WO2005119172A1 - 表面形状の検査方法および検査装置 - Google Patents

表面形状の検査方法および検査装置 Download PDF

Info

Publication number
WO2005119172A1
WO2005119172A1 PCT/JP2005/010191 JP2005010191W WO2005119172A1 WO 2005119172 A1 WO2005119172 A1 WO 2005119172A1 JP 2005010191 W JP2005010191 W JP 2005010191W WO 2005119172 A1 WO2005119172 A1 WO 2005119172A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent plate
surface shape
image
stripe pattern
reflection image
Prior art date
Application number
PCT/JP2005/010191
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Sonda
Kimiaki Oto
Munehisa Kato
Atsushi Kiyama
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to EP05745755A priority Critical patent/EP1750087B1/en
Publication of WO2005119172A1 publication Critical patent/WO2005119172A1/ja
Priority to US11/561,517 priority patent/US7394536B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/386Glass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • G01N2021/8893Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques providing a video image and a processed signal for helping visual decision
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the present invention relates to an inspection method and an inspection apparatus for inspecting characteristics of a surface shape such as flatness of an object represented by glass having a mirror surface.
  • a stripe pattern having periodic light and dark is irradiated on the object to be inspected, and a shift of the light and dark period in a reflection image formed by reflecting the surface of the object to be inspected is obtained.
  • a method for estimating the surface shape of an object to be inspected based on it for example, see Patent Document 1.
  • a transparent plate-like body such as a glass plate
  • a reflection image from the back surface of the transparent plate-like body which is not only a reflection image from the front surface of the transparent plate-like body, is also taken.
  • an image reflected by the surface of the transparent plate is referred to as a front surface reflected image
  • an image reflected by the rear surface of the transparent plate is referred to as a back surface reflected image.
  • FIG. 16 is an explanatory diagram showing a state where a front surface reflection image and a back surface reflection image are simultaneously formed.
  • light emitted from the point 5 on the stripe pattern is reflected by the surface 3a of the transparent plate 3 and forms an image at the imaging point 10 on the light receiving surface 7 of the camera via the optical path 8. Is done.
  • the light transmitted through the transparent plate 3 is reflected by the back surface 3 b of the transparent plate 3 and forms an image on the light receiving surface 7 at the imaging point 11 via the optical path 9.
  • FIG. 17 is a waveform diagram showing an example of an image signal output from the camera.
  • (A) shows an image signal of a front surface reflection image
  • (b) shows an image signal of a back surface reflection image.
  • a low level indicates a level of an image signal based on a dark portion in the stripe pattern
  • a high level indicates a level of an image signal based on a bright portion in the stripe pattern. If the width of the dark part in the stripe pattern is wide, the width of the low level part in the image signal is also large, and the low! And low levels in the image signal of the front reflection image and the low level in the image signal of the back reflection image are superimposed. There is. Then, the output from the camera The image signal shown in Fig. 17 (c) becomes the signal shown in Fig. 17 (c), and the surface shape is inspected based on a signal different from the originally required image signal of the surface reflection image (Fig. 17 (a)). Is performed.
  • an image signal as shown in FIG. 18C is output from the camera.
  • (a) shows an image signal of a front surface reflection image
  • (b) shows an image signal of a back surface reflection image.
  • the inspection of the surface shape is performed based on a signal different from the image signal of the surface reflection image, and there is a problem that an accurate inspection of the surface shape cannot be performed.
  • Patent Document 1 JP-A-11-148813 (paragraphs 0082-0083, FIG. 24)
  • Non-patent document 1 "Optical technology contact” (published by Japan Opto-Mechatronics Association, No. 3
  • the present invention provides a surface shape inspection method and an inspection apparatus capable of removing the influence of a back surface reflected image with an inexpensive device configuration and accurately inspecting the characteristics of the surface shape. Aim.
  • the surface shape inspection method includes irradiating a transparent pattern with a stripe pattern, A method of imaging a reflection image of a stripe pattern formed by the surface of a transparent plate and inspecting the surface shape of the transparent plate based on an image signal obtained by the imaging.
  • a glass substrate used for a flat display panel is inspected as a transparent plate.
  • a raw plate used for automotive glass is inspected as a transparent plate-like body.
  • the amount of deviation of the reflection image from the ideal reflection image when the surface of the transparent plate is an ideal plane is determined. Then, the inclination of the surface shape of the transparent plate is obtained using the shift amount, the stripe pattern position information, and the lens center position information of the imaging means, and the constraint condition is that the surface of the transparent plate is almost flat. Then, the surface shape of the transparent plate is obtained by integrating the inclination of the surface shape.
  • the surface shape inspection apparatus includes an imaging unit that captures a reflection image formed by the surface of the transparent plate in the form of a stripe pattern irradiated on the transparent plate, and is obtained by imaging by the imaging unit.
  • Separating means for setting a stripe pattern having a light and dark pattern set to be separated in the obtained image signal, and separating a reflection image of the stripe pattern by the surface of the transparent plate from the image signal obtained by the imaging means; And a calculating means for inspecting the surface shape of the transparent plate using the reflection image on the surface of the transparent plate separated by the separating means.
  • the calculating means calculates a shift amount of the reflection image with respect to the ideal reflection image when the surface of the transparent plate is an ideal plane.
  • Calculating means for calculating the inclination of the surface shape of the transparent plate using the shift amount calculated by the shift amount calculating means, the position information of the stripe pattern, and the lens center position information of the imaging means;
  • Surface shape determining means for integrating the inclination of the surface shape calculated by the inclination calculating means to obtain the surface shape of the transparent plate, with the constraint that the surface of the transparent plate is substantially flat.
  • FIG. 1 is a schematic diagram showing an outline of an inspection apparatus for inspecting the flatness of the surface of a transparent plate-shaped body.
  • FIG. 2 is an explanatory diagram showing an example of a stripe pattern.
  • FIG. 3 is a flowchart showing an overall flow of a surface shape inspection method according to the present invention.
  • FIG. 4 is a waveform diagram showing an example of an output signal of a CCD camera.
  • FIG. 5 is a flowchart showing an example of a process for determining a stripe pattern.
  • FIG. 6 is a waveform diagram showing an output signal of a CCD camera when the stripe pattern determined in the first step is used.
  • FIG. 7 is a waveform diagram showing an output signal of the CCD camera when the stripe pattern determined in the first step is used.
  • FIG. 8 is an explanatory view showing how a surface shape inspection is performed.
  • FIG. 9 is a flowchart showing a schematic process of a second step.
  • FIG. 10 is a waveform diagram showing an example of an image signal of a reflected image.
  • FIG. 11 is an explanatory diagram showing a situation where the trajectory of the observed reflected image precedes the reflected image on the ideal plane.
  • FIG. 12 is an explanatory diagram showing a situation in which the trajectory of the observed reflection image is delayed with respect to the reflection image on the ideal plane.
  • FIG. 13 is an explanatory diagram showing the relationship between the degree of precedence and the inclination of the undulation shape when the trajectory of the observed reflected image precedes the reflected image on the ideal plane.
  • FIG. 14 is an explanatory diagram showing the relationship between the degree of delay and the slope of the undulation shape when the trajectory of the observed reflected image precedes the reflected image on the ideal plane.
  • FIG. 15 is an explanatory diagram showing definitions of an X axis and a z axis.
  • FIG. 16 is an explanatory diagram showing a state in which a front surface reflection image and a back surface reflection image are formed at the same time.
  • FIG. 17 is a waveform diagram showing an example of an image signal output by a camera.
  • FIG. 18 is a waveform diagram showing an example of an image signal output by a camera.
  • Stripe pattern 2 CCD camera
  • FIG. 1 is a schematic diagram showing an outline of an inspection apparatus for inspecting the flatness of the surface of a transparent plate such as a glass plate.
