WO2005119706A1 - 高性能全固体リチウム電池 - Google Patents

高性能全固体リチウム電池 Download PDF

Info

Publication number
WO2005119706A1
WO2005119706A1 PCT/JP2005/010134 JP2005010134W WO2005119706A1 WO 2005119706 A1 WO2005119706 A1 WO 2005119706A1 JP 2005010134 W JP2005010134 W JP 2005010134W WO 2005119706 A1 WO2005119706 A1 WO 2005119706A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
sulfide
solid electrolyte
electrode active
active material
Prior art date
Application number
PCT/JP2005/010134
Other languages
English (en)
French (fr)
Inventor
Yoshikatsu Seino
Kazunori Takada
Original Assignee
Idemitsu Kosan Co., Ltd.
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd., National Institute For Materials Science filed Critical Idemitsu Kosan Co., Ltd.
Priority to DE112005001270T priority Critical patent/DE112005001270T5/de
Priority to JP2006514126A priority patent/JP4873479B2/ja
Priority to US11/628,030 priority patent/US20070248888A1/en
Publication of WO2005119706A1 publication Critical patent/WO2005119706A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a high-purity lithium sulfide, and more specifically, a lithium ion conductive inorganic solid using lithium sulfide containing a small amount of impurities such as a lithium salt of sulfur sulfide and lithium N-methylaminobutyrate (LMAB).
  • the present invention relates to a method for producing an electrolyte and a lithium battery using the electrolyte.
  • the present invention provides a high-performance all-solid-state using a lithium ion conductive inorganic solid electrolyte produced from lithium sulfide and one or more components selected from diphosphorus pentasulfide, simple phosphorus and simple sulfur as a solid electrolyte. More specifically, the present invention relates to a lithium battery. More specifically, a positive electrode active material having an operating potential of 3 V or more and a negative electrode active material having a reduction potential (potential of the negative electrode active material) of 0.5 V or less are used.
  • a secondary battery is a battery that can be charged and discharged.
  • Inorganic solid electrolytes are nonflammable in nature and are safer materials than ordinary electrolytes.
  • inorganic solid electrolytes are used instead of organic solvent electrolytes. It is effective to use a body electrolyte.
  • Inorganic solid electrolytes are nonflammable in nature and have higher safety than commonly used organic solvent electrolytes! It is desired to develop an all-solid lithium battery which is a material and is highly safe using the electrolyte.
  • Patent Document 1 Various methods for producing lithium sulfide are known (for example, Patent Document 1).
  • lithium sulfide is produced in an aprotic organic solvent such as N-methyl-2-pyrrolidone (NMP). Since the process can be performed continuously, it is economical and simple. Is a manufacturing method.
  • NMP N-methyl-2-pyrrolidone
  • Patent Document 2 a method of reacting lithium hydroxide with a gaseous sulfur source at a temperature of 130 to 445 ° C (Patent Document 2) is known.
  • lithium salts of sulfur oxides eg, lithium sulfite, lithium sulfate, lithium thiosulfate, etc.
  • lithium sulfite lithium sulfate
  • lithium thiosulfate lithium thiosulfate
  • a solid electrolyte is produced by performing a melting reaction of this lithium sulfide with, for example, diphosphorus pentasulfide and quenching, a complete glass electrolyte cannot be easily obtained due to the influence of impurities.
  • the obtained solid electrolyte is a crystallized substance having low ionic conductivity, the intended battery performance cannot be exhibited when used as a solid electrolyte for a lithium battery! ,.
  • lithium ion conductive solid electrolyte used for the all solid lithium battery those having high ion conductivity are preferable.
  • Such solid electrolyte a sulfide glass having an ion conductivity of 10- 3 S / cm in the 1980s, namely, Lil Li SP S, Lil- Li S- BS, Lil Li S- SiS etc. see
  • Li PO Li S—SiS, Li SiO Li S—SiS, etc. were also found.
  • Non-Patent Document 1 Using a carbon material as the negative electrode active material and Li PO Li S—SiS as the solid electrolyte
  • the solid electrolyte reacts with the negative electrode active material and the reductive decomposition reaction of the solid electrolyte proceeds.
  • a carbon material is used as a negative electrode active material
  • lithium cobalt oxide (LiCoO) is used as a positive electrode active material
  • Non-Patent Document 2 As a solid electrolyte, two layers of two electrolytes, Li S-P S Lil and Li S-GeS P S
  • a solid electrolyte containing silicon or germanium such as Li S-SiS or Li S-GeS is used.
  • the current flowing during charging of the battery is consumed in the reaction of inserting lithium ions into the carbon material and the reduction reaction of silicon or germanium.
  • an improvement point has been considered in an all-solid lithium secondary battery using a carbon material or a material in which lithium ions are inserted between layers of a carbon material as a negative electrode active material.
  • a substance that does not contain silicon and germanium is used as the solid charge in contact with the substance, and phosphorus sulfide (PS) is used as a raw material for the electrolyte.
  • PS phosphorus sulfide
  • lithium iodide Li
  • the oxidation potential of the electrolyte is 2.9 V. Therefore, when a positive electrode active material having a battery operating potential of 3 V or more is used, An oxidative decomposition reaction occurs, and the secondary battery does not operate. Therefore, it is preferable not to use a compound such as lithium iodide.
  • a single layer is preferred over a two layer. That is, as a negative electrode active material having a reduction potential of 0.5 V or less, for example, a carbon material typified by a graphite intercalation compound, and as a positive electrode active material having an operating potential of 3 V or more, a compound such as lithium cobaltate is used.
  • a solid electrolyte By selecting a solid electrolyte to be used, it is expected that an all-solid-state lithium battery having a single-layer electrolyte and a high potential and high energy density of 4V class can be obtained.
  • the graphite intercalation compound exhibits a theoretical capacity of 372 mAhZg and a base potential of about 0.4 IV, and lithium cobaltate exhibits a potential of 4 V on the basis of lithium as lithium ions are desorbed.
  • Non-patent Reference 1 Kazunori Takada, batoshi Naknano, Taro Inada, Akinisa Kajiyama, hi deki Sasaki, Shigeo Kondo and Mamoru Watanabe, Journal of Electrochemical, 150 (3) A274-A277 (2003)
  • Non-Patent Document 2 Kazunori Takada, Taro Inada, Akihisa Kajiyama, Hideki Sasaki, Shige o Kondo, Mamoru Watanabe, Masahiro Murayama, Ryoji Kanno, Solid State Ionics 1 58 (2003) 269-274
  • Patent document 1 JP-A-7-330312
  • Patent Document 2 JP-A-9283156
  • the present invention provides a novel and efficient method for producing a lithium ion conductive inorganic solid electrolyte having high ion conductivity and a high performance lithium battery using the electrolyte. It is the purpose.
  • Another object of the present invention is to make it possible to increase the energy density of an all-solid lithium battery by developing a high-performance solid electrolyte that can be used in a single layer.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that high-purity sulfide By subjecting lithium and one or more selected from diphosphorus pentasulfide, elemental phosphorus or elemental sulfur to a melting reaction, quenching, and further heat treatment, it is possible to obtain a lithium ion conductive inorganic solid electrolyte having high ion conductivity. I found what I can do.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, as a solid electrolyte, lithium sulfide, one or more components selected from diphosphorus pentasulfide, elemental phosphorus and elemental sulfur.
  • the above object can be achieved by using a lithium ion conductive inorganic solid electrolyte produced from and a positive electrode active material having an operating potential of 3 V or more and a negative electrode active material having a reduction potential of 0.5 V or less.
  • the present invention has been completed based on such findings.
  • a method for producing a lithium ion conductive inorganic solid electrolyte which comprises heat-treating the glass electrolyte obtained by the method according to any one of the above 1 to 3.
  • At least a lithium ion conductive inorganic solid electrolyte in contact with the negative electrode active material is made of lithium sulfide and One or more components selected from diphosphorus sulfide, simple phosphorus and simple sulfur Lithium battery characterized by being manufactured,
  • Lithium sulfide is purified by reacting lithium hydroxide and hydrogen sulfide in an organic solvent and then removing hydrogen sulfide.
  • the total content of lithium salts of sulfur oxides is 0.15% by mass or less
  • the present invention is selected from lithium sulfide having a content of lithium salt of sulfur sulfide and lithium N-methylaminobutyrate of 0.15% by mass or less, diphosphorus pentasulfide, elemental phosphorus or elemental sulfur, respectively.
  • After melting reaction of one or more, quenching and further by heat treatment, is 1 X 10- 3 (SZcm) easily obtain high ionic conductivity of lithium ion conductive inorganic solid electrolyte in the order ionic conductivity
  • a high-performance lithium battery can be manufactured by using the electrolyte.
  • a lithium ion conductive inorganic solid electrolyte produced from lithium sulfide and one or more components selected from diphosphorus pentasulfide, elemental phosphorus and elemental sulfur can be used as a single layer.
  • a positive electrode active material having a potential of 3 V or more and a negative electrode active material having a reduction potential of 0.5 V or less a high-performance all-solid lithium battery can be easily manufactured.
  • FIG. 1 is a view showing X-ray diffraction patterns of powder samples of Example 1 and Comparative Example 1.
  • FIG. 2 is a view showing an X-ray diffraction pattern of a powder sample of Example 2.
  • FIG. 3 is a diagram showing the charge / discharge characteristics of the battery obtained in Example 3.
  • FIG. 4 is a graph showing the charge / discharge cycle characteristics of the battery obtained in Example 3.
  • FIG. 5 is a view showing the charge / discharge characteristics of the battery obtained in Comparative Example 3.
  • the glass electrolyte of the present invention can be produced by subjecting a high-purity lithium sulfide to a melting reaction with at least one selected from phosphorus pentasulfide, elemental phosphorus and elemental sulfur, followed by quenching.
  • the high-purity lithium sulfide used in the present invention has a total lithium salt content of 0.15% by mass or less, preferably 0.1% by mass or less, and lithium lithium N-methylaminobutyrate. The content is 0.15% by mass or less, preferably 0.1% by mass or less.
  • the obtained electrolyte is vitreous (completely amorphous).
  • the obtained electrolyte is initially a crystallized product, and the ionic conductivity of the crystallized product is low.
  • the crystallized product is subjected to the following heat treatment, it is not possible to obtain a lithium ion conductive inorganic solid electrolyte having a high ionic conductivity with no change in the crystallized product.
  • the content of lithium N-methylaminobutyrate is 0.15% by mass or less, the degraded lithium N-methylaminobutyrate does not lower the cycle performance of the lithium secondary battery.
  • the mixing (melting) molar ratio of the above-mentioned lithium sulfide and one or more components selected from phosphorus pentasulfide, elemental phosphorus and elemental sulfur is usually 50:50 to 80:20, preferably 60:40 to 75. : 25.
  • the melting reaction temperature of the above mixture is usually 500 to 1000 ° C, preferably 600 to 1000 ° C. C, more preferably 900 to: L000 ° C, and the melting reaction time is usually 1 hour or more, preferably 6 hours or more.
  • the quenching temperature of the molten reactant is usually 10 ° C or lower, preferably 0 ° C or lower, and the cooling rate is about 1 to 100000Zsec, preferably 1 to 100OKZsec.
  • the thus-obtained electrolyte is glassy (fully amorphous), which is usually an ionic conductivity of 1. 0 X 10- 5 ⁇ 8. 0 X 10- 5 (SZcm).
  • the lithium ion conductive inorganic solid electrolyte of the present invention can be produced by subjecting the glass electrolyte of the present invention to heat treatment.
  • the heat treatment is usually about 170 to 370 ° C., preferably 180 to 330 ° C., and more preferably 200 to 290 ° C.
  • the heat treatment time depends on the heat treatment temperature, but is usually 1 minute or more. It takes 5 minutes to 24 hours.
  • lithium ion conductive inorganic solid electrolyte usually, ionic conductivity is a 7. 0 X 10- 4 ⁇ 3. 0 X 10- 3 (SZcm).
  • a lithium battery having excellent long-term stability can be obtained.
  • the method for producing lithium sulfide used in the present invention is not particularly limited as long as the method can reduce the above impurities.
  • the method a or b is particularly preferred.
  • Lithium hydroxide and sulfide hydrogen are reacted in an aprotic organic solvent at 0 to 150 ° C to produce lithium hydrosulfide, and then the reaction solution is desulfurized at 150 to 200 ° C. (Patent Document 1).
  • Patent Document 1 A method in which lithium hydroxide and hydrogen sulfate are reacted at 150 to 200 ° C. in an aprotic organic solvent to directly produce lithium sulfide.
  • Patent Document 2 A method of reacting lithium hydroxide with a gaseous sulfur source at a temperature of 130 to 445 ° C (Patent Document 2).
  • the method for purifying the lithium sulfide obtained as described above is not particularly limited.
  • Preferred purification methods include, for example, Japanese Patent Application No. 2003-363403.
  • the lithium sulfide obtained as described above is washed at a temperature of 100 ° C. or higher using an organic solvent.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • LMAB lithium minobutyrate
  • the organic solvent used for washing is preferably an aprotic polar solvent, and the aprotic organic solvent used for lithium sulfate production and the aprotic polar organic solvent used for washing are the same. Is more preferred.
  • aprotic polar organic solvent examples include, for example, non-protonic polar organic compounds such as amide compounds, ratatum compounds, urea compounds, organic sulfur compounds, and cyclic organic phosphorus compounds. It can be suitably used as a single solvent or a mixed solvent.
