WO2005122320A1 - 光電変換材料、光電変換素子および光電気化学電池 - Google Patents

光電変換材料、光電変換素子および光電気化学電池 Download PDF

Info

Publication number
WO2005122320A1
WO2005122320A1 PCT/JP2005/010572 JP2005010572W WO2005122320A1 WO 2005122320 A1 WO2005122320 A1 WO 2005122320A1 JP 2005010572 W JP2005010572 W JP 2005010572W WO 2005122320 A1 WO2005122320 A1 WO 2005122320A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
substituent
group
general formula
photoelectric conversion
Prior art date
Application number
PCT/JP2005/010572
Other languages
English (en)
French (fr)
Inventor
Ikuo Shimizu
Masanori Ikuta
Shigeaki Kato
Yutaka Osedo
Original Assignee
Kyowa Hakko Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Chemical Co., Ltd. filed Critical Kyowa Hakko Chemical Co., Ltd.
Priority to JP2006514558A priority Critical patent/JPWO2005122320A1/ja
Publication of WO2005122320A1 publication Critical patent/WO2005122320A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/007Squaraine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • Photoelectric conversion material photoelectric conversion element, and photoelectrochemical cell
  • the present invention relates to a photoelectric conversion material, a photoelectric conversion element, and a photoelectrochemical cell using the same.
  • This battery is a wet solar cell using a ruthenium complex as a photosensitizer and a titanium dioxide porous thin film as a working electrode (for example, see Patent Document 1 and Non-Patent Document 1).
  • a ruthenium complex of the sensitizing dye is expensive, the development of a photoelectric conversion element sensitized by an inexpensive organic dye is desired.
  • Patent Document 1 U.S. Pat.No. 4,927,721
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-86916
  • Patent Document 3 European Patent No. 911841
  • Patent Document 4 JP 2001-76773 A
  • Non-Patent Document 1 “Nature”, 1991, Vol. 353, ⁇ ⁇ 737—740 Disclosure of the invention
  • An object of the present invention is to provide a photoelectric conversion element which is inexpensive and has high energy conversion efficiency, a photoelectrochemical cell using the same, and the like.
  • the present invention provides the following (1) to (6).
  • R 1 and R 2 are the same or different and each represent a hydrogen atom, an alkyl group which may have a substituent, a substituted or unsubstituted group, an aryl group or a substituent.
  • R 1 and R 2 together with an adjacent nitrogen atom form a heterocyclic ring which may have a substituent
  • R 3 , R 3 , R 5 and R 6 are the same or different and each represent a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, a hydroxyl group, or a halogen atom
  • 1 and R 3 or R 2 and R 4 may be taken together with the adjacent N—C—C to form a heterocyclic ring which may have a substituent.
  • R 7 represents an alkyl group which may have a substituent, an aryl group which may have a substituent, or a halogen atom
  • m represents an integer of 0 to 4
  • m represents In the case of 2 to 4, each R 7 may be the same or different, and R 8 and R 9 may be the same or different and are a hydrogen atom, an alkyl group which may have a substituent, Represents an aralkyl group which may have a substituent or an aralkyl group which may have a substituent), or a group represented by the general formula (IV)
  • R 1, R 2, R lb and R 17 are the same or different and each represent a hydrogen atom, an alkyl group optionally having a substituent, an aralkyl group optionally having a substituent, or a substituent.
  • R 12 , R 13 , R 14 , R 15 , R 18 , R 19 , R 20, and R 21 are the same or different and have a hydrogen atom or a substituent.
  • R, R 2 , R 3 , R 5 and R 6 each have the same meaning as defined above, and a photoelectric conversion material comprising a squarylium compound represented by the formula) and a semiconductor.
  • a photoelectric conversion material comprising: a squarylium compound represented by the formula:
  • squarylium compound represented by the general formula (I) is sometimes referred to as a squarylium compound (I).
  • a photoelectric conversion element having low cost and high energy conversion efficiency, a photoelectrochemical cell using the same, and the like are provided.
  • examples of the alkyl moiety in the alkyl group and the alkoxyl group include a linear or branched alkyl group having 1 to 6 carbon atoms or a cyclic group having 3 to 8 carbon atoms.
  • examples of the alkyl group include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, and 1-methylbutyl.
  • aralkyl group examples include an aralkyl group having 7 to 15 carbon atoms, and specific examples thereof include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
  • aryl group examples include an aryl group having 6 to 14 carbon atoms, and specific examples thereof include a phenyl group, a naphthyl group, an anthryl group, and an azulenyl group.
  • halogen atom examples include a chlorine atom, a bromine atom, a fluorine atom and an iodine atom.
  • heterocyclic ring formed by R 1 and R 2 together with an adjacent nitrogen atom examples include, for example, a 5- or 6-membered monocyclic heterocyclic ring containing at least one nitrogen atom (the monocyclic heterocyclic ring).
  • a heterocyclic ring may contain another nitrogen, oxygen or sulfur atom), a bicyclic or tricyclic condensed heterocyclic ring containing at least one nitrogen atom fused with a 3- to 8-membered ring.
  • Ring (the condensed heterocyclic ring may contain another nitrogen atom, oxygen atom or sulfur atom) and the like. Specific examples thereof include a pyrrolidine ring, a piperidine ring, and a piperazine ring.
  • the heterocyclic ring formed by R 1 and R 3 or R 2 and R 4 together with N—C—C adjacent to each other is, for example, a 5-membered member containing at least one nitrogen atom.
  • a 6-membered monocyclic heterocyclic ring (the monocyclic heterocyclic ring may contain another nitrogen atom, oxygen atom or sulfur atom), or a bicyclic or tricyclic ring condensed with a 3- to 8-membered ring
  • a condensed heterocyclic ring containing at least one nitrogen atom (the condensed heterocyclic ring may contain another nitrogen atom, oxygen atom or sulfur atom) and the like.
  • Examples include a pyrroline ring, a 1,2,3,4-tetrahydropyridine ring, a 1,2,3,4-tetrahydrovirazine ring, and a 2,3-dihydrono ⁇ .
  • Examples include a laoxazine ring, a 2,3-dihydro-1,4-thiazine ring, a tetrahydroazepine ring, a tetrahydrodazepine ring, a tetrahydroquinoline ring, a tetrahydroisoquinoline ring, a pyrrole ring, an imidazole ring, a pyrazole ring, and an indole ring.
  • Examples of the hydrocarbon ring formed by combining C_C_C_C_C at which R 15 and R 2 ° are adjacent to each other include those having 5 to 7 carbon atoms, and specific examples thereof include cyclopentane And a benzene ring, a cyclohexadiene ring, a cyclohexadiene ring and the like.
  • substituents of the heterocyclic ring formed together with are the same or different:!
  • substituents specifically, a hydroxyl group, a carboxyl group, a sulfo group, a phosphono acid group
  • the halogen atom, the alkyl group and the alkoxy group each have the same meaning as described above, and the alkyl portion of the alkyl-substituted amino group has the same meaning as the above-mentioned alkyl group.
  • Examples of the substituent of the alkyl group and the alkoxyl group include the same or different:! To 3 substituents, specifically, a hydroxyl group, a carboxyl group, a sulfo group, a phosphono group, a halogen atom, an alkoxyl group. And the like.
  • the halogen atom and the alkoxyl group are as defined above.
  • the squarylium compound (I) can be produced by a known method (WO01 / 44233 and the like) or according to them.
  • squarylium compound (I) of the present invention Specific examples are shown in Table 1.
  • the squarylium compound (I) of the present invention is not limited thereto.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group.
  • the photoelectric conversion material of the present invention contains a squarylium compound (I) and a semiconductor.
  • the photoelectric conversion element of the present invention comprises a conductive support, a semiconductor thin-film electrode made of a semiconductor sensitized by the square compound (I) provided on the conductive support, a charge transfer layer, a counter electrode, and the like. You.