  • the inspection apparatus includes a stripe pattern projected on a surface 3a of a transparent plate 3 such as a glass plate which is an inspection target (object to be inspected) mounted on a mounting table (not shown). 1 is configured to be imaged by a CCD camera 2 as an imaging means.
  • the stripe pattern 1 is provided on a light emitting surface of a light source (not shown).
  • FIG. 2 is an explanatory diagram illustrating an example of the stripe pattern 1.
  • L indicates the width of the dark area
  • An image picked up by the CCD camera 2 is taken into a computer 4 such as a personal computer as arithmetic means, and the computer 4 performs image analysis.
  • a computer 4 such as a personal computer as arithmetic means, and the computer 4 performs image analysis.
  • the CCD camera 2 is illustrated here, any camera such as an area camera, a line camera, a video camera, and a still camera can be used instead of the CCD camera 2.
  • any light receiving device may be used as long as the reflected image can be specified, such as an array of photo sensors.
  • the optical axis of the CCD camera 2 and the normal of the stripe pattern 1 (specifically, the plane on which the stripe pattern 1 exists) have the same angle as the normal direction of the surface 3 a of the transparent plate 3.
  • a CCD camera 2 and a stripe pattern 1 are installed so as to make a triangle.
  • the angle 0 is preferably 45 °.
  • FIG. 3 is a flowchart showing an overall flow of the surface shape inspection method according to the present invention.
  • a stripe pattern determination step of determining a stripe pattern 1 suitable for a transparent plate 3 as an object to be inspected is executed, and then a second step is performed.
  • a surface shape inspection step of evaluating the surface shape of the transparent plate 3 by image analysis based on an image reflected by the transparent plate 3 of the stripe pattern 1 Is executed.
  • the second step among the reflection images of the stripe pattern 1 determined in the first step by the front surface 3a and the back surface 3b of the transparent plate 3, only the reflection image by the surface 3a of the transparent plate 3 is used. .
  • FIG. 4 (c) is a waveform diagram showing an example of an output signal of the CCD camera 2 when the stripe pattern 1 determined in the first step is used.
  • (a) shows an image signal of a front surface reflection image
  • (b) shows an image signal of a back surface reflection image.
  • the CCD camera 2 outputs a signal obtained by superimposing the image signal of the front-surface reflection image and the image signal of the back-surface reflection image, as in the cases shown in FIGS. 17 and 18. I do.
  • the width of the dark portion of the stripe pattern (corresponding to the signal widths W 1 and W 2) and the brightness
  • the dark portion in the front surface reflection image and the dark portion in the back surface reflection image are adjusted so as not to overlap. Therefore, at the time of image analysis by the computer 4, only the image signal of the surface reflection image can be easily extracted, and a precise surface shape inspection can be performed.
  • FIG. 5 is a flowchart illustrating an example of a process for determining a stripe pattern.
  • a plurality of stripe patterns on which different patterns are printed for each sheet are prepared (Step Sl).
  • a plurality of stripe patterns with different stripe periods and widths prepare The stripe pattern is formed, for example, by printing a pattern on a transparent resin film by inkjet printing.
  • one stripe pattern is attached to the light source (step S2).
  • a reflection image of the stripe pattern by the transparent plate 3 is captured by the CCD camera 2 (step S3).
  • an image signal of an image captured by the computer four-power CCD camera 2 is input, and an image analysis process for analyzing the image signal is executed according to an image analysis processing program (step S4).
  • the output signal of the CCD camera 2 that is, the image signal input from the CCD camera 2 determines the force or non-force as shown in FIG. 4 (c). Specifically, it is determined whether the level corresponding to the two dark portions is not superimposed. If the image signal does not indicate such a state (in the case of NG), another stripe pattern is attached to the light source, and the processing of steps S2 and S3 is executed again.
  • the respective dark portions are separated from each other.
  • the image signal it is preferable that the image signal is located at an intermediate position between two dark portions of the front surface reflection image and the dark portion force of the rear surface reflection image.
  • the computer 4 When the computer 4 confirms that the levels corresponding to the two dark portions are not superimposed in the image signal, the computer 4 replaces the stripe pattern attached to the light source with the transparent plate 3 It is determined as the stripe pattern 1 to be used in the surface shape inspection (step S7).
  • the stripe pattern 1 suitable for inspecting the surface shape of the transparent plate 3 a stripe pattern having a light and dark pattern set to be separated in an image signal obtained by the CCD camera 2. 1 is determined.
  • the transparent plate 3 as the object to be inspected is a general liquid crystal display or a glass substrate for a PDP having a thickness of about lmm, for example, in the example shown in FIG.
  • the width L of the part is about 0.9 to 1.3 mm, and the width L of the black part is about 0.05 to 0.1 mm.
  • FIG. 6 is a waveform diagram showing an output signal of the CCD camera 2 when the stripe pattern determined in the first step is used.
  • the surface of the transparent plate 3 such as a glass plate
  • the contrast of the trip pattern tends to be stronger on the front side (corresponding to amplitude 12 in FIG. 6) than on the back side (corresponding to amplitude 13 in FIG. 6). Therefore, a low-level portion (low-brightness portion) that appears periodically from the captured image signal can be found, and the magnitude and amplitude of the portion can be inspected as an image signal of a surface reflection image.
  • FIG. 7 is also a waveform diagram showing the output signal of the CCD camera 2 when the stripe pattern determined in the first step is used.
  • the interval 14 shown in FIG. Indicates the interval from the low-luminance part in the image signal of the back-reflection image to the low-luminance part in the image signal of the back-reflection image. Is shown.
  • the intervals 14 and 15 are, on average, (1) the thickness of the transparent plate 3, (2) the angle between the optical axis of the CCD camera 2 and the normal of the transparent plate 3. And (3) it is determined by the period of light and dark in the stripe pattern 1.
  • the image signal of both the front surface reflection image and the back surface reflection image is input from the CCD camera 2 to the computer 4 by recognizing the front surface reflection image as described above. By extracting only the image signal of the reflected image, it is possible to perform a precise surface shape inspection.
  • the glass plate as the transparent plate 3 of each thickness can prevent the dark part in the front reflection image from overlapping with the dark part in the back reflection image.
  • Stripe pattern 1 was determined by experiment.
  • the light / dark period (pitch) is 0.9 mm, 1.1 mm, or 1.3 mm. Indicates that it can be used as a stripe pattern 1 suitable for inspecting the surface shape of the object 3 .
  • the width of the dark area is 50 ⁇ 111 or 100 ⁇ 111.
  • FIG. 8 is an explanatory diagram showing a state where a surface shape inspection is performed using the stripe pattern 1.
  • the stripe pattern 1 the pattern determined in the first step is set. That is, in the image signal obtained by the CCD camera 2, a stripe pattern 1 having a light and dark pattern set to be separated is used.
  • FIG. 8 schematically shows the positions of the stripe pattern 1 and the CCD camera 2. The positional relationship between the force stripe pattern 1 and the CCD camera 2 with respect to the transparent plate 3 is shown in the first step. Same as positional relationship.
  • the light power reflected on the entire surface of the transparent plate 3 reaches the image plane of the CCD camera 2 at one time.
  • FIG. 9 is a flowchart showing a schematic process of the second step.
  • the table At the time of surface shape inspection, first, an image signal of an image captured by the computer 4 (not shown in FIG. 8) and the CCD camera 2 is input (step Sl). That is, an image signal of a reflection image from the transparent plate 3 of the stripe pattern 1 is input. If the surface of the transparent plate 3 has undulations (irregularities, distortions), the position of the low-luminance portion in the image signal of the reflected image picked up by the CCD camera 2 is determined by an ideal plane with no undulations. It is shifted from the position of the low brightness part in the given image signal. That is, the position of the low luminance portion in the image signal of the reflection image provided by the ideal plane is advanced or delayed.