  • examples of the amido conjugate include N, N dimethylformamide, N, N dimethylformamide, N, N dimethylacetamide, and N, N dipropylacetate.
  • examples include amides and N, N-dimethylbenzoic acid amides.
  • ratatam compound examples include, for example, caprolactam, N-methylcaprolactam, Nethylcaprolatatam, N-isopropyl caprolatum, N-isobutylcaprolatatam, N-n-propyl caprolatum, N-n-butylcaprolatatam N-alkyl prolatatams such as N-cyclohexylcaprolatatam, N-methyl 2-pyrrolidone (NMP), N-ethyl 2-pyrrolidone, N-isopropyl-12-pyrrolidone, N-isobutyl-2-pyrrolidone, N-n-propyl — 2-pyrrolidone, N-n-butyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3-methyl—2 pyrrolidone, N-ethyl 3-methyl-2-pyrrolidone, N—methyl 3,4,5-trimethyl-1-
  • organic sulfur conjugate examples include dimethyl sulfoxide, getyl sulfoxide, diphenylene sulfone, 1-methyl 1-oxo sulfolane, 1-phenyl-11-oxo sulfolane, and the like. .
  • Each of these various aprotic organic compounds may be used alone or in combination of two or more. It can be used as the non-protonic organic solvent by mixing and further mixing with other solvent components not interfering with the object of the present invention.
  • N-alkyl-proprotamata and N-alkylpyrrolidone preferred are N-alkyl-proprotamata and N-alkylpyrrolidone, and particularly preferred is N-methyl-2-pyrrolidone (NMP).
  • the amount of the organic solvent used for washing is not particularly limited, and the number of times of washing is not particularly limited, but is preferably two or more times.
  • the washing is preferably performed under an inert gas such as nitrogen or argon.
  • the washed lithium sulfide is heated at a temperature equal to or higher than the boiling point of the aprotic organic solvent used for washing, under an inert gas stream such as nitrogen, under normal pressure or reduced pressure, for 5 minutes or longer, preferably about 2 minutes.
  • the lithium sulfide used in the present invention can be obtained.
  • the solid electrolyte (glass electrolyte or lithium ion conductive inorganic solid electrolyte) obtained by the method of the present invention is incorporated in a lithium battery, it can be applied to a known mode without any particular limitation.
  • the solid electrolyte is formed into a sheet shape.
  • any of coin type, button type, sheet type, laminated type, cylindrical type, flat type, square type, large type used for electric vehicles and the like can be applied.
  • the solid electrolyte obtained by the method of the present invention is used for lithium batteries such as portable information terminals, portable electronic devices, household small power storage devices, motorcycles using electric motors, electric vehicles, and hybrid electric vehicles. Capabilities that can be performed are not particularly limited to these.
  • the lithium ion conductive inorganic solid electrolyte of the present invention lithium sulfide, diphosphorus pentasulfide, It can be produced from one or more components selected from simple phosphorus and simple sulfur. Specifically, it can be produced by subjecting a lithium sulfide, one or more components selected from diphosphorus pentasulfide, elemental phosphorus and elemental sulfur to a raw material, to a melting reaction, and then quenching.
  • lithium sulfide and one or more components selected from diphosphorus pentasulfide, elemental phosphorus and elemental sulfur as raw materials.
  • the lithium sulfide used in the present invention has a total content of at least 0.15% by mass or less, preferably 0.1% by mass or less of lithium salt of sulfur oxidized product, and lithium N-methylaminobutyrate.
  • the content is 0.15% by mass or less, preferably 0.1% by mass or less.
  • the obtained electrolyte is a glassy electrolyte (completely amorphous).
  • the obtained electrolyte is initially a crystallized product, and the ionic conductivity of the crystallized product is low.
  • the crystallized product does not change.
  • a lithium ion conductive inorganic solid electrolyte having high ionic conductivity cannot be obtained.
  • the content of lithium N-methylaminobutyrate is 0.15% by mass or less, the deterioration of lithium N-methylaminobutyrate does not lower the cycle performance of the lithium battery. To obtain it, it is necessary to use lithium sulfide with reduced impurities.
  • the mixing molar ratio of the above lithium sulfide and one or more components selected from diphosphorus pentasulfide, elemental phosphorus and elemental sulfur is usually 50:50 to 80:20, preferably 60:40 to 75:25.
  • the melting reaction temperature using lithium sulfide and at least one component selected from diphosphorus pentasulfide, elemental phosphorus and elemental sulfur is usually 500 to 1000 ° C, preferably 600 to 1000 ° C, and more preferably 900 to: L000 ° C, and the melting reaction time is usually 1 hour or more, preferably 6 hours or more.
  • the quenching temperature of the reactant is usually 10 ° C. or lower, preferably 0 ° C. or lower, and the cooling rate is about 1 to 100000Zsec, preferably 1 to 100OKZsec.
  • the mechanical-milling method using lithium sulfide and one or more components selected from diphosphorus pentasulfide, elemental phosphorus, and elemental sulfur as raw materials can carry out the reaction at room temperature.
  • a glassy electrolyte (completely amorphous) can be produced at room temperature, so that pyrolysis of the raw material does not occur, and a glassy electrolyte of the charged composition can be obtained. There is.
  • the mechanical milling method also has the advantage that the glassy electrolyte can be finely divided at the same time as the production of the glassy electrolyte (completely amorphous).
  • the base revolves while the pot rotates, and can generate very high impact energy efficiently.
  • the rotation speed and rotation time of the mechanical milling method are not particularly limited, but the higher the rotation speed, the faster the generation rate of the vitreous electrolyte (completely amorphous), and the longer the rotation time, the more the raw material to the vitreous electrolyte becomes. The conversion is higher.
  • the thus-obtained electrolyte is glassy electrolyte (completely amorphous), usually I O emissions conductivity is 1. 0 X 10- 5 ⁇ 8. 0 X 10- 5 (SZcm) .
  • the lithium ion conductive inorganic solid electrolyte of the present invention is preferably produced by further heat-treating the above-mentioned glassy electrolyte.
  • the heat treatment temperature is usually about 170 to 370 ° C, preferably 180 to 330 ° C, and more preferably 200 to 290 ° C.
  • the heat treatment time depends on the heat treatment temperature, but is usually 1 minute or more. It takes 5 minutes to 24 hours.
  • lithium ion conductive inorganic solid electrolyte usually, ionic conductivity is a 7. 0 X 10- 4 ⁇ 3. 0 X 10- 3 (SZcm).
  • the method for producing lithium sulfide used in the present invention 2 is not particularly limited as long as it can reduce at least the above impurities.
  • the method for purifying lithium sulfide obtained as described above is not particularly limited.
  • a preferable purification method is, for example, Japanese Patent Application No. 2003-363403.
  • Examples of the negative electrode active material having a reduction potential of 0.5 V or less in the present invention include a carbon material or a material having lithium ions inserted between layers of the carbon material, and are preferably a carbon material.
  • the carbon material exhibits an extremely low potential of about 0.4 IV in increasing the energy density of the lithium battery, and is excellent in increasing the energy density of the lithium battery.
  • lithium ions are inserted between layers of the carbon material in a charged state, and lithium ions between layers are desorbed in a completely discharged state, Return to the original carbon material.
  • the positive electrode active material having an operating potential of 3 V or more in the present invention LiCoO, LiN
  • Examples include lithium metal salts such as iO and LiMnO, and MnO and VO.
  • the carbon material as the negative electrode active material in the present invention is stable in a state where lithium ions are not inserted between layers, practically, the carbon material does not contain lithium ions. It is preferable to form a lithium battery using a carbon material.
  • lithium cobalt oxide (LiCoO 2) is most suitable.
  • the present invention can be applied to a known mode without any particular limitation.
  • an all-solid lithium battery including a sealing plate, insulating packing, an electrode plate group, a positive electrode plate, a positive electrode lead, a negative electrode plate, a negative electrode lead, a solid electrolyte, and an insulating ring in a battery case
  • the solid electrolyte is formed into a sheet.
  • the shape of the all-solid lithium battery can be applied to any of coin type, button type, sheet type, stacked type, cylindrical type, flat type, square type, large type used for electric vehicles and the like.
  • a conventionally known method can be used as a method for manufacturing an all-solid lithium battery using the lithium ion conductive inorganic solid electrolyte of the present invention.
  • the lithium ion conductive inorganic solid electrolyte of the present invention can be used as an all-solid lithium battery for a portable information terminal, a portable electronic device, a small household power storage device, a motorcycle using a motor as a power source, an electric vehicle, a hybrid electric vehicle, and the like. Forces that can be used are not particularly limited to these.
  • NMP was decanted at this temperature.
  • NMP100 mL was mashed, stirred at 105 ° C for about 1 hour, NMP was decanted at this temperature, and the same operation was repeated a total of four times.
  • the impurity content in the obtained lithium sulfide was measured.
  • the impurities such as lithium sulfite (Li SO), lithium sulfate (Li SO), and lithium thiosulfate
  • Titanium (Li S O) and lithium N-methylaminobutyrate (LMAB) are ion chromatographed.
  • the quartz tube was put into ice water and rapidly cooled.
  • the quartz tube was opened, and the powder sample of the obtained molten reaction product was subjected to X-ray diffraction. As a result, the peaks of lithium sulfide and pentasulfide were lost, and vitrification proceeded. (See Fig. 1, CPS indicates the X-ray reflection intensity.)
  • Example 1 The glass electrolyte obtained in Example 1 was heat-treated at 250 ° C. for 30 minutes.
  • this powder sample where the one row of the measurement of the electrical conductivity by an AC impedance method, ion conductivity at room temperature was 8. 4 X 10- 4 SZcm.
  • a molten reaction product and a quenching operation were performed in the same manner as in Example 1 except that the commercially available lithium sulfide (manufactured by Aldrich Chemical Co., Ltd.) of Reference Example 2 was used instead of the high-purity lithium sulfide of Reference Example 1. Powder sample! As a result of X-ray diffraction, it was confirmed that the reaction product did not undergo vitrification and was a crystallized product (see FIG. 1).
  • this powder sample where measurement of the electrical conductivity was one row by the AC impedance method and an ion conductivity 3. 6 X 10- 5 SZcm at room temperature.
  • the crystal electrolyte obtained in Comparative Example 1 was heat-treated at 250 ° C. for 30 minutes. About the powder sample of the heat-treated product obtained! As a result of X-ray diffraction, it was confirmed that it was the same as Comparative Example 1 (see FIG. 1).
  • this powder sample where the one row of the measurement of the electrical conductivity by an AC impedance method, ion conductivity at room temperature was 5. 9 X 10- 5 SZcm.
  • lithium battery Using carbon graphite (manufactured by TIMCAL, SFG-15) as the negative electrode active material and lithium cobalt oxide (LiCoO) as the positive electrode active material, a lithium battery was produced as follows.
  • the lithium ion conductive solid electrolyte obtained in Example 2 and carbon graphite were mixed at a mass ratio of 1: 1 to obtain a negative electrode material.
  • the lithium ion conductive solid electrolyte 150 mg was interposed therebetween and molded into a three-layered pellet to obtain a measurement cell.
  • the initial charging and discharging efficiency 85.8%.
  • Figure 3 shows the charge / discharge characteristics
  • the vertical axis indicates the terminal voltage (V), and the horizontal axis indicates the capacity for lithium cobalt oxide (lg).
  • V terminal voltage
  • Lg lithium cobalt oxide
  • the operating potential of this battery [potential difference of the positive electrode when the standard electrode potential of lithium metal is set as a reference (OV)] is 3.5 V, and the potential of the negative electrode active material [based on the standard electrode potential of lithium metal] (Potential difference of the negative electrode in the case of (OV)) was 0.4.
  • GeS was used as the solid electrolyte.
  • Li S—PS (Cholicon-based electrolyte, composition ratio: Li; 0.35, Ge: 0.25, P: 0.75, S;
  • a measurement cell was prepared and the battery characteristics were examined in the same manner as in Example 3 except for using 4).
  • the initial charge / discharge efficiency was 16.5%.
  • Figure 5 shows the charge / discharge characteristics
  • the vertical axis represents the terminal voltage (V), and the horizontal axis represents the capacity with respect to the cholesteric electrolyte lg.
  • V terminal voltage
  • H cholesteric electrolyte
  • the solid electrolyte obtained by the method of the present invention can be used in lithium-ion batteries such as portable information terminals, portable electronic devices, small household power storage devices, motorcycles using electric motors as electric power sources, electric vehicles, and hybrid electric vehicles. Power that can be used for batteries The invention is not particularly limited to these. Further, the all-solid lithium battery of the present invention can be used as a battery for a portable information terminal, a portable electronic device, a small household power storage device, a motorcycle using a motor as a power source, an electric vehicle, a hybrid electric vehicle, and the like. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明は、硫黄酸化物のリチウム塩及びN-メチルアミノ酪酸リチウムの含有量が各々0.15質量%以下の硫化リチウムと、五硫化二燐、単体燐又は単体硫黄から選ばれる一種以上とを溶融反応した後、急冷し、更に熱処理する効率的な高イオン伝導性のリチウムイオン伝導性無機固体電解質の製造方法及び該電解質を用いる高性能のリチウム電池を提供する。  また、作動電位が3V以上である正極活物質と還元電位が0.5V以下である負極活物質とを用い、少なくとも負極活物質に接するリチウムイオン伝導性無機固体電解質が、硫化リチウムと、五硫化二燐、単体燐及び単体硫黄から選ばれる一種以上の成分とから製造した単層で使用可能な高性能の高エネルギー密度化されたリチウム電池を提供する。                                                                               

