WO2005118317A1 - タイヤの動的状態量推定方法とその装置、及び、センサ付タイヤ - Google Patents

タイヤの動的状態量推定方法とその装置、及び、センサ付タイヤ Download PDF

Info

Publication number
WO2005118317A1
WO2005118317A1 PCT/JP2005/010132 JP2005010132W WO2005118317A1 WO 2005118317 A1 WO2005118317 A1 WO 2005118317A1 JP 2005010132 W JP2005010132 W JP 2005010132W WO 2005118317 A1 WO2005118317 A1 WO 2005118317A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
time
deformation
index
contact
Prior art date
Application number
PCT/JP2005/010132
Other languages
English (en)
French (fr)
Inventor
Hiroshi Morinaga
Yasumichi Wakao
Akira Kobayakawa
Original Assignee
Kabushiki Kaisha Bridgestone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Bridgestone filed Critical Kabushiki Kaisha Bridgestone
Priority to US11/628,299 priority Critical patent/US7546764B2/en
Priority to EP05746012.3A priority patent/EP1757464B1/en
Priority to CN2005800263114A priority patent/CN101001763B/zh
Publication of WO2005118317A1 publication Critical patent/WO2005118317A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/041Means for supplying power to the signal- transmitting means on the wheel
    • B60C23/0411Piezo-electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/064Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle comprising tyre mounted deformation sensors, e.g. to determine road contact area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C2019/004Tyre sensors other than for detecting tyre pressure