  • the computer 4 extracts only the image signal of the surface reflection image from the image signal obtained by the CCD camera 2 by the method described above (see FIGS. 6 and 7) (Step S12). That is, a low-luminance part that appears periodically from the image signal color obtained by the CCD camera 2 is found, and a signal having a large amplitude is used as an image signal of the surface reflection image (see FIG. 6). Of the two low-brightness parts forming the longer interval 14 (see Fig. 7) in the obtained image signal, one of the low-brightness parts (for example, the one located earlier) is recognized as being due to the surface reflection image. By doing so, only the image signal of the surface reflection image is extracted.
  • the computer 4 also plays a role of a separating unit that executes a process of separating an image reflected by the surface of the transparent plate 3 from the image signal obtained by the CCD camera 2.
  • the image signal of the reflected image means the image signal of the surface reflected image separated from the image signal obtained by the CCD camera 2.
  • a low-luminance portion in the image signal of the reflection image may be simply referred to as a reflection image here.
  • the computer 4 calculates the inclination of the surface shape of the surface of the transparent plate 3 (from the deviation (leading information or delay information) of the obtained surface reflection image with respect to the reflection image by the ideal plane).
  • the differential value is calculated (step S13).
  • the surface shape is obtained by an integral operation (step S14).
  • FIG. 10 is a waveform diagram showing an example of an image signal of a reflected image.
  • FIG. 10 shows only the image signal of the surface reflection image.
  • the reflected image from the ideal plane with no undulation on the surface in the case shown in Fig. 10 (a)
  • the low-luminance part spatially leads or delays.
  • FIG. 11 is an explanatory diagram showing a situation where the reflection image 26 precedes the reflection image 19 on the ideal plane.
  • FIG. 12 is an explanatory diagram showing a situation where the reflection image 26 is delayed with respect to the reflection image 19 on the ideal plane.
  • a path 8 indicated by a solid line indicates an actual optical path.
  • the light emitted from the point 5 on the stripe pattern 1 is reflected at the reflection point 31 on the surface of the transparent plate 3, reaches the light receiving surface 7 via the lens center 30 of the CCD camera 2, and forms a reflected image 26. I do.
  • the path 28 indicated by a dashed line indicates that after the light emitted from the point 5 is reflected at the reflection point 32 on the surface of the transparent plate 3 when the surface of the transparent plate 3 is an ideal plane.
  • the optical path reaching the light receiving surface 7 of the light receiving element (CCD) via the lens center 30 of the CCD camera 2 is shown.
  • the reflection image 19 shown in FIGS. 11 and 12 is formed on the light receiving surface 7.
  • the reflection image 19 is an image formed when the glass surface is assumed to be an ideal plane, and is not actually formed.
  • the position of the reflection image 19 due to the light reflected on the ideal surface is set as the position of the ideal reflection image.
  • the pitch (period) of light and dark in the stripe pattern 1 is known. Further, the positional relationship of the stripe pattern 1 and the CCD camera 2 with respect to the transparent plate 3 is also known. Then, based on the known information, the position of the reflection image 19 due to the light reflected on the ideal surface can be determined. Note that the CCD camera 2 may directly image the stripe pattern 1, and the position of the reflected image 19 due to the light reflected on the ideal surface may be determined based on the output signal of the CCD camera 2 in that case.
  • the computer 4 calculates the deviation amount (leading amount or delay amount) of the position of the reflection image 26 actually obtained from the reflection image 19 based on the position of the reflection image 19 due to the light reflected on the ideal surface. You can know.
  • FIG. 13 is an explanatory diagram showing the relationship between the degree of the precedence and the inclination (differential value) of the surface shape when the reflection image 26 precedes the reflection image 19 on the ideal plane.
  • Figure 14 shows the reflection
  • FIG. 9 is an explanatory diagram showing the relationship between the degree of delay and the inclination (differential value) of the surface shape when the image 26 is delayed with respect to the reflection image 19 by the ideal plane.
  • is an angle formed by a vector extending from the lens center 30 to the path 8 with reference to a vector extending from the lens center 30 to the path 28.
  • j8 is an angle formed by a vector extending vertically downward from the lens center 30 with reference to a vector extending from the lens center 30 to the path 28.
  • is an angle formed by a vector extending from point 5 to path 8 with reference to a vector extending vertically downward from point 5.
  • is the angle formed by the normal vector of the undulating surface at the reflection point 31 with respect to the perpendicular vector of the reflection point 31 (the inclination of the normal vector).
  • the undulation surface means a portion where undulation exists on the surface 3a of the transparent plate state 3.
  • the computer 4 receives the reflected image 26 from the CCD camera 2 and obtains position information of each reflected image 26 on the two-dimensional plane (specifically, position information of each low-luminance portion).
  • position information of each reflection image 19 on the ideal plane specifically, the position information of each low luminance portion
  • the positions of the reflected images 26 and 19 on the light receiving surface 7 correspond to the positions of the reflection points 31 and 32 on the surface of the transparent plate 3.
  • the position of the lens center 30 is also fixed, and the position of the point 5 in the stripe pattern 1, that is, the position information of the stripe pattern 1 can be recognized.
  • the lens center position information indicating the position of the lens center 30 and the position information of the stripe pattern 1 indicating the position of the point 5 in the stripe pattern 1 are roughly set.
  • the position of the point 5 in the stripe pattern 1 does not mean a specific position, but a stripe pattern corresponding to each of the reflection images 26 and 19 (specifically, each low-luminance portion). Each position in the first row.
  • the computer 4 determines the position of each reflection image 26.
  • the angles ⁇ , ⁇ , ⁇ can be calculated. Obedience Then, ⁇ for each reflection image 26 can be calculated based on the equation (1).
  • the surface shape can be obtained by numerically integrating f '(x). Specifically, Computer 4
  • the combi-processor 4 calculates the integration constant C in the expression (3) as
  • an appropriate drive pattern 1 is determined in the first step of the force capable of measuring the surface shape, it is possible to obtain a surface shape that is not affected by the back reflection image. As a result, the characteristics of the surface shape can be accurately inspected.
  • the inspector may carry out the evaluation, or the computer 4 may be used as a non-defective product. All the reference values may be set, and the computer 4 may output the result of comparison with the reference values.
  • the amount of calculation of the computer 4 is not so large.
  • a shift amount calculating means for calculating the shift amount of the reflected image with respect to the ideal reflected image, the shift amount, the positional information of the stripe pattern 1 and the CCD camera 2
  • the inclination calculating means for calculating the inclination of the surface shape of the transparent plate-shaped object 3 using the lens center position information of the above, and the inclination of the surface shape is set under the constraint that the surface of the transparent plate-shaped object 3 is almost flat.
  • the surface shape determining means for calculating the surface shape of the transparent plate 3 by integration is realized by the computer 4.
  • a glass substrate used for a flat panel display such as a liquid crystal display or a PDP is assumed as the transparent plate 3, but the transparent plate 3 may be used for automobiles, ships, airplanes, buildings, and the like.
  • the present invention can also be applied to inspection of a transparent substrate such as a glass substrate (raw plate) or a resin plate used for a window glass or the like.
  • a stripe pattern capable of separating only the reflection image by the surface of the transparent plate is determined from the image signal obtained by the imaging means, so that an inexpensive device configuration is used. This removes the influence of the backside reflection image and allows for accurate inspection of the surface shape characteristics.
  • the present invention is suitably applied when inspecting the flatness of the surface of a transparent plate.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2004-167621 filed on June 4, 2004 are hereby incorporated by reference to disclose the specification of the present invention. , Is to take in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Textile Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 安価な装置構成で裏面反射像の影響を除去して、表面形状の特性を精度よく検査することができる検査方法および検査装置を提供する。まず、透明板状体3(被検査物体)に適するストライプパターンとして、透明板状体の表面による反射像と透明板状体の裏面による反射像とが、撮像によって得られた画像信号では分離するように設定された明暗のパターンを有するストライプパターン1を決定する。その後、決定されたストライプパターン1を使用して、ストライプパターン1の透明板状体3の表面による反射像のみを用いて画像解析によって透明板状体3の表面形状を評価する。