  • the photoelectrochemical cell of the present invention is such that the photoelectric conversion element can be used in a battery application for performing work in an external circuit. That is, the photoelectrochemical battery of the present invention allows an external circuit connected to the conductive support and the counter electrode of the photoelectric conversion element of the present invention via a lead to perform work.
  • the side surface of the photoelectrochemical cell is sealed with a polymer, an adhesive, or the like in order to prevent deterioration of components and volatilization of the electrolyte used for the charge transfer layer.
  • the semiconductor used for the photoelectric conversion material is a so-called photoreceptor, which plays a role of absorbing light and being separated into charges and generating electrons and holes. In a semiconductor sensitized by the squarylium compound (I), light absorption and the resulting generation of electrons and holes are mainly caused by the squarylium compound (I).
  • the semiconductor is responsible for receiving and transmitting this electron.
  • the semiconductor is not particularly limited.
  • a single semiconductor such as titanium oxide, indium oxide, tin oxide, bismuth oxide, zirconium oxide, tantalum oxide, niobium oxide, tandatin oxide, iron oxide, gallium oxide, and nickel oxide can be used.
  • Complex oxides such as monometal oxides, strontium titanate, barium titanate, potassium niobate, and sodium tantalate; metal halides such as silver iodide, silver bromide, copper iodide, and copper bromide; zinc sulfide , Titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, silver sulfide, tin sulfide, tungsten sulfide, molybdenum sulfide, selenium cadmium, dinoleconium selenide, zinc selenide, titanium selenide, Indium selenide, tungsten selenide, molybdenum selenide, Ren bismuth, cadmium telluride, tellurium, tungsten, tellurium, molybdenum, zinc telluride, chalcogen
  • the above semiconductors are used alone or in combination of two or more.
  • Semiconductor thin films can be manufactured using the above-mentioned semiconductors, which are preferably compound semiconductors having a nanoporous structure composed of nanoparticles [Journal of American 'Ceramic' Society (Journal of American Ceramic Society) ”, 1997, Vol. 80, No. 12, p. 3157].
  • the semiconductor thin film electrode used in the photoelectric conversion element of the present invention is, for example, a transparent electrode is prepared as a conductive support, a semiconductor thin film is laminated thereon, and the squarylium compound ( It can be produced by adsorbing I).
  • any conductive material may be used.
  • a transparent or translucent glass substrate or a plastic plate may be formed on a transparent or translucent glass substrate or a plastic plate, such as fluorine- or antimony-doped tin oxide, tin-doped indium oxide, or zinc oxide.
  • a conductive transparent oxide semiconductor thin film preferably one coated with a fluorine-doped tin oxide thin film or the like is used.
  • Examples of a method of placing the compound semiconductor on the conductive support include a method of applying a dispersion or colloid solution of the compound semiconductor on the conductive support, and the like. Method, dip method, air knife method, blade method, spin method, spray method and the like.
  • the compound semiconductor is preferably subjected to a heat treatment in order to electronically contact the semiconductor fine particles after application to the conductive support, and to improve the strength of the coating film and the adhesion to the support. Les ,.
  • the preferred range of the heat treatment temperature is 100 to 600 ° C.
  • the heat treatment time is 10 minutes to 10 hours. If a conductive support with a low melting point or softening point such as a polymer film is used, high-temperature treatment will cause deterioration of the support, so use small semiconductor particles of 5 nm or less together.
  • ⁇ Heat treatment in the presence of mineral acid A method in which a mixture of a dispersion or colloidal solution of a compound semiconductor and a titanium salt (for example, titanium tetrachloride) is applied to a conductive support and then subjected to hydrothermal treatment, and the compound semiconductor is treated with a polar organic solvent (for example, tert. —Butanol, etc.) and electrophoretic deposition by electrophoresis; applying a dispersion or colloidal solution of a compound semiconductor to a conductive support; and pressing under a pressure of about 98070 kPa; After applying the dispersion or colloidal solution to the conductive support, a method of irradiating a microwave of about 28 GHz or the like is used.
  • the thickness of the semiconductor thin film is preferably 0.1 to 100 / im, more preferably 2 to 25 / im.
  • the adsorption of the squarylium compound (I) onto the semiconductor thin film is carried out by immersing the semiconductor thin film applied to the support in a squarylium compound (I) solution, at room temperature for 1 minute to 2 days, or under heating conditions. It can be performed by leaving it for 1 minute to 24 hours.
  • the solvent used when the squarylium compound (I) is adsorbed on the semiconductor thin film is not particularly limited as long as it dissolves the squarylium compound (I). Examples thereof include alcohol solvents such as methanol and ethanol, and benzene. Examples thereof include hydrocarbon solvents, organic solvents such as tetrahydrofuran, and acetonitrile, and the like.
  • a mixed solvent thereof is also preferable, and acetonitrile and the like are preferable.
  • the concentration of the squarylium compound (I) solution is preferably 0.1 Olmmol / 1 or more. More preferably, it is mmol / 1.
  • a squarylium compound (I) and a known dye for example, a ruthenium complex dye, another organic dye (for example, a polymethine dye) or the like is used. You may use together.
  • a steroid compound having a carboxy group for example, chenodeoxycholic acid
  • an ultraviolet absorber may be used in combination.
  • the charge transfer layer is a layer having a function of replenishing the oxidized form of the squarylium compound (I) with electrons.
  • the squarylium compound (I) that has absorbed light emits electrons by a sensitizing effect. Converted to oxidized form].
  • Examples of the charge transfer layer used in the photoelectric conversion device of the present invention include a liquid (electrolyte solution) in which a redox ion pair is dissolved in an organic solvent, a gel electrolyte in which a liquid in which a reddots ion pair is dissolved in an organic solvent, and a polymer, Examples include a molten salt containing a redox ion pair, a solid electrolyte, an inorganic compound semiconductor, and an organic hole transport material.
  • Examples of the redox ion pair include iodine redox, bromine redox, iron redox, tin redox, chromium redox, vanadium redox, sulfide ion redox, and anthraquinone redox. .
  • iodine redox a mixture of iodine with an imidazolym iodide derivative, lithium iodide, potassium iodide, a tetraalkylammonium iodide salt, and the like
  • bromine redox an imidazolyl bromide derivative
  • bromine redox an imidazolyl bromide derivative
  • bromine redox an imidazolyl bromide derivative
  • mixtures of bromine with lithium bromide, potassium bromide, tetraalkylammonium bromide salts and the like a mixture of lithium iodide, an imidazonium iodide derivative and the like and iodine is preferred.
  • the organic solvent that dissolves the redox ion pair is not limited as long as it is a solvent that is stable and dissolves the redox ion pair.
  • acetonitrile, methoxyacetonitrile, propionitrile, methoxypropionyl Organic solvents such as tolyl, ethylene carbonate, propylene carbonate, dimethylsulfoxide, dimethylformamide, tetrahydrofuran, nitromethane, etc., may be used.A mixture of these solvents may be used, and acetonitrile, methoxyacetonitrile, propionitrile, methyl Toxipropionitrile and the like.
  • Redox ion pair concentration in the electrolyte The degree is preferably 0.01 to 5.0 mol / l, more preferably 0.05 to: 1. Omol / 1.