Definitions

  • the present invention relates to a method and apparatus for estimating a dynamic state quantity of a tire, and a tire with a sensor.
  • the present invention relates to a method and an apparatus for estimating a dynamic state amount of a tire when a load, a lateral force, or the like is applied, and to measure an amount of deformation of a tire running on an inner liner portion of a tire tread. And a sensor-equipped tire in which a sensor is arranged.
  • Patent document l WO 01/092078
  • Patent Document 2 WO 03/082643
  • Patent Document 3 WO 03/082644
  • the front-rear force of the tire is accurately determined. Although it can be measured, the lateral force has a problem in accuracy because the gain is small. In addition, since the distance between the magnetic sensor portion and the tire changes due to vibration, the detected magnetic force varies, and there is a concern that the estimation accuracy of the lateral force is reduced.
  • the output waveform of the acceleration sensor depends on the speed. Therefore, especially when the vehicle is running at a low speed, the peak gain on the ground contact surface is low. This makes it difficult to detect the contact length itself.
  • peaks occur on rough roads or WET roads with a certain depth of water, other than the stepping part that enters the ground contact surface and the kick part that is the escape part. For this reason, it is difficult to catch the peak of the step portion or the kick portion, so that it may not be possible to accurately detect the contact length.
  • the present inventors have confirmed that when the tire has a camber angle with respect to the road surface, the lateral force changes significantly even with the same ground contact shape. Since it is difficult to detect information other than the ground contact surface, it is difficult to correct the estimation error for the camber angle.
  • the present invention has been made in view of the conventional problems, and a load applied to a tire, which represents a dynamic state of the tire when a load, a lateral force, a longitudinal force, etc. is applied to the running tire, It is an object of the present invention to provide a method and apparatus for accurately and stably estimating the dynamic state of a tire such as lateral force and longitudinal force generated in the tire, and a tire with a sensor used for the method. And
  • the present inventors have found that the inner side of the inner liner portion, the inner liner Z ply, the ply, or the ply Z belt, etc., are more radially inner than the belt portion of the tire tread.
  • the waveform of the amount of deformation of the tire rubber part on the side deformed by input from the road surface to the tire tread shows the deformation of the tire itself, and it was found that there was almost no change in the amount of deformation due to speed. . Therefore, a sensor for measuring the amount of deformation of the tire rubber portion inside the tread, such as the above-mentioned inner liner portion, is attached to the inner liner portion or the like, and the tire contact is measured by measuring the amount of deformation.
  • At least two The present invention has been found that, by measuring in place, it is possible to stably estimate the load applied to the tire even when, for example, a longitudinal force or a lateral force is input.
  • the invention described in claim 1 is a method for estimating the dynamic state quantity of a running tire, and the method is substantially the same in the tire radial direction on the radially inner side than the belt portion of the tire tread.
  • the amount of deformation and the wheel speed of at least two points in a complex cross section are measured, and any one of load, lateral force, and longitudinal force is applied to the running tire. It is characterized in that the dynamic state quantity is estimated.
  • the measurement point in the substantially same cross section is that the angle between the center axis of the tire and the two planes including the measurement point is within several degrees, and the stepping of the tire and the kicking out of the ground occur almost at the same time.
  • the invention according to claim 2 provides the method for estimating a dynamic state of a tire according to claim 1, wherein the amount of deformation is set to an inner side of the inner liner, between the inner liner Z plies, between the plies, or , And the amount of deformation between the ply Z belts.
  • the deformation amount is determined by using a tire length such as a ground contact length or an out-of-contact surface deformation length.
  • Tire circumferential strain tensile or compressive strain
  • the amount of change in circumferential strain or circumferential tread out-of-plane bending strain, which can detect information useful for estimating the dynamic state quantity of Alternatively, it is a shear strain.
  • the tire dynamic state quantity estimating method according to the first or second aspect, wherein the deformation amount is determined in the tire width direction distortion or width direction. It is the amount of change in strain, or the out-of-plane bending strain in the width direction or the shear strain.
  • the contact length or the deformation length of the tire is determined from the deformation amount. It is characterized in that it is calculated and the dynamic state quantity of the tire is estimated based on the calculated contact length or deformation length.
  • the invention according to claim 6 is the method for estimating the dynamic state of a tire according to claim 5, wherein the dynamic state for estimating the dynamic state of the tire is added to the tire. It is characterized by the load applied.
  • the invention described in claim 7 is a method for estimating the dynamic state of a tire according to claim 6, wherein the time-varying waveform of the deformation amount of the at least two points or the differential obtained by time-differentiating the deformation amount.
  • the contact time of the tire is detected from the time-varying waveform of the value or the time-varying waveform of the integrated value obtained by time-integrating the deformation amount, and an index of the contact length obtained by multiplying the detected contact time by the wheel speed is obtained.
  • the average value of the index of the contact length is obtained, and the load applied to the tire with this average force is estimated.
  • the invention described in claim 8 is a method for estimating the dynamic state of a tire according to claim 6, wherein the time-varying waveform of the deformation amount of the at least two places or the differential obtained by time-differentiating the deformation amount.
  • the time-varying waveform of the value or the time-varying waveform force of the integrated value obtained by time-integrating the above deformation amount is used to detect the time between the deformation points outside the contact surface of the tire and calculate the time between the detected deformation points outside the contact surface.
  • An index of the deformation length outside the contact surface multiplied by the wheel speed is calculated, an average value of the index of the deformation length outside the contact surface is obtained, and the average value force is also used to estimate the load applied to the tire.
  • the invention described in claim 9 is a method for estimating the dynamic state quantity of a tire according to claim 7 or claim 8, and particularly stably estimates a load applied to a tire having a symmetrical shape and structure. Therefore, the measurement positions of the deformation amount include at least two axially symmetric line-symmetrical positions with respect to the center in the tire axial direction at almost the same cross section in the tire radial direction.
  • the invention according to claim 10 is the method for estimating a dynamic state amount of a tire according to claim 5, wherein substantially the same cross-section in the tire radial direction has the same axial direction as the center in the tire axial direction.
  • the time between the deformation points outside the contact surface of the tire is detected from any of the waveforms during the change in the tire, and the index of the deformation length outside the contact surface obtained by multiplying the detected time between the deformation points outside the contact surface by the wheel speed is obtained.
  • the tire posture angles such as the slip angle and the camber angle, are estimated from the respective contact length indices and the
  • the invention set forth in claim 11 is the tire dynamic state quantity estimation method according to claim 5, wherein the dynamic state quantity for estimating the tire dynamic state is generated in the tire dynamic state quantity estimation method. It is characterized by power.
  • the invention according to claim 12 provides the method for estimating a dynamic state quantity of a tire according to claim 11, wherein a line having an axial equidistant line with respect to the tire axial center is provided in substantially the same cross section in the tire radial direction. Detecting the tire contact time from the time-dependent waveform of the deformation amount at a symmetrical position, the time-dependent waveform of the differential value obtained by time-differentiating the deformation amount, or the time-dependent waveform of the integrated value obtained by time-integrating the deformation amount Then, an index of the tire contact length obtained by multiplying the detected contact time by the wheel speed is calculated, and the lateral force generated in the tire is estimated from the ratio of the contact length index at the line-symmetric position. It is characterized by
  • the invention according to claim 13 is the method for estimating a dynamic state of a tire according to claim 12, wherein the contact length or contact at the line-symmetric position is corrected in order to correct the effect of the load applied to the tire.
  • the average value of the index of deformation length outside the ground is calculated, the load is estimated from the index of the contact length or the average value of the index of deformation length outside the contact surface, and the index of the contact length is calculated from the estimated load.
  • the lateral force estimated from the ratio is corrected.
  • the invention according to claim 14 is a method for estimating a dynamic state of a tire according to claim 13, wherein the time of the deformation amount at the line-symmetric position is corrected in order to correct the influence of the load and the camber angle.
  • a time-varying waveform, or a time-varying waveform of a differential value obtained by time-differentiating the deformation amount, or a time-varying waveform force of an integrated value obtained by time-integrating the deformation amount detects a time between deformation points outside the contact surface of the tire.
  • the index between the out-of-contact-plane deformation length and the index of the out-of-contact-plane deformation length are calculated by multiplying the time between the detected out-of-contact-plane deformation points by the wheel speed to obtain an index ratio of the out-of-contact-plane deformation length.
  • Index ratio and index of contact length above Of the tire, and the load is estimated from the average value of the index of the contact length or the index of the deformation length outside the contact surface, and the estimated contact angle and the estimated load are used to estimate the load of the contact length.
  • the lateral force estimated from the index ratio is corrected.
  • the invention according to claim 15 provides the method for estimating a dynamic state amount of a tire according to claim 11, wherein substantially the same cross-section in the tire radial direction has an axial direction with respect to the tire axial center.
  • the invention according to claim 16 is the tire dynamic state quantity estimation method according to claim 15, wherein the time-dependent waveform of the deformation amount at the line-symmetric position or the differential obtained by time-differentiating the deformation amount.
  • the time-varying waveform of the value or the time-varying waveform force of the integrated value obtained by time-integrating the above-mentioned deformation amount detects the time between the deformation points outside the contact surface of the tire, and the time between the detected deformation points outside the contact surface.
  • the index of the deformation length outside the contact surface is calculated by multiplying the time by the wheel speed to calculate the index ratio of the deformation length outside the contact surface, and the ratio of the index of the deformation length outside the contact surface to the ratio of the index of the above-mentioned contact length is calculated.
  • the tire posture angle is estimated from the tire angle, and the lateral force estimated from the difference in the index of the contact length is corrected based on the estimated posture angle.
  • the invention described in claim 17 is the method for estimating a dynamic state quantity of a tire according to any one of claims 7 to 9, wherein the contact length according to claim 15 or claim 16 is provided.
  • the estimated value of the lateral force estimated from the difference between the indices is used to correct the estimated value of the load estimated in claims 7 to 9.
  • the invention set forth in claim 18 is the tire dynamic state quantity estimation method according to claim 5, wherein the dynamic state quantity for estimating the dynamic state is generated in the tire. It is characterized by back force.
  • the invention according to claim 19 is the method for estimating a dynamic state quantity of a tire according to claim 18, wherein the time-dependent waveform of the deformation amount or the time-dependent waveform of a differential value obtained by time-differentiating the deformation amount. Or, the time-varying waveform force of the integrated value obtained by integrating the above-mentioned deformation amount with time.
  • the deformation amount at the deformation point outside the contact surface before and after the contact surface of the tire is detected, and the ratio of the deformation amount outside the contact surface is calculated.
  • the fore-aft force generated in the tire is estimated from the ratio of the off-ground deformation amount.
  • a ratio of at least two out-of-contact-plane deformation amounts is calculated, and a tire is calculated from an average value of these deformation values.
  • the generated longitudinal force is estimated.
  • the invention according to claim 21 provides the method for estimating a dynamic state quantity of a tire according to claim 18, wherein the time between the tread-side out-of-contact-plane deformation point and the tread-side contact end is obtained.
  • the invention described in claim 22 is a method for estimating a dynamic state quantity of a tire according to claim 21, wherein a ratio or a difference between at least two step-side deformation lengths and kick-out side deformation lengths is calculated, By estimating the longitudinal force generated in the tire from these average values, a stable load can be estimated even when a lateral force is input.
  • the invention according to claim 23 is the tire dynamic state estimation method according to any one of claims 19 to 22, wherein the measurement position of the deformation amount is at least a position in the tire radial direction. In substantially the same cross section, it is characterized by including a line symmetrical position equidistant in the axial direction with respect to the center in the tire axial direction.
  • the invention according to claim 24 provides a method for estimating a dynamic state quantity of a tire according to any one of claims 1 to 23, since the rigidity of the tire changes with the internal pressure and the temperature.
  • the tire internal pressure can be measured with a commercially available internal pressure monitoring device.
  • the tire internal temperature here is appropriately selected from the inner surface of the tread, the air chamber near the internal pressure sensor, or the inside of rubber, and the temperature in the air chamber is measured in terms of the average temperature of the tire. Is preferred.
  • the invention according to claim 25 is a sensor-equipped tire provided with a sensor for estimating a dynamic state quantity of a running tire, wherein the tire is provided radially inside the tire tread with respect to a belt portion. And a plurality of sensors for measuring the amount of deformation.
  • the invention according to claim 26 is the tire with a sensor according to claim 25, wherein the sensor is connected to the inner side of the inner liner, between the inner liner Z plies, between the plies, or between the ply Z belts. , Which are arranged in the gap.
  • the invention according to claim 27 is the tire with a sensor according to claim 25 or claim 26, wherein at least two of the sensors are arranged in substantially the same cross section in the tire radial direction. It is arranged at a line symmetrical position equidistant from the axial center with respect to the axial direction.
  • the invention according to claim 28 is the tire with a sensor according to any one of claims 25 to 27, wherein the sensor is a sensor that measures a circumferential strain or a width strain of the tire. It was done.
  • the invention described in claim 29 provides the sensor-equipped tire according to any one of claims 25 to 27, wherein the sensor is configured to detect a change in a circumferential strain or a strain in a width direction of the tire. This is a sensor that measures the amount of change.
  • the invention described in claim 30 is the tire with a sensor according to any one of claims 25 to 27, wherein the sensor is provided with a bending strain in a circumferential direction or a bending strain in a width direction of the tire. It is a sensor to be measured.
  • the invention set forth in claim 31 is the tire with a sensor according to any one of claims 25 to 27, wherein the sensor is provided with a shear strain or a circumferential strain of the tire. This is a sensor for measuring the shear strain in the width direction.
  • the invention according to Claim 32 provides the sensor-equipped tire according to any one of Claims 28 to 31, wherein the strain in the circumferential direction or the width direction, the amount of change in strain, bending strain, or The distance between the two sensors for measuring the shear strain is set to 1Z2 or less of the maximum width of the tire.
  • the invention described in claim 33 is the tire with a sensor according to any one of claims 28 to 32, wherein the length of the sensor in the detection direction is 20 mm or less. is there.
  • the invention described in claim 34 provides a tire with a sensor according to any one of claims 25 to 33 that reliably measures deformation of the tire and enables long-term detection. Further, the sensor is vulcanized and bonded to a rubber portion of a tire.
  • the invention according to claim 35 is the tire with a sensor according to any one of claims 25 to 33, wherein the sensor is attached to an inner liner rubber with an adhesive, and Or it is coated with resin.
  • the invention described in claim 36 is the tire with a sensor according to any one of claims 25 to 35, wherein the sensor measures the amount of deformation by a change in electric resistance value. It is a sensor.
  • the invention according to claim 37 is the tire with a sensor according to claim 36, wherein the sensor is a strain gauge.
  • the invention according to claim 38 is the tire with a sensor according to claim 36, wherein the sensor is made of conductive rubber.
  • the invention according to claim 40 is the tire with a sensor according to claim 38 or 39, wherein a conductive rubber having tan ⁇ ⁇ 0.1 is used as the conductive rubber.
  • the value of tan ⁇ is a value obtained when a conductive rubber is subjected to 0-1% cyclic strain (50 Hz) at 25 ° C.
  • the invention described in claim 41 is described in any one of claims 38 to 40.
  • the upper limit of the thickness of the conductive rubber is set to 2 mm in the tire with a sensor described above.
  • the invention described in claim 42 is the invention described in any one of claims 38 to 41.
  • the periphery of the conductive rubber is covered with a rubber having a resistance value which is 100 times or more that of the conductive rubber.
  • the senor in the tire with a sensor according to any one of claims 25 to 35, the sensor is modified by changing a generated charge amount or a generated voltage. It is a sensor for measuring the amount.
  • An invention according to claim 44 is the tire with a sensor according to claim 43, wherein the sensor is configured by a piezoelectric polymer film.
  • the invention according to claim 45 is the tire with a sensor according to claim 44, wherein the piezoelectric polymer film is a PVDF film.
  • the invention according to claim 46 is the tire with a sensor according to claim 44 or 45, wherein the piezoelectric polymer film has a piezoelectric voltage coefficient of 0.05 VmZN or more.
  • the invention according to Claim 47 provides the tire with a sensor according to any one of Claims 44 to 46, wherein the piezoelectric polymer film has a piezoelectric voltage coefficient of 120 ° C.
  • the rate of decrease with respect to the piezoelectric voltage coefficient value at 25 ° C was set to 30% or less.
  • An invention according to claim 48 is an apparatus for estimating a dynamic state quantity of a running tire, comprising: an inner surface side of an inner liner portion of a tire tread or a belt portion and an inner liner portion.
  • a tire deformation amount detecting means attached to at least two points in the substantially same cross section in the tire radial direction for measuring the deformation amount of the tire, a wheel speed sensor for detecting a wheel speed of the tire, Time change waveform of the deformation amount of the tire detected by the tire deformation amount measurement means, or time change waveform of the differential value obtained by time-differentiating the deformation amount, or the time of the integral value obtained by integrating the deformation amount over time.
  • a contact time detecting means for detecting a contact time of the tire based on the change waveform, and a contact for calculating an index of a contact length from the contact time and the wheel speed detected by the wheel speed sensor, respectively.
  • Length index calculation Means means for calculating an average value of the index of the contact length, storage means for storing a map indicating a relationship between the average value of the index of the contact length and the load, and flatness of the index of the calculated contact length.
  • a load estimating means for estimating a load applied to the tire using the average value and the map is provided.
  • the invention according to claim 49 is an apparatus for estimating a dynamic state quantity of a running tire, comprising: an inner surface side of an inner liner portion of a tire tread, or a portion between a belt portion and an inner liner portion.
  • a tire deformation amount detecting means attached to at least two locations in the substantially same cross section in the tire radial direction to measure the deformation amount of the tire, a wheel speed sensor for detecting a wheel speed of the tire, and the tire deformation amount
  • a means for calculating each of them a means for calculating an average value of the out-of-contact-plane deformation length index, a storage means for storing a map showing a relationship between the average value of the out-of-contact-plane deformation length index and the load,
  • the invention according to claim 50 is an apparatus for estimating a dynamic state quantity of a running tire, comprising: an inner surface side of an inner liner portion of a tire tread, or a portion between a belt portion and an inner liner portion.
  • a tire deformation amount detecting means attached to at least two locations in the substantially same cross section in the tire radial direction to measure the deformation amount of the tire, a wheel speed sensor for detecting a wheel speed of the tire, and the tire deformation amount
  • Grounding time detecting means for detecting a tire grounding time based on a time change waveform of the deformation amount of the tire detected by the measuring means or a time change waveform of an integrated value obtained by integrating the deformation amount over time;
  • a contact length index calculating means for calculating an index of the contact length from the contact time and the wheel speed detected by the wheel speed sensor, and a means for calculating a ratio of the index of the contact length,
  • Lateral force estimation for estimating the lateral force generated in the tires by using a storage means
  • the invention set forth in claim 51 is an apparatus for estimating the dynamic state quantity of a running tire, comprising: an inner surface side of an inner liner portion of a tire tread, or a belt portion and an inner liner portion.
  • Tire deformation detecting means attached to at least two places in the substantially same cross section in the tire radial direction for measuring the deformation of the tire, and a wheel speed sensor for detecting the wheel speed of the tire And a time change waveform of the deformation amount of the tire detected by the tire deformation amount measurement means, a time change waveform of a differential value obtained by time differentiating the deformation amount, or an integrated value obtained by integrating the deformation amount over time.
  • the time between deformation points outside the contact surface of the tire is detected, and the time between the detected deformation points outside the contact surface and the wheel speed are multiplied by an index of the deformation length outside the contact surface.
  • the storage means storing a correction map for correcting the lateral force according to the angle, and the ratio of the index of the deformed length outside the contact surface, the ratio of the index of the contact length, and each of the maps, are used for the tire.
  • the invention according to claim 52 is an apparatus for estimating a dynamic state quantity of a running tire, comprising: an inner surface side of an inner liner portion of a tire tread, or a portion between a belt portion and an inner liner portion.
  • a tire deformation amount detecting means attached to at least two locations in the substantially same cross section in the tire radial direction to measure the deformation amount of the tire, a wheel speed sensor for detecting a wheel speed of the tire, and the tire deformation amount
  • Grounding time detecting means for detecting a grounding time of the tire, and a grounding length finger for calculating an index of the grounding length from the grounding time and the wheel speed detected by the wheel speed sensor, respectively.
  • Target calculating means means for calculating the difference between the index of the contact length, storage means for storing a map indicating the relationship between the difference between the index of the contact length and the lateral force, and means for calculating the difference between the index of the contact length and Lateral force estimating means for estimating the lateral force generated in the tire using a map.
  • the invention according to claim 53 is an apparatus for estimating a dynamic state quantity of a running tire, and includes an inner surface side of an inner liner portion of a tire tread, or a belt portion and an inner liner portion.
  • Tire deformation detecting means attached to at least two places in the substantially same cross section in the tire radial direction for measuring the deformation of the tire, and a wheel speed sensor for detecting the wheel speed of the tire And a time change waveform of the deformation amount of the tire detected by the tire deformation amount measurement means, a time change waveform of a differential value obtained by time differentiating the deformation amount, or an integrated value obtained by integrating the deformation amount over time.
  • a contact time detecting means for detecting a contact time of the tire based on the time-varying waveform; and a contact for calculating an index of the contact length from the contact time and the wheel speed detected by the wheel speed sensor, respectively.
  • Ground length index calculating means means for calculating the average value of the contact length index, storage means for storing a map indicating the relationship between the average value of the contact length index and the load, and A load estimating means for estimating a load applied to the tire using the average value of the indices and the map, and the estimated value of the estimated load is calculated based on the dynamics of the tire according to claim 52.
  • a correcting means for correcting the lateral force estimated by the target state amount estimating device.
  • An invention according to claim 54 is an apparatus for estimating a dynamic state quantity of a running tire, comprising: an inner surface side of an inner liner portion of a tire tread, or a belt portion and an inner liner portion.
  • a tire deformation amount detecting means attached to at least two locations in the substantially same cross section in the tire radial direction to measure the deformation amount of the tire, a wheel speed sensor for detecting a wheel speed of the tire, and the tire deformation amount
  • the invention described in claim 55 is an apparatus for estimating a dynamic state quantity of a running tire. It is attached to the inner surface of the inner liner portion of the tire tread, or at least two locations in the tire radial direction at substantially the same cross section between the belt portion and the inner liner portion.
  • the time between the point and the stepping-side contact edge, and the time between the out-of-contact-point deformation point on the kick-out side of the tire and the contact point on the kick-out side were detected by the wheel speed sensor, respectively.
  • An invention according to claim 56 is an apparatus for estimating a dynamic state quantity of a tire according to any one of claims 48 to 55, wherein an internal pressure sensor for measuring a tire internal pressure and a tire internal temperature are measured. Either one or both of the temperature sensors are provided, and the deformation amount of the tire measured by the tire deformation amount measuring means and one or both of the measured tire internal pressure and tire internal temperature are measured. A communication means for transmitting the value to the vehicle body is provided.
