒点と接触し得る のが好ましぐ例えば、触媒微粒子として平均粒径が数 10 /z m以下のものを用いるこ とで反応の効率は飛躍的に向上する。本発明の榭脂発泡体としては、親水性でしか も塩基性の榭脂発泡体が好ましぐ経済的に製造が有利なメラミン榭脂発泡体がより 好ましい。
[0016] (3)に力かる粗脂肪酸エステルの不純物の除去にっ 、ては、不純物のほとんどは 副生物のグリセリンなど親水性のものなので、従来、水洗法が採用されているのであ る力 大量の排水の発生の問題が残っている。本発明では所定の榭脂発泡体にエス テル交換反応後の反応混合物を接触させ、親水性のグリセリンなどを吸着除去する 。なお、(3)においてもメラミン榭脂発泡体を用いるのがより好ましい。主成分のエス テルは疎水性で吸着しにくいが、親水性のグリセリンなどは吸着除去され得、再生に ついては、大量のアルコールで吸着物の洗浄除去(脱着)ができ、このアルコールは 、反応に再使用できるので排水の全く出ないプロセスとすることが可能である。 (3)は 、特に、ディーゼル燃料用脂肪酸アルキルエステルの品質を満足させるための脂肪 酸アルキルエステルの製造にとって重要である。
[0017] 本発明の方法は、各工程で所定の榭脂発泡体を用いることを 1つの大きな特徴と する。力かる榭脂発泡体は各工程で同一のものであっても異なるものであってもよ!/ヽ 。脂肪酸アルキルエステルの品質向上にとっては、特に工程 (c)による脂肪酸アルキ ルエステルの精製が有効である。
[0018] 本発明の脂肪酸アルキルエステルの製造方法は、従来の脂肪酸アルキルエステル の製造方法と同様、油脂中の遊離脂肪酸とアルコールとのエステルィヒ反応工程、油 脂とアルコールとのエステル交換反応工程、及び脂肪酸アルキルエステルの精製ェ 程を有する。本発明の工程 (a)、(b)及び (c)はそれぞれ前記 3つの工程に対応して おり、本発明の方法では、前記 3つの工程の少なくともいずれか 1つの工程を工程 (a )、(b)及び (c)のうちの対応する工程により行う。より高品質な脂肪酸アルキルエステ ルをより安価に製造する観点力もは、前記工程 (a)〜 (c)からより多くの工程を採用し て脂肪酸アルキルエステルを製造するのが好まし 、。
[0019] なお、本発明の方法において実施する工程 (a)〜(c)のいずれか以外の操作、条 件等は公知の脂肪酸アルキルエステルの製造方法のものに従えばよぐ例えば、成 書 (油脂化学入門、黒崎富裕ら、産業図書、 1997)を参照すればよい。
[0020] ディーゼル燃料用などの脂肪酸アルキルエステルの製造においては、油脂とアル コールとの間のエステル交換反応が主反応である。原料となる油脂としては、具体的 には、菜種油、ごま油、大豆油、とうもろこし油、ひまわり油、パーム油、パーム核油、 やし油、紅花油などの 1種またはこれらの 2種以上の混合物が挙げられる。すなわち 、本発明の油脂とは、通常、炭素数が 8〜22程度の不飽和もしくは飽和の脂肪族ァ ルキル基を有する脂肪酸のトリダリセライドの混合物である。
[0021] ディーゼル燃料用脂肪酸アルキルエステルに適した油脂原料としては、脂肪酸ァ ルキルエステルとしたときに液状である、炭素数が 10〜 18程度の不飽和もしくは飽 和の脂肪族アルキル基を有する脂肪酸のトリグリセライドを多く含むものが好ましい。 より好まし 、ものは、炭素数が 12〜 18程度の不飽和もしくは飽和の脂肪族アルキル 基を有する脂肪酸のトリグリセライドを多く含むものである。
[0022] そのような意味で、原料油脂としては、菜種油、ごま油、大豆油、とうもろこし油、パ ーム油からなる群より選択される 1種または 2種以上の混合物が特に好ましく用いられ る。
[0023] なお、油脂化学工業では、牛脂などの動物油も、きわめて重要であるので、本発明 は、所望により動物油由来のトリダリセライドにも適用できる。
[0024] 従来、植物系油脂原料を食用油として用いる場合、あら力じめ油脂中に含まれる遊 離脂肪酸をアルカリ水溶液で中和して生じた石鹼を分離し、遊離脂肪酸を除去して 用いているため、高価になっている。一方、本発明においては、通常、遊離脂肪酸を 3重量%前後含む植物油などを直接使用してディーゼル燃料用の脂肪酸アルキル エステルを効率的に得ることができ、経済的に非常に有利である。
[0025] 本発明の原料油脂は、未使用の清浄なものに限らず廃食用油であってもよぐ経済 面、社会的要請面からすると、廃食用油を原料油脂とするのが望ましい。廃食用油 は劣化しており、通常、 0. 5〜2重量%の遊離脂肪酸を含んでいる。
[0026] 本発明にお 、てエステルイ匕反応及びエステル交換反応に使用するためのアルコ ールとしては、例えば、メチルアルコール(メタノール)、エチルアルコール(エタノー ル)、プロピルアルコール(プロパノール)、ブチルアルコール(ブタノール)などの炭 素数 1〜4のアルキルアルコールからなる群より選ばれる 1種または 2種以上の混合 物が挙げられる。アルコールの純度に関しては、特に限定されないが、水分含有量 の少ない方がより好ましい。また。炭素数 1〜4のアルキルアルコールの中では、メチ ルアルコール、エチルアルコールが、特にメチルアルコール力 ディーゼル燃料油と してはより好ましい。
[0027] 本発明に用いる榭脂発泡体としては、本発明の所望の効果の発現に寄与し得るも のであれば特に限定するものではないが、経済性、使用の簡便性等の観点から、通 常、比重が 0. 005〜0. 2であって、連続細孔を有する親水性かつ塩基性の榭脂発 泡体が好適に用いられる。なお、榭脂発泡体の空隙率としては 80〜99. 5%である のが好ましい。榭脂発泡体の比重は一定体積を有する榭脂発泡体 (例えば、 10cm 四方の立方体)の重量を測定し、当該重量を体積で除することにより求められる。ま た、榭脂発泡体の空隙率は、該発泡体の比重の測定値と榭脂の真比重から、該発 泡体の体積に対する榭脂の占める体積を計算することにより求めることができる。な お、本発明で使用する榭脂の真比重は、通常、 1前後であるため、本明細書におい ては榭脂の真比重を 1と仮定する。連続細孔とは、個々の細孔が完全に独立した形 態で存在するのではなぐ 1又は複数箇所で個々の細孔が融合した形態で存在する 連続的な細孔をいう。本発明に使用される榭脂発泡体の具体例については後述す る。
[0028] 〔I〕油脂中の遊離脂肪酸のエステル化反応
本発明の工程 (a)は、ある局面では高効率に油脂中の遊離脂肪酸をアルコールに よりエステル化する触媒の形態化方法に関する。 [0029] 安価な油脂原料を使用する場合、油脂中の遊離脂肪酸をエステル原料と考えて、 主反応のエステル交換反応以前の前処理としてエステル化反応で遊離脂肪酸をェ ステルに変換しておくことが、収率向上や、エステル交換反応で用いる高活性なアル カリ触媒との中和反応による石酸発生の防止などの観点力も必要になる。この遊離 脂肪酸はアルコールで均一系の酸触媒の存在下に容易にエステル化される。
[0030] 従来、遊離脂肪酸のアルコールによるエステルィヒは、硫酸などの酸触媒で行われ ているが、次工程のエステル交換反応に使う触媒のアルカリと中和して、アルカリ触 媒の損失や、塩の生成があり、不都合である。現在、油脂化学工業では、強酸性型 のイオン交換榭脂を固定触媒とする方法が実用化されて 、る。力かるイオン交換榭 脂触媒は、一般に 0. 5〜: Lmmの平均粒径の微粒子力もなる、細孔を有する多孔質 触媒ではあるが、その細孔径は高々数十 nmである。油脂の液相反応では、非極性 で分子の大き 、油脂は拡散抵抗が大き 、ので、該反応に対し細孔での活性表面は それほど貢献せず、反応は主として油脂と接触し得る外部表面で生ずる。従って、ィ オン交換榭脂触媒の活性比表面積は小さくなり、反応効率において問題が残ってい る。例えば、 65°Cでの反応で、遊離脂肪酸 (通常、 3重量%程度含有)をエステルイ匕 するのに油脂 100重量部に対してアルコール 10重量部の大過剰量を用いても、例 えば、イオン交換榭脂触媒をカラムに充填し流通系で反応させ、遊離脂肪酸の 95% 程度をエステルイ匕するのに滞留時間として、およそ 90分もの時間が必要であり、単 位触媒量当たりの反応速度は小さく(バイオマスハンドブック P. 138 社団法人日 本エネルギー学会編 2002年)、さらなる反応効率の向上が望まれる。