  • the electrolytic solution may contain a basic compound such as tert-butylpyridine, 2-picoline, or 2,6-lutidine.
  • concentration of the basic compound is preferably from 0.01 to 5. Omol / 1, more preferably from 0 :! to 1. OmolZl.
  • Examples of the polymer used for the gel electrolyte include polyacrylonitrile and polyvinylidene fluoride.
  • Examples of the molten salt include 1-butyl-3-methylpyridinium iodide, 1-butyl-3-methyl-imidazolidimoxide, lithium iodide, lithium acetate, lithium perchlorate and the like. Titanium salts and the like, and a polymer such as polyethylene oxide may be mixed with them to increase the fluidity at room temperature.
  • solid electrolyte examples include polymers such as polyethylene oxide derivatives.
  • Examples of the inorganic compound semiconductor include copper iodide, copper bromide, copper thiocyanate and the like.
  • the inorganic compound semiconductor may contain a molten salt such as triethylammonium thiocyanate.
  • organic hole transport material examples include a polythiophene derivative and a polypyrrole derivative.
  • a titanium dioxide thin film may be applied as an undercoat layer (short-circuit prevention layer) using a technique such as spray pyrolysis to prevent a short circuit.
  • a normal pressure process utilizing the capillary phenomenon and a vacuum process of replacing the gas phase with a liquid phase at a pressure lower than normal pressure can be used.
  • the wet charge transfer layer is provided with a counter electrode in an undried state, and measures are taken to prevent liquid leakage at the edge.
  • a gel electrolyte there is also a method of applying by wet method and immobilizing by a method such as polymerization. In such a case, the gel electrolyte is dried and then immobilized. A pole can also be provided.
  • the method of applying the electrolytic solution, the wet organic hole transport material or the gel electrolyte includes the immersion method, the roller method, the dipping method, the air knife method, the blade method, and the spinning method as in the case of applying the semiconductor thin film electrode and the dye.
  • Method and spray method In the case of solid electrolytes, inorganic compound semiconductors, or solid organic hole transporting materials, these are dissolved in a solvent or the like and dropped on a heated semiconductor thin film electrode, and the solvent is evaporated on the semiconductor thin film electrode to dryness.
  • a counter electrode can be provided after the solidified charge transfer layer is formed or the charge transfer layer is formed by a dry film forming process such as a vacuum evaporation method or a CVD method (chemical vapor deposition method).
  • Examples of the counter electrode used in the photoelectric conversion element of the present invention include platinum, rhodium, ruthenium, carbon, and oxide semiconductor electrodes coated in a thin film on a conductive substrate. Platinum, carbon electrode, etc. coated in a thin film on a conductive substrate are preferred.
  • the photoelectric conversion element of the present invention there is no limitation as long as it prevents contact between the semiconductor thin film electrode and the counter electrode, which can be performed by using a spacer.
  • a polymer film such as polyethylene is used. .
  • the squarylium compound (I) used in the present invention is inexpensive.
  • a transparent conductive glass manufactured by Nippon Sheet Glass, surface resistance is about 15 ⁇ / cm 2
  • fluorine-doped tin oxide has a titanium dioxide paste (manufactured by Solaronix, SA
  • Ti-Nanoxide T was applied using a glass rod, dried at room temperature for 30 minutes, and baked in an electric furnace at 450 ° C for 30 minutes. The thickness of the titanium dioxide was 10 ⁇ m. After the glass was taken out and cooled, it was immersed in an acetonitrile solution of compound (1) (0.1 mmol Zl) at 75 ° C for 30 minutes. The dye-adsorbed glass was washed with acetonitrile and air-dried.
  • the titanium dioxide electrode substrate (1cm x 3cm) prepared as described above was overlaid with platinum-evaporated glass of the same size.
  • the electrolyte solution acetonitrile solution containing 0.05 mol / l of iodine, 0.1 mol / l of lithium iodide, 0.62 mol / l of dimethylpropylimidazolyl iodine, and 0.5 mol / l of tert-butylpyridine
  • This photoelectrochemical cell was irradiated with 100 mW / cm 2 simulated sunlight using a 500 W xenon short arc lamp (manufactured by Shio Electric), and its characteristics were evaluated using an IV curve tracer (manufactured by Eiko Seiki). .
  • the characteristics of the photoelectrochemical cell obtained were as follows: short-circuit current density 4.70 mA / cm 2 , open-circuit voltage 0.59 V, form factor (fill fatter) 0.54, and energy conversion efficiency 1.5%. .
  • a transparent conductive glass manufactured by Nippon Sheet Glass, surface resistance is about 15 Q / cm 2
  • fluorine-doped tin oxide has a titanium dioxide paste (manufactured by Solaronix, SA
  • Ti-Nanoxide T was applied using a glass rod, dried at room temperature for 30 minutes, and baked in an electric furnace at 450 ° C for 30 minutes. The thickness of the titanium dioxide was 10 ⁇ . After the glass was taken out and cooled, it was immersed in an acetonitrile solution of compound (2) (0.1 mmol / 1) at 75 ° C for 30 minutes. The dye-adsorbed glass was washed with acetonitrile and air-dried.
  • the titanium dioxide electrode substrate (lcm x 3cm) prepared as described above was superimposed on platinum-evaporated glass of the same size.
  • the electrolyte solution acetonitrile solution containing 0.05 mol / l of iodine, 0.1 mol / l of lithium iodide, 0.62 mol / l of dimethylpropylimidazolyl iodine, and 0.5 mol / l of tert-butylpyridine
  • a photoelectrochemical cell was obtained by introducing the gap between the two glasses between the titanium dioxide electrode and the counter electrode by utilizing the capillary phenomenon.
  • This photoelectrochemical cell was irradiated with 100 mW / cm 2 simulated sunlight using a 500 W xenon short arc lamp (manufactured by Shio Electric), and its characteristics were evaluated using an IV curve tracer (manufactured by Eiko Seiki). .
  • the characteristics of the photoelectrochemical cell obtained were a short circuit current density of 6.15 mA / cm 2 , an open circuit voltage of 0.57 V, a form factor (fill film) of 0.55, and an energy conversion efficiency of 1.9%. .
  • a transparent conductive glass manufactured by Nippon Sheet Glass, surface resistance is about 15 Q / cm 2
  • fluorine-doped tin oxide has a titanium dioxide paste (manufactured by Solaronix, SA) on the conductive surface side.
  • Ti-Nanoxide T was applied using a glass rod, dried at room temperature for 30 minutes, and baked in an electric furnace at 450 ° C for 30 minutes. The thickness of the titanium dioxide was 10 ⁇ . After the glass is taken out and cooled, it is added to a solution of compound (3) in acetonitrile (0.1 mmole) at 75 ° C for 30 minutes. Soak for minutes. The dye-adsorbed glass was washed with acetonitrile and air-dried.
  • the titanium dioxide electrode substrate (1 cm ⁇ 3 cm) prepared as described above was superimposed on a platinum-deposited glass of the same size.
  • an electrolytic solution acetonitrile solution containing 0.05 mol / l of iodine, 0.1 mol / l of lithium iodide, 0.62 mol of dimethylpropylimidazolyl iodine and 0.5 mol / l of tert-butylpyridine
  • the photoelectrochemical cell was obtained by introducing into the titanium dioxide electrode and between the counter electrodes by utilizing the capillary phenomenon in the gap between the electrodes.
  • the photoelectrochemical cell was irradiated with a 500 W xenon short arc lamp (manufactured by Shio Denki), simulated sunlight of 100 mWZcm 2 , and its characteristics were evaluated with an IV curve tracer (manufactured by Eiko Seiki).
  • the characteristics of the photoelectrochemical cell obtained were as follows: short-circuit current density 6.54 mA / cm 2 , open-circuit voltage 0.58 V, form factor (one fill factor) 0.56, and energy conversion efficiency 2.2%.
  • a photoelectric conversion element having low cost and high energy conversion efficiency, a photoelectrochemical cell using the same, and the like are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