  • the invention according to claim 57 is the tire dynamic state quantity estimation device according to claim 56, wherein the communication means includes means for receiving a radio wave transmitted from the vehicle body and generating a power supply voltage. It is provided.
  • the invention according to claim 58 is the tire dynamic state quantity estimation device according to claim 56, further including a power generation device that generates power by rolling the tire.
  • strain gauges are provided at least at two locations in substantially the same cross section in the tire radial direction on the radially inner side than the belt portion of the tire tread.
  • Attach a sensor to measure the amount of tire deformation, and change the tensile or compressive strain in the tire circumferential direction or tire width direction, or change in tensile or compressive strain, out-of-plane bending strain, or shear strain.
  • Measuring the amount of deformation of the tire calculating the contact length or deformation length of the tire from the measured amount of deformation and the wheel speed, and calculating the tire contact length based on the calculated contact length or deformation length.
  • Accurate and stable estimation of tire dynamic state such as load applied to tires, lateral force, longitudinal force, etc. can do.
  • FIG. 1 is a functional block diagram showing a configuration of a tire dynamic state quantity estimation device according to a first preferred embodiment of the present invention.
  • FIG. 2 is a schematic view showing a tire with a sensor according to the present invention.
  • FIG. 3 is a schematic diagram showing a deformed state of a tire.
  • FIG. 4 is a diagram showing a tread inner surface deformation waveform and its differential waveform.
  • FIG. 5 is a schematic diagram showing a ground contact shape of a tire tread.
  • FIG. 6 is a view showing a relationship between a load and an average contact length.
  • FIG. 7 is a diagram comparing distortion waveforms in the tire width direction of the distortion waveforms in the tire circumferential direction.
  • FIG. 8 is a view showing a relationship between a lateral force and a ground contact length ratio.
  • FIG. 9 is a functional block diagram illustrating a configuration of a tire dynamic state quantity estimation device according to a second embodiment of the present invention.
  • FIG. 10 is a view showing a relationship between a lateral force and a contact length ratio when a camber angle is changed.
  • FIG. 11 is a diagram showing a relationship between a contact length ratio and an out-of-contact surface deformation length ratio.
  • FIG. 12 is a functional block diagram showing another configuration of the tire dynamic state quantity estimation device according to the present invention.
  • FIG. 13 is a diagram showing a relationship between a lateral force and a difference in contact length.
  • FIG. 14 is a functional block diagram showing another configuration of the tire dynamic state quantity estimation device according to the present invention.
  • FIG. 15 is a functional block diagram showing another configuration of the tire dynamic state quantity estimation device according to the present invention.
  • FIG. 16 is a view showing a resistance change waveform when a conductive rubber is used as a sensor.
  • FIG. 17 is a diagram showing an output voltage waveform when a piezoelectric film is used as a sensor.
  • FIG. 18 is a view showing a relationship between a longitudinal force and an average value of a deformation length ratio outside the ground contact surface of both shoulder portions.
  • FIG. 19 is a diagram showing a change in a tread inner surface deformation waveform due to a longitudinal force.
  • FIG. 20 is a diagram showing a time-series waveform of a ground contact length ratio estimated from an output of a strain sensor and a time-series waveform of an average ground contact length.
  • FIG. 1 is a functional block diagram showing a configuration of a tire dynamic state quantity estimation device 10 according to the first embodiment
  • FIG. 2 is a schematic diagram of a tire with a sensor 20 according to the present invention.
  • 11A and 11B are tire deformation measuring means for measuring the deformation of the inner liner portion 22 where the road surface force is also deformed by input to the tire tread 21
  • 12A and 12B are the tire deformation measuring means 11A and 11B.
  • Transmitters for transmitting the measurement data of the above, 13A and 13B are batteries for supplying electric power to the tire deformation measuring means 11A and 11B and the transmitters 12A and 12B, and 14 is the tire deformation measuring means 11A
  • Grounding time detecting means for detecting the grounding time during which the sensor-equipped tire 20 is in contact with the road surface based on the time change of the amount of deformation of the inner liner part 22 which is the output of the inner liner part 11B.
  • the wheel speed sensor 16 detects the wheel speed of the wheel, and the wheel speed sensor 16 is based on the wheel speed detected by the wheel speed sensor 15 and the detected ground contact time.
  • Contact length index calculating means for calculating k, 17 averages the above two contact length indices k, k
  • the average value k of the index of the contact length obtained is calculated, and a map 18 M showing the relationship between the average value k of the index of the contact length and the average value of the index of the contact length stored in advance in the storage means 18 and the load is used.
  • a load estimating means for estimating a load applied to the sensor-equipped tire 20 using a battery and a transmitter for the two tire deformation amount measuring means 11A and 11B.
  • a configuration may be adopted in which a calculation unit such as the contact time detection means 14 and the contact length index calculation means 16 is provided on the tire side, and only the calculation result is transmitted.
  • the battery 13A, 13B may be provided on the tire side by providing a power regeneration circuit that receives a radio wave transmitted from the vehicle body side and generates a power supply voltage, or by providing a power generation device that generates power by rolling the tire. Can be omitted.
  • strain gauges are used as the two tire deformation measuring means 11A and 11B, and the tire deformation measuring means 11A and 11B are connected to the inner liner portion 22 of the sensor-equipped tire 20 substantially in the tire radial direction.
  • the direction in which the circumferential tensile strain (or compressive strain) of the sensor-equipped tire 20 is detected at a line symmetrical position (e.g., the second block portion) equidistant in the axial direction with respect to the tire axial center. was applied with an adhesive, and further covered with resin.
  • the tire deformation measuring means 11A and 11B may be attached to the inner liner 22 by vulcanization and adhered with rubber.
  • the sensor-equipped tire 20 When a load is applied to the sensor-equipped tire 20, as shown in FIG. 3, the sensor-equipped tire 20 is pressed against a road surface and deformed. Specifically, a compressive stress (strain) is applied to the inner liner portion 22 on the inner surface side of the tire tread 21 before stepping and after kicking out, and a tensile stress (strain) is applied to the ground contact portion in reverse. Therefore, as the force of the tire deformation amount measuring means 11A and 11B, a tread inner surface deformation waveform as shown by a solid line in FIG. 4 is output. By calculating the time difference at the point (ground contact end) where the strain deformation speed of the deformation waveform is the highest, it is possible to detect the ground contact time of the sensor-equipped tire 20.
  • strain compressive stress
  • strain tensile stress
  • an integrated value obtained by time-integrating the deformed waveform may be used.
  • the point where the tread inner surface deformation waveform has the same value as the baseline may be used as the grounding end.
  • the load estimating means 17 calculates the average value k of the index of the contact length obtained from the tire deformation amount measuring means 11A and 11B, and calculates the average value k of the calculated index of the contact length k
  • the load applied to the tire is determined using a map 18M indicating the relationship between the load and the average value of the contact length index stored in advance in the storage means 18!
  • Fig. 6 shows that a vehicle equipped with a sensor-equipped tire 20 having tire deformation measuring means 11A and 11B attached to the inner liner part 22 was run at a speed of 60 kmZhr using a flat belt tester, and the load and slip angle were measured. Is a graph showing the relationship between the load and the average contact length when the tire is continuously changed.
  • the road surface is a safety walk
  • the tire size is 225Z55 R17
  • the internal pressure is 230MPa.
  • the average contact length is obtained by time-differentiating the distortion waveform output from the tire deformation amount measuring means 11A and 11B, and multiplying the time between the peaks by the wheel speed.
  • the average contact length and the load show a good correlation. Therefore, if the load applied to the tire is determined using the map 18M that shows the relationship between the average value of the contact length index and the load created based on such data, the However, it is possible to accurately determine the load applied to the tire.
  • the inner liner portion 22 of the tire tread 21 Tire deformation measuring means 11A and 11B are attached at axially symmetrical positions in the radial cross section with respect to the axial center of the tire and equidistant in the axial direction, and the deformation waveform of the inner liner 22 is measured.
  • the contact time which is the time difference between the contact ends, is detected from the deformed waveform, and the index k, k of the contact length is calculated from the contact time and the wheel speed detected by the wheel speed sensor 15, respectively.
  • the average value k of the above indexes k, k is calculated, and the average of the calculated index of the contact length is calculated.
  • the load applied to the tire is determined using the value k and the map 18M showing the relationship between the load and the average value of the contact length index previously stored in the storage means 18, so that even when a lateral force is generated.
  • the contact length can be accurately estimated, and the load applied to the tire can be accurately obtained.
  • the signal output gain is almost the same even during low-speed running. Therefore, it is possible to accurately estimate the ground contact length, and even when traveling on a rough road surface or a WET road surface with a certain depth of water, the peak generated at the distortion differential waveform other than the ground contact edge is not large, so that the ground contact length can be detected. Stability can be greatly improved.
  • the load applied to the tire is estimated from the index of the contact length.
  • the time change waveform of the deformation amount of the inner liner portion 22 or the time derivative of the deformation amount is used.
  • the time-varying waveform of the differentiated value or the time-varying waveform force of the integrated value obtained by integrating the above deformation amount with time is detected, and the time between the deformation points outside the contact surface of the tire is detected, and the detected deformation point outside the contact surface is detected.
  • the load applied to the tire may be estimated by calculating the index of the out-of-contact-plane deformation length obtained by multiplying the intervening time by the wheel speed.
  • the tire deformation amount measuring means 11A and 11B are attached to the inner surface side of the inner liner portion 22, but the attachment location is not limited to this, between the inner liner Z plies, between the plies, or Any portion of the tire rubber portion, such as between the ply Z belts, may be used as long as it is deformed by an input to the tire tread 21 from the road surface. However, considering durability Considering this, it is preferable that the tire deformation amount measuring means 11 A, 1 IB should be mounted on the radially inner side of the belt portion of the tire tread as described above, rather than between the cap tread Z belts. .
  • the ground contact time may be obtained by detecting the circumferential strain of the inner liner section 22 or a force tread out-of-plane bending strain or a shear strain for detecting a change amount of the circumferential strain.
  • a commercially available bending strain gauge or a two-way strain gauge is attached to the inner liner portion 22 to reduce the bending strain or the shearing strain.
  • the distortion in the tire width direction of the rubber portion on the inner surface side of the inner liner portion 22, or between the Z plies of the inner liner, between the bridges, or between the ply Z belts depends on the distortion in the tire circumferential direction. Since the deformation point of the strain waveform in the tire width direction shown by the solid line in FIG. 7 and the deformation point of the strain waveform in the tire circumferential direction shown by the one-dot chain line in FIG.
  • the detection direction of the deformation amount measuring means 11A, 11B is the tire width direction, and the width direction strain on the radially inner side from the belt portion of the tire tread, the change in the width direction strain, or the bending strain or shear strain out of the tread plane. May be detected to determine the grounding time.
  • the distance between the tire deformation amount measuring means 11A and 11B is 1Z2 or less, which is the maximum width of the tire. That is, if the distance exceeds 1 Z2, which is the maximum width of the tire, when a lateral force is applied, the tire is located outside of the contact surface of the tire deformation measuring means 11A, 11B, and the deformation is reduced. Since there is a possibility that the tire cannot be detected, it is preferable that the distance is set to 1Z2 or less, particularly about 1Z3, which is the maximum width of the tire.
  • the circumferential strain, the amount of change in circumferential strain, and the out-of-plane bending strain at the position axially symmetric with respect to the center of the inner liner portion 22 in the tire axial direction are measured, and Find the average value k of the index k, k of the contact length at the location, and from the average value k of this index of the contact length
  • Force estimated load applied to tire 20 with sensor The lateral force generated on the tire is estimated from the ratio R of the ground contact length index k, k.
  • the tire deformation amount measuring means 11A and 11B are arranged at a line symmetrical position equidistant in the axial direction with respect to the center of the inner liner portion of the tire with sensor 20 in the axial direction of the tire, and the ground contact length ratio R
  • the lateral force generated in the tire can be estimated.
  • FIG. 9 is a diagram showing the configuration of the tire dynamic state quantity estimation device 30 according to the second embodiment.
  • a lateral force estimating means 33 for estimating the lateral force generated by the sensor-equipped tire 20 is provided by using a map 32M indicating the relationship between the contact length ratio R and the magnitude of the lateral force stored in 2 above. Thereby, both the load applied to the tire and the lateral force generated in the tire can be estimated. Since the relationship between the contact length ratio R and the lateral force also changes with the load, as shown in FIG. 9, based on the estimated value of the load estimated by the load estimating means 17, the lateral force estimating means 33 is used. By correcting the lateral force estimated in step (1), the accuracy of lateral force estimation can be further improved.
  • FIG. 10 shows that a vehicle equipped with a sensor-equipped tire 20 having tire deformation measuring means 11A and 11B mounted on the inner liner part 22 was run at a speed of 60 kmZhr using a flat belt tester, and the load was reduced to 5 kN.
  • FIG. 11 is a diagram showing a relationship between a lateral force and a ground contact length ratio when the slip angle is continuously changed while being fixed, and FIG. 11 is a diagram showing a relationship between a ground contact length ratio and a deformation length ratio outside the ground contact surface.
  • the test road surface was safety walk, The size of the key is 225Z55R17 and the internal pressure is 230MPa.
  • the contact length ratio is the ratio of the contact lengths obtained by dividing the distortion waveforms of the tire deformation amount measuring means 11A and 11B with time and multiplying the time between the peaks by the wheel speed, where And the camber angles were 0 °, + 3 ° and -3 °.
  • the contact length ratio and the lateral force show a good correlation, but when the camber angle changes, the relationship between the contact length ratio and the lateral force deviates. I will.
  • the contact length ratio is 1.
  • the contact length ratio is about 1.3.
  • the lateral force generated differs depending on the slip angle and the camber angle because the degree of twist of the tire is different. Therefore, it is generally difficult to detect the camber angle, which is a force that needs to estimate the camber angle and correct the lateral force obtained from the grounding length ratio.
  • the contact length length scale detected from the time between the ground contact length and the time force between the deformation points outside the contact surface before and after the contact surface indicated by the white circle S and the deformation ratio outside the contact surface S detected by the camber angle are shown in Fig. 11.
  • a map was obtained that calculated the relationship between the contact length ratio and the length ratio outside the contact surface.
  • the camber angle was estimated using this map, and the camber angle was calculated from the contact length ratio R. If the lateral force is corrected, the lateral force generated in the sensor-equipped tire 20 can be accurately estimated.
  • FIG. 12 is a block diagram showing a configuration example of a tire dynamic state quantity estimating apparatus 40 provided with means for correcting the estimated value of the lateral force estimated in the best mode 2 described above.
  • a time-change waveform of the deformation amount of the inner liner portion 22 or a time-change waveform of a differential value obtained by differentiating the deformation amount with time, or the deformation amount
  • the time-varying waveform force of the integrated value obtained by time integration is provided with a deformation time detecting means 41 for detecting a time between deformation points outside the ground contact surface of the tire, and a time between the detected deformation points outside the ground contact surface and a wheel speed sensor.
  • Deformation length calculating means 42 for calculating an index of the out-of-contact-plane deformation length obtained by multiplying by the wheel speed detected in 15 is provided.
  • the camber angle from the ratio to the length index Constant, and to correct the estimated value of the lateral force using the estimated camber angle The Specifically, a deformed length ratio calculating means 43 for calculating a ratio of the out-of-contact-plane deformation length calculated by the deformed-length calculating means 42 to the index is provided.
  • a camber angle estimating means 45 for estimating the camber angle is provided to estimate the camber angle.
  • the storage device 44 stores the map 18M for load estimation, the map 32M for lateral force estimation, and the map 44M for camber angle estimation.
  • the calculation of the average value k of the contact length indices k 1 and k performed in the load estimation means 17 in the tire dynamic state quantity estimation devices 10 and 30 is performed in a flat manner.
  • the average contact length calculating means 17a is used to send the calculated average value k of the contact length index to the load estimating means 17! It may be provided inside. Further, in place of the average contact length calculating means 17a, means for obtaining an average value of the index of the out-of-contact-plane deformation length calculated by the deformation-length-index calculating means is provided. May be sent to the load estimating means 17 to estimate the load applied to the tire.
  • Fig. 11 shows the relationship between the ground contact length ratio and the outside ground contact surface length ratio when the slip angle is continuously changed, the use of Fig. 11 above shows that the slip angle is not limited to the camber angle. Can also be estimated.
  • the degree of inclination of the road surface can be estimated in addition to the attitude angles of the wheels. If this is applied to the attitude control of the vehicle, the running stability of the vehicle can be improved. Monkey
  • the lateral force generated by the sensor-equipped tire 20 is estimated using the contact length difference calculating means 51 and a map 52M indicating the relationship between the contact length difference S and the magnitude of the lateral force stored in the storage means 52 in advance.
  • the tire dynamic state quantity estimating device 50 including the lateral force estimating means 53 it is possible to estimate the lateral force generated in the tire without performing load correction.
  • the tire dynamic state quantity estimation device 50 can estimate the lateral force generated on the tire regardless of the magnitude of the load.
  • the estimated value of the load estimated by the load estimating means 17 is corrected using the estimated value of the lateral force estimated by the lateral force estimating means 53, lateral force is generated. Then, the estimated value of the load can be corrected.
  • the average ground contact length and the load show a very good correlation in the normal use area, but when the lateral force increases near the tire limit area, the average contact length tends to increase slightly even with the same load.
  • the relationship between the lateral force when the load is applied and the average contact length k is determined in advance, and the load applied to the tire is corrected based on the estimated value of the lateral force and the average contact length k.
  • the accuracy of the estimation can be further improved.
  • the deformation time used in the tire dynamic state quantity estimation device 50 shown in FIG. A tire dynamic state quantity estimating apparatus 50Z to which a detecting means 41, a deformation length calculating means 42, a deformation length ratio calculating means 43, and a chamber angle estimating means 45 are added, a camber angle is also estimated, and this estimation is performed. If the lateral force estimated from the difference in the ground contact length is corrected using the set camber angle, the accuracy of the estimated value of the lateral force can be further improved.
  • the map 18M for load estimation, the map 52M for lateral force estimation, and the map 44M for camber angle estimation are stored in the storage device 52Z.
  • strain gauges are used as the tire deformation amount measuring means 11A and 11B.
  • conductive rubber may be used instead of the strain gauges.
  • the sensor section of the strain gauge is made of a metal material, conductive rubber is advantageous in view of durability against repeated use.
  • a volume resistivity of 10 7 to the no-load of the conductive rubber is preferably a ⁇ 0 9 ⁇ ⁇ . This is because if the volume resistance is less than 10 7 ⁇ , not only does power consumption increase, but also the temperature rises, which lowers the detection efficiency. Conversely, if the volume resistance exceeds 10 9 ⁇ , current will easily flow through the surrounding rubber material and the detection accuracy will decrease, so the volume resistance of the conductive rubber when there is no load will be 10 7 to 10 9 ⁇ . It is preferable to set the range. Note that if the periphery of the conductive rubber is covered with a rubber having a resistance value which is 100 times or more that of the tire rubber, the upper limit of the volume resistance can be increased.
  • FIG. 16 is a diagram showing a distortion waveform when conductive rubber is used as the tire deformation amount measuring means 11A, 11B.
  • the distortion waveform when using low-loss conductive rubber has a clear grounding point and deformation point, as in the case of using the above-described strain gauge, and the grounding length and deformation length can be calculated reliably. it can.
  • the upper limit of the thickness of the conductive rubber is preferably set to 2 mm.
  • the force piezoelectric force described in the case where a sensor for detecting a change in electric resistance, such as a strain gauge or conductive rubber, is used as the tire deformation amount measuring means 11A, 11B.
  • a length of piezo film or piezo cable Piezoelectric polymers (a length of piezo film or piezo cable) may be used.
  • the piezoelectric polymer since it has the characteristic of generating electric charges by the amount of distortion, the amount of change in circumferential distortion, that is, the output corresponding to the differential value of the output waveform of the distortion sensor is obtained. can get. Therefore, if a piezoelectric polymer is used as the tire deformation measuring means 11A, 11B, the peak of the grounding end appears in the output waveform, so that the grounding time can be easily estimated without performing the differentiation operation. Can be.
  • the piezoelectric polymer it is preferable to use a piezoelectric film.
  • a piezoelectric film it is preferable to use a PVDF (polyvinylidene fluoride) film which has excellent durability and generates a large voltage due to strain.
  • the piezoelectric voltage coefficient of the piezoelectric film needs to be Ig31I> 0.05 Vm / N.
  • FIG. 17 (a) shows a generated voltage waveform when a PVDF film is used as the tire deformation amount measuring means 11A, 11B, and FIG. 17 (b) shows an integrated waveform thereof.
  • a PVDF film with a large strain output makes it possible to clearly identify the position of the ground contact point and the deformation point, so that the load applied to the tire and the lateral force generated in the tire can be accurately estimated. be able to.
  • a piezoelectric film having a temperature characteristic such that the rate of decrease in the piezoelectric voltage coefficient at 25 ° C of the value of the piezoelectric voltage coefficient at 120 ° C is 30% or less is used as the piezoelectric film, Since the high temperature stability of the sensor can be ensured, the load and the lateral force can be accurately estimated even at a high temperature.
  • Such a piezoelectric film can be obtained by annealing the piezoelectric film.
  • the above-mentioned anneal temperature varies depending on the composition of the piezoelectric film.For the above PVDF film, about 125 ° C is suitable.
  • the above-mentioned piezoelectric polymer consumes only a limited amount of power in the circuit section, it can save power. It is more advantageous than the above-mentioned strain gauges because it is designed and flexible and has excellent durability.
  • Best mode 3 In the above-described best mode 2, the lateral force generated in the sensor-equipped tire 20 was estimated using the ratio R of the index of the contact length and the deformation length ratio S outside the contact surface. If V is used, it is also possible to estimate the longitudinal force generated in the tire.
  • the front-to-back out-of-plane deformation length ratio Z is the distance between the out-of-plane contact point shown by a white circle and the ground end shown by a black circle in Fig. 3 above, and is defined as the front of the ground surface (stepping side) and the rear of the ground surface. (Kick side), and the ratio between them was calculated.As described later, since the longitudinal force and the ratio of out-of-plane contact plane deformation length show a very good correlation, A map is obtained that determines the relationship with the off-ground deformation length ratio Z, and this map can be used to estimate the longitudinal force generated on the tire.
  • FIG. 18 shows the longitudinal force and the longitudinal force when a vehicle equipped with the sensor-equipped tire 20 with the tire deformation amount measuring means 11A and 11B attached to the inner liner section 22 was run at a speed of 60kmZhr using a flat belt tester.
  • FIG. 6 is a diagram showing a relationship between an average value of a deformation length ratio of a shoulder portion and an out-of-plane contact surface, in which a slip angle is fixed to 0 ° and only a longitudinal force is continuously changed.
  • the road surface is a safety walk
  • the tire size is 225Z55R17
  • the internal pressure is 230 MPa.
  • the longitudinal force was estimated from the longitudinal deformation ratio outside the ground contact surface.
  • the tread inner surface distortion caused by the tread inner surface distortion was reduced. Since the amount of deformation on the side (stepping side) and the amount of deformation behind the ground contact surface (kick side) are different, comparing the amount of deformation on the stepping side with the amount of deformation on the kicking side also gives The force can be estimated.
  • the amount of deformation of the tire on the inner surface side of the inner liner portion 22, between the inner liner Z plies, between the belts, or between the ply Z belts changes depending on the tire internal pressure and temperature. If the internal pressure value and tire temperature are separately measured and the estimated values of the wheel speed, the load, the lateral force, and the longitudinal force are corrected, the estimation accuracy can be further improved.
  • the acceleration sensor was unable to stably detect the contact length where the peak at the contact edge was sufficiently large.
  • Fig. 20 (a) is a time series waveform of the ground contact ratio detected from the output of the strain sensor
  • Fig. 20 (b) is a time series waveform of the average ground contact length. It was confirmed that the contact length during low-speed running could be accurately detected.
  • the present invention it is possible to accurately and stably estimate the dynamic state quantity of the tire when a load, a lateral force, a longitudinal force, or the like is applied during traveling. By feeding back the above information to the vehicle control, the running stability of the vehicle can be remarkably improved.