[0031] 活性比表面積を増大させるためには、触媒の粒径を小さくすればよいと考えられる 。例えば、触媒の平均粒径を 2〜20 mとすれば、 0. 5mm粒径のものと比べて、比 表面積 (先に述べたごとぐ油脂の反応に対して有効なのは外部比表面積)は 25〜2 50倍となる。し力しながら、このような小さい粒子を充填した触媒塔では、圧力損失な どで実際には操作不可能になったり、懸濁状態で使用する場合には、反応後のろ過 などによる触媒分離が困難になる。そこで、本発明においては、強酸性微粒子からな る触媒 (強酸性触媒微粒子又は触媒微粒子と!/ヽぅ場合がある)を担持してなるか、又 は強酸性に変性してなる榭脂発泡体を用いて遊離脂肪酸のエステル化反応を行う。 ここで、強酸性とは、水中で実質的に完全に電離し得る酸としての性質をいい、具体 的には、硫酸の酸性度の前後の強 、酸性度のことを 、う。
[0032] 本発明の工程 (a)で使用する触媒としては、油脂中の遊離脂肪酸とアルコールとの エステル化反応を触媒し得るものであれば特に限定されな!ヽが、当該反応の均一系 触媒としては一般的に、硫酸、パラトルエンスルホン酸、ベンゼンスルホン酸などが最 も高効率の触媒であるので、ポリスチレン系榭脂ゃセルロースなど力 なる榭脂微粒 子に強酸性のスルホン酸基(一 SO H)、スルホェチル基(一(CH ) SO OH)を導
3 2 2 2 入してなる有機酸性の微粒子、中でも、微粒子化が容易という観点から、ポリスチレン 系榭脂にスルホン酸基を導入してなる有機酸性の微粒子を用いるのが好まし ヽ。な お、ポリスチレン系榭脂とは、スチレンと他のモノマー、例えばメタクリル酸メチルなど との共重合榭脂を 、、特にスチレンとジビニルベンゼンの架橋した共重合榭脂が 好適であり、公知の榭脂を用いることができる。そのような有機酸性の微粒子は、例え ば、乳化重合、懸濁重合法その他の方法で榭脂粒子を作製し、その後、熱濃硫酸な どでスルホンィ匕することにより得られる。あるいは、市販の強酸性のイオン交換榭脂粒 子を粉砕して用いるのも簡便な方法である。
[0033] 工程 (a)で使用する触媒を構成する強酸性微粒子の候補としては、上記のほかに 、フッ素化スルホン榭脂、耐水性超強酸の WO /ZrOなど力もなる微粒子も推奨で
3 2
きるものである。コストが許されれば使用できる。
[0034] 上記触媒微粒子の平均粒径としては、特に限定はないが、製造コスト、比表面積の 増大による反応効率の向上、及び流体流れに対する抵抗のバランスを考慮すると、 0 . 1〜: LOO /z mが榭脂発泡体への担持 (すなわち、本発明では吸着固定ィ匕の操作) に適切であり好ましぐ 0. 5〜50 mであることがより好ましい。なお、粒子が大きくな ると流体流れの抵抗が大きくなり、粒子の他物質への結合力が相対的に小さくなるこ とが知られている (新体系化学工学"微粒子工学"、奥山喜久夫ら、 p. 174、(株)ォ ーム社、平成 4年)が、後述の機械的な作用による固定ィ匕を行うことでそのような問題 は解決可能である。
[0035] 本明細書における平均粒径は、電子顕微鏡写真により、定方向径の個数平均径と して求められる。 [0036] 工程 (a)で使用する触媒微粒子は強酸性であることから、それを担持させる榭脂発 泡体としては塩基性の榭脂発泡体を採用するのが好ましい。その理由は、酸一塩基 相互作用(文献: "わかりやすいコーティング技術 原崎勇次著 p. 20 理工出版社 平成 6年:分子間力の解説項)を利用して、触媒を容易に榭脂発泡体の表面に担 持させることができるためである。なお、酸一塩基相互作用との語は、化学的結合力 に対してではなぐ水素結合、ファンデルワールス力などの物理的結合力に対して用 いられる。すなわち、本明細書において担持とは、榭脂発泡体に対し、そのような物 理的結合力を介して吸着固定ィ匕することをいう。
[0037] 塩基性の榭脂発泡体としては、アミノ榭脂のメラミン榭脂、ユリア榭脂、ベンゾグアナ ミン榭脂や、ナイロン、ポリウレタンなどの発泡体が挙げられる。このうち、耐熱性、耐 薬品性に優れる点で、メラミン榭脂、ベンゾグアナミン榭脂、ナイロン、ポリウレタンの 発泡体が好ま ヽ。塩基性が強く製造容易または入手容易なメラミン榭脂発泡体 (例 えば、市販品として、台所用研磨材として安価に販売されている)は、耐薬品性も大 きく機械的強度も高 、ので特に好ま 、。
[0038] メラミン榭脂発泡体は、 10〜: LOOO /z mの細孔径を有し、それらの細孔は互いに貫 通部分を有している連続細孔である。また、乾燥状態では、比重は 0. 005-0. 05 で、空隙率は 95〜99%である。圧縮すると、その見かけの体積は数分の 1になる。こ の特徴を利用すれば、常圧で、例えば、榭脂微粒子水分散液を含浸させ、ついで、 乾燥、圧縮すると、細孔径が見力 4ナ上小さくなり、比較的大きな径の微粒子を機械的 に固定化できること〖こなる。すなわち、比較的小さな榭脂微粒子は上記の酸一塩基 相互作用により、比較的大きな榭脂微粒子はこのような機械的な作用により、それぞ れ固定ィ匕でき、メラミン榭脂発泡体には広い範囲の径の榭脂微粒子を担持させること ができる。
[0039] 前記触媒微粒子を榭脂発泡体に担持させる、経済的な、触媒の形態化方法を具 体的に説明する。
[0040] 例えば、 50 μ m以下の平均粒径を持つスルホン化ポリスチレン微粒子の懸濁液( 溶媒として水、またはアルコールを用いる)に、メラミン榭脂発泡体の小片(例えば 5 〜: LOmmの大きさを持つ球または角片)を加え、撹拌下、十分な時間をかけて当該 微粒子をメラミン榭脂発泡体に浸透させる。余分な液をろ過した後、メラミン榭脂発泡 体に含有された液を、十分な時間を力 4ナて緩慢に乾燥除去する。この乾燥メラミン榭 脂発泡体を、原料油脂のエステル化を行う反応器に圧縮しながら充填する。
[0041] 本発明における触媒の形態化では、前記ポリスチレン微粒子の分散液の粒子濃度 を 20体積%とし、ろ過後のメラミン榭脂発泡体には同様の濃度の液が充満していると 仮定すると、乾燥後には、メラミン榭脂発泡体中にも 20体積%の微粒子が含有され る。この発泡体を 1Z2に圧縮すると、発泡体には 50 m以下の微粒子が反応器体 積に対して 40体積%で充填されることになる。
[0042] 平均粒径 500 μ mの粒子を、そのまま反応器に充填する場合と比較すると、触媒 活性 (反応器の容積効率、すなわち反応器単位容積あたりの活性を言う)は、粒径の 比による比表面積の向上で、およそ (粒径比: 10以上) X O. 4=4倍以上である。細 孔の影響が多少あると考えられ計算通りとはならないが、数倍の活性向上が期待で きる。
[0043] 従って、触媒微粒子の平均粒径を小さくするほど活性は向上する力 スルホンィ匕ポ リスチレンの平均粒径を小さくすることは技術的、経済的に困難であるので、微粒子 の平均粒径としては、前記の通りの範囲とするのが好適である。