Description

高性能全固体リチウム電池
技術分野
[0001] 本発明は、高純度硫化リチウム、更に詳しくは硫黄酸ィ匕物のリチウム塩及び N—メ チルァミノ酪酸リチウム(LMAB)等の不純物の少な 、硫化リチウムを用いたリチウム イオン伝導性無機固体電解質の製造方法及び該電解質を用いたリチウム電池に関 するものである。
また、本発明は、固体電解質として、硫化リチウムと、五硫化二燐、単体燐及び単 体硫黄から選ばれる一種以上の成分とから製造したリチウムイオン伝導性無機固体 電解質を用いた高性能全固体リチウム電池に関するものであり、更に詳しくは、作動 電位が 3V以上である正極活物質と還元電位 (負極活物質の電位)が 0. 5V以下で ある負極活物質とを用い、少なくとも負極活物質に接するリチウムイオン伝導性無機 固体電解質として、硫化リチウムと、五硫化二燐、単体燐及び単体硫黄から選ばれる 一種以上の成分とから製造したリチウムイオン伝導性無機固体電解質を用いたリチウ ム電池に関するものである。
背景技術
[0002] 近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力 源とする自動二輪車、電気自動車、ハイブリッド電気自動車などに用いられる高性能 リチウム二次電池などの需要が増加して 、る。
二次電池とは、充電,放電ができる電池をいう。
また、使用される用途が広がるにつれ、二次電池の更なる安全性の向上及び高性 能化が要求されるようになった。
無機固体電解質は、その性質上不燃性であり、通常使用される電解液と比較して 安全性の高!、材料である。
し力しながら、電解液より電気化学的性能が若干劣るため、無機固体電解質の性 能を更に向上させる必要がある。
リチウム電池の安全性を確保する方法としては、有機溶媒電解質に代えて無機固 体電解質を用いることが有効である。
無機固体電解質は、その性質上不燃で、通常使用される有機溶媒電解質と比較し 安全性の高!、材料であり、該電解質を用いた高!ヽ安全性を備えた全固体リチウム電 池の開発が望まれている。
[0003] 硫化リチウムの製造方法としては、種々知られている(例えば、特許文献 1)。
この方法は、硫化リチウムを N—メチルー 2—ピロリドン (NMP)などの非プロトン性 有機溶媒中で製造するものであり、工程の連続ィ匕が可能であるため、経済的かつ簡 便な硫化リチウムの製造方法である。
しかしながら、得られる硫化リチウムには、 NMP由来の不純物である N—メチルアミ ノ酪酸リチウム (LMAB)が混入する。
また、水酸化リチウムとガス状硫黄源を 130〜445°Cの温度で反応させる方法 (特 許文献 2)が知られている。
この方法を用いると、製造過程で生成した硫黄酸ィ匕物のリチウム塩 (例えば、亜硫 酸リチウム、硫酸リチウム、チォ硫酸リチウムなど)等が硫化リチウムに混入する。 この硫化リチウムと、例えば、五硫化二燐との溶融反応を行い、急冷することにより 固体電解質を製造すると、不純物の影響により、完全ガラス電解質を容易に得ること ができない。
即ち、得られた固体電解質は、イオン伝導度が低い結晶化物であるため、リチウム 電池用固体電解質として用いると、目的とする電池性能を発揮できな!、。
[0004] 全固体リチウム電池に用いられるリチウムイオン伝導性固体電解質は、高イオン伝 導性を有するものが好まし 、。
このような固体電解質としては、 1980年代に 10— 3S/cmのイオン伝導性を有する 硫化物ガラス、即ち、 Lil Li S-P S、 Lil-Li S— B S、 Lil Li S— SiS等が見
2 2 5 2 2 3 2 2 出され、更に近年では、 Li PO Li S— SiS、 Li SiO Li S— SiS等も見出され
3 4 2 2 4 4 2 2
ている。
し力しながら、これら固体電解質のうち、特定の電極活物質に対して好適なものの 選択に関してはこれまであまり言及されて ヽな 、。
負極活物質として炭素材料を用い、固体電解質として Li PO Li S— SiSを用い た全固体二次電池の可能性について言及されている(例えば、非特許文献 1)が、固 体電解質と負極活物質が反応し固体電解質の還元分解反応が進行するため、この 組み合わせでは実用的な二次電池の可能性はな!/、。
また、負極活物質として炭素材料、正極活物質としてコバルト酸リチウム (LiCoO )
2 を用いた各種全固体二次電池について言及されている(例えば、非特許文献 2)。 固体電解質として、 Li S-P S Lilと Li S-GeS P Sの二種の電解質を二層
2 2 5 2 2 2 5
にして使用し、高容量、高電圧 (4V級)の全固体リチウム電池を作製している。
この理由は、以下のとおりである。
負極活物質として、炭素を用いた全固体二次電池の固体電解質の構成の中で、硫 化ケィ素又は硫ィ匕ゲルマニウムを原料として用いた固体電解質を使用する場合、充 電時にリチウムイオンが炭素材料の層間に挿入される反応にカ卩えて、ケィ素又はゲ ルマニウムの還元反応が副反応として起こる。
即ち、 Li S-SiS、 Li S -GeS等のケィ素又はゲルマニウムを含む固体電解質を
2 2 2 2
用いた場合、電池の充電中に流れた電流は、炭素材料へのリチウムイオンの挿入反 応とケィ素又はゲルマニウムの還元反応に消費される。
これらの反応のうち、後者の反応は可逆性に乏しぐ充電した電気量のうち、ケィ素 又はゲルマニウムの還元反応に消費された電気量は、充電時に取り出すことはでき ない。
このような課題に鑑みなされた改良点としては、負極活物質として炭素材料又は炭 素材料の層間にリチウムイオンが挿入された物質を用いた全固体リチウム二次電池 にお ヽて、該負極活物質に接する固体電荷質としてケィ素及びゲルマニウムを含有 しない物質を用い、電解質の原料として硫化リン (P S )を用いることである。
2 5
これは、リンが特に還元され難 、元素である力もである。
また、上記負極活物質を用いる場合、高イオン伝導固体電解質として、 Li S-P S
2 2 5 Lilを用いることである。
し力しながら、イオン伝導度を高める目的でヨウ化リチウム (Lil)を用いると、該電解 質の酸化電位が 2. 9Vであるため、電池作動電位が 3V以上の正極活物質を用いる と、酸化分解反応が起こり、二次電池として作動しないことになる。 よって、ヨウ化リチウムのような化合物は使用しないほうが好ましい。
従って、負極活物質の還元電位が 0. 5V以下であるような炭素材料と正極活物質 として作動電位が 3V以上のものを用いた場合、負極側に Li S -P S— Lil、正極側
2 2 5
に Li S -GeS P Sという二種類の電解質を用い課題を解決したのである力 電解
2 2 2 5
質は薄ければ薄いほど電池性能が向上するため、二層よりも単層の方が好ましい。 即ち、還元電位が 0. 5V以下である負極活物質として、例えば、黒鉛層間化合物 に代表される炭素材料、作動電位が 3V以上である正極活物質として、例えば、コバ ルト酸リチウム等の化合物を用い、固体電解質を選択することにより、該電解質が単 層で、且つ 4V級の高電位かつ高エネルギー密度の全固体リチウム電池が得られる ことが期待される。
これは、黒鉛層間化合物は、 372mAhZgの理論容量と約 0. IVの卑な電位を示 し、コバルト酸リチウムは、リチウムイオンの脱離に伴いリチウム基準で 4Vの電位を示 すからである。
非特干文献 1 : Kazunori Takada, batoshi Naknano, Taro Inada, Akinisa Kajiyama, hi deki Sasaki, Shigeo Kondo and Mamoru Watanabe, Journal of Electrochemical, 150 ( 3) A274-A277 (2003)
非特許文献 2: Kazunori Takada, Taro Inada, Akihisa Kajiyama, Hideki Sasaki, Shige o Kondo, Mamoru Watanabe, Masahiro Murayama, Ryoji Kanno, Solid State Ionics 1 58 (2003) 269-274
特許文献 1:特開平 7— 330312号公報
特許文献 2 :特開平 9 283156号公報
発明の開示
[0005] このような状況下、本発明は、高イオン伝導性のリチウムイオン伝導性無機固体電 解質の新規で効率的な製造方法及び該電解質を用いる高性能のリチウム電池を提 供することを目的とするものである。
また、本発明は、単層で使用可能な高性能の固体電解質を開発することにより、全 固体リチウム電池の高エネルギー密度化を可能とすることを目的とするものである。
[0006] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、高純度の硫化 リチウムと、五硫化二燐、単体燐又は単体硫黄から選ばれる一種以上とを溶融反応 した後、急冷し、更に熱処理することにより、高イオン伝導性のリチウムイオン伝導性 無機固体電解質を得ることができることを見出した。