明 細 書
光電変換材料、光電変換素子および光電気化学電池
技術分野
[0001] 本発明は、光電変換材料、光電変換素子およびこれらを用いた光電気化学電池に 関する。
背景技術
[0002] 太陽光発電においては単結晶シリコン太陽電池、多結晶シリコン太陽電池、ァモル ファスシリコン太陽電池等の太陽電池が実用化もしくは主な研究開発の対象となって いるが、普及させる上で製造コスト、原材料確保等の問題点を克服する必要がある。 一方、フィルム化や低価格化を指向した有機材料を用いた太陽電池もこれまでに多 く提案されているが、エネルギー変換効率が低ぐ耐久性も悪いという問題があった。 こうした状況の中で、色素によって増感された半導体薄膜電極を用いた光電変換素 子および光電気化学電池、ならびにこれらを作成するための材料および製造技術が 知られている。この電池はルテニウム錯体を光増感剤とし、二酸化チタン多孔質薄膜 を作用電極とする湿式太陽電池である (例えば、特許文献 1、非特許文献 1参照)。し 力、しながら、増感色素のルテニウム錯体が高価なことから、安価な有機色素によって 増感される光電変換素子の開発が望まれている。
[0003] また、増感色素として有機色素を用いる試みも行われている力 エネルギー変換効 率が低い等の問題があり、実用上満足されるものではなレ、(例えば、特許文献 2、特 許文献 3参照)。
また、スクアリン酸誘導体を光電変換素子に使用することが知られている(例えば、 特許文献 4参照)。
特許文献 1 :米国特許第 4927721号明細書
特許文献 2:特開平 11 86916号公報
特許文献 3 :欧州特許第 911841号明細書
特許文献 4 :特開 2001— 76773号公報
非特許文献 1:「ネイチヤー(Nature)」、 1991年、第 353卷、 ρ· 737— 740 発明の開示
発明が解決しょうとする課題
[0004] 本発明の目的は、安価かつ高いエネルギー変換効率を有する光電変換素子、そ れを用いた光電気化学電池等を提供することである。
課題を解決するための手段
[0005] 本発明は、以下の(1)〜(6)を提供する。
(1)一般式 (I)
[0006] [化 1]
Figure imgf000004_0001
〔式中、 Aは、一般式 (II)
[0007] [化 2]
Figure imgf000004_0002
(式中、 R1および R2は同一または異なって、水素原子、置換基を有していてもよいァ ルキル基、置換基を有してレ、てもよレ、ァリール基または置換基を有してレ、てもよレヽァ ラルキル基を表す力、、 R1および R2が隣接する窒素原子と一緒になつて置換基を有し ていてもよい複素環を形成し、 R3
Figure imgf000004_0003
R5および R6は同一または異なって、水素原 子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシノレ 基、ヒドロキシル基、またはハロゲン原子を表し、 R1および R3、または R2および R4は それぞれが隣接する N— C— Cと一緒になつて、置換基を有していてもよい複素環を 形成してもよい)で表される基、一般式 (III)
[0008] [化 3]
Figure imgf000004_0004
(式中、 R7は置換基を有していてもよいアルキル基、置換基を有していてもよいァリー ル基、またはハロゲン原子を表し、 mは 0から 4の整数を表し、 mが 2から 4の場合、そ れぞれの R7は同一でも異なっていてもよぐ R8および R9は同一または異なって、水素 原子、置換基を有していてもよいアルキル基、置換基を有していてもよいァラルキル 基、または置換基を有していてもよいァリール基を表す)で表される基、または一般式 (IV)
[0009] [化 4]
Figure imgf000005_0001
(式中、 R , R , Rlbおよび R17は同一または異なって、水素原子、置換基を有して いてもよいアルキル基、置換基を有していてもよいァラルキル基、または置換基を有 していてもよいァリール基を表し、 R12、 R13、 R14、 R15、 R18、 R19、 R20および R21は同 一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有し ていてもよいアルコキシル基、ヒドロキシル基、またはハロゲン原子を表し、 R15および R2°は隣接する C_C_C_C_Cと一緒になつて、炭化水素環を形成してもよい)で 表される基を表す〕で表されるスクァリリウム化合物と半導体とを含む光電変換材料。
(2)—般式 (la)
[0010] [化 5]
Figure imgf000005_0002
〔式中、 Aは、一般式 (II)
1
[0011] [化 6]
Figure imgf000006_0001
(式中、 R、 R2、 R3
Figure imgf000006_0002
R5および R6は、それぞれ前記と同義である)で表される基を 表す)で表されるスクァリリウム化合物と半導体とを含む光電変換材料。
(3)—般式 (lb)
[0012] [化 7]
Figure imgf000006_0003
〔式中、 Aは、一般式 (III)
[0013] [化 8]
( 1 1 1;
Figure imgf000006_0004
(式中、 R7、 R8、 R9および mは、それぞれ前記と同義である)で表される基を表す]で 表されるスクァリリウム化合物と半導体とを含む光電変換材料。
(4)一般式 (Ic)
[0014] [化 9]
(Ic)
Figure imgf000006_0005
〔式中、 Aは、一般式(IV)
3
[0015] [化 10]
Figure imgf000007_0001
(式中、 R10、 R"、 R12、 R13、 R"、 R15、 R16、 R17、 R18、 R19、 R2°および R21は、それぞ れ前記と同義である)で表される基を表す]で表されるスクァリリウム化合物と半導体と を含む光電変換材料。
(5) (1)〜(4)のいずれかに記載の光電変換材料を用いた光電変換素子。
(6) (5)記載の光電変換素子を含有する光電気化学電池。
以下、一般式 (I)で表されるスクァリリウム化合物をスクァリリウム化合物 (I)と表現す ることちある。
発明の効果
[0016] 本発明により、安価かつ高いエネルギー変換効率を有する光電変換素子、それを 用いた光電気化学電池等が提供される。
発明を実施するための最良の形態
[0017] 前記の一般式における各基の定義において、アルキル基およびアルコキシル基に おけるアルキル部分としては、例えば、直鎖または分岐状の炭素数 1〜6のアルキル 基または炭素数 3〜8の環状アルキル基があげられ、その具体例としては、メチル基 、ェチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 sec-ブチル基、 t ert-ブチル基、ペンチル基、イソペンチル基、 1-メチルブチル基、 2-メチルブチル基 、 tert-ペンチル基、へキシル基、シクロプロピル基、シクロブチル基、シクロペンチル 基、シクロへキシル基、シクロへプチル基、シクロォクチル基等があげられる。 [0018] ァラルキル基としては、例えば、炭素数 7〜: 15のァラルキル基があげられ、その具 体例としては、ベンジル基、フエネチル基、フエニルプロピル基、ナフチルメチル基等 があげられる。
ァリール基としては、例えば、炭素数 6〜: 14のァリール基があげられ、その具体例と しては、フエニル基、ナフチル基、アントリル基、ァズレニル基等があげられる。
[0019] ハロゲン原子としては、塩素原子、臭素原子、フッ素原子およびヨウ素原子があげ られる。
R1および R2が隣接する窒素原子と一緒になつて形成される複素環としては、例え ば、少なくとも 1個の窒素原子を含む 5員または 6員の単環性複素環 (該単環性複素 環は、他の窒素原子、酸素原子または硫黄原子を含んでいてもよい)、 3〜8員の環 が縮合した二環または三環性で少なくとも 1個の窒素原子を含む縮環性複素環 (該 縮環性複素環は、他の窒素原子、酸素原子または硫黄原子を含んでいてもよい)等 があげられ、その具体例としては、ピロリジン環、ピぺリジン環、ピぺラジン環、モルホ リン環、チオモルホリン環、ホモピぺリジン環、ホモピぺラジン環、テトラヒドロピリジン 環、テトラヒドロキノリン環、テトラヒドロイソキノリン環、ピロール環、イミダゾール環、ピ ラゾール環、インドール環、インドリン環、イソインドール環等があげられる。
[0020] R1および R3、または R2および R4がそれぞれが隣接する N— C— Cと一緒になつて 形成される複素環としては、例えば、少なくとも 1個の窒素原子を含む 5員または 6員 の単環性複素環 (該単環性複素環は、他の窒素原子、酸素原子または硫黄原子を 含んでいてもよい)、 3〜8員の環が縮合した二環または三環性で少なくとも 1個の窒 素原子を含む縮環性複素環 (該縮環性複素環は、他の窒素原子、酸素原子または 硫黄原子を含んでいてもよい)等があげられ、その具体例としては、ピロリン環、 1 , 2 , 3, 4—テトラヒドロピリジン環、 1, 2, 3, 4—テトラヒドロビラジン環、 2, 3—ジヒドロノヽ。 ラオキサジン環、 2, 3—ジヒドロ一 1, 4 _チアジン環、テトラヒドロアゼピン環、テトラヒ ドロジァゼピン環、テトラヒドロキノリン環、テトラヒドロイソキノリン環、ピロール環、イミダ ゾール環、ピラゾール環、インドール環等があげられる。