Description

明 細 書
表面形状の検査方法および検査装置
技術分野
[0001] 本発明は、鏡面性を有するガラスに代表される物体の平坦度等の表面形状の特性 を検査するための検査方法および検査装置に関する。
背景技術
[0002] 物体の表面形状を検査する方法として、周期的な明暗を有するストライプパターン を被検査物体に照射し、被検査物体の表面を反射して形成される反射像における明 暗周期のずれに基づ 、て被検査物体の表面形状を評価する方法がある(例えば、 特許文献 1参照)。しかし、そのような方法をガラス板のような透明板状体に適用する と、透明板状体の表面による反射像だけでなぐ透明板状体の裏面による反射像も 同時に撮像される。以下、透明板状体の表面による反射像を表面反射像といい、透 明板状体の裏面による反射像を裏面反射像という。
[0003] 図 16は、表面反射像と裏面反射像とが同時に形成される様子を示す説明図である 。図 16に示すように、ストライプパターン上の点 5から発した光は、透明板状体 3の表 面 3aで反射され、光路 8を介してカメラの受光面 7上の撮像点 10に結像される。また 、透明板状体 3を透過した光は、透明板状体 3の裏面 3bで反射され、光路 9を介して 受光面 7上の撮像点 11に結像される。
[0004] ここで、ストライプパターンの周期または幅によっては、撮像した画像信号に、以下 に示す問題が生ずることがある。図 17は、カメラが出力する画像信号例を示す波形 図である。(a)は、表面反射像の画像信号を示し、(b)は、裏面反射像の画像信号を 示す。
[0005] また、低いレベルはストライプパターンにおける暗部にもとづく画像信号のレベルを 示し、高いレベルはストライプパターンにおける明部にもとづく画像信号のレベルを 示す。ストライプパターンにおける暗部の幅が広いと、画像信号における低いレベル の部分の幅も大きくなつて、表面反射像の画像信号における低!、レベルと裏面反射 像の画像信号における低いレベルとが重畳することがある。すると、カメラから出力さ れる画像信号が図 17 (c)に示すような信号になってしまい、本来必要とされる表面反 射像の画像信号 (図 17 (a) )とは異なった信号にもとづいて表面形状の検査が行わ れること〖こなる。
[0006] また、図 18に示すように、ストライプパターンにおける暗部の幅が十分に狭くても、 表面反射像の画像信号における暗部の位置と裏面反射像の画像信号における暗部 の位置との差 Tがストライプパターンにおける明暗の周期の整数倍に近いときには、 図 18 (c)に示すような画像信号がカメラから出力される。なお、図 18において、 (a) は、表面反射像の画像信号を示し、 (b)は、裏面反射像の画像信号を示す。この場 合にも、表面反射像の画像信号とは異なった信号にもとづいて表面形状の検査が行 われることになり、正確な表面形状の検査を行えないという問題が生ずる。
[0007] 上記の問題を解決する方法として、裏面反射像を弱めたり除去したりする方法があ る。例えば、紫外線を用いる方法もその一つである(非特許文献 1参照。;)。紫外線は ガラスに吸収されるため、裏面反射像のコントラストは表面反射像のコントラストに比 ベて十分低くなり、裏面反射像と表面反射像とが重畳したとしても、裏面反射像の影 響を抑えることができる。
特許文献 1 :特開平 11— 148813号(段落 0082— 0083、図 24)
非特許文献 1 :「光技術コンタクト」(社団法人日本ォプトメカトロニクス協会発行、第 3
9卷、第 2号(2001年)、第 103— 110頁)
[0008] しかし、紫外線を用いる方法を実現しょうとした場合には、紫外線光源を用い、紫外 線を透過する特殊な部材でカメラを構成しなければならず、検査装置が高価になる。 また、紫外線であればどの波長でもよいというわけではなぐ裏面反射像を弱くするた めにはガラスに十分吸収される波長域を選ぶ必要がある。ガラスの組成によっては紫 外線を吸収しにくい種類もあり、単純にこの方法を適用できない場合がある。
[0009] そこで、本発明は、安価な装置構成で裏面反射像の影響を除去して、表面形状の 特性を精度よく検査することができる表面形状の検査方法および検査装置を提供す ることを目的とする。
発明の開示
[0010] 本発明による表面形状の検査方法は、ストライプパターンを透明板状体に照射し、 透明板状体の表面によって形成されるストライプパターンの反射像を撮像し、撮像に よって得られた画像信号にもとづいて透明板状体の表面形状を検査する方法であつ て、透明板状体の表面による反射像と透明板状体の裏面による反射像とが、撮像に よって得られた画像信号では分離するように設定された明暗のパターンを有するスト ライプパターンを決定するストライプパターン決定工程と、撮像によって得られた画像 信号に含まれる反射像のうち、透明板状体の表面による反射像のみを用いて、透明 板状体の表面形状を検査する表面形状検査工程とを含むことを特徴とする。
[0011] 本発明による検査方法の好ましい態様では、透明板状体として、フラットディスプレ ィパネルに用いられるガラス基板を検査する。
[0012] 本発明による検査方法の他の好ま 、態様では、透明板状体として、自動車ガラス に用いられる素板を検査する。
[0013] 本発明による検査方法の好ま ヽ実施態様では、表面形状検査工程にお!ヽて、透 明板状体の表面が理想的平面である場合の理想反射像に対する反射像のずれ量 を得て、ずれ量、ストライプパターンの位置情報および撮像手段のレンズ中心位置情 報を用いて透明板状体の表面形状の傾きを求め、透明板状体の表面がほぼ平坦で あることを拘束条件として、表面形状の傾きを積分して透明板状体の表面形状を求 める。
[0014] 本発明による表面形状の検査装置は、透明板状体に照射されたストライプパターン の透明板状体の表面によって形成される反射像を撮像する撮像手段を備え、撮像 手段による撮像によって得られた画像信号にもとづいて透明板状体の表面形状を検 查する装置であって、透明板状体の表面による反射像と透明板状体の裏面による反 射像とが、撮像手段によって得られた画像信号では分離するように設定された明暗 のパターンを有するストライプパターンが設置され、撮像手段によって得られた画像 信号から透明板状体の表面によるストライプパターンの反射像を分離する分離手段 と、分離手段が分離した透明板状体の表面による反射像を用いて、透明板状体の表 面形状を検査する演算手段とを備えて 、ることを特徴とする。
[0015] 本発明による検査装置の好ま 、実施態様では、演算手段が、透明板状体の表面 が理想的平面である場合の理想反射像に対する反射像のずれ量を算出するずれ量 算出手段と、ずれ量算出手段が算出したずれ量、ストライプパターンの位置情報およ び撮像手段のレンズ中心位置情報を用いて透明板状体の表面形状の傾きを算出す る傾き算出手段と、透明板状体の表面がほぼ平坦であることを拘束条件として、傾き 算出手段が算出した表面形状の傾きを積分して透明板状体の表面形状を求める表 面形状決定手段とを含む。
図面の簡単な説明
[図 1]図 1は、透明板状体の表面の平坦度を検査するための検査装置の概要を示す 模式図である。
[図 2]図 2は、ストライプパターンの一例を示す説明図である。
[図 3]図 3は、本発明による表面形状の検査方法の全体的な流れを示すフローチヤ ートである。
[図 4]図 4は、 CCDカメラの出力信号例を示す波形図である。
[図 5]図 5は、ストライプパターンを決定する処理の一例を示すフローチャートである。
[図 6]図 6は、第 1ステップにおいて決定されたストライプパターンを用いた場合の CC Dカメラの出力信号を示す波形図である。
[図 7]図 7は、第 1ステップにおいて決定されたストライプパターンを用いた場合の CC Dカメラの出力信号を示す波形図である。
[図 8]図 8は、表面形状検査を実施する様子を示す説明図である。
[図 9]図 9は、第 2ステップの概略工程を示すフローチャートである。
[図 10]図 10は、反射像の画像信号の一例を示す波形図である。
[図 11]図 11は、観測された反射像の軌跡が理想的平面による反射像に対して先行 している状況を示す説明図である。
[図 12]図 12は、観測された反射像の軌跡が理想的平面による反射像に対して遅延 している状況を示す説明図である。
[図 13]図 13は、観測された反射像の軌跡が理想的平面による反射像に対して先行 する場合の先行の程度とうねり形状の傾きとの関係を示す説明図である。
[図 14]図 14は、観測された反射像の軌跡が理想的平面による反射像に対して先行 する場合の遅延の程度とうねり形状の傾きとの関係を示す説明図である。 [図 15]図 15は、 X軸および z軸の定義を示す説明図である。
[図 16]図 16は、表面反射像と裏面反射像とが同時に形成される様子を示す説明図 である。
[図 17]図 17は、カメラが出力する画像信号例を示す波形図である。
[図 18]図 18は、カメラが出力する画像信号例を示す波形図である。
符号の説明
[0017] 1 :ストライプパターン 2 : CCDカメラ