Abstract

 タイヤトレッドの内面側、インナーライナ/プライ間、プライ間、あるいは、プライ/ベルト間などのタイヤトレッドのベルト部よりも径方向内部側の、タイヤ径方向断面における、タイヤ軸方向中心に対して軸方向等距離の線対称な位置にタイヤ変形量計測手段11A,11Bを取付け、当該タイヤの変形波形を計測し、上記変形波形から接地端の時間差である接地時間を検出し、この接地時間と車輪速センサ15で検出した車輪速度とから、接地長の指標kA,kBをそれぞれ算出した後、上記指標kA,kBの平均値kを算出し、この算出された接地長の指標の平均値kと、予め記憶手段18に記憶された接地長の指標の平均値と荷重との関係を示すマップ18Mを用いて、タイヤに加わる荷重を求めることにより、走行中に荷重が加わったときのタイヤの動的状態量を精度よくかつ安定して推定できるようにした。

Description

明 細 書
タイヤの動的状態量推定方法とその装置、及び、センサ付タイヤ 技術分野
[0001] 本発明は、荷重や横力などが加わったときのタイヤの動的状態量を推定する方法と その装置、及び、タイヤトレッドのインナーライナ部に走行中のタイヤの変形量を計測 するためのセンサを配置して成るセンサ付タイヤに関するものである。
背景技術
[0002] 自動車の走行安定性を高めるため、荷重や横力、あるいは前後力などのタイヤに 発生して!/、る力(タイヤ発生力)を精度よく推定し、車輛制御へフィードバックすること が求められている。これらの情報により、例えば、 ABSブレーキや、これを応用した車 体姿勢制御装置のより高度な制御が可能になり、安全性が一段と高められると考えら れる。
従来、タイヤをセンサのように用いてタイヤに発生して 、る力を推定する方法として は、例えば、タイヤサイド部を磁ィ匕し、タイヤ外部に設置した磁気センサにより上記タ ィャサイド部の捩れ度合を測定し、この測定された捩れ度合力 タイヤの前後力を推 定したり、タイヤが横力を受けた際にベルトリング全体が変形することを利用して、上 記磁気センサの検出出力の大きさからタイヤに発生している横力を推定する方法が 提案されている (例えば、特許文献 1参照)。
一方、タイヤの同一断面内のトレッド内面側に複数の加速度センサを配置して、計 測波形プロファイルを比較することにより、タイヤの動的状態を推定する技術が開示 されている(例えば、特許文献 2, 3参照)。
特許文献 l :WO 01/092078
特許文献 2 : WO 03/082643
特許文献 3 : WO 03/082644
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、上記磁気センサによる方法では、タイヤ前後力については精度良く 測定できるが、横力に関してはゲインが小さいため精度的に問題があった。また、磁 気センサ部分とタイヤ間の距離が振動によって変化するため、検出磁力がばらつい てしまい、横力の推定精度が低下する懸念がある。
一方、加速度センサを用いてタイヤの動的挙動を推定する方法では、加速度セン サの出力波形が速度に依存することから、特に、車輛が低速走行している場合には 接地面におけるピークゲインが小さくなり、接地長そのものの検出が困難である。更 に、加速度センサを用いた場合、荒れた路面、あるいは、ある程度水深のある WET 路面においては、接地面への突入部である踏み部や脱出部である蹴り部以外でもピ ークが発生するため、踏み部や蹴り部のピークを捉えることが困難であるため、接地 長を精度よく検出することができない場合がある。
また、本発明者らは、タイヤが路面に対してキャンバー角を持っていると、同じ接地 形状でも横力が大きく変わってくることを確かめている力 上記のような加速度センサ を用いた方法では、接地面以外の情報を検出することが難しいため、このキャンバー 角に対する推定誤差を補正することが困難であった。
[0004] 本発明は、従来の問題点に鑑みてなされたもので、走行中のタイヤに荷重、横力、 前後力などが作用したときのタイヤの動的状態を表わす、タイヤに加わる荷重、タイ ャに発生する横力、前後力などのタイヤの動的状態量を精度よぐかつ、安定して推 定する方法とその装置、及び、それに用いられるセンサ付タイヤを提供することを目 的とする。
課題を解決するための手段
[0005] 本発明者らは、鋭意検討の結果、インナーライナ部の内面側や、インナーライナ Z プライ間、プライ間、あるいは、プライ Zベルト間などの、タイヤトレッドのベルト部より も径方向内部側のタイヤゴム部の、路面からのタイヤトレッドへの入力により変形する 箇所の変形量を計測した波形は、タイヤそのものの変形を把えており、速度による変 形量の変化が殆どないことが判明した。そこで、インナーライナ部などに、歪センサな どのような、上記インナーライナ部などのトレッド内部側のタイヤゴム部の変形量を計 測するセンサを取付けて、上記変形量を計測することにより、タイヤ接地面及び接地 面前後の情報を精度よく検出することができるとともに、上記変形量を少なくとも 2箇 所で計測することにより、例えば、前後力や横力などが入力した場合でも、タイヤに 加わる荷重を安定して推定できることを見出し本発明に到ったものである。
また、タイヤの接地形状の変化を「接地長比」や「接地長差」 、うメジャーで整理す れば、横力を精度よく推定できるだけでなぐ前後力に伴う接地面の前後移動を接地 面前後の変形量として把えることで前後力につ ヽても精度よく推定することができる。 すなわち、請求の範囲 1に記載の発明は、走行中のタイヤの動的状態量を推定す る方法であって、タイヤトレッドのベルト部よりも径方向内部側の、タイヤ径方向のほ ぼ同一な断面における少なくとも 2箇所の変形量と、車輪速度とを計測して、走行中 のタイヤに荷重、横力、前後力のいずれ力 1つまたは複数のタイヤ発生力が作用した ときの上記タイヤの動的状態量を推定するようにしたことを特徴とする。
なお、上記ほぼ同一な断面における計測点とは、タイヤ中心軸と上記計測点を含 む 2つの平面のなす角が数度以内であって、タイヤの踏み込み 接地一蹴り出しが ほぼ同時刻に起こると見なせる計測点を指す。
請求の範囲 2に記載の発明は、請求の範囲 1に記載のタイヤの動的状態量推定方 法において、上記変形量を、インナーライナ部の内面側、インナーライナ Zプライ間 、プライ間、あるいは、プライ Zベルト間のいずれかの変形量としたことを特徴とする。 請求の範囲 3に記載の発明は、請求の範囲 1または請求の範囲 2に記載のタイヤの 動的状態量推定方法において、上記変形量を、接地長や接地面外変形長などのタ ィャの動的状態量を推定するのに有効な情報を検出することのできるタイヤ周方向 歪(引張または圧縮歪)、または、周方向歪の変化量、または、周方向トレッド面外曲 げ歪、または、剪断歪としたものである。
また、請求の範囲 4に記載の発明は、請求の範囲 1または請求の範囲 2に記載のタ ィャの動的状態量推定方法において、上記変形量をタイヤ幅方向歪、または、幅方 向歪の変化量、または、幅方向トレッド面外曲げ歪または、剪断歪としたものである。 請求の範囲 5に記載の発明は、請求の範囲 1〜請求の範囲 4のいずれかに記載の タイヤの動的状態量推定方法において、上記変形量から、当該タイヤの接地長また は変形長を算出し、上記算出された接地長または変形長に基づいてタイヤの動的状 態量を推定するようにしたことを特徴とする。 [0007] 請求の範囲 6に記載の発明は、請求の範囲 5に記載のタイヤの動的状態量推定方 法において、上記タイヤの動的状態を推定するための動的状態量を、タイヤに加わ る荷重としたことを特徴とする。
請求の範囲 7に記載の発明は、請求の範囲 6に記載のタイヤの動的状態量推定方 法において、上記少なくとも 2箇所の変形量の時間変化波形、または、上記変形量を 時間微分した微分値の時間変化波形、または、上記変形量を時間積分した積分値 の時間変化波形から当該タイヤの接地時間を検出し、この検出された接地時間に車 輪速度を掛け合わせた接地長の指標をそれぞれ算出するとともに、上記接地長の指 標の平均値を求め、この平均値力 タイヤに加わる荷重を推定するようにしたことを 特徴とする。
請求の範囲 8に記載の発明は、請求の範囲 6に記載のタイヤの動的状態量推定方 法において、上記少なくとも 2箇所の変形量の時間変化波形、または、上記変形量を 時間微分した微分値の時間変化波形、または、上記変形量を時間積分した積分値 の時間変化波形力 当該タイヤの接地面外変形点間の時間を検出し、この検出され た接地面外変形点間の時間に車輪速度を掛け合わせた接地面外変形長の指標を それぞれ算出するとともに、上記接地面外変形長の指標の平均値を求め、この平均 値力もタイヤに加わる荷重を推定するようにしたことを特徴とする。
請求の範囲 9に記載の発明は、請求の範囲 7または請求の範囲 8に記載のタイヤの 動的状態量推定方法において、特に、左右対称な形状'構造のタイヤに加わる荷重 を安定して推定するため、上記変形量の計測位置が、少なくとも、タイヤ径方向のほ ぼ同一な断面において、タイヤ軸方向中心に対して軸方向等距離の線対称な 2箇所 を含むようにしたものである。
[0008] 請求の範囲 10に記載の発明は、請求の範囲 5に記載のタイヤの動的状態量推定 方法において、タイヤ径方向のほぼ同一な断面において、タイヤ軸方向中心に対し て軸方向等距離の線対称な位置の変形量の時間変化波形、または、上記変形量を 時間微分した微分値の時間変化波形、または、上記変形量を時間積分した積分値 の時間変化波形から当該タイヤの接地時間を検出し、この検出された接地時間に車 輪速度を掛け合わせたタイヤの接地長の指標をそれぞれ算出するとともに、上記時 間変化波形のいずれかから当該タイヤの接地面外変形点間の時間を検出し、この検 出された接地面外変形点間の時間に車輪速度を掛け合わせた接地面外変形長の 指標をそれぞれ算出し、上記各接地長の指標と各接地面外変形長の指標とから、ス リップ角やキャンバー角のような、タイヤの姿勢角を推定するようにしたことを特徴とす る
請求の範囲 11に記載の発明は、請求の範囲 5に記載のタイヤの動的状態量推定 方法において、上記タイヤの動的状態を推定するための動的状態量を、タイヤに発 生する横力としたことを特徴とする。
請求の範囲 12に記載の発明は、請求の範囲 11に記載のタイヤの動的状態量推定 方法において、タイヤ径方向のほぼ同一な断面において、タイヤ軸方向中心に対し て軸方向等距離の線対称な位置の変形量の時間変化波形、または、上記変形量を 時間微分した微分値の時間変化波形、または、上記変形量を時間積分した積分値 の時間変化波形から当該タイヤの接地時間を検出し、この検出された接地時間に車 輪速度を掛け合わせたタイヤの接地長の指標を算出し、上記線対称な位置における 接地長の指標の比から上記タイヤに発生する横力を推定するようにしたことを特徴と する。
請求の範囲 13に記載の発明は、請求の範囲 12に記載のタイヤの動的状態量推定 方法において、タイヤに加わる荷重の影響を補正するため、上記線対称な位置にお ける接地長もしくは接地面外変形長の指標の平均値を算出し、この接地長の指標も しくは接地面外変形長の指標の平均値から荷重を推定し、この推定された荷重によ り上記接地長の指標の比から推定した横力を補正するようにしたものである。
請求の範囲 14に記載の発明は、請求の範囲 13に記載のタイヤの動的状態量推定 方法において、荷重とキャンバー角の影響を補正するため、上記線対称な位置にお ける変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変 化波形、または、上記変形量を時間積分した積分値の時間変化波形力 当該タイヤ の接地面外変形点間の時間を検出するとともに、この検出された接地面外変形点間 の時間に車輪速度を掛け合わせた接地面外変形長の指標をそれぞれ算出して接地 面外変形長の指標比を求め、この接地面外変形長の指標の比と上記接地長の指標 の比とからタイヤの姿勢角を推定し、更に、上記接地長の指標もしくは接地面外変形 長の指標の平均値から荷重を推定し、これらの推定姿勢角と推定荷重とにより上記 接地長の指標の比から推定した横力を補正するようにしたものである。
[0010] 請求の範囲 15に記載の発明は、請求の範囲 11に記載のタイヤの動的状態量推定 方法において、タイヤ径方向のほぼ同一な断面において、タイヤ軸方向中心に対し て軸方向等距離の線対称な位置の変形量の時間変化波形、または、上記変形量を 時間微分した微分値の時間変化波形、または、上記変形量を時間積分した積分値 の時間変化波形から当該タイヤの接地時間を検出し、この検出された接地時間に車 輪速度を掛け合わせたタイヤの接地長の指標を算出し、上記線対称な位置における 接地長の指標の差力 上記タイヤに発生する横力を推定するようにしたことを特徴と する。
請求の範囲 16に記載の発明は、請求の範囲 15に記載のタイヤの動的状態量推定 方法において、上記線対称な位置における変形量の時間変化波形、または、上記 変形量を時間微分した微分値の時間変化波形、または、上記変形量を時間積分し た積分値の時間変化波形力 当該タイヤの接地面外変形点間の時間を検出すると ともに、この検出された接地面外変形点間の時間に車輪速度を掛け合わせた接地面 外変形長の指標をそれぞれ算出して接地面外変形長の指標比を求め、この接地面 外変形長の指標の比と上記接地長の指標の比とからタイヤの姿勢角を推定し、この 推定された姿勢角により上記接地長の指標の差から推定した横力を補正するよう〖こ したことを特徴とする。
請求の範囲 17に記載の発明は、請求の範囲 7〜請求の範囲 9のいずれかに記載 のタイヤの動的状態量推定方法において、上記請求の範囲 15または請求の範囲 16 に記載の接地長の指標の差から推定された横力の推定値を用いて、上記請求の範 囲 7〜請求の範囲 9で推定された荷重の推定値を補正するようにしたことを特徴とす る。
[0011] 請求の範囲 18に記載の発明は、請求の範囲 5に記載のタイヤの動的状態量推定 方法において、上記動的状態を推定するための動的状態量を、タイヤに発生する前 後力としたことを特徴とする。 請求の範囲 19に記載の発明は、請求の範囲 18に記載のタイヤの動的状態量推定 方法において、上記変形量の時間変化波形、または、上記変形量を時間微分した 微分値の時間変化波形、または、上記変形量を時間積分した積分値の時間変化波 形力 当該タイヤの接地面前後の接地面外変形点の変形量をそれぞれ検出して接 地面外変形量の比を求め、この接地面外変形量の比から上記タイヤに発生する前 後力を推定するようにしたことを特徴とする。
請求の範囲 20に記載の発明は、請求の範囲 19に記載のタイヤの動的状態量推定 方法において、少なくとも 2箇所の接地面外変形量の比を算出し、これらの平均値か らタイヤに発生する前後力を推定するようにしたものである。
請求の範囲 21に記載の発明は、請求の範囲 18に記載のタイヤの動的状態量推定 方法にお!、て、踏み込み側の接地面外変形点と踏み込み側接地端との間の時間に 車輪速度を掛け合わせた踏み込み側変形長さと、蹴り出し側の接地面外変形点と蹴 り出し側接地端との間の時間に車輪速度を掛け合わせた蹴り出し側変形長さとを算 出し、これらの比または差から上記タイヤに加わる前後力を推定するようにしたことを 特徴とする。
請求の範囲 22に記載の発明は、請求の範囲 21に記載のタイヤの動的状態量推定 方法において、少なくとも 2箇所の踏み込み側変形長さと蹴り出し側変形長さとの比 または差を算出し、これらの平均値から上記タイヤに発生する前後力を推定すること により、横力入力時においても安定した荷重の推定を行うことができるようにしたもの である。
請求の範囲 23に記載の発明は、請求の範囲 19〜請求の範囲 22のいずれかに記 載のタイヤの動的状態量推定方法において、上記変形量の計測位置は、少なくとも 、タイヤ径方向のほぼ同一な断面において、タイヤ軸方向中心に対して軸方向等距 離の線対称な位置を含むことを特徴とする。
請求の範囲 24に記載の発明は、タイヤの剛性が内圧と温度とにより変化することか ら、請求の範囲 1〜請求の範囲 23のいずれかに記載のタイヤの動的状態量推定方 法にぉ 、て、ホイール部ある 、はタイヤにぉ 、てタイヤ内圧値及びタイヤ内温度の!/ヽ ずれか一方または両方を検出し、上記内圧値または温度、あるいは、内圧値と温度と を用いて、上記車輪速度、及び、上記荷重または横力または前後力の推定値を補正 することにより、上記推定値の推定精度を向上させるようにしたものである。
なお、タイヤ内圧は市販の内圧モニタリング装置で計測できる。また、ここでいうタイ ャ内温度とは、トレッド内面あるいは内圧センサ近傍の気室内、もしくはゴム内などか ら適宜選択されるが、タイヤの平均的な温度という観点力 気室内温度を計測するこ とが好ましい。
請求の範囲 25に記載の発明は、走行中のタイヤの動的状態量を推定するための センサを備えたセンサ付タイヤであって、タイヤトレッドのベルト部よりも径方向内部側 に、当該タイヤの変形量を計測する複数のセンサを備えたことを特徴とするものであ る。
請求の範囲 26に記載の発明は、請求の範囲 25に記載のセンサ付タイヤにおいて 、上記センサをインナーライナ部の内面側、インナーライナ Zプライ間、プライ間、あ るいは、プライ Zベルト間の 、ずれかに配設したものである。
請求の範囲 27に記載の発明は、請求の範囲 25または請求の範囲 26に記載のセ ンサ付タイヤにおいて、上記センサのうち、少なくとも 2つのセンサを、タイヤ径方向の ほぼ同一な断面において、タイヤ軸方向中心に対して軸方向等距離の線対称な位 置に配置したものである。
請求の範囲 28に記載の発明は、請求の範囲 25〜請求の範囲 27のいずれかに記 載のセンサ付タイヤにおいて、上記センサを、当該タイヤの周方向歪または幅方向 歪を計測するセンサとしたものである。
請求の範囲 29に記載の発明は、請求の範囲 25〜請求の範囲 27のいずれかに記 載のセンサ付タイヤにおいて、上記センサを、当該タイヤの周方向歪の変化量また は幅方向歪の変化量を計測するセンサとしたものである。
請求の範囲 30に記載の発明は、請求の範囲 25〜請求の範囲 27のいずれかに記 載のセンサ付タイヤにおいて、上記センサを、当該タイヤの周方向の曲げ歪あるいは 幅方向の曲げ歪を計測するセンサとしたものである。
請求の範囲 31に記載の発明は、請求の範囲 25〜請求の範囲 27のいずれかに記 載のセンサ付タイヤにおいて、上記センサを、当該タイヤの周方向の剪断歪あるいは 幅方向の剪断歪を計測するセンサとしたものである。
請求の範囲 32に記載の発明は、請求の範囲 28〜請求の範囲 31のいずれかに記 載のセンサ付タイヤにおいて、上記周方向または幅方向の歪、歪の変化量、曲げ歪 、あるいは、剪断歪を計測する 2つのセンサ間の距離を、当該タイヤの最大幅の 1Z 2以下としたものである。
[0014] また、請求の範囲 33に記載の発明は、請求の範囲 28〜請求の範囲 32のいずれ かに記載のセンサ付タイヤにおいて、上記センサの検出方向の長さを 20mm以下と したものである。
請求の範囲 34に記載の発明は、請求の範囲 25〜請求の範囲 33のいずれかに記 載のセンサ付タイヤにおいて、タイヤの変形を確実に計測するとともに、長期間の検 出が可能なように、上記センサを、タイヤのゴム部に加硫接着したものである。
また、請求の範囲 35に記載の発明は、請求の範囲 25〜請求の範囲 33のいずれ かに記載のセンサ付タイヤにおいて、上記センサを、インナーライナゴムに接着剤に より貼り付け、かつ、ゴムまたは榭脂により被覆したものである。
[0015] 請求の範囲 36に記載の発明は、請求の範囲 25〜請求の範囲 35のいずれかに記 載のセンサ付タイヤにおいて、上記センサを、電気抵抗値の変化により上記変形量 を計測するセンサとしたものである。
請求の範囲 37に記載の発明は、請求の範囲 36に記載のセンサ付タイヤにおいて 、上記センサを歪ゲージとしたものである。
請求の範囲 38に記載の発明は、請求の範囲 36に記載のセンサ付タイヤにおいて 、上記センサを導電ゴムとしたものである。
請求の範囲 39に記載の発明は、請求の範囲 38に記載のセンサ付タイヤにおいて 、上記導電ゴムの無負荷時における体積抵抗を 107〜: ί09 Ω πιとしたものである。 請求の範囲 40に記載の発明は、請求の範囲 38または請求の範囲 39に記載のセ ンサ付タイヤにおいて、上記導電ゴムとして、 tan δ < 0. 1である導電ゴムを用いたも のである。なお、上記 tan δの値は、 25°Cにおいて、導電ゴムに 0〜1%の繰返し歪( 50Hz)を与えたときの値を示す。
請求の範囲 41に記載の発明は、請求の範囲 38〜請求の範囲 40のいずれかに記 載のセンサ付タイヤにぉ 、て、上記導電ゴムの厚さの上限値を 2mmとしたものである 請求の範囲 42に記載の発明は、請求の範囲 38〜請求の範囲 41のいずれかに記 載のセンサ付タイヤにおいて、上記導電ゴムの周囲を、上記導電ゴムの 100倍以上 の抵抗値を有するゴムにより被覆したものである。
[0016] また、請求の範囲 43に記載の発明は、請求の範囲 25〜請求の範囲 35のいずれ かに記載のセンサ付タイヤにおいて、上記センサを、発生電荷量または発生電圧の 変化により上記変形量を計測するセンサとしたものである。
請求の範囲 44に記載の発明は、請求の範囲 43に記載のセンサ付タイヤにおいて 、上記センサを圧電高分子フィルム力 構成したものである。
請求の範囲 45に記載の発明は、請求の範囲 44に記載のセンサ付タイヤにおいて 、上記圧電高分子フィルムを PVDFフィルムとしたものである。
請求の範囲 46に記載の発明は、請求の範囲 44または請求の範囲 45に記載のセ ンサ付タイヤにおいて、上記圧電高分子フィルムの圧電電圧係数を 0. 05VmZN以 上としたものである。
また、請求の範囲 47に記載の発明は、請求の範囲 44〜請求の範囲 46のいずれ かに記載のセンサ付タイヤにお 、て、上記圧電高分子フィルムの 120°Cにおける圧 電電圧係数の値の 25°Cにおける圧電電圧係数値に対する低下率を 30%以下とし たものである。