また、本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、固体電 解質として、硫化リチウムと、五硫化二燐、単体燐及び単体硫黄から選ばれる一種以 上の成分とから製造したリチウムイオン伝導性無機固体電解質を用い、作動電位が 3 V以上である正極活物質と還元電位が 0. 5V以下である負極活物質とを用いること により、上記目的を達成できることを見出た。
本発明は、かかる知見に基づ ヽて完成したものである。
すなわち、本発明は、
1.硫黄酸ィ匕物のリチウム塩及び N—メチルァミノ酪酸リチウムの含有量が各々 0. 15 質量%以下の硫化リチウムと、五硫化二燐、単体燐又は単体硫黄から選ばれる一種 以上とを溶融反応した後、急冷することを特徴とするガラス電解質の製造方法、
2.硫化リチウム 50〜80モル%と五硫ィ匕二燐、単体燐又は単体硫黄から選ばれる一 種以上 20〜50モル%とを溶融反応する上記 1に記載のガラス電解質の製造方法、
3.冷却速度が 1〜: LOOOOKZsecである上記 1又は 2に記載のガラス電解質の製造 方法、
4.上記 1〜3の ヽずれかに記載の方法で得られたガラス電解質を熱処理することを 特徴とするリチウムイオン伝導性無機固体電解質の製造方法、
5.熱処理を 170〜370°Cで行なう上記 4に記載のリチウムイオン伝導性無機固体電 解質の製造方法、
6.上記 1〜3のいずれかに記載の方法で得られたガラス電解質を用いてなるリチウ ム電池。
7.上記 4又は 5に記載の方法で得られたリチウムイオン伝導性無機固体電解質を用 いてなるリチウム電池、
8.作動電位が 3V以上である正極活物質と還元電位が 0. 5V以下である負極活物 質とを用い、少なくとも負極活物質に接するリチウムイオン伝導性無機固体電解質が 、硫化リチウムと、五硫化二燐、単体燐及び単体硫黄から選ばれる一種以上の成分 と力 製造したものであることを特徴とするリチウム電池、
9.硫化リチウムが、有機溶媒中で水酸化リチウムと硫化水素を反応させ、脱硫化水 素後精製したものであり、硫黄酸化物のリチウム塩の総含有量が 0. 15質量%以下 で、かつ N—メチルァミノ酪酸リチウムの含有量が 0. 15質量%以下であることを特徴 とする上記 8に記載のリチウム電池
を提供するものである。
[0008] 本発明は、硫黄酸ィ匕物のリチウム塩及び N—メチルァミノ酪酸リチウムの含有量が 各々 0. 15質量%以下の硫化リチウムと、五硫化二燐、単体燐又は単体硫黄から選 ばれる一種以上とを溶融反応した後、急冷し、更に熱処理することにより、イオン伝導 度が 1 X 10— 3 (SZcm)オーダーである高イオン伝導性のリチウムイオン伝導性無機 固体電解質を容易に得ることができ、該電解質を用いることにより高性能のリチウム 電池を製造することができる。
また、本発明は、硫化リチウムと、五硫化二燐、単体燐及び単体硫黄から選ばれる 一種以上の成分を原料として製造したリチウムイオン伝導性無機固体電解質は単層 として使用することができ、作動電位が 3V以上である正極活物質と還元電位が 0. 5 V以下である負極活物質とを用いることにより、高性能の全固体リチウム電池を容易 に製造することができる。
図面の簡単な説明
[0009] [図 1]実施例 1及び比較例 1の粉末試料の X線回折パターンを示す図である。
[図 2]実施例 2の粉末試料の X線回折パターンを示す図である。
[図 3]実施例 3で得られた電池の充放電特性を示す図である。
[図 4]実施例 3で得られた電池の充放電サイクル特性を示す図である。
[図 5]比較例 3で得られた電池の充放電特性を示す図である。
発明を実施するための最良の形態
[0010] 本発明 1について、以下に詳述する。
本発明のガラス電解質は、高純度の硫化リチウムと五硫ィ匕二燐、単体燐又は単体 硫黄から選ばれる一種以上とを溶融反応した後、急冷することにより製造することが できる。 本発明で用いられる高純度硫化リチウムは、硫黄酸ィ匕物のリチウム塩の総含有量 が 0. 15質量%以下、好ましくは 0. 1質量%以下であり、かつ N—メチルァミノ酪酸リ チウムの含有量が 0. 15質量%以下、好ましくは 0. 1質量%以下である。
硫黄酸化物のリチウム塩の総含有量が 0. 15質量%以下であると、得られる電解質 は、ガラス質 (完全非晶質)である。
即ち、硫黄酸化物のリチウム塩の総含有量が 0. 15質量%を越えると、得られる電 解質は、最初力 結晶化物であり、この結晶化物のイオン伝導度は低い。
更に、この結晶化物について下記の熱処理をほどこしても結晶化物には変化がな ぐ高イオン伝導度のリチウムイオン伝導性無機固体電解質を得ることはできない。 また、 N—メチルァミノ酪酸リチウムの含有量が 0. 15質量%以下であると、 N—メチ ルァミノ酪酸リチウムの劣化物がリチウム二次電池のサイクル性能を低下させることが ない。
従って、高イオン伝導性電解質を得るためには、不純物が低減された硫化リチウム を用いる必要がある。
上記硫化リチウムと五硫ィ匕二燐、単体燐又は単体硫黄から選ばれる一種以上の成 分との混合(溶融)モル比は、通常50 : 50〜80 : 20、好ましくは60 :40〜75 : 25でぁ る。
上記混合物の溶融反応温度は、通常 500〜1000°C、好ましくは 600〜1000 。C、更に好ましくは 900〜: L000°Cであり、溶融反応時間は、通常 1時間以上、好まし くは 6時間以上である。
上記溶融反応物の急冷温度は、通常 10°C以下、好ましくは 0°C以下であり、その 冷却速度は 1〜 lOOOOKZsec程度、好ましくは 1〜 lOOOKZsecである。
このようにして得られた電解質は、ガラス質 (完全非晶質)であり、通常、イオン伝導 度は 1. 0 X 10— 5〜8. 0 X 10— 5 (SZcm)である。
本発明のリチウムイオン伝導性無機固体電解質は、本発明のガラス電解質を熱処 理すること〖こより製造することができる。
熱処理は、通常 170〜370°C程度、好ましくは 180〜330°C、更に好ましくは 200 〜290°Cであり、熱処理時間は、熱処理温度に左右されるが、通常 1分以上、好まし くは 5分〜 24時間である。
この熱処理により、一部又は完全に結晶化したリチウムイオン伝導性無機固体電解 質を得ることができる。
このようにして得られたリチウムイオン伝導性無機固体電解質は、通常、イオン伝導 度は、 7. 0 X 10— 4〜3. 0 X 10— 3(SZcm)である。
[0012] 上記のように優れた特性を有するガラス電解質及びリチウムイオン伝導性無機固体 電解質を用いることにより、長期安定性に優れるリチウム電池が得られる。
本発明の方法によって得られたガラス電解質及びリチウムイオン伝導性無機固体 電解質を用いてリチウム電池を製造する方法は、従来公知の方法を用いることができ る。
[0013] 本発明で用いられる硫化リチウムの製造法としては、上記不純物が低減できる方法 であれば特に制限はない。
例えば、以下の方法で製造された硫化リチウムを精製することにより得ることもでき る。
以下の製造法の中では、特に a又は bの方法が好ま U、。
a.非プロトン性有機溶媒中で水酸化リチウムと硫ィ匕水素とを 0〜150°Cで反応させて 水硫化リチウムを生成し、次いでこの反応液を 150〜200°Cで脱硫ィ匕水素化する方 法 (特許文献 1)。
b.非プロトン性有機溶媒中で水酸化リチウムと硫ィ匕水素とを 150〜200°Cで反応さ せ、直接硫化リチウムを生成する方法 (特許文献 1)。
c水酸化リチウムとガス状硫黄源を 130〜445°Cの温度で反応させる方法 (特許文 献 2)。
[0014] 上記のようにして得られた硫化リチウムの精製方法としては、特に制限はない。
好ましい精製法としては、例えば、特願 2003— 363403号等が挙げられる。
具体的には、上記のようにして得られた硫化リチウムを、有機溶媒を用い、 100°C 以上の温度で洗浄する。
有機溶媒を 100°C以上の温度で用いる理由は、硫化リチウム製造時に用いる有機 溶媒が N—メチルー 2—ピロリドン (NMP)である場合に生成する不純物 N—メチルァ ミノ酪酸リチウム (LMAB)が、有機溶媒に可溶ィ匕する温度が 100°Cだ力もであり、 L MABを洗浄用の有機溶媒に溶解させて、硫化リチウムから除去するためである。 洗浄に用いる有機溶媒は、非プロトン性極性溶媒であることが好ましぐ更に、硫ィ匕 リチウム製造に使用する非プロトン性有機溶媒と洗浄に用いる非プロトン性極性有機 溶媒とが同一であることがより好ましい。
洗浄に好ましく用いられる非プロトン性極性有機溶媒としては、例えば、アミド化合 物、ラタタム化合物、尿素化合物、有機硫黄化合物、環式有機リン化合物などの非プ 口トン性の極性有機化合物が挙げられ、単独溶媒または、混合溶媒として好適に使 用することができる。
これら非プロトン性の極性有機溶媒のうち、前記アミドィ匕合物としては、例えば、 N, N ジメチルホルムアミド、 N, N ジェチルホルムアミド、 N, N ジメチルァセトアミ ド、 N, N ジプロピルァセトアミド、 N, N ジメチル安息香酸アミドなどを挙げること ができる。