3 :透明板状体 3a :表面
3b :裏面 4 :コンピュータ
5 :ストライプパターン上の点 7 :受光面
19, 26 :反射像 31, 32 :反射点
発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態を図面を参照して説明する。
図 1は、ガラス板などの透明板状体の表面の平坦度を検査するための検査装置の 概要を示す模式図である。図 1に示すように、検査装置は、載置台(図示せず)上に 載せられた検査対象 (被検査物体)であるガラス板などの透明板状体 3の表面 3aに 映し出されたストライプパターン 1を、撮像手段としての CCDカメラ 2によって撮像す るように構成されている。ストライプパターン 1は、光源(図示せず)の発光面に設けら れている。図 2は、ストライプパターン 1の一例を示す説明図である。図 2において、 L は暗部の幅を示し、 L
2は明部の幅を示す。 L +L
1 2が明暗の周期に相当する。透明 榭脂フィルムに黒色部分を着色してストライプパターン 1を実現する場合には、明部 は透明部分に相当し、暗部は黒色部分に相当する。
[0019] CCDカメラ 2によって撮像された画像は、演算手段としてのパーソナルコンピュータ などのコンピュータ 4に取り込まれ、コンピュータ 4によって画像解析が行われる。なお 、ここでは CCDカメラ 2を例示するが、 CCDカメラ 2に代えて、エリアカメラ、ラインカメ ラ、ビデオカメラ、スティルカメラ等いずれの方式のカメラでも使用可能である。
また、フォトセンサを配列させたものなど反射像を特定できるものであれば、いずれの 受光装置を使用してもよい。 [0020] CCDカメラ 2の光軸と、ストライプパターン 1 (具体的には、ストライプパターン 1が存 在する平面)の法線とが、透明板状体 3の表面 3aの法線方向より同じ角度 Θになるよ うに、 CCDカメラ 2とストライプパターン 1とが設置される。角度 0は、 45° であること が好ましい。
[0021] 図 3は、本発明による表面形状の検査方法の全体的な流れを示すフローチャート である。図 3に示すように、本発明による検査方法では、第 1ステップとして、被検査 物体としての透明板状体 3に適するストライプパターン 1を決定するストライプパター ン決定工程が実行され、次いで、第 2ステップで、第 1ステップで決定されたストライプ パターン 1を用いて、ストライプパターン 1の透明板状体 3による反射像にもとづいて 画像解析によって透明板状体 3の表面形状を評価する表面形状検査工程が実行さ れる。なお、第 2ステップでは、第 1ステップで決定されたストライプパターン 1の透明 板状体 3の表面 3aおよび裏面 3bによる反射像のうち、透明板状体 3の表面 3aによる 反射像のみが用いられる。
[0022] 図 4 (c)は、第 1ステップで決定されたストライプパターン 1を用いた場合における C CDカメラ 2の出力信号例を示す波形図である。図 4において、(a)は、表面反射像の 画像信号を示し、(b)は、裏面反射像の画像信号を示す。図 4 (c)に示すように、 CC Dカメラ 2は、図 17および図 18に示された場合と同様に、表面反射像の画像信号と 裏面反射像の画像信号とを重畳した信号を出力する。
[0023] ただし、本発明では、ストライプパターンの暗部の幅 (信号幅 W , Wに相当)と明暗
1 2
の周期(周期 Τ , Tに相当)を最適化することによって、 CCDカメラ 2が出力する画
1 2
像信号において、表面反射像における暗部と裏面反射像における暗部とが重なり合 わないように調整されている。そのため、コンピュータ 4による画像解析の際に、表面 反射像の画像信号のみを容易に抽出でき、精密な表面形状検査を実施することが できる。
[0024] 次に、ストライプパターンを決定する第 1ステップの処理について説明する。図 5は、 ストライプパターンを決定する処理の一例を示すフローチャートである。その処理に おいて、まず、 1枚毎に異なるパターンが印刷された複数のストライプパターンを用意 する (ステップ Sl)。すなわち、ストライプの周期や幅が異なる複数のストライプパター ンを準備する。ストライプパターンは、例えば、インクジェット印刷により、透明榭脂フィ ルムにパターンを印刷することによって形成される。次いで、 1つのストライプパターン を光源に貼付する (ステップ S 2)。そして、透明板状体 3によるストライプパターンの反 射像を CCDカメラ 2により撮像する (ステップ S3)。
[0025] 次いで、コンピュータ 4力 CCDカメラ 2により撮像された画像の画像信号を入力し 、画像解析処理プログラムに従って画像信号を解析する画像解析処理を実行する( ステップ S4)。画像解析処理では、 CCDカメラ 2の出力信号すなわち CCDカメラ 2か ら入力された画像信号が、図 4 (c)に示すような状態である力否力判断する。具体的 には、 2つの暗部に対応するレベルが重畳していない状態である力否力判断する。 画像信号がそのような状態を示していない場合 (NGの場合)には、別のストライプパ ターンを光源に貼付し、ステップ S2, S3の処理を再度実行する。なお、後述するよう に振幅によって表面反射像と裏面反射像とを区別しょうとする場合には、それぞれの 暗部が離反していることが好ましい。例えば、画像信号において、裏面反射像の暗 部力 表面反射像の 2つの暗部の中間に位置することが好ましい。
[0026] コンピュータ 4が、画像信号において 2つの暗部に対応するレベルが重畳していな い状態であることを確認したら、そのときに光源に貼付されているストライプパターン を、透明板状体 3の表面形状の検査において使用するストライプパターン 1として決 定する (ステップ S7)。以上のようにして、透明板状体 3の表面形状の検査に適するス トライプパターン 1として、 CCDカメラ 2によって得られた画像信号においては分離す るように設定された明暗のパターンを有するストライプパターン 1が決定される。
[0027] なお、被検査物体としての透明板状体 3が、一般的な板厚 lmm程度の液晶ディス プレイまたは PDP用のガラス基板である場合には、図 2に示す例において、例えば、 透明部分の幅 Lが約 0. 9〜1. 3mm、黒色部分の幅 Lが約 0. 05〜0. lmmのスト
2 1
ライプパターン力 そのようなガラス基板の検査において使用するストライプパターン
1として決定される。
[0028] 次に、第 2ステップにおいて使用される表面反射像の認識方法について説明する。
図 6は、第 1ステップにおいて決定されたストライプパターンを用いた場合の CCDカメ ラ 2の出力信号を示す波形図である。ガラス板などの透明板状体 3の表面におけるス トライプパターンのコントラストは、表面によるもの(図 6における振幅 12に対応)の方 が裏面によるもの(図 6における振幅 13に対応)よりも強い傾向にある。よって、撮像 した画像信号カゝら定期的に現れる低レベルの部分 (低輝度部分)を見つけるとともに 、その振幅の大き 、ものを表面反射像の画像信号として検査を行うことができる。
[0029] 図 7も、第 1ステップにおいて決定されたストライプパターンを用いた場合の CCD力 メラ 2の出力信号を示す波形図であるが、図 7に示す間隔 14は、表面反射像の画像 信号における低輝度部分から、裏面反射像の画像信号における低輝度部分までの 間隔を示し、間隔 15は、裏面反射像の画像信号における低輝度部分から表面反射 像の画像信号における低輝度部分までの間隔を示す。
[0030] 間隔 14と間隔 15とは、平均的には、(1)透明板状体 3の厚さ、(2) CCDカメラ 2の 光軸と透明板状体 3の法線との成す角、および (3)ストライプパターン 1における明暗 の周期によって決定される。間隔 14と間隔 15の長さに明確な差がつくように、第 1ス テツプにおいて、ストライプパターン 1を決定することにより、表面反射像と裏面反射 像とを区別することが容易になる。すなわち、長い方の間隔 14を形成する 2つの低輝 度部分のうち、一方 (例えば、先に位置する方)の低輝度部分を、表面反射像による ものと認識する。このような表面反射像の認識方法は、表面反射像と裏面反射像のコ ントラストに大きな差異が無い場合に有効である。
[0031] 第 2ステップでは、 CCDカメラ 2からコンピュータ 4に表面反射像と裏面反射像との 双方の画像信号が入力されるのである力 上記のように表面反射像を認識することに よって、表面反射像の画像信号のみを抽出して、精密な表面形状検査を実施するこ とがでさる。
[0032] (実施例)
次に、第 1ステップの実施例を説明する。表 1の左欄に示すようなそれぞれの板厚 の透明板状体 3としてのガラス板にっ 、て、表面反射像における暗部と裏面反射像 における暗部とが重なり合わないようにすることができるストライプパターン 1を実験に より決定した。表 1において、例えば、板厚 0. 35mmの透明板状体 3では、明暗の周 期(ピッチ)が、 0. 9mm、 1. 1mmまたは 1. 3mmのもの力 板厚 0. 35mmの透明 板状体 3の表面形状の検査に適するストライプパターン 1として使用できることを示す 。それぞれの場合において、暗部の幅は、 50 ^ 111または100 ^ 111でぁる。