[0044] 本発明にお 、ては、上記の通りの強酸性微粒子力 なる触媒を担持してなる榭脂 発泡体を遊離脂肪酸のエステル化に使用するが、それは触媒の形態化が経済的に 脂肪酸アルキルエステルの製造を行う上で最も重要であるとの着想に基づ 、て 、る 。本発明では触媒微粒子を担持させてなる榭脂発泡体の他、強酸性に変性してなる 榭脂発泡体も用いられるが、後者の場合も、触媒微粒子を榭脂発泡体に担持させて 用いる態様と同様な効果を奏し得る。
[0045] 強酸性に変性してなる榭脂発泡体とは、詳しくは、強酸性の官能基を導入した榭脂 発泡体をいう。力かる発泡体は、例えば、ポリスチレン系榭脂からなる発泡体をスルホ ン化することにより調製することができる。耐薬品性及び機械的強度などの点を考慮 すれば、強酸性に変性してなる榭脂発泡体としてはスルホンィ匕されたベンゼン環を 有する架橋性榭脂からなるものが好ましい。かかる発泡体は、例えば、フ ノール榭 脂や前記べンゾグアナミン樹脂の発泡体中のベンゼン環にスルホン酸基を導入する こと〖こより調製することができる。
[0046] 耐薬品性、機械的強度、製造コストなどの点を総合的に考えると、本発明の工程 (a )は、強酸性に変性してなる榭脂発泡体を用いるよりも、強酸性微粒子からなる触媒 を担持してなる榭脂発泡体を用いて行うのが、より好ましい。
[0047] 続、て、工程 (a)におけるエステルイ匕反応の操作にっ 、て説明する。本発明にお ける油脂中の遊離脂肪酸のアルコールによるエステルイ匕反応の反応条件は、常法の 条件に従えばよい。触媒や担体の耐熱性を考慮すると反応温度としては 120°C以下 が好ましいが、それ以外はとくに限定されない。アルコールの沸点以下での反応では 、反応器力 圧力容器"の法規制を受けないので経済的に操業できる、という観点か らも、反応温度としては 50〜120°Cが好ましい。特に、アルコールカ^タノールの場 合は、 55〜64°Cが特に好ましい。
[0048] 油脂原料と反応させるアルコールは、油脂 100重量部に対して 10〜80重量部の 割合が好ましぐ 13〜40重量部の割合がより好ましい。これらは次工程のエステル交 換反応と同様に設定すればよい。すなわち、エステル化反応で遊離脂肪酸をエステ ル化した後、エステル交換反応にそのまま供せられるのが有利であるからである。次 工程のエステル交換反応は、エステルイ匕反応と触媒の種類を変更 (すなわち、酸触 媒からアルカリ触媒に変更)する以外は同条件で連続して操作するのが好ましい。な お、酸触媒であっても、触媒活性が大きぐ多くの触媒を用いれば、エステル交換反 応を進めることもできる。従って、本発明は、エステルイ匕反応とエステル交換反応とで 触媒を変更しな ヽ態様を排除するものではな 、。
[0049] 総じて、工程 (a)におけるエステルイ匕反応の条件としては、油脂 100重量部に対し てアルコール 10〜80重量部の割合で用い、その際、反応温度を 50〜120°Cとする のが好適である。
[0050] [II]油脂とアルコールとの間でのエステル交換反応
本発明の工程 (b)は、ある局面ではアルカリ固体触媒の形態を最適化することによ り、実用的に、エステル交換反応の反応効率を高いレベルに持ち上げること、また、 その形態化を経済的に行うことに関する。工程 (b)においては、エステル交換反応を 、榭脂発泡体に担持させてなる、アルカリ性微粒子からなる触媒 (アルカリ性触媒微 粒子、触媒微粒子又はアルカリ性触媒という場合がある)の存在下に行うが、該エス テル交換反応は、具体的には、油脂に含まれるエステル (主としてトリダリセライド)と アルコールとの間で進行する。
[0051] 油脂(トリグリセライド)とアルコールとのエステル交換反応は、現在、油脂化学工業 およびバイオディーゼル燃料製造に実用化されて 、るプロセスでは、 NaOHある ヽ は KOHなどのアルコール溶解性のアルカリ触媒を使用して行われて!/、る。これらの アルカリ物質は、反応後、分層分離して得られる副生グリセリン層に含まれる。グリセ リン自体は、化学品として付加価値があり、精製して化学品用途に供したいところで あり、その精製コストに費用が力かることを容認して精製されている。また、 目的の脂 肪酸アルキルエステル中にもアルカリ物質が微量含まれる。燃料としての用途から、 これを除去する必要があり、水洗水などの排水が発生する方法が採用されている。こ の排水処理にお!、てもコストがかかる。
[0052] 以上の背景で問題解決のため、固体触媒の使用カ^、くつ力提案されて 、る。エス テル交換反応は、酸触媒でも進行することが知られているので、無機及び有機の固 体酸触媒が種々提案されている。しかしながら、その活性は、アルカリ触媒に比して 格段に小さぐ酸触媒を採用した場合、反応工程だけで、エステル水洗およびグリセ リン精製を採用する場合と同等力あるいはそれ以上のコストがかかりその経済的意味 がなくなり、実用化に至っていない。一方、活性が大きいアルカリ固体触媒の提案も 2 〜3開示されている。しかしながら、アルコール不溶性のアルカリ土類酸化物、あるい は不溶性の固体担体に固定化されたアルカリ金属塩の親水性物質がペレット化して 用いられており、非極性の油脂の液相反応系であるので油脂の細孔内拡散抵抗が 大きぐ触媒活性はほとんどその表面に限られるので、その活性は、実用化レベルに は不十分である。
[0053] 物理的な方法による固体触媒活性の向上は、粒径を小さくして、比表面積を大きく することであると考えられる。通常 2〜3mm程度の大きさのペレットから、 2〜3 /ζ πιに することにより、比表面積は 1000倍となり、したがって活性は 1000倍になるといえる 。ここでも、エステルイ匕反応で述べたのと同じぐ触媒の細孔の影響は小さいと推定さ れ、外部表面積で評価できる。現実の操作では、このような小さい粒子を充填した触 媒塔では、圧力損失などで実際には操作不可能になったり、懸濁状態で使用する場 合には、反応後のろ過などによる触媒分離が困難になる。そこで、本発明において は、アルカリ性微粒子力もなる触媒を所定の榭脂発泡体に担持して用いる。ここで、 アルカリ性とは、アルカリ土類金属およびアルカリ金属を含有してなる化合物の塩基 '性のことをいう。
[0054] 本発明ではアルカリ性微粒子力 なる触媒を用いるので、簡便に榭脂発泡体の表 面に担持させ得ることから、当該発泡体としては酸性の表面を有する榭脂発泡体が 好適である。その理由は前記した酸一塩基相互作用で担持させ得るからである。
[0055] 該榭脂発泡体としては、塩素化榭脂などでもよ ヽのであるが、これらは酸一塩基相 互作用が小さい。さらに酸性の強い、カルボキシル基変性のポリマーが候補として挙 げられる力 カルボキシル基はエステル交換反応中にアルコールと反応してエステル ィ匕されてしまう恐れがある。好適な榭脂発泡体としては、フッ素化スルホン榭脂も良好 な候補として挙げられるが、製造コストの点で実用的ではない。
[0056] 工程 (b)に使用される榭脂発泡体としては、前記〔I〕で記載した強酸性に変性して なる種々の榭脂発泡体を用いてもよい。例えば、ポリスチレン系榭脂からなる発泡体 をスルホン化してなる榭脂発泡体が挙げられる。工程 (b)においても、やはり耐薬品 性及び機械的強度に優れた榭脂発泡体を用いるのが好ましぐ力かる観点力 はス ルホンィ匕されたベンゼン環を有する架橋性榭脂からなるもの、例えば、フエノール榭 脂や前記べンゾグアナミン樹脂の発泡体中のベンゼン環にスルホン酸基を導入する ことにより調製した榭脂発泡体が好適である。し力しながら、これらの榭脂発泡体も製 造コストの点で実用的ではな!/、。