[0021] R15および R2°が隣接する C_C_C_C_Cと一緒になつて形成される炭化水素環 としては、例えば、炭素数 5〜7のものがあげられ、その具体例としては、シクロペンタ ジェン環、シクロへキサジェン環、シクロへブタジエン環等があげられる。
ァラルキル基、ァリール基、 R1および R2が隣接する窒素原子と一緒になつて形成さ れる複素環、ならびに R1および R3、または R2および R4がそれぞれが隣接する N— C 一 Cと一緒になつて形成される複素環の置換基としては、例えば、同一または異なつ て:!〜 5個の置換基、具体的には、ヒドロキシル基、カルボキシル基、スルホ基、ホス ホノ酸基、ハロゲン原子、アルキル基、アルコキシル基、ニトロ基、アルキル置換また は非置換のアミノ基等があげられる。ハロゲン原子、アルキル基およびアルコキシノレ 基は、それぞれ前記と同義であり、アルキル置換アミノ基のアルキル部分は前記アル キル基と同義である。
[0022] アルキル基およびアルコキシル基の置換基としては、例えば、同一または異なって :!〜 3個の置換基、具体的には、ヒドロキシル基、カルボキシル基、スルホ基、ホスホノ 基、ハロゲン原子、アルコキシル基等があげられる。ハロゲン原子およびアルコキシ ル基は、それぞれ前記と同義である。
スクァリリウム化合物(I)は、公知の方法 (WO01/44233等)でまたはそれらに準じ て製造すること力できる。
[0023] 本発明のスクァリリウム化合物(I)の具体例を表 1に例示する力 本発明のスクァリリ ゥム化合物(I)は、これらに限定されるものではない。表 1中、 Meはメチル基、 Etはェ チル基、 Buはブチル基を表す。
[0024] [表 1]
Figure imgf000010_0001
次に、本発明の光電変換材料、光電変換素子および光電気化学電池について詳述 する。
本発明の光電変換材料は、スクァリリウム化合物 (I)と半導体とを含む。
本発明の光電変換素子は、導電性支持体、導電性支持体上に設置されるスクァリリ ゥム化合物 (I)により増感された半導体からなる半導体薄膜電極、電荷移動層、対極 等から構成される。この光電変換素子を外部回路で仕事をさせる電池用途に使用で きるようにしたものが本発明の光電気化学電池である。すなわち、本発明の光電気化 学電池は、本発明の光電変換素子の導電性支持体および対極にリードを介して接 続された外部回路に仕事をさせるようにしたものである。該光電気化学電池は構成 物の劣化や電荷移動層に用いられる電解液の揮散を防止するために、側面をポリマ 一、接着剤等で密封されているのが好ましい。 光電変換材料に用いる半導体はいわゆる感光体であり、光を吸収して電荷分離され 電子と正孔を生ずる役割を担う。スクァリリウム化合物 (I)により増感された半導体で は、光吸収およびこれによる電子および正孔の発生は主としてスクァリリウム化合物(I
)において起こり、半導体はこの電子を受け取り、伝達する役割を担う。
[0025] 半導体としては、特に限定されないが、例えば、酸化チタン、酸化インジウム、酸化 スズ、酸化ビスマス、酸化ジルコニウム、酸化タンタル、酸化ニオブ、酸化タンダステ ン、酸化鉄、酸化ガリウム、酸化ニッケル等の単一金属酸化物、チタン酸ストロンチウ ム、チタン酸バリウム、ニオブ酸カリウム、タンタル酸ナトリウム等の複合酸化物、ヨウ 化銀、臭化銀、ヨウ化銅、臭化銅等の金属ハロゲン化物、硫化亜鉛、硫化チタン、硫 ィ匕インジウム、硫化ビスマス、硫化カドミウム、硫化ジルコニウム、硫化タンタル、硫化 銀、硫化スズ、硫化タングステン、硫化モリブデン、セレンィ匕カドミウム、セレン化ジノレ コニゥム、セレン化亜鉛、セレン化チタン、セレン化インジウム、セレン化タングステン 、セレン化モリブデン、セレン化ビスマス、テルル化カドミウム、テルル化タングステン 、テルル化モリブデン、テルル化亜鉛、テルル化ビスマス等のカルコゲナイド化合物 等があげられる。
[0026] 前記の半導体は、単独でまたは二種類以上混合して用いられる。
半導体薄膜は、ナノ粒子からなるナノポーラス構造を有する化合物半導体であるの が好ましぐ前記にあげた半導体を用いて製造することができる [「ジャーナル 'ォブ' アメリカン 'セラミック'ソサイエティー (Journal of American Ceramic Society) 」、 1997年、第 80卷、第 12号、 p. 3157]。
[0027] 本発明の光電変換素子に使用される半導体薄膜電極は、例えば、導電性支持体 として透明電極を用意し、その上に半導体薄膜を積層し、その半導体薄膜に本発明 によるスクァリリウム化合物(I)を吸着させることにより製造することができる。
透明電極としては、導電性を有するものであればよぐ例えば、透明または半透明 のガラス基板やプラスチック板上に、例えば、フッ素またはアンチモンドープの酸化ス ズ、スズドープの酸化インジウム、酸化亜鉛等の導電性透明酸化物半導体薄膜をコ ートしたもの、好ましくは、フッ素ドープの酸化スズ薄膜をコートしたもの等が用いられ る。 [0028] 化合物半導体を導電性支持体上に設置する方法としては、例えば、前記化合物半 導体の分散液またはコロイド溶液を導電性支持体上に塗布する方法等があげられる 塗布方法としては、ローラ法、ディップ法、エアーナイフ法、ブレード法、スピン法、 スプレー法等があげられる。
化合物半導体は、導電性支持体に塗布した後に半導体微粒子同士を電子的にコ ンタタトさせるため、および塗膜強度の向上や支持体との密着性を向上させるために 、加熱処理することが好ましレ、。好ましい加熱処理温度の範囲は 100〜600°Cである 。また、加熱処理時間は 10分間〜 10時間である。ポリマーフィルム等の融点や軟化 点の低い導電性支持体を用いる場合は、高温処理は該支持体の劣化を招くため、 5 nm以下の小さい半導体微粒子の併用ゃ鉱酸の存在下での加熱処理を行う方法、 化合物半導体の分散液またはコロイド溶液とチタン塩 (例えば、四塩化チタン等)の 混合物を導電性支持体に塗布後、水熱処理を行う方法、化合物半導体を極性有機 溶媒 (例えば、 tert—ブタノール等)に分散させ、電気泳動により泳動電着を行う方 法、化合物半導体の分散液またはコロイド溶液を導電性支持体に塗布後、約 98070 kPaの圧力で加圧プレスする方法、化合物半導体の分散液またはコロイド溶液を導 電性支持体に塗布後、約 28GHzのマイクロ波を照射する方法等が用いられる。半導 体薄膜の膜厚は 0. 1〜: 100 /i mであるのが好ましぐより好ましくは 2〜25 /i mであ る。
[0029] スクァリリウム化合物(I)の半導体薄膜上への吸着は、スクァリリウム化合物(I)溶液 中に支持体に塗布された半導体薄膜を浸し、室温で 1分間〜 2日間、または加熱条 件下で 1分間〜 24時間放置することにより行うことができる。スクァリリウム化合物(I) を半導体薄膜上に吸着させる場合に用いる溶媒としては、スクァリリウム化合物 (I)を 溶解する溶媒であれば、特に限定されないが、例えば、メタノーノレ、エタノール等の アルコール溶媒、ベンゼン等の炭化水素溶媒、テトラヒドロフラン、ァセトニトリル等の 有機溶媒等があげられ、それらの混合溶媒を用いてもよぐ好ましくは、ァセトニトリル 等があげられる。スクァリリウム化合物 (I)を半導体薄膜上に吸着させる場合のスクァ リリウム化合物(I)溶液の濃度は 0. Olmmol/1以上であるのが好ましぐ 0. 1〜: 1. 0 mmol/1であるのがより好ましい。
[0030] 光電変換の波長域をできるだけ広くし、かつエネルギー変換効率を上げるため、ス クァリリウム化合物(I)と公知の色素、例えば、ルテニウム錯体色素、他の有機色素( 例えば、ポリメチン色素)等を併用してもよい。
また、会合等色素同士の相互作用を低減する目的でカルボキシノレ基を有するステ ロイド化合物 (例えば、ケノデォキシコール酸)等を半導体薄膜に共吸着させてもょレ、 。さらに、紫外線吸収剤を併用してもよい。
[0031] 電荷移動層は、スクァリリウム化合物(I)の酸化体に電子を補充する機能を有する 層である [光を吸収したスクァリリウム化合物(I)は増感作用によって、電子を放出す るため、酸化体に変換される]。
本発明の光電変換素子に使用される電荷移動層としては、例えば、レドックスィォ ン対を有機溶媒に溶解した液体 (電解液)、レドッタスイオン対を有機溶媒に溶解した 液体にポリマーを含浸したゲル電解質、レドックスイオン対を含有する溶融塩、固体 電解質、無機化合物半導体、有機正孔輸送材料等があげられる。