[0033] [表 1]
Figure imgf000011_0001
[0034] 次に、第 2ステップの表面形状検査方法の具体的な一例について説明する。図 8は 、ストライプパターン 1を用いて表面形状検査を実施する様子を示す説明図である。 ストライプパターン 1として、第 1ステップで決定されたものが設置される。すなわち、 C CDカメラ 2によって得られた画像信号においては分離するように設定された明暗の パターンを有するストライプパターン 1が用いられる。なお、図 8には、ストライプパター ン 1および CCDカメラ 2の位置が模式的に示されている力 ストライプパターン 1およ び CCDカメラ 2の透明板状体 3に対する位置関係は、第 1ステップにおける位置関係 と同じである。また、透明板状体 3の表面全域で反射された光力 CCDカメラ 2の撮 像面に一時に到達する。
[0035] 図 9は、第 2ステップの概略工程を示すフローチャートである。図 9に示すように、表 面形状検査時には、まず、コンピュータ 4 (図 8では図示せず)力 CCDカメラ 2により 撮像された画像の画像信号を入力する (ステップ Sl l)。すなわち、ストライプパター ン 1の透明板状体 3による反射像の画像信号を入力する。透明板状体 3の表面にう ねり(凹凸、歪み)がある場合には、 CCDカメラ 2で撮像される反射像の画像信号に おける低輝度部分の位置は、うねりの全くない理想的平面が与える画像信号におけ る低輝度部分の位置からずれる。すなわち、理想的平面が与える反射像の画像信号 における低輝度部分の位置に対して先行したり遅れたりする。
[0036] 次いで、コンピュータ 4は、 CCDカメラ 2によって得られた画像信号から、上記のよう な方法(図 6,図 7参照)で表面反射像の画像信号のみを抽出する (ステップ S12)。 すなわち、 CCDカメラ 2によって得られた画像信号カゝら定期的に現れる低輝度部分 を見つけるとともに、その振幅の大きいものを表面反射像の画像信号としたり(図 6参 照)、 CCDカメラ 2によって得られた画像信号において長い方の間隔 14 (図 7参照) を形成する 2つの低輝度部分のうち、一方 (例えば、先に位置する方)の低輝度部分 を、表面反射像によるものと認識することによって、表面反射像の画像信号のみを抽 出する。従って、コンピュータ 4は、 CCDカメラ 2によって得られた画像信号から、透 明板状体 3の表面による反射像を分離する処理を実行する分離手段の役割も果た す。以下の説明において、反射像の画像信号とは、 CCDカメラ 2によって得られた画 像信号から分離された表面反射像の画像信号を意味する。また、説明を簡単にする ために、ここでは、反射像の画像信号における低輝度部分を、単に反射像ということ がある。
[0037] コンピュータ 4は、表面形状検査プログラムに従って、得られた表面反射像の理想 的平面による反射像に対するずれ (先行情報または遅延情報)から、透明板状体 3の 表面の表面形状の傾き (微分値)を算出する (ステップ S 13)。そして、透明板状体 3 の表面がほぼ平面であることを拘束条件として、積分演算によって表面形状を得る( ステップ S 14)。
[0038] 図 10は、反射像の画像信号の一例を示す波形図である。図 10には、表面反射像 の画像信号のみが示されている。図 10 (b)に示すように、表面にうねりがない理想的 平面による反射像(図 10 (a)に示す場合)の低輝度部分に対して、うねりがある平面 による反射像では、低輝度部分が、空間的に先行したり遅延したりする。
[0039] 図 11〜図 15の説明図を参照して、表面形状の検査方法について詳細に説明する 。上述したように、透明板状体 3の表面にうねりがある場合には、得られた反射像の位 置は、理想的表面で反射された光による反射像の位置に対して、先行したり遅れたり する。図 11は、反射像 26が理想的平面による反射像 19に対して先行している状況 を示す説明図である。また、図 12は、反射像 26が理想的平面による反射像 19に対 して遅延している状況を示す説明図である。図 11および図 12において、実線で示さ れる経路 8は実際の光路を示している。ストライプパターン 1上の点 5から出射した光 は、透明板状体 3の表面の反射点 31で反射された後、 CCDカメラ 2のレンズ中心 30 を経て受光面 7に到達し反射像 26を形成する。
[0040] 破線で示される経路 28は、透明板状体 3の表面が理想的平面である場合において 、点 5から出射した光が透明板状体 3の表面の反射点 32で反射された後 CCDカメラ 2のレンズ中心 30を経て受光素子(CCD)の受光面 7に到達する光路を示す。この 場合、受光面 7において、図 11および図 12に示された反射像 19が形成される。ただ し、反射像 19は、ガラス表面が理想的平面であると仮定した場合において形成され る像であって、現実に形成されるものではない。
[0041] コンピュータ 4には、あら力じめ、理想反射像の位置として、理想的表面で反射され た光による反射像 19の位置が設定される。ストライプパターン 1における明暗のピッ チ (周期)は既知である。また、ストライプパターン 1および CCDカメラ 2の透明板状体 3に対する位置関係も既知である。すると、それらの既知の情報にもとづいて、理想 的表面で反射された光による反射像 19の位置を決定することができる。なお、 CCD カメラ 2で直接ストライプパターン 1を撮像し、その場合の CCDカメラ 2の出力信号に もとづいて、理想的表面で反射された光による反射像 19の位置を決定するようにして もよい。コンピュータ 4は、理想的表面で反射された光による反射像 19の位置にもと づいて、実際に得られた反射像 26の位置の反射像 19からのずれ量 (先行量または 遅延量)を知ることができる。
[0042] 図 13は、反射像 26が理想的平面による反射像 19に対して先行する場合の先行の 程度と表面形状の傾き (微分値)との関係を示す説明図である。また、図 14は、反射 像 26が理想的平面による反射像 19に対して遅延する場合の遅延の程度と表面形 状の傾き (微分値)との関係を示す説明図である。
[0043] 図 13および図 14において、 αは、レンズ中心 30から経路 28に延ばしたベクトルを 基準とした場合のレンズ中心 30から経路 8に延ばしたベクトルが形成する角度である 。 j8は、レンズ中心 30から経路 28に延ばしたベクトルを基準とした場合のレンズ中心 30から鉛直下方に延ばしたベクトルが形成する角度である。 γは、点 5から鉛直下方 に延ばしたベクトルを基準とした場合の点 5から経路 8に延ばしたベクトルが形成する 角度である。そして、 δは、反射点 31の垂線ベクトルを基準とした場合の反射点 31 におけるうねり表面の法線ベクトルが形成する角度 (法線ベクトルの傾き)である。な お、うねり表面とは、透明板状態 3の表面 3aにおけるうねりが存在する部分を意味す る。
[0044] いずれの角度も、基準とするベクトルから反時計方向に傾く場合に正の値をとると する。従って、図 13に示された状況において、 αく 0, δく 0であり、図 14に示され た状況において、 α >0, δ >0である。
式 1
[謝5] 一 θ +
01 β . . . ( 1 )
[0046] 法線ベクトルの傾き δは、(1)式のように表される。表面形状を z=f (X)なる関数で 表現すると、表面形状の傾き (微分値) =tan δは、(2)式で表される。 X軸および ζ軸 は図 15に示すようにとられ、 χ=0の点は、例えば、透明板状体 3の表面の左端に設 定される。
式 2 f* (χ) = ^L 1 = tm d · · ' ( 2 )
dx 従って、表面形状 zは、(3)式のように求められる。(3)式において、 Cは積分定数 である。液晶ディスプレイや PDPなどのフラットパネルディスプレイに用いられる透明 板状体 3の表面形状は、細かなうねりがある力もしれないがほぼ平坦である。従って、 (4)式に示す関係が成り立つと考えてよい。すなわち、透明板状体 3の表面における うねりの平均値は 0であるという条件を付加する。すると、(3)式における積分定数 C は、(4)式の拘束条件を満足するように決定することができる。ただし、(4)式におい て、理想的表面を z = 0の平面としている。
式 3
[0049]
z= J f (x) dx+ C ' · · (3) 式 4
[0050]
Jf ( 。 ■ . . ( 具体的には以下のような処理が行われる。
[0051] コンピュータ 4は、 CCDカメラ 2から反射像 26を入力し、 2次元平面上の各々の反 射像 26の位置情報 (具体的には、各々の低輝度部分の位置情報)を得る。また、理 想的平面による各々の反射像 19の位置情報 (具体的には、各々の低輝度部分の位 置情報)も認識できる。反射像 26, 19の受光面 7における位置は、透明板状体 3の 表面における反射点 31, 32の位置に対応している。