[0057] 以上のことから、アルカリ性触媒微粒子を直接担持させうる"より経済的な"榭脂発 泡体が望まれる。榭脂発泡体を用いない態様では、市販の強酸性イオン交換榭脂 への担持が採用され得るが、市販の強酸性のイオン交換榭脂は数十 nmの細孔しか なぐこれにアルカリ性触媒微粒子を担持させると、外部表面への担持のみとなり、活 性比表面積を大きくする上では、 2mmペレット表面力 0. 5mm粒子表面への効果 であって、 4倍程度の効率向上となる。また、榭脂発泡体の代わりとしては無機系酸 性物質も候補となる。例えば、シリカ、あるいはシリカ Zアルミナが担体としての候補 である。しかしながら、榭脂発泡体と同様の構造をもつこれらの材料の製作はコストが 力かり現時点では経済性の観点から実用的でない。
[0058] そこで、本発明の最も好適な態様では、先に述べたエステル化反応で触媒を担持 させるのに好適に使用されるメラミン榭脂発泡体に、有機酸性微粒子及び Z又は無 機酸性微粒子を介してアルカリ性微粒子カゝらなる触媒を担持させたものを用いる。す なわち、メラミン榭脂発泡体の表面に予め有機酸性微粒子及び Z又は無機酸性微 粒子をコーティングしておき、前記した酸一塩基相互作用により該発泡体にアルカリ 性触媒微粒子を担持させる。
[0059] 酸一塩基相互作用による触媒微粒子の吸着固定化の利点としては、油脂及びァ ルコールと、触媒微粒子とが接触した際に、触媒微粒子が崩壊して酸性微粒子から 剥がれようとも、再度、容易に他の酸性微粒子に吸着固定ィ匕され得、エステル交換 反応後の反応混合物中に触媒微粒子が混入する危険性が非常に低 、ことが挙げら れる。また、榭脂発泡体への、例えば、触媒微粒子水分散液の通液により、触媒を新 LV、ものに置換して容易に再生可能な点も利点として挙げられる。
[0060] 有機酸性微粒子としては、例えば、スルホン化ポリスチレン、スルホェチル化セル口 ースカゝらなる微粒子が、無機酸性微粒子としては、例えば、シリカ超微粒子、シリカ Z アルミナ超微粒子力 それぞれ挙げられる。
[0061] メラミン榭脂発泡体の表面への有機酸性微粒子及び Z又は無機酸性微粒子のコ 一ティングは、それらの微粒子を用いて該発泡体の表面を物理的及び Z又は化学 的に修飾することにより行うことができる。物理的な修飾は、例えば、前記〔I〕におい て強酸性微粒子力 なる触媒をメラミン榭脂発泡体に担持させるのと同様にして行え ばよい。一方、化学的に修飾する場合は、修飾に使用する有機酸性微粒子及び Z 又は無機酸性微粒子に応じ、メラミン榭脂との反応性を考慮して、適切な化学反応 形式を選択し、当該反応を実施することにより行えばよい。
[0062] その際、使用するアルカリ性触媒微粒子、有機酸性微粒子及び無機酸性微粒子の 平均粒径は特に限定されるものではな ヽが、アルカリ性触媒微粒子はその粒径が小 さければ小さいほど触媒効率がよい点、その他製造効率、経済性等の点を考慮する と、該触媒の平均粒径としては 0. 1〜10 μ mが好ましぐより好ましくは 0. 1〜3 μ m であり、有機酸性微粒子の平均粒径としては 0. 1〜: LOO /z mが好ましぐより好ましく は 0. 5〜50 /ζ πιであり、無機酸性微粒子の平均粒径としては 10〜: LOOnmが好まし い。無機酸性微粒子としてシリカを使用する場合、市販の 10〜50nmの平均粒径を 有するシリカゾルが好適に用いられる。
[0063] 続 ヽてアルカリ性触媒微粒子を榭脂発泡体に担持させる、経済的な、触媒の形態 化方法を具体的に説明する。
[0064] 例えば、スルホンィ匕ポリスチレン微粒子及び Z又はシリカ超微粒子で表面をコーテ イングしたメラミン榭脂発泡体をカラムに充填した後に、例えば、: L mの平均粒径を 持つアルカリ性触媒微粒子の懸濁液 (溶媒として水、またはメタノールを用いる)を通 液する。: L mとしたのは、比較的安価に製造可能な微粒子であるからである。メラミ ン榭脂発砲体にアルカリ性触媒微粒子が吸着していくので、カラム出口では、初期、 透明な液が観察されるが、吸着飽和に達すると、濁った液が出はじめる。これで、吸 着終了とする。次に、十分な水またはメタノールで洗浄した後に乾燥する。アルカリ性 触媒微粒子の担持量としては、発泡体中の吸着面積やアルカリ性触媒微粒子の粒 径で決まるが、平均粒径: L mの場合は、発泡体中、ほぼ 0. 5〜: LO体積%の範囲に 入る。担持量 1〜5体積%の担持が可能であるとすると、触媒の活性比表面積は、 2 mmペレットに比べて、およそ、(2000 (粒径比) X 0. 01〜0. 05) Z2 (半分は吸着 面) = 10〜50倍となる。計算通りとはならないが、 10倍程度の活性向上が期待でき る。
[0065] アルカリ性触媒としては、特に限定されるものではないが、アルコール不溶性の、ァ ルカリ土類金属を含む水酸化物、酸化物及び複合酸化物、並びにアルコール不溶 性固体に固定ィ匕された、アルカリ金属の水酸ィ匕物、酸化物、複合酸化物及び炭酸塩 力もなる群より選ばれる少なくとも 1種力もなるものが好適に用いられる。そのような触 媒としては、例えば、酸ィ匕カルシウム、水酸ィ匕カルシウム、チタン酸カルシウムなどの アルカリ土類金属化合物、および酸化鉄、ジルコユア、ゼォライトなどに固定化され た水酸ィ匕ナトリウム、水酸ィ匕カリウム、タングステン酸ナトリウム、ニオブ酸カリウム、炭 酸ナトリウム、炭酸カリウムなどのアルカリ金属化合物が挙げられる。
[0066] 本質的に活性の大きなアルカリ性触媒が好ま 、のは言うまでもな 、が、例えば、 比較的反応活性の小さいとされるアルカリ性触媒でも適用可能である。油脂とアルコ ールとの間でのエステル交換反応に使用されるアルカリ固体触媒に関して開示され た特許文献 (特開 2002— 294277号公報)によれば、酸ィ匕カルシウムは触媒活性が 小さいとされている。しかし、本発明により提供される形態化によって、工業的用途に 十分耐えられる反応効率が得られる。実験的確認によれば酸ィ匕カルシウムは、遊離 脂肪酸の濃度が 0. 2重量%以下の場合には、これを吸着せずエステルイ匕することが 見出された。したがって、エステル交換反応中のエステルの分解により生ずる微量の 遊離脂肪酸によっても失活することはな 、ので、本発明にお 、ては酸ィ匕カルシウムを 安価で好適な触媒の 1つとして用い得る。
[0067] 前記したように、これらのアルカリ性触媒微粒子の平均粒径は 0. 1〜: LO μ mが推 奨されるが、製造コスト、触媒活性の向上、及び流体流れに対する抵抗のバランスを 考慮すると、特に 0. 5〜3 /ζ πιであることが望ましい。アルカリ性触媒微粒子の平均 粒径は、例えば、ビーズミル、ボールミル、コロイドミルなどの微粉砕機で該粒子を粉 砕することによりサブミクロン力も数 m以下に調整することができる。
[0068] 工程 (b)におけるエステル交換反応の操作にっ 、て説明する。本発明における油 脂とアルコールとの間でのエステル交換反応の反応条件は、常法の条件に従えばよ い。触媒や担体の耐熱性を考慮すると反応温度としては 120°C以下が好ましいが、 それ以外はとくに限定されない。アルコールの沸点以下での反応では、反応器が"圧 力容器"の法規制を受けないので経済的に操業できる、という観点からも、反応温度 としては 50〜120°Cが好ましいのである。特に、アルコールカ^タノールの場合は、 5 5〜64°Cが特に好ましい。
[0069] 油脂原料と反応させるアルコールは、油脂 100重量部に対して 10〜80重量部の 割合が好ましぐ 13〜40重量部の割合がより好ましい。
[0070] 総じて、工程 (b)におけるエステル交換反応の条件としては、油脂 100重量部に対 してアルコール 10〜80重量部の割合で用い、その際、反応温度を 50〜120°Cとす るのが好適である。
[0071] 〔III〕脂肪酸アルキルエステルの精製