また、前記ラタタム化合物としては、例えば、力プロラタタム、 N—メチルカプロラクタ ム、 N ェチルカプロラタタム、 N イソプロピル力プロラタタム、 N イソブチルカプロ ラタタム、 N ノルマルプロピル力プロラタタム、 N ノルマルブチルカプロラタタム、 N シクロへキシルカプロラタタムなどの N アルキル力プロラタタム類、 N メチル 2 —ピロリドン(NMP)、 N ェチル 2—ピロリドン、 N—イソプロピル一 2—ピロリドン、 N—イソブチル—2—ピロリドン、 N ノルマルプロピル— 2—ピロリドン、 N ノルマル ブチルー 2 ピロリドン、 N シクロへキシルー 2 ピロリドン、 N—メチルー 3 メチル —2 ピロリドン、 N ェチル 3—メチル 2 ピロリドン、 N—メチル 3, 4, 5 ト リメチル一 2—ピロリドン、 N—メチル 2—ピぺリドン、 N ェチル 2—ピぺリドン、 N イソプロピル 2 ピペリドン、 N—メチルー 6—メチルー 2 ピペリドン、 N—メチル — 3—ェチル - 2-ピペリドンなどを挙げることができる。
前記有機硫黄ィ匕合物としては、例えば、ジメチルスルホキシド、ジェチルスルホキシ ド、ジフエ-レンスルホン、 1—メチル 1—ォキソスルホラン、 1—フエ-ル一 1—ォキ ソスルホランなどを挙げることができる。
これら各種の非プロトン性有機化合物は、それぞれ一種単独で、叉は二種以上を 混合して、更には本発明の目的に支障のない他の溶媒成分と混合して、前記非プロ トン性有機溶媒として使用することができる。
前記各種の非プロトン性有機溶媒の中でも、好ましいのは、 N—アルキル力プロラタ タム及び N—アルキルピロリドンであり、特に好ましいのは、 N—メチルー 2—ピロリド ン(NMP)である。
洗浄に使用する有機溶媒の量は特に限定されず、また、洗浄の回数も特に限定さ れないが、 2回以上であることが好ましい。
洗浄は、窒素、アルゴンなどの不活性ガス下で行うことが好ましい。
洗浄された硫化リチウムを、洗浄に使用した非プロトン性有機溶媒の沸点以上の温 度で、窒素などの不活性ガス気流下、常圧又は減圧下で、 5分以上、好ましくは約 2
〜3時間以上乾燥することにより、本発明で用いられる硫化リチウムを得ることができ る。
[0015] 本発明で用いられる五硫ィ匕二燐、単体燐又は単体硫黄力 選ばれる一種以上の 成分は、高純度である限り市販品を使用することができる。
[0016] 本発明の方法により得られた固体電解質 (ガラス電解質又はリチウムイオン伝導性 無機固体電解質)をリチウム電池に組み込む場合は、特に制限はなぐ公知の態様 に適用して使用することができる。
例えば、電池ケース内に、封口板、絶縁パッキング、極板群、正極板、正極リード、 負極板、負極リード、固体電解質、絶縁リングにより構成するリチウム電池において、 固体電解質をシート状に成形して、組み込んで使用することができる。
リチウム電池の形状としては、コイン型、ボタン型、シート型、積層型、円筒型、偏平 型、角型、電気自動車等に用いる大型のものなどいずれにも適用できる。
本発明の方法により得られた固体電解質は、携帯情報端末、携帯電子機器、家庭 用小型電力貯蔵装置、モーターを電力源とする自動二輪車、電気自動車、ハイプリ ッド電気自動車等のリチウム電池に用いることができる力 特にこれらに限定されるも のではない。
[0017] 本発明 2について、以下に詳述する。
本発明のリチウムイオン伝導性無機固体電解質は、硫化リチウムと、五硫化二燐、 単体燐及び単体硫黄から選ばれる一種以上の成分とから製造することができる。 具体的には、硫化リチウムと、五硫化二燐、単体燐及び単体硫黄から選ばれる一 種以上の成分を原料として、溶融反応した後、急冷することにより製造することができ る。
また、硫化リチウムと、五硫化二燐、単体燐及び単体硫黄から選ばれる一種以上の 成分を原料として、メカ-カルミリング法により製造することができる。
本発明で用いられる硫化リチウムは、少なくとも硫黄酸ィ匕物のリチウム塩の総含有 量が 0. 15質量%以下、好ましくは 0. 1質量%以下であり、かつ N—メチルアミノ酪 酸リチウムの含有量が 0. 15質量%以下、好ましくは 0. 1質量%以下である。
硫黄酸化物のリチウム塩の総含有量が 0. 15質量%以下であると、得られる電解質 は、ガラス状電解質 (完全非晶質)である。
即ち、硫黄酸化物のリチウム塩の総含有量が 0. 15質量%を越えると、得られる電 解質は、最初力 結晶化物であり、この結晶化物のイオン伝導度は低い。
更に、この結晶化物について下記の熱処理を施しても結晶化物には変化がなぐ 高イオン伝導度のリチウムイオン伝導性無機固体電解質を得ることはできない。 また、 N—メチルァミノ酪酸リチウムの含有量が 0. 15質量%以下であると、 N—メチ ルァミノ酪酸リチウムの劣化物がリチウム電池のサイクル性能を低下させることがない 従って、高イオン伝導性電解質を得るためには、不純物が低減された硫化リチウム を用いる必要がある。
上記硫化リチウムと五硫化二燐、単体燐及び単体硫黄から選ばれる一種以上の成 分との混合モル比は、通常50: 50〜80: 20、好ましくは60:40〜75 : 25でぁる。 硫化リチウムと五硫化二燐、単体燐及び単体硫黄から選ばれる一種以上の成分を 原料とする溶融反応温度は、通常 500〜1000°C、好ましくは 600〜1000°C、更に 好ましくは 900〜: L000°Cであり、溶融反応時間は、通常 1時間以上、好ましくは 6時 間以上である。
上記反応物の急冷温度は、通常 10°C以下、好ましくは 0°C以下であり、その冷却 速度は 1〜 lOOOOKZsec程度、好ましくは 1〜 lOOOKZsecである。 また、硫化リチウムと五硫化二燐、単体燐及び単体硫黄から選ばれる一種以上の 成分を原料とするメカ-カルミリング法は、室温で反応を行うことができる。
メカ-カルミリング法によれば、室温でガラス状電解質 (完全非晶質)を製造できる ため、原料の熱分解が起らず、仕込み組成のガラス状電解質を得ることができるとい ぅ禾 IJ点がある。
又、メカ-カルミリング法では、ガラス状電解質 (完全非晶質)の製造と同時に、ガラ ス状電解質を微粉末化できると 、う利点もある。
メカ-カルミリング法は種々の形式を用いることができる力 遊星型ボールミルを使 用するのが特に好ましい。
遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い 衝撃エネルギーを効率良く発生させることができる。
メカニカルミリング法の回転速度及び回転時間は特に限定されないが、回転速度 が速いほど、ガラス状電解質 (完全非晶質)の生成速度は速くなり、回転時間が長い ほどガラス質状電解質への原料の転化率は高くなる。
このようにして得られた電解質は、ガラス状電解質 (完全非晶質)であり、通常、ィォ ン伝導度は 1. 0 X 10— 5〜8. 0 X 10— 5(SZcm)である。
[0019] 本発明のリチウムイオン伝導性無機固体電解質は、上記ガラス状電解質を更に熱 処理することにより製造することが好ま 、。
熱処理温度は、通常 170〜370°C程度、好ましくは 180〜330°C、更に好ましくは 200〜290°Cであり、熱処理時間は、熱処理温度に左右されるが、通常 1分以上、好 ましくは 5分〜 24時間である。
この熱処理により、一部又は完全に結晶化したリチウムイオン伝導性無機固体電解 質を得ることができる。
このようにして得られたリチウムイオン伝導性無機固体電解質は、通常、イオン伝導 度は、 7. 0 X 10— 4〜3. 0 X 10— 3(SZcm)である。
[0020] 本発明 2で用いられる硫化リチウムの製造法としては、少なくとも上記不純物を低減 できる方法であれば特に制限はな 、。
例えば、本発明 1で詳述した方法で製造することができる。 また、上記のようにして得られた硫化リチウムの精製方法としては、特に制限はない 好ましい精製法としては、例えば、特願 2003— 363403号等が挙げられる。
具体的には、本発明 1で詳述した精製方法が挙げられる。
本発明で用いられる五硫ィ匕二燐、単体燐及び単体硫黄カゝら選ばれる一種の以上 の成分は、市販品を使用することができる。
上記のように優れた特性を有するリチウムイオン伝導性無機固体電解質を用いるこ とにより、長期安定性に優れる全固体リチウム電池が得られる。
本発明における還元電位が 0. 5V以下である負極活物質としては、炭素材料又は 炭素材料の層間にリチウムイオンが挿入された物質が挙げられ、好ましくは炭素材料 である。
これは、リチウム電池を高エネルギー密度化する上において、炭素材料が約 0. IV の極めて卑な電位を示し、リチウム電池を高エネルギー密度化する上において優れ ているからである。
黒鉛に代表される炭素材料をリチウム電池の負極活物質として用いる場合、充電 状態においては炭素材料の層間にリチウムイオンが挿入された状態となり、完全放 電状態においては層間のリチウムイオンは脱離し、元の炭素材料に戻る。
また、本発明における作動電位が 3V以上である正極活物質としては LiCoO、 LiN
2 iO、 LiMn O等の金属酸リチウム塩及び MnO、 V O等が挙げられる。