[0017] 請求の範囲 48に記載の発明は、走行中のタイヤの動的状態量を推定する装置で あって、タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーラィ ナ部との間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けら れ、当該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの 車輪速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タ ィャの変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間 変化波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて 、タイヤの接地時間を検出する接地時間検出手段と、上記接地時間と上記車輪速セ ンサで検出した車輪速度とから接地長の指標をそれぞれ算出する接地長指標算出 手段と、この接地長の指標の平均値を算出する手段と、接地長の指標の平均値と荷 重との関係を示すマップを記憶する記憶手段と、上記算出された接地長の指標の平 均値と上記マップとを用いて、上記タイヤに加わる荷重を推定する荷重推定手段とを 備えたことを特徴とするものである。
請求の範囲 49に記載の発明は、走行中のタイヤの動的状態量を推定する装置で あって、タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーラィ ナ部との間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けら れ、当該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの 車輪速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タ ィャの変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間 変化波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて 、タイヤの接地面外変形点間の時間を検出する手段と、上記接地面外変形点間の 時間と上記車輪速センサで検出した車輪速度とから接地面外変形長の指標をそれ ぞれ算出する手段と、接地面外変形長の指標の平均値を算出する手段と、接地面 外変形長の指標の平均値と荷重との関係を示すマップを記憶する記憶手段と、上記 算出された接地面外変形長の指標の平均値と上記マップとを用いて、上記タイヤに 加わる荷重を推定する荷重推定手段とを備えたことを特徴とするものである。
請求の範囲 50に記載の発明は、走行中のタイヤの動的状態量を推定する装置で あって、タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーラィ ナ部との間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けら れ、当該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの 車輪速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タ ィャの変形量の時間変化波形、または、上記変形量を時間積分した積分値の時間 変化波形に基づいて、タイヤの接地時間を検出する接地時間検出手段と、上記接地 時間と上記車輪速センサで検出した車輪速度とから接地長の指標をそれぞれ算出 する接地長指標算出手段と、上記接地長の指標の比を算出する手段と、接地長の 指標の比と横力との関係を示すマップを記憶した記憶手段と、上記接地長の指標の 比と上記マップとを用いて、上記タイヤに発生する横力を推定する横力推定手段とを 備えたことを特徴とするものである。
また、請求の範囲 51に記載の発明は、走行中のタイヤの動的状態量を推定する装 置であって、タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナ 一ライナ部との間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取 付けられ、当該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タ ィャの車輪速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された 当該タイヤの変形量の時間変化波形、または、上記変形量を時間微分した微分値の 時間変化波形、または、上記変形量を時間積分した積分値の時間変化波形に基づ いて、当該タイヤの接地面外変形点間の時間を検出し、この検出された接地面外変 形点間の時間に車輪速度を掛け合わせた接地面外変形長の指標を算出する手段と 、上記接地面外変形長の指標の比を算出する手段と、この接地面外変形長の指標 の比と接地長の指標の比とキャンバー角との関係を示すマップ、及び、キャンバー角 に応じて横力を補正するための補正マップを記憶した記憶手段と、上記接地面外変 形長の指標の比と接地長の指標の比と上記各マップとを用いて、上記タイヤに発生 する横力を推定する横力推定手段とを備えたことを特徴とするものである。
請求の範囲 52に記載の発明は、走行中のタイヤの動的状態量を推定する装置で あって、タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーラィ ナ部との間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けら れ、当該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの 車輪速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タ ィャの変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間 変化波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて 、タイヤの接地時間を検出する接地時間検出手段と、上記接地時間と上記車輪速セ ンサで検出した車輪速度とから接地長の指標をそれぞれ算出する接地長指標算出 手段と、上記接地長の指標の差を算出する手段と、接地長の指標の差と横力との関 係を示すマップを記憶した記憶手段と、上記接地長の指標の差と上記マップとを用 いて、上記タイヤに発生する横力を推定する横力推定手段とを備えたことを特徴とす るものである。 また、請求の範囲 53に記載の発明は、走行中のタイヤの動的状態量を推定する装 置であって、タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナ 一ライナ部との間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取 付けられ、当該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タ ィャの車輪速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された 当該タイヤの変形量の時間変化波形、または、上記変形量を時間微分した微分値の 時間変化波形、または、上記変形量を時間積分した積分値の時間変化波形に基づ いて、タイヤの接地時間を検出する接地時間検出手段と、上記接地時間と上記車輪 速センサで検出した車輪速度とから接地長の指標をそれぞれ算出する接地長指標 算出手段と、この接地長の指標の平均値を算出する手段と、接地長の指標の平均値 と荷重との関係を示すマップを記憶する記憶手段と、上記算出された接地長の指標 の平均値と上記マップとを用いて、上記タイヤに加わる荷重を推定する荷重推定手 段とを備えるとともに、上記推定された荷重の推定値を、上記請求項 52に記載のタイ ャの動的状態量推定装置により推定した横力により補正する補正手段を備えるよう に構成したことを特徴とするものである。
請求の範囲 54に記載の発明は、走行中のタイヤの動的状態量を推定する装置で あって、タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーラィ ナ部との間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けら れ、当該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの 車輪速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タ ィャの変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間 変化波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて 、上記タイヤの接地面外変形点の変形量を検出する手段と、接地面前後における上 記接地面外変形点の変形量の比を算出する手段と、接地面外変形点の変形量の比 と前後力との関係を示すマップを記憶した記憶手段と、上記接地面外変形点の変形 量と上記マップとを用いて、上記タイヤに加わる前後力を推定する前後力推定手段と を備えたことを特徴とするものである。
請求の範囲 55に記載の発明は、走行中のタイヤの動的状態量を推定する装置で あって、タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーラィ ナ部との間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けら れ、当該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの 車輪速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タ ィャの変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間 変化波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて 、上記タイヤの踏み込み側の接地面外変形点と踏み込み側接地端との間の時間を 検出する手段と、上記タイヤの蹴り出し側の接地面外変形点と蹴り出し側接地端との 間の時間を検出する手段と、上記タイヤの踏み込み側の接地面外変形点と踏み込 み側接地端との間の時間と、上記タイヤの蹴り出し側の接地面外変形点と蹴り出し側 接地端との間の時間とに、それぞれ、上記車輪速センサで検出した車輪速度を掛け 合わせて、踏み込み側変形長さと蹴り出し側変形長さとを算出して上記踏み込み側 変形長さと上記蹴り出し側変形長さとの比を演算する手段と、この踏み蹴り長さ比と 前後力との関係を示すマップを記憶した記憶手段と、上記踏み蹴り長さ比と上記マツ プとを用いて、上記タイヤに加わる前後力を推定する前後力推定手段とを備えたこと を特徴とするものである。
請求の範囲 56に記載の発明は、請求の範囲 48〜請求の範囲 55のいずれかに記 載のタイヤの動的状態量推定装置において、タイヤ内圧を計測する内圧センサ及び タイヤ内温度を計測する温度センサのいずれか一方または両方のセンサを設けると ともに、上記タイヤ変形量計測手段で計測された当該タイヤの変形量と上記計測さ れたタイヤ内圧及びタイヤ内温度のいずれか一方または両方の計測値とを車体側に 送信する通信手段を設けたものである。
請求の範囲 57に記載の発明は、請求の範囲 56に記載のタイヤの動的状態量推定 装置において、上記通信手段は、車体側から送信される電波を受信して電源電圧を 発生させる手段を備えたものである。
請求の範囲 58に記載の発明は、請求の範囲 56に記載のタイヤの動的状態量推定 装置に、タイヤの転動により発電する発電装置を設けたものである。
発明の効果 [0022] 本発明によれば、タイヤトレッドのベルト部よりも径方向内部側のタイヤ径方向のほ ぼ同一な断面における少なくとも 2箇所に、歪ゲージ、導電ゴム、圧電高分子フィル ムなどの当該タイヤの変形量を計測するセンサを取付けて、タイヤ周方向あるいはタ ィャ幅方向の引張'圧縮歪、または、引張'圧縮歪の変化量、トレッド面外曲げ歪、あ るいは、剪断歪などの当該タイヤの変形量を計測し、この計測された変形量と車輪速 度とから、当該タイヤの接地長または変形長を算出し、上記算出された接地長または 変形長に基づいて、タイヤの動的状態を推定するためタイヤの動的状態量である、タ ィャに加わる荷重や、タイヤに発生する横力、前後力などのタイヤの動的状態量を精 度よくかつ安定して推定することができる。
図面の簡単な説明
[0023] [図 1]本発明の最良の形態 1に係るタイヤの動的状態量推定装置の構成を示す機能 ブロック図である。
[図 2]本発明に係るセンサ付タイヤを示す模式図である。
[図 3]タイヤの変形状態を示す模式図である。
[図 4]トレッド内面変形波形とその微分波形を示す図である。
[図 5]タイヤ踏面の接地形状を示す模式図である。
[図 6]荷重と平均接地長との関係を示す図である。
[図 7]タイヤ周方向の歪波形のタイヤ幅方向の歪波形を比較した図である。
[図 8]横力と接地長比との関係を示す図である。
[図 9]本発明の最良の形態 2に係るタイヤの動的状態量推定装置の構成を示す機能 ブロック図である。
[図 10]キャンバー角を変えたときの横力と接地長比との関係を示す図である。
[図 11]接地長比と接地面外変形長比との関係を示す図である。
[図 12]本発明によるタイヤの動的状態量推定装置の他の構成を示す機能ブロック図 である。
[図 13]横力と接地長差との関係を示す図である。
[図 14]本発明によるタイヤの動的状態量推定装置の他の構成を示す機能ブロック図 である。 [図 15]本発明によるタイヤの動的状態量推定装置の他の構成を示す機能ブロック図 である。
[図 16]センサとして導電ゴムを用いたときの抵抗変化波形を示す図である。
[図 17]センサとして圧電フィルムを用いたときの出力電圧波形を示す図である。
[図 18]前後力と両ショルダー部の前後接地面外変形長比の平均値との関係を示す 図である。
[図 19]トレッド内面変形波形の前後力による変化を示す図である。
[図 20]歪センサの出力から推定した接地長比の時系列波形と平均接地長の時系列 波形を示す図である。
符号の説明
[0024] 10 タイヤ動的状態量推定装置、 11A, 11B タイヤ変形量計測手段、
12A, 12B 送信機、 13A, 13B バッテリ、 14 接地時間検出手段、
15 車輪速センサ、 16 接地長指標算出手段、 17 荷重推定手段、
18 記憶手段、 18M マップ、
20 センサ付タイヤ、 21 タイヤトレッド、 22 インナーライナ部、
31 接地長比演算手段、 32 記憶手段、 32M マップ、 33 横力推定手段。
発明を実施するための最良の形態
[0025] 以下、本発明の最良の形態について、図面に基づき説明する。
最良の形態 1.
図 1は、本最良の形態 1に係るタイヤ動的状態量推定装置 10の構成を示す機能ブ ロック図で、図 2は本発明によるセンサ付タイヤ 20の模式図である。各図において、 1 1A, 11Bは路面力もタイヤトレッド 21への入力により変形するインナーライナ部 22の 変形量をそれぞれ計測するタイヤ変形量計測手段、 12A, 12Bは上記タイヤ変形量 計測手段 11A, 11Bの計測データを送信するための送信機、 13A, 13Bは上記タイ ャ変形量計測手段 11A, 11B及び上記送信機 12A, 12Bに電力を供給するための バッテリ、 14は上記タイヤ変形量計測手段 11A, 11Bの出力であるインナーライナ部 22の変形量の時間変化に基づいて、センサ付タイヤ 20が路面に接地している接地 時間を検出する接地時間検出手段、 15は図示しないハブ部に取付けられ、走行中 の車輪の速度を検出する車輪速センサ、 16はこの車輪速センサ 15で検出した車輪 速度と、上記検出された接地時間とから、接地長と 1 : 1の関係にある接地長の指標 k , kを算出する接地長指標算出手段、 17は上記 2つの接地長の指標 k , kを平均
A B A B
した接地長の指標の平均値 kを算出するとともに、この接地長の指標の平均値 kと予 め記憶手段 18に記憶された接地長の指標の平均値と荷重との関係を示すマップ 18 Mとを用いて、上記センサ付タイヤ 20に加わる荷重を推定する荷重推定手段である なお、上記 2つのタイヤ変形量計測手段 11A, 11Bに対し、バッテリ及び送信機を 共有してもよい。また、接地時間検出手段 14や接地長指標算出手段 16などの演算 部をタイヤ側に設けて、演算結果のみを送信する形態にしてもょ 、。
また、タイヤ側に、車体側から送信される電波を受信して電源電圧を発生させる電 源再生回路を設けたり、タイヤの転動により発電する発電装置を設けるなどすれば、 上記バッテリ 13A, 13Bを省略することができる。
本例では、上記 2つのタイヤ変形量計測手段 11A, 11Bとして、歪ゲージを用いる とともに、このタイヤ変形量計測手段 11A, 11Bを、センサ付タイヤ 20のインナーラィ ナ部 22の、タイヤ径方向のほぼ同一な断面において、タイヤ軸方向中心に対して軸 方向等距離の線対称な位置 (例えば、 2ndブロック部)に、当該センサ付タイヤ 20の 周方向の引張歪 (または圧縮歪)を検出する方向に接着剤で貼り付け、更に、榭脂で 被覆した。なお、上記タイヤ変形量計測手段 11 A, 11Bを、インナーライナ部 22に加 硫接着により取付け、ゴムで被着するようにしてもょ 、。
センサ付タイヤ 20に荷重が加わると、図 3に示すように、上記センサ付タイヤ 20は 路面に押し付けられて変形する。具体的には、タイヤトレッド 21の内面側であるイン ナーライナ部 22では踏み込み前と蹴り出し後において圧縮応力(歪)が加わり、接地 部においては、逆に引張応力(歪)が作用する。したがって、上記タイヤ変形量計測 手段 11A, 11B力 は、図 4の実線で示すような、トレッド内面変形波形が出力される 。この変形波形の歪変形速度が最も大きい箇所 (接地端)における時間差を算出す ることにより、上記センサ付タイヤ 20の接地時間を検出することができる。
ところで、上記接地端の位置はトレッド内面変形波形ではわかりにくいので、本例で は、図 4の破線で示すような、上記変形波形を時間微分した微分値の時間変化波形 を求め、上記微分値の時間変化波形のピーク値となる踏み側接地端の位置と蹴り側 接地端の位置とをそれぞれ求めて、上記接地端間の時間を検出することにより、上 記センサ付タイヤ 20の接地時間を検出するようにしている。これにより、上記センサ 付タイヤ 20の接地時間を正確に検出することができる。
なお、上記変形量を計測する手段によっては、変形波形を時間積分した積分値を 用いてもよい。また、簡易的な方法として、トレッド内面変形波形がベースラインと同じ 値を取る点を接地端としてもょ ヽ。
[0027] また、センサ付タイヤ 20に横力が発生すると、図 5 (a) , (b)に示すように、その接地 形状はタイヤ軸方向中心に対して一方の側の接地長が長くなり、他方の側が短くな るため、 1点の接地長のみで荷重を推定しょうとすると、横力の影響が出てしまう。す なわち、同じ荷重が加わっても、横力入力時には一方の接地長が長くなり、他方が短 くなる。そこで、本例では、荷重推定手段 17において、上記タイヤ変形量計測手段 1 1A, 11Bから得られた接地長の指標の平均値 kを算出し、この算出された接地長の 指標の平均値 kと、予め記憶手段 18に記憶された接地長の指標の平均値と荷重との 関係を示すマップ 18Mとを用いて、タイヤに加わる荷重を求めるようにして!/、る。 図 6は、フラットベルト試験機を用い、タイヤ変形量計測手段 11A, 11Bをインナー ライナ部 22に取付けたセンサ付タイヤ 20を搭載した車輛を速度 60kmZhrで走行さ せるとともに、荷重、及び、スリップアングルを連続的に変化させた際の、荷重と平均 接地長との関係を示す図で、路面はセーフティウォーク、タイヤのサイズは 225Z55 R17、内圧は 230MPaである。この平均接地長は、上記のように、タイヤ変形量計測 手段 11A, 11Bの出力である歪波形を時間微分し、そのピーク間の時間に車輪速度 を乗じて求めたものである。このグラフからも分力るように、横力発生中であっても、平 均接地長と荷重とは良い相関を示している。したがって、このようなデータに基づいて 作成された接地長の指標の平均値と荷重との関係を示すマップ 18Mを用いて、タイ ャに加わる荷重を求めるようにすれば、横力が発生した場合でも、タイヤに加わる荷 重を精度よく求めることができる。
[0028] このように、本最良の形態 1によれば、タイヤトレッド 21のインナーライナ部 22の、タ ィャ径方向断面における、タイヤ軸方向中心に対して軸方向等距離の線対称な位 置にタイヤ変形量計測手段 11A, 11Bを取付け、上記インナーライナ部 22の変形波 形を計測して、変形波形から接地端の時間差である接地時間を検出し、この接地時 間と車輪速センサ 15で検出した車輪速度とから、接地長の指標 k , kをそれぞれ算
A B
出した後、上記指標 k , kの平均値 kを算出し、この算出された接地長の指標の平均
A B
値 kと、予め記憶手段 18に記憶された接地長の指標の平均値と荷重との関係を示す マップ 18Mを用いて、タイヤに加わる荷重を求めるようにしたので、横力が発生した 場合も接地長を精度よく推定することができ、タイヤに加わる荷重を正確に求めること ができる。