本発明の工程 (c)は、食用油等の油脂を原料とするディーゼル燃料油の製造にお いて、ディーゼル燃料油としての品質を満足させる方法に関する。また、本発明によ れば、製造プロセス力もの排出物を出さない方法をも提供することができ、それは、さ らに工程 (d)を実施することにより達成することができる。かかる方法は、製造コスト及 び環境負荷を充分に低減可能なディーゼル燃料用脂肪酸アルキルエステル、特に 脂肪酸メチルエステルの製造方法であると 、える。
[0072] 工程 (c)における、エステル交換反応後の反応混合物とは、具体的には、エステル 交換反応後の反応液力 過剰のアルコールを除去した後、分層分離して得られる上 層、すなわち、軽液である粗脂肪酸アルキルエステルをいうが、カゝかる反応混合物は 常法に従って得ればよい。工程 (c)では脂肪酸アルキルエステルの精製を行うが、そ の理由は以下の通りである。
[0073] 脂肪酸アルキルエステル中には、副生物のグリセリンや反応中間体のモノダリセラ イド、ジグリセライド、未反応のトリダリセライドが残存する。しかし、これらの残存量が 多いと燃料油としての品質を満足せず、可能な限り少なくすることが望まれる。未反 応物ゃ反応中間体は、油脂とアルコールとの間でのエステル交換反応の反応効率 を上げることで問題ない程度に低減できるが、グリセリンは精製除去せざるを得ない ので問題は大きい。
[0074] 例えば、脂肪酸メチルエステル単独系では、モノダリセライド、ジグリセライドの両親 媒性物質により脂肪酸メチルエステルと!/ヽぅ油の中で可溶化されて!/ヽた親水性のダリ セリンが、貯蔵中の時間、温度などの環境変化で、分離して沈降する可能性がある。 また軽油との混合系では、モノダリセライド、ジグリセライドは軽油中にも溶解し、ダリ セリンの可溶ィ匕の程度が減少して、分離、沈降する可能性が大きくなる。このような現 象が貯蔵中および自動車の燃料配管系で起きれば、種々のトラブルが生じディーゼ ル燃料として不適格である。もちろん、残存メタノールや水分を可能なかぎり低減して おく必要があるのは言うまでもない。
[0075] 以上のような理由から、欧米では、必然的に脂肪酸メチルエステルのディーゼル燃 料油としての品質規格が検討されており、現在、欧州(EU)統一規格が制定されて いる。グリセリン含有量は 0. 02重量%以下が求められている。また、米国 (ASTM P S-121-99)でも同様に、グリセリン含有量が 0. 02重量%以下と規定されている。なお 、現在、 日本においても脂肪酸メチルエステルに燃料としての規格設定の動きがあり 、 自動車走行中のトラブルが起きな 、ように欧州規格などを参考に議論されて 、る。
[0076] このような観点から、特にグリセリン含有量の低減を目的とした精製方法が要望され るのである。
[0077] 従来、油脂原料力 脂肪酸アルキルエステルを製造する方法は公知である。例え ば、酸またはアルカリ触媒の存在下で油脂 (脂肪酸トリダリセライド)とアルコールとを 反応させて脂肪酸アルキルエステルを得、これを精製して酸またはアルカリ触媒をは じめ、その他の水溶性物質を除くために水洗する方法がある。し力しながら、かかる 方法では、水洗すると混合液が乳化しやすぐ添加水を分離するためには一昼夜静 置する必要がある場合がある。
[0078] 水洗精製方法の改良されたものとして、洗浄水をエステル交換反応後の反応液に 添加し 70〜90°Cに加熱することを必須条件として乳化の回避および分層分離の迅 速ィ匕を図る方法が開示されている(特開平 7— 310090号公報)。ただし、高温処理 のために生ずる脂肪酸メチルエステルの加水分解を避ける目的で、反応に使用した アルカリの脂肪酸メチルエステル中の溶解分を酸で中和することを条件としている。こ の方法においては脂肪酸エステル 100重量部に対して 20重量部以上の洗浄水を添 カロし洗浄を 2回繰り返すことにより洗浄効果が達成されるとしている。しかしながら、グ リセリン含有量の低減は期待できる力 脂肪酸メチルエステルの純度については、高 温処理のため加水分解が起こり(アルカリ触媒を酸で中和している力 異相系のため 正確な中和は困難でありアルカリ性または酸性下での高温処理となる)、その純度低 下が懸念される。さらには、なお多量の排水処理を行わなければならない。
[0079] 水洗しない精製方法については、廃食用油からのディーゼル燃料油の製造方法に っ 、て開示されたものがある(特開平 10— 245586号公報)。精製方法につ!ヽて脂 肪酸アルキルエステルの活性白土などによる吸着精製方法が開示されて 、る。かか る方法では、排水は発生しないが、反応に用いたアルカリ成分は吸着除去されるもの の、グリセリンとモノダリセライド、ジグリセライドなどが除去され難ぐディーゼル燃料 油としては不十分な品質の脂肪酸アルキルエステルしカゝ得られない。
[0080] 最近開示された方法としては、廃棄物の最少化を達成する技術 (国際公開第 03Z 070859号パンフレット)がある。この技術によれば、少量の水で乳化しながら、水洗 し、その後、吸水ポリマーで、水洗液およびそれに含まれる親水性物質を吸収し、解 乳化を生じさせる。その後ポリマーゲルをろ過分離すればよい。廃水が出ず、したが つて廃水処理が不要としている。しかしながら、吸水したポリマーゲルは、グリセリンな どを含んでいるので、乾燥脱水しても再使用ができないので、廃棄物として処理せね ばならない。
[0081] 上記のように、従来の技術では、ディーゼル燃料油用の脂肪酸アルキルエステル の精製方法として、要求品質を達成しながら工程排出物を零にする精製方法は見当 たらない。
[0082] 本発明の対象となる反応及び分層分離後の脂肪酸アルキルエステルに含まれる低 減すべき不純物は、主として副生グリセリン、さらに反応中間体の両親媒性 (親水部 を持つ)のモノダリセライド及びジグリセライドである。本発明の反応混合物を前記ェ 程 (b)の操作により得た場合、当該混合物はアルカリ性触媒を実質的に含有してい ない。上記低減すべき物質は、親水性であり、脂肪酸アルキルエステルは、疎水性 である。これらの不純物の特性を踏まえると、本発明においては工程 (c)で脂肪酸ァ ルキルエステルを精製するのが好まし 、。
[0083] すなわち、脂肪酸アルキルエステルは、疎水性と!/、うこともあるが、一方で、カルボ -ル基を持つので、酸一塩基相互作用の観点からは塩基性である。グリセリンやモノ グリセライド、ジグリセライドは親水性ということもあるが、酸一塩基相互作用の観点か らはアルコール性 OH基を持っているので酸性である。そこで、親水性、疎水性の観 点および酸-塩基相互作用の観点から、榭脂発泡体としては前記工程 (a)及び (b) で好適に用いられる塩基性の榭脂発泡体が好適な不純物の選択的吸着の吸着剤と なり得る。中でもメラミン榭脂発泡体が好適である。該発泡体は不純物の吸着能に関 し高い比表面積を有しており、該発泡体をカラムに充填して吸着塔とし、粗脂肪酸ァ ルキルエステルを通液して該発泡体と接触させることで、親水性のグリセリン、および モノダリセライド、ジグリセライドを非常に効率的に吸着除去することができる。
[0084] また、榭脂発泡体力もなる吸着剤は再生することも可能である。粗脂肪酸アルキル エステルを液抜きした後、アルコールで洗浄すれば、吸着していたグリセリン、モノグ リセライド、ジグリセライドは脱着される。なぜなら、榭脂発泡体とグリセリンなどの結合 力は、親水性、疎水性に基づく弱い結合であり、また酸一塩基相互作用による結合 であって、これは決して中和反応的な結合ではなぐあくまで物理的な結合であるか らである。従って、親水性が比較的大きなアルコール、特にメタノールが大量にあれ ば、吸着平衡の関係で、ほとんどのグリセリン、モノダリセライド、ジグリセライドは脱着 される。