2 2 4 2 2 5
し力しながら、本発明における負極物活物質である炭素材料は、層間にリチウムィ オンが挿入されていない状態が安定であることから、実用的には、リチウムイオンを含 有しな 、状態の炭素材料を用いて、リチウム電池を構成することが好まし 、。
従って、正極活物質としては、リチウムイオンを含有する LiCoO、 LiNiO、 LiMn
2 2 2 o等の化合物が好ましい。
4
これらの化合物は、リチウムイオンの脱離に伴い、リチウム基準で 4Vの電位を示し 好適である。
更に、これらの化合物の中で、コバルト酸リチウム(LiCoO )が最適である。
2
本発明のリチウムイオン伝導性無機固体電解質を全固体リチウム電池に組み込む 場合は、特に制限はなぐ公知の態様に適用して使用することができる。 例えば、電池ケース内に、封口板、絶縁パッキング、極板群、正極板、正極リード、 負極板、負極リード、固体電解質、絶縁リングにより構成する全固体リチウム電池に おいて、固体電解質をシート状に成形して、組み込んで使用することができる。 全固体リチウム電池の形状としては、コイン型、ボタン型、シート型、積層型、円筒 型、偏平型、角型、電気自動車等に用いる大型のものなどいずれにも適用できる。 本発明のリチウムイオン伝導性無機固体電解質を用いて全固体リチウム電池を製 造する方法は、従来公知の方法を用いることができる。
本発明のリチウムイオン伝導性無機固体電解質は、携帯情報端末、携帯電子機器 、家庭用小型電力貯蔵装置、モーターを電力源とする自動二輪車、電気自動車、ハ イブリツド電気自動車等の全固体リチウム電池として用いることができる力 特にこれ らに限定されるものではない。
実施例
[0022] 次に、本発明を実施例及び比較例により、更に詳細に説明するが、本発明は、これ らの例によってなんら限定されるものではない。
[0023] 参考例 1
(1)硫化リチウムの製造
硫化リチウムは、特許文献 1の第 1の態様 (2工程法)の方法にしたがって製造した。 具体的には、攪拌翼のついた 10リットルオートクレーブに、 N—メチル—2—ピロリド ン(NMP) 3326. 4g (33. 6モル)及び水酸ィ匕リチウム 287. 4g (12モル)を仕込み、
300rpmで 130。Cに昇温した。
昇温後、液中に硫ィ匕水素を 3リットル Z分の供給速度で 2時間吹き込んだ。 続いて、この反応液を窒素気流下(200cm3Z分)昇温し、反応した硫化水素の一 部を脱硫ィ匕水素化した。
昇温するにつれ、上記硫ィ匕水素と水酸化リチウムの反応により副生した水が蒸発を 始めた力 この水はコンデンサにより凝縮し系外に抜き出した。
水を系外に留去すると共に、反応液の温度は上昇する力 180°Cに達した時点で 昇温を停止し、一定温度に保持した。 脱硫化水素反応が終了後 (約 80分間)、反応を終了し、硫化リチウムを得た。
[0024] (2)硫化リチウムの精製
上記(1)で得られた 500mLのスラリー反応溶液 (NMP—硫化リチウムスラリー)中 の NMPをデカンテーシヨンした後、脱水した NMPlOOmLをカ卩え、 105°Cで約 1時 間携拌した。
この温度のまま NMPをデカンテーシヨンした。
更に、 NMPlOOmLをカ卩え、 105°Cで約 1時間攪拌し、この温度のまま NMPをデ カンテーシヨンし、同様の操作を合計 4回繰り返した。
デカンテーシヨン終了後、 230°Cで減圧下 3時間乾燥した。
得られた硫化リチウム中の不純物含有量を測定した。
得られた結果を表 1に示す。
尚、不純物である、亜硫酸リチウム (Li SO )、硫酸リチウム (Li SO )、チォ硫酸リ
2 3 2 4
チウム(Li S O )及び N—メチルァミノ酪酸リチウム(LMAB)は、イオンクロマトグラフ
2 2 3
法により定量した。
[0025] 参考例 2
市販硫化リチウム (アルドリッチケミカル社製)の不純物含有量を測定した。 得られた結果を表 1に示す。
[0026] [表 1] 表 1
Figure imgf000017_0001
[0027] 実施例 1
参考例 1の高純度硫化リチウム 0. 6508g (0. 01417モル)と五硫ィ匕二燐 1. 3492 g (0. 00607モル)をよく混合後、カーボンコートした石英ガラス管に入れ、真空封入 した。 次に、縦型反応炉に入れ、 4時間かけて 900°Cに昇温して、この温度で 2時間溶融 反応を行なった。
反応終了後、石英管を氷水中に投入し急冷した。
石英管を開管し、得られた溶融反応物の粉末試料につ!、て X線回折を行った結果 、硫化リチウム及び五硫ィ匕二燐のピークが消失し、ガラス化が進行していることが確 認された(図 1参照、 CPSは X線の反射強度を示す)。
また、この粉末試料について、交流インピーダンス法 (測定周波数; 100Hz〜15M Hz)により電気伝導度の測定を行ったところ、室温でのイオン伝導度は 1. 3 X 10"4S , cmで &)つた。
得られた結果を表 2に示す。
[0028] 実施例 2
実施例 1で得られたガラス電解質を 250°Cで 30分間熱処理した。
得られた熱処理物の粉末試料につ!ヽて X線回折を行った結果、一部結晶化が進 行して ヽることが確認された(図 2参照、 CPSは X線の反射強度を示す)。
また、この粉末試料について、交流インピーダンス法により電気伝導度の測定を行 つたところ、室温でのイオン伝導度は 8. 4 X 10— 4SZcmであった。
得られた結果を表 2に示す。
[0029] 比較例 1
参考例 1の高純度硫化リチウムの代わりに参考例 2の市販硫化リチウム〔アルドリツ チケミカル社製〕を用いた他は、実施例 1と同様に溶融反応及び急冷操作を行なった 得られた溶融反応物の粉末試料につ!ヽて X線回折を行った結果、反応物はガラス 化が進行せず、結晶化物であることが確認された(図 1参照)。
また、この粉末試料について、交流インピーダンス法により電気伝導度の測定を行 つたところ、室温でのイオン伝導度は 3. 6 X 10— 5SZcmであった。
得られた結果を表 2に示す。
[0030] 比較例 2
比較例 1で得られた結晶電解質を 250°Cで 30分間熱処理した。 得られた熱処理物の粉末試料につ!ヽて X線回折を行った結果、比較例 1と同一で あることが確認された(図 1参照)。
また、この粉末試料について、交流インピーダンス法により電気伝導度の測定を行 つたところ、室温でのイオン伝導度は 5. 9 X 10— 5SZcmであった。
得られた結果を表 2に示す。
[表 2] 表 2
Figure imgf000019_0001
実施例 3
負極活物質として、カーボングラファイト(TIMCAL製、 SFG—15)を用い、又正極 活物質としてコバルト酸リチウム (LiCoO )を用いて、以下のようにしてリチウム電池を
2
作製し、その電池特性を評価した。
実施例 2で得られたリチウムイオン伝導性固体電解質とカーボングラファイトとを 1 : 1の質量比で混合し、負極材料とした。
また、コバルト酸リチウムと上記リチウムイオン伝導性固体電解質を 8: 5の質量比で 混合したものを正極材料とした。
上記負極材料(10mg)と正極材料(20mg)を用い、これらの間に上記リチウムィォ ン伝導性固体電解質(150mg)を介し 3層のペレット状に成型し、測定セルとした。 この測定セルを 10 Aの定電流で充放電させることにより、電池特性を調べたとこ ろ、初期充放電効率は 85. 8%であった。
その充放電特性を図 3に示す。
なお、縦軸は端子電圧 (V)、横軸はコバルト酸リチウム lgに対する容量を示す。 充放電サイクル特性は、図 4のとおりであった。
また、この電池の作動電位〔リチウム金属の標準電極電位を基準 (OV)とした場合 の正極の電位差〕は、 3. 5Vであり、負極活物質の電位〔リチウム金属の標準電極電 位を基準 (OV)とした場合の負極の電位差〕は 0. IVであった。
[0033] 比較例 3
実施例 2のリチウムイオン伝導性固体電解質の代わりに、固体電解質として、 GeS
2
—Li S— P S〔チォリシコン系電解質、組成比: Li;0. 35、Ge ;0. 25、P ;0. 75、 S ;
2 2 5
4)を用いた他は、実施例 3と同様にして、測定セルを作製し、電池特性を調べたとこ ろ、初期充放電効率は 16. 5%であった。
その充放電特性を図 5に示す。
なお、縦軸は端子電圧 (V)、横軸はチォリシコン系電解質 lgに対する容量を示す また、この電池の負極活物質の電位は 0. IVであった力 負極活物質により電解質 が還元されてしまったため二次電池として作動しな力つた。
産業上の利用可能性
[0034] 本発明の方法により得られた固体電解質は、携帯情報端末、携帯電子機器、家庭 用小型電力貯蔵装置、モーターを電力源とする自動二輪車、電気自動車、ハイプリ ッド電気自動車等のリチウム電池に用いることができる力 特にこれらに限定されるも のではない。また、本発明の全固体リチウム電池は、携帯情報端末、携帯電子機器、 家庭用小型電力貯蔵装置、モーターを電力源とする自動二輪車、電気自動車、ハイ ブリツド電気自動車等の電池として用いることができる。