[0032] レドックスイオン対としては、例えば、ヨウ素レドックス、臭素レドックス、鉄レドックス、 スズレドックス、クロムレドックス、バナジウムレドックス、硫化物イオンレドックス、アント ラキノンレドックス等があげられる力 これらに限定されなレ、。より具体的には、ヨウ素 レドックスとしては、ヨウ化イミダゾリゥム誘導体、ヨウ化リチウム、ヨウ化カリウム、ヨウ化 テトラアルキルアンモニゥム塩等とヨウ素との混合物、また、臭素レドックスとしては、 臭化イミダゾリゥム誘導体、臭化リチウム、臭化カリウム、臭化テトラアルキルアンモニ ゥム塩等と臭素との混合物等があげられる。中でも、ヨウ化リチウム、ヨウ化イミダゾリウ ム誘導体等とヨウ素との混合物が好ましレ、。レドックスイオン対を溶解する有機溶媒と しては、安定でかつレドックスイオン対を溶解する溶媒ならば限定されなレ、が、例え ば、ァセトニトリル、メトキシァセトニトリル、プロピオ二トリル、メトキシプロピオ二トリル、 エチレンカーボネート、プロピレンカーボネート、ジメチルスルホキシド、ジメチルホル ムアミド、テトラヒドロフラン、ニトロメタン等の有機溶媒があげられ、それらの混合溶媒 を用いてもよぐ好ましくは、ァセトニトリル、メトキシァセトニトリル、プロピオ二トリル、メ トキシプロピオ二トリル等があげられる。前記電解液におけるレドックスイオン対の濃 度は、好ましくは 0. 01〜5. 0mol/l、より好ましくは、 0. 05〜: 1. Omol/1である。
[0033] 前記電解液は tert—ブチルピリジン、 2—ピコリン、 2, 6—ルチジン等の塩基性化 合物を含有していてもよい。塩基性化合物の濃度は、好ましくは 0. 01〜5. Omol/1 、より好ましくは 0.:!〜 1. OmolZlである。
ゲル電解質に使用されるポリマーとしては、ポリアクリロニトリル、ポリビニリデンフル オリド等があげられる。
[0034] 溶融塩としては、 1 _ブチル _ 3 _メチルピリジニゥムョーダイド、 1 _ブチル _ 3—メ チルイミダゾリゥムョーダイド、ヨウ化リチウム、酢酸リチウム、過塩素酸リチウム等のリ チウム塩等があげられ、これらにポリエチレンォキシド等のポリマーを混合することに より、室温での流動性を高めてもよい。
固体電解質としては、ポリエチレンォキシド誘導体等のポリマーがあげられる。
[0035] 無機化合物半導体としては、ヨウ化銅、臭化銅、チォシアン化銅等があげられる。
無機化合物半導体中にチォシアン酸トリェチルアンモニゥム等の溶融塩を含んでい てもよい。
有機正孔輸送材料としては、ポリチォフェン誘導体、ポリピロール誘導体等があげ られる。
無機化合物半導体や有機正孔輸送材料を使用する場合は、短絡防止のためスプ レーパイロリシス等の手法を用いて二酸化チタン薄膜を下塗り層(短絡防止層)として 塗設してもよい。
[0036] 電荷移動層の形成方法に関しては 2通りの方法があげられ、ひとつは色素を吸着さ せた半導体薄膜電極に先に対極を貼り合わせておき、その間隙に液状の電荷移動 層を注入する方法である。もうひとつは、半導体薄膜電極に直接電荷移動層を付与 する方法で、対極はその後付与することになる。
前者の場合の電荷移動層の注入方法としては、毛細管現象を利用する常圧プロセ スと常圧より低い圧力にして気相を液相に置換する真空プロセスが利用できる。後者 の場合は、湿式の電荷移動層においては未乾燥のまま対極を付与し、エッジ部の液 漏洩防止措置も施すことになる。また、ゲル電解質の場合には、湿式で塗布して重 合等の方法により固定化する方法もあり、その場合には、乾燥し、固定化した後に対 極を付与することもできる。電解液、湿式有機正孔輸送材料またはゲル電解質を付 与する方法としては、半導体薄膜電極や色素の付与の際と同様に、浸漬法、ローラ 法、ディップ法、エアーナイフ法、ブレード法、スピン法、スプレー法等をあげることも できる。固体電解質、無機化合物半導体または固体の有機正孔輸送材料の場合に は、これらを溶媒等に溶解したものを加熱された半導体薄膜電極に滴下し、半導体 薄膜電極上で溶媒を気化させることにより乾固された電荷移動層を形成したり、真空 蒸着法、 CVD法 (化学気相成長法)等のドライ成膜処理により、電荷移動層を形成し た後、対極を付与することもできる。
[0037] 本発明の光電変換素子に使用される対極としては、導電性基板上に薄膜状にコー トした白金、ロジウム、ルテニウム、カーボン、酸化物半導体電極等があげられ、中で も、導電性基板上に薄膜状にコートした白金、カーボン電極等が好ましい。
本発明の光電変換素子においては、スぺーサーを用いてもよぐ半導体薄膜電極 と対極との接触を防ぐものであれば限定されなレ、が、例えば、ポリエチレン等のポリマ 一フィルムが用いられる。
[0038] また、本発明に用いられるスクァリリウム化合物(I)は、安価である。
以下、実施例により、本発明をさらに具体的に説明する。
実施例 1
[0039] フッ素をドープした酸化スズをコーティングした透明導電性ガラス(日本板硝子製、 表面抵抗は約 15 Ω /cm2)の導電面側に二酸化チタンペースト(Solaronix製、 SA
Ti-Nanoxide T)をガラス棒を用いて塗布し、室温で 30分間乾燥した後、電気 炉で 450°Cにて 30分間焼成した。二酸化チタンの膜厚は 10 x mであった。ガラスを 取り出し冷却した後、化合物(1)のァセトニトリル溶液(0. ImmolZl)に 75°Cで 30 分間浸漬した。色素の吸着したガラスをァセトニトリルで洗浄し自然乾燥させた。
[0040] 上述のようにして作成した二酸化チタン電極基板(lcm X 3cm)をこれと同じ大きさ の白金蒸着ガラスと重ね合わせた。次に、電解液 (ヨウ素 0. 05mol/l、ヨウ化リチウ ム 0· lmol/l、ジメチルプロピルイミダゾリルヨウ素 0· 62mol/lおよび tert—ブチル ピリジン 0. 5mol/lのァセトニトリル溶液)を染み込ませて両ガラスの隙間に毛細管 現象を利用して、二酸化チタン電極および対極の間に導入することにより、光電気化 学電池を得た。この光電気化学電池について、 500Wクセノンショートアークランプ( ゥシォ電機製)を用レ、、 100mW/cm2の擬似太陽光を照射し、 I-Vカーブトレーサ 一 (英弘精機製)にてその特性を評価した。その結果、得られた光電気化学電池の 特性は、短絡電流密度 4. 70mA/cm2、開放電圧 0. 59V、形状因子(フィルファタ ター) 0. 54、エネルギー変換効率 1. 5%であった。
実施例 2
[0041] フッ素をドープした酸化スズをコーティングした透明導電性ガラス(日本板硝子製、 表面抵抗は約 15 Q /cm2)の導電面側に二酸化チタンペースト(Solaronix製、 SA
Ti-Nanoxide T)をガラス棒を用いて塗布し、室温で 30分間乾燥した後、電気 炉で 450°Cにて 30分間焼成した。二酸化チタンの膜厚は 10 μ ΐηであった。ガラスを 取り出し冷却した後、化合物(2)のァセトニトリル溶液(0. lmmol/1)に 75°Cで 30 分間浸漬した。色素の吸着したガラスをァセトニトリルで洗浄し自然乾燥させた。
[0042] 上述のようにして作成した二酸化チタン電極基板(lcm X 3cm)をこれと同じ大きさ の白金蒸着ガラスと重ね合わせた。次に、電解液 (ヨウ素 0. 05mol/l、ヨウ化リチウ ム 0· lmol/l、ジメチルプロピルイミダゾリルヨウ素 0· 62mol/lおよび tert—ブチル ピリジン 0. 5mol/lのァセトニトリル溶液)を染み込ませて両ガラスの隙間に毛細管 現象を利用して、二酸化チタン電極および対極の間に導入することにより、光電気化 学電池を得た。この光電気化学電池について、 500Wクセノンショートアークランプ( ゥシォ電機製)を用レ、、 100mW/cm2の擬似太陽光を照射し、 I-Vカーブトレーサ 一 (英弘精機製)にてその特性を評価した。その結果、得られた光電気化学電池の 特性は、短絡電流密度 6. 15mA/cm2、開放電圧 0. 57V、形状因子(フィルファタ ター) 0. 55、エネルギー変換効率 1. 9%であった。
実施例 3
[0043] フッ素をドープした酸化スズをコーティングした透明導電性ガラス(日本板硝子製、 表面抵抗は約 15 Q /cm2)の導電面側に二酸化チタンペースト(Solaronix製、 SA
Ti-Nanoxide T)をガラス棒を用いて塗布し、室温で 30分間乾燥した後、電気 炉で 450°Cにて 30分間焼成した。二酸化チタンの膜厚は 10 μ ΐηであった。ガラスを 取り出し冷却した後、化合物(3)のァセトニトリル溶液(0. ImmolZl)に 75°Cで 30 分間浸漬した。色素の吸着したガラスをァセトニトリルで洗浄し自然乾燥させた。
[0044] 上述のようにして作成した二酸化チタン電極基板(lcm X 3cm)をこれと同じ大きさ の白金蒸着ガラスと重ね合わせた。次に、電解液 (ヨウ素 0. 05mol/l、ヨウ化リチウ ム 0. lmol/1,ジメチルプロピルイミダゾリルヨウ素 0. 62molZlおよび tert—ブチル ピリジン 0. 5mol/lのァセトニトリル溶液)を染み込ませて両ガラスの隙間に毛細管 現象を利用して、二酸化チタン電極中および対極の間に導入することにより、光電気 化学電池を得た。この光電気化学電池について、 500Wクセノンショートアークラン プ(ゥシォ電機製)を用レ、、 lOOmWZcm2の擬似太陽光を照射し、 I-Vカーブトレー サー (英弘精機製)にてその特性を評価した。その結果、得られた光電気化学電池 の特性は、短絡電流密度 6. 54mA/cm2、開放電圧 0. 58V、形状因子(フィルファ クタ一) 0. 56、エネルギー変換効率 2. 2%であった。
産業上の利用可能性
[0045] 本発明により、安価かつ高いエネルギー変換効率を有する光電変換素子、それを 用いた光電気化学電池等が提供される。