[0085] このグリセリン、モノダリセライド、ジグリセライドを含むメタノールは、その含有物が反 応に何らかの悪影響を与えることはないので、遊離脂肪酸のエステル化反応、油脂と アルコールとのエステル交換反応に供して再使用できる。グリセリン、モノダリセライド
、ジグリセライドは反応副生物、反応中間体であるので、再び副生物として分離される ことや、触媒反応工程に給せられるので決して蓄積することはなぐカゝくして本発明の 方法からは廃棄物の発生は全くないのである。よって、本発明においては、前記ェ 程 (a)〜 (c)を行う場合、工程 (c)で不純物が吸着した榭脂発泡体をアルコールで洗 浄し、洗浄後のアルコールを工程 (a)でのエステルイ匕反応及び Z又は工程 (b)での エステル交換反応に供する工程 (d)を、さらに組み合わせて実施するのが特に好適 である。
[0086] 工程 (a)〜(c)に加えて工程 (d)をさらに実施する本発明の製造方法によれば、例 えば、ディーゼル燃料用脂肪酸メチルエステルは、燃料用として最も重要な品質項 目であるグリセリン含有量が 0. 02重量%以下となるものを、排水処理設備を設けるこ となく製造することができる。
実施例
[0087] 実施例 1
強酸型イオン交換榭脂 (オルガノ製 15DRY:スルホン酸基型、平均粒径 0. 6〜0. 8mm、乾燥品)を粉砕し、 270メッシュパス(50 μ m以下)の強酸性触媒微粒子を 20 g準備した。これを lOOmLメタノールに加えて、触媒微粒子分散液を得た。
[0088] 次に、この分散液に、メラミン榭脂発泡体 (ァズマエ業株式会社製:台所用研磨材、 実測の空隙率 99%)の小片(5mm角)を乾燥状態で 20mL相当を加えて、数時間撹 拌した。その後、ろ過、乾燥し、触媒担持メラミン榭脂発泡体を得た。ろ過液を乾燥し 、その固形分重量を測定し、差分から榭脂に担持した触媒重量を求めた結果、 2. 9 gであつ 7こ o
[0089] 得られた発泡体の全量を円筒状の 10mLカラムに圧縮充填した。カラムをメタノー ルで十分な時間洗浄し反応実験への準備を行った。
[0090] 次 ヽで、原料を供給してエステル化反応 (遊離脂肪酸の減少)を開始した。エステ ル化反応は、下記の条件で行った。
[0091] (反応条件)油脂供給量: 20gZh
(廃食用油、遊離脂肪酸 1. 8重量%含有)
メタノール供給量: 2. 6g/h
(油脂 100重量部に対し 13重量部)
(遊離脂肪酸に対し量論的に大過剰)
反応温度: 60°C
反応圧力:常圧 (0. IMPa)
[0092] 反応開始後、 5時間経過して定常になつてから、生成液をサンプリングしてサンプ ルの油層(メタノール層と油層に分かれる)をガスクロマトグラフィーで分析し、遊離脂 肪酸の減少量を測定した。
[0093] 遊離脂肪酸量は、 1. 8重量%から 0. 1重量%まで減少し、反応率は 94. 4%を得 た。
[0094] 以後、得られた反応液をエステル交換反応工程及び精製工程に供し、ディーゼル 燃料としての品質を満足する脂肪酸アルキルエステルを得た。
[0095] 比較例 1
カラム充填物質を、酸型イオン交換榭脂 (オルガノ製 15DRY:スルホン酸基型、平 均粒径 0. 6〜0. 8mm,乾燥品) 10mLとした以外は、実施例 1と同様にエステルイ匕 反応を行った。なお、この場合も実施例 1と同様に、メタノールで十分な時間洗浄お よび浸漬する前処理を行った。
[0096] エステル化反応の結果、遊離脂肪酸は、 1. 8重量%から 1. 0重量%までの減少で 、反応率は 44. 4%であった。
[0097] 以後、実施例 1と同様にして、得られた反応液をエステル交換反応工程に供したが 、残存遊離脂肪酸によりアルカリ性触媒が石鹼化し、または該脂肪酸が吸着して被 毒し、反応速度を著しく低下させた。脂肪酸アルキルエステルが効率的に得られず、 ディーゼル燃料としての品質評価は行わなカゝつた。
[0098] 実施例 2
アルカリ性触媒として 800°Cで焼成した酸ィ匕カルシウム(CaO)を選択し、 Ca05gを 、メタノール 200gにカ卩ぇ(分散剤としてアクリル酸オリゴマーを添加)、ビーズミルで平 均粒径が 0. 5〜2 111になるように粉砕し、アルカリ性触媒微粒子分散液を調製した
[0099] 次に、実施例 1に示したのと同様の強酸型イオン交換樹脂の粉砕物 (スルホンィ匕ポ リスチレン微粒子)をその表面にコーティングしてなるメラミン榭脂発泡体 10mLを充 填したカラムを準備した。このカラム内をメタノールで十分な時間浸漬した後に、上記 触媒微粒子分散液を通液して、アルカリ性触媒微粒子を担持 (吸着固定化)した。触 媒微粒子の担持量は、分散液の使用前後の固形分測定でその差分によれば 0. 32 gであった。カラムをメタノールで十分洗浄し反応実験への準備を行った。
[0100] 次 、で、原料を供給してエステル交換反応を開始した。エステル化反応は、下記の 条件で行った。なお、油脂は実施例 1で遊離脂肪酸を除去した後のものを用いた。
[0101] (反応条件)油脂供給量: 20gZh
メタノール供給量: 2. 6g/h
(油脂 100重量部に対し 13重量部)
反応温度: 60°C
反応圧力:常圧 (0. IMPa)
[0102] 反応開始後、 5時間経過して定常になつてから、生成液をサンプリングしてサンプ ルのメチルエステル層(メチルエステル層とグリセリン層に分かれる)をガスクロマトグ ラフィ一で分析しエステル生成率を測定した。脂肪酸メチルエステルの生成率は 98. 2%であった。
[0103] 以後、得られた反応混合物 (粗脂肪酸メチルエステル)を常法に従って精製工程に 供し、ディーゼル燃料としての品質を満足する脂肪酸アルキルエステルを得た。 [0104] 比較例 2
触媒として酸ィ匕カルシウム(CaO)を 800°Cで焼成したものを 2〜3mmに粉砕して カラムに 10mL充填した以外は、実施例 2と同様にしてエステル交換反応を行った。 得られたエステル生成率は 16. 1%であった。また、実施例 2と同様にして、得られた 反応混合物を精製工程に供し、脂肪酸アルキルエステルを得た。該エステルは、反 応が進んで ヽな 、ので当然ディーゼル燃料としての品質を満足するものではなかつ た。
[0105] 実施例 3
カラムに円筒状に成型したメラミン榭脂発泡体を充填し、粗脂肪酸メチルエステル( 実施例 2で得たもの)を通液しグリセリンの吸着除去の実験を行った。
[0106] メラミン榭脂発泡体の体積は 10mLであり、粗脂肪酸メチルエステルの通液量は 20 gZhとした。得られた脂肪酸メチルエステルには、ガスクロマトグラフィー測定では、 グリセリン力 S2400ppm (0. 24重量0 /0)含まれて!/、た。
[0107] 5時間連続運転して、カラム出口の液全量には、同じくガスクロマトグラフィー測定 で、グリセリン 40ppm (0. 004重量0 /0)が含まれていた。得られた脂肪酸メチルエス テルはディーゼル燃料としての品質を満足するものであった。
[0108] 吸着実験後、カラム内の液を追い出したのち、メタノール lOOgを通液し、グリセリン の洗浄除去を行った。回収メタノール中のグリセリン濃度は同様の分析で 0. 23重量 %であった。すなわち、ほとんどのグリセリンが脱着されたことがわ力つた。したがって 、回収メタノールはすべて、再使用可能で、排水処理負荷がないことがわ力つた。 産業上の利用可能性
[0109] 本発明によれば、油脂化学工業における川上プロセスである脂肪酸アルキルエス テルの製造プロセスを革新し得る、安価に高品質のディーゼル燃料用脂肪酸アルキ ルエステルを製造することができる脂肪酸アルキルエステルの製造方法が提供され る。かかる方法は、バイオ燃料の一層の普及に対し大きく寄与し得る。