Claims

請求の範囲
[1] 硫黄酸ィ匕物のリチウム塩及び N—メチルァミノ酪酸リチウムの含有量が各々 0. 15質 量%以下の硫化リチウムと、五硫化二燐、単体燐又は単体硫黄力 選ばれる一種以 上とを溶融反応した後、急冷することを特徴とするガラス電解質の製造方法。
[2] 硫化リチウム 50〜80モル%と五硫ィ匕二燐、単体燐又は単体硫黄から選ばれる一種 以上 20〜50モル%とを溶融反応する請求項 1に記載のガラス電解質の製造方法。
[3] 冷却速度が 1〜: LOOOOKZsecである請求項 1又は 2に記載のガラス電解質の製造 方法。
[4] 請求項 1〜3の ヽずれかに記載の方法で得られたガラス電解質を熱処理することを 特徴とするリチウムイオン伝導性無機固体電解質の製造方法。
[5] 熱処理を 170〜370°Cで行なう請求項 4に記載のリチウムイオン伝導性無機固体電 解質の製造方法。
[6] 請求項 1〜3の 、ずれかに記載の方法で得られたガラス電解質を用いてなるリチウム 電池。
[7] 請求項 4又は 5に記載の方法で得られたリチウムイオン伝導性無機固体電解質を用 いてなるリチウム電池。
[8] 作動電位が 3V以上である正極活物質と還元電位が 0. 5V以下である負極活物質と を用い、少なくとも負極活物質に接するリチウムイオン伝導性無機固体電解質が、硫 化リチウムと、五硫化二燐、単体燐及び単体硫黄から選ばれる一種以上の成分とか ら製造したものであることを特徴とするリチウム電池。
[9] 硫化リチウムが、有機溶媒中で水酸化リチウムと硫化水素を反応させ、脱硫化水素 後精製したものであり、硫黄酸化物のリチウム塩の総含有量が 0. 15質量%以下で、 かつ N—メチルァミノ酪酸リチウムの含有量が 0. 15質量%以下であることを特徴とす る請求項 8に記載のリチウム電池。
PCT/JP2005/010134 2004-06-04 2005-06-02 高性能全固体リチウム電池 WO2005119706A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005001270T DE112005001270T5 (de) 2004-06-04 2005-06-02 Leistungsstarke Festkörper-Lithiumbatterie
JP2006514126A JP4873479B2 (ja) 2004-06-04 2005-06-02 高性能全固体リチウム電池
US11/628,030 US20070248888A1 (en) 2004-06-04 2005-06-02 High-Performance All-Solid Lithium Battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004167453 2004-06-04
JP2004-167453 2004-06-04
JP2004234201 2004-08-11
JP2004-234201 2004-08-11