また、本例では、インナーライナ部 22の歪を直接計測しているので、低速走行時に おいても信号出力ゲインはほぼ同じである。したがって、接地長を精度よく推定する ことができるとともに、荒れた路面、あるいは、ある程度水深のある WET路面を走行 する際も歪微分波形の接地端以外の発生ピークが大きくないので、接地長の検出安 定性を大幅に向上させることができる。
[0029] なお、上記最良の形態 1では、接地長の指標からタイヤに加わる荷重を推定するよ うにしたが、上記インナーライナ部 22の変形量の時間変化波形、または、上記変形 量を時間微分した微分値の時間変化波形、または、上記変形量を時間積分した積 分値の時間変化波形力 当該タイヤの接地面外変形点間の時間を検出し、この検 出された接地面外変形点間の時間に車輪速度を掛け合わせた接地面外変形長の 指標をそれぞれ算出して、タイヤに加わる荷重を推定するようにしてもよい。このとき、 接地面外変形点として、荷重との相関性の高い、上記図 3の白丸で示した接地面前 後の接地面外変形点を用いるとともに、上記接地面外変形長の指標の平均値を求 め、この平均値力もタイヤに加わる荷重を推定するようにょうにすれば、タイヤに加わ る荷重を精度よく推定することができる。
[0030] また、上記例では、タイヤ変形量計測手段 11A, 11Bをインナーライナ部 22の内面 側に取付けたが、取付け箇所はこれに限るものではなぐインナーライナ Zプライ間、 プライ間、あるいは、プライ Zベルト間など、タイヤゴム部の、路面からのタイヤトレッド 21への入力により変形する箇所であればいずれであってもよい。但し、耐久性を考 慮すると、タイヤ変形量計測手段 11 A, 1 IBを取付ける箇所としては、キャップトレツ ド Zベルト間よりも、上記のように、タイヤトレッドのベルト部よりも径方向内部側に取 付ける方が好ましい。
また、上記例では、インナーライナ部 22の周方向歪、あるいは、周方向歪の変化量 を検出するようにした力 トレッド面外曲げ歪や剪断歪を検出して接地時間を求める ようにしてもよい。すなわち、ベルトは路面からの入力に対してほとんど不伸長である ため、ベルトが曲げられると、上記ベルトを中立軸として、内面及び外側が伸縮する。 この曲げ歪や剪断歪は上記引張'圧縮歪とほぼ同 Cf立相の波形となるので、市販の 曲げ歪ゲージや 2方向歪ゲージなどをインナーライナ部 22に貼付けて上記曲げ歪 や剪断歪を検出することで、タイヤの変形、すなわち、接地点やトレッド面外変形点を 検出することができる。
[0031] ところで、インナーライナ部 22の内面側、あるいは、インナーライナ Zプライ間、ブラ ィ間、あるいは、プライ Zベルト間のゴム部のタイヤ幅方向の歪は、タイヤ周方向の歪 に応じて変化するので、図 7の実線で示すタイヤ幅方向の歪波形の変形点と、図 7の 一点鎖線で示すタイヤ周方向の歪波形の変形点とはほぼ同一の位置にあるので、タ ィャ変形量計測手段 11A, 11Bの検出方向をタイヤ幅方向とし、タイヤトレッドのべ ルト部よりも径方向内部側の幅方向歪、幅方向歪の変化量、あるいは、トレッド面外 曲げ歪や剪断歪を検出して接地時間を求めるようにしてもよい。
このとき、上記タイヤ変形量計測手段 11A, 11Bの間の距離を、当該タイヤの最大 幅の 1Z2以下とすることが好ましい。すなわち、上記距離が当該タイヤの最大幅の 1 Z2を超えると、横力が作用した場合に、上記タイヤ変形量計測手段 11A, 11Bのい ずれ力接地面外に位置してしまい、変形量が検出できない恐れがあるので、上記距 離を当該タイヤの最大幅の 1Z2以下、特に、 1Z3程度とすることが好ましい。
[0032] 最良の形態 2.
上記最良の形態 1では、インナーライナ部 22のタイヤ軸方向中心に対して軸方向 線対称な位置の周方向歪、周方向歪の変化量、トレッド面外曲げ歪を計測して、上 記 2箇所の接地長の指標 k , kの平均値 kを求め、この接地長の指標の平均値 kから
A B
センサ付タイヤ 20に加わる荷重を推定した力 上記 2箇所の接地長の指標 k , kの 比 Rを求め、この接地長の指標 k , kの比 Rから上記タイヤに発生する横力を推定す
A B
ることがでさる。
すなわち、センサ付タイヤ 20に横力が発生すると、上記の図 5 (a) , (b)に示したよ うに、その接地形状はタイヤ軸方向中心に対して一方の側の接地長が長くなり、他方 の側が短くなる。そこで、タイヤ踏面のタイヤ軸方向中心に対して両側に位置する 2 点の接地長を検出しこれらの比 (接地長比)と横力の大きさとの関係を調べたところ、 図 8に示すように、接地長比と横力の大きさは良好な相関関係を示すことがわ力つた 。したがって、タイヤ変形量計測手段 11 A, 11Bを上記センサ付タイヤ 20のインナー ライナ部のタイヤ軸方向中心に対して軸方向等距離の線対称の位置に配置するとと もに、上記接地長比 Rと横力の大きさとの関係を予め計測して、接地長比 Rと横力の 大きさとの関係を示すマップ 32Mを作成しておけば、タイヤに発生する横力を推定 することができる。
図 9は、本最良の形態 2に係るタイヤ動的状態量推定装置 30の構成を示す図で、 このタイヤ動的状態量推定装置 30は、上記タイヤ動的状態量推定装置 10に、接地 長の指標 k , kの比 R=k Zkを演算する接地長比演算手段 31と、予め記憶手段 3
A B A B
2に記憶された接地長比 Rと横力の大きさとの関係を示すマップ 32M用いて、上記セ ンサ付タイヤ 20の発生する横力を推定する横力推定手段 33を設けたもので、これに より、タイヤに加わる荷重とタイヤに発生する横力とをともに推定することができる。 なお、接地長比 Rと横力との関係は荷重によっても変化するので、図 9に示すように 、上記荷重推定手段 17で推定された荷重の推定値に基づいて、上記横力推定手段 33で推定された横力を補正するようにすれば、横力の推定精度を更に向上させるこ とがでさる。
また、接地長の指標の比 Rと横力との関係は、路面に対するタイヤの角度 (キャンバ 一角)によって大きく変わる。図 10は、フラットベルト試験機を用い、タイヤ変形量計 測手段 11 A, 11Bをインナーライナ部 22に取付けたセンサ付タイヤ 20を搭載した車 輛を速度 60kmZhrで走行させるとともに、荷重を 5kNに固定し、スリップアングルを 連続的に変えた際の、横力と接地長比との関係を示す図で、図 11は接地長比と接 地面外変形長比との関係を示す図である。なお、試験路面はセーフティウォーク、タ ィャのサイズは 225Z55R17、内圧は 230MPaである。
接地長比は、上記のように、タイヤ変形量計測手段 11 A, 11Bの歪波形を時間微 分し、そのピーク間時間に車輪速度を乗じてそれぞれ求めた接地長の比で、ここで は、キャンバー角が 0° , +3° , -3° の水準で試験した。
図 10のグラフからも分力るように、それぞれのキャンバー角では接地長比と横力と は良い相関を示しているが、キャンバー角が変わると接地長比と横力との関係はず れてしまう。例えば、横力が 0でキャンバー角が 0° では接地長比は 1である力 キヤ ンバ一角が + 3° では接地長比が約 1. 3になる。すなわち、同じ接地形状でも、スリ ップアングルによるものとキャンバー角によるものとでは、タイヤの捩れ度合が異なる ことから、発生する横力も異なる。したがって、キャンバー角を推定して接地長比から 求めた横力を補正する必要がある力 キャンバー角の検出は一般的には困難である し力しながら、上記図 3の黒丸で示した接地端間の時間から検出した接地長比尺と 、白丸で示した接地面前後の接地面外変形点間の時間力 検出した接地面外変形 長比 Sとは、図 11に示すように、キャンバー角によって変わるので、タイヤの捩れ度合 の指標として、接地長比と接地面外長比関係を求めたマップを作成し、このマップを 用いて、キャンバー角を推定して、上記接地長比 Rから求めた横力を補正するように すれば、センサ付タイヤ 20に発生する横力を精度よく推定することができる。
図 12は、上記最良の形態 2で推定した横力の推定値を補正する手段を備えたタイ ャ動的状態量推定装置 40の構成例を示すブロック図で、この推定装置 40では、接 地時間検出手段 14及び接地長指標算出手段 16に加えて、インナーライナ部 22の 変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変化波 形、または、上記変形量を時間積分した積分値の時間変化波形力 当該タイヤの接 地面外変形点間の時間を検出する変形時間検出手段 41を設けるとともに、上記検 出された接地面外変形点間の時間と車輪速センサ 15で検出した車輪速度とを掛け 合わせた接地面外変形長の指標を算出する変形長算出手段 42を設け、この変形長 算出手段 42で算出した接地面外変形長の指標との比と接地長の指標との比とから キャンバー角を推定し、この推定キャンバー角を用いて上記横力の推定値を補正す る。具体的には、上記変形長算出手段 42で算出した接地面外変形長の指標との比 を算出する変形長比演算手段 43を設けるとともに、上記算出された接地面外変形長 の指標との比と接地長算出手段 31で算出した接地長の指標との比と、予め記憶手 段 44に記憶しておいた接地長比と接地面外長比とキャンバー角との関係を示すマツ プ 44Mとを用いて、キャンバー角を推定するキャンバー角を推定手段 45を設けて、 キャンバー角を推定する。なお、このタイヤ動的状態量推定装置 40では、上記荷重 推定用のマップ 18Mと横力推定用のマップ 32Mとキャンバー角推定用のマップ 44 Mとを記憶装置 44に収納する構成とした。
また、上記タイヤ動的状態量推定装置 40では、タイヤ動的状態量推定装置 10, 3 0では荷重推定手段 17内で行っていた接地長の指標 k , kの平均値 kの演算を、平
A B
均接地長演算手段 17aにて行い、この演算された接地長の指標の平均値 kを荷重推 定手段 17に送る構成として!/ヽるが、上記平均接地長演算手段 17aを荷重推定手段 17内に設けても良い。また、上記平均接地長演算手段 17aに代えて、上記変形長 指標算出手段で算出した接地面外変形長の指標の平均値を求める手段を設けて、 この接地面外変形長の指標の平均値を荷重推定手段 17に送ってタイヤに加わる荷 重を推定するようにしてもょ ヽ。
また、上記図 11はスリップアングルを連続的に変えた際の接地長比と接地面外長 比関係を示したものであるから、上記図 11を用いることにより、キャンバー角だけでな ぐスリップアングルについても推定することができる。
更に、 4輪の姿勢角がわかれば、車輪の姿勢角に加えて路面の傾斜具合も推定で きるので、これを車輛の姿勢制御に適用すれば、車輛の走行安定性を向上させるこ とがでさる。
このように、接地面外のタイヤの変形量の情報を把えて、活用するのが、加速度セ ンサを用いた検出ではできな ヽ本発明の特徴である。
また、上記最良の形態 2では、接地長の指標 k , kの比 R=k /kからセンサ付タ
A B A B
ィャ 20の発生する横力を推定するようにしたが、接地長の指標 k , kの差 S=k— k
A B A
力 横力を推定することも可能である。すなわち、図 13に示すように、タイヤ踏面の
B
タイヤ軸方向中心に対して両側に位置する 2点の接地長の指標 k , kの差 Sは、接 地長の指標の比 Rと同様に良好な相関関係を示すだけでなぐその関係は荷重が変 化しても殆ど変わらない。したがって、図 14に示すように、接地長指標算出手段 16で 算出された接地長の指標 k , kから接地長の指標 k , kの差 S=k Zkを演算する
A B A B A B
接地長差演算手段 51と、予め記憶手段 52に記憶された接地長差 Sと横力の大きさ との関係を示すマップ 52M用いて、上記センサ付タイヤ 20の発生する横力を推定す る横力推定手段 53を備えたタイヤ動的状態量推定装置 50を構成することにより、荷 重の補正を行うことなぐタイヤに発生する横力を推定することができる。
[0036] また、タイヤに加わる荷重は発生する横力により変化するが、上記タイヤ動的状態 量推定装置 50では、荷重の大きさに拠らずにタイヤに発生する横力を推定できるの で、図 14に示すように、上記横力推定手段 53で推定された横力の推定値を用いて、 荷重推定手段 17で推定した荷重の推定値を補正するようにすれば、横力が発生し た際の荷重の推定値を補正することができる。すなわち、通常使用領域では平均接 地長と荷重とは非常に良い相関を示すが、横力がタイヤ限界領域近傍まで大きくな ると、同じ荷重でも平均接地長がやや大きくなる傾向がある。そこで、荷重が作用した 際の横力と平均接地長 kとの関係を予め求めておき、上記横力の推定値と平均接地 長 kとからタイヤに加わる荷重を補正するようにすれば、荷重推定の精度を更に高め ることがでさる。
なお、横力の大きさはキャンバー角によって変わるので、図 15に示すように、上記 タイヤ動的状態量推定装置 50に、図 12に示したタイヤ動的状態量推定装置 40に用 いた変形時間検出手段 41、変形長算出手段 42、変形長比演算手段 43、及び、キヤ ンバ一角推定手段 45を付加したタイヤ動的状態量推定装置 50Zを構成してキャン バー角についても推定し、この推定されたキャンバー角を用いて、上記接地長差から 推定した横力を補正するようにすれば、横力の推定値の精度を更に向上させること ができる。
なお、上記タイヤ動的状態量推定装置 50Zでは、上記荷重推定用のマップ 18Mと 横力推定用のマップ 52Mとキャンバー角推定用のマップ 44Mとを記憶装置 52Zに 収納する構成とした。
[0037] なお、最良の形態 1, 2では、タイヤ変形量計測手段 11 A, 11Bとして歪ゲージを用 いた場合について説明したが、タイヤ変形量計測手段 11 A, 11Bとして歪ゲージを 用いた場合について説明したが、歪ゲージに代えて導電ゴムを用いてもよい。すな わち、上記歪ゲージはセンサ部が金属材料で構成されていることから、繰り返し使用 に対する耐久性を考慮すると、導電ゴムが有利である。
このとき、上記導電ゴムの無負荷時における体積抵抗を 107〜: ί09 Ω πιとすることが 好ましい。これは、体積抵抗が 107 Ω πι未満であると消費電力が大きくなるだけでなく 、温度上昇を伴うので、検出効率が低下するためである。逆に、体積抵抗が 109 Ω πι を超えると、周囲のゴム材料に電流が流れ易くなり検出精度が低下するので、導電ゴ ムの無負荷時における体積抵抗は 107〜109 Ω πιの範囲とすることが好ましい。なお 、上記導電ゴムの周囲を、タイヤのゴムの 100倍以上の抵抗値を有するゴムにより被 覆すれば、体積抵抗の上限値を高くすることも可能である。
また、導電ゴムにはヒステリシスロスがあり、このヒステリシスロスが大きくなると歪波形 の位相が遅れるので、上記導電ゴムとして、 tan S < 0. 1である導電ゴムを用いる必 要がある。図 16は、タイヤ変形量計測手段 11 A, 11Bとして導電ゴムを用いたときの 歪波形を示す図で、同図の実線は低損失 (tan δ < 0. 1)の導電ゴムで、破線は高 損出(tan δ =0. 22)である。高損出の導電ゴムを用いた場合には、接地点や変形 点の位置がずれてしまったり、接地点や変形点の位置を明確に特定することが困難 となったりする。一方、低損失の導電ゴムを用いた場合の歪波形は、上記歪ゲージを 用いた場合と同様に、接地点や変形点が明確であり、接地長や変形長を確実に算 出することができる。
なお、導電ゴムの厚さが厚くなると検出精度が低下するので、上記導電ゴムの厚さ の上限値を 2mmとすることが好ましい。また、上記歪ゲージや導電ゴムや、後述する 圧電ポリマーなどのセンサの検出方向の長さを、例えば、 20mm以下にするなど、短 くすることが必要で、これにより、接地点や変形点の位置を明確に特定することができ る(なお、一般に、センサの検出方向と直角方向の長さは検出方向より短いので問題 ない)。
また、上記例では、タイヤ変形量計測手段 11 A, 11Bとして歪ゲージや導電ゴムな どの電気抵抗の変化を検出するセンサを用いた場合について説明した力 圧電ポリ マー(ある長さの圧電フィルムまたは圧電ケーブル)を用いてもょ 、。圧電ポリマー(あ る長さの圧電フィルムまたは圧電ケーブル)を用いてもょ 、。上記圧電ポリマーの場 合には、歪んだ分だけ電荷を発生するという特性を有しているので、周方向歪の変 化量、すなわち、上記歪センサの出力波形の微分値に相当する出力が得られる。し たがって、タイヤ変形量計測手段 11 A, 11Bとして圧電ポリマーを用いれば、その出 力波形には接地端のピークが出現するので、微分操作を行うことなぐ容易に接地時 間を推定することができる。
上記圧電ポリマーとしては、圧電フィルムを使用することが好ましぐ特に、耐久性 に優れ、かつ、歪による発生電圧が大きい PVDF (ポリフッ化ビ-リデン)フィルムを用 いることが好ましい。ここで、タイヤ歪出力として十分な SN比を確保するためには、上 記圧電フィルムの圧電電圧係数としては、 I g31 I >0. 05Vm/Nとする必要があ る。
図 17 (a)は、タイヤ変形量計測手段 11 A, 11Bとして PVDFフィルムを用いたとき の発生電圧波形で、図 17 (b)はその積分波形である。このように、歪出力の大きな P VDFフィルムを用いることにより、接地点や変形点の位置を明確に特定することがで きるので、タイヤに加わる荷重やタイヤに発生する横力を精度よく推定することができ る。
このとき、上記圧電フィルムとして、 120°Cにおける圧電電圧係数の値の 25°Cにお ける圧電電圧係数値に対する低下率が 30%以下となるような温度特性を有する圧 電フィルムを用いれば、センサの高温安定性を確保することができるので、高温にお いても、荷重や横力を精度よく推定することができる。このような、圧電フィルムは、圧 電フィルムをァニールすることで得ることができる。なお、上記ァニール温度は圧電フ イルムの組成により異なる力 上記 PVDFフィルムの場合には約 125°Cが適している また、上記圧電ポリマーは、消費電力も回路部のみに限られるため省電力化が図 れること、フレキシブルであるので、耐久性に優れていることなど、上記歪ゲージよりも 有利である。
最良の形態 3. 上記最良の形態 2では、接地長の指標の比 Rや接地面外変形長比 Sを用いてセン サ付タイヤ 20に発生する横力を推定したが、後述する前後接地面外変形長比 Zを用 V、れば、上記タイヤに発生する前後力につ ヽても推定することも可能である。
前後接地面外変形長比 Zは、上記図 3において白丸で示した接地面外変形点と黒 丸で示した接地端との間の長さを、接地面前方 (踏み側)と接地面後方 (蹴り側)とで それぞれ算出し、それらの比を求めたもので、後述するように、前後力と前後接地面 外変形長比とは非常に良い相関を示すことから、前後力と前後接地面外変形長比 Z との関係を求めたマップを作成し、このマップを用いて、タイヤに発生する前後力を 推定することができる。
図 18は、フラットベルト試験機を用い、タイヤ変形量計測手段 11A, 11Bをインナ 一ライナ部 22に取付けたセンサ付タイヤ 20を搭載した車輛を速度 60kmZhrで走 行させたときの前後力と両ショルダー部の前後接地面外変形長比の平均値との関係 を示す図で、ここでは、スリップアングルを 0° に固定し、前後力のみを連続的に変化 させた。なお、路面はセーフティウォーク、タイヤサイズは 225Z55R17、内圧は 230 MPaである。このようなデータに基づいて作成された前後接地面外変形長比と前後 力との関係を示すマップを用いて、タイヤに加わる前後力を求めるようにすれば、横 力が発生した場合でも、タイヤに加わる前後力を正確に推定することができる。
[0040] なお、上記例では、前後接地面外変形長比から前後力を推定したが、図 19 (a) , ( b)に示すように、前後力が加わると、トレッド内面歪の接地面前方 (踏み側)の変形量 と接地面後方 (蹴り側)の変形量の大きさが異なることから、踏み側の変形量と蹴り側 の変形量の大きさを比較することによつても前後力を推定することができる。
[0041] また、上記インナーライナ部 22の内面側、インナーライナ Zプライ間、ベルト間、あ るいは、プライ Zベルト間などにおけるタイヤの変形量はタイヤ内圧や温度によって も変化するので、タイヤの内圧値やタイヤ温度を別途測定しておき、上記車輪速度 や上記荷重、横力、前後力の推定値を補正するようにすれば、推定精度を更に向上 させることがでさる。
実施例
[0042] 低速度で、かつ路面凹凸が入力する場合の、歪センサと加速度センサとの信号検 出安定性の違いを確認する目的で、サイズ 185/70R14のセンサ付タイヤを準備し た。センサ位置については、図 2と同様であり、歪センサ及び加速度センサをタイヤ 周方向に 1ブロック分ずらした位置に装着した。ここで、上記加速度センサとしては、 圧電方式のものを用い、これをタイヤ周方向加速度を計測する向きに装着した。そし て、このセンサ付タイヤを排気量 1800ccの乗用車の左前輪に装着し、小さい操舵角 範囲で、走行速度 20kmZhrにてスラローム試験を実施した。なお、上記タイヤの内 圧値は 200kPaとした。
試験の結果、加速度センサでは、接地端におけるピークが十分大きくなぐ接地長 を安定して検出することができな力つた。
これに対して、歪センサでは安定した検出を行うことができ、接地長比及び平均接 地長の検出値を得ることができた。図 20 (a)は歪センサの出力から検出した接地長 比の時系列波形で、図 20 (b)は平均接地長の時系列波形で、これにより、歪センサ では、加速度センサでは捉えがたい、低速走行時における接地長を精度よく検出で きることが確認された。
産業上の利用可能性
以上説明したように、本発明によれば、走行中に荷重、横力、前後力などが加わつ た場合の当該タイヤの動的状態量を精度よくかつ安定して推定することができるので 、これらの上記情報を車輛制御へフィードバックすることにより、車輛の走行安定性を 格段に向上させることができる。