[0052] また、レンズ中心 30の位置も定まったものであり、ストライプパターン 1における点 5 の位置すなわちストライプパターン 1の位置情報も認識できる。コンピュータ 4には、レ ンズ中心 30の位置を示すレンズ中心位置情報と、ストライプパターン 1における点 5 の位置を示すストライプパターン 1の位置情報と力 あら力じめ設定される。ここで、ス トライプパターン 1における点 5の位置とは、特定の位置を意味しているのではなぐ 各々の反射像 26, 19 (具体的には、各々の低輝度部分)に対応するストライプバタ ーン 1における各々の位置である。反射点 31, 32の位置は反射像 26, 19の受光面 7における位置から決定でき、また、レンズ中心 30の位置も既知であるので、コンビュ ータ 4は、各々の反射像 26についての各角度 α , β , γを算出することができる。従 つて、(1)式にもとづいて各々の反射像 26についての δを計算できる。なお、各々の 反射像 26に対応する反射点 31の位置は、(2)〜 (4)式における Xの値である。 各々の反射像 26についての δが算出されたので、コンピュータ 4は、容易に各々 の反射像 26についての tan δ (=f,(x))の値を算出できる。各々の反射像 26につい ての f, (X)力 f (X ), f, (x ), f'(x), · · ·, f, (x )のように n個得られたとし、 Δ (χ)を以下の
1 2 3 η
ように定義する。
A(x)=(f'(x)+f'(x))x(x -x)/2
1 1 2 2 1
A(x)=(f'(x)+f'(x))x(x -x)/2
Δ(χ )=(f'(x )+f'(x))x(x -x )/2
(n-1) (n-1) n n (n-1)
表面形状は、 f'(x)を数値積分することにより求めることができる。具体的には、コン ピュータ 4は、
Figure imgf000016_0001
を算出することにより、各 Xにおけるうねりの高さを得る。
このようにして得られた表面形状は必ずしも(4)式を満たすとは限らな 、が、コンビ ユータ 4は、(3)式における積分定数 Cを、
C=-(Kx)+Kx))x(x -x)/2
1 2 2 1
Figure imgf000016_0002
Figure imgf000016_0003
のように定めることにより、(4)式を満たす表面形状を得ることができる。
以上のように表面形状を測定できるのである力 第 1ステップにおいて適切なストラ イブパターン 1を決定しているので、裏面反射像の影響を受けることなぐ表面形状を 得ることができることができる。その結果、表面形状の特性を精度よく検査することが できる。なお、得られた表面形状にもとづいて、透明板状体 3の表面の平坦度等を評 価するときに、検査者が評価を実行してもよいし、コンピュータ 4にあら力じめ良品とし ての基準値を設定しておいて、コンピュータ 4が、基準値との比較結果を出力するよう にしてもよい。また、本発明による表面形状の検査方法では、観測値にもとづく角度 算出計算および積分のための加減算処理を行えばよいので、コンピュータ 4の演算 量はさほど多くない。
[0056] なお、透明板状体 3の表面が理想的平面である場合の理想反射像に対する反射 像のずれ量を算出するずれ量算出手段、ずれ量、ストライプパターン 1の位置情報 および CCDカメラ 2のレンズ中心位置情報を用いて透明板状体 3の表面形状の傾き を算出する傾き算出手段、および、透明板状体 3の表面がほぼ平坦であることを拘束 条件として、表面形状の傾きを積分して透明板状体 3の表面形状を求める表面形状 決定手段は、コンピュータ 4で実現されている。
[0057] また、上記の実施の形態では、透明板状体 3として、液晶ディスプレイや PDP等の フラットパネルディスプレイに用いられるガラス基板を想定したが、自動車、船舶、航 空機、建築物等の窓ガラス等に用いられるガラス基板 (素板)や榭脂板等の透明板 状体の検査に本発明を適用することもできる。
産業上の利用可能性
[0058] 本発明によれば、撮像手段によって得られた画像信号から透明板状体の表面によ る反射像のみを分離することが可能なストライプパターンを決定するので、安価な装 置構成で裏面反射像の影響を除去して、表面形状の特性を精度よく検査することが でさるよう〖こなる。
本発明は、透明板状体の表面の平坦度を検査するときに好適に適用される。 なお、 2004年 6月 4日に出願された日本特許出願 2004— 167621号の明細書、 特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] ストライプパターンを透明板状体に照射し、該透明板状体の表面によって形成され るストライプパターンの反射像を撮像し、撮像によって得られた画像信号にもとづ ヽ て前記透明板状体の表面形状を検査する表面形状の検査方法であって、 前記透明板状体の表面による反射像と前記透明板状体の裏面による反射像とが、 前記撮像によって得られた画像信号では分離するように設定された明暗のパターン を有するストライプパターンを決定するストライプパターン決定工程と、
撮像によって得られた画像信号に含まれる反射像のうち、前記透明板状体の表面に よる前記ストライプパターンの反射像のみを用いて、前記透明板状体の表面形状を 検査する表面形状検査工程とを含むことを特徴とする表面形状の検査方法。
[2] 透明板状体として、フラットディスプレイパネルに用いられるガラス基板を検査する 請求項 1に記載の表面形状の検査方法。
[3] 透明板状体として、自動車ガラスに用いられる素板を検査する請求項 1に記載の表 面形状の検査方法。
[4] 表面形状検査工程では、透明板状体の表面が理想的平面である場合の理想反射 像に対する反射像のずれ量を得て、前記ずれ量、ストライプパターンの位置情報お よび撮像手段のレンズ中心位置情報を用いて前記透明板状体の表面形状の傾きを 求め、前記透明板状体の表面がほぼ平坦であることを拘束条件として、前記表面形 状の傾きを積分して前記透明板状体の表面形状を求める請求項 1、 2または 3に記 載の表面形状の検査方法。
[5] 透明板状体に照射されたストライプパターンの該透明板状体の表面によって形成さ れる反射像を撮像する撮像手段を備え、前記撮像手段による撮像によって得られた 画像信号にもとづいて前記透明板状体の表面形状を検査する表面形状の検査装置 であって、前記透明板状体の表面による反射像と前記透明板状体の裏面による反射 像とが、前記撮像手段によって得られた画像信号では分離するように設定された明 暗のパターンを有するストライプパターンが設置され、前記撮像手段によって得られ た画像信号力 前記透明板状体の表面による前記ストライプパターンの反射像を分 離する分離手段と、前記分離手段が分離した前記反射像を用いて、前記透明板状 体の表面形状を検査する演算手段とを備えたことを特徴とする表面形状の検査装置 演算手段は、透明板状体の表面が理想的平面である場合の理想反射像に対する 反射像のずれ量を算出するずれ量算出手段と、前記ずれ量算出手段が算出したず れ量、ストライプパターンの位置情報および撮像手段のレンズ中心位置情報を用い て前記透明板状体の表面形状の傾きを算出する傾き算出手段と、前記透明板状体 の表面がほぼ平坦であることを拘束条件として、前記傾き算出手段が算出した表面 形状の傾きを積分して前記透明板状体の表面形状を求める表面形状決定手段とを 含む請求項 5に記載の表面形状の検査装置。
PCT/JP2005/010191 2004-06-04 2005-06-02 表面形状の検査方法および検査装置 WO2005119172A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05745755A EP1750087B1 (en) 2004-06-04 2005-06-02 Method and apparatus for inspecting a front surface shape
US11/561,517 US7394536B2 (en) 2004-06-04 2006-11-20 Method and apparatus for inspecting front surface shape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-167621 2004-06-04
JP2004167621A JP4645068B2 (ja) 2004-06-04 2004-06-04 表面形状の検査方法および検査装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/561,517 Continuation US7394536B2 (en) 2004-06-04 2006-11-20 Method and apparatus for inspecting front surface shape