Publications (1)

Publication Number Publication Date
WO2005119706A1 true WO2005119706A1 (ja) 2005-12-15

Family

ID=35463111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010134 WO2005119706A1 (ja) 2004-06-04 2005-06-02 高性能全固体リチウム電池

Country Status (5)

Country Link
US (1) US20070248888A1 (ja)
JP (1) JP4873479B2 (ja)
DE (1) DE112005001270T5 (ja)
TW (1) TW200603451A (ja)
WO (1) WO2005119706A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015409A1 (ja) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. 固体電解質シート
JP2008004334A (ja) * 2006-06-21 2008-01-10 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法
JP2008103285A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 全固体バイポーラ電池
WO2009047977A1 (ja) * 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. リチウムイオン伝導性固体電解質の製造方法
CN100486024C (zh) * 2006-09-29 2009-05-06 中国科学院上海硅酸盐研究所 一种用于二次锂电池的锂镧硅硫固体电解质材料及其制备方法
CN100486025C (zh) * 2006-09-29 2009-05-06 中国科学院上海硅酸盐研究所 一种用于二次锂电池的Li2S-Al2S3固体电解质材料及其制备方法
JP2012041207A (ja) * 2010-08-13 2012-03-01 Idemitsu Kosan Co Ltd 固体電解質ガラス及びその製造方法
WO2013042371A1 (ja) 2011-09-22 2013-03-28 出光興産株式会社 ガラス粒子
WO2013069243A1 (ja) 2011-11-07 2013-05-16 出光興産株式会社 固体電解質
WO2014002483A1 (ja) 2012-06-29 2014-01-03 出光興産株式会社 正極合材
WO2014073197A1 (ja) 2012-11-06 2014-05-15 出光興産株式会社 固体電解質
CN112670560A (zh) * 2020-09-04 2021-04-16 华中科技大学 硫化物固态电解质及其高温液相制备方法
CN114039087A (zh) * 2021-11-08 2022-02-11 厦门大学 硫化物固体电解质及其应用
WO2024010077A1 (ja) * 2022-07-07 2024-01-11 出光興産株式会社 硫化物固体電解質の製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4478706B2 (ja) * 2007-09-05 2010-06-09 セイコーエプソン株式会社 リチウムイオン伝導性固体電解質およびそれを用いた全固体リチウム二次電池
US8778543B2 (en) * 2007-12-03 2014-07-15 Seiko Epson Corporation Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method for manufacturing all-solid lithium secondary battery
JPWO2011010552A1 (ja) * 2009-07-22 2012-12-27 住友電気工業株式会社 非水電解質電池及び非水電解質電池用固体電解質
WO2011102054A1 (ja) * 2010-02-18 2011-08-25 株式会社 村田製作所 全固体二次電池用電極活物質および全固体二次電池
CN103515654B (zh) * 2013-09-13 2016-06-01 四川川为电子有限公司 一种聚合物固体电解质的制造方法
JP5895917B2 (ja) 2013-09-26 2016-03-30 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
KR101684130B1 (ko) * 2015-06-16 2016-12-07 현대자동차주식회사 리튬 이온 전도성 황화물의 제조방법, 이에 의하여 제조된 리튬 이온 전도성 황화물, 및 이를 포함하는 고체전해질, 전고체 배터리
WO2017197039A1 (en) 2016-05-10 2017-11-16 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
WO2020203045A1 (ja) * 2019-03-29 2020-10-08 古河機械金属株式会社 硫化物系無機固体電解質材料用の五硫化二リン組成物
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US12051824B2 (en) 2020-07-10 2024-07-30 Polyplus Battery Company Methods of making glass constructs
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
US12034116B2 (en) 2020-08-04 2024-07-09 Polyplus Battery Company Glass solid electrolyte layer, methods of making glass solid electrolyte layer and electrodes and battery cells thereof
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
CN112768760A (zh) * 2021-02-10 2021-05-07 山东瑞福锂业有限公司 一种合成硫化物固态电解质的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245828A (ja) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd リチウムイオン導電性固体電解質およびそれを用いた全固体リチウム二次電池
JP2003068361A (ja) * 2001-08-23 2003-03-07 Japan Storage Battery Co Ltd 全固体リチウム二次電池
JP2003208919A (ja) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法並びに該ガラスセラミックスを用いた全固体型電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022640A (en) * 1996-09-13 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solid state rechargeable lithium battery, stacking battery, and charging method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245828A (ja) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd リチウムイオン導電性固体電解質およびそれを用いた全固体リチウム二次電池
JP2003068361A (ja) * 2001-08-23 2003-03-07 Japan Storage Battery Co Ltd 全固体リチウム二次電池
JP2003208919A (ja) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法並びに該ガラスセラミックスを用いた全固体型電池

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015409A1 (ja) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. 固体電解質シート
JP2008004334A (ja) * 2006-06-21 2008-01-10 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法
CN100486024C (zh) * 2006-09-29 2009-05-06 中国科学院上海硅酸盐研究所 一种用于二次锂电池的锂镧硅硫固体电解质材料及其制备方法
CN100486025C (zh) * 2006-09-29 2009-05-06 中国科学院上海硅酸盐研究所 一种用于二次锂电池的Li2S-Al2S3固体电解质材料及其制备方法
JP2008103285A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 全固体バイポーラ電池
US8518585B2 (en) 2007-10-11 2013-08-27 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
WO2009047977A1 (ja) * 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. リチウムイオン伝導性固体電解質の製造方法
JP2012041207A (ja) * 2010-08-13 2012-03-01 Idemitsu Kosan Co Ltd 固体電解質ガラス及びその製造方法
WO2013042371A1 (ja) 2011-09-22 2013-03-28 出光興産株式会社 ガラス粒子
WO2013069243A1 (ja) 2011-11-07 2013-05-16 出光興産株式会社 固体電解質
EP3361545A1 (en) 2011-11-07 2018-08-15 Idemitsu Kosan Co., Ltd. Solid electrolyte
WO2014002483A1 (ja) 2012-06-29 2014-01-03 出光興産株式会社 正極合材
WO2014073197A1 (ja) 2012-11-06 2014-05-15 出光興産株式会社 固体電解質
CN112670560A (zh) * 2020-09-04 2021-04-16 华中科技大学 硫化物固态电解质及其高温液相制备方法
CN112670560B (zh) * 2020-09-04 2022-03-25 华中科技大学 硫化物固态电解质及其高温液相制备方法
CN114039087A (zh) * 2021-11-08 2022-02-11 厦门大学 硫化物固体电解质及其应用
WO2024010077A1 (ja) * 2022-07-07 2024-01-11 出光興産株式会社 硫化物固体電解質の製造方法

Also Published As

Publication number Publication date
JP4873479B2 (ja) 2012-02-08
US20070248888A1 (en) 2007-10-25
TW200603451A (en) 2006-01-16
JPWO2005119706A1 (ja) 2008-04-03
DE112005001270T5 (de) 2007-04-26

Similar Documents

Publication Publication Date Title
WO2005119706A1 (ja) 高性能全固体リチウム電池
JP5311169B2 (ja) リチウムイオン伝導性固体電解質、その製造方法及び該固体電解質を用いたリチウム二次電池用固体電解質並びに該二次電池用固体電解質を用いた全固体リチウム電池
JP2006277997A (ja) 高性能全固体リチウム電池
KR101489608B1 (ko) 황화물 고체 전해질 재료 및 리튬 고상 전지
JP5590836B2 (ja) 硫化物固体電解質
JP4989183B2 (ja) 極材及びそれを用いた固体二次電池
JP5368711B2 (ja) 全固体リチウム二次電池用の固体電解質膜、正極膜、又は負極膜、及びそれらの製造方法並びに全固体リチウム二次電池
WO2005078740A1 (ja) リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
KR100449073B1 (ko) 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP2008103204A (ja) 正極活物質及びそれを用いた二次電池
JP2008103280A (ja) 正極合材及びそれを用いた全固体二次電池
WO2007066539A1 (ja) リチウムイオン伝導性硫化物系固体電解質及びそれを用いた全固体リチウム電池
JP2008103203A (ja) 固体電解質及びそれを用いた全固体二次電池
JP2014221714A (ja) リチウムイオン伝導性固体電解質シート及びその製造方法
JP2007273214A (ja) 固体電解質、その製造方法及び全固体二次電池
JP2008103146A (ja) 固体電解質及びそれを用いた二次電池
JP2008027581A (ja) 電極材料、電極及び全固体二次電池
JP2009283344A (ja) リチウム電池用負極合材、リチウム電池用負極、リチウム電池、装置およびリチウム電池用負極合材の製造方法
CN100514510C (zh) 高性能全固体锂电池
JP5001621B2 (ja) 固体電解質及びそれを用いた固体二次電池
CN100583543C (zh) 锂离子传导性固体电解质、其制造方法及使用了该固体电解质的锂二次电池用固体电解质以及使用了该二次电池用固体电解质的全固体锂电池
WO2004093099A1 (ja) リチウムイオン導電性固体電解質の製造方法及びそれを用いた全固体型二次電池
JP5096722B2 (ja) 電池材料の製造方法及び全固体電池
JP2010033875A (ja) 有機硫黄化合物を含んでなる正極合材、及びそれを用いた全固体二次電池
JP5098288B2 (ja) 二次電池用正極層及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514126

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11628030

Country of ref document: US

Ref document number: 1020067025252

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580018142.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050012700

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067025252

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005001270

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005001270

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11628030

Country of ref document: US