Claims

請求の範囲
[1] タイヤトレッドのベルト部よりも径方向内部側の、タイヤ径方向のほぼ同一な断面に おける少なくとも 2箇所の変形量と、車輪速度とを計測して、走行中のタイヤに荷重、 横力、前後力のいずれか 1つまたは複数のタイヤ発生力が作用したときの上記タイヤ の動的状態量を推定するようにしたことを特徴とするタイヤの動的状態量推定方法。
[2] 上記変形量を、インナーライナ部の内面側、インナーライナ Zプライ間、プライ間、 あるいは、プライ Zベルト間のいずれかの変形量としたことを特徴とする請求の範囲 1 に記載のタイヤの動的状態量推定方法。
[3] 上記変形量をタイヤ周方向歪、または、周方向歪の変化量、または、周方向トレッド 面外曲げ歪、または、剪断歪としたことを特徴とする請求の範囲 1または請求の範囲 2に記載のタイヤの動的状態量推定方法。
[4] 上記変形量をタイヤ幅方向歪、または、幅方向歪の変化量、または、幅方向トレッド 面外曲げ歪または、剪断歪としたことを特徴とする請求の範囲 1または請求の範囲 2 に記載のタイヤの動的状態量推定方法。
[5] 上記変形量力 当該タイヤの接地長または変形長を算出し、上記算出された接地 長または変形長に基づいてタイヤの動的状態量を推定するようにしたことを特徴とす る請求の範囲 1〜請求の範囲 4のいずれかに記載のタイヤの動的状態量推定方法。
[6] 上記タイヤの動的状態を推定するための動的状態量を、タイヤに加わる荷重とした ことを特徴とする請求の範囲 5に記載のタイヤの動的状態量推定方法。
[7] 上記少なくとも 2箇所の変形量の時間変化波形、または、上記変形量を時間微分し た微分値の時間変化波形、または、上記変形量を時間積分した積分値の時間変化 波形から当該タイヤの接地時間を検出し、この検出された接地時間に車輪速度を掛 け合わせた接地長の指標をそれぞれ算出するとともに、上記接地長の指標の平均値 を求め、この平均値力 タイヤに加わる荷重を推定するようにしたことを特徴とする請 求の範囲 6に記載のタイヤの動的状態量推定方法。
[8] 上記少なくとも 2箇所の変形量の時間変化波形、または、上記変形量を時間微分し た微分値の時間変化波形、または、上記変形量を時間積分した積分値の時間変化 波形から当該タイヤの接地面外変形点間の時間を検出し、この検出された接地面外 変形点間の時間に車輪速度を掛け合わせた接地面外変形長の指標をそれぞれ算 出するとともに、上記接地面外変形長の指標の平均値を求め、この平均値力 タイヤ に加わる荷重を推定するようにしたことを特徴とする請求の範囲 6に記載のタイヤの 動的状態量推定方法。
上記変形量の計測位置が、少なくともタイヤ径方向のほぼ同一な断面において、タ ィャ軸方向中心に対して軸方向等距離の線対称な 2箇所を含むようにしたことを特 徴とする請求の範囲 7または請求の範囲 8に記載のタイヤの動的状態量推定方法。 タイヤ径方向のほぼ同一な断面において、タイヤ軸方向中心に対して軸方向等距 離の線対称な位置の変形量の時間変化波形、または、上記変形量を時間微分した 微分値の時間変化波形、または、上記変形量を時間積分した積分値の時間変化波 形カゝら当該タイヤの接地時間を検出し、この検出された接地時間に車輪速度を掛け 合わせたタイヤの接地長の指標をそれぞれ算出するとともに、上記時間変化波形の いずれかから当該タイヤの接地面外変形点間の時間を検出し、この検出された接地 面外変形点間の時間に車輪速度を掛け合わせた接地面外変形長の指標をそれぞ れ算出し、上記各接地長の指標と各接地面外変形長の指標とからタイヤの姿勢角を 推定するようにしたことを特徴とする請求の範囲 5に記載のタイヤの動的状態量推定 方法。
上記タイヤの動的状態を推定するための動的状態量を、タイヤに発生する横力とし たことを特徴とする請求の範囲 5に記載のタイヤの動的状態量推定方法。
タイヤ径方向のほぼ同一な断面において、タイヤ軸方向中心に対して軸方向等距 離の線対称な位置の変形量の時間変化波形、または、上記変形量を時間微分した 微分値の時間変化波形、または、上記変形量を時間積分した積分値の時間変化波 形カゝら当該タイヤの接地時間を検出し、この検出された接地時間に車輪速度を掛け 合わせたタイヤの接地長の指標を算出し、上記線対称な位置における接地長の指 標の比力 上記タイヤに発生する横力を推定するようにしたことを特徴とする請求の 範囲 11に記載のタイヤの動的状態量推定方法。
上記線対称な位置における接地長もしくは接地面外変形長の指標の平均値を算 出し、この接地長の指標もしくは接地面外変形長の指標の平均値から荷重を推定し 、この推定された荷重により上記接地長の指標の比力 推定した横力を補正するよう にしたことを特徴とする請求の範囲 12に記載のタイヤの動的状態量推定方法。
[14] 上記線対称な位置における変形量の時間変化波形、または、上記変形量を時間 微分した微分値の時間変化波形、または、上記変形量を時間積分した積分値の時 間変化波形力 当該タイヤの接地面外変形点間の時間を検出するとともに、この検 出された接地面外変形点間の時間に車輪速度を掛け合わせた接地面外変形長の 指標をそれぞれ算出して接地面外変形長の指標比を求め、この接地面外変形長の 指標の比と上記接地長の指標の比とからタイヤの姿勢角を推定し、更に、上記接地 長の指標もしくは接地面外変形長の指標の平均値から荷重を推定し、その指標の平 均値から荷重を推定し、これらの推定姿勢角と推定荷重とにより上記接地長の指標 の比力 推定した横力を補正するようにしたことを特徴とする請求の範囲 13に記載の タイヤの動的状態量推定方法。
[15] タイヤ径方向のほぼ同一な断面において、タイヤ軸方向中心に対して軸方向等距 離の線対称な位置の変形量の時間変化波形、または、上記変形量を時間微分した 微分値の時間変化波形、または、上記変形量を時間積分した積分値の時間変化波 形カゝら当該タイヤの接地時間を検出し、この検出された接地時間に車輪速度を掛け 合わせたタイヤの接地長の指標を算出し、上記線対称な位置における接地長の指 標の差力 上記タイヤに発生する横力を推定するようにしたことを特徴とする請求の 範囲 11に記載のタイヤの動的状態量推定方法。
[16] 上記線対称な位置における変形量の時間変化波形、または、上記変形量を時間 微分した微分値の時間変化波形、または、上記変形量を時間積分した積分値の時 間変化波形力 当該タイヤの接地面外変形点間の時間を検出するとともに、この検 出された接地面外変形点間の時間に車輪速度を掛け合わせた接地面外変形長の 指標をそれぞれ算出して接地面外変形長の指標比を求め、この接地面外変形長の 指標の比と上記接地長の指標の比とからタイヤの姿勢角を推定し、この推定された 姿勢角により上記接地長の指標の差力も推定した横力を補正するようにしたことを特 徴とする請求の範囲 15に記載のタイヤの動的状態量推定方法。
[17] 上記請求の範囲 15または請求の範囲 16に記載の接地長の指標の差力 推定さ れた横力の推定値を用いて、上記請求の範囲 7〜請求の範囲 9で推定された荷重の 推定値を補正するようにしたことを特徴とする請求の範囲 7〜請求の範囲 9に記載の タイヤの動的状態量推定方法。
[18] 上記動的状態を推定するための動的状態量を、タイヤに発生する前後力としたこと を特徴とする請求の範囲 5に記載のタイヤの動的状態量推定方法。
[19] 上記変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間 変化波形、または、上記変形量を時間積分した積分値の時間変化波形力 当該タイ ャの接地面前後の接地面外変形点の変形量をそれぞれ検出して接地面外変形量 の比を求め、この接地面外変形量の比から上記タイヤに発生する前後力を推定する ようにしたことを特徴とする請求の範囲 18に記載のタイヤの動的状態量推定方法。
[20] 少なくとも 2箇所の接地面外変形量の比を算出し、これらの平均値力 タイヤに発 生する前後力を推定するようにしたことを特徴とする請求の範囲 19に記載のタイヤの 動的状態量推定方法。
[21] 踏み込み側の接地面外変形点と踏み込み側接地端との間の時間に車輪速度を掛 け合わせた踏み込み側変形長さと、蹴り出し側の接地面外変形点と蹴り出し側接地 端との間の時間に車輪速度を掛け合わせた蹴り出し側変形長さとを算出し、これらの 比または差から上記タイヤに加わる前後力を推定するようにしたことを特徴とする請 求の範囲 18に記載のタイヤの動的状態量推定方法。
[22] 少なくとも 2箇所の踏み込み側変形長さと蹴り出し側変形長さとの比または差を算 出し、これらの平均値力 上記タイヤに発生する前後力を推定するようにしたことを特 徴とする請求の範囲 21に記載のタイヤの動的状態量推定方法。
[23] 上記変形量の計測位置は、少なくともタイヤ径方向のほぼ同一な断面において、タ ィャ軸方向中心に対して軸方向等距離の線対称な位置を含むことを特徴とする請求 の範囲 19〜請求の範囲 22のいずれかに記載のタイヤの動的状態量推定方法。
[24] ホイール部あるいはタイヤにぉ ヽてタイヤ内圧値及びタイヤ内温度の!/ヽずれか一 方または両方を検出し、上記内圧値または温度、あるいは、内圧値と温度とを用いて 、上記車輪速度、及び、上記荷重または横力または前後力の推定値を補正するよう にしたことを特徴とする請求の範囲 1〜請求の範囲 23のいずれかに記載のタイヤの 動的状態量推定方法。
[25] 走行中のタイヤの動的状態量を推定するためのセンサを備えたセンサ付タイヤで あって、タイヤトレッドのベルト部よりも径方向内部側に、当該タイヤの変形量を計測 する複数のセンサを備えたことを特徴とするセンサ付タイヤ。
[26] 上記センサをインナーライナ部の内面側、インナーライナ Zプライ間、プライ間、あ るいは、プライ Zベルト間のいずれかに配置したことを特徴とする請求の範囲 25に記 載のセンサ付タイヤ。
[27] 上記センサのうち、少なくとも 2つのセンサを、タイヤ径方向のほぼ同一な断面にお いて、タイヤ軸方向中心に対して軸方向等距離の線対称な位置に配置したことを特 徴とする請求の範囲 25または請求の範囲 26に記載のセンサ付タイヤ。
[28] 上記センサを、当該タイヤの周方向歪または幅方向歪を計測するセンサとしたこと を特徴とする請求の範囲 25〜請求の範囲 27のいずれかに記載のセンサ付タイヤ。
[29] 上記センサを、当該タイヤの周方向歪の変化量または幅方向歪の変化量を計測す るセンサとしたことを特徴とする請求の範囲 25〜請求の範囲 27のいずれかに記載の センサ付タイヤ。
[30] 上記センサを、当該タイヤの周方向の曲げ歪あるいは幅方向の曲げ歪を計測する センサとしたことを特徴とする請求の範囲 25〜請求の範囲 27のいずれかに記載の センサ付タイヤ。
[31] 上記センサを、当該タイヤの周方向の剪断歪あるいは幅方向の剪断歪を計測する センサとしたことを特徴とする請求の範囲 25〜請求の範囲 27のいずれかに記載の センサ付タイヤ。
[32] 上記周方向または幅方向の歪、歪の変化量、曲げ歪、あるいは、剪断歪を計測す る 2つのセンサ間の距離を、当該タイヤの最大幅の 1Z2以下としたことを特徴とする 請求の範囲 28〜請求の範囲 31のいずれかに記載のセンサ付タイヤ。
[33] 上記センサの検出方向の長さを 20mm以下としたことを特徴とする請求の範囲 28 〜請求の範囲 32のいずれかに記載のセンサ付タイヤ。
[34] 上記センサを、タイヤのゴム部に加硫接着したことを特徴とする請求の範囲 25〜請 求の範囲 33のいずれかに記載のセンサ付タイヤ。 [35] 上記センサを、インナーライナゴムに接着剤により貼り付け、かつ、ゴムまたは榭脂 により被覆したことを特徴とする請求の範囲 25〜請求の範囲 33のいずれかに記載 のセンサ付タイヤ。
[36] 上記センサを電気抵抗値の変化により上記変形量を計測するセンサとしたことを特 徴とする請求の範囲 25〜請求の範囲 35のいずれかに記載のセンサ付タイヤ。
[37] 上記センサを歪ゲージとしたことを特徴とする請求の範囲 36に記載のセンサ付タイ ャ。
[38] 上記センサを導電ゴムとしたことを特徴とする請求の範囲 36に記載のセンサ付タイ ャ。
[39] 上記導電ゴムの無負荷時における体積抵抗を 107〜109Ωπιとしたことを特徴とす る請求の範囲 38に記載のセンサ付タイヤ。
[40] 上記導電ゴムとして、 tan δ < 0. 1である導電ゴムを用いたことを特徴とする請求の 範囲 38または請求の範囲 39に記載のセンサ付タイヤ。
[41] 上記導電ゴムの厚さの上限値を 2mmとしたことを特徴とする請求の範囲 38〜請求 の範囲 40の!、ずれかに記載のセンサ付タイヤ。
[42] 上記導電ゴムの周囲を、上記導電ゴムの 100倍以上の抵抗値を有するゴムにより 被覆したことを特徴とする請求の範囲 38〜請求の範囲 41のいずれかに記載のセン サ付タイヤ。
[43] 上記センサを、発生電荷量または発生電圧の変化により上記変形量を計測するセ ンサとしたことを特徴とする請求の範囲 25〜請求の範囲 35のいずれかに記載のセン サ付タイヤ。
[44] 上記センサを圧電高分子フィルムカゝら構成したことを特徴とする請求の範囲 43に記 載のセンサ付タイヤ。
[45] 上記圧電高分子フィルムを PVDFフィルムとしたことを特徴とする請求の範囲 44に 記載のセンサ付タイヤ。
[46] 上記圧電高分子フィルムの圧電電圧係数を 0. 05VmZN以上としたことを特徴と する請求の範囲 44または請求の範囲 45に記載のセンサ付タイヤ。
[47] 上記圧電高分子フィルムの 120°Cにおける圧電電圧係数の値の 25°Cにおける圧 電電圧係数値に対する低下率を 30%以下としたことを特徴とする請求の範囲 44〜 請求の範囲 46のいずれかに記載のセンサ付タイヤ。
[48] タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーライナ部と の間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けられ、当 該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの車輪 速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タイヤ の変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変化 波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて、タイ ャの接地時間を検出する接地時間検出手段と、上記接地時間と上記車輪速センサ で検出した車輪速度とから接地長の指標をそれぞれ算出する接地長指標算出手段 と、この接地長の指標の平均値を算出する手段と、接地長の指標の平均値と荷重と の関係を示すマップを記憶する記憶手段と、上記算出された接地長の指標の平均 値と上記マップとを用いて、上記タイヤに加わる荷重を推定する荷重推定手段とを備 えたことを特徴とするタイヤの動的状態量推定装置。
[49] タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーライナ部と の間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けられ、当 該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの車輪 速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タイヤ の変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変化 波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて、タイ ャの接地面外変形点間の時間を検出する手段と、上記接地面外変形点間の時間と 上記車輪速センサで検出した車輪速度とから接地面外変形長の指標をそれぞれ算 出する手段と、接地面外変形長の指標の平均値を算出する手段と、接地面外変形 長の指標の平均値と荷重との関係を示すマップを記憶する記憶手段と、上記算出さ れた接地面外変形長の指標の平均値と上記マップとを用いて、上記タイヤに加わる 荷重を推定する荷重推定手段とを備えたことを特徴とするタイヤの動的状態量推定 装置。
[50] タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーライナ部と の間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けられ、当 該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの車輪 速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タイヤ の変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変化 波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて、タイ ャの接地時間を検出する接地時間検出手段と、上記接地時間と上記車輪速センサ で検出した車輪速度とから接地長の指標をそれぞれ算出する接地長指標算出手段 と、上記接地長の指標の比を算出する手段と、接地長の指標の比と横力との関係を 示すマップを記憶した記憶手段と、上記接地長の指標の比と上記マップとを用いて、 上記タイヤに発生する横力を推定する横力推定手段とを備えたことを特徴とするタイ ャの動的状態量推定装置。
[51] タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーライナ部と の間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けられ、当 該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの車輪 速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タイヤ の変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変化 波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて、当 該タイヤの接地面外変形点間の時間を検出し、この検出された接地面外変形点間 の時間に車輪速度を掛け合わせた接地面外変形長の指標を算出する手段と、上記 接地面外変形長の指標の比を算出する手段と、この接地面外変形長の指標の比と 接地長の指標の比とキャンバー角との関係を示すマップ、及び、キャンバー角に応じ て横力を補正するための補正マップを記憶した記憶手段と、上記接地面外変形長の 指標の比と接地長の指標の比と上記各マップとを用いて、上記タイヤに発生する横 力を推定する横力推定手段とを備えたことを特徴とするタイヤの動的状態量推定装 置。
[52] タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーライナ部と の間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けられ、当 該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの車輪 速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タイヤ の変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変化 波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて、タイ ャの接地時間を検出する接地時間検出手段と、上記接地時間と上記車輪速センサ で検出した車輪速度とから接地長の指標をそれぞれ算出する接地長指標算出手段 と、上記接地長の指標の差を算出する手段と、接地長の指標の差と横力との関係を 示すマップを記憶した記憶手段と、上記接地長の指標の差と上記マップとを用いて、 上記タイヤに発生する横力を推定する横力推定手段とを備えたことを特徴とするタイ ャの動的状態量推定装置。
[53] タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーライナ部と の間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けられ、当 該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの車輪 速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タイヤ の変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変化 波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて、タイ ャの接地時間を検出する接地時間検出手段と、上記接地時間と上記車輪速センサ で検出した車輪速度とから接地長の指標をそれぞれ算出する接地長指標算出手段 と、この接地長の指標の平均値を算出する手段と、接地長の指標の平均値と荷重と の関係を示すマップを記憶する記憶手段と、上記算出された接地長の指標の平均 値と上記マップとを用いて、上記タイヤに加わる荷重を推定する荷重推定手段とを備 えるとともに、上記推定された荷重の推定値を、上記請求項 52に記載のタイヤの動 的状態量推定装置により推定した横力により補正する補正手段を備えるように構成し たことを特徴とするタイヤの動的状態量推定装置。
[54] タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーライナ部と の間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けられ、当 該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの車輪 速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タイヤ の変形量の時間変化波形、または、上記変形量を時間積分した積分値の時間変化 波形に基づいて、上記タイヤの接地面外変形点の変形量を検出する手段と、接地面 前後における上記接地面外変形点の変形量の比を算出する手段と、接地面外変形 点の変形量の比と前後力との関係を示すマップを記憶した記憶手段と、上記接地面 外変形点の変形量と上記マップとを用いて、上記タイヤに加わる前後力を推定する 前後力推定手段とを備えたことを特徴とするタイヤの動的状態量推定装置。
[55] タイヤトレッドのインナーライナ部の内面側、もしくは、ベルト部とインナーライナ部と の間の、タイヤ径方向のほぼ同一な断面における少なくとも 2箇所に取付けられ、当 該タイヤの変形量をそれぞれ計測するタイヤ変形量検出手段と、当該タイヤの車輪 速を検出する車輪速センサと、上記タイヤ変形量計測手段で検出された当該タイヤ の変形量の時間変化波形、または、上記変形量を時間微分した微分値の時間変化 波形、または、上記変形量を時間積分した積分値の時間変化波形に基づいて、上 記タイヤの踏み込み側の接地面外変形点と踏み込み側接地端との間の時間を検出 する手段と、上記タイヤの蹴り出し側の接地面外変形点と蹴り出し側接地端との間の 時間を検出する手段と、上記タイヤの踏み込み側の接地面外変形点と踏み込み側 接地端との間の時間と、上記タイヤの蹴り出し側の接地面外変形点と蹴り出し側接地 端との間の時間とに、それぞれ、上記車輪速センサで検出した車輪速度を掛け合わ せて、踏み込み側変形長さと蹴り出し側変形長さとを算出して上記踏み込み側変形 長さと上記蹴り出し側変形長さとの比を演算する手段と、この踏み蹴り長さ比と前後 力との関係を示すマップを記憶した記憶手段と、上記踏み蹴り長さ比と上記マップと を用いて、上記タイヤに加わる前後力を推定する前後力推定手段とを備えたことを特 徴とするタイヤの動的状態量推定装置。
[56] タイヤ内圧を計測する内圧センサ及びタイヤ内温度を計測する温度センサの ヽず れか一方または両方のセンサを設けるとともに、上記タイヤ変形量計測手段で計測さ れた当該タイヤの変形量と上記計測されたタイヤ内圧及びタイヤ内温度のいずれか 一方または両方の計測値とを車体側に送信する通信手段を設けたことを特徴とする 請求の範囲 48〜請求の範囲 55のいずれかに記載のタイヤの動的状態量推定装置
[57] 上記通信手段は、車体側から送信される電波を受信して電源電圧を発生させる手 段を備えたことを特徴とする請求の範囲 56に記載のタイヤの動的状態量推定装置。
[58] タイヤの転動により発電する発電装置を設けたことを特徴とする請求の範囲 56に記 載のタイヤの動的状態量推定装置。
PCT/JP2005/010132 2004-06-02 2005-06-02 タイヤの動的状態量推定方法とその装置、及び、センサ付タイヤ WO2005118317A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/628,299 US7546764B2 (en) 2004-06-02 2005-06-02 Estimation method and apparatus of tire dynamic state amount and tire with sensors
EP05746012.3A EP1757464B1 (en) 2004-06-02 2005-06-02 Method and device for estimating dynamic state quantity of tire, and tire with sensor
CN2005800263114A CN101001763B (zh) 2004-06-02 2005-06-02 轮胎动态状态量估计方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-164546 2004-06-02
JP2004164546A JP4680532B2 (ja) 2004-06-02 2004-06-02 タイヤの動的状態推定方法とその装置

Publications (1)

Publication Number Publication Date
WO2005118317A1 true WO2005118317A1 (ja) 2005-12-15

Family

ID=35462812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010132 WO2005118317A1 (ja) 2004-06-02 2005-06-02 タイヤの動的状態量推定方法とその装置、及び、センサ付タイヤ

Country Status (5)

Country Link
US (1) US7546764B2 (ja)
EP (1) EP1757464B1 (ja)
JP (1) JP4680532B2 (ja)
CN (1) CN101001763B (ja)
WO (1) WO2005118317A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331659A (ja) * 2006-06-16 2007-12-27 Bridgestone Corp タイヤ走行状態の推定方法とその装置、及び、センサ付タイヤ
WO2008059838A1 (fr) * 2006-11-14 2008-05-22 Kabushiki Kaisha Bridgestone Pneu avec capteur et procédé pour mesurer le niveau de distorsion du pneu
WO2008065465A1 (en) * 2006-11-29 2008-06-05 Pirelli Tyre S.P.A. Method for determining at least one parameter representative of at least one interaction along a longitudinal direction between a tyre for vehicles and the ground
WO2012029183A1 (ja) * 2010-09-03 2012-03-08 トヨタ自動車株式会社 車両制御システム及び制御装置
EP2012106A4 (en) * 2006-04-21 2016-04-27 Yokohama Rubber Co Ltd DEFLECTION CALCULATION METHOD FOR TIRE ROLLING TIME, DATA STORAGE METHOD FOR TIRE ROLLING TIME AND METHOD FOR CALCULATING THE BASIC TREATMENT LENGTH AT TIRE ROLLING TIME
JP2019191122A (ja) * 2018-04-27 2019-10-31 株式会社ブリヂストン タイヤ状態検出装置
CN110770051A (zh) * 2017-06-23 2020-02-07 米其林集团总公司 用于评估充气轮胎胎体变形的装置

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003304318A1 (en) * 2003-07-04 2005-01-28 Pirelli Pneumatici S.P.A. Method and system for determining a tyre load during the running of a motor vehicle
US8024087B2 (en) * 2004-09-29 2011-09-20 Pirelli Tyre S.P.A. Method and system for determining a cornering angle of a tyre during the running of a vehicle
JP4170994B2 (ja) * 2004-11-05 2008-10-22 横浜ゴム株式会社 タイヤ接地パターン特定方法及びその装置
WO2006098714A1 (en) * 2005-03-11 2006-09-21 Societe De Technologie Michelin Flex signature for tire condition
JP4816181B2 (ja) * 2006-03-22 2011-11-16 トヨタ自動車株式会社 タイヤ状態処理装置
JP4919693B2 (ja) * 2006-04-28 2012-04-18 株式会社ブリヂストン 車体スリップ角の推定方法
JP4946174B2 (ja) * 2006-05-17 2012-06-06 横浜ゴム株式会社 タイヤの接地長算出方法及びタイヤの接地長算出装置
JP4794368B2 (ja) * 2006-06-16 2011-10-19 株式会社ブリヂストン タイヤ変形量計測装置
US7756620B2 (en) * 2006-11-06 2010-07-13 Gm Global Technology Operations, Inc. Methods, systems, and computer program products for tire slip angle limiting in a steering control system
JP4229965B2 (ja) * 2006-11-14 2009-02-25 横浜ゴム株式会社 ブレーキ制御方法およびブレーキ制御装置
EP2172759B1 (en) * 2007-07-11 2013-11-13 Kabushiki Kaisha Bridgestone Tire wear estimating method
FR2919224B1 (fr) * 2007-07-23 2009-10-09 Michelin Soc Tech Pneumatique pour un vehicule automobile de tourisme.
DE102008035498A1 (de) * 2007-08-31 2009-03-05 Continental Teves Ag & Co. Ohg Reifenmodul mit piezosensitivem Sensor
WO2009070064A1 (en) * 2007-11-30 2009-06-04 Volvo Lastvagnar Ab Method of identifying positions of wheel modules
JP4453755B2 (ja) 2007-12-26 2010-04-21 横浜ゴム株式会社 車輪の姿勢制御方法及び車輪の姿勢制御装置
US8096172B2 (en) * 2008-06-03 2012-01-17 Infineon Technologies Ag Wireless communication apparatuses, systems and methods
JP5012675B2 (ja) 2008-06-04 2012-08-29 横浜ゴム株式会社 タイヤの姿勢制御装置および方法
JP5309763B2 (ja) * 2008-07-29 2013-10-09 横浜ゴム株式会社 タイヤの接地長算出方法および装置
DE102008046269B3 (de) * 2008-09-08 2009-12-24 Continental Automotive Gmbh Verfahren und Meßsystem zur Bestimmung einer Radlast
IT1393072B1 (it) * 2008-10-24 2012-04-11 Pirelli Metodo e sistema per la segnalazione di una condizione di acquaplano di un pneumatico montato su un veicolo
JP2010215178A (ja) * 2009-03-18 2010-09-30 Sumitomo Rubber Ind Ltd タイヤに作用する力の推定方法、及びそれに用いる空気入りタイヤ
JP5560677B2 (ja) * 2009-11-30 2014-07-30 横浜ゴム株式会社 タイヤ横力算出方法および装置、タイヤ剛性パラメータの値の抽出方法および装置、タイヤ特性算出方法および装置、タイヤの設計方法、車両の運動解析方法、および、プログラム
DE102009057580B4 (de) 2009-12-09 2023-06-15 Continental Automotive Technologies GmbH Latsch-Auswerteschaltung für elektromechanischen Wandler eines Reifens
DE102010007008B4 (de) * 2010-02-05 2017-08-10 Huf Hülsbeck & Fürst Gmbh & Co. Kg Verfahren zum Überwachen der Belastung von Fahrzeugreifen
JP5498238B2 (ja) * 2010-04-22 2014-05-21 株式会社ブリヂストン シミュレーション方法及びシミュレーション装置
IT1401990B1 (it) * 2010-09-30 2013-08-28 Pirelli Metodo e sistema per determinare l'attrito potenziale tra un pneumatico per veicoli ed una superficie di rotolamento
JP5542037B2 (ja) * 2010-12-07 2014-07-09 住友ゴム工業株式会社 タイヤに作用する力の推定方法
BR112013014724A2 (pt) 2010-12-23 2016-10-04 Pirelli método e sistema para estimar a carga que atua em um pneu
IT1403280B1 (it) 2010-12-23 2013-10-17 Pirelli Metodo e sistema per stimare la pressione di gonfiaggio di un pneumatico
WO2012091719A1 (en) 2010-12-30 2012-07-05 Michelin Recherche Et Technique, S.A. Piezoelectric based system and method for determining tire load
DE102011003134A1 (de) * 2011-01-25 2012-07-26 Bayerische Motoren Werke Aktiengesellschaft Anordnung einer Reifendruck-Sensoreinheit
US8593273B2 (en) 2011-02-07 2013-11-26 Infineon Technologies Ag Systems and methods for localization of tire pressure monitoring system wheel modules
JP5626117B2 (ja) * 2011-05-23 2014-11-19 横浜ゴム株式会社 空気入りタイヤ
US8718868B2 (en) * 2011-06-30 2014-05-06 GM Global Technology Operations LLC Vehicle using tire temperature to adjust active chassis systems
US8565967B2 (en) 2011-12-21 2013-10-22 Infineon Technologies Ag Acceleration detection and angular position determination systems and methods in tire pressure monitoring systems
WO2013133307A1 (ja) * 2012-03-08 2013-09-12 日産自動車株式会社 タイヤ空気圧モニター装置
WO2013132967A1 (ja) * 2012-03-08 2013-09-12 日産自動車株式会社 タイヤ空気圧モニター装置
JP5421418B2 (ja) * 2012-03-21 2014-02-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤ状態のための撓み特徴解析
US9120356B2 (en) * 2012-06-27 2015-09-01 The Goodyear Tire & Rubber Company Load estimation system and method for a vehicle tire
JP5347054B1 (ja) * 2012-09-03 2013-11-20 株式会社ブリヂストン タイヤケースライフ予測システム
US8661885B1 (en) * 2012-09-11 2014-03-04 The Goodyear Tire & Rubber Company Tire sidewall load estimation system and method
US9358846B2 (en) 2012-10-19 2016-06-07 The Goodyear Tire & Rubber Company Vehicle weight and center of gravity estimation system and method
US8983716B2 (en) * 2012-12-07 2015-03-17 The Goodyear Tire & Rubber Company Tire slip angle estimation system and method
US8844346B1 (en) 2013-03-08 2014-09-30 The Goodyear Tire & Rubber Company Tire load estimation system using road profile adaptive filtering
US9874496B2 (en) 2013-03-12 2018-01-23 The Goodyear Tire & Rubber Company Tire suspension fusion system for estimation of tire deflection and tire load
US9222854B2 (en) 2013-03-12 2015-12-29 The Goodyear Tire & Rubber Company Vehicle dynamic load estimation system and method
US8886395B2 (en) 2013-03-12 2014-11-11 The Goodyear Tire & Rubber Company Dynamic tire slip angle estimation system and method
JP5562464B2 (ja) * 2013-03-25 2014-07-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤ内多素子圧電センサ
US9050864B2 (en) 2013-06-14 2015-06-09 The Goodyear Tire & Rubber Company Tire wear state estimation system and method
US9259976B2 (en) * 2013-08-12 2016-02-16 The Goodyear Tire & Rubber Company Torsional mode tire wear state estimation system and method
US8983749B1 (en) 2013-10-24 2015-03-17 The Goodyear Tire & Rubber Company Road friction estimation system and method
US9290069B2 (en) 2014-02-03 2016-03-22 The Goodyear Tire & Rubber Company Tire innerliner-based parameter estimation system and method
US9751533B2 (en) 2014-04-03 2017-09-05 The Goodyear Tire & Rubber Company Road surface friction and surface type estimation system and method
US9442045B2 (en) 2014-04-03 2016-09-13 The Goodyear Tire & Rubber Company Model-based longitudinal stiffness estimation system and method
US9815343B1 (en) * 2014-06-06 2017-11-14 Iowa State University Research Foundation, Inc. Tire sensing method for enhanced safety and controllability of vehicles
US10048170B2 (en) 2014-10-29 2018-08-14 The Goodyear Tire & Rubber Company Vehicle loading condition detection system and method
US9963132B2 (en) 2014-11-10 2018-05-08 The Goodyear Tire & Rubber Company Tire sensor-based vehicle control system optimization and method
US10245906B2 (en) 2014-11-11 2019-04-02 The Goodyear Tire & Rubber Company Tire wear compensated load estimation system and method
US9739689B2 (en) 2014-11-21 2017-08-22 The Goodyear Tire & Rubber Company Tire cornering stiffness estimation system and method
US9650053B2 (en) 2014-12-03 2017-05-16 The Goodyear Tire & Rubber Company Slip ratio point optimization system and method for vehicle control
US9340211B1 (en) 2014-12-03 2016-05-17 The Goodyear Tire & Rubber Company Intelligent tire-based road friction estimation system and method
US9963146B2 (en) 2014-12-03 2018-05-08 The Goodyear Tire & Rubber Company Tire lift-off propensity predictive system and method
JP6503065B2 (ja) * 2015-06-15 2019-04-17 株式会社ブリヂストン 荷重導出方法
US9995654B2 (en) 2015-07-08 2018-06-12 The Goodyear Tire & Rubber Company Tire and vehicle sensor-based vehicle state estimation system and method
DE102015112136A1 (de) * 2015-07-24 2017-01-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Steuergerät zur Bestimmung einer Temperatur eines Reifens
ITUB20154063A1 (it) * 2015-10-06 2017-04-06 Trelleborg Wheel Sys Italia Spa Procedimento e dispositivo di controllo e regolazione della pressione degli pneumatici.
US9663115B2 (en) * 2015-10-09 2017-05-30 The Goodyear Tire & Rubber Company Method for estimating tire forces from CAN-bus accessible sensor inputs
TWI608946B (zh) * 2015-10-15 2017-12-21 箏風工程有限公司 輪胎運動參數偵測系統
JP6673933B2 (ja) * 2015-11-10 2020-03-25 株式会社ブリヂストン タイヤ管理方法及びタイヤ管理装置
US9840118B2 (en) 2015-12-09 2017-12-12 The Goodyear Tire & Rubber Company Tire sensor-based robust road surface roughness classification system and method
JP2017161477A (ja) * 2016-03-11 2017-09-14 株式会社ブリヂストン タイヤ荷重推定方法及びタイヤ荷重推定装置
US10209054B2 (en) 2016-04-20 2019-02-19 Duke University Non-invasive thickness measurement using capacitance measurement
KR101713238B1 (ko) * 2016-05-16 2017-03-07 넥센타이어 주식회사 타이어 모니터링 장치 및 이를 구비한 차량
CN106441699B (zh) * 2016-08-30 2022-05-17 重庆长安民生物流股份有限公司 一种汽车轮胎气压检测装置
CN106556335B (zh) * 2016-11-15 2019-06-14 北京万集科技股份有限公司 一种轮胎接地尺寸测量方法及系统
EP3379222B1 (en) 2017-03-22 2020-12-30 Methode Electronics Malta Ltd. Magnetoelastic based sensor assembly
EP3603998B1 (en) * 2017-05-23 2022-05-04 Shandong Linglong Tyre Co., Ltd. Intelligent tire
US11491832B2 (en) 2018-02-27 2022-11-08 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
DE18907724T1 (de) 2018-02-27 2021-03-25 Methode Electronics, Inc. Schleppsysteme und Verfahren mit Verwendung von Magnetfeldmessung
US11135882B2 (en) 2018-02-27 2021-10-05 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11014417B2 (en) 2018-02-27 2021-05-25 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11084342B2 (en) 2018-02-27 2021-08-10 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11221262B2 (en) 2018-02-27 2022-01-11 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
DE102018204893A1 (de) * 2018-03-29 2019-10-02 Deere & Company Verfahren zur dynamischen Ermittlung einer Reifenlängskraft
JP7057206B2 (ja) * 2018-05-07 2022-04-19 Toyo Tire株式会社 タイヤ歪検出方法
US10960714B2 (en) 2018-09-26 2021-03-30 The Goodyear Tire & Rubber Company Tire with printed shear sensors
US11298991B2 (en) 2018-11-28 2022-04-12 The Goodyear Tire & Rubber Company Tire load estimation system and method
EP3898287B1 (fr) * 2018-12-21 2023-02-08 Compagnie Generale Des Etablissements Michelin Procédé d'obtention de la deformation d'un pneumatique sous charge en roulage
WO2020154428A1 (en) * 2019-01-22 2020-07-30 American Tire Distributors, Inc. Tire health monitoring systems and methods thereto
WO2021070410A1 (ja) * 2019-10-08 2021-04-15 株式会社エー・アンド・デイ タイヤ試験装置
JP7460378B2 (ja) * 2020-01-29 2024-04-02 横浜ゴム株式会社 摩耗状態検知装置
KR102352446B1 (ko) * 2020-02-17 2022-01-19 한국타이어앤테크놀로지 주식회사 타이어 이상 감지 장치 및 이의 감지 방법
FI20205403A1 (en) * 2020-04-22 2021-10-23 Teknologian Tutkimuskeskus Vtt Oy Items comprising elastomeric material
CN112078311B (zh) * 2020-08-25 2022-09-27 江苏理工学院 一种基于激光雷达的智能轮胎结构及分析方法
CN112498019B (zh) * 2020-11-24 2022-11-18 广西路桥工程集团有限公司 一种利用胎压检测车辆载重量的检测系统及检测方法
CN112622536B (zh) * 2020-12-25 2023-10-31 中国农业大学 车辆轮胎工作状态监测传感装置及方法
CN113515807B (zh) * 2021-04-21 2024-01-30 灵耘智能科技(上海)有限公司 车轮垂向力检测方法、装置、电子设备及存储介质
JP2024514773A (ja) * 2021-04-28 2024-04-03 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー 半径方向加速度信号からタイヤ接触長を識別するためのシステム及び方法
CN113848068B (zh) * 2021-09-10 2023-07-11 东风汽车集团股份有限公司 一种车辆跑偏测量方法及装置
WO2023199287A1 (en) * 2022-04-14 2023-10-19 Mesomat Inc. System and method for monitoring tires

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188113A (ja) * 1995-12-29 1997-07-22 Michelin Rech & Technique Sa タイヤのモニタリングシステムおよび方法
JP2003065871A (ja) * 2001-08-29 2003-03-05 Nissan Motor Co Ltd 車輪タイヤの接地長検出装置
US6539295B1 (en) 2002-01-18 2003-03-25 Ford Global Technologies, Inc. Vehicle tire monitoring system with multiple sensors
JP2004317443A (ja) * 2003-04-18 2004-11-11 Toyota Motor Corp 車輪荷重推定装置
JP2004359203A (ja) * 2003-06-09 2004-12-24 Toyota Motor Corp 車両状態監視装置および接地面状態量取得装置
JP2005088832A (ja) * 2003-09-19 2005-04-07 Yokohama Rubber Co Ltd:The タイヤのパラメータ導出方法、タイヤのコーナリング特性算出方法、タイヤの設計方法、車両の運動解析方法およびプログラム
JP2005164337A (ja) * 2003-12-01 2005-06-23 Toyota Motor Corp タイヤ状態推定装置
JP2005170222A (ja) * 2003-12-10 2005-06-30 Toyota Motor Corp 車輪情報処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097723A (en) * 1971-06-09 1978-06-27 Leitner Frank W Thermal systems incorporating apparatus and methods for simulating time related temperatures
US5670872A (en) * 1992-06-22 1997-09-23 U.S. Philips Corporation System and device with vertical and rotary wheel-velocity-measuring for determining vehicle displacement
CN1134369A (zh) * 1996-03-12 1996-10-30 洪新国 多功能汽车警报器
BR0016572A (pt) * 1999-12-22 2002-10-01 Pirelli Sistema e método para monitorar as deformações de um pneu em movimento aplicado sobre um aro associado com um veìculo
US6550320B1 (en) * 2000-05-31 2003-04-22 Continental Ag System and method for predicting tire forces using tire deformation sensors
WO2005016670A1 (ja) 2003-08-19 2005-02-24 Kabushiki Kaisha Bridgestone センサ内蔵タイヤ及びタイヤ状態推定方法
DE10352539B4 (de) * 2003-11-11 2007-04-12 Siemens Ag System zum Überwachen eines luftbereiften Fahrzeugs, Signalauswerteverfahren sowie Fahrzeugreifen
DE102004001250B4 (de) * 2004-01-07 2005-11-24 Siemens Ag Vorrichtung und Verfahren zur Ermittlung der Seitenposition von Rädern

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188113A (ja) * 1995-12-29 1997-07-22 Michelin Rech & Technique Sa タイヤのモニタリングシステムおよび方法
JP2003065871A (ja) * 2001-08-29 2003-03-05 Nissan Motor Co Ltd 車輪タイヤの接地長検出装置
US6539295B1 (en) 2002-01-18 2003-03-25 Ford Global Technologies, Inc. Vehicle tire monitoring system with multiple sensors
JP2004317443A (ja) * 2003-04-18 2004-11-11 Toyota Motor Corp 車輪荷重推定装置
JP2004359203A (ja) * 2003-06-09 2004-12-24 Toyota Motor Corp 車両状態監視装置および接地面状態量取得装置
JP2005088832A (ja) * 2003-09-19 2005-04-07 Yokohama Rubber Co Ltd:The タイヤのパラメータ導出方法、タイヤのコーナリング特性算出方法、タイヤの設計方法、車両の運動解析方法およびプログラム
JP2005164337A (ja) * 2003-12-01 2005-06-23 Toyota Motor Corp タイヤ状態推定装置
JP2005170222A (ja) * 2003-12-10 2005-06-30 Toyota Motor Corp 車輪情報処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1757464A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012106A4 (en) * 2006-04-21 2016-04-27 Yokohama Rubber Co Ltd DEFLECTION CALCULATION METHOD FOR TIRE ROLLING TIME, DATA STORAGE METHOD FOR TIRE ROLLING TIME AND METHOD FOR CALCULATING THE BASIC TREATMENT LENGTH AT TIRE ROLLING TIME
JP2007331659A (ja) * 2006-06-16 2007-12-27 Bridgestone Corp タイヤ走行状態の推定方法とその装置、及び、センサ付タイヤ
WO2008059838A1 (fr) * 2006-11-14 2008-05-22 Kabushiki Kaisha Bridgestone Pneu avec capteur et procédé pour mesurer le niveau de distorsion du pneu
US8051705B2 (en) 2006-11-14 2011-11-08 Kabushiki Kaisha Bridgestone Tire equipped with a sensor and a method of measuring strain amount of the tire
WO2008065465A1 (en) * 2006-11-29 2008-06-05 Pirelli Tyre S.P.A. Method for determining at least one parameter representative of at least one interaction along a longitudinal direction between a tyre for vehicles and the ground
US8296080B2 (en) 2006-11-29 2012-10-23 Pirelli Tyre S.P.A. Method for determining at least one parameter representative of at least one interaction along a longitudinal direction between a tyre for vehicle and the ground
WO2012029183A1 (ja) * 2010-09-03 2012-03-08 トヨタ自動車株式会社 車両制御システム及び制御装置
CN110770051A (zh) * 2017-06-23 2020-02-07 米其林集团总公司 用于评估充气轮胎胎体变形的装置
JP2019191122A (ja) * 2018-04-27 2019-10-31 株式会社ブリヂストン タイヤ状態検出装置
WO2019207835A1 (ja) * 2018-04-27 2019-10-31 株式会社ブリヂストン タイヤ状態検出装置
AU2018421149B2 (en) * 2018-04-27 2022-04-21 Bridgestone Corporation Tire state detection device
US11415485B2 (en) 2018-04-27 2022-08-16 Bridgestone Corporation Tire state detection device for detecting a state of a tire of a mine transportation vehicle

Also Published As

Publication number Publication date
JP4680532B2 (ja) 2011-05-11
CN101001763B (zh) 2013-03-27
US20070240502A1 (en) 2007-10-18
EP1757464A4 (en) 2009-01-21
EP1757464A1 (en) 2007-02-28
CN101001763A (zh) 2007-07-18
US7546764B2 (en) 2009-06-16
EP1757464B1 (en) 2015-12-30
JP2005343281A (ja) 2005-12-15

Similar Documents

Publication Publication Date Title
WO2005118317A1 (ja) タイヤの動的状態量推定方法とその装置、及び、センサ付タイヤ
JP5121445B2 (ja) タイヤスリップ角の推定方法
EP3378679B1 (en) Model based tire wear estimation system and method
JPWO2005016670A1 (ja) センサ内蔵タイヤ及びタイヤ状態推定方法
JP2007331659A (ja) タイヤ走行状態の推定方法とその装置、及び、センサ付タイヤ
JP4472363B2 (ja) タイヤ状態推定方法
US11945266B2 (en) Tire load estimation
EP2039540B1 (en) Method for determining the behaviour of a tyre in motion
US8371159B2 (en) Method for estimating the wear of a tire
CN110431026A (zh) 用于确定轮胎花纹的花纹深度的方法、控制装置和系统
US20210394562A1 (en) Model based tire wear estimation system and method
JP5183114B2 (ja) タイヤ摩耗推定方法及びタイヤ摩耗推定装置
US20220080779A1 (en) Tire deterioration inferring device and tire deterioration inferring method
EP3501924B1 (en) Wheel load estimation device
JP2014532170A (ja) 車両ホイールの転がり抵抗を推定する方法
JP4358035B2 (ja) 路面摩擦係数の推定方法とその装置
JP2004317443A (ja) 車輪荷重推定装置
US20040111198A1 (en) Underinflation detector
JP2016217065A (ja) 路面粗さの計測装置
JP2007296974A (ja) タイヤスリップ角の推定方法とその装置、及び、車体スリップ角の推定方法とその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005746012

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11628299

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580026311.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005746012

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628299

Country of ref document: US