Publications (1)

Publication Number Publication Date
WO2005119172A1 true WO2005119172A1 (ja) 2005-12-15

Family

ID=35463002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010191 WO2005119172A1 (ja) 2004-06-04 2005-06-02 表面形状の検査方法および検査装置

Country Status (6)

Country Link
US (1) US7394536B2 (ja)
EP (2) EP1750087B1 (ja)
JP (1) JP4645068B2 (ja)
KR (1) KR100828981B1 (ja)
TW (1) TW200606399A (ja)
WO (1) WO2005119172A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115621A3 (de) * 2006-04-05 2007-12-06 Isra Surface Vision Gmbh Verfahren und system zur formmessung einer spiegelnden oberfläche
EP1882896A1 (de) * 2006-07-24 2008-01-30 3-D Shape GmbH Verfahren und Vorrichtung zur dreidimensionalen Vermessung der Form und der lokalen Oberflächennormalen von vorzugsweise spiegelnden Objekten
US8284392B2 (en) 2007-03-13 2012-10-09 3D-Shape Gmbh Method and apparatus for the three-dimensional measurement of the shape and the local surface normal of preferably specular objects

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010875A1 (ja) 2005-07-15 2007-01-25 Asahi Glass Company, Limited 形状検査方法および装置
US7589844B2 (en) * 2005-07-15 2009-09-15 Asahi Glass Company, Limited Shape inspection method and apparatus
JP4907201B2 (ja) * 2006-03-20 2012-03-28 株式会社神戸製鋼所 形状測定装置
US7471383B2 (en) * 2006-12-19 2008-12-30 Pilkington North America, Inc. Method of automated quantitative analysis of distortion in shaped vehicle glass by reflected optical imaging
EP2977719A1 (en) 2007-08-17 2016-01-27 Renishaw plc Non-contact measurement apparatus and method
US7843557B2 (en) * 2007-09-28 2010-11-30 Cardinal Scientific, Inc. Method and system for detecting retroreflectors
JP5034891B2 (ja) * 2007-11-21 2012-09-26 旭硝子株式会社 透明板状体の形状測定装置及び板ガラスの製造方法
DE112009000272T5 (de) * 2008-07-30 2011-06-09 Aisin AW Co., Ltd., Anjo-shi Antriebseinheit und Fahrzeug
US8441532B2 (en) * 2009-02-24 2013-05-14 Corning Incorporated Shape measurement of specular reflective surface
GB0915904D0 (en) 2009-09-11 2009-10-14 Renishaw Plc Non-contact object inspection
FR2951544A1 (fr) * 2009-10-21 2011-04-22 Saint Gobain Procede d'analyse de la qualite d'un vitrage
KR20130113321A (ko) * 2010-06-07 2013-10-15 아사히 가라스 가부시키가이샤 형상 측정 장치, 형상 측정 방법 및 유리판의 제조 방법
WO2011158869A1 (ja) 2010-06-15 2011-12-22 旭硝子株式会社 形状測定装置、形状測定方法、およびガラス板の製造方法
KR101249758B1 (ko) * 2010-11-25 2013-04-02 (주)쎄미시스코 유리 기판의 불균일도 측정 시스템 및 방법
US8351051B2 (en) 2010-11-25 2013-01-08 Semisysco Co., Ltd. System and method of measuring irregularity of a glass substrate
US20120133761A1 (en) * 2010-11-30 2012-05-31 Angstrom, Inc. Uneven area inspection system
JP5529829B2 (ja) * 2011-11-01 2014-06-25 株式会社神戸製鋼所 高さ測定装置及び高さ測定方法
US9349182B2 (en) * 2011-11-10 2016-05-24 Carestream Health, Inc. 3D intraoral measurements using optical multiline method
US9295532B2 (en) * 2011-11-10 2016-03-29 Carestream Health, Inc. 3D intraoral measurements using optical multiline method
JP5749150B2 (ja) * 2011-12-22 2015-07-15 株式会社Sumco シリカガラスルツボの赤外吸収スペクトルの三次元分布の決定方法、シリコン単結晶の製造方法
US20150160005A1 (en) * 2012-06-12 2015-06-11 Shima Seiki Mfg., Ltd. Three-dimensional measurement apparatus, and three-dimensional measurement method
WO2015098887A1 (ja) * 2013-12-27 2015-07-02 旭硝子株式会社 形状測定装置、形状測定方法、およびガラス板の製造方法
CN103995000B (zh) * 2014-05-15 2017-01-11 京东方科技集团股份有限公司 一种显示基板的检查装置及检查系统
ES2680587T3 (es) 2014-08-28 2018-09-10 Carestream Dental Technology Topco Limited Mediciones 3-D intraorales usando un procedimiento óptico de múltiples líneas
JP5923644B2 (ja) * 2015-05-13 2016-05-24 株式会社Sumco シリカガラスルツボの赤外吸収スペクトルの三次元分布の決定方法、シリコン単結晶の製造方法
CN105091784A (zh) * 2015-06-30 2015-11-25 东莞市盟拓光电科技有限公司 用于表面为镜面或透明表面的被测物的三维成像系统
JP6642223B2 (ja) 2016-04-13 2020-02-05 Agc株式会社 透明板表面検査装置、透明板表面検査方法、およびガラス板の製造方法
DE102016223671A1 (de) * 2016-11-29 2018-05-30 Continental Automotive Gmbh Leuchtsystem zur Ermittlung geometrischer Eigenschaften sowie Fahrerassistenzsystem und Verfahren dazu
KR102199314B1 (ko) * 2019-03-07 2021-01-06 (주) 인텍플러스 디스플레이 패널 검사장치
JP7083856B2 (ja) * 2020-01-07 2022-06-13 日本電子株式会社 高さ測定装置、荷電粒子線装置、および高さ測定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022925A1 (en) 1994-02-24 1995-08-31 Keravision, Inc. Device and method for mapping objects
JPH11148813A (ja) 1997-07-02 1999-06-02 Asahi Glass Co Ltd 表面形状の評価方法および評価装置
JP2001502800A (ja) * 1996-10-18 2001-02-27 インノメス・ゲゼルシャフト・フュア・メステクニク・エム・ベー・ハー 反射表面の経路を測定する方法及び装置
JP2004514882A (ja) * 2000-11-22 2004-05-20 サン−ゴバン グラス フランス 基板表面の走査方法および装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167621A (ja) 2002-11-19 2004-06-17 Toyo Advanced Technologies Co Ltd ホーニング加工装置の砥石径拡縮部材の作動方法およびホーニング加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022925A1 (en) 1994-02-24 1995-08-31 Keravision, Inc. Device and method for mapping objects
JP2001502800A (ja) * 1996-10-18 2001-02-27 インノメス・ゲゼルシャフト・フュア・メステクニク・エム・ベー・ハー 反射表面の経路を測定する方法及び装置
US6392754B1 (en) 1996-10-18 2002-05-21 Innomess Gesellschaft Fur Messtechnik Mbh Method and apparatus for measuring the profile of reflective surfaces
JPH11148813A (ja) 1997-07-02 1999-06-02 Asahi Glass Co Ltd 表面形状の評価方法および評価装置
JP2004514882A (ja) * 2000-11-22 2004-05-20 サン−ゴバン グラス フランス 基板表面の走査方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Optical and Electrooptical Engineering Contact", vol. 39, 2001, JAPAN OPTOMECHATRONICS ASSOCIATION, article "Hikari Gijutsu Contact", pages: 103 - 110
See also references of EP1750087A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115621A3 (de) * 2006-04-05 2007-12-06 Isra Surface Vision Gmbh Verfahren und system zur formmessung einer spiegelnden oberfläche
US8064069B2 (en) 2006-04-05 2011-11-22 Isra Surface Vision Gmbh Method and system for measuring the shape of a reflective surface
EP1882896A1 (de) * 2006-07-24 2008-01-30 3-D Shape GmbH Verfahren und Vorrichtung zur dreidimensionalen Vermessung der Form und der lokalen Oberflächennormalen von vorzugsweise spiegelnden Objekten
US8284392B2 (en) 2007-03-13 2012-10-09 3D-Shape Gmbh Method and apparatus for the three-dimensional measurement of the shape and the local surface normal of preferably specular objects

Also Published As

Publication number Publication date
TWI372235B (ja) 2012-09-11
EP2278270A3 (en) 2011-10-19
US7394536B2 (en) 2008-07-01
EP1750087A4 (en) 2008-03-26
EP1750087B1 (en) 2011-12-21
KR20070019984A (ko) 2007-02-16
EP1750087A1 (en) 2007-02-07
EP2278270A2 (en) 2011-01-26
US20070091319A1 (en) 2007-04-26
JP4645068B2 (ja) 2011-03-09
JP2005345383A (ja) 2005-12-15
TW200606399A (en) 2006-02-16
KR100828981B1 (ko) 2008-05-14

Similar Documents

Publication Publication Date Title
WO2005119172A1 (ja) 表面形状の検査方法および検査装置
JP5337050B2 (ja) 車両用成形ガラスのひずみを反射された光学像により自動的に定量分析する方法
JP6447055B2 (ja) 校正方法、校正装置、計測用具及びプログラム
US9030554B2 (en) Device for analysing the surface of a substrate
JP2012021781A (ja) 表面形状の評価方法および評価装置
JP2006526151A (ja) アレイ状のエレメントの検出、解像、および識別
CN107407558B (zh) 测量工具、校准方法、校准装置和程序
EP1947417B1 (en) Lamination status inspecting apparatus, lamination status inspecting method and lamination status detecting program
JPH11148813A (ja) 表面形状の評価方法および評価装置
KR20090091157A (ko) 높이 차이를 측정하기 위한 방법 및 장치
JP4613626B2 (ja) 鏡面形状測定方法および装置並びに検査方法および装置
KR20120065948A (ko) 표면 형상의 평가 방법 및 표면 형상의 평가 장치
CN102445168A (zh) 表面形状的检查方法及检查装置
JP2009229227A (ja) 湾曲した板状体の検査装置及び検査方法
JP2009302392A (ja) 基板検出装置および方法
JP4679282B2 (ja) 基板検査装置及び基板検査方法
JP4662424B2 (ja) ガラス基板の検査方法及び検査装置、並びに表示用パネルの製造方法
EP3207331B1 (en) Differential lighting
JPH0815093A (ja) ヘッドライトの検査装置
CN109655005B (zh) 膜厚测量装置、基板检查装置、膜厚测量方法以及基板检查方法
JP5998691B2 (ja) 検査方法、検査装置及びガラス板の製造方法
JP2004260250A (ja) 撮像素子
JP4657700B2 (ja) 測定装置の校正方法
EP1909063B1 (en) Vision-measuring-machine calibration scale
JP4815796B2 (ja) 欠陥検査装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067017982

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005745755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11561517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005745755

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017982

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11561517

Country of ref document: US