Claims

請求の範囲
一般式 (I)
Figure imgf000018_0001
〔式中、 Aは、一般式 (II)
[化 12]
Figure imgf000018_0002
(式中、 R1および R2は同一または異なって、水素原子、置換基を有していてもよいァ ルキル基、置換基を有してレ、てもよレ、ァリール基または置換基を有してレ、てもよレヽァ ラルキル基を表す力、 R1および R2が隣接する窒素原子と一緒になつて置換基を有し ていてもよい複素環を形成し、 R3
Figure imgf000018_0003
R5および R6は同一または異なって、水素原 子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシノレ 基、ヒドロキシル基、またはハロゲン原子を表し、 R1および R3、または R2および R4は それぞれが隣接する N— C— Cと一緒になつて、置換基を有していてもよい複素環を 形成してもよい)で表される基、一般式 (III)
[化 13]
R8
(R7>m 义 ^ ( "
R9
(式中、 R7は置換基を有していてもよいアルキル基、置換基を有していてもよいァリー ル基、またはハロゲン原子を表し、 mは 0から 4の整数を表し、 mが 2から 4の場合、そ れぞれの R7は同一でも異なっていてもよぐ および R9は同一または異なって、水素 原子、置換基を有していてもよいアルキル基、置換基を有していてもよいァラルキル 基、または置換基を有していてもよいァリール基を表す)で表される基、または一般式
(IV)
[化 14]
Figure imgf000019_0001
(式中、 R ,尺11、 Rlbおよび は同一または異なって、水素原子、置換基を有して いてもよいアルキル基、置換基を有していてもよいァラルキル基、または置換基を有 していてもよいァリール基を表し、 R12、 R13、 RM、 R15、 R18、 R19、 R2°および R21は同 一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有し ていてもよいアルコキシル基、ヒドロキシル基、またはハロゲン原子を表し、 R15および R2°は隣接する C_C_C_C_Cと一緒になつて、炭化水素環を形成してもよい)で 表される基を表す〕で表されるスクァリリウム化合物と半導体とを含む光電変換材料。 一般式 (la)
[化 15]
Figure imgf000019_0002
〔式中、 Aは、一般式 (II)
1
[化 16]
Figure imgf000020_0001
(式中、 R1 R2、 R3
Figure imgf000020_0002
R5および R6は、それぞれ前記と同義である)で表される基を 表す)で表されるスクァリリウム化合物と半導体とを含む光電変換材料。
[3] 一般式 (lb)
[化 17]
Figure imgf000020_0003
〔式中、 Aは、一般式(III)
2
[化 18]
Figure imgf000020_0004
(式中、 R7
Figure imgf000020_0005
および mは、それぞれ前記と同義である)で表される基を表す]で 表されるスクァリリウム化合物と半導体とを含む光電変換材料。
一般式 (Ic)
[化 19]
Figure imgf000020_0006
〔式中、 Aは、一般式 (IV)
3
Figure imgf000021_0001
(式中、 R10、 、 R12、 R13、 R14、 R15、 R16、 R17、 R18、 R19、 R2°および R21は、それぞ れ前記と同義である)で表される基を表す]で表されるスクァリリウム化合物と半導体と を含む光電変換材料。
[5] 請求項 1〜4のいずれかに記載の光電変換材料を用いた光電変換素子。
[6] 請求項 5記載の光電変換素子を含有する光電気化学電池。
PCT/JP2005/010572 2004-06-09 2005-06-09 光電変換材料、光電変換素子および光電気化学電池 WO2005122320A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514558A JPWO2005122320A1 (ja) 2004-06-09 2005-06-09 光電変換材料、光電変換素子および光電気化学電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-170713 2004-06-09
JP2004170713 2004-06-09