Claims

請求の範囲
[1] 油脂中の遊離脂肪酸とアルコールとのエステルイ匕反応工程、油脂とアルコールとの エステル交換反応工程、及び脂肪酸アルキルエステルの精製工程を有する脂肪酸 アルキルエステルの製造方法であって、前記 3つの工程の少なくともいずれか 1つの 工程を、
(a)強酸性微粒子力もなる触媒を担持してなるか、又は強酸性に変性してなる榭脂 発泡体と油脂及びアルコ一ルとを接触させて、油脂中の遊離脂肪酸とアルコールと のエステル化反応を行う工程、
(b)アルカリ性微粒子力 なる触媒を担持してなる榭脂発泡体と油脂及びアルコール とを接触させて、油脂とアルコールとのエステル交換反応を行う工程、及び
(c)エステル交換反応後の反応混合物を榭脂発泡体と接触させて不純物を吸着除 去し、脂肪酸アルキルエステルを精製する工程、
のうちの対応する工程により行う、脂肪酸アルキルエステルの製造方法。
[2] 工程 (a)の触媒が榭脂微粒子にスルホン酸基を導入してなるものである請求項 1記 載の製造方法。
[3] 工程 (a)の触媒微粒子の平均粒径が 0. 1〜: LOO /z mである請求項 1又は 2記載の 製造方法。
[4] 工程 (b)の触媒微粒子が、アルコール不溶性の、アルカリ土類金属を含む水酸ィ匕 物、酸化物及び複合酸化物、並びにアルコール不溶性固体に固定ィ匕された、アル力 リ金属の水酸化物、酸化物、複合酸化物及び炭酸塩からなる群より選ばれる少なくと も 1種力もなるものである、請求項 1〜3いずれか記載の製造方法。
[5] 工程 (a)のエステルイ匕反応及び Z又は工程 (b)のエステル交換反応を油脂 100重 量部に対してアルコール 10〜80重量部の割合で行い、その際、反応温度を 50〜1 20°Cとする請求項 1〜4 、ずれか記載の製造方法。
[6] (d)工程 (c)で不純物が吸着した榭脂発泡体をアルコールで洗浄し、洗浄後のァ ルコールを工程 (a)でのエステルイ匕反応及び Z又は工程 (b)でのエステル交換反応 に供する工程を、さらに有する請求項 1〜5いずれか記載の製造方法。
[7] 榭脂発泡体が、比重が 0. 005〜0. 2であって、連続細孔を有する親水性かつ塩 基性の榭脂発泡体である請求項 1〜6いずれか記載の製造方法。
[8] 工程 (a)の強酸性に変性してなる榭脂発泡体がスルホン化されたベンゼン環を有 する架橋性榭脂からなるものである請求項 1及び 4〜7いずれか記載の製造方法。
[9] 榭脂発泡体がメラミン榭脂発泡体である請求項 1〜7いずれか記載の製造方法。
[10] 工程 (b)の榭脂発泡体が触媒微粒子をメラミン榭脂発泡体に有機酸性微粒子及び
Z又は無機酸性微粒子を介して担持してなるものである請求項 9記載の製造方法。
[11] 工程 (b)の触媒微粒子の平均粒径が 0. 1〜10 m、有機酸性微粒子の平均粒径 が 0. 1〜: LOO /z m 無機酸性微粒子の平均粒径が 10〜100nmである請求項 10記 載の製造方法。
PCT/JP2005/011829 2004-07-13 2005-06-28 脂肪酸アルキルエステルの製造方法 WO2006006393A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800237514A CN1984983B (zh) 2004-07-13 2005-06-28 脂肪酸烷基酯的制造方法
DK05765370.1T DK1785478T3 (da) 2004-07-13 2005-06-28 Fremgangsmåde til fremstilling af fedtsyrealkylester
US11/632,171 US7488837B2 (en) 2004-07-13 2005-06-28 Process for producing fatty acid alkyl ester
EP05765370A EP1785478B1 (en) 2004-07-13 2005-06-28 Process for producing fatty acid alkyl ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-206487 2004-07-13
JP2004206487A JP4515840B2 (ja) 2004-07-13 2004-07-13 脂肪酸アルキルエステルの製造方法

Publications (1)

Publication Number Publication Date
WO2006006393A1 true WO2006006393A1 (ja) 2006-01-19

Family

ID=35783737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011829 WO2006006393A1 (ja) 2004-07-13 2005-06-28 脂肪酸アルキルエステルの製造方法

Country Status (7)

Country Link
US (1) US7488837B2 (ja)
EP (1) EP1785478B1 (ja)
JP (1) JP4515840B2 (ja)
CN (1) CN1984983B (ja)
DK (1) DK1785478T3 (ja)
TW (1) TWI384064B (ja)
WO (1) WO2006006393A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078769A1 (ja) * 2006-12-27 2008-07-03 Lion Corporation 脂肪酸低級アルキルエステルの製造方法
EP1976611A2 (en) * 2006-01-11 2008-10-08 Archer-Daniels-Midland Company Simultaneous synthesis and purification of a fatty acid monoester biodiesel fuel
JP2013503947A (ja) * 2009-09-04 2013-02-04 エクソンモービル リサーチ アンド エンジニアリング カンパニー 植物油のエステル交換アルコキシル化からの安定なアルコキシル化脂肪酸アルキルエステル

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224121A (ja) * 2006-02-22 2007-09-06 Asahi Kasei Corp ディーゼルエンジン用燃料の製造方法
JP2008001856A (ja) * 2006-06-26 2008-01-10 Doshisha バイオディーゼル油の製造方法
EP1878716A1 (en) 2006-07-14 2008-01-16 Rohm and Haas Company Method for transesterification of triglycerides
US7943792B2 (en) * 2007-04-02 2011-05-17 Inventure Chemical Inc. Production of biodiesel, cellulosic sugars, and peptides from the simultaneous esterification and alcoholysis/hydrolysis of materials with oil-containing substituents including phospholipids and peptidic content
JP2008260819A (ja) * 2007-04-11 2008-10-30 National Institute Of Advanced Industrial & Technology バイオディーゼル燃料の製造方法
WO2009002880A1 (en) * 2007-06-22 2008-12-31 Biofuelbox Corporation Vessels and methods for synthesis of biofuel
DE102007034621A1 (de) * 2007-07-25 2009-01-29 Lanxess Deutschland Gmbh Polyolreinigung
EP2219783B1 (en) * 2007-10-26 2017-10-11 Purolite International, Ltd. Controlled catalysis
WO2009060746A1 (ja) * 2007-11-05 2009-05-14 Tokyo Institute Of Technology 固体酸触媒による脂肪酸モノエステル化物の製造方法
FR2934263B1 (fr) * 2008-07-22 2012-10-19 Inst Francais Du Petrole Methode de suivi du percage de lit d'adsorbant dans un procede de production d'esters alkyliques a partir d'huile vegetale ou animale et d'un monoalcool aliphatique
JP4995249B2 (ja) 2008-11-21 2012-08-08 ローム アンド ハース カンパニー エステル交換プロセスのための改良された触媒
JP2012036337A (ja) * 2010-08-10 2012-02-23 Institute Of National Colleges Of Technology Japan 多段燃料合成装置および燃料合成方法
US8802878B2 (en) * 2010-09-14 2014-08-12 Kyent Chin Process for the production of fatty acid methyl esters from variable feedstock using heterogeneous catalysts
EP2578672A1 (de) 2011-09-14 2013-04-10 Stefan Ebner Verfahren zur Herstellung von Fettsäurealkylestern
GB201119871D0 (en) 2011-11-17 2011-12-28 Davy Process Techn Ltd Process
JP5186606B1 (ja) * 2012-05-30 2013-04-17 前田道路株式会社 バイオディーゼル燃料の製造方法
GB201218078D0 (en) 2012-10-09 2012-11-21 Davy Process Techn Ltd Process
JP6233032B2 (ja) * 2013-06-05 2017-11-22 デクセリアルズ株式会社 光学活性化合物の製造方法
US9328054B1 (en) 2013-09-27 2016-05-03 Travis Danner Method of alcoholisis of fatty acids and fatty acid gyicerides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349075A (en) * 1989-12-22 1994-09-20 Unilever Patent Holdings B.V. Continous esterification of carboxylic and fatty acids in the absense of a catalyst

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2093695A (en) * 1933-05-13 1937-09-21 Du Pont Process for the preparation of carboxylic acid esters
US2381055A (en) * 1943-05-18 1945-08-07 Us Ind Chemicals Inc Purification of glycerin
GB782480A (en) * 1954-10-26 1957-09-04 Olin Mathieson Method of producing mono-esters of monocarboxylic acids with di- or tri-hydric alcohols
ATE25264T1 (de) * 1981-07-20 1987-02-15 Henkel Kgaa Verfahren zur herstellung von fettsaeurealkylestern mit verbesserter verarbeitbarkeit.
DE3501761A1 (de) * 1985-01-21 1986-07-24 Henkel KGaA, 4000 Düsseldorf Verfahren zur vorveresterung freier fettsaeuren in rohfetten und/oder -oelen
WO1987007632A1 (en) * 1986-06-11 1987-12-17 Bio-Energy Technology Ltd. Bio-fuel production
US5166410A (en) * 1991-11-25 1992-11-24 Shell Oil Company Preparation of carboxylic acid esters
DE19739293C2 (de) * 1997-09-08 1999-08-19 Hechinger Helmut Gmbh & Co Statoreinrichtung für einen elektrisch kommutierten Gleichstrommotor
CN1117063C (zh) * 1997-11-24 2003-08-06 能源环境技术股份有限公司 生产脂肪酸甲酯的方法及其生产设备
WO2000005327A1 (en) * 1998-07-24 2000-02-03 Lockheed Martin Idaho Technologies Company A process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium
US6175037B1 (en) * 1998-10-09 2001-01-16 Ucb, S.A. Process for the preparation of (meth)acrylate esters and polyester (meth)acrylates using microwave energy as a heating source
US6712867B1 (en) * 1999-08-18 2004-03-30 Biox Corporation Process for production of fatty acid methyl esters from fatty acid triglycerides
JP3690951B2 (ja) * 1999-12-22 2005-08-31 日清オイリオグループ株式会社 油脂のエステル交換反応方法
HU0104786D0 (en) * 2001-11-08 2002-01-28 Kovacs Andras Dr Method for producing of vegetable oil-methyl-esther
JP4278910B2 (ja) * 2002-03-13 2009-06-17 花王株式会社 エステルの製造法
CN1412278A (zh) * 2002-11-04 2003-04-23 宋庭礼 用高酸值废动植物油生产生物柴油的方法
CA2507329A1 (en) * 2002-11-27 2004-06-10 Biodiesel Australia Ltd Method for production of alkyl esters
CN1580218A (zh) * 2003-08-06 2005-02-16 重庆正和生物能源有限公司 以动植物油脂为原料连续法制备脂肪酸短链酯的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349075A (en) * 1989-12-22 1994-09-20 Unilever Patent Holdings B.V. Continous esterification of carboxylic and fatty acids in the absense of a catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
USMANI ET AL: "Porous Ureau/Formaldehyde Polymers", JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH, vol. 39, no. 10, 1980, pages 555 - 562, XP002991724 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1976611A2 (en) * 2006-01-11 2008-10-08 Archer-Daniels-Midland Company Simultaneous synthesis and purification of a fatty acid monoester biodiesel fuel
EP1976611A4 (en) * 2006-01-11 2011-08-17 Archer Daniels Midland Co SIMULTANEOUS SYNTHESIS AND PURIFICATION OF FATTY ACID MONOESTER BIODIESEL FUELS
WO2008078769A1 (ja) * 2006-12-27 2008-07-03 Lion Corporation 脂肪酸低級アルキルエステルの製造方法
JP2013503947A (ja) * 2009-09-04 2013-02-04 エクソンモービル リサーチ アンド エンジニアリング カンパニー 植物油のエステル交換アルコキシル化からの安定なアルコキシル化脂肪酸アルキルエステル

Also Published As

Publication number Publication date
TW200619375A (en) 2006-06-16
CN1984983B (zh) 2010-06-09
EP1785478A4 (en) 2009-08-19
TWI384064B (zh) 2013-02-01
EP1785478B1 (en) 2013-02-20
CN1984983A (zh) 2007-06-20
EP1785478A1 (en) 2007-05-16
JP4515840B2 (ja) 2010-08-04
JP2006028270A (ja) 2006-02-02
US7488837B2 (en) 2009-02-10
US20080045732A1 (en) 2008-02-21
DK1785478T3 (da) 2013-04-08

Similar Documents

Publication Publication Date Title
WO2006006393A1 (ja) 脂肪酸アルキルエステルの製造方法
Veljković et al. Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification
Marinković et al. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives
Gupta et al. An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production
Stojković et al. Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification
Islam et al. Advances in solid-catalytic and non-catalytic technologies for biodiesel production
JP5436435B2 (ja) バイオディーゼル産生のための固体触媒系
JP4184974B2 (ja) ディーゼル燃料用脂肪酸アルキルエステルの製造方法
JP2008231345A (ja) バイオディーゼル燃料の製造方法
Meloni et al. Transesterification of soybean oil on guanidine base-functionalized SBA-15 catalysts
Hussain et al. Synthesis and characterization of novel corncob-based solid acid catalyst for biodiesel production
JP4198663B2 (ja) 脂肪酸エステルの製造方法
JP2008178871A (ja) 強塩基性陰イオン交換樹脂の再生方法
Shah et al. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
JP3530884B2 (ja) 廃食油からのディーゼル燃料油の製造方法
JP4078383B1 (ja) バイオディーゼル燃料の製造方法
Ghosh et al. Current advances and future outlook of heterogeneous catalytic transesterification towards biodiesel production from waste cooking oil
JP4617379B2 (ja) 脂肪酸アルキルエステルの製造方法、並びにその製造システム
JP5167110B2 (ja) バイオディーゼル製造用触媒とその製造方法並びにバイオディーゼルの製造方法
JP2007297611A (ja) 脂肪酸エステルの製造方法
Banga et al. Optimization of parameters for purification of jatropha curcas based biodiesel using organic adsorbents
JP2009203343A (ja) 脂肪酸エステルの製造方法
JP5066325B2 (ja) 脂肪酸アルキルエステルの製造方法
Alhanif et al. Preparation and characterization of cao catalyst-Polyethersulfone (PES) membrane for biodiesel production and purification
Fabian Dry washing of ethanolic biodiesel through adsorption processes using adsorbents obtained from walnut shell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12007500083

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2005765370

Country of ref document: EP

Ref document number: 11632171

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580023751.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1200700320

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 2005765370

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632171

Country of ref document: US