Publications (1)

Publication Number Publication Date
WO2005122320A1 true WO2005122320A1 (ja) 2005-12-22

Family

ID=35503404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010572 WO2005122320A1 (ja) 2004-06-09 2005-06-09 光電変換材料、光電変換素子および光電気化学電池

Country Status (2)

Country Link
JP (1) JPWO2005122320A1 (ja)
WO (1) WO2005122320A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133806A1 (ja) * 2008-05-02 2009-11-05 ペクセル・テクノロジーズ株式会社 色素増感型光電変換素子
WO2010049042A2 (en) * 2008-10-27 2010-05-06 Sony Corporation A dye comprising a chromophore to which an acyloin group is attached
WO2016120166A1 (en) * 2015-01-27 2016-08-04 Sony Corporation Squaraine-based molecules as material for organic photoelectric conversion layers in organic photodiodes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249953A (ja) * 1986-04-22 1987-10-30 Fuji Xerox Co Ltd 新規なシクロブテンジオン誘導体
JPS62290184A (ja) * 1986-06-09 1987-12-17 Fuji Electric Co Ltd 光蓄電池
JPH01146852A (ja) * 1987-12-04 1989-06-08 Fuji Xerox Co Ltd 新規なシクロブテンジオン誘導体
JPH11168229A (ja) * 1997-12-04 1999-06-22 Kyowa Hakko Kogyo Co Ltd 光電変換材料
JP2001076773A (ja) * 1999-08-31 2001-03-23 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに新規スクアリリウムシアニン色素
JP2003109676A (ja) * 2001-09-27 2003-04-11 Konica Corp 光電変換材料用半導体、光電変換素子及び太陽電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249953A (ja) * 1986-04-22 1987-10-30 Fuji Xerox Co Ltd 新規なシクロブテンジオン誘導体
JPS62290184A (ja) * 1986-06-09 1987-12-17 Fuji Electric Co Ltd 光蓄電池
JPH01146852A (ja) * 1987-12-04 1989-06-08 Fuji Xerox Co Ltd 新規なシクロブテンジオン誘導体
JPH11168229A (ja) * 1997-12-04 1999-06-22 Kyowa Hakko Kogyo Co Ltd 光電変換材料
JP2001076773A (ja) * 1999-08-31 2001-03-23 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池ならびに新規スクアリリウムシアニン色素
JP2003109676A (ja) * 2001-09-27 2003-04-11 Konica Corp 光電変換材料用半導体、光電変換素子及び太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAE J. KIM K. FUNABIKI ET AL: "Properties of unsymmetrical squarylium dyes containing strongly electron-donating 4'-amino-2,2'-bis(diethylamino)-4,5'-bithiazole resudue.", DYES AND PIGMENTS., vol. 57, no. 2, 2003, pages 165 - 170, XP004418127 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133806A1 (ja) * 2008-05-02 2009-11-05 ペクセル・テクノロジーズ株式会社 色素増感型光電変換素子
JP5479327B2 (ja) * 2008-05-02 2014-04-23 ペクセル・テクノロジーズ株式会社 色素増感型光電変換素子
WO2010049042A2 (en) * 2008-10-27 2010-05-06 Sony Corporation A dye comprising a chromophore to which an acyloin group is attached
WO2010049042A3 (en) * 2008-10-27 2010-10-07 Sony Corporation A dye comprising a chromophore to which an acyloin group is attached
CN102197097A (zh) * 2008-10-27 2011-09-21 索尼公司 包含连接有偶姻基团的发色团的染料
JP2012506917A (ja) * 2008-10-27 2012-03-22 ソニー株式会社 アシロイン基が付着した発色団を含む色素
US9679702B2 (en) 2008-10-27 2017-06-13 Sony Corporation Dye comprising a chromophore to which an acyloin group is attached
WO2016120166A1 (en) * 2015-01-27 2016-08-04 Sony Corporation Squaraine-based molecules as material for organic photoelectric conversion layers in organic photodiodes
US11352500B2 (en) 2015-01-27 2022-06-07 Sony Corporation Squaraine-based molecules as material for organic photoelectric conversion layers in organic photodiodes

Also Published As

Publication number Publication date
JPWO2005122320A1 (ja) 2008-04-10

Similar Documents

Publication Publication Date Title
JP5022413B2 (ja) イミダゾリウム化合物及びピリジニウム化合物
JP5404058B2 (ja) イオン性液体電解質
JP4177172B2 (ja) 色素増感型太陽電池
EP1083582B1 (en) Dye sensitized photoelectrochemical cell
JP4620224B2 (ja) 電解質組成物
JP2000294306A (ja) 光電変換素子および光電気化学電池
JP2001085713A (ja) 光電変換素子および太陽電池
JP4453889B2 (ja) 電解液組成物、光電変換素子及び光電池
JP4280020B2 (ja) 光電変換用酸化物半導体電極および色素増感型太陽電池
JP2001167630A (ja) 電解質組成物、光電変換素子及び光電気化学電池
JP4643792B2 (ja) 光電変換素子及び光電気化学電池
JP2001266962A (ja) 電解質組成物、光電変換素子及び光電気化学電池
JPWO2006041156A1 (ja) スクアリリウム化合物ならびにこれを用いた光電変換材料、光電変換素子および光電気化学電池
JP4460686B2 (ja) 光電変換素子および光電気化学電池
JP2003017148A (ja) 電解質組成物、光電変換素子及び光電気化学電池
JP4356865B2 (ja) 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池
JP2003100357A (ja) 光電変換素子の作製方法、光電変換素子及び光電池
WO2005122320A1 (ja) 光電変換材料、光電変換素子および光電気化学電池
JP2001035253A (ja) 電解質組成物、光電変換素子および光電気化学電池
JP4521737B2 (ja) 太陽光発電装置
JP2002367426A (ja) 電解質組成物、光電変換素子及び光電気化学電池
JP2001035552A (ja) 電解質組成物、光電変換素子および光電気化学電池
JP2006063034A (ja) 光電変換材料、光電変換素子および光電気化学電池
JP2001067931A (ja) 電解質組成物、光電変換素子および光電気化学電池
JP4082480B2 (ja) 光電変換素子および光電気化学電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514558

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase