WO2005111049A1 - アルキルスズアルコキシド類の製造方法 - Google Patents

アルキルスズアルコキシド類の製造方法 Download PDF

Info

Publication number
WO2005111049A1
WO2005111049A1 PCT/JP2005/009032 JP2005009032W WO2005111049A1 WO 2005111049 A1 WO2005111049 A1 WO 2005111049A1 JP 2005009032 W JP2005009032 W JP 2005009032W WO 2005111049 A1 WO2005111049 A1 WO 2005111049A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
line
isomer
starting material
reaction
Prior art date
Application number
PCT/JP2005/009032
Other languages
English (en)
French (fr)
Inventor
Nobuhisa Miyake
Kazuhiro Onishi
Budianto Bijanto
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to ES05741483.1T priority Critical patent/ES2451495T3/es
Priority to US11/596,885 priority patent/US7541482B2/en
Priority to EP05741483.1A priority patent/EP1760085B1/en
Priority to JP2006513613A priority patent/JP4257798B2/ja
Priority to BRPI0511251-6A priority patent/BRPI0511251B1/pt
Priority to CN2005800224660A priority patent/CN1997654B/zh
Priority to CA2566880A priority patent/CA2566880C/en
Publication of WO2005111049A1 publication Critical patent/WO2005111049A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/04Preparation of esters of carbonic or haloformic acids from carbon dioxide or inorganic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2224Compounds having one or more tin-oxygen linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/42Tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule

Definitions

  • the present invention relates to a method for producing an alkyltin alkoxide, a method for producing a carbonate ester and an isocyanate, and a method for producing the same, using the dialkyltin alkoxide obtained by the method as a catalyst. It relates to the obtained carbonate and isocyanate.
  • Alkyl tin alkoxides are extremely useful as ester synthesis catalysts, transesterification catalysts, silicon polymer and urethane curing catalysts, and the like.
  • Conventional methods for producing alkyltin alkoxides include a method using a dialkyltin dichlorotin as a raw material (for example, see Patent Document 1) and a method using a dialkyltin oxide as a raw material (for example, see Patent Document 2).
  • the former method using dialkyldichlorotin as a raw material uses an expensive metal alcoholate as an auxiliary raw material as shown in the following formula (S), and has a molar concentration twice that of the obtained dialkyltin alkoxide. Because of the production of metal salts, there is also a problem of waste and the like, and there is a problem as an industrial production method from the viewpoint of cost and waste.
  • the reaction is carried out in benzene or toluene at a force of 80 and a force of 110, the formed water is removed by azeotropic distillation, and 1,1,3,3, -tetrabutyl-1,3-di- Alkoxy-dis The tanoxane is obtained, and in the second stage, the distant oxane is disproportionated at a temperature of 180 ° C to 220 ° C to obtain a diptide / resuzu dialkoxide by distillation.
  • This method is excellent in that V ⁇ does not generate waste, but in the second stage disproportionation reaction, high boiling dialkyltin alkoxide must be distilled under high temperature conditions, and energy It consumes a lot of water and has problems for industrial production, and its productivity is low.
  • This method is superior to the above-mentioned method in that high-boiling dialkyltin dialkoxides do not need to be heated and distilled.However, since the reaction is performed at the boiling point of the alcohol of the reactant, carbon dioxide is used. If the number of alcohols is short, the reaction is slow, and if the number of carbon atoms is long, the reaction is slow even with alcohol, and the productivity is not high.
  • Patent Document 1 US-2700675
  • Patent Document 2 US-5545600
  • Patent Document 3 NL— 6612421
  • Non-Patent Document 1 Industrial Chemistry Journal 72, 7 (1969), 1543
  • alkyltin alkoxides in order to increase productivity, expensive raw materials must be used, and alkyltin alkoxides can be produced by a simple method. There is a demand for a method of producing the material with high efficiency.
  • An object of the present invention is to provide a method for industrially producing an alkyltin alkoxide, and further a method for continuously producing an alkyltin alkoxide.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that The starting material selected from the group of organotin compounds having a small bond and the hydroxy compound as a reactant are continuously supplied to the reactor, and the low-boiling components generated by the reaction are continuously removed from the reactor.
  • the present inventors have found that it is possible to continuously remove a reaction solution containing alkyltin alkoxides corresponding to a starting material and a reactant as a reactor bottom component, and have completed the present invention.
  • the present invention is as follows.
  • At least one alkyltin compound selected from the group of organotin compounds having a tin-oxygen-suzu bond as a starting material and a hydroxy compound as a reactant are subjected to a dehydration reaction to correspond to the starting material and the reactant.
  • a method for producing alkyltin alkoxides including obtaining alkyltin alkoxides to be added! First, the starting material and the reactant are continuously supplied to the reactor, low-boiling components including water are taken out from the reactor, and the reaction liquid such as alkyltin alkoxide is continuously taken out as the bottom component of the reactor. The method described above.
  • the at least one alkyltin compound as a starting material is a tetraalkyldialkoxy-1,3-distannoxane and a dialkyltin oxide generally present as a polymer via a Z or tin-oxygen-tin bond.
  • R 1 R 2, R 4 , ⁇ Hi are each an alkyl group, an Ararukiru group or Ariru group, may be the same or different from each.
  • R 3, R 6 are each A and b are integers from 0 to 2, a + b is 2, c and d are integers from 0 to 2, and c + d is 2 Is.
  • dialkyl tin oxide is a polymer of a dialkyl tin oxide represented by the following chemical formula (2).
  • R ′ and tm 8 are an alkyl group, an aralkyl group or an aryl group, respectively.
  • e and f are integers from 0 to 2, and e + f is 2.
  • the starting materials are a monomer, a dimer, and an aggregate of the same type of monomer, respectively. Or the aggregate of different types of monomers), a multimer, or a polymer.
  • R 9 is a monobutyl group, a 2-methylpropyl group, a linear or branched alkyl group having 5 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, a linear or branched
  • the reactor has a line for supplying the starting material and the reactant, or a line for supplying a mixture of the starting material and the reactant, and a low-boiling reaction mixture containing water.
  • the line for extracting the low boiling reaction mixture containing water is located at a position for extracting the gas phase component, and the line for extracting the high boiling reaction mixture is located at a position below for extracting the liquid phase component. 9].
  • the reactor includes a stirring tank, a multi-stage stirring tank, a distillation tower, a multi-stage distillation tower, a continuous multi-stage distillation tower, a packed tower, a thin-film evaporator, a reactor having a support therein, a forced circulation reactor,
  • the above-mentioned [type] including any of a film evaporator, a dropping evaporator, a trickle phase reactor, and a bubble column
  • the relations A and B in the above formula (4) depend on the kind of the alkyltin compound as the starting material, and are coefficients determined by determining the reference material.
  • the starting material contains an alkyltin compound represented by the chemical formula (1)
  • the above A and B are each an alkyltin compound represented by the chemical formula (1) contained in the starting material, and the alkyltin compound is also arbitrarily selected.
  • A represents a frequency factor and an activation energy of the thermal decomposition reaction of the reference material, and A and B obtained by the following formula (5), and the starting material is represented by the chemical formula (1).
  • k is the first-order rate constant [— 1 ]
  • A is the frequency factor [hr- 1 ]
  • B is the activation energy [j-mol _1 ]
  • the above “k” represents a first-order rate constant of the thermal decomposition reaction, and is obtained by the following equation (6).
  • R 1G, R u, R 13, and R 14 corresponds to one of R 7 or R 8 of the starting material
  • g, h, i, ⁇ Pi j is either e or f of the starting material
  • at least one of R 12 and R 15 corresponds to the reactant R 9.
  • a feature of the present invention is that a starting material containing a dialkyl tin oxide and / or a tetraalkyl monodialkoxy distant oxane is reacted with a hydroxy compound as a reactant
  • a low-boiling component containing water from the reactor to obtain a reaction solution containing alkyltin alkoxides corresponding to the starting material and the reactant as the bottom component of the reactor. is there.
  • the present inventors have estimated that the reaction of forming a dialkyltin alkoxide from a dialkyltin oxide and an alcohol is based on the equilibrium reaction of the following formulas (13) and (14).
  • a starting material selected from the group consisting of dialkyl sulphoxide, tetraalkyl-dialkoxy-distannoxane, and a mixture thereof, reacts with a hydroxy compound as a reactant.
  • the low-boiling components are continuously supplied to the reactor, the low-boiling components are removed from the reactor, and the reaction solution containing alkyltin alkoxides corresponding to the starting material and the reactants is continuously obtained as the bottom component of the reactor.
  • the reaction time is short and the productivity is extremely high as compared with the method, and more surprisingly, the by-product of the above-mentioned triptyltin compound is also suppressed.
  • the present inventors have conceived that the production rate of the conventional patch-type alkyltin alkoxide is greatly limited by the removal rate of the formed water.
  • the starting material is a composition comprising dialkyl stanoxides and / or tetraalkyl-dialkoxy-distanoxanes, which is a tetraalkyl-dialkoxy-distane oxide. It may be only xane, or may contain any amount of dialkyl sulphoxide, which is a precursor of tetraalkyl-dialkoxy-distanoxane.
  • the reaction for obtaining a tetraalkyldialkoxy-distannoxane from a dialkyltin oxide shown in the formula (13) and the reaction for obtaining a dialkyltin dialkoxide from a tetraalkyldialkoxy-distanoxane shown in the formula (14) are the same. Since it is a dehydration reaction, a dialkyltin alkoxide can be obtained even with a starting material containing an arbitrary amount of a dialkyltin oxide.
  • the tetraalkyl-dialkoxy-distanoxane used in the present invention is a tetraalkyldialkoxy-distanoxane represented by the following formula (1), which has a structural formula represented by the following formula (1). It does not work even if it is a body, aggregate, multimer, or polymer.
  • R 3 and R 6 are an alkyl group and an aralkyl group, respectively.
  • a and b are integers from 0 to 2; a + b is 2; c and d are integers with 0 force; and c + d is 2.
  • R 1 R 2 , R 4 , and 5 of the tetraalkyl-dialkoxy-distannoxane of the formula (1) include methyl, ethyl, propyl, butyl (each isomer), pentyl (each 14)), hexyl (each isomer), heptyl (each isomer)., Octyl (each isomer), Noel (each isomer), decyl (each isomer), pendecyl (each isomer), Aliphatic hydrocarbon groups having 1 to 12 carbon atoms, such as dodecyl (each isomer), 2-butenyl, cyclobutyryl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentinole, cyclopentajeel, cyclohexenyl, etc.
  • An alkyl group having 5 to 12 carbon atoms such as a cycloalkyl group, an aralkyl group having 7 to 20 carbon atoms such as benzyl and phenylethyl, and a carbon atom having 6 to 20 carbon atoms such as phenyl, tolyl and naphthyl.
  • And may contain an ether bond, or may contain all or all of the hydrogens of the hydrocarbon group such as nonafluorobutyl and heptafluorobutyl (each isomer).
  • a halogenated hydrocarbon group partially substituted with a halogen atom may be used, but is not limited thereto.
  • RR 2 and RR 5 in the equation (1) may be the same, or may be different depending on the case.
  • R 3 and R 6 each represent a linear or branched C 1 to C 12 alkyl group, a C 5 to C 12 cycloalkyl group, a linear or branched C 2 to C 12 alkenyl group, Unsubstituted or substituted carbon atoms having 6 to 19 carbon atoms and alkyl-containing carbons selected from the group consisting of linear or branched alkyl having 1 to 14 carbon atoms and cycloalkyl having 5 to 14 carbon atoms.
  • Examples of the tetraalkyldialkoxy-1-distanoxane represented by the formula (1) include 1,1,3,3-tetramethyl-1,3-di ( ⁇ -butoxy) -distanoxane, 1,1,3,3-tetramethyl-1 1,3-Bis (2-methylpropyloxy) -distanoxane, 1,1,3,3-tetramethyl-1,3-dipentyloxy-distanoxane (each isomer), 1,1,3,3-tetramethyl-1 1,3-di-hexyloxy-distanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-di-heptyloxy-distanoxane (each isomer)
  • R 7 and R 8 are each an anoalkyl group, an aralkyl group or an aryl group, and may be the same or different.
  • E and f are integers from 0 to 2; , E + f is 2.
  • R 16 and R 17 have the same definitions as R 7 and R, respectively, and k and 1 have the same definitions as e and F above.
  • N represents an integer of 2 or more.
  • the terminal structure is unknown. So it is omitted.
  • R 7 and R 8 of the dialkyl tin oxide of formula (2) include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer) Isomer), heptyl (each isomer), octyl (each isomer), nonyl (each isomer), decyl (each isomer), undecyl (each isomer), dodecyl (each isomer), 2-butyr
  • An alkyl group which is an aliphatic hydrocarbon group having 1 to 12 carbon atoms, such as cyclobutyl, cyclobutyl, cycl
  • halogenated hydrocarbon group in which all or part of the hydrogen of a hydrocarbon group is substituted with a halogen atom, such as nonaph / leolobutyl, heptafluoreptyl (each isomer), etc. ! / Is not limited to these.
  • a halogen atom such as nonaph / leolobutyl, heptafluoreptyl (each isomer), etc. ! / Is not limited to these.
  • it is a lower alkyl group, more preferably, a linear or branched alkyl group having 1 to 8 carbon atoms. Although those having more than the above number of carbon atoms can be used, they may reduce the flowability or impair productivity.
  • dialkyl tin oxides examples include dimethyl tin oxide, getyl tin oxide, dipropyl tin oxide (each isomer), dibutyl tin oxide (each isomer), and dipentyl oxide (each isomer).
  • Dihexyltin oxide (each isomer), diheptyltin oxide (each isomer), dialkyltin oxide such as dioctyltin oxide, dicyclohexyltin oxide, and diaralkylic acid such as ditolyl tin oxide and diphenylethyl citrate
  • dialkyltin oxide such as dioctyltin oxide, dicyclohexyltin oxide, and diaralkylic acid such as ditolyl tin oxide and diphenylethyl citrate
  • diaryltin oxides such as tin oxide, tin diphenyl acid, bis (2,6-dimethylmonophenyl) tin oxide, and dinaphthyl tin oxide.
  • the force may be selected alone from the above groups, or may be a mixture selected from the above groups.
  • a tetraalkyldialkoxy-distanoxane represented by the formula (1) and a dialkyl sulphoxide represented by the formula (2) are associated with each other, or may be polymerized. It may be in a state.
  • the tetraalkyldialkoxy-distanoxane represented by the formula (1) can be used that is produced by a known method.
  • the dialkyl sulphoxide and the reactant represented by the formula (3) It can also be produced as a compound.
  • the reactant used in the present invention is a hydroxy compound, and preferably is a 7-re 3-nore represented by the following formula (3).
  • R 9 is n-butyl group, 2-methylpropyl group, linear or branched alkyl group having 5 to 12 carbon atoms, cycloalkyl group having 5 to 12 carbon atoms, linear or branched Alkenyl group having 2 to 12 carbon atoms, unsubstituted or substituted aryl having 6 to 19 carbon atoms, and linear or branched alkyl having 1 to 14 carbon atoms and cycloalkyl having 5 to 14 carbon atoms Represents an aralkyl group having 7 to 20 carbon atoms including alkyl selected from the group consisting of
  • hydroxy compounds include 1-ptanol, 2-methyl-11-propanol, 2-methynole 2-propanol, cycloptanol, 1-pentanol, 2-pentanol (each isomer) ), 3-pentanol, 3-methyl-1-butanol, 2-methyl-1butanol, 2_methyl-12-butanol (each isomer), 2-methyl-2-butanol (each isomer), 3-methyl 1-butanol (each isomer), cyclopentanol, 2-methyl-1-cyclobutanol (each isomer), 3-methyl-1-cyclobutanol (each isomer), 1-methyl-1-cyclobutanol (each isomer) Isomer), cyclobutyl methanol (each isomer), 1-hexanol, 2-hexanol (each isomer), 3-hexanol (each isomer),
  • Dodecanol (each isomer), propyl alcohol, butenyl alcohol (each isomer), pentenyl alcohol (each isomer), cyclopentenol (each isomer), cyclopentagenyl alcohol, hexenol (each isomer) ), Cyclohexenol (each isomer), etc., aliphatic alcohols having 1 to 12 carbon atoms, alicyclic alcohols having 5 to 12 carbon atoms, aralkyl alcohols such as benzyl alcohol and phenylethyl alcohol.
  • the alkyl alcohol and the aralkyl alcohol having a boiling point at normal pressure higher than that of water, wherein the carbon to which the hydroxy group is bonded are 1 CH 2 — ⁇ H.
  • Most preferred alcohols are 1-butanol, 2-methyl-11-propanol, alkyl alcohols having 5 to 8 carbon atoms. These hydroxy compounds may be used alone or may be a mixture selected from the above group.
  • organometallic compounds and inorganic metal compounds may be added, and a solvent may be added for use.
  • the dialkyltin alkoxide produced in the present invention is a dialkyltin alkoxide obtained by reacting the above-mentioned starting material with a reactant.
  • the dialkyltin alkoxide produced in the present invention is a tetraalkyldialkoxy-distanoxane having a structural formula represented by the following formula (22) and a dialkyltin dialkoxide having a structural formula represented by the following formula (16). These may be monomers, aggregates, multimers or polymers.
  • R 22, R 23, R 25 , R z R 18, R 1 each ⁇ Hi 19 starting material, R 2, RR 5, R or R 8 R M , R 27 , R 2 °, and R 21 are each selected from R 3 , R 6 , and R 9 corresponding to the starting material and the reactant (provided that R 24 and R 27 At least one is R 9 )
  • q, r, s, t, m, n depend on the starting material and are integers from 0 to 2, where q + r is 2, s + t is 2, m + n is 2.
  • o and p are integers from 0 to 2, and o + p is 2.
  • the dialkyltin dialkoxide represented by the above formula (16) is a dialkyltin dialkoxide obtained with a starting material, a reactant, and a force.
  • R 18 and R 19 of the dialkyl tin oxide of the formula (16) in the case of a reactant of the compound of the formula (1) and / or the compound of the formula (2), / or f R 1 R 2 shown in formula (2), R 4, R 5, R 7, or corresponds to one of R 8, R 2 ° ⁇ Hi 21, formula (1) and / or formula ( 3) corresponding to any of R 3 , R 6 , or R 9 (at least one of R 2 ° and 21 ) One is R 9 ).
  • dialkyltin dialkoxides examples include dimethino-l- (n-butoxy) -tin, dimethyl-bis (2-methyl-propyloxy) -tin, dimethyl-dipentyloxases (each isomer), and dimethyldialkoxide.
  • a method for analyzing the alkyltin alkoxides represented by the formulas (1), (7), (22) and (16) a method based on 119 Sn-NMR and the like can be used.
  • This method is a known method for analyzing alkyl tin alkoxide (for example, US Pat. No. 5,545,600).
  • the shift value of 119 Sn—NMR of the dialkyltin dialkoxide structure represented by the formula (16) depends on the concentration of the organometallic compound of the formula (16) in the sample and the presence of alcohol. Therefore, it is preferable to use 1 H-NMR and 13 C-NMR in combination.
  • Table 1 shows the 119 Sn-NMR shift values corresponding to the structure of the alkyltin alkoxide of formula (16) synthesized using 2-ethyl-11-hexanol as the reactant and dibutyltin oxide as the starting material. Shown in
  • the shift value ( ⁇ ) is the value for tetramethyltin (SnMe4)
  • the concentration is the weight concentration (wt%) in the double-mouthed form (CDC13).
  • the present invention is selected from the group consisting of a tetraalkyldialkoxy-distanoxane represented by the chemical formula (1), a dialkyltin oxide represented by the chemical formula (2), and a mixture, an association, or a polymer thereof.
  • the starting material and the hydroxy compound, which is the reactant represented by the chemical formula (3), are subjected to a dehydration reaction, and the starting material and the reactant are represented by the chemical formula (22) and / or the chemical formula (16).
  • the method for producing alkyl tin alkoxides including obtaining alkoxides, the starting materials and the reactants are continuously supplied to the reactor, and the water containing water is supplied from the reactor.
  • the above method is characterized in that a boiling point component is taken out and a reaction solution containing an alkyltin alkoxide represented by the chemical formula (22) and / or (16) as a bottom component of the reactor is continuously taken out.
  • the starting materials and the reactants to be supplied to the reactor may be separately supplied to the reactor, or may be mixed before supplying to the reactor.
  • the starting material When the starting material is a solid, the starting material may be supplied in the form of a liquid by heating, or may be supplied in the form of a liquid or slurry using the reactant and Z or a solvent.
  • the starting materials and reactants may be supplied continuously or intermittently, respectively.
  • a dehydration reaction is carried out from a starting material and a reactant according to the above formulas (17) and Z or the above formula (18) to remove low-boiling components including water from the reactor, and to remove tetrahydrofuran from the bottom of the reactor.
  • Alkyl-dialkoxy-distanoxane and / or dialkyltindialkoxide can be obtained continuously.
  • the type of the reactor for the dehydration reaction is not particularly limited, and a known tank-shaped or tower-shaped reactor can be used.
  • the low-boiling reaction mixture containing water is removed from the reactor by distillation in a gaseous state, and the high-boiling reaction mixture containing the produced alkyltin alkoxide or the mixture of alkyltin alkoxides can be withdrawn in liquid form from the lower part of the reactor.
  • Examples of such a reactor include a stirring tank, a multi-stage stirring tank, a distillation tower, a multi-stage distillation tower, a multi-tube reactor, a continuous multi-stage distillation tower, a packed tower, a thin-film evaporator, and a reactor having a support inside.
  • Various known methods such as a method using a reactor including any of a forced circulation reactor, a falling film evaporator, an evaporator, a trickle phase reactor, a bubble column, and a combination thereof are used.
  • a method using a tower-shaped reactor is preferable, and a structure having a large gas-liquid contact area capable of promptly moving water to be formed into a gas phase is preferable.
  • a continuous method using a multitubular reactor, a multistage distillation column, or a packed column packed with a packing material is particularly preferred.
  • a multistage distillation column is a distillation column having two or more theoretical stages of distillation, and may be any column as long as continuous distillation is possible! / ⁇ .
  • Examples of such multi-stage distillation towers include a tray tower system using trays such as a foam tray, a perforated tray, a parve tray, a countercurrent tray, a Raschig ring, a lessing ring, a pole ring, a Berl saddle, an interleave, and the like. It is possible to use anything that is usually used as a multi-stage distillation column, such as a packed tower system packed with various packing materials such as Rox saddle, Dickson packing, McMahon packing, Helipack, Sulza packing, Merapak etc. it can .
  • any packed tower in which the above-mentioned known packing material is packed can be used.
  • the filler may have dehydration performance.
  • a filler such as molecular sieve can be preferably used.
  • a tray-packed mixing column system having a tray portion and a portion filled with the packing material is also preferably used.
  • the reactor has a respective line for supplying the starting material and the reactant or a line for supplying a mixture of the starting material and the reactant, and a line for extracting a low boiling reaction mixture containing water.
  • a line for extracting the high-boiling-point reaction mixture, and a line for extracting the low-boiling-point reaction mixture containing water is used to remove gas-phase components in the reactor. It is particularly preferable that the line is located at a position where the mixture can be extracted and the line for extracting the boiling point reaction mixture is below.
  • the high-boiling reaction mixture containing the produced alkyltin alkoxide is withdrawn from the bottom of the reactor in a liquid state, while the resulting low-boiling reaction mixture containing water is continuously distilled off from the reactor in gaseous form by distillation. By extracting, an alkyltin alkoxide is produced.
  • a line for supplying an inert gas and / or a gaseous and Z or liquid reactant from below the reactor may be separately provided, and part or all of the generated high-boiling reaction mixture may be re-used.
  • a line may be installed to circulate in the K reactor.
  • the low-boiling reaction mixture containing water extracted from the reactor may be purified by a known method such as a distillation column, and the azeotrope and Z or entrained reactants may be recycled.
  • they may be in the form of slurry, solid at room temperature (20 ° C), or have a high viscosity.Therefore, each line must be considered for clogging, etc. Power on the equipment!]
  • one reactor satisfying the conditions of the present invention may be used, or two or more reactors may be used in combination. It is also possible to produce an alkyltin alkoxide by combining a reactor satisfying the conditions of the present invention with another reactor. For example, a method of producing only a part of an alkyltin alkoxide from a dialkyl sulphoxide and an alcohol by a batch reaction and reacting the reaction solution in a reactor satisfying the conditions of the present invention is described in the present invention. Part of an embodiment of the invention.
  • FIG. 2 is a cross-sectional view of the tower-type reactor as viewed from the front.
  • the tower reactor may be a packed tower packed with a packing material, a multi-stage distillation tower, or any other tower reactor.
  • a packed tower packed with a filler will be described.
  • the mixture of the starting material and the reactant is introduced into the reactor 1 from the supply line 4 or the starting material is supplied from the supply line 4 and the reactant is introduced into the reactor 1 from the supply line 8.
  • Inert gas is introduced from gas supply line 7.
  • the starting materials and reactants introduced are dispersed inside the reactor. The water evaporates while the mixture flows downward along the filler and the like inside the reactor.
  • the interior of the reactor is controlled to a reduced pressure, normal pressure, and pressurized state, and contains an inert gas and Z or a gas containing a reactant gas and water formed by the reaction, which are supplied from the gas supply line 7 as needed. Boiling components and the like are withdrawn from the upper part 2 of the reactor and discharged from the vent line 5.
  • the reaction solution in which the concentration of the product alkyltin alkoxide is increased inside the reactor is withdrawn from the lower part 3 of the reactor and discharged from the line 6. If necessary, the packed tower and each line are heated and cooled by a known method such as a jacket or a heater.
  • FIG. 3 is a cross-sectional view of a reactor, which is a combination of a tank reactor and a tower reactor, as viewed from the front.
  • the tank reactor does not matter whether it is a stirred tank, a circulation tank, or another tank reactor.
  • the column reactor may be a packed column packed with a packing material, a multi-stage distillation column, or another column type reactor.
  • a packed tower packed with a filler will be described.
  • the reactants are introduced from the supply line 15 into the stirring tank 9 and the starting materials are introduced from the supply line 16 into the stirring tank.
  • the introduced starting materials and reactants are dispersed in a stirred tank.
  • the water evaporates while the mixture is heated in the stirring tank.
  • the inside of the stirring tank is controlled to a reduced pressure, a normal pressure, and a pressurized state, and an inert gas and / or water formed by the reaction gas or the reactant gas supplied from the gas supply line 18 as needed.
  • the low-boiling components and the like containing are extracted from the upper part 11 of the stirring tank and discharged from the bent line 17.
  • the reaction solution in which the concentration of the product alkyltin alkoxide was increased inside the stirred tank was transferred from the lower part of the stirred tank 12 to the buffer tank 24 from the transfer line 19, and was transferred from the buffer tank to the tower reactor via the relay line 25.
  • the liquid containing dialkyltin alkoxide introduced into the reactor 10 from the relay line 25 is dispersed by a filler or the like inside the reactor.
  • the water evaporates as the liquid flows downward along the filler and the like.
  • the inside of the reactor is controlled to a reduced pressure, normal pressure, and pressurized state, and a gas supply line 20 power is supplied as necessary. It contains inert gas and / or reactant gas and water formed by the reaction. Boiling components and the like are extracted from the upper part 13 of the reactor and discharged from the vent line 21.
  • the reaction solution in which the concentration of the dialkyltin alkoxide has been increased inside the reactor is withdrawn from the lower portion 14 of the reactor and discharged from the line 23. Reactants may be supplemented from feed line 22 as needed. If necessary, the stirring tank, the packed tower and the respective lines are heated and cooled by a known method such as a jacket or a heater.
  • the material of the reactor and the line may be any of known materials as long as they do not adversely affect the starting materials and the reactants, but they are also inexpensive, such as SUS304, SUS316, and SUS316L. It can be used preferably.
  • the reaction time (retention time in the case of the continuous method) of the dehydration reaction performed in the present invention is not particularly limited, and is usually 0.0001 to 50 days! 3 ⁇ 4, preferably ⁇ 0.01 to 10 ⁇ temples, more preferably 0 0.1 to 2Ei temples.
  • the reaction temperature varies depending on the type of starting compound used and is usually in the range of 50 to 350 ° C, preferably in the range of 60 to 60 ° C.
  • a known cooling device and heating device may be installed in the reactor.
  • the reaction pressure varies depending on the type of the starting compound used, the reaction temperature, and the like, and is usually in the range of 0.1 to 2.0 ⁇ 10 7 Pa, which may be any of reduced pressure, normal pressure, and increased pressure.
  • it is not always necessary to use a reaction solvent but a suitable inert solvent such as ethers, aliphatic hydrocarbons, aromatic hydrocarbons, etc. for the purpose of facilitating the reaction operation and the like. Can be used as a reaction solvent.
  • a feature of the present invention is that a dialkyl tin oxide, tetraalkyl dialkoxy
  • Intoxicated paper (Rule 9) A starting material selected from the group consisting of oxane and a mixture thereof and a hydroxy compound as a reactant are continuously supplied to the reactor, and low boiling components generated by the reaction are removed from the reactor, and It is to continuously remove a reaction solution containing alkyltin alkoxides corresponding to a starting material and a reactant as a bottom component.
  • the target alkyltin alkoxide can be produced with extremely high production efficiency. It is further surprising that not only the dehydration reaction, which is an equilibrium reaction, can be promoted by the present invention, but also the formation of trialkylsulfide by thermal reaction of alkyltin alkoxide can be significantly reduced.
  • the triptyltin compound generated as a side reaction during the dehydration reaction is converted to a molar ratio of 0 / mol of the tin atom contained in the starting material. And can be less than lmol%.
  • the range may exceed this range, so the power to remove in advance ⁇
  • the content of the tributyltin compound in the starting material should be within the acceptable range of the triptyltin compound. Need to be adjusted.
  • the triptyltin compound proceeds by a thermal reaction that can be performed only during the dehydration reaction, when it is desired to suppress the by-product of the triptyltin compound, the residence time of the piping and the like is preferably short and the temperature is low.
  • the amount of the triptyltin compound may be adjusted by the equipment described in (1).
  • an alkyl is prepared from a tetraalkyl-dialkoxy-distanoxane represented by the chemical formula (1) and / or a dialkyltin soxide represented by the formula (2) and an alcohol represented by the chemical formula (3) as a reactant.
  • an alkyltin alkoxide represented by the chemical formula (22) and / or the chemical formula (16) which is an extremely small amount of a triptyl compound, is obtained by performing a dehydration reaction at a dehydration rate defined by the following formula (4) or higher. be able to.
  • a mixture of dialkyl sulphoxide represented by the chemical formula (2) and an alcohol represented by the chemical formula (3) may be used. It is preferable to use an alkyldialkoxy-distanoxane and an alcohol represented by formula (3).
  • the dehydration rate represents the amount of water extracted out of the system per unit time [mol'hr— of the water formed by the dehydration reaction
  • X represents the general formula (2) contained in the starting material.
  • Y represents the number of moles of tin atoms [mol] in the alkyltin compound represented by the chemical formula (1) contained in the starting material
  • T represents the dehydration reaction temperature [K]
  • R is the gas constant A and B are coefficients that depend on the type of alkylsuzuki ligature;
  • the relations and B in the above formula (4) depend on the kind of the alkyltin compound as the starting material, and are coefficients obtained by determining the reference substance.
  • the starting material contains an alkyltin compound represented by the chemical formula (1)
  • the above ⁇ and ⁇ are each based on the alkyltin compound represented by the chemical formula (1) contained in the starting material and having an arbitrary power.
  • the substances represent the frequency factor and activity energy of the thermal decomposition reaction of the reference substance, and are A and B obtained by the following formula (5), and represented by the chemical formula (1) as the starting material.
  • each of A and B is obtained from the alkyltin compound represented by the chemical formula (2) and the reactant contained in the starting material.
  • the frequency factor of the thermal decomposition reaction of the reference substance and A represents the activation energy, A ⁇ Pi B obtained under following formula (5).
  • T represents a thermal decomposition reaction temperature [K] where k represents a first-order rate constant of the thermal decomposition reaction, and is k obtained by the following equation (6).
  • k is the first-order rate constant [ hr_1 ]
  • t is the heating time
  • X [hr] is the reduction rate [mol / mol] with respect to the initial concentration of the reference substance.
  • R 1Q, R u, R 13 and R 14 corresponds to one of R 7 or R 8 of the starting material
  • g, h, i and j correspond to either e or f of the starting material and at least one of R 12 ⁇ 15 corresponds to R 9 anti JSAP quality.
  • reaction is performed at a dehydration rate higher than the dehydration rate defined by the above formula (5), an alkyltin alkoxide having a small amount of a trialkyltin compound can be obtained.
  • the above-mentioned thermal decomposition reaction is a reduction reaction of a tetraalkyldialkoxy-distanoxane represented by the chemical formulas (1), (2) and (7), including the reaction represented by the following formula (21) as a representative.
  • a solution containing the chemical formula (1) and the compound containing the chemical formula (7) is stirred under a nitrogen atmosphere while the temperature of the liquid is kept constant, and the chemical formulas (1) and ⁇ or the chemical formula (7) are reduced.
  • the time-dependent change in the amount is measured over time by a u9 Sn- NMR measurement method, and the reaction rate is analyzed by the above formulas (6) and (5).
  • ! / ⁇ ⁇ tetraalkyldialkoxy-distan oxane is described as a monomer in the formula (21), but may be a dimer, an aggregate, a multimer, or a polymer. Absent.
  • the heating temperature of the thermal decomposition reaction is an arbitrary temperature from 100 ° C to 200 ° C (for example, 120 °, 140 ° C, 160 °, etc.).
  • the content of the compound represented by the chemical formula (1) and / or the chemical formula (7) is 95% or more.
  • the thermal reaction is carried out by heating under conditions that are not affected by substances (for example, oxygen and moisture) that promote the decomposition of chemical formula (1) and / or chemical formula (7).
  • Thermal decomposition reaction. Decrease of the formula formula by heating was ⁇ Tsu (21) (1) ⁇ Pi Z or Formula (7) corresponding to compounds, n9 S Measured over time by n-NMR. Although it is not possible to define what the thermal decomposition product is, it is a thermal decomposition product containing a trialkyltin alkoxide.
  • the alkyltin alkoxide which is carried out at a dehydration rate or higher defined by the formula (4) according to the present invention, is a trialkyltin-containing compound and a chlorine-containing compound. Is extremely low. Chlorine compounds may be contained in the starting material, but according to the method of the present invention, in principle, the chlorine compound does not increase more than the starting material, and high-purity alkyltin alkoxides can be obtained. Monkey
  • the amount of the reactant used is such that an excess amount with respect to the starting material can promote the chemical equilibrium favorably to the product side. If it is to be increased, excess unreacted hydroxyi-conjugated product must be distilled off, resulting in low energy efficiency. Conversely, if the amount of reactants is small, more unreacted starting material will be recovered. Therefore, the ratio of the starting material to the reactant is determined by the total number of moles of tin atoms contained in the starting material and the concentration of dialkyl sulkoxide removed from the bottom of the reactor where the molar ratio of the reactants is in the range of 3 to 200. If it is to be high, it is preferably between 3 and 100, and a more preferred range is between 3 and 10.
  • the present invention is characterized in that water formed by the reaction and alkyltin alkoxide generated by the reaction are quickly removed from the system to the outside of the system.
  • the present inventors presume that in the conventional patch system, the formed water adversely reacts with the alkyltin alkoxide generated quickly in the system, thereby impairing productivity.
  • the present invention provides a method for promptly transferring free water formed in a reaction solution to a gaseous phase, further removing the free water from the reactor, and simultaneously extracting the generated alkyltin alkoxide out of the system to improve the productivity. Is what you do. It is presumed that the free water formed by the reaction moves from the reaction solution to the gas phase due to gas-liquid equilibrium in the system.
  • the water transfer depending on the gas-liquid equilibrium is accelerated by increasing the specific surface area of the reaction solution, and at the same time, the generated alkyltin alkoxide is also extracted out of the system.
  • the purpose is to suppress the reverse reaction returning to. Therefore, in order to transfer the formed water to the gaseous phase quickly in the above-mentioned tank-type and / or column-type reactor, the liquid component inside the reactor is reduced in the void volume of the reactor. It is preferably 2/3 or less, more preferably 1Z3 or less.
  • the “high-boiling reaction mixture” of the present invention includes a liquid containing a high-boiling substance supplied to a reactor, a reaction liquid containing a high-boiling substance in the reactor, and a high-boiling substance discharged from the reactor. This refers to a concentrated solution, etc., in which the concentration of high-boiling substances is increased by evaporating the reaction solution and a part of the reaction solution.When the high-boiling substances may be dissolved, it may become a slurry. There is also. In the case of a slurry, the undissolved portion in the slurry is also included in the “high-boiling reaction mixture”.
  • the high-boiling substance referred to in the present invention refers to an organic substance whose boiling point is the same as or higher than the boiling point of the alkyltin alkoxide produced in the present invention. Organisms are also listed as high-boiling substances.
  • the term "low-boiling component containing water” refers to water formed in the reaction or a part of the reactants, and has a boiling point lower than the boiling point of the alkyltin alkoxide produced in the present invention.
  • low-molecular-weight by-products produced by a reaction are also listed as low-boiling substances.
  • an inert gas or an organic solvent is used, a part of the organic solvent is also mentioned as a low boiling component.
  • the diacid carbon as described above as an inert gas reacts with the produced alkyltin alkoxide to form a small amount of carbonic acid ester from the diacid carbon insert of the alkyltin alkoxide and the introduced product. In some cases, however, an inert gas was used because it has no adverse effect.
  • the reaction can favorably advance the chemical equilibrium toward the product by increasing the concentration of the hydroxy compound as a reactant. .
  • the reactant is supplied also from the lower part of the reactor, or the reactant gas is supplied to increase the concentration of the hydroxy compound as the reactant, or the hydroxy compound gas is supplied below the reactor.
  • the reactant gas is supplied to increase the concentration of the hydroxy compound as the reactant, or the hydroxy compound gas is supplied below the reactor.
  • the hydroxy compound or hydroxy conjugate gas together with the inert gas, an inert gaseous organic compound and / or an organic solvent or an organic solvent that forms an azeotrope with water are added to the lower part of the reactor. You can supply from! /.
  • a gas containing oxygen and water content as low as possible is preferable.
  • the gas may be passed through a layer filled with a molecular sieve or the like, an ion exchange resin, an oxygen scavenger, or the like, and the gas may be dehydrated by cooling it to an extremely low temperature.
  • the water content of the circulating gas is indicated by the dew point, it is preferably 110 ° C or lower, more preferably 140 ° C or lower.
  • the supply amount of the inert gas is not particularly limited, and varies depending on the type, structure and size of the reactor.
  • a distillation column is used as a reactor, it is appropriately adjusted so that, for example, flooding does not occur violently.
  • the alkyltin alkoxide produced by the present invention can be used as it is, or can be used after concentration, dilution or addition of other components.
  • Alkyl tin alkoxides include carbonates such as dialkyl carbonates, alkylaryl carbonates, and diaryl carbonates, isocyanates, and polycarbonates. Known as a catalyst for the production of nates! / Puru.
  • the dialkyltin alkoxides produced in the present invention are of high purity and low cost. Can be manufactured.
  • the alkyltin alkoxide produced by the present invention has a feature that the tributyltin compound and the chloride conjugate are extremely small in the amount of the alkyltin alkoxide.
  • Dialkyl tin alkoxide is used as a catalyst for the production of carbonates such as dialkyl carbonates, alkylaryl carbonates and diaryl carbonates, isocyanates, polycarbonates, ester synthesis catalysts, transesterification catalysts, and silicon. It is extremely useful as a catalyst for polymers and urethane curing catalysts.
  • trialkyltin compounds are also subject to many restrictions on the toxicological power! It is also known that the presence of chlorine-containing compounds causes metal corrosion, polymer inferiority, and the like.
  • the conventional alkyltin alkoxides were used for the above-mentioned catalyst applications, the above-mentioned harmful trialkyltin sulfides and chlorine-containing compounds were mixed into products. It was not known if it came from the compound.
  • the present inventors have found that trialkyltin compounds and chlorine-containing compounds mixed into products when alkyltin alkoxides are used are mainly contained in the dialkyltin alkoxide used from the beginning. I have been ascertained.
  • the dialkyltin alkoxide produced according to the present invention has high purity, and the problem derived from the above-mentioned conventional alkyltin alkoxide, in which the amount of the trialkyltin compound or the chlorine-containing conjugate is extremely small, is solved.
  • a phosgene method using phosgene and an oxidative carboxylation method using carbon monoxide are known.However, these methods use a chlorine-containing compound as a raw material or a catalyst. It is known that the carbonate ester produced contains a chlorine compound, which has a serious adverse effect on the production of polycarbonate using carbonate ester as a raw material (deactivation of the polymerization catalyst ⁇ discoloration of polycarbonate, inferiority, etc.). Exert. In addition, when used as a gasoline / diesel fuel additive, it may cause corrosion of engines and pipes. The present inventors have previously published WO03 055840 and WO04 / 014840!
  • dialkyltin alkoxides (these patents use dialkyltin alkoxides in a broad sense and include dialkyltin alkoxides and tetraalkyltin-dialkoxy-distanoxanes)
  • a method for producing only carbonate ester and water from carbon dioxide and alcohol has been disclosed.
  • these conventional inventions are further advanced, and very high-purity dialkyltin alkoxides can be produced very quickly.
  • Carbonate ester can be produced.
  • the resulting carbonate can be easily converted to diaryl carbonate having a very low chlorine content by transesterification or disproportionation.
  • a method for producing a carbonate using the alkyltin alkoxide produced in the present invention the methods of WO03 / 055840 and WO04Z014840 described above can be preferably used. Reaction of a mixture containing alkylsquarkoxide and carbon dioxide at a temperature of 60 ° C at a temperature of 200 ° C, at a force of 0.1 hour at a range of 10 hours, and at a pressure in the range of IMPa to 20MPa. A reaction solution containing dialkyl carbonate is separated from the obtained reaction solution containing dialkyl carbonate by a known method such as distillation to obtain a residual solution containing tin.
  • the reaction solution containing tin contains the compound represented by the chemical formula (1) or (2) as the reactant of the present invention, and other components containing tin whose structure is unknown by the current analysis method.
  • an alkyltin alkoxide which is a product of the present invention, can be obtained from a component containing tin whose structure is unknown.
  • dialkyl carbonate and the aromatic hydroxy compound are reacted by a known method to obtain an alkylaryl carbonate and a diaryl carbonate.
  • diaryl carbonate As the method for producing diaryl carbonate, a phosgene method using phosgene and an oxidative carbonilide method using carbon monoxide are known, and these use a chlorine-containing compound as a raw material or a catalyst. Therefore, it is known that the diaryl carbonate produced contains chlorine compounds, which has a serious adverse effect on the production of polycarbonate using carbonate as a raw material (deactivation of polymerization catalysts Etc.). Also When used as a gasoline or diesel fuel additive, it can cause corrosion of engines and pipes.
  • the present inventors have previously disclosed in WO03Z055840 and WO04 / 014840 a method for producing only carbon dioxide, alcohols, carbonates and water by using dialkyltin alkoxides.
  • a high-purity diaryl carbonate having an extremely small content of a chlorine compound can be simply and efficiently produced.
  • polycarbonates, isocyanates or polycarbonate diols can be produced using the diaryl carbonate obtained by the method of the present invention.
  • Diaryl carbonate is preferred as diaryl carbonate in this case! / ,.
  • Diaryl carbonate is known as a raw material for polycarbonate by the melt process.V
  • the conventional diaryl carbonate starting from a chlorine-containing compound contains a large amount of chlorine compounds, and the esterification with bisphenol A is difficult.
  • the chlorine compound deactivates the catalyst at the time of exchange. To cope with this deactivation, when a large amount of a catalyst is used, the resulting polycarbonate may have an adverse effect on weather resistance, hue, and physical properties. Therefore, in such a case, a step of removing the chlorine compound from the diaryl carbonate was required.
  • diaryl carbonate containing a chlorine compound is washed with an alkali or distilled and refined.
  • this countermeasure also has a fatal problem that the melting point of diaryl carbonate is relatively high, and washing with alkali in the molten state may also cause loss of hydrolysis of diaryl carbonate.
  • chlorine compounds are a group of several chlorine-containing compounds ranging from low-boiling components to high-boiling components, so distillation purification also has a fatal problem. The refining costs were enormous.
  • dimethyl carbonate is obtained from ethylene carbonate and methanol, then methylphenyl carbonate is obtained, and diphenyl carbonate is obtained.
  • dimethyl carbonate is obtained as an intermediate (the lowest boiling point of methanol in the system, and the lowest azeotrope with methanol to shift the equilibrium).
  • the naturally derived charcoal ⁇ ⁇ tyl fuel is prone to side reactions such as decarboxylation, and a small amount of by-products such as anisol with methyl groups is mixed with diphenyl carbonate, which is a small product even after the purification process.
  • the polymerization rate may be slowed down, the degree of polymerization may vary, and the color may be affected.
  • by-products are generated in the method of the present invention. do not do.
  • the above-mentioned by-product having a methyl group derived from dimethyl carbonate is difficult to identify.
  • the intermediate is represented by the formula (3), which is different from dimethyl carbonate. Since it is a dialkyl carbonate having a long-chain alkyl group formed from alcohol, diphenyl carbonate containing no by-product having a methyl group that adversely affects the production of polycarbonate can be obtained.
  • Examples of preferred V ⁇ Jiariru carbonate used as a raw material for polycarbonate, organic I ⁇ product having the methyl group (by-product) is lOOppm or less include Jiariru carbonate or less and more preferably 10 PP m .
  • a diaryl carbonate (particularly diphenyl carbonate) produced by using the alkyltin alkoxide of the present invention is reacted with a polyamine compound to obtain a polyaryl carbamate such as hexamethylene diaryl carbamate, By decomposing, an isocyanate can be obtained.
  • a polyaryl carbamate such as hexamethylene diaryl carbamate
  • isocyanate can be obtained.
  • isocyanates obtained from chlorine-containing compounds such as phosgene contain chlorine compounds. The primary use of isocyanates is in urethanes.
  • the urethane catalyst has a problem that it is easily deactivated and denatured by chlorine
  • the isocyanate produced from diphenyl carbonate obtained by the production method of the present invention does not substantially contain a chlorine compound and does not cause the above-mentioned problems.
  • polycarbonate diols will be described. Highly pure polycarbonate diols can be produced using diaryl carbonate produced using the alkyl tin alkoxide of the present invention.
  • Polycarbonates, isocyanates, and polycarbonate diols produced using the diaryl carbonate produced by the method of the present invention are less pure and easier to produce than the compounds produced by the conventional method. It is of great value industrially because it is obtained (and therefore inexpensive) and has no co-products.
  • isocyanates can be produced from the dialkyl carbonate and / or the diaryl carbonate by a known method.
  • Diaryl carbonate is known as a raw material for melt-processed polycarbonate.However, a large amount of chlorine compounds remains in diaryl carbonate starting from a conventional chlorine-containing compound, and transesterification with bisphenol A occurs. The catalyst at that time was sometimes deactivated by the chlorine compound. To cope with this deactivation, when a large amount of a catalyst is used, the resulting polycarbonate may have an adverse effect on weather resistance, hue, and physical properties. Therefore, in such a case, a step of removing the chlorine compound from the diaryl carbonate was required. For example, a method of alkali-cleaning or distilling and purifying a diaryl carbonate containing a chlorine compound is known! /
  • carbonates, isocyanates, and polycarbonates produced using the alkyltin alkoxide produced according to the present invention can be produced industrially at lower cost as compared with the group of compounds produced by the conventional method. Can be of high purity.
  • tin compound Approximately 0.3 g of the tin compound was weighed, and about 0.7 g of heavy-mouthed form (manufactured by Aldrich, 99.8%) and tetramethyltin (manufactured by Wako, first grade Wako) as an 119 Sn-NMR internal standard were used. The solution obtained by adding 0.05 g and uniformly mixing is used as an NMR analysis sample.
  • reaction solution 0.4 g is weighed out, and about 0.5 ml of dehydrated dimethylformamide or acetate nitrile is obtained. Further, add about 0.04 g of toluene or diphenyl ether as an internal standard to make a sample solution for gas chromatography analysis.
  • Liquid phase 100% dimethylpolysiloxane
  • dialkyltin alkoxide is based on the number of moles of tin atom in the starting material (compound represented by chemical formula (1) and / or chemical formula (2)), and the obtained dialkyltin alkoxide (chemical formula (7) (Compound represented by formula (16)).
  • the yield of the aromatic carbonate is expressed in terms of% by weight in the reaction solution, or the moles of the obtained alkyl aryl carbonate and diaryl carbonate are calculated based on the number of moles of the supplied raw material (dialkyl carbonate). %.
  • the number average molecular weight of the aromatic polycarbonate was measured by gel permeation chromatography (GPC).
  • the temperature of the oil path was set to 140 ° C., and the flask was immersed in the oil path to start rotation of the evaporator. After rotating and stirring at normal pressure for about 30 minutes while the purge pulp of the evaporator was opened, the purge pulp of the evaporator was closed, and the pressure inside the system was gradually reduced to about 60 kPa using a vacuum pump and a vacuum controller. After maintaining this state for 1 hour, the oil bath power of the flask was also increased. The reaction liquid was a clear liquid. The purge valve was gradually opened to return the pressure of the system to normal pressure. The amount of the distilled liquid was 9.9 g, which was transparent and separated into two layers. Analysis of the distillate contained about lg of water.
  • dibutyltin alkoxide was produced.
  • No. 3 (Tokyo Special Wire Mesh Co., Ltd., Japan) was filled, the temperature was controlled by a heater set at 160 ° C for about 60 mm from the lower flange part and the flange of the tupriactor, and the temperature was adjusted from the upper part of the heater.
  • the temperature was controlled by a heater set at 140 ° C up to the upper flange of the tube reactor.
  • Nitrogen gas was supplied from the gas supply line 7 at 0.04 NL / min, and the supply of the mixture of the starting material and the reactant prepared above was started from the supply line 4 at a rate of 20 g / Hr using a liquid feed pump.
  • the residence time in the reactor was about 16 minutes, and low-boiling substances including water were extracted in gaseous form from the gas vent line 5, and high-boiling components began to flow out from the extraction line 6. In this state, continuous liquid feeding and continuous withdrawal operation were continued for 2 hours.
  • the distilled liquid weighed 3.6 g, was transparent and separated into two layers. Analysis of the distilled off liquid indicated that it was about 2.2 g of water. After that, the pressure of the system was returned to normal pressure by gradually opening the purged pulp by increasing the oil pass force of the flask. 175 g of the reaction solution was obtained in the flask. From the results of the analysis of 11 Sn, and 13 C-NM R, it was found that 1,1,3,3-tetrabutyl-1,3-bis (2-ethylloopchi / reoxy) -distanoxane was obtained at a yield of about 99% based on dibutyltin oxide. Contained. (Dibutyltin dialkoxide is obtained in a tower reactor)
  • a tower reactor 1 as shown in FIG. 2 dibutyltin alkoxide was produced.
  • the Helicap No. 3 (manufactured by Tokyo Special Wire Mesh Co., Ltd., Japan) is filled in a S US316 tube reactor with an inner diameter of 15 mm and a total length of 1635 mm (effective length of 1450 mm) to which About 60 mm from the part and the flange, the temperature was controlled with a heater set at 160 ° C, and the temperature from the top of the heater to the upper flange of the tupriactor was controlled with a heater set at 140 ° C.
  • Nitrogen gas was supplied from the gas supply line 7 in the amount of 0.04NLZ, and the supply line 4 was started to supply the mixture of the starting material and the reactant prepared above at 2 Og / Hr using the liquid sending pump.
  • the residence time in the reactor was about 32 minutes.
  • Low-boiling substances including water were extracted in gaseous form from the extraction vent line 5, and high-boiling components began to flow out from the extraction line 6. In this state, continuous liquid feeding and continuous withdrawal operation were continued for 2 hours.
  • the flask was connected to a connecting pipe with a branch pipe, a Liebig condenser, a reduced pressure connecting pipe, and two distillate recovery vessels.
  • the pressure in the system was reduced to 29 kPa, and the toluene in the flask was distilled off.
  • the pressure in the system was further reduced to 0.6 kPa, and excess 2-ethylhexanol was distilled.
  • the liquid recovered by distillation was 1420 g, and 295.6 g of product was obtained in the flask. lls Sn, 3 ⁇ 4,
  • dibutyltin alkoxide was produced.
  • a 316 stainless steel tube reactor (effective length: 750 mm) is filled with Helipack No. 3 (Tokyo Special Wire Mesh Co., Ltd., Japan), and the lower flange part of the tube reactor and the flange cap are heated with a heater set to 160 for about 60 min. The temperature from the top of the heater to the upper flange of the tube reactor was controlled by a heater set at 140 ° C.
  • Nitrogen gas is supplied from the supply line 7 at 0.04 NL / min, the starting material prepared above is supplied from the supply line 4 at 3 g / Hr using a liquid sending pump, and the reactant 2-ethyl is supplied from the supply line 8.
  • Hexanol (Aldrich, USA, 99.6% dehydrated) was supplied with ITgZHr using a liquid pump.
  • the residence time in the reactor was about 15 minutes, the low-boiling substances including water were extracted in gas form from the extraction vent line 5, and the ⁇ boiling point component began to flow out from the extraction line 6. In this state, continuous liquid feeding and continuous withdrawal operation were continued for 2 hours.
  • dibutyl-bis (2-ethyl-hexyloxy) tin has a yield of about 45% based on dibutyltin oxide and about 55% of 1,1,3,3-tetrabutyl monobutyltin. It contained dibutyltin alkoxide, which consisted of 1,3-bis (2-ethyl-hexyloxy) -distanoxane. Triptyltin (2-ethinolep tyloxide) was 0.3%.
  • the gas phase extracted from the vent line was cooled, it was a two-layer transparent liquid containing water. The dehydration rate in the mounted reactor is 0. 0018 mol / Hr, which is larger than the value obtained by the equation (16)
  • dibutyltin alkoxide was produced. Heli-packed in a SUS 316 tulip reactor with a diameter of 15 mm and a total length of 850 mm (effective length 750 mm), with a supply line 4 and extraction vent line 5 in the upper part of the reactor 2 and a gas supply line 7 and an extraction line 6 in the lower part 3 of the reactor. No. 3 (Tokyo Special Wire Mesh Co., Ltd., Japan) was filled, and about 60 mm from the lower flange portion and the flange of the tube reactor was temperature-controlled with a heater set at 160 ° C. The temperature was controlled by a heater set at 140 ° C up to the upper flange of the tupriactor.
  • No. 3 Tokyo Special Wire Mesh Co., Ltd., Japan
  • Nitrogen gas is supplied from the nitrogen supply line 7 at 0.04NL / min, and the starting material dibutyl sulphoxide (Aldrich, USA: 98%) is supplied from the supply line 4 with 19.9 g (0.008niol) and reactant 2 —Ethyl-1-butanol (US, Aldrich Nine Ring, 98%)
  • a slurry liquid consisting of 817 g (8 mol) was fed at 8 g ZHr using a liquid feed pump. The residence time in the reactor was about 35 minutes. Low-boiling substances including water were extracted in gas form from the extraction vent line 5, and high-boiling components began to flow out from the extraction line 6.
  • dibutyltin alkoxide was produced.
  • Anti Helipack No. is attached to a SUS 316 tube reactor with an inner diameter of 15 mm and a total length of 850 mm (effective length of 750 mm) with a supply line 4 and extraction vent line 5 in the upper part 2 of the reactor and a gas supply line 7 and extraction line 6 in the lower part 3 of the reactor.
  • 3 (Tokyo Special Wire Mesh Co., Ltd., Japan)
  • the lower flange part and the flange cap of the tupriactor were also temperature-controlled with a heater set at 170 ° C at about 60 mm, and the tube reactor was placed at the top of the heater. The temperature up to the upper flange was controlled by a heater set at 150 ° C.
  • dibutyl-bis (2-ethyllooptinoleoxy) tin has a yield of about 48% and 1,1,3,3-tetrabutyl of about 52% based on dibutyltin oxide. It contained diptide / resuzualkoxide consisting of 1,3-bis (2-ethyl-butyloxy) -distanoxane. Triptyltin (2-ethylloop choloxide) was 0.4%. On the other hand, when the gas phase extracted from the vent line was cooled, it was a two-layer transparent liquid containing water.
  • Dialkyltin alkoxide was produced by combining a tank reactor and a tower reactor as shown in FIG.
  • the inside diameter is 15 mm, the total length is 1635 liters (effective length is 1450 mm )),
  • the reactor was heated with stirring so that the temperature of the reaction solution reached 160 ° C., and gas generated from the vent line 17 was extracted. After reacting for 20 minutes in this state, the reaction liquid is continuously withdrawn from the transfer line 19 in about 40 ml Z minutes, and at the same time, started from the supply lines 16 and 15 so that the liquid level inside the reactor becomes constant. Steady-state operation was started while continuously supplying gas at a rate at which the molar ratio of the substance to the reactant was 1: 3.75, and continuously extracting gas generated from the extraction vent line 17.
  • the reaction solution was transferred from the transfer line 19 to the buffer tank 24. After 2 hours, the solution in the buffer tank 24 was analyzed.
  • the yield was about 5% dibutyl-bis (2-ethyl-hexyloxy) tin and about 95% of 1,1,3,3-tetrabutyl-1,1,1-dibutyltin oxide. It contained primary dibutyltin alkoxide consisting of 3-bis (2-ethyl-hexyloxy) -distanoxane.
  • the dehydration rate in the tank reactor was 1.26 molZHr, which was larger than the value 0.13 molZHr determined by the equation (16).
  • the yield of dibutyl-bis (2-ethyl-hexyloxy) tin is increased in the reactor 10 using the primary product dibutyl sulfalkoxide accumulated in the buffer bath as a starting material.
  • the lower flange portion of the reactor 10 and About 60 mm from the flange was heated with a heater set at 160 ° C, and the temperature from the top of the heater to the upper flange of the tube reactor was controlled with a heater set at 140 ° C.
  • Nitrogen gas is supplied from gas supply line 20 at 0.04NL / min
  • the primary dibutyltin alkoxide prepared above was supplied as a starting material through a connection line 25 using 5 gZHr as a starting material using a liquid sending pump, and a reaction material 2-ethyl-11-hexanol (Aldrich, USA) was supplied from a supply line 22. And dehydration 99.6%) at 15 g / Hr using a liquid feed pump.
  • the residence time in the reactor was about 35 minutes, the low-boiling substances including water were extracted in gaseous form from the extraction vent line 21, and the high-boiling components began to flow out from the extraction line 23.
  • dibutyltin alkoxide was produced in a tower reactor 1 as shown in FIG. 2, dibutyltin alkoxide was produced.
  • a SUS316 tube with an inner diameter of 15 mm and a total length of 1635 mm (effective length 1450 mm) with a supply line 4 and extraction vent line 5 in the upper part 2 of the reactor and a secondary supply line 7 and extraction line 6 in the lower part 3 of the reactor
  • the reactor was filled with Dixon packing 3mm (manufactured by Tokyo Special Wire Mesh Co., Ltd., Japan), and about 60mm from the lower flange portion and flange of the tupriactor was temperature-controlled with a heater set at 170 ° C, and the heater was heated.
  • the temperature from the upper part to the upper flange of the tube reactor was controlled by a heater set at 150 ° C.
  • Nitrogen gas was supplied from gas supply line 7 in the amount of 0.04NLZ, and starting material 1, 1, 3, 3-tetrabutyl-1,3-bis prepared from supply line 4 in the same manner as that used in Example 1.
  • a mixture of (2-ethyl-butyroxy) -distanoxane and reactant 2-ethyl-11-butanol was supplied at 15 g / Hr using a liquid feed pump.
  • the residence time in the reactor is about 50 minutes, and low-boiling substances including water are gaseous from the vent line 5 withdrawn.
  • dibutyl-pis (2-ethylloop-tyloxy) tin has a yield of about 63% and 1,1,3,3-tetrabutynolate of about 36% based on dibutyltin oxide. It contained dibutyltin alkoxides consisting of 1,3-bis (2-ethyl-butyroxy) -distanoxane. Tributyltin (2-ethyl-butyloxide) was 0.3%.
  • the gas phase extracted from the vent line was cooled, it was a two-layer transparent liquid containing water. The dehydration rate in the mounted reactor was 0.0016 mol / Hr, which was larger than the value 0.00026 mol / Hr determined by the equation (16).
  • the oil pass temperature was set at 127 ° C., and the flask was immersed in the oil pass to start rotation of the evaporator. While the purge pulp of the evaporator was opened, the mixture was rotated and stirred at normal pressure for about 150 minutes. Thereafter, the flask was raised from the oil path and allowed to cool. 437 g of a viscous reaction solution was obtained in the flask.
  • Dioctyltin alkoxide was produced in 1 / column reactor 1 as shown in FIG. SU with an inner diameter of 15 mm and a total length of 850 mm (effective length 750 mm) with a supply line 4 and extraction vent line 5 in the upper part 2 of the reactor and a gas supply line 7 and extraction line 6 in the lower part 3 of the reactor
  • Helipack No. 3 (Tokyo Special Wire Mesh Co., Ltd., Japan) was filled in an S316 tulip reactor, and the temperature was controlled by a heater set at 150 ° C for approximately 60 mm from the lower flange and the flange of the tube reactor. The temperature from the upper part of the heater to the upper flange of the tube reactor was controlled by a heater set at 140 ° C.
  • the carbon dioxide gas is supplied from the gas supply line 7 at 80 ml / min, and the supply line 4 is also supplied with the reaction solution (starting material 1,1,3,3-tetraoctyl-1,3-di (butyloxy) -1-distanoxane) And a reactant 1-butanol) at 10 g / Hr using a pump.
  • the residence time in the reactor was about 37 minutes, and the internal pressure of the reactor was about 0.2 MPa-G by a pressure gauge.
  • Low-boiling substances including water were extracted in gas form from the extraction vent line 5, and ⁇ boiling components began to flow out from the extraction line 6.
  • the temperature of the oil path was set at 127 ° C., and the flask was immersed in the oil path to start rotating the evaporator. With the purge pulp of the evaporator open, about 2 at normal pressure Stir and heat for hours. Thereafter, the flask was allowed to cool by raising the oil pass power. 212 g of a viscous reaction solution was obtained in the flask. From the results of the analysis of 119 Sn, 1H, 13 C—NMR, it was found that the yield was 98% based on dibutyl sulphoxide. Di (butyloxy) tin was not included.
  • dibutyltin alkoxide was produced.
  • .3 (Tokyo Special Wire Mesh Co., Ltd., Japan) and the temperature was controlled with a heater set at 150 ° C for about 60 mm from the lower flange part and the flange of the tupriactor.
  • the temperature up to the upper flange was controlled by a heater set at 140 ° C.
  • the carbon dioxide gas was supplied from the gas supply line 7 at 80 mlZ.
  • the reaction solution obtained above from the supply line 4 (reacted with the starting material 1,1,3,3-tetrabutyl-1,3-di (butyloxy) -distanoxane)
  • the mixture of 1 substance (butanol power) was also supplied with lOgZHr by the liquid feed pump.
  • the residence time in the reactor was about 37 minutes, and the internal pressure of the reactor was about 0.2 MPa-G by a pressure gauge.
  • a low-boiling substance containing water was extracted in gaseous form from the extraction vent line 5, and a ⁇ boiling point component began to flow out from the extraction line 6. In this state, continuous liquid feeding and continuous withdrawal operation were continued for 4 hours.
  • the oil pass temperature was set to 118 ° C., and the flask was immersed in the oil pass to start rotation of the evaporator. While the purge pulp of the evaporator was open, the mixture was rotated and stirred at normal pressure for about 2 hours. Thereafter, the flask was raised from the oil path and allowed to cool. 196 g of a viscous reaction solution was obtained in the flask. From the results of the analysis of 119 Sn, ' ⁇ , 13 C-NMR, it was found that 1,1,3,3-tetrabutyl-1,3-bis (2-methyl-11-propylpropyl) was obtained at a 76% yield based on dibutyl sulphoxide. Contains one distannoxane! And no dibutyl-bis (2-methyl-11-propyloxy) tin was included.
  • a tower reactor 1 as shown in FIG. 2 dibutyltin alkoxide was produced.
  • Helipack No. is installed in a S US316 tube reactor with an inner diameter of 15 mm and a total length of 1635 mm (effective length of 1450 mm) with a supply line 4 and extraction pent line 5 on the upper part of the reactor 2 and a gas supply line 7 and an extraction line 6 on the lower part 3 of the reactor.
  • .3 manufactured by Tokyo Special Wire Mesh Co., Ltd., Japan
  • the temperature was controlled by a heater set at 150 ° C for about 60 mm from the lower flange portion and the flange of the tube reactor.
  • the temperature up to the upper flange of the was controlled by a heater set at 140 ° C.
  • Carbon dioxide gas was supplied from the gas supply line 7 at 80 ml / min, and the power of the reaction solution (starting material 1,1,3,3-tetrabutyl-1,3_bis (2-methyl_1 (Pyroxy) -Distanoxane and a reactant 2-methyl-11-propanol) were supplied at a rate of 10 g / Hr using a pump.
  • the residence time in the reactor was about 22 minutes, and the internal pressure of the reactor was about 0.2 MPa-G by a pressure gauge. From the extraction vent line 5, low-boiling substances including water were extracted in gaseous form, and high-boiling components began to flow out from the extraction line 6. In this state, continuous liquid feeding and continuous withdrawal for 4 hours were continued.
  • Step 1 Preparation of starting material 1, 1, 3, 3-tetrabutyl-1,3-bis (2-methyl-1-propoxy) -distanoxane
  • the oil path temperature was set at 118 ° C, the flask was immersed in the oil path, and the rotation of the evaporator was started. While the purge pulp of the evaporator was open, the mixture was rotated and stirred at normal pressure for about 2 hours. Thereafter, the flask was raised from the oil path and allowed to cool. 196 g of a viscous reaction solution was obtained in the flask. From the analysis results of 119 Sn, 'U, 13 C-NMR, it was found that 1,1,3,3-tetrabutyl-1,3-bis (2-methyl-1-1-propyloxy) with a 76% yield based on dibutyl sulphoxide. It contained distannoxane and did not contain dibutyl-bis (2-methyl-11-propyloxy) tin.
  • Step—2 (Dipti / resuzu dialkoxide is obtained in a tower reactor)
  • a tower reactor 1 as shown in FIG. 2 dibutyltin alkoxide was produced.
  • Helipack No. is attached to the S US316 tulip reactor with an inner diameter of 15 mm and a total length of 1635 mm (effective length of 1450 mm) with the supply line 4 and extraction vent line 5 installed in the upper part 2 of the reactor and the gas supply line 7 and extraction line 6 installed in the lower part 3 of the reactor. . 3 (Tokyo Special Wire Mesh Co., Ltd. ),
  • the temperature is controlled with a heater set at 150 ° C for about 60mm from the lower flange part and the upper flange of the tupri reactor, and set to 140 ° C from the upper part of the heater to the upper flange of the tube reactor. The temperature was adjusted by the heater.
  • the carbon dioxide gas was supplied from the gas supply line 7 at 80 ml / min, and the supply liquid 4 was supplied to the reaction solution (starting material 1,1,3,3-tetrabutyl-1,3-bis (2-methyl-1-) (Pyroxy) -distanoxane and the reactant 2-methyl-11-propanol) were also supplied using lOgZHr using a liquid feed pump.
  • the residence time in the reactor was about 22 minutes, and the internal pressure of the reactor was about 0.2 MPa-G by a pressure gauge.
  • Low-boiling substances including water were extracted in gas form from the extraction vent line 5, and high-boiling components began to flow out from the extraction line 6.
  • the gas phase extracted from the vent line was cooled and then water was removed by a multi-stage distillation column to recover 2-methyl-1-propanol.
  • the dehydration rate in the mounted reactor was 0.0168 mol ZHr, which was larger than the value 0.00000648 mol Hr determined by the equation (16).
  • Step 1 3 (obtain dialkyltin alkoxide carbonate)
  • the reaction solution collected in the relay tank in step 1 was sent to a thin-film distillation unit (Shibata Kagane N-ring E-420, Japan, Shimadzu E-420) with a pressure of about 65 Pa by 130 (Shimadzu N-ring LC-10AT, Japan). ) was fed at 3 g / min to evaporate the volatile components and cool and collect the non-volatile components to obtain about 74 g of recovered liquid.
  • the recovered solution was put in a 200 ml autoclave (Toyo Nippon, Japan) and capped.
  • the secondary pressure of the carbon dioxide cylinder connected to the autoclave via the SUS tube and the pulp was set to 4 MPa, then the pulp was opened and carbon dioxide was introduced into the autoclave.
  • the mixture was stirred for 10 minutes, the pulp was closed, and the temperature was increased to 120 ° C while the autoclave was stirred.
  • the internal pressure of the autoclave was adjusted with a back pressure valve so as to be 4 MPa. In this state, the reaction was allowed to proceed for 4 hours.After that, carbon dioxide was gently purged from the purge line to return to normal pressure, and the internal liquid was quickly drawn out from the extraction line attached to the bottom of the autoclave. Obtained.
  • Dicarbonate (2-methyl pent pill) was obtained in a yield of 40% based on dibutyl tin oxide.
  • 3 g of the transparent reaction solution was fed to a thin film distillation apparatus (Shibata, Japan: fc $ 3 ⁇ 4 E-420) at 130 ° C and about 65 Pa with a liquid sending pump (LC-10AT manufactured by Shimadzu Corporation, Japan). The mixture was fed at a flow rate of / min.
  • LC-10AT liquid sending pump manufactured by Shimadzu Corporation, Japan
  • the recovered liquid recovered in step 13 contained in organotin compounds such as 1,1,3,3-tetrabutyl-1,3-bis (2-methyl-1-propyloxy) -1-distanoxane contained in the recovered liquid ! /
  • organotin compounds such as 1,1,3,3-tetrabutyl-1,3-bis (2-methyl-1-propyloxy) -1-distanoxane contained in the recovered liquid ! /
  • the 2-methyl-1-propanol dehydrated and recovered in the multistage distillation column in step _1 as the reactant and the deficiency is 2_methyl —1—Propanol (Wako Pure Chemical Industries, special grade) was added to prepare a mixture of a starting material and a reactant.
  • the same operation as in Step 12 was performed except that the liquid supplied from the supply line 4 in Step 12 was changed to the above-mentioned mixed liquid, and continuous liquid feeding and continuous withdrawal operations were continued until the mixed liquid disappeared.
  • the liquid extracted from the extraction line 6 was collected in a 1L SUS relay tank. Analysis of the collected liquid showed that dibutyl monobis (2- It contained dibutyltin alkoxide, consisting of methyl-1-propyloxy) tin and about 3% of 1,1,3,3-tetrabutyl-1,3-bis (2-methynole-l-l-propyloxy) -distanoxane.
  • the gas phase extracted from the vent line was cooled and then water was removed in a multi-stage distillation column to recover 2-methyl-11-propanol.
  • Step 3 and Step 4 were repeated three times, and the liquid in the relay tank obtained in the third step 4 was added to the dibutynolecin with a yield of about 95% based on the dibutinoresozoxide used in Step-1. It contained dibutyltin alkoxide consisting of bis (2-methynole-l-propyloxy) tin and about 2% of 1,1,3,3-tetrabutyl-1,3-bis (2-methyl-l-propyloxy) -distanoxane . The dehydration rate in the mounted reactor was greater than the value determined by equation (16). The content of tributyltin (2-methyl-1-propyloxide) was 0.05%.
  • a nitrogen gas for 0.3 LZ is passed through a lOOmL eggplant flask equipped with a three-way cock, and dibutyltin dibutoxide (azmaxune: h, tributyltin compound content 1.5 mol%, chlorine atom content 7600 ppm) 23.80 g (0. 063 mol) and 26-44 g (0.30 mol) of 3-methyl_1-butanol (US, Aldrich Nine ring, dehydrated 99 +%) were added to a gas-tight syringe (Ham After charging with an ilton ring (1050TLL), the flask was shaken to mix the liquid uniformly.
  • the mixture was transferred by a syringe to a 150 mL SUS316L pressure vessel (Swagelok ring, 316L-50DF4-150) equipped with pulp, the pulp was closed, and the vessel was sealed. Equipped with a magnetic induction stirrer, a mantle type heater, a thermometer, a pressure gauge, two gas purge valves and a liquid sampling valve. And a SUS316 tube.
  • the pressure of the nitrogen cylinder was set to 0.5 MPa by a pressure reducing valve, and the gas purge pulp of the high-pressure vessel was opened to introduce nitrogen until the pressure in the vessel reached 0.5 MPa. Another gas purge pulp was opened and the pressure in the vessel was returned to normal pressure.
  • the secondary pressure of the carbon dioxide gas cylinder was set to 4.5 MPa by a pressure reducing valve, the gas purge panoreb was opened, carbon dioxide was introduced into a high-pressure vessel, and the pressure was adjusted to 4. OMPa. After heating and stirring for 2 hours, the heater was removed from the vessel and allowed to cool until the temperature in the vessel reached room temperature. Thereafter, the gas purge pulp was opened, and carbon dioxide was removed until the pressure in the container reached 0.05 MPa.
  • the liquid sampling pulp was connected to a 100 mL three-necked flask equipped with a three-way cock via a Teflon (registered trademark) tube, the pulp was opened, and the mixed liquid was transferred to the flask.
  • the amount of the mixed solution collected from the weight measurement of the flask was determined to be 22.07 g.
  • the flask was connected to a connecting pipe with a branch pipe, a thermometer, a Liebig condenser, a reduced-pressure connecting pipe, and two distillate recovery vessels.
  • the flask was immersed in an oil path, and the temperature of the mixture was raised to 120 ° C.
  • the pressure was gradually reduced to about 32 kPa by a vacuum pump and a vacuum controller, and the pressure was maintained for about 1.5 hours. 11.51 g of minute 1 was obtained.
  • the pressure of the system was further reduced to 0.15 to 0.06 kPa and maintained for about 1 hour to obtain 2.30 g of a fraction 2 having a steam temperature of 64 to 80 ° C.
  • GC-FID analysis of fraction 2 showed that dicarbonate 3
  • One methylbutyl is contained 0. 20 g, as a result of further performing chlorine analysis, a chlorine atom-containing Yuryoryoku S70ppm, from the analysis results of n9 Sn- NMR, Toripuchirusuzu compound was 0. 7 wt%.
  • the flask was connected to a connecting pipe with a branch pipe, a thermometer, a Liebig condenser, a reduced-pressure connecting pipe, and two distillate recovery containers.
  • the flask was immersed in an oil path, and the temperature of the mixture was raised to 120 ° C.
  • the pressure was gradually reduced to 97 to 13 kPa by a vacuum pump and a vacuum controller, and the pressure was maintained for about 1.5 hours. 16.85 g of fraction 1 at ° C was obtained.
  • the pressure in the system was further reduced to 0.06 to 0.2 kPa and maintained for about 1 hour, thereby obtaining 1.71 g of a fraction 2 having a vapor temperature of 79 to 81 ° C.
  • a 2,000-mL eggplant-shaped flask was charged with 542 g (2.18 mol) of diptide / resudoxide (Aldrich, USA) and 1400 g (18.9 mol) of 1-butanol (Wako, Japan).
  • the flask containing the mixture in the form of a white slurry was placed in an oil path (OBH-24, Masuda Ridai Kogyo Co., Ltd., Japan) with a temperature controller and a vacuum pump (ULVAC, G-50A, Japan).
  • a vacuum controller Okano Seisakusho, Japan, VC-10S connected to an evaporator (Shibata, R-144, Japan).
  • Evaporator par The dipulp outlet was connected to a line of nitrogen gas flowing at normal pressure. After closing the purge valve of the evaporator and reducing the pressure inside the system, the purge valve was gradually opened, and nitrogen was flowed into the system to return to normal pressure.
  • the temperature of the oil bath was set at 126 ° C., and the flask was immersed in the oil bath to start rotation of the evaporator. With the purge pulp of the evaporator kept open, the mixture was stirred and heated at normal pressure for about 30 minutes, then the mixture boiled and distillation of low-boiling components started.
  • the purge valve was closed, the pressure in the system was gradually reduced, and the remaining low-boiling components were distilled at a pressure in the system of 76 to 54 kPa. After the low-boiling components had ceased to appear, the flask was removed from the oil path. The reaction liquid was a clear liquid. The distilled liquid weighed 1255 g, was transparent, and was separated into two layers. Analysis of the distillate contained about 19.6 g of water. Thereafter, the purge valve was gradually opened by increasing the oil pass force of the flask, and the pressure in the system was returned to normal pressure. 686 g of the reaction solution was obtained in the flask.
  • Dibutyltin alkoxide was produced in a tower reactor 31 as shown in FIG. Supply line 26 and supply line 27 in the upper part of the reactor 32, Heat Exchange Nada 28, low boiling component recovery line 34, condenser 35, gas-liquid separator 36, back pressure valve 37, vent line 38, liquid phase recovery line 39, GOODROLL Type A (Tokyo special wire netting, Japan) was charged.
  • the temperature of the reactor was adjusted with a heater set at 140 ° C.
  • 1-butanol (industrial product of Wako Pure Chemical Industries, Japan) supplied from gas supply line 29 at 399gZHr and carbon dioxide at 3NL / Hr, and all 1-butanol is vaporized by heat exchange ⁇ 30 And fed to the lower part 33 of the reactor.
  • the starting substance 1,1,3,3-tetrabutyl-1,3-di (butyloxy) -distannoxane is supplied at 210 g / hr
  • the reactant 1-butanol is supplied from the supply line 27 (Wako Pure Chemical Industries, Japan).
  • Industrial stock Industrial products manufactured by Shikisha Co., Ltd.) at 95 lgZHr using a liquid feed pump.
  • the residence time in the reactor was about 30 minutes.
  • the liquid temperature in the reactor was 140 ° C, and the pressure of the back pressure valve 37 was adjusted to 0.096 MPa-G. After continuous supply in this state for about 10 hours, the inside of the system reached a steady state.
  • the low-boiling component is recovered at 753 g / Hr from the liquid phase recovery line 39, while dibutyltin sulfide is recovered from the lower part 33 of the reactor.
  • 1-butanol (Wako Pure Chemical Industries, Ltd., Japan, industrial supplies) is supplied at 566 g / Hr and CO is supplied at 3 NL / Hr from the gas supply line 29, and all butanol is supplied by the heat exchanger 30.
  • Butanol was vaporized and supplied to the lower part 33 of the reactor.
  • Starting material 1,1,3,3-tetrabutyl-1,3-di (butyloxy) -1-distanoxane prepared from supply line 26 in the same manner as in Example 12 was supplied at 280 g ZHr, and reactant 1-butanol (Japan) was supplied from supply line 27. (Supplied by Wako Pure Chemical Industries, Japan, industrial supplies) at 1330 g / Hr using a pump. I started paying.
  • the residence time in the reactor was about 13 minutes.
  • the liquid temperature in the reactor was adjusted to 140 ° C. and the pressure of the back pressure valve 37 was adjusted to 0.096 MPa-G.
  • Step 2 When the liquid temperature in the reactor is 140, back pressure valve 5 The pressure in Step 2 was adjusted to 0.096 MPa-G, and after continuous supply for about 10 hours in this state, the inside of the system reached a steady state. After the mixture was condensed from the upper part 47 of the reactor via the low-boiling component recovery line 49 to the condenser 50, the low-boiling component was recovered from the liquid-phase collecting line 54 with lOlOgZHr, while the lower part of the reactor was recovered. From 48, a component containing dibutyltin alkoxide was withdrawn at 670 g ZH r and recovered from line 55.
  • dibutyltin alkoxide was produced in a tower reactor 46 as shown in FIG. 5, dibutyltin alkoxide was produced.
  • the temperature of the tower reactor was controlled by a heater set at 140 ° C.
  • the temperature of the liquid in the reactor was 140 and the pressure of the back pressure valve 52 was adjusted to 0.096 MPa-G. After continuous supply in this state for about 10 hours, the inside of the system reached a steady state. From the upper part 47 of the reactor, After liquefaction in the condenser 50, low boiling components are recovered from the liquid phase recovery line 54 at 1006 g 6r, while components containing dibutyltin alkoxide are recovered from the lower part 48 at 604 g / Hr. Recovered from withdrawal line 55. Analysis of the liquid recovered from the withdrawal line 55 revealed that dibutyl di (petit / reoxy) tin had a yield of 46.3% based on dibutyl tin oxide.
  • the recovered liquid from the liquid phase recovery line 54 was clear and contained 2200 ppm of water.
  • the dehydration rate in the mounted reactor was 0.21 mol ZHr, which was larger than the value obtained from equation (16), 0.2 OOOSlniol ZHr.
  • a MELLAPAK 750Y (Sulzer Chemtech Ltd .; Sfc), a SUS316 column reactor 61 having an inner diameter of 50 mm and a total length of 4000 mm, equipped with a circulation line 59, a reboiler 60 and a withdrawal line 76.
  • the temperature of the tower reactor was controlled by a heater set at 140 ° C.
  • the liquid temperature in the reactor was adjusted to 140 ° C and the pressure of the back pressure valve 68 was adjusted to 0.096 MPa-G. After continuous supply in this state for about 10 hours, the inside of the system reached a steady state. From the upper part 63 of the reactor, After liquefaction at condenser 66, it is recovered low-boiling components from the liquid phase recovery line 70 512GZHr, also from the reactor central 62 via the low boiling component recovery line 75 in a low boiling component 4 9 6gZHr. On the other hand, a component containing dibutyltin alkoxide was extracted from the lower part 64 of the reactor with 603 g of ZHr and recovered from the line 76.
  • the liquid temperature in the reactor was adjusted to 140 ° C and the pressure of the back pressure valve 89 was adjusted to 0.096 MPa-G. After continuous supply in this state for about 10 hours, the system reached a steady state. From the upper part 84 of the reactor, After liquefaction in condenser 87, low-boiling components were recovered from liquid phase recovery line 91 at 1031 g ZHr, while components containing dibutyltin alkoxide were withdrawn from lower part 85 of the reactor and recovered at line 92 at 602 g / Hr. Was.
  • the reboiler 98 circulated the heat at 6000 g / Hr and a temperature of about 140 ° C. Adjust the pressure of the back pressure valve 106 to 0.12MPa_G at a liquid temperature of the reactor 140 of 140 ° C, and supply it continuously for about 10 hours in this state, then the inside of the system reached a steady state . After the liquid was collected from the upper part 101 of the reactor via the low-boiling component recovery line 103 to the condenser 104, the low-boiling component was recovered at 1088 g / Hr from the liquid-phase recovery line 108.
  • a component containing dibutyltin alkoxide was withdrawn from the lower vessel 102 and recovered from the line 109 at 821 gZHr. Analysis of the liquid recovered from withdrawal line 109 showed that dibutyl-di (butyloxy) tin in a yield of 54.0% and 46.0% of 1,1,3,3-tetrabutynole-1,1- It contained dibutylsquarkoxide consisting of 3-di (butyloxy) -distanoxane. Triptyl tin butoxide was 0.013%.
  • the liquid recovered from the liquid phase recovery line 108 was transparent and contained 2500 ⁇ of water. The dehydration rate in the mounted reactor was 0.24 molZHr, which was larger than the value 0.00037 molZHr obtained by the equation (16).
  • Dibutyltin alkoxide was produced using a horizontal thin-film distillation apparatus 113 (Nichinan Machinery, PFD1 in Japan) as shown in FIG.
  • an extraction line 121 was attached to a SUS316 horizontal thin film apparatus 113 having an inner diameter of 50 mm and a total length of 1100 mm.
  • the temperature of the reactor was controlled by a heater set at 120 ° C.
  • the low-boiling component After liquefaction in the condenser 117 through the low-boiling component recovery line 116, the low-boiling component is recovered at 18000 / Hr from the liquid-phase recovery line 120, while the component containing dibutyltin alkoxide is extracted from the lower part 115 of the reactor. It was recovered at the discharge line 121 at 8600 g ZHr. Analysis of the recovered liquor indicated that the yield based on dibutyl tin oxide was 34.2% dibutyl monodi (butyloxy) tin and 65.7% 1 It contained dibutyltin alkoxides consisting of 1,1,3,3-tetrabutyl-1,3-di (butyloxy) -1-distanoxane.
  • Triptyl tin butoxide was 0.015%.
  • the liquid recovered from the liquid phase recovery line 120 was transparent and had a water content of 2000 ⁇ .
  • the dehydration rate in the mounted reactor was 2.5 mol / Hr, which was larger than the value 0.0061 mol / Hr determined by the equation (16).
  • Process 1 (Preparation of starting material 1,1,3,3-tetrabutyl-1,3-di (butyloxy) -distannoxane)
  • a 3,000 mL volumetric flask was charged with 759 g (3.05 mol) of dibutyl suloxide (Aldrich Nine Ring, USA) and 1960 g (26.5 mol) of 1-butanol (Wako, Japan: h3 ⁇ 4).
  • the flask containing the white slurry was mixed with an oil bath (OBH-24, manufactured by Masuda Rika Kogyo Co., Ltd., Japan) equipped with a temperature controller and a vacuum pump (ULVAC N-ring, G-50A, Japan). It was attached to an evaporator (Japan, Shibata Ne ⁇ 3 ⁇ 4, R-144) connected to a vacuum controller (Okino, Japan, VC-10S).
  • the purge pulp outlet of the evaporator was connected to a line of nitrogen gas flowing at normal pressure. After closing the purge valve of the evaporator and reducing the pressure inside the system, the purge valve was gradually opened, and nitrogen was flowed into the system to return to normal pressure.
  • the temperature of the oil path was set at 127 ° C., and the flask was immersed in the oil path to start rotation of the evaporator. With the purge pulp of the evaporator kept open, the mixture was boiled and rotated at normal pressure for about 40 minutes, then the mixture boiled and distillation of low-boiling components started.
  • the purge pulp was closed, the pressure in the system was gradually reduced, and the remaining low-boiling components were distilled while the pressure in the system was 76 to 54 kPa. After the low-boiling components had ceased to appear, the flask was lifted up with oil paste. The reaction liquid was a clear liquid. The amount of the distilled liquid was 1737 g, which was transparent and separated into two layers. Analysis of the distilled off liquid indicated that it contained about 27.6 g of water. Thereafter, the purging pulp was gradually opened by increasing the oil pass force of the flask, and the pressure in the system was returned to normal pressure. 958 g of the reaction solution was obtained in the flask.
  • 1-ptanol supplied from Wako Pure Chemical Industries, Ltd., Japan, industrial supplies
  • dicarbonate was supplied at 3NLZHr
  • all the 1-ptanol was supplied by the heat exchanger 30. It was vaporized and fed to the lower part 33 of the reactor.
  • the starting material 1,1,3,3-tetrabutyl-1,3-di (butynoleoxy) -distanoxane is supplied at 210 g / Hr from the supply line 26, and the reactant 1-butanol (Wako Pure Chemical Industries, Japan) is supplied from the supply line 27. (Industrial Co., Ltd., Industrial Supplies) was supplied at 95 lg / Hr using a pump. The residence time in the reactor was about 30 minutes.
  • Step 1 dialkyltin alkoxides also obtain carbonates
  • the reaction solution obtained from Step-2 was supplied at 807 gZHr to a thin-film distillation apparatus (Shinko Environmental Solution Nippon, Japan) at 80 ° C and about 6.5 kPa using a liquid sending pump to evaporate volatile components. Thereafter, the nonvolatile components were cooled and recovered, and supplied to a 990 ml autoclave (Toyo Kokankan, Japan) at 241 g / Hr. After setting the secondary pressure of the carbon dioxide cylinder connected to the autoclave via the SUS tube and the pulp to 4MPa, open the parve and use the mass flow controller (Opparne, Japan; h ⁇ ) to autoclave. Carbon dioxide was supplied at 28 g / Hr. The temperature was raised to 120 ° C.
  • the residence time in the autoclave was about 1 hour.
  • the reaction liquid was adjusted to 130 kPa with a thin-film distillation apparatus of about 1.3 kPa (Shinko Environmental Solution, Japan ⁇ ⁇ )
  • the mixture was fed at 267 g / Hr using a liquid feed pump to distill off the volatile components of dibutyl carbonate and to cool and recover the non-volatile components.
  • Dixon packing (6 mm ⁇ ) filled with volatile components including dibutyl carbonate, 50 mm diameter, continuous 2000 mm tower length
  • the mixture was fed into the middle stage of the multi-stage distillation column at about 202 g / Hr to perform distillation separation.
  • the cooled liquid was a mixture of 1-butanol and dibutyl carbonate, and the content of dibutyl carbonate was 98% by weight. O In this mixture, triptyltin butoxy was not detected. Chlorine was not detected from the chlorine analysis results. On the other hand, analysis of the non-volatile components by 119 Sn, ' ⁇ , 13 C-NMR revealed that V, containing 1,1,3,3-tetraptinole-1,3-di (butyloxy) -distannoxane, (Ptiloxy) tin was not included.
  • the low boiling component is recovered at 753 g / Hr from the liquid phase recovery line 39, while dibutyl sulphide is recovered from the lower part 33 of the reactor.
  • the component containing lucoxide was withdrawn from the extraction line 40 at 807 g / Hr.
  • the dehydration rate in the mounted reactor was 0.144 mol ZHr, which was larger than the value obtained from the equation (16), 0.0015 mol / Hr.
  • the yield of dibutyl carbonate obtained from Step 13 was about 30 g / Hr.
  • the obtained dibutyl carbonate did not contain a chlorine compound or a triptyllium conjugate.
  • dibutyl carbonate obtained in Example 20 is used to produce butyl phenyl carbonate.
  • a mixed solution of dibutyl carbonate, phenol and catalyst A (a weight ratio of dibutyl carbonate and phenol in the mixed solution of 65/35, in the middle stage of a continuous multi-stage distillation column 124 with an inner diameter of approximately 50 mm and a tower length of 2000 mm packed with 40 sheep trays).
  • the Pb concentration was adjusted to be about lwt%), and was continuously supplied at about 270 g / H from the supply line 122 via the heat exchange 123 using a liquid sending pump to carry out the reaction.
  • the amount of heat required for the reaction and distillation was supplied by circulating and heating the liquid at the bottom of the column via the circulation line 131 and the reboiler 130.
  • the liquid temperature at the bottom of the continuous multistage distillation column 124 was 231 and the pressure at the top was at the back pressure valve 128. Thus, it was adjusted to about 200 kPa, and the reflux ratio was set to about 2.
  • Low-boiling components distilled from the top of the continuous multi-stage distillation tower 124 are condensed in the condenser 126 through the low-boiling component recovery line 125, and then continuously extracted from the line 129 through the low-boiling component storage tank 127 at about 67 g ZHr. Was.
  • the composition of the liquid extracted from the liquid phase recovery line 129 was about 27% by weight of 1-butanol, about 72% by weight of phenol, and about 1% by weight of dibutyl carbonate.
  • the set of the liquor removal line 132 formed, 1-butanol 330 ppm, phenol about Llwt% to about dibutyl carbonate 65 wt 0/0, carbonated butylphenyl about 21%, diphenyl carbonate about LWT% met Pb concentration of about LWT 0/0 Was. (Diphenyl carbonate is produced from the disproportionation reaction of butyl carbonate)
  • Diphenyl carbonate is produced using an apparatus as shown in FIG. Butyl carbonate was continuously supplied to the middle stage of a continuous multistage distillation column 135 with an inner diameter of about 5 cm and a tower length of 2 m packed with 40 sieve trays through a preheater 134 from a supply line 133 via a preheater 134 at about 203 gZHr using a liquid feed pump. The reaction was performed. The amount of heat required for the reaction and distillation was supplied by circulating and heating the lower part of the column via the circulation line 142 and the reboiler 141.
  • the liquid temperature at the bottom of the continuous multi-stage distillation column 135 was adjusted to 237 ° C., the top pressure was adjusted to about 27 kPa by the pressure control valve 139, and the reflux ratio was set to about 2.
  • the low-boiling components distilled from the top of the continuous multi-stage distillation column 135 pass through a low-boiling component recovery line 136, are condensed in a condenser 137, and are continuously passed through a low-boiling component storage tank 138 from a line 140 at about 172 g ZHr. I took it out. From the bottom, it was continuously extracted at about 3 lgZHr via extraction line 143.
  • the composition of the liquid extracted from the liquid phase recovery line 140 is about 390 ppm of 1-butanol and about 13% by weight of phenol, and about 86% by weight of dibutyl carbonate. Butyl carbonate was about 1%.
  • the composition of the liquid extracted from the extraction line 143 was about 500 ppm of dibutyl carbonate, about 26 wt ° of butyl phenyl carbonate, about 65 wt% of diphenyl carbonate, and about 8 wt% of Pb concentration.
  • the low-boiling components distilled off from the top of the continuous multi-stage distillation column 146 pass through a low-boiling component recovery line 147, are condensed in a condenser 148, and then are passed through a low-boiling component storage tank 149 to a liquid-phase recovery line 151. It was continuously extracted at about 288 g / Hr. Withdrawal from the bottom of the tower Continuously withdrawn at about 27 g ZHr from the line 154 to the outside of the system.
  • the composition of the liquid extracted from the liquid phase recovery line 151 was about 200 ppm of dibutyl carbonate, about 29 wt% of butyl phenyl carbonate, and about 71 wt% of diphenyl carbonate.
  • a continuous multi-stage distillation column 157 filled with Dixon packing (6 mm ⁇ ) and having an inner diameter of about 5 cm and a tower length of 4 m is connected to a transfer line line 155 and a heat exchange 156 for the liquid continuously withdrawn from the liquid phase recovery line 151 at the middle stage. Then, it was supplied at about 288 g ZHr and separated by distillation.
  • the amount of heat required for the distillation separation was supplied by circulating the liquid in the lower part of the column through a circulation line 164 and a re-oiler 163.
  • the liquid temperature at the bottom of the continuous multi-stage distillation column 157 was adjusted to 198 ° C.
  • the top pressure was adjusted to about 6 kPa by the pressure control valve 161, and the reflux ratio was set to about 6.
  • the low-boiling components distilled off from the overhead power of the continuous multi-stage distillation column 157 pass through a low-boiling component recovery line 158, are condensed in a condenser 159, and then pass through a low-boiling component storage tank 160 to obtain a liquid phase recovery line 162.
  • the liquid extracted from the liquid phase recovery line 162 has a composition of about 700 ppm of dibutyl carbonate and about 93 wt ° / butyl carbonate. The amount of diphenyl carbonate was about 7% by weight.
  • the composition of the liquid extracted to the extraction line 165 was below the detection limit for butyl phenyl carbonate, and 99% by weight of diphenyl carbonate. Further, the chlorine concentration in the reaction solution was below the detection limit.
  • the dropping funnel contains 35 g (0.3 mol) of 1,6-hexamethylenediamine (pre-distilled Aldrich) kept at 45-50 ° C. Dropping started. The solution was dropped over about 20 minutes while adjusting the dropping speed so that the liquid temperature in the flask became 50 to 60 ° C. After the addition, the temperature of the water bath was adjusted so that the liquid temperature in the flask became 50 ° C, and stirring was continued for about 1 hour. The reaction mixture was analyzed by high performance liquid chromatography and gel permeation chromatography. As a result, the reaction rate of 1,6-hexamethylenediamine was 100%, and that of 1,6-hexamethylenediamine rubinate was 100%. The production was 99.6% in yield and 99.6% in selectivity. The urea compound was about 0.4%.
  • the reaction solution produced as described above is supplied through a preheater to the middle stage of a continuous multistage distillation column having an inner diameter of 2 inches and a length of 4 m filled with Dickson packing (6 mm ⁇ ), and excess phenol is removed from the upper portion of the distillation column. It was extracted in gaseous form, and a liquid high-boiling mixture was continuously extracted from the bottom of the distillation column. The bottom was heated and circulated at 130 ° C with a reboiler, and the pressure at the top was adjusted to about 20 kPa.
  • the liquid extracted from the bottom of the column is fed through a transfer line and a pump from near the bottom of the continuous multi-stage distillation column filled with Dickson packing (6 mm ⁇ ) with a diameter of 2 inches and a length of 4 m from near lm to undergo thermal decomposition. I did it.
  • the bottom of the column was heated and circulated at 220 ° C with a reboiler, and the pressure at the top of the column was adjusted to about 2.6 kPa.
  • Hexamethylene diisocyanate-containing components were extracted in gaseous form from around 2 m from the top of the tower, and phenol was extracted in gaseous form from the top of the tower.
  • the component containing hexamethylene diisocyanate is fed to the middle stage of a continuous multi-stage distillation column, 2 inches in inner diameter and 4 m in length, packed with Dickson packing (6 mm ⁇ ) to purify hexamethylene diisocyanate. I did it.
  • the bottom of the tower is heated and circulated at 120 ° C with a reboiler, and the pressure at the top is adjusted to about 0.13 kPa.
  • the solution was dropped over about 20 minutes while adjusting the dropping rate so that the liquid temperature in the flask was 50 to 60 ° C. After dropping, the temperature of the water bath was adjusted so that the temperature of the solution in the flask was 50 ° C, and stirring was continued for about 1 hour.
  • the reaction mixture was analyzed by high-performance liquid chromatography and gel permeation chromatography. As a result, the conversion of 1,6-hexamethylenediamine was 99%, and the phenyl 1,6-hexamethylenediamine rubmate was converted to 1,6-hexamethylenediamine. The yield was 99% and the selectivity was 99.6%. The urea compound was about 0.5%.
  • the reaction solution prepared as described above is fed through a preheater to the middle stage of a continuous multistage distillation column with a 2-inch inner diameter and 4 m in length filled with Dixon packing (6 mm ⁇ ), and excess phenol is removed from the top of the distillation column. From the column, and a liquid high-boiling mixture was continuously extracted from the lower part of the distillation column.
  • the bottom of the tower was heated and circulated at 130 ° C with a reboiler, and the pressure at the top of the tower was adjusted to about 20 kPa.
  • the liquid extracted from the bottom of the column is subjected to thermal decomposition through a transfer line and a pump by feeding near-lm force from under a continuous multi-stage distillation column filled with Dickson packing (6 mm ⁇ ), 2 inches in inner diameter and 4 m in length.
  • the bottom of the tower was heated and circulated at 220 ° C with a reboiler, and the pressure at the top of the tower was adjusted to about 2.6 kPa.
  • Hexamethylene diisocyanate was obtained at a purity of 99.3% from the component from which the power at the top was also removed.
  • the distillate carbonate was the main component of the column bottom force and the extracted components.
  • the obtained hexamethylene diisocyanate contained 5 ppm of a hydrolyzable chlorine compound.
  • Diphenyl carbonate obtained from Example 21 (NMR analysis results showed that impurities containing a methyl group (excluding the methyl group at the terminal of the alkyl group) were not detected) 23.5 g and bisphenol A22.8 g were mixed with a stirrer.
  • the reactor was placed in a vacuum reactor equipped with a nitrogen gas and polymerized for 30 minutes at 8 kPa and 90 minutes at 4 kPa while replacing with nitrogen gas. Thereafter, the temperature was raised to 270 ° C., and polymerization was performed at 0.07 kPa for 1 hour.
  • the color of the obtained aromatic polycarbonate was colorless and transparent, which was good, and the number average molecular weight was 10,500.
  • Diphenyl carbonate (Germany, Peyerne ring, containing 15 ppm as chlorine) 23.5 g and bisphenol A 22.8 g are placed in a vacuum reactor equipped with a stirrer, and replaced with nitrogen gas at 8 kPa for 30 minutes. Polymerization was performed at 4 kPa for 90 minutes. Thereafter, the temperature was raised to 270 ° C., and polymerization was performed at 0.07 kPa for 1 hour. No high molecular weight product was obtained, and an unreacted product containing an oligomer having a number average molecular weight of 800 or less was obtained.
  • the flask was connected to a connecting pipe with a branch pipe, a thermometer, a Liebig condenser, a pressure reducing connecting pipe, and two distillate recovery vessels.
  • the flask was immersed in an oil path, and the temperature of the mixed solution was raised to 130 ° C.
  • the pressure in the system was reduced to 0.13 kPa by a vacuum pump and a vacuum controller to obtain 18 g of a fraction having a vapor temperature of about 125 ° C. .
  • GC-FID analysis 55% by weight of di-2-ethylhexyl carbonate was contained, and as a result of 119Sn-NMR analysis, it was contained in the carbonate ester! It was confirmed that about 44 wt% of the tributyltin compound was mixed.
  • the degree of reduced pressure was adjusted to about 50 kPa, the oil path temperature was set to 220 ° C, and the reaction was continued with stirring. The reaction was continued for 6 hours while di (3-methyl-1-butyl) carbonate was distilled off. Analysis of the reaction solution revealed that about 0.26 mol (56 g) of diphenyl carbonate was formed.
  • the flask was filled with Helipack No. 2 and the glass tube with an inner diameter of about 25 mm and a tower length of 500 mm, a connecting pipe with a branch pipe,?
  • the meter was connected to a densitometer, a Liebig condenser, a decompression pipe and two distillate recovery tissues.
  • the flask was immersed in an oil path, heated to a mixed solution temperature of 185 ° C., and then gradually depressurized by a vacuum pump and a vacuum controller to evaporate low boiling components, and then further depressurized the system to about 2 kPa. .
  • About 50 g of a fraction having a steam temperature of 175 ° C was obtained.
  • This fraction was analyzed by GC-FID and found to contain 98% by weight of diphenol carbonate. As a result of 119 Sn_NMR analysis, it was found that the diphenyl carbonate contained 1% of triptyltin compound. It was confirmed that about 1.5 wt% of the substance was mixed.
  • the dropping funnel includes 1,6-hexamethylenediamine (Aldri, USA) kept at 45-50 ° C. 35 g (0.3 mol), which was previously distilled from Ch. Co., Ltd., was dropped into the flask from this dropping funnel. The solution was dropped over about 20 minutes while adjusting the dropping rate so that the liquid temperature in the flask was 50 to 60 ° C. After dropping, the temperature of the water bath was adjusted so that the temperature of the solution in the flask was 50 ° C, and stirring was continued for about 1 hour.
  • Aldri 1,6-hexamethylenediamine
  • the reaction mixture was analyzed by high performance liquid chromatography and gel permeation chromatography. As a result, the reaction rate of 1,6-hexamethylenediamine was 99%, and 1,6-hexamethylenediamine rubamic acid phenate was 99%. Was found to be produced with a yield of 99% and a selectivity of 99.6%.
  • the urea compound was about 0.5%.
  • the reaction solution prepared as described above is fed through a preheater to the middle stage of a continuous multistage distillation column having a diameter of 2 inches and a length of 4 m filled with Dickson packing (6 mm ⁇ ), and excess phenol is removed from the upper portion of the distillation column. From the column, and a liquid high-boiling mixture was continuously extracted from the lower part of the distillation column.
  • the bottom of the tower was heated and circulated at 130 ° C with a reboiler, and the pressure at the top of the tower was adjusted to about 20 kPa.
  • the liquid extracted from the bottom is fed through a transfer line and a pump from near lm from below a continuous multi-stage distillation column filled with Dickson packing (6 mm ⁇ ), 2 inches in inner diameter and 4 m in length, to perform thermal decomposition.
  • the bottom of the tower was heated and circulated at 220 ° C with a reboiler, and the pressure at the top of the tower was adjusted to about 2.6 kPa.
  • Hexamethylene diisocyanate-containing components were extracted from the top of the tower in the form of gas in the vicinity of 2 m, and phenol was extracted in the form of gas from the top of the tower.
  • the component containing hexamethylene diisocyanate is fed to the middle stage of a continuous multistage distillation column, 2 inches in inside diameter and 4 m in length, packed with Dickson packing (6 mm ⁇ ) to purify hexamethylene diisocyanate.
  • the bottom of the tower was heated and circulated at 120 ° C with a reboiler, and the pressure at the top of the tower was adjusted to about 130 Pa.
  • the component extracted from the top of the column was colored brown, and hexamethylene diisocyanate was obtained with a purity of 95%.
  • the component extracted from the bottom of the column was mainly diphenyl carbonate.
  • the diphenyl carbonate is produced by the apparatus as shown in FIG.
  • a mixed solution consisting of dimethyl carbonate, phenol and methylphenyl carbonate is supplied to the top 173 of a continuous multistage distillation column 172 having an inner diameter of about 50 mm and a tower length of 2000 mm equipped with a sieve tray having 40 stages, and a supply line 166 with a heat exchanger 167 and a power supply line.
  • the reaction was carried out by continuously supplying 312 g of ZHr in a liquid state through a supply line 168.
  • Each component of the mixture was used in such an amount that the composition of the liquid in the supply line 168 during the operation was 50 lwt% of dimethyl carbonate, 44.6 wt% of phenol, and 5.
  • the gas distilled from the top 173 was passed through a low-boiling recovery line 175 to a condenser 176, where it was subjected to liquid filtration, and then extracted from the liquid-phase recovery line 177 at 551 g / Hr.
  • the reaction mixture withdrawn at 31 lg / Hr from the bottom 174 was introduced into the evaporator 179 via the transfer line 178.
  • a concentrated solution containing a catalyst and aromatic carbonates was formed.
  • a part of the concentrated liquid was circulated from the transfer line 180 and the circulation line 181 to the evaporator 179 via the reboiler 182 and the circulation line 183.
  • Revised paper (Rule 91) The remainder was supplied again from the evaporator 179 to the continuous multistage distillation column 172 via the transfer line 180, the transfer line 184, and the supply line 166 as lOgZHr. A part of the concentrated liquid formed in the evaporator 179 was extracted from the extraction line 185 to the outside of the 0.5 g ZHr system. Catalyst B was supplied from the catalyst introduction line 213 so that the Ti concentration in the transfer line 178 was maintained at 0.046 wt%.
  • the evaporate from the evaporator 179 is liquefied in the condenser 187 from the low-boiling recovery line 186, and the obtained liquid is transferred via the transfer line 188 and the transfer line 189 to a sieve tray with 20 stages and an inner diameter of 50 mm and a tower length of 1000 mm.
  • the reaction was carried out in a continuous multi-stage distillation column 193 with a high plate height.
  • the composition of the liquid in the transfer line 189 was 42.lwt% of dimethyl carbonate, 24.5wt% of phenol, 28.lwt% of charcoal ⁇ -phenyl, and 4.5wt% of diphenyl carbonate.
  • the catalyst was supplied from the catalyst introduction line 212 so that the Ti concentration in the transfer line 201 became 0.46 wt%.
  • the bottom temperature of the continuous multistage distillation column 193 was 198 ° C, and the top pressure was 38 kPa.
  • the gas distilled from the top 194 is passed through a low-boiling component recovery line 196 and condensed in a condenser 197, part of which is returned to the top 194 from a transfer line 199, and the remaining condensate is transferred to a transfer line 198 and a transfer It was recirculated from the line 200 to the continuous multistage distillation column 173 via the heat exchange orchid 167 and the supply line 168.
  • the remainder of the concentrated solution was supplied from the evaporator 202 to the continuous continuous multi-stage distillation column 193 via the transfer line 203, the transfer line 207, and the transfer line 189 at 20 gZHr.
  • Part of the vapor concentrate formed in the evaporator 202 was withdrawn from the system at lg / Hr from a withdrawal line 208.
  • the catalyst B was supplied from the catalyst introduction line 212 so that the Ti concentration in the transfer line 201 was maintained at 0.46 wt%.
  • the gas distilled from the evaporator 202 was extracted from the low-boiling component recovery line 209 via the condenser 210 at a liquid phase recovery line 211 at 682 g / Hr.
  • the composition of the recovered liquid was 98% diphenyl carbonate, and the content of impurities containing methyl groups was 90 ppm by 1 H-NMR analysis. Comparative Example 15
  • the water bath temperature was set to 45 ° C.
  • the dropping funnel contains 35 g (0.3 mol) of 1,6-hexamethylenediamine (pre-distilled from Aldrich, USA) kept at 45 to 50 ° C.
  • the dropping funnel started dropping into the flask.
  • the solution was dropped over about 20 minutes while adjusting the dropping rate so that the liquid temperature in the flask was 50 to 60 ° C.
  • the temperature of the water bath was adjusted so that the temperature of the solution in the flask was 50 ° C, and stirring was continued for about 1 hour.
  • the reaction mixture was analyzed by high-performance liquid chromatography and gel permeation chromatography. As a result, the conversion of 1,6-hexamethylenediamine was 99%, and the phenyl 1,6-hexamethylenediamine rubinate was converted. The yield was 99% and the selectivity was 99.6%. The urea compound was about 0.5%.
  • the reaction solution prepared as described above is fed through a preheater to the middle stage of a continuous multistage distillation column, 2 inches in inside diameter and 4 m in length, filled with Dickson packing (6 mm ⁇ ), and excess phenol is removed from the top of the distillation column. From the column, and a liquid high-boiling mixture was continuously extracted from the lower part of the distillation column.
  • the bottom of the tower was heated and circulated at 130 ° C with a reboiler, and the pressure at the top of the tower was adjusted to about 20 kPa.
  • the liquid from which the bottom force was also removed was fed through a transfer line and a pump from around lm from below a continuous multistage distillation column filled with Dickson packing (6 mm ⁇ ), 2 inches in inner diameter and 4 m in tower length, to perform thermal decomposition.
  • the bottom of the tower was heated and circulated at 220 ° C with a reboiler, and the pressure at the top of the tower was adjusted to about 2.6 kPa.
  • Hexamethylene diisocyanate-containing components were extracted in gaseous form from around 2 m from the top of the tower, and phenol was extracted in gaseous form from the top of the tower.
  • the components containing hexamethylene diisocyanate are 2 inches in inside diameter and 4 cm in tower length filled with Dickson packing (6 mm ⁇ ).
  • the component extracted from the top of the column was colored light brown, and hexamethylene diisocyanate was obtained with a purity of 98%.
  • the component extracted from the bottom of the column was diphenylcarponate as the main component.
  • Dibutyltin alkoxide was manufactured using a horizontal thin-film apparatus (PFD1 manufactured by Nichinan Machine Co., Ltd., Japan) as shown in Fig. 9.
  • a product extraction line 121 was attached to the lower part 115 of the SUS316 horizontal thin film apparatus 113 having an inner diameter of 50 mm and a total length of 1100 mm.
  • the temperature of the reactor was controlled by a heater whose internal temperature was set to 120 ° C, and the internal pressure was adjusted to 54 kPa by a vacuum pump and a vacuum controller.
  • a low-boiling component recovery line 223, a condenser 224, a separator 225, a back pressure valve 226, a vent line 227 in the upper part 221 of the reactor, an organic layer reflux line 228, an aqueous layer recovery line 229, and a supply line 214 in the middle part 220 of the reactor Made of SUS316 with an inner diameter of 50 mm and a total length of 4,000 mm with a supply line 215, heat exchange ⁇ : 216, a circulation line 217 circulating the reaction solution staying in the lower part of the reactor at the lower part 222, a reboiler 218 and a discharge line 230.
  • MELLAPAK 750Y Sulzer Chemtech Ltd, Switzerland
  • the low-boiling components liquefied from the upper part 221 of the reactor via the low-boiling component recovery line 223 to the condenser 224 via the condenser 224 are recovered at 2000 g / Hr, and the organic and aqueous layers are gradually separated in the separator 225.
  • the organic layer, i.e., 1-butanol, in the separator 225 is returned to the upper part 221 of the reactor at 1994 g / Hr via the organic layer reflux line 228, while the lower liquid containing high-concentration water is removed from the aqueous layer recovery line 229. Recovered in 6gZHr.
  • a component containing dibutyltin alkoxide was extracted from the lower part 222 of the reactor, and was recovered from the line 230 at 1604 gZHr.
  • the back pressure valve 22 The pressure in Step 6 was adjusted to 0.096MPa-G. After continuous supply for about 10 hours in this state, the inside of the system reached a steady state. Analysis of the liquid recovered from withdrawal line 230 reveals that 74.2% dibutyl di (butyloxy) tin and 25.7% 1,1,3,3-tetrabutyl-1,3-di-dibutyltin are based on diptynoresthoxide.
  • Figure 1 Shows the formation of tributyl- (2-ethylhexyloxy) -tin upon heating (180 ° C) 1,1,3,3-tetrabutynole 1,3-bis (2-ethylhexyloxy) -distenoxane.
  • Figure. 1 Shows the formation of tributyl- (2-ethylhexyloxy) -tin upon heating (180 ° C) 1,1,3,3-tetrabutynole 1,3-bis (2-ethylhexyloxy) -distenoxane.
  • FIG. 2 is a conceptual diagram showing an embodiment of a tower reactor according to the present invention.
  • FIG. 3 is a conceptual diagram showing an embodiment of a reactor in which a tank reactor and a tower reactor according to the present invention are combined.
  • FIG. 4 is a conceptual diagram showing an embodiment of a tower reactor according to the present invention.
  • FIG. 5 is a conceptual diagram showing an embodiment of a tower reactor according to the present invention.
  • FIG. 6 is a conceptual diagram showing an embodiment of a tower reactor working on the present invention.
  • FIG. 7 is a conceptual diagram showing an example of a tower reactor according to the present invention.
  • FIG. 8 is a conceptual diagram showing an example of a tower reactor according to the present invention.
  • FIG. 9 is a conceptual diagram showing an embodiment of a horizontal thin-film distillation apparatus according to the present invention.
  • FIG. 10 is a conceptual diagram showing an example of a continuous multi-stage distillation column according to the present invention.
  • FIG. 11 is a conceptual diagram showing an example of a continuous multi-stage distillation column according to the present invention.
  • FIG. 12 is a conceptual diagram showing an example of a continuous multistage distillation column according to the present invention.
  • FIG. 13 is a conceptual diagram showing an embodiment of a continuous multistage distillation column according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 出発物質として、スズ-酸素-スズ結合を有する有機スズ化合物の群から選ばれる少なくとも1種のアルキルスズ化合物と、反応物質として、ヒドロキシ化合物とを脱水反応に付し、出発物質と反応物質に対応するアルキルスズアルコキシド類を製造することを含むアルキルスズアルコキシドの製造方法において、反応器に出発物質と反応物質を連続的に供給し、反応器から水を含む低沸点成分を取り出し、反応器底部成分としてアルキルスズアルコキシド類を含む反応液を連続的に取り出すことを特徴とする上記方法。

Description

明 細 書
アルキルスズアルコキシド類の製造方法
技術分野
[0001] 本発明は、アルキルスズアルコキシドの製造方法、及びその製造方法で得られたジ アルキルスズアルコキシドを触媒として用いることを特徴とする炭酸エステル、イソシ ァネートの製造方法、及ぴその製造方法で得られた炭酸エステル、イソシァネートに 関する。
背景技術
[0002] アルキルスズアルコキシドは、エステル合成触媒、エステル交換反応触媒、シリコン ポリマーやウレタン硬化触媒等として極めて有用である。
従来のアルキルスズアルコキシドの製造方法としては、ジァルキル一ジクロロ一スズ を原料とする方法 (例えば特許文献 1参照)とジアルキルスズォキシドを原料とする方 法 (例えば特許文献 2参照)等が挙げられる。前者のジァルキル一ジクロロ一スズを 原料とする方法は、下記式 (S)に示すように、副原料として高価な金属アルコラートを 使用し、また、得られるジァルキルスズアルコキシドに対して 2倍 molの金属塩が生成 するために、廃棄物等の問題もあって、コスト、廃棄物の観点からも工業的製造方法 として間題がある。
[化 1]
+ 2 NaC, ( 8 )
Figure imgf000002_0001
[0003] 従って、後者のジァルキルスズォキシドを原料とする方法が、大量の廃棄物を生成 しな 、と Vヽぅ点で好まし Vヽ。この方法によってジァルキルスズアルコキシドを得る方法 が検討されている。たとえば下式 (9)に示すように、ジブチルスズォキシドとアルコ一 ルとから 2段反応でジァルキルスズジアルコキシドを得る例が る (特許文献 3参照) 0
1段目は、ベンゼンやトルエン中で 80で力 110での範囲で反応を行い、形成される 水を共沸蒸留で除去して、 1, 1, 3, 3,—テトラプチルー 1, 3—ジアルコキシ一ジス タンォキサンを得、 2段目で該ジスタンォキサンを 180°Cカゝら 220°Cで不均ィ匕させて、 ジプチ/レスズジアルコキシドを蒸留で得る。この方法は廃棄物を発生しな Vヽという点 では優れて V、るが、 2段目の不均化反応では高沸点のジァルキルスズアルコキシドを 高温条件で蒸留しなければならず、エネルギーの消費が多く工業的な生産としては 問題があり、しかも生産性が低い。
[化 2]
2
Figure imgf000003_0001
ジアルキルスズォキシドとアルコールとからジアルキルスズジアルコキシドを直接得 る方法として、下記式 (10)に示すような高沸点アルコールを用いる方法が示されて いる (特許文献 2参照)。この方法では、反応物質であるアルコールの沸点で反応を 行うために、上記したベンゼンやトルエン中で反応させるよりも高温で反応を行って、 形成される水を反応物質のアルコーレとの共沸混合物として除去する。この方法は、 上記方法に比較し、高沸点のジァルキルスズジアルコキシドを加熱蒸留しなくてもよ い点で優れているが、反応温度が反応物質のアルコールの沸点で行うために、炭素 数の短レ、アルコールでは反応が遅ぐまた炭素数の長レ、アルコールを用いても反応 は遅く、生産性は高くない。
[化 3]
Bu
Bu
Figure imgf000003_0002
更に該方法では高沸点のアルコール中で高温で反応させるため、下式(11)によつ て生成すると推定されるトリアルキルスズ化合物が実際には大量に生成する。ジァル キルスズアルコキシドの熱変性によってトリアルキルスズ化合物が生成することは公 知であり(非特許文献 1参照)、該方法で得ようとして!/ヽるジアルキルスズジアルコキシ ド以外の複雑な反応副生物の混合物となることもあり、工業的製法としては好ましくな
[化 4]
Figure imgf000004_0001
[0006] 上記した問題である生産性を高めるために、下式(12)に示すように反応物質として 、アルコールと炭酸エステルを使用した例がある (特許文献 2参照)。この方法は上記 した生産性を改善する方法であるが、高価な炭酸エステルを反応物質として使用し なければならず、工業的な製造方法としては問題がある。
[化 5]
Bu、
Sn=0 + OH + + co2 ( 1 2) Bu,
Figure imgf000004_0002
[0007] 特許文献 1 : US— 2700675
特許文献 2: US― 5545600
特許文献 3 :NL— 6612421
非特許文献 1 :工業化学雑誌 72, 7(1969) ,1543
発明の開示
発明が解決しょうとする課題
[0008] 上記したように、アルキルスズアルコキシドの製造にお V、ては、生産性を髙めようと すれば、髙価な原料を用いなければならず、アルキルスズアルコキシドを簡便な方法 で生産性高く製造する方法が望まれて 、る。
本発明の目的は、工業的にアルキルスズアルコキシドを製造する方法、更には連 続してアルキルスズアルコキシドを製造する方法を提供することである。
課題を解決するための手段
[0009] 本発明者らは、上記の課題を解決するために鋭意検討した結果、スズ一酸素ース ズ結合を有する有機スズ化合物の群から選ばれる出発物質と、反応物質であるヒドロ キシ化合物とを反応器に連続的に供給し、反応器から反応によって発生した低沸点 成分を連続的に取り出し、反応器底部成分として出発物質と反応物質とに対応する アルキルスズアルコキシド類を含む反応液を連続的に取り出すことが可能であること を見出し、本発明を完成するに至った。
即ち、本発明は以下の通りである。
[1] 出発物質として、スズー酸素ースズ結合を有する有機スズ化合物の群から選 ばれる少なくとも 1種のアルキルスズ化合物と、反応物質として、ヒドロキシ化合物とを 脱水反応に付し、出発物質と反応物質に対応するアルキルスズアルコキシド類を得 ることを含むアルキルスズアルコキシドの製造方法にお!、て、反応器に出発物質と反 応物質を連続的に供給し、反応器から水を含む低沸点成分を取り出し、反応器底部 成分としてアルキルスズアルコキシド類 む反応液を連続的に取り出すことを特徵 とする上記方法。
[2] 出発物質である前記少なくとも 1種のアルキルスズ化合物が、テトラアルキル ージアルコキシ—1, 3—ジスタンォキサン類、及び Z又はスズー酸素—スズ結合を 介して重合体として一般的に存在するジアルキルスズォキシド類である上記 [1]記载 の方法。
[3] 前記テトラアルキルージアルコキシ一 1, 3—ジスタンォキサン類が、下記ィ匕学 式(1)で表されるテトラアルキルージアルコキシ一 1, 3一ジスタンォキサン類である 上記 [2]記載の方法。
[化 6]
Figure imgf000006_0001
(式中、 R1 R2、 R4、及ひ は、それぞれ、アルキル基、ァラルキル基又はァリール 基であり、同一であっても、それぞれ異なっていてもよい。 R3、 R6は、それぞれアルキ ル基、ァラルキル基である。 a及ぴ bは 0から 2の整数であって、 a+bは 2であり、 c及 ぴ dは 0から 2の整数であって、 c+dは 2である。 )
[4] 前記ジアルキルスズォキシド類が、下記化学式 (2)で表されるジアルキルスズ ォキシド類の重合体である上記 [2]記載の方法。
[化 7]
R
Figure imgf000006_0002
(式中、 R'及 tm8は、それぞれ、アルキル基、ァラルキル基又はァリール基であり、同
—であっても、それぞれ異なっていてもよい。 e及ぴ fは 0力ら 2の整数であって、 e+f は 2である。 )
[5] 前記出発物質が、それぞれ、単量体、 2量体、(同一種類の単量体の会合体 又は異なる種類の単量体どうしの会合体)、多量体、又は重合体のいずれであっても よい上記 [2]記載の方法。
[6] 前記ヒドロキシ化合物が、下記ィ匕学式 (3)で表されるアルコールである上記 [ 1]記載の方法。
[化 8]
R9OH ( 3 )
(式中、 R9は、 一ブチル基、 2—メチルプロピル基、直鎖状又は分岐状の炭素数 5 〜12のアルキル基、炭素数 5〜 12のシクロアルキル基、直鎖状又は分岐状の炭素 数 2〜12のアルケニル基、無置換又は置換された炭素数 6〜19のァリール、及ぴ直 鎖状又は分岐状の炭素数 1〜14のアルキルと炭素数 5〜14のシクロアルキルからな る群から選ばれるアルキルを含む炭素数 7〜20のァラルキル基などを表す。)
[7] 前記アルコールが、 1ーブタノール、 2—メチル一1一プロパノール、炭素数 5 力 炭素数 8のアルキルアルコールからなる群から選ばれるアルコールである上記 [6 ]記載の方法。
[8] 出発物質と反応物質とを反応器に連続的に供給し、該反応器内において液 相又は気一液相で両物質間の脱水反応を行わせると同時に、製造されるアルキルス ズァルコキシド又はアルキルスズアルコキシド混合物を含む髙沸点反応混合物を該 反応器の下部から液状で抜き出し、一方で、生成する水を含む低沸点反応混合物を 蒸留によって該反応器からガス状で連続的に抜き出すことを含む上記 [1]記載の方 法。
[9] 前記反応器が、前記出発物質と前記反応物質を供給するためのそれぞれの ライン又は該出発物質と該反応物質の混合液を供給するためのライン、及び水を含 む低沸点反応混合物を抜き出すためのライン、及び高沸点反応混合物を抜き出す ためのラインを備えて 1/ヽる上記 [ 1]又は [8]記載の方法。
[10] 前記水を含む低沸点反応混合物を抜き出すためのラインが気相成分を抜き 出す位置にあり、前記高沸点反応混合物を抜き出すためのラインが下方で液相成分 を抜き出す位置にある上記 [9]記載の方法。 [11] 前記反応器が槽状又は塔状である上記 [1]から [10]のいずれか一項に記 載の方法。
[12] 前記反応器が、攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、連続多段蒸留 塔、充填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸 発器、落滴蒸発器、細流相反応器、又は気泡塔のいずれかを含む型式である上記 [
1]から [11]のいずれか一項に記載の方法。
[13] 不活性ガス及び/又は、気体状の反応物質及ぴ Z又は、気体状の不活性 な有機化合物及び Z又は、水と共沸混合物を形成する有機溶媒を供給する上記 [1
]から [12]記載のいずれか一項に記載の方法。
[14] 不活 ' スが、窒素、二酸化炭素、アルゴンから選ばれる上記 [13]記載の 方法。
[15] 前記脱水反応を 60°C力も 160°Cまでの範囲で行う上記 [1]記載の方法。
[16] 出発物質と反応物質の比率として、出発物質中に含まれるスズ原子の合計 モル数と、反応物質のモル数の比が 3から 100の範囲である上記 [1]記載の方法。
[17] 脱水反応を下記式 (4)で表される脱水速度で行うことを特徴とする上記 [4] 力も [16]のいずれか一項に記載の方法。
[数 1]
60Χ+10Γ
脱水速度 > ( 4 )
Figure imgf000008_0001
(式中、脱水速度は脱水反応で形成される水のうち、単位時間当りに系外に抜き出 す水量 [mol'hr一1]を表し、 Xは出発物質に含まれる一般式 (2)で表されるアルキル スズ化合物中のスズ原子モル数の合計 [mol]を表し、 Yは出発物質に含まれる化学 式 (1)で表されるアルキルスズ化合物中のスズ原子モル数 [mol]を表し、 Tは脱水反 応温度 [K]を表し、 Rは気体定数 =8. 314J'mol— K— 1を表し、 Α及ぴ Βはアルキ ルスズ化合物の種類に依存する係数である;ここで .
上記式 (4)の係^ A及ぴ Bは出発物質であるアルキルスズ化合物の種類に依存し 、基準物質を定めて求める係数である。出発物質に化学式 (1)で表されるアルキル スズ化合物が含まれる場合は、上記 A及び Bはそれぞれ出発物質に含まれる化学式 (1)で表されるアルキルスズィ匕合物力も任意に選ばれるアルキルスズ化合物を基準 物質として、該基準物質の熱分解反応の頻度因子及び活性化エネルギーを表すも のであって、下記式 (5)で得られる A及び; Bであり、そして出発物質に化学式 (1)で 表されるアルキルスズ化合物が含まれず、化学式 (2)で表されるアルキルスズ化合物 が含まれる^^は、 A及び Bはそれぞれ出発物質に含まれるィ匕学式 (2)で表される アルキルスズ化合物と反応物質とから形成される下記ィ匕学式 (7)で表されるアルキル スズアルコキシドから任意に選ばれるアルキルスズアルコキシドから任意に選ばれる ァノレキノレスズアルコキシドを基準物質として、該基準物質の熱分解反応の頻度因子 及び活性化エネルギーを表すものであって、下記式 (5)で得られる A及び Bである。 隱 2]
Figure imgf000009_0001
(式中、
kは 1次反応速度定数 [ —1]、 Aは頻度因子 [hr一1]、 Bは活性化エネルギー [j-mol _1]、Rは気体定数 =8. 314J'mol— K— Tは熱分解反応温度 [K]を表す。上記 kは該熱分解反応の 1次反応速度定数を表し、下記式 (6)で得られる kである。
( 6 ) (式中、 kは 1次反応速度定数 [hr— 、 tは加熱時間、 X[hr]は基準物質の初期濃度 に対する減少率 [mol/mol]を表す。 ))
[化 9]
Figure imgf000010_0001
(式中、 R1G、 Ru、 R13、及び R14は出発物質の R7又は R8のいずれかに対応し、 g、 h、 i、及ぴ jは出発物質の e又は fのいずれかに対応し、 R12及ひ 15の少なくとも 1つは反 応物質の R9に対応する。 g及び hは 0から 2の整数であって、 g+hは 2であり; i及び j は 0から 2の整数であって、 i+j = 2である。 ))
[18] 上記 [1:!〜 [17]のいずれか 1項に記載の方法で製造されたジアルキルスズ アルコキシドを触媒として用いることを特徴とする炭酸エステルの製造方法。
[19] 上記 [1]〜[: 17]の!/ヽずれか 1項に記載の方法で製造されたジアルキルスズ アルコキシドを触媒として用いて製造される炭酸エステル。
[20] [19]記載の炭酸エステルを用いて製造されるイソシァネート類。
[21] [19]記載の炭酸エステルを用いて製造されるポリカーボネート類。 発明の効果
[0012] 出発物質と反応物質とを連続的に脱水反応に付し、形成される水と生成物を連続 的に系外へ除去することにより、高 、生産性でアルキルスズアルコキシドを製造する ことができ、産業上に大いに有用である。
発明を実施するための最良の形態
[0013] 本発明の特徵は、ジアルキルスズォキシド及び/又はテトラアルキル一ジアルコキ シージスタンォキサンを含む出発物質と、反応物質であるヒドロキシ化合物とを反応 器に連続的に供給し、反応器から水を含む低沸点成分を取り出し、反応器底部成分 として出発物質と反応物質とに対応する、アルキルスズアルコキシド類を含む反応液 を連続的に得ることにある。
本発明者らは、ジアルキルスズォキシドとアルコールとからジアルキルスズアルコキ シドが生成する反応を、以下の式(13)と式(14)の平衡反応に基づくものであると推 定した。
[化 10]
OR' R
Sn=0 + 2 R'OH R— Sn— O— Sn— R + H20 ( 1 3 )
R OR'
[化 11]
OR' R OR'
R— Sn— O— Sn— R + 2 R'OH I
2 R ■Sn— OR' H20 ( 1 4 ) R OR' R 従来、上記反応は、バッチ方式で、発生する水を常圧又は減圧の条件で留去しな がら行われていた。上記式(13)及ぴ式(14)の平衡は左側(原系)に偏っており、平 衡を生成物側にずらすことにより生成する水を系外に出して反応を進行させる必要 がある。同時に反応速度を早めるために、高温で実施することで上記反応が行われ ていた。
そのため、反応物質として炭素数の長い、高沸点のアルコールで上記反応を行な えば、数時間で反応が進行する力 炭素数の短い、低沸点のアルコールから対応す
Figure imgf000011_0001
とすれば、生産性は著しく低力 た。式(13)に 示したジアルキルスズォキシドとアルコールとから脱水反応によりテトラアルキルージ アルコキシ一ジスタンォキサンを得る反応は従来の技術であっても比較的容易に定 量的に進むことが知られている。しかし、特に式(14)の平衡は著しく原系に偏ってお り、反応で形成された水は系中で速やかに生成したジアルキルスズジアルコキシドと反 応してしまうために、生産性よくジアルキルスズジアルコキシドを得ることはできなかつ
訂正された 紙 (纖 1191》 た。式(14)の反応で生成物をより多く得るためには、大量のヒド キシ化合物を使用 することによりジアルキルスズジアルコキシドへの転化率を向上させることはできるが、 反応器のサイズが巨大になり、更に未反応の大量のヒドロキシル化合物を留去しなけ ればならず、生産性を上げることはできな力 た。
また、本発阴者らが鋭意検討した結果、上記した従来の技術では、高温で長時間 の反応時間を要するために、従来の方法では明記されていなかったが、目的としな いトリプチルスズ化合物が多量に生成することを見出した。即ち、従来のパッチ方式 の反応によれば、反応速度が遅く、パッチ反応であるために出発物質又は生成物で あるアルキルスズアルコキシドが反応器内に滞留して、上記したトリアルキルスズ化合 物の副生を惹起する重大な問題点があった (図 1に 1, 1, 3, 3—テトラプチルー 1, 3 一ビス (2—ェチルへキシルォキシ)一ジスタンォキサンを加熱した時のトリプチルス ズ化合物への変性反応の経時変化を示す) o
[0015] 本発明者らが鋭意検討した結果、ジァルキルスズォキシド、テトラアルキル一ジアル コキシ一ジスタンォキサン及びそれらの混合物力 なる群から選ばれる出発物質と、 反応物質であるヒドロキシ化合物とを反応器に連続的に供給し、反応器から低沸点 成分を取り出し、反応器底部成分として出発物質と反応物質とに対応する、アルキル スズアルコキシド類を含む反応液を連続的に得ると、従来のパッチ方式に比較して驚 くべきことに反応時間が短ぐ生産性が極めて高くなり、更に驚くべきことに、上記した ようなトリプチルスズ化合物の副生も抑制されることを見出した。
即ち、本発明者らは、従来のパッチ方式のアルキルスズアルコキシドの生成速度が 、形成される水の除去速度によって大きく制限されていることを発想し、この課題を克 服する方法として、該水を速やかに系外へ違続的に除去し、生成物であるアルキル スズアルコキシドを速やかに系外へ連続的に取り出す方法を提供することで生産性 髙くジアルキルスズアルコキシドを得ることができることを見出した。更に、本発明の方 法によれば目的としないトリプチルスズ化合物をも低減することを見出した。
[0016] まず、本発明で使用する使用原料について以下に記述する。
出発物質はジアルキルスズォキシド類及び/又はテトラアルキル—ジアルコキシ— ジスタンォキサン類^む組成物であり、テトラアルキル一ジァルコキシ一ジスタンォ キサンのみであってもよ 、し、テトラアルキル一ジァルコキシ一ジスタンォキサンの前■ 駆体であるジァルキルスズォキシドを任意の量含んでいてもよい。即ち式(13)に示 すジアルキルスズォキシドからテトラアルキルージアルコキシ一ジスタンォキサンを得 る反応も、式(14)に示すテトラアルキル一ジァルコキシ―ジスタンォキサンからジァ ルキルスズジアルコキシドを得る反応も同様の脱水反応であるので、ジアルキルスズ ォキシドを任意の量含有した出発物質であっても、ジァルキルスズアルコキシドを得 ることがでさる。
[0017] 本発明で使用するテトラアルキル一ジァルコキシ一ジスタンォキサン類は下式 (1) に示すテトラアルキルージアルコキシ一ジスタンォキサンであって、下式(1)に代表さ れる構造式を示すが、単量体、会合体、多量体、又は重合体であっても力 わない。
[化 12]
(! )
Figure imgf000013_0001
(式中、
Figure imgf000013_0002
及 υ¾5は、それぞれ、アルキル基、ァラルキル基又はァリール 基であり、同一であっても、それぞれ異なっていてもよい。 R3、 R6は、それぞれアルキ ル基、ァラルキル基である。 a及ぴ bは 0から 2の整数であって、 a+bは 2であり、 c及 ぴ dは 0力 2の整数であって、 c+dは 2である。 )
[0018] 式(1)のテトラアルキル—ジアルコキシ一ジスタンォキサンの R1 R2、 R4、及 Ό¾5の 例としては、メチル、ェチル、プロピル、ブチル (各異 '性体)、ペンチル (各異' 14体)、 へキシル (各異性体)、ヘプチル (各異性体).、ォクチル (各異性体)、ノエル (各異性 体)、デシル (各異性体)、ゥンデシル (各異性体)、ドデシル (各異性体)、 2—プテェ ル、シクロブテュル、シクロブチル、シクロペンチレ、シクロへキシ Ζレ、シクロペンチノレ 、シクロペンタジェエル、シクロへキセニル等の炭素数 1から 12の脂肪族炭化水素基 であるアルキル基や炭素数 5から 12の脂環式炭化水素基であるシクロアルキル基、 ベンジル、フエニルェチル等の炭素数 7から 20のァラルキル基、フエニル、トリル、ナ フチル等の炭素数 6から 20のァリ一ル基が挙げられる、またエーテル結合を含んで いてもよいし、ノナフルォロブチル、ヘプタフルォロブチル(各異性体)などのように炭 化水素基の水素の全部又は一部がハロゲン原子に置換したハロゲンィ匕炭化水素基 であってもよレ、が、これらに限定されない。好ましくは、低級アルキル基であり、より好 ましくは炭素数 1から 8の直鎖状又は分岐状のアルキル基である。以上に示した炭素 数以上のものも使用することができる力 流動性が悪くなつたり、生産性を損なったり する場合がある。式(1)の R R2、 R R5は同一であってもよいし、場合によっては異 なってレヽてもかまわなレヽ。
R3及び R6は、直鎖状又は分岐状の炭素数 1〜; 12のアルキル基、炭素数 5〜12の シクロアルキル基、直鎖状又は分岐状の炭素数 2〜 12のアルケニル基、無置換又は 置換された炭素数 6〜: 19のァリール、及び直鎖状又は分岐状の炭素数 1〜 14のァ ルキルと炭素数 5〜14のシクロアルキルからなる群から選ばれるアルキルを含む炭 素数 7〜 20のァラルキル基を表し、またエーテル結合を含んでいてもよいし、ノナフ ルォロブチル、ヘプタフルォロブチル(各異生体)などのように炭化水素基の水素の 全部又は一部がハロゲン原子に置換したハロゲンィヒ炭化水素基であってもよいが、 これらに限定されない。好ましくは、低級アルキル基であり、より好ましくは、 n—プチ ル基、 2—メチルプロピル基、炭素数 5から 9の直鎖状又は分岐状のアルキル基であ る。以上に示した炭素数以上のものも使用することができるが、流動性が悪くなつたり 、生産性を損なったりする場合がある。式 (1)の R3と R6は同一であってもよいし、場合 によっては異なってレ、てもかまわなレ、。
式( 1)で示されるテトラアルキルージアルコキシ一ジスタンォキサンの例としては、 1 , 1, 3, 3—テトラメチルー 1, 3—ジ (η—ブトキシ)一ジスタンォキサン、 1, 1, 3, 3- テトラメチルー 1, 3—ビス(2—メチルプロピルォキシ)一ジスタンォキサン、 1, 1, 3, 3—テトラメチルー 1, 3—ジーペンチルォキシ一ジスタンォキサン (各異性体)、 1, 1 , 3, 3—テトラメチルー 1, 3一ジ一へキシルォキシ一ジスタンォキサン(各異性体)、 1, 1, 3, 3—テトラメチルー 1, 3一ジ一へプチルォキシージスタンォキサン (各異性
訂正された 紙 (規則 91) 体)、 1, 1, 3, 3—テトラメチル 1, 3—ジ一ォクチルォキシージスタンォキサン (各 異性体)、 1, 1, 3, 3—テトラメチル一 1, 3—ジーノニルォキシ一ジスタンォキサン( 各異'性体)、 1, 1, 3, 3—テトラメチル一1, 3—ジーデシルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3—テトラメチル _1, 3—ジーベンジルォキシ一ジスタンォキ サン、 1, 1, 3, 3—テトラメチル一 1, 3—ジ一フエニルエトキシ一ジスタンォキサン、 1 , 3—ジブチルー 1, 3—ジメチノレ _ 1, 3—ジ (ti—ブトキシ)一ジスタンォキサン、 1, 3 ージプチルー 1, 3—ジメチル一1, 3—ビス(2—メチルプロピル)一ジスタンォキサン 、 1, 3—ジブチルー 1, 3—ジメチルー 1, 3—ジーペンチルォキシージスタンォキサ ン(各異性体)、 1, 3—ジブチノレ一 1, 3—ジメチノレー 1, 3—ジ一へキシルォキシ一ジ スタンォキサン (各異性体)、 1, 3—ジブチル一 1, 3—ジメチノレー 1, 3—ジ一へプチ ルォキシ一ジスタンォキサン (各異性体)、 1, 3—ジブチル一 1, 3—ジメチルー 1, 3 —ジ—ォクチノレオキシ—ジスタンォキサン(各異性体)、 1, 3—ジプチルー 1, 3—ジ メチルー 1, 3—ジーノニルォキシ一ジスタンォキサン (各異性体)、 1, 3_ジブチル 一 1, 3—ジメチルー 1, 3 -ジ一デシル才キシ一ジスタン才キサン (各異性体)、 1, 3 一ジブチノレー 1, 3—ジメチル一 1, 3—ジ一ベンジルォキシ一ジスタンォキサン、 1, 3—ジブチルー 1, 3—ジメチルー 1, 3_ジ一フエニルエトキシージスタンォキサン、 1 , 3_ジブチノレ一 1, 3—ジェチル一1, 3—ジ (n—ブトキシ)一ジスタンォキサン、 1, 3—ジブチノレー 1, 3—ジェチルー 1, 3 -ビス(2—メチルプロピル)一ジスタンォキサ ン、 1, 3—ジブチル— 1, 3—ジェチルー 1, 3—ジーペンチルォキシ一ジスタンォキ サン(各異性体)、 1, 3_ジブチルー 1, 3_ジェチルー 1, 3—ジ一へキシルォキシ 一ジスタンォキサン (各異性体)、 1, 3—ジプチノレー 1, 3—ジェチル一 1, 3—ジ一へ プチルォキシージスタンォキサン (各異性体)、 1, 3—ジプチノレ一 1, 3—ジェチノレ一 1, 3—ジーォクチルォキシージスタンォキサン (各異性体)、 1, 3—ジブチルー 1, 3 ージ工チル— 1, 3—ジーノ-ルォキシ一ジスタンォキサン (各異性体)、 1, 3—ジブ チル— 1, 3_ジェチルー 1, 3—ジ—デシ/レオキシ一ジスタンォキサン (各異性体)、 1, 3_ジブチル一 1, 3—ジェチル一 1, 3—ジ一べンジ /レオキシ一ジスタンォキサン 、 1, 3—ジブチルー 1, 3_ジェチルー 1, 3—ジ一フエニルエトキシージスタンォキサ ン、 1, 3—ジブチルー 1, 3—ジプロピル一 1, 3—ジ (n—ブトキシ)一ジスタンォキサ ン、 1, 3—ジブチル ^ l, 3—ジプロピル— 1, 3—ビス(2—メチルプロピル)—ジスタ ンォキサン (各異性体)、 1, 3—ジプチルー 1, 3—ジプロピル一 1, 3—ジーペンチル ォキシ一ジスタンォキサン(各異性体)、 1, 3—ジブチル一 1, 3—ジプロピル一 1, 3 —ジ一へキシルォキシ一ジスタンォキサン (各異性体)、 1, 3—ジブチルー 1, 3—ジ プロピル一 1 , 3—ジーヘプチルォキシ一ジスタンォキサン (各異性体)、 1 , 3—ジブ チノレー 1, 3—ジプロピル一 1, 3—ジーォクチ/レオキシ一ジスタンォキサン (各異性 体)、 1, 3—ジブチルー 1, 3—ジプロピル一 1, 3—ジーノエルォキシ一ジスタンォキ サン (各異性体)、 1, 3—ジブチルー 1, 3—ジプロピル一 1, 3—ジ—デシルォキシー ジスタンォキサン (各異性体)、 1, 3—ジプチルー 1, 3—ジプロピル一 1, 3—ジ一ベ ンジルォキシ一ジスタンォキサン、 1, 3—ジブチノレー 1, 3—ジプロピル一 1, 3—ジ 一フエ二/レエトキシージスタンォキサン、 1, 1, 3, 3—テトラブチルー 1, 3—ジ (II一 プトキシ)一ジスタンォキサン、 1, 1, 3, 3—テトラプチル一 1, 3—ビス(2—メチルプ 口ピル)一ジスタンォキサン(各異性体)、 1, 1, 3, 3—テトラプチルー 1, 3—ジーぺ ンチルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラプチルー 1, 3—ジ 一へキシルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3—テトラブチルー 1, 3 ージ一へプチルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3—テトラプチルー 1, 3—ジーォクチルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラプチ ルー 1, 3—ジーノエルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラブ チルー 1, 3—ジーデシルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ プチルー 1, 3—ジ一べンジルォキシ一ジスタンォキサン、 1, 1, 3, 3—テトラブチル 一 1, 3—ジーフエニルェトキシージスタンォキサン、 1, 1, 3, 3—テトラフエ二ルー 1, 3—ジ (n—プトキシ)一ジスタンォキサン、 1, 1, 3, 3—テトラフエ二ルー 1, 3—ビス( 2—メチルプロピル)一ジスタンォキサン、 1, 1, 3, 3—テトラフエ-ノレ一 1, 3—ジー ペンチルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラフエニノレー 1, 3 ージーへキシル才キシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラフエ二ノレ 一 1, 3—ジ一へプチルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラフ ェニル— 1, 3—ジ一オタチルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テ トラフエ二ルー 1, 3—ジーノエルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3 ーテトラフヱュルー 1, 3—ジ一デシルォキシ一ジスタンォキサン (各-異性体)、 1, 1, 3, 3—テトラフエ二ルー 1, 3—ジーベンジルォキシ一ジスタンォキサン、 1, 1, 3, 3 —テトラフェュ /レー 1, 3—ジ一フエュルエトキシ一ジスタンォキサン、 1, 1, 3, 3—テ トラ(トリフルォロブチル)一 1, 3—ジ (n—ブトキシ)一ジスタンォキサン、 1, 1, 3, 3- テトラ (トリフルォロブチル)一 1, 3_ビス (2—メチルプロピル)一ジスタンォキサン (各 異性体)、 1, 1, 3, 3—テトラ(トリフルォロブチル)一 1, 3—ジーペンチルォキシージ スタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(トリフルォロプチル)一 1, 3—ジ一へ キシルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(トリフルォロプチ ル)一 1, 3—ジ一ヘプチルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3—テト ラ(トリフルォロブチル)一 1, 3—ジ一ォクチルォキシージスタンォキサン (各異性体) 、 1, 1, 3, 3—テトラ(トリフルォロブチル)一 1, 3—ジ一ノニルォキシ一ジスタンォキ サン (各異性体)、 1, 1, 3, 3—テトラ(トリフルォロブチル)一 1, 3—ジーデシルォキ シージスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(トリフルォロブチル)一 1, 3— ジーベンジルォキシ一ジスタンォキサン、 1, 1, 3, 3—テトラ(トリフルォロブチル)一 1, 3—ジーフエニルエトキシ一ジスタンォキサン、 1, 1, 3, 3—テトラ(ペンタフルォロ ブチノレ)一 1, 3—ジ (n—ブトキシ)一ジスタンォキサン、 1, 1, 3, 3—テトラ(ペンタフ ルォロプチル)一 1, 3—ビス(2—メチルプロピル)一ジスタンォキサン、 1, 1, 3, 3- テトラ(ペンタフルォロブチル)一 1, 3—ジーペンチ/レオキシージスタンォキサン (各 異性体)、 1, 1, 3, 3—テトラ(ペンタフルォロブチル) - 1, 3一ジ一へキシノレ才キシ 一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ (ペンタフルォロブチル)一 1, 3 ージ一へプチルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ (ペンタフ ルォロブチル)一1, 3—ジーォクチルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(ペンタフルォロブチル)一 1, 3—ジーノニノレオキシ一ジスタンォキサン ( 各異性体)、 1, 1, 3, 3—テトラ(ペンタフルォロプチル)一 1, 3—ジーデシノレォキシ —ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(ペンタフルォロブチル)一1, 3 ージーベンジルォキシージスタンォキサン、 1, 1, 3, 3—テトラ(ペンタフ/レオロブチ ル)一 1, 3—ジーフエエルエトキシ一ジスタンォキサン、 1, 1, 3, 3—テトラ(ヘプタフ /レオロブチル)一 1, 3—ジ (n—ブトキシ)一ジスタンォキサン、 1, 1, 3, 3—テトラ(へ プタフルォロプチル)一 1 , 3—ビス(2—メトルプ口ピル)一ジスタンォキサン (各異性 体)、 1, 1, 3, 3—テトラ(ヘプタフルォロプチル)一 1, 3—ジ一ペンチルォキシージ スタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(ヘプタフルォロブチル)一1, 3—ジ 一へキシルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(ヘプタフルォ ロブチル)一 1, 3—ジ一ヘプチルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3 ーテトラ(ヘプタフルォロブチル)一 1, 3—ジーォクチルォキシ一ジスタンォキサン( 各異 体)、 1, 1, 3, 3—テトラ (ヘプタフルォロブチル)一 1, 3—ジーノニルォキシ 一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ (ヘプタフルォロブチル)一1, 3 ージ一デシルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ (ヘプタフ ルォロブチル)一 1, 3—ジーベンジルォキシ一ジスタンォキサン、 1, 1, 3, 3—テトラ (ヘプタフルォロブチル)一 1, 3—ジーフエニルエトキシージスタンォキサン、 1, 1, 3 , 3—テトラ(ノナフルォロブチル)一 1, 3—ジ (n—ブトキシ)一ジスタンォキサン、 1, 1, 3, 3—テトラ(ノナフルォロブチル)一 1, 3一ビス(2—メチルプロピル)一ジスタン ォキサン、 1, 1, 3, 3—テトラ(ノナフルォロプチル)一 1 , 3—ジーペンチル才キシ一 ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(ノナフルォロプチル)一 1, 3—ジ 一へキシルォキシ一ジスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ (ノナフルォロ ブチノレ)ー1, 3—ジ一へプチ/レオキシージスタンォキサン (各異性体)、 1, 1, 3, 3 ーテトラ (ノナフルォロブチル)一1, 3—ジ一ォクチルォキシ一ジスタンォキサン (各 異性体)、 1, 1, 3, 3—テトラ(ノナフルォロブチル)一 1, 3—ジーノエルォキシ一ジス タンォキサン (各異性体)、 1, 1, 3, 3—テトラ(ノナフ/レオロブチル)一 1, 3—ジーデ シルォキシージスタンォキサン (各異性体)、 1, 1, 3, 3—テトラ(ノナフルォロブチル )— 1, 3—ジーベンジルォキシ一ジスタンォキサン、 1, 1, 3, 3—テトラ (ノナフルォロ プチル)一 1, 3—ジ一フエ-ルェトキシージスタンォキサンのようなテトラアルキル一 ジァノレコキシ -ジスタンォキサン、テトラアルキルージァラルキルォキシ一ジスタンォ キサン等が挙げられる。上記した群のうちカゝら単独で選ばれても良いし、上記した群 から選ばれる混合物であってもよ V、。
本発明で使用するジアルキルスズォキシド類は下式 (2)に示すジァルキルスズォキ シド類であって、下式 (2)に代表される構造式を示すが、単量体であっても会合体で あっても多量体であっても重合体であってもかまわな 、。一般に Sn=0と!/、つた二重 結合は形成されないので、ジァルキルスズォキシドは、単量体では存在せず、下記 式(15)に示すようなスズー酸素一スズを介した重合体で存在していることが知られて いる。
[化 13]
Figure imgf000019_0001
(式中、 R7及び R8は、それぞれ、ァノレキル基、ァラルキル基又はァリール基であり、同 一であっても、それぞれ異なっていてもよい。 e及び fは 0から 2の整数であって、 e+f は 2である。 )
[化 14]
Figure imgf000019_0002
(式中、 R16及 Ό¾17は、それぞれ上記 R7及 と同じ定義であり、 k及び 1は上記 e及 ぴ fと同じ定義である。 nは2以上の整数を表す。末端構造は不明であるので省略し ている。 ) 式(2)のジアルキルスズォキシドの R7と R8の例としては、メチル、ェチル、プロピル ( 各異性体)、プチル (各異性体)、ペンチル (各異性体)、へキシル (各異性体)、ヘプ チル (各異性体)、ォクチル (各異性体)、ノニル (各異性体)、デシル (各異性体)、ゥ ンデシル (各異性体)、ドデシル (各異性体)、 2—ブテュル、シクロブテエル、シクロブ チル、シクロペンチル、シクロへキシノレ、シクロペンチル、シクロペンタジェェノレ、シク 口へキセュル等の、炭素数 1から 12の脂肪族炭ィ匕水素基であるアルキル基や炭素 数 5から 12の脂環式炭化水素基であるシクロアルキル基、ベンジル、フエニルェチル 等の炭素数 7から 20のァラルキル基、フエエル、トリル、ナフチル等の炭素数 6から 20 のァリール基が挙げられる、またエーテル結合を含んでいてもよいし、ノナフ/レオロブ チル、ヘプタフルォロプチル (各異性体)などのように炭化水素基の水素の全部又は 一部がハロゲン原子に置換したハロゲン化炭化水素基であってもよ!/、が、これらに限 定されない。好ましくは、低級アルキル基であり、より好ましくは炭素数 1から 8の直鎖 状又は分岐状のアルキル基である。以上に示した炭素数以上のものも使用すること ができるが、流動性が悪くなつたり、生産性を損なったりする場合がある。
このようなジァルキルスズォキシドの例としては、ジメチル酸化スズ、ジェチル酸化ス ズ、ジプロピル酸化スズ (各異性体)、ジブチル酸化スズ (各異性体)、ジペンチル酸 化スズ (各異性体)、ジへキシル酸化スズ (各異性体)、ジヘプチル酸化スズ (各異性 体)、ジォクチル酸化スズ、ジシクロへキシル酸化スズなどのジアルキル酸化スズや、 ジトリル酸化スズ、ジフエ二ルェチル酸ィヒスズなどのジァラルキル酸ィヒスズ、ジフエ二 ル酸ィ匕スズ、ビス(2, 6—ジメチル一フエニル)酸化スズ、ジナフチル酸化スズなどの ジァリール酸化スズなどが挙げられる。上記した群のうち力 単独で選ばれてもよいし 、上記した群から選ばれる混合物であってもよい。
出発物質としては、式(1)で表されるテトラアルキルージアルコキシ一ジスタンォキ サンと式 (2)で表されるジァルキルスズォキシドが会合してレ、てもよ 、し、重合した状 態であってもよい。
上記出発物質の式(1)で表されるテトラアルキルージアルコキシ一ジスタンォキサ ンは、公知の方法で製造したものが使用できるし、また本発明の方法を使用して出発 物質を式 (2)で示されるジァルキルスズォキシド、反応物質を式 (3)で示したヒドロキ シ化合物として製造することもできる。
[0022] 本発明で使用する反応物質はヒドロキシ化合物であって、好ましくは下式 (3)で表 される 7レ 3—ノレである。
[化 15]
R9OH ( 3 )
(式中、 R9は、 n—ブチル基、 2-メチルプロピル基、直鎖状又は分岐状の炭素数 5 〜12のアルキル基、炭素数 5〜12のシクロアルキル基、直鎖状又は分岐状の炭素 数 2〜12のアルケニル基、無置換又は置換された炭素数 6〜19のァリール、及ぴ直 鎖状又は分岐状の炭素数 1〜14のアルキルと炭素数 5〜14のシクロアルキルからな る群から選ばれるアルキルを含む炭素数 7〜20のァラルキル基などを表す。)
[0023] 上記したヒドロキシ化合物の具体例としては、 1—プタノール、 2—メチルー 1一プロ パノーノレ、 2—メチノレー 2—プロパノール、シクロプタノーノレ、 1—ペンタノール、 2— ペンタノール (各異性体)、 3—ペンタノール、 3—メチルー 1—ブタノール、 2—メチル —1ーブタノール、 2_メチル一2—ブタノール (各異性体)、 2—メチルー 2—プタノー ル (各異性体)、 3—メチル一2—プタノール (各異性体)、シクロペンタノール、 2—メ チルー 1—シクロブタノール (各異性体)、 3ーメチルー 1—シクロブタノール (各異性 体)、 1ーメチルー 1 -シクロブタノール (各異 '性体)、シクロプチルメタノール (各異性 体)、 1一へキサノール、 2—へキサノール (各異性体)、 3—へキサノール (各異性体) 、 4一メチル一1一ペンタノール (各異性体)、 3—メチルー 1一ペンタノール (各異性 体)、 2—メチル一1—ペンタノール (各異性体)、 2—ェチル一1ーブタノール、 3—メ チルー 2—ペンタノール (各異性体)、 3—メチル—3—ペンタノール (各異性体)、シ クロへキサノール、 1一メチル _ 1ーシクロペンタノール(各異性体)、 2—メチルー 1一 シクロペンタノール (各異性体)、シクロブチルメタノール (各異性体)、 2—シクロブチ ルエタノーノレ (各異性体)、 1—シクロプチルエタノール (各異性体)、 (1一メチル一シ クロブチル)一メタノール (各異性体)、(2—メチルーシクロプチル)一メタノール (各異 性体)、ヘプタノール (各異性体)、シクロへキシルメタノール (各異性体)、(メチルー シクロへキシル)メタノール (各異性体)、シクロへキシルエタノール (各異性体)、 (ェ チル一シクロブチル)一メタノール (各異性体)、(メチルーシクロプロピル)エタノール (各異性体)、(工チル一シクロプロピル)メタノール (各異性体)、ォクタノール (各異 性体)、ノナノール (各異性体)、デカノール (各異性体)、ゥンデ力ノール (各異性体)
、ドデカノール (各異性体)、プロぺュルアルコール、プテニルアルコール (各異性体) 、ペンテ-ルァルコール(各異性体)、シクロペンテノール (各異性体)、シクロペンタ ジェニルアルコール、へキセノール (各異性体)、シクロへキセノール (各異性体)等 の炭素数 1から 12の脂肪族アルコールや炭素数 5から 12の脂環式アルコール、ベン ジルアルコール、フエニルエチルアルコール等のァラルキルアルコールが挙げられる これらのヒドロキシ化合物のなかで、 1ーブタノール、 2—ブタノール (各異性体)、 2 一メチル一 1—プロパノ一ル、 2—メチルー 2—プロパノール、シクロブタノール、 1一 ペンタノール、 2—ペンタノール(各異性体)、 3—ペンタノール、 3—メチノレー 1ーブタ ノール、 2一メチル一 1一ブタノール、 2—メチル一2—ブタノール (各異性体)、 2—メ チルー 2—ブタノール (各異性体)、 3—メチルー 2—ブタノール(各異性体)、シクロ ペンタノール、 2—メチル一1—シクロプタノール(各異性体)、 3—メチルー 1ーシクロ ブタノール (各異性体)、 1ーメチルー 1ーシクロプタノール (各異性体)、シクロプチル メタノール (各異性体)、 1—へキサノール、 2—へキサノール (各異性体)、 3—へキサ ノール (各異性体)、 4一メチル _ 1一ペンタノール (各異性体)、 3—メチルー 1一ペン タノール (各異性体)、 2—メチルー 1一ペンタノール (各異性体)、 2—ェチルー 1一 ブタノール、 3—メチルー 2—ペンタノール (各異性体)、 3—メチルー 3—ペンタノ一 ル (各異性体)、シクロへキサノール、 1ーメチルー 1ーシクロペンタノール (各異性体) 、 2—メチルー 1—シクロペンタノール (各異性体)、シクロブチルメタノール (各異性体 ) , 2—シクロプチルェタノール (各異性体)、 1—シクロブチルエタノール (各異性体) 、(1—メチル一シクロブチル)一メタノール (各異性体)、(2—メチノレーシクロブチル) —メタノール (各異性体)、ヘプタノール (各異性体)、シクロへキシルメタノール (各異 性体)、(メチルーシクロへキシル)メタノール(各異性体)、シクロへキシルエタノール( 各異性体)、(ェチルーシクロプチル)一メタノール(各異性体)、(メチル一シクロプロ ピル)エタノール (各異性体)、(ェチルーシクロプロピル)メタノール(各異性体)、オタ タノール(各異性体)、へキセノール等の炭素数 1から 8の 1級又は 2級一価アルコー ノレ、ベンジノレアルコール等の炭素数 7から 8の 1級又は 2級のァラルキルアルコール が好ましい。
更に好ましくは、上記した群のなかで常圧での沸点が、水よりも高い該アルキルァ ルコール、該ァラルキルアルコ一ルであって、ヒドロキシノレ基が結合している炭素が 一 CH2—〇Hとなる、 1級アルコールであることが好ましレ、。最も好ましいアルコール は、 1ーブタノール、 2—メチルー 1一プロパノール、炭素数 5から炭素数 8のアルキル アルコールである。これらヒドロキシ化合物は単独で用いてもよいし、上記群のなかか ら選ばれた混合物であってもよレ、。
これらの出発物質及び/又は反応物質に加えて他の有機金属化合物、無機金属 化合物をカ卩えてもょレ、し、溶媒を加えて使用してもょレ、。
次に、本発明で生成するジアルキルスズアルコキシドについて説明する。
本発明で製造されるジアルキルスズアルコキシドは、上記した出発物質と反応物質と を反応して得られるジアルキルスズアルコキシドである。
本発明で製造されるジアルキルスズアルコキシドは、下式 (22)に代表される構造 式を示すテトラアルキルージアルコキシ一ジスタンォキサン及び下式(16)に代表さ れる構造式を示すジアルキルスズジアルコキシドであり、これらは単量体、会合体、多 量体又は重合体であってもかまわなレ、。
[化 16]
Figure imgf000023_0001
'訂正された用紙 (規則 91) [化 17]
Figure imgf000024_0001
(式 (22)及ぴ (16)中、 R22、 R23、 R25、 Rz R18、及ひ 19はそれぞれ出発物質の R1 、 R2、 R R5、 R 又は R8のいずれかに対応し、 RM、 R27、 R2°、及び R21はそれぞれ 出発物質及び反応物質に対応して R3、 R6、及び R9から選ばれる (但し、 R24及び R27 の少なくとも 1つは R9である)。 q、 r、 s、 t、 m、 nは出発物質に依存し、 0から 2の整数 であって、 q+rは 2、 s+tは 2、 m+nは 2である。 oおよび pは 0から 2の整数であって 、 o+pは 2である。 )
[0025] 上記した式 (22)で代表されるテトラアルキル一ジアルコキシ一ジスタンォキサンは 、出発物質と反応物質とから得られるテトラアルキル—ジァルコキシ—ジスタンォキサ ンであって、 R22、 R23、 R25、及ひ 26の例としては、式 (1)及び/または式 (2)の化合 物を含んだ反応物質の場合は、
Figure imgf000024_0002
R2、 R4、 R5、 R R8のいずれかに対応し、 R24及び R27は、式 (1)及び/又は式 )で示した R3、 R6 、又は R9のいずれかに対応する (但し、 R24及ひ^ R27の少なくとも 1つは R9である)。こ のようなテトラアルキル—ジアルコキシ—ジスタンォキサンの例は前記した式(1)で表 されるテトラアルキル一ジアルコキシ一ジスタンォキサン類と同じである。
上記した式(16)で代表されるジアルキルスズジアルコキシドは、出発物質と反応物 質と力 得られるジアルキルスズジアルコキシドである。
[0026] 式(16)のジアルキルスズォキシドの R18及ひ Ί 19の例としては、式(1)及び/又は 式 (2)の化合物 んだ反応物質の場合は、式 (1)及び/又は式 (2)で示し f R1 R2、 R4、 R5、 R7、又は R8のいずれかに対応し、 R2°及ひ 21は、式(1)及び/又は式( 3)で示した R3、 R6、又は R9のいずれかに対応する (伹し、 R2°及ひ Ί 21の少なくとも 1 つは R9である)。
このようなジァルキルスズジアルコキシドの例としては、ジメチノレ一ジ (n—ブトキシ) 一スズ、ジメチルービス(2—メチルプロピルォキシ)—スズ、ジメチルージーペンチル ォキシースズ (各異性体)、ジメチルージ一へキシルォキシ一スズ (各異性体)、ジメ チルージ—へプチルォキシースズ (各異性体)、ジメチルージーォクチ/レオキシース ズ (各異性体)、ジメチルージ—ノニルォキシースズ (各異性体)、ジメチルージーデ シルォキシ—スズ (各異性体)、ブチルーメチル一ジ (n—ブトキシ)一スズ、プチルー メチノレ一ビス(2—メチルプロピルォキシ)ースズ(各異 '性体)プチルーメチルージーぺ ンチルォキシースズ (各異性体)、ブチルーメチルージへキシルォキシースズ(各異 性体)、ブチル一メチルージ一へプチルォキシースズ (各異性体)、ブチルーメチル ージーォクチルォキシースズ (各異性体)、ェチル—プチルージ (n—ブトキシ)ース ズ、ェチループチルービス(2—メチルプロピルォキシ)一スズ、ェチループチル一ジ 一ペンチルォキシースズ(各異性体)、ェチル—ブチルージーへキシルォキシースズ (各異性体)、ェチルーブチル一ジ一へプチルォキシースズ (各異性体)、ェチル— ブチルージーォクチルォキシースズ (各異性体)、プチループ口ピルージ (n—ブトキ シ)一スズ、プチループ口ピル一ビス(2—メチルプロピルォキシ)一スズ、プチループ 口ピル—ジーペンチルォキシースズ (各異性体)、プチループ口ピルージ一へキシル ォキシースズ (各異性体)、ブチループ口ピル—ジ—へプチルォキシースズ (各異性 体)、プチループ口ピル—ジーォクチルォキシースズ (各異性体)、ジブチルージ (n 一ブトキシ)一スズ、ジブチルー 、ス(2—メチルプロピルォキシ)一スズ、ジプチルー ジーペンチ/レオキシースズ (各異性体)、ジブチル—ジ一へキシルォキシースズ (各 異性体)、ジプチルージ一へプチルォキシースズ (各異性体)、ジプチルージーオタ チルォキシースズ (各異性体)、ジプチルージ一ノ-ルォキシースズ (各異性体)、ジ ブチルージーデシルォキシースズ (各異性体)、ジブチルージ一べンジルォキシース ズ、ジブチル一ジーフエエルエトキシースズ、ジフエ二ルージ (n—ブトキシ)一スズ、 ジフエニノレービス(2—メチルプロピルォキシ)—スズ、ジフエ二ル一ジ一ペンチルォ キシースズ (各異性体)、ジフエ二ル―ジ一へキシルォキシ—スズ (各異性体)、ジフエ 二ルージ一へプチルォキシースズ (各異性体)、ジフエ二ルージーォクチルォキシ— スズ (各異性体)、ジフエ二ルージ一ノ二/レオキシースズ (各異性体)、ジフエ二ルージ 一デシルォキシースズ (各異性体)、ジフエ二ル一ジ一ベンジルォキシースズ、ジフエ ュル一ジーフエニルェトキシースズ、ジ (n—ブトキシ)ージートリフルォロブチルース ズ、ビス(2—メチルプロピルォキシ)ージートリフルォロブチルースズ、ジペンチルォ キシージ一トリフルォロブチルースズ (各異性体)、ジへキシルォキシ—ジートリフル ォロブチルースズ (各異性体)、ジへプチルォキシージ一トリフルォロブチルースズ( 各異性体)、ジォクチルォキシージ—トリフルォロブチル—スズ (各異性体)、ジノエル ォキシージ一トリフルォロブチルースズ (各異性体)、ジデシルォキシ一ジ一トリフル ォロブチルースズ (各異性体)、ィベンジルォキシージ一トリフルォロブチルースズ、 ジフエニルェトキシ一ジ一トリフルォロブチルースズ、ジ(n—プトキシ)ージ一ペンタフ ルォロブチルースズ、ビス(2—メチルプロピルォキシ)一ジ一ペンタフ/レオ口プチル ースズ (各異性体)、ジペンチ/レオキシージーペンタフルォロブチルースズ (各異性 体)、ジへキシルォキシージ一ペンタフルォロプチルースズ (各異性体)、ジヘプチル ォキシ一ジーペンタフルォロブチル一スズ (各異性体)、ジォクチ/レオキシージーぺ ンタフルォロブチルースズ (各異性体)、ジノ二/レオキシージーペンタフ/レオロブチル —スズ (各異性体)、ジデシルォキシ―ジ一ペンタフ/レオ口プチルースズ (各異性体) 、ジベンジルォキシージーペンタフ/レオロブチルースズ、ジフエニルェトキシ一ジ一 ペンタフルォロプチルースズ、ジ(n—ブトキシ)一ジーヘプタフルォロブチルースズ、 ビス(2—メチルプロピルォキシ)一ジーヘプタフルォロブチル一スズ (各異性体)、ジ ペンチ/レオキシージーヘプタフルォロプチルースズ (各異性体)、ジへキシルォキシ ージ一ヘプタフルォロブチルースズ (各異性体)、ジへプチルォキシージ一ヘプタフ ルォロブチルースズ (各異性体)、ジォクチルォキシージ一ヘプタフルォロプチル一 スズ (各異性体)、ジノ-ルォキシージ—ヘプタフルォロブチルースズ (各異性体)、 ジデシ/レオキシージ一ヘプタフルォロプチルースズ (各異性体)、ジベンジルォキシ —ジーヘプタフルォロプチノレ一スズ、ジフエニルエトキシージ一ヘプタフ/レオ口プチ ルースズ、ジ (n—ブトキシ)一ジ―ノナフルォロブチルースズ、ビス(2—メチルプロピ ルォキシ)一ジーノナフルォロブチルースズ、ジペンチルォキシージ一ノナフルォロ ブチルースズ (各異性体)、ジへキシルォキシ一ジーノナフルォロブチルースズ (各異 性体)、ジへプチルォキシージーノナフルォロプチルースズ (各異性体)、ジォクチル ォキシ一ジーノナフルォロブチル一スズ (各異性体)、ジノニルォキシージ—ノナフル ォロブチル—スズ (各異性体)、ジデシルォキシージーノナフルォロブチルースズ (各 異性体)、ジベン 3ジルォキシージーノナフルォロブチルースズ、ジフエニルエトキシ一 ジーノナフルォロプチ % 4ル-スズなどが挙げられる。
次に、本発明で使用する出発物質及ぴ反応で得られる化合物の分析方法につい て説明する。
式 (1)、式 (7)、式 (22)及ぴ式(16)で示されるアルキルスズアルコキシドの分析方 法としては、 119Sn— NMRによる方法などが使用できる。この方法はアルキルスズァ ルコキシドを分析する公知の方法 (例えば、米国特許第 5, 545, 600号)である。た だし、式(16)で代表して示されるジァルキルスズジアルコキシド構造の119 Sn— NM Rのシフト値は、サンプル中での式(16)の有機金属化合物の濃度やアルコールの 存在などによって大きく変化するので1 H— NMR、13C— NMRを併用して決定するこ とが好ましい。例として反応物質が 2—ェチルー 1一へキサノールと出発物質としてジ ブチル酸化スズを使用して合成した式(16)のアルキルスズアルコキシドの構造に相 当する119 Sn— NMRのシフト値を表 1に示す。
a 表 1
2—ェチルー 1一へキシルォキシ基を有する式 (1 6 ) の
有機金属化合物の液中濃度と1 1 9 S n— NMRシフト値 lig S n— NMRデータ
δ ρ ρ m
Figure imgf000027_0001
2 . 7 注:シフト値( δ )はテトラメチルスズ (SnMe4)に対する値である,
濃度は重クロ口ホルム (CDC13)中の重量濃度 (wt%)である。
以下、工程について詳しく説明する 本発明は、化学式(1)で表されるテトラアルキルージアルコキシ一ジスタンォキサン 、化学式(2)で表されるジアルキルスズォキシド、及ぴそれらの混合物、会合物、重 合物からなる群から選ばれる出発物質と、化学式(3)で表される反応物質であるヒド ロキシ化合物とを脱水反応に付し、出発物質と反応物質とに対応する、化学式 (22) 及びノ又は化学式(16)で表されるアルキルスズ.アルコキシド類を得ることを含むァ ルキルスズァルコキシド類の製造方法にお V、て、反応器に出発物質と反応物質を連 続的に供給し、反応器から水を含む低沸点成分を取り出し、反応器底部成分として 化学式(22)及び/又は化学式(16)で表されるアルキルスズアルコキシド類を含む 反応液を連続的に取り出すことを特徴とする上記方法である。
反応器に供給する出発物質と反応物質はそれぞれ別々に反応器に供給してもよい し、反応器に供給する前に混合しておいてもよい。出発物質が固体である場合には 加熱して液状にして供給してもよいし、反応物質及び Z又は溶媒を用いて液状、スラ リー状にして供給してもよい。出発物質と反応物質はそれぞれ連続的に供給しても断 続的に供給してもよい。
本発明の出発物質と反応物質との反応は下式(17)及び Z又は下式(18)に基づ くものと推定している。
[化 18]
2 + H20 ( 1 7 )
Figure imgf000028_0001
•H20 ( 1 8 )
Figure imgf000028_0002
本発明により、上記式(17)及び Z又は上記式(18)に従って出発物質と反応物質 とから脱水反応を行って、反応器から水を含む低沸点成分を除去し、反応器底部か らテトラアルキル一ジアルコキシ一ジスタンォキサン及び/又はジアルキルスズジァ ルコキシドを連続的に得ることができる。
上記式と共に、テトラアルキル一ジァルコキシ一ジスタンォキサンを出発原料とした場
IT正された^紙 (規則 91》 合で、該ジスタンォキサンのアルコキシ基に相当するヒドロキシ化合物と異なったヒド 口キシィ匕合物を反応物質として使用した場合は、下記式 (19)に推定されるアルコキ シ交換反応による生成物を伴う場合がある。
[化 19]
+ 2 ROH ( 1 9 )
Figure imgf000029_0001
本発明において、脱水反応の反応器の形式に特に制限はなく、公知の槽状、塔状 の反応器が使用できる。水を含む低沸点反応混合物はガス状で蒸留によって反応 器から抜き出し、製造されるアルキルスズアルコキシド又はアルキルスズアルコキシド 混合物を含む高沸点反応混合物を反応器下部から液状で抜き出せればよ Vヽ。この ような反応器として、たとえば攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、多管式反 応器、連続多段蒸留塔、充填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制 循環反応器、落膜蒸発器、 蒸発器、細流相反応器、気泡塔のいずれかを含む 反応器を用いる方式、及びこれらを組み合わせた方式等、公知の種々の方法が用い られる。平衡を生成系側に効率的にずらすという点で、塔状の反応器を用いる方法 が好ましく、また形成される水を気相にすみやかに移動させられる気一液接触面積 の大きな構造が好ましい。多管式反応器、多段蒸留塔、充填剤を充填した充填塔を 用 ヽた連続法が特に好まし V、。
多段蒸留塔とは、蒸留の理論段数が 2段以上の多段を有する蒸留塔であって、連 続蒸留が可能なものであるならばどのようなものであってもよ!/ヽ。このような多段蒸留 塔としては、例えば泡鍾トレイ、多孔板トレイ、パルブトレイ、向流トレイ等のトレィを使 用した棚段塔方式のものや、ラシヒリング、レッシングリング、ポールリング、ベルルサ ドル、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、ヘリパック、 スルザ一パッキング、メラパック等の各種充填物を充填した充填塔方式のものなど、 通常多段蒸留塔として用いられるものならばどのようなものでも使用することができる 。充填塔は塔内に上記した公知の充填剤を充填した充填塔ならばどのようなものでも 使用することができる。充填剤は脱水性能をもったものでもかまわな 、。 [0031] たとえばモレキュラーシーブなどの充填剤が好ましく使用できる。さらには、棚段部 分と充填物の充填された部分とをあわせもつ棚段一充填混合塔方式のものも好まし く用いられる。該反応器には、該出発物質と該反応物質を供給するためのそれぞれ のライン又は該出発物質と該反応物質の混合液を供給するためのライン、及び水を 含む低沸点反応混合物を抜き出すためのライン、及び高沸点反応混合物を抜き出 すためのラインを備えて tヽることが好ましく、該水を含む低沸点反応混合物を抜き出 すためのラインは、反応器中の気相成分を抜き出せる位置にあり、該髙沸点反応混 合物を抜き出すためのラインが下方にあることが特に好まし Vヽ。連続法を実施する場 合、出発物質と反応物質とを反応器内に連続的あるいは断続的に供給し、該反応器 内において液相又は気—液相で両物質間の脱水反応を行わせると同時に、製造さ れるアルキルスズアルコキシドを含む高沸点反応混合物を該反応器の下方から液状 で抜き出し、一方生成する水 ^"む低沸点反応混合物を蒸留によって該反応器から ガス状で連続的に抜き出すことによりアルキルスズアルコキシドが製造される。
また、不活性ガス及び/又は、気体状及び Z又は液体状の反応物質を該反応器 下方から供給するラインを別途取り付けてもよ ヽし、生成した高沸点反応混合物の一 部又は全部を再^ K応器に循環させるラインを取り付けてもよい。反応器から抜き出 した水を含む低沸点反応混合物などを蒸留塔など公知の方法も用いて精製し、共沸 及び Z又は同伴された反応物質などをリサイクル使用してかまわない。使用する原 料によってはスラリー状であったり、常温 (20°C)で固形であったり、粘度が高かったり する場合があるので、それぞれのラインは詰まり等を考慮したり、保温、冷却、加熱す る設備を付力!]してあよ 1/、。
本発明によってアルキルスズアルコキシドを製造する際、本発明の条件を満足する 反応器は 1基用いてもよいし、又は 2基以上組み合わせて用いても構わない。また本 発明の条件を満足する反応器と他の反応器を組み合わせてアルキルスズアルコキシ ドを製造することも可能である。例えば、ジァルキルスズォキシドとアルコールとからバ ツチ反応で一部のみアルキルスズアルコキシドを製造し、その反応液を本発明の条 件を満足する反応器を用いて反応させる方法等は、本発明の態様の一部である。
[0032] 本発明で用いることのできる反応器の具体例について図を用いて説明するが、本 発明で用いることのできる反応器は、これら具体例に琅定されるものではない。必要 に応じて流量計、温度計などの計装機器、リボイラ一、ポンプ、コンデンサー、蒸留塔 などの公知のプロセス装置を付加してもよい、加熱はスチーム、ヒーターなどの公知 の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。 図 2は、塔型の反応器の正面力 見た断面図である。塔型反応器は充填剤を詰め た充填塔であっても、多段蒸留塔であっても、その他の塔型の反応器であっても力ま わない。ここでは充填剤を詰めた充填塔で説明する。出発物質と反応物質の混合液 は供給ライン 4から、反応器 1へ導入されるか、あるいは出発物質を供給ライン 4から 供給し、反応物質を供給ライン 8から反応器 1に導入する。また不活性ガスはガス供 給ライン 7から導入される。導入された出発物質と反応物質は反応器内部で分散され る。該混合液は反応器内部の充填剤等に沿って下方に流れながら、水が蒸発する。 反応器内部は減圧、常圧、加圧状態にコントロールされており、ガス供給ライン 7から 必要に応じて供給される不活性ガス及び Z又は反応物質のガスや反応で形成され る水を含む低沸点成分などは、反応器上方 2から抜き出しベントライン 5から排出され る。反応器内部で生成物であるアルキルスズアルコキシドの濃度を高められた反応 液は反応器下方 3から抜き出しライン 6から排出される。必要に応じて充填塔、それぞ れのラインはジャケットやヒーターなど公知の方法で加熱、冷却する。
図 3は、槽型反応器と塔型の反応器を組み合わせた反応器を正面から見た断面図 である。槽型反応器は攪拌槽であっても循環槽であっても、その他の槽型の反応器 であっても力、まわない。ここでは攪拌槽で説明する。塔型反応器は充填剤を詰めた 充填塔であっても、多段蒸留塔であっても、その他の塔型の反応器であってもかまわ ない。ここでは充填剤を詰めた充填塔で説明する。反応物質は供給ライン 15から攪 拌槽 9へ導入し、出発物質を供給ライン 16から攪拌槽に導入する。導入された出発 物質と反応物質は攪拌槽で分散される。該混合液は攪拌槽内で加熱されながら、水 が蒸発する。攪拌槽内部は減圧、常圧、加圧状態にコントロールされており、ガス供 給ライン 18から必要に応じて供給される不活性ガス及ぴ Z又は反応物質のガスや反 応で形成される水を含む低沸点成分などは、攪拌槽上方 11から抜き出しベントライ ン 17から排出される。 攪拌槽内部で生成物であるアルキルスズアルコキシドの濃度を高められた反応液 は攪拌槽下方 12から移送ライン 19よりバッファー槽 24に移送され、バッファー槽から 中継ライン 25で塔型反応器に移送される。中継ライン 25から反応器 10に導入された ジアルキルスズアルコキシドを含む液は反応器内部の充填剤等で分散される。該液 は充填剤等に沿って下方に流れながら、水が蒸発する。反応器内部は減圧、常圧、 加圧状態にコントロールされており、ガス供給ライン 20力 必要に応じて供給される 不活性ガス及び/又は反応物質のガスや反応で形成される水を含む低沸点成分な どは、反応器上方 13から抜き出しベントライン 21から排出される。反応器内部でジァ ルキルスズアルコキシドの濃度を高められた反応液は反応器下方 14から抜き出しラ イン 23から排出される。反応物質は必要に応じて供給ライン 22から補填してもよい。 また、必要に応じて攪拌槽、充填塔、それぞれのラインはジャケットやヒータ一など公 知の方法で加熱、冷却する。
[0034] 反応器及びラインの材質は、出発物質や反応物質に悪影響を及ぼさなければ、公 知のどのようなものであってもよレヽが、 SUS304や SUS316, SUS316Lなど力 S安価 でもあり、好ましく使用できる。
本発明で行われる脱水反応の反応時間 (連続法の場合は滞留時間)に、特に制限 なく通常 0. 001〜50日寺! ¾、好ましく ίま 0. 01 〜10Β寺 、より好ましく ίま 0. l〜2Ei寺 間である。
反応温度は、用レ、る原料化合物の種類によって異なる力 通常 50〜350°C、好ま しくは 60〜: I60°Cの範囲である。反応温度を一定にする目的で、上記反応器に公知 の冷却装置、加熱装置を設置してもよい。また反応圧力は、用いる原料化合物の種 類や反応温度などにより異なる力 減圧、常圧、加圧のいずれであってもよぐ通常 0 . 1〜2. 0 X 107Paの範囲である。本発明においては、必ずしも反応溶媒を使用する 必要はないが、反応操作を容易にする等の目的で適当な不活性溶媒、例えば、エー テル類、脂肪族炭化水素類、芳香族炭化水素類等を反応溶媒として用いることがで さる。
[0035] 反応時間と反応温度について更に詳しく説明する。
本発明の特徴は、ジアルキルスズォキシド、テトラアルキルージアルコキシ一ジスタ
酊正きれた ¾紙 (規則 9υ ンォキサン及びそれらの混合物カゝらなる群から選ばれる出発物質と、反応物質であ るヒドロキシ化合物とを反応器に連続的に供給し、反応器から反応によって発生した 低沸点成分を取り出し、反応器底部成分として出発物質と反応物質とに対応するァ ルキルスズアルコキシド類を含む反応液を連続的に取り出すことにある。本発明によ れば、従来の方法とは異なり、非常に生産効率よく目的とするアルキルスズアルコキ シドを生産できる。更に驚くべきことには、平衡反応である脱水反応を本発明によつ て促進させることのみでなく、アルキルスズアルコキシドの熱反応によるトリアルキルス ズィ匕合物の生成を著しく低減できることである。
本発明の方法で、脱水反応を以下の条件で実施することにより、脱水反応時に副 反応として生成するトリプチルスズ化合物を、出発物質に含まれるスズ原子のモル数 に対するモル0 /。で表して lmol%以下とすることができる。もちろん出発物質にトリブ チルスズ化合物が含まれている場合には、この範囲を超える場合があるので、予め 除去する力 \許容されるトリプチルスズ化合物の範囲となるように出発物質中のトリブ チルスズ化合物含有量を調整する必要がある。また、トリプチルスズ化合物は脱水反 応時のみでなぐ熱反応によって進行するので、トリプチルスズ化合物の副生を抑制 したい場合は、配管などの滞留時間は短ぐまた温度は低くすることが好ましく、脱水 反応器以外の設備によってトリプチルスズ化合物量の調整してよい。
出発物質として、化学式(1)で表すテトラアルキル一ジァルコキシ一ジスタンォキサ ン及び/又はィ匕学式 (2)で表すジアルキルスズォキシドと、反応物質である化学式 ( 3)で表すアルコールとから、アルキルスズアルコキシドを製造する場合、下記式 (4) によって定められる脱水速度以上で脱水反応を行うことによって、トリプチル化合物 の極めて少ない化学式 (22)及び/又は化学式 (16)で表すアルキルスズアルコキシ ドを得ることができる。化学式 (2)で表すジァルキルスズォキシドと化学式 (3)で表す アルコールの混合液を用いてもよいが、溶解性や混合液の輸送等の観点から、化学 式(1)で表すテトラアルキルージアルコキシ一ジスタンォキサンとィ匕学式 (3)で表す アルコールを用 、ることが好まし 、。
園 60Χ+10Γ
脱水速度 > ( 4 )
Figure imgf000034_0001
(式中、脱水速度は脱水反応で形成される水のうち、単位時間当りに系外に抜き出 す水量 [mol'hr— を表し、 Xは出発物質に含まれる一般式 (2)で表されるアルキル スズィヒ合物中のスズ原子モル数の合計 [mol]を表し、 Yは出発物質に含まれる化学 式(1)で表されるアルキルスズ化合物中のスズ原子モル数 [mol]を表し、 Tは脱水反 応温度 [K]を表し、 Rは気体定数
Figure imgf000034_0002
A及び Bはアルキ ルスズィ匕合物の種類に依存する係数である;ここで
上記式 (4)の係 ¾Α及び Bは出発物質であるアルキルスズ化合物の種類に依存し 、基準物質を定めて求める係数である。出発物質に化学式(1)で表されるアルキル スズ化合物が含まれる場合は、上記 Α及び Βはそれぞれ出発物質に含まれる化学式 (1)で表されるアルキルスズ化合物力も任意に選ばれるアルキルスズ化合物を基準 物質として、該基準物質の熱分解反応の頻度因子及び活性ィヒエネルギーを表すも のであって、下記式 (5)で得られる A及ぴ Bであり、そして出発物質に化学式 (1)で 表されるアルキルスズ化合物が含まれず、化学式 (2)で表されるアルキルスズ化合物 が含まれる場合は、 A及ぴ Bはそれぞれ出発物質に含まれる化学式 (2)で表される アルキルスズ化合物と反応物質とから形成される下記化学式 (7)で表されるアルキル スズアルコキシドから任意に選ばれるアルキルスズアルコキシドを基準物質として、該 基準物質の熱分解反応の頻度因子及び活性化エネルギーを表すものであって、下 記式 (5)で得られる A及ぴ Bである。
5]
Figure imgf000035_0001
(式中、 kは 1次反応速度定数 [hr— 、 Aは頻度因子 [hr— 、 Bは活性化エネルギー D'mol—1] Rは気体定数 =8. ΒΙ^-πιοΓ'-Κ"1, Tは熱分解反応温度 [K]を表す 。上記 kは該熱分解反応の 1次反応速度定数を表し、下記式 (6)で得られる kである
[数 6]
Figure imgf000035_0002
(式中、 kは 1次反応速度定数 [hr_1]、 tは加熱時間、 X[hr]は基準物質の初期濃度 に対する減少率 [mol/mol]を表す。 )
[化 20]
Figure imgf000035_0003
(式中、 R1Q、 Ru、 R13及び R14は出発物質の R7又は R8のいずれかに対応し、 g、 h、 i 及び jは出発物質の e又は fのいずれかに対応し、 R1215の少なくとも 1つは、反 応物質の R9に対応する。 )
上記式 (5)で定めた脱水速度以上の脱水速度で反応を行えば、トリアルキルスズ 化合物の少ないアルキルスズアルコキシドを得ることができるが、化学式 (16)で表す アルキルスズアルコキシドをより多く得るためには、下記式 (20)に示す脱水速度以 上で反応を行うすることがより好ましヽ。
Figure imgf000036_0001
(式中、 X、 Y、 A、 B、 R、 Tは式(5)で前記したものと同一の意味を表し、 Α、 Βは式( 5)と同様にそれぞれ式 (5)、式 (6)を用いて求める。 )
上記した熱分解反応とは下記式 (21)で示す反応を代表として含む、化学式 (1)及 ぴ Ζ又は化学式 (7)で示されるようなテトラアルキルージアルコキシ—ジスタンォキサ ンの減少反応である。具体的には、化学式(1)及ひン又は化学式 (7)を含む液を窒 素雰囲気攪拌下、液の温度を一定とした状態で、化学式 (1)及び Ζ又は化学式 (7) の減少量の経時変化を、 u9Sn— NMR測定法で経時的に測定して、上記式 (6)及 び式 (5)で反応速度 析する。ここで!/ヽぅテトラアルキルージアルコキシ一ジスタン ォキサンは、式 (21)では単量体として記述しているが、もちろん 2量体、会合体、多 量体、又は重合体であってもかまわない。
[化 21]
Figure imgf000036_0002
該熱分解反応の加熱温度は 100°Cカゝら 200°Cまでの任意の温度 (例えば 120^、 140°C、 160Όなど)である。該熱分解反応系中、化学式 (1)及び/又は化学式 (7) で表される化合物の含有量は 95%以上である。該熱連反応は、化学式 (1)及ぴ /又は化学式 (7)の分解を促進するような物質 (例えば酸素や水分など)の影響を受 けないような条件下で、加熱して実施される熱分解反応である。上記式 (21)に従つ た加熱による化学式 (1)及ぴ Z又は化学式 (7)に相当する化合物の減少量は、 n9S n— NMRで経時的に測定される。熱分解物はどのようなものか定義はできないが、ト リアルキルスズアルコキシドを含有する熱分解物である。
また、塩素含有化合物を原料として用いていないために、本発明に従って、式 (4) に定める脱水速度以上で実施されたアルキルスズアルコキシドは、トリアルキルスズ ィ匕合物及び塩素含有ィ匕合物の含有率の著しく低いものとなる。塩素化合物は、出発 物質に含まれている場合があるが、原理的に本発明の方法によれば出発物質以上 に塩素化合物が増加することはなく、高純度のアルキルスズアルコキシドを得ることが でさる。
使用する反応物質の量は、出発物質に対して過剰量であれば化学平衡を生成物 側に有利に進めることができる力 反応器から取り出したアルキルスズアルコキシドを 含む液からアルキルスズアルコキシドの濃度を高めようとすれば、過剰の未反応のヒ ドロキシィ匕合物を留去しなければならな ヽのでエネルギー効率が低くなる。逆に反応 物質の量が少なければ、未反応の出発物質を多く回収することになる。従って出発 物質と反応物質の比率は、出発物質中に含まれるスズ原子の合計モル数と、反応物 質のモル比が 3から 200の範囲である力 反応器底部から取り出されるジァルキルス ズァルコキシドの濃度を高くしょうとすれば、好ましくは 3から 100であり、更に好まし い範囲は 3から 10である。
本発明では、系内から反応によって形成された水と生成したアルキルスズアルコキ シドを速やかに系外へ除去することに特徴がある。前記したように、本発明者らは従 来のパッチ方式では、形成された水が系内で速やかに生成したアルキルスズアルコ キシドと逆反応してしまうことで生産性を損ねていると推定した。本発明は、反応液中 で形成された遊離水を速やかに気相へ移行させ、更に反応器から除去し、同時に生 成したアルキルスズアルコキシドを系外へ抜き出して生産性を向上させる方法を提供 するものである。該反応で形成された遊離水は、系内の気一液平衡によって反応液 中から気相へ移動すると推定される。
本発明の製造方法は、この気一液平衡に依存する水の移動を、反応液の比表面 積を増大させて速やかにさせ、同時に生成したアルキルスズアルコキシドをも系外へ 抜き出すことで、式 (13)及ぴ Z又は式 (14)に推定される平衡反応において、原系 へ戻る逆反応を抑制することを目的としている。従って、前記した槽型及び/又は塔 型の反応器にぉレ、て、形成される水を速やかに気相へ移動させる目的で、反応器内 部での液状成分は反応器の空隙容積の 2/3以下となることが好ましぐ更に好ましく は 1Z3以下である。
[0040] 「系内」とは、反応器、反応器周辺の配管及び機器、回収系の機器及び配管等の 内部を示す。本発明の「高沸点反応混合物」とは、反応器に供給する高沸物質を含 む液や、反応器中の高沸物質を含む反応液、反応器から排出される高沸物質を含 む反応液、及びその反応液の一部を蒸発させ、高沸物質の濃度を高めた濃縮液等 を意味し、高沸物質が溶解している場合もあり、スラリー状になってレ、る場合もある。 スラリー状の場合には、スラリー中の溶解していない部分も「高沸点反応混合物」に 含まれる。
本発明で言う高沸物質とは、その沸点が本発明で製造するアルキルスズアルコキ シドの沸点と同じであるか又は高い有機物質を指し、例えば、反応して生成する高分 子量の副生物も同様に高沸物質として挙げられる。
本発明でレ、う「水を含む低沸点成分」とは、反応で形成される水や、反応物質の一 部を指し、沸点が本発明で製造するアルキルスズアルコキシドの沸点よりも低レ、有機 物質を指し、例えば、反応して生成する低分子量の副生物も同様に低沸物質として 挙げられる。また不活性ガスや有機溶媒を使用した場合には有機溶媒の一部も低沸 成分として挙げられる。
[0041] 本発明において、出発物質と反応物質を反応させてアルキルスズアルコキシドを製 造するにあたり、反応にともなって水が生成してくる力 これを反応系外へ除去するこ とによって反応速度が高められる。不活性ガスを供給することによって、反応により生 じる水を含む低沸点成分の分圧を効率的に下げ、これにより反応を進行させるもの である。従って、窒素、アルゴン、ヘリウム、二酸化炭素や低級炭化水素ガスなど反 応に悪影響を及ぼさなレ、不活性ガスを導入して、生成してくる水を含む低沸点成分 をこれらのガスに同伴させて除去する方法や、系内で生成する水を抜き出しやすくす るために適当な圧力に設定して、反応温度における水又は水を含む共沸成分が蒸 気圧をもつ圧力、即ち水又は水を含む共沸成分が液相から気相へ移動できる圧力
訂正された招紙 (纖 1191) で反応を行うことが好ましレ、。
不活性ガスとして上記したうちの二酸ィヒ炭素は、生成したアルキルスズアルコキシド と反応して、該アルキルスズアルコキシドのニ酸ィヒ炭素挿入体や、該揷入体から少量 の炭酸エステルを生成する場合もあるが、特に悪影響を与えないため、不活性ガスと した。また、式(13)及び/又は式(14)に示したように、反応は反応物質であるヒドロ キシ化合物濃度を高めることによつても化学平衡を生成物側に有利に進めることがで きる。
即ち、上記反応器内部では、反応が進行するに従って反応物質のヒドロキシ化合 物はアルキルスズアルコキシドのアルコキシ基として消費されるので、ヒドロキシィ匕合 物濃度は低下する傾向になる。従って、反応器の下方からも反応物質を供給し、ある いは反応物質ガスを供給して反応物質であるヒドロキシィヒ合物濃度を高めることで、 あるいは、ヒドロキシ化合物ガスを反応器下方力 供給することで、上記した不活性ガ スの効果と同様に生成してくる水を含む低沸点成分を同伴させて系外へ除去する効 果がある場合がある。
もちろん、不活性ガスと共にヒドロキシィヒ合物又はヒドロキシィ匕合物ガス、不活性な 気体状の有機化合物及び/又は、水と共沸混合物を形成する有機溶媒や気体状の 該有機溶媒を反応器下方から供給してもよ!/、。流通する不活性ガスや反応物質ガス としては、酸素や含水量ができるだけ低いガスが好ましい。この場合、ガスをモレキュ ラーシーブ等やイオン交換樹脂、脱酸素剤等を充填した層に流通させてもよぐガス を極低温に冷却することにより脱水して使用することもできる。流通ガスの含水量を露 点で示すと、好ましくは一 10°C以下、より好ましくは一 40°C以下である。反応器下方 カゝら不活性ガスを該反応器下方カゝら供給する場合、不活性ガスの供給量に特に制 限はなぐ反応器の種類や構造、サイズによって異なる。蒸留塔を反応器として使用 する場合には例えばフラッデイングが激しく起こらないように、適宜調節する。
本発明で製造されたアルキルスズアルコキシドは、そのまま使用することもできるし 、濃縮、希釈又はその他の成分を添加して使用することができる。
アルキルスズアルコキシドは、ジアルキル炭酸エステル、アルキルァリール炭酸エス テル、ジァリール炭酸エステルなどの炭酸エステル類、イソシァネート類、ポリカーボ T正された 紙 (細!] 91) ネート類の製造触媒として知られて!/ヽる。本発明で製造されるジアルキルスズアルコ キシドは高純度、低コストであって、これらジァルキル炭酸エステル、アルキルァリー ル炭酸エステル、ジァリール炭酸エステルなどの炭酸エステル類、イソシァネート類、 ポリカーボネート類を工業的に有利に製造できる。
即ち本発明で製造されたアルキルスズアルコキシドはトリブチルスズ化合物及ぴ塩 素ィ匕合物が極めて少な ヽアルキルスズアルコキシドであると ヽぅ特徴を有する。ジァ ルキルスズァルコキシドは、ジアルキル炭酸エステル、アルキルァリール炭酸エステ ル、ジァリール炭酸エステルなどの炭酸エステル類、イソシァネート類、ポリカーボネ ート類の製造触媒、エステル合成触媒、エステル交換反応触媒、シリコンポリマーや ウレタン硬化触媒等の触媒として極めて有用である。
一般に、トリアルキルスズ化合物のいくつかは毒性の点力も多くの規制を受けて!/ヽ るし、塩素含有化合物の存在は金属腐食やポリマーの劣ィ匕等を引き起こすことも知ら れている。従来のアルキルスズアルコキシドを上記触媒用途に使用した際に、上記し た有害なトリアルキルスズィ匕合物や塩素含有化合物の製品への混入があつたが、ど の工程で、あるいはどのィ匕合物から由来してくるかにつ Vヽては知られて 、なかった。 本発明者等は鋭意検討を重ねた結果、アルキルスズアルコキシドを用いた際に製 品に混入するトリアルキルスズ化合物や塩素含有化合物が、主に、用いたジァルキ ルスズァルコキシドに当初から含有されて Vヽることを突き止めた。本発明によって製 造されたジアルキルスズアルコキシドは高純度であり、該トリアルキルスズ化合物や塩 素含有ィ匕合物が極めて少なぐ上記した従来のアルキルスズアルコキシドに由来す る問題が解決される。
例えば、炭酸エステルの製造方法は、ホスゲンを用いるホスゲン法や、一酸化炭素 を用いる酸化的カルボ二ル化法が知られて 、るが、これらは原料や触媒に塩素含有 化合物を用いるために、製造される炭酸エステル中には塩素化合物を含有すること が知られており、炭酸エステルを原料とするポリカーボネートの製造に重大な悪影響 (重合触媒の失活ゃポリカーボネートの着色、劣ィ匕など)を及ぼす。またガソリンゃデ イーゼル燃料添加剤として使用する場合にはエンジンや配管などを腐食する原因と もなる。 本発明者らは先に WO03 055840、 WO04/014840にお!/ヽてジアルキルスズ アルコキシド (これらの特許ではジアルキルスズアルコキシドを広義の意味で使用し、 ジァルキルスズアルコキシド、テトラアルキルスズ—ジアルコキシ―ジスタンォキサン を含めた意味で使用している)を用いることで二酸化炭素とアルコールとから炭酸ェ ステルと水のみを製造する方法を開示した。本発明を用いることで、これらの従来の 発明を更に進歩させ、極めて早ぐ高純度なジァルキルスズアルコキシドを生成させ 、その結果より効果的にトリプチルスズ化合物や塩素化合物の含有量の極めて少な V、炭酸エステルを製造することができる。得られた炭酸エステルはエステル交換反応 や不均化反応によって塩素含有量の極めて少ないジァリール炭酸エステルへと容易 に変換できる。
[0044] 本発明で製造されたアルキルスズアルコキシドを用いる炭酸エステルの製造方法 は、上記 WO03/055840、 WO04Z014840の方法が好ましく使用できる。アルキ ルスズァルコキシドと二酸化炭素を含む混合物を 60°C力 200°Cの範囲、 0. 1時間 力 10時間の範囲、 0. IMPaから 20MPaの範囲で反応させることによってジァルキ ル炭酸エステル^"む反応液を得ることができる。得られたジァルキル炭酸エステル を含んだ反応液は、蒸留法など公知の方法で、ジアルキル炭酸エステルを含む成分 を分離し、スズを含んだ残留液を得る。このスズを含んだ反応液には本発明の反応 物質となる化学式 (1)や化学式 (2)で示すような化合物と、それ以外の、現在の分析 方法では構造不明なスズを含んだ成分 ¾ ^有しているが、驚くべきことに本発明の 方法を使用することで、該構造不明なスズを含んだ成分からも本発明の生成物であ るアルキルスズアルコキシドを得ることができる。
[0045] 該ジアルキル炭酸エステルと芳香族ヒドロキシ化合物とを公知の方法で反応させ、 アルキルァリール炭酸エステル、ジァリール炭酸エステルを得ることができる。
ジァリール炭酸エステルの製造方法は、ホスゲンを用いるホスゲン法や、一酸化炭 素を用 ヽる酸化的カルボ二ルイ匕法が知られて ヽるが、これらは原料や触媒に塩素含 有化合物を用いるために、製造されるジァリール炭酸エステル中には塩素化合物を 含有することが知られており、炭酸エステルを原料とするポリカーボネートの製造に重 大な悪影響 (重合触媒の失活ゃポリカーボネートの着色、劣化など)を及ぼす。また ガソリンやディーゼル燃料添加剤として使用する場合にはエンジンや配管などを腐 食する原因ともなる。本発明者らは先に WO03Z055840、 WO04/014840にお Vヽてジアルキルスズアルコキシドを用いることで二酸化炭素とアルコールと力も炭酸 エステルと水のみを製造する方法を開示した。本発明者らは、該発明を更に進歩さ せて本発明に到達した。本発明の方法により、塩素化合物の含有量の極めて少ない 、高純度のジァリール炭酸エステルを簡便かつ効率的に製造することができる。 更に、本発明の方法によって得られるジァリール炭酸エステルを用いて、ポリカー ポネート類、イソシァネート類又はポリカーボネートジオール類を製造することができ る。この場合のジァリール炭酸エステルとしては炭酸ジフエエルが好まし!/、。
以下、このようなポリカーボネート類、イソシァネート類又はポリカーボネートジォー ル類について説明する。
ポリカーボネート類にっ 、て説明する。ジァリール炭酸エステルはメルト法ポリカー ボネート原料として知られて V、るが、従来の塩素含有化合物を出発物質としたジァリ ール炭酸エステルには塩素化合物が多く残留しており、ビスフエノール Aとのエステ ル交換時の触媒を該塩素化合物が失活させる。この失活の対処方法として、触媒を 多量に使用すると、得られるポリカーボネートの耐候性、色相、物性に悪影響を及ぼ す場合があった。従って、そのような場合には塩素化合物を炭酸ジァリールから除去 する工程が必要であった。
例えば、塩素化合物を含有したジァリール炭酸エステルをアルカリ洗浄したり、蒸 留精製したりする方法が知られている。しかし、この対処方法も、ジァリール炭酸エス テルの融点が比較的高温であって、溶融状態でアルカリ洗浄することによって、ジァ リール炭酸エステルの加水分解消失をも併発する致命的な問題点があったり、蒸留 分離では、塩素化合物は低沸点成分から高沸点成分まで数種類の塩素含有化合 物群であるため、蒸留精製も致命的な問題点を有しているため、工業的に用いるた めに;^かる精製コストは甚大であった。
また、二酸化炭素を原料としたエチレンカーボネートから炭酸ジフエエルを製造す る方法では、エチレンカーボネートとメタノールとから炭酸ジメチルを得、次いで炭酸 メチルフエニルを得、そして炭酸ジフエニルを得ているが、該方法では沸点の制約か ら中間体として炭酸ジメチルを経由することが必須要件である(系内でメタノールが最 低沸であり、平衡をずらすためにはメタノールと最低共沸を形成する必要がある)。必 然的に誘導される炭^チルフエエルは脱炭酸などの副反応を起こしやすく、メチル 基を有するァニソールなどの副生成物が精製工程を経ても微量ながら製品である炭 酸ジフエ二ルに混人し、該炭酸ジフエエルを用いてポリカーボネートを製造する工程 で重合速度を遅くしたり、重合度のばらつきや色相への影響を及ぼす場合があった これに対して、本 明の方法では副生物が発生しない。上記の炭酸ジメチル由来 のメチル基を有する副生成物の特定は困難である力 本発明のジァリール炭酸エス テルの製造方法にあっては、中間体は炭酸ジメチルではなぐ式 (3)で表されるアル コールから形成される長鎖アルキル基を有するジァルキル炭酸エステルであるので、 ポリカーボネート製造に悪影響を及ぼすメチル基を有する副生成物を含まない炭酸 ジフエュルを得ることができる。
ポリカーボネートの原料として用いる好まし Vヽジァリール炭酸エステルの例として、 該メチル基を有する有機ィ匕合物 (副生成物)が lOOppm以下、更に好ましくは 10PP m以下であるジァリール炭酸エステルが挙げられる。
次にイソシァネート類について説明する。本発明のアルキルスズアルコキシドを用 V、て製造されるジァリール炭酸エステル (特に炭酸ジフエニル)とポリアミン化合物とを 反応させて、例えばへキサメチレンジァリールカーバメートなどのポリアリールカーバ メートを得、次いで熱分解させることにより、イソシァネートを得ることができる。従来ホ スゲン原料から出発する反応しか経済的なイソシァネート合成方法は知られていな かったが、本発明によって製造されたジァリール炭酸エステルは安価で、塩素化合 物含有量が極めて少ないため、有利にイソシァネート類を製造することができる。また 従来ホスゲンなど、塩素含有化合物から得られたイソシァネートには塩素化合物を含 有している。イソシァネートの主な用途はウレタンである。ウレタンィヒ触媒は塩素で失 活、変性しやすい問題があるが、本発明の製造方法で得られる炭酸ジフエニルから 製造されるイソシァネートは、塩素化合物を実質的に含有せず、上記問題を起こさな い。 次にポリカーボネートジオール類につ V、て説明する。本発明のアルキルスズアルコ キシドを用いて製造されるジァリール炭酸エステルを用いて、高純度のポリカーボネ ートジオール類を製造することができる。
本発明の方法で製造されるジァリール炭酸エステルを用いて製造されるポリカーボ ネート類、イソシァネート類、ポリカーボネートジオール類は、従来の方法で製造され る該化合物群に比較し、髙純度であり、簡便に (したがって安価で)得られ、併産物も 発生しないため、工業的に大きな価値を有する。
更に、該ジアルキル炭酸エステル及び/又は該ジァリール炭酸エステルから、公知 の方法でイソシァネート類を製造することができる。
ジァリール炭酸エステルはメルト法ポリカーボネート原料として知られて 、るが、従 来の塩素含有ィヒ合物を出発物質とした炭酸ジァリールには塩素化合物が多く残留し ており、ビスフエノール Aとのエステル交換時の触媒は該塩素化合物により失活する 場合があった。この失活の対処方法として、触媒を多量に使用すると、得られるポリ力 ーボネートの耐候性、色相、物性に悪影響を及ぼす場合があった。従って、そのよう な場合には塩素化合物をジァリール炭酸エステルから除去する工程が必要であった o例えば、塩素化合物を含有したジァリール炭酸エステルをアルカリ洗浄したり、蒸 留精製する方法が知られて!/、る。
しかし、この対処方法も、ジァリール炭酸エステルの融点が比較的高温であって、 溶融状態でアルカリ洗浄することによって、ジァリール炭酸エステルの加水分解消失 をも併発するという致命的な問題点がある。また、蒸留分離では、塩素化合物は低沸 点成分から高沸点成分まで数種類の塩素含有化合物群であるため、蒸留精製も致 命的な問題点を有している。そのため、工業的に用いるためにかかる精製コストは甚 大であったが、本発明によって製造されたジアルキルスズアルコキシドを用!/ヽて製造 されたジァリール炭酸エステルは安価で、塩素化合物含有量が極めて少な Vヽため、 有利にイソシァネート類を製造することができる。
従って、本発明で製造されたアルキルスズアルコキシドを用いて製造される炭酸ェ ステル類、イソシァネート類、ポリカーボネート類は従来の方法で製造される該化合 物群に比較し、工業的に安価に製造することができ、高純度である。 実施例
以下、本発明を実施例に基づき具体的に説明するが、本発明はこれら実施例に限 定されるものではない。
く分析方法 >
1) NMR分析方法
装置:日本国、 日本電子 (株)社 ¾rNM— A400 FT— NMRシステム
(1) ¾一; MR、 13C— NMR、 U9Sn— NMR分析サンプルの調製
スズ化合物を約 0. 3g秤量し、重クロ口ホルム(アルドリッチ社製、 99. 8%)を 約 0. 7gと119 Sn— NMR内部標準としてテトラメチルスズ (和光社製、和光一級) を約 0. 05g加えて均一に混ぜた溶液を NMR分析サンプルとする。
2)水の分析方法
装置:日本国、三菱化学 (株)社製 CA— 05微量水分計
(1)定量分析法
分析サンプノレをシリンジを用いて 0. 12ml採取し重量を測った後、そのまま水分計 に注入し、水の定量を行う。その後再びシリンジの重量を測り、サンプル注入量を割 り出し、サンプル中の水含有量を求める。
3)炭酸エステルのガスクロマトグラフィー分析法
装置:日本国、(株)島津製作所製 GC— 2010システム
(1)分析サンプル溶液の作成
反応溶液を 0. 4g計り取り、脱水されたジメチルホルムアミド又はァセト二トリルを約 0. 5ml¾lえる。さらに内部標準としてトルエン又はジフエ二ルエーテル約 0. 04gを加 えて、ガスクロマトグラフィー分析サンプル溶液とする。
(2)ガスクロマトグラフィー分析条件
カラム: DB— 1 (米国、 J&W Scientific社製)
液相: 100%ジメチルポリシロキサン
長さ: 30m
内径: 0. 25mm
IT正された用紙 (S 91) フイノレム厚さ: 1 /z m
カラム温度: 50°C (10°CZmiiiで昇温) 300
インジェクション温度: 300°C
検出器温度: 300。C
検出法: FID
(3)定量分析法
各標準物質の標準サンプルにつ Vヽて分析を実施し作成した検量線を基に、分析サ ンプル溶液の定量分析を実施する。
4)ジアルキルスズアルコキシドの収率計算方法
ジアルキルスズアルコキシドの収率は出発原料 (化学式 (1)及び/又は化学式 (2) で表す化合物)のスズ原子のモル数に対して、得られた各ジアルキルスズアルコキシ ド (化学式 (7)及ひブ又はィ匕学式 (16)で表す化合物)のスズ原子モル数の生成モル %で求めた。
5)芳香族炭酸エステルの収率計算方法
芳香族炭酸エステルの収率は、反応液中の重量%で示すか、あるいは供給した原 料 (炭酸ジァルキル)のモル数に対して、得られた炭酸アルキルァリール、炭酸ジァリ ールの生成モル%で求めた。
6)芳香族ポリカーボネートの数平均分子量
芳香族ポリカーボネートの数平均分子量は、ゲルパーミエーシヨンクロマトグラフィ 一(GPC)により測定した。
実細 1
(出発物質 1, 1, 3, 3—テトラプチルー 1, 3—ビス(2—ェチループチルォキシ)ージ スタンォキサンと反応物質 2—ェチルー 1—ブタノール混合液の作成)
容積 1Lのなす型フラスコに、ジブチルスズォキシド (米国、アルドリッチネ環、 98% ) 24. 9g(0. lmol)及び 2—ェチル—1ーブタノール (米国、アルドリッチネ環、 98% ) 208g (2. Omol)を入れた。白色スラリー状の該混合物を入れたフラスコを、温度調 節器の付 Vヽたオイルパス(日本国、増田理化工業ネ環、 OBH-24)と真空ポンプ( 曰本国、 ULVACネ環、 G— 50A)と真空コントローラー(日本国、岡野製作所社製、 VC— 10S)を接続したエバポレーター(日本国、柴田ネ環、 R- 144)に取り付けた。 オイルパス温度を 140°Cに設定し、該フラスコを該オイルパスに浸漬してェパポレー ターの回転を開始した。ェパポレーターのパージパルプを開放したまま常圧で約 30 分間回転攪拌と加熱した後、ェパポレーターのパージパルプを閉め、系内を真空ポ ンプと真空コントローラーを用いて徐々に減圧し、約 60kPaとした。この状態を 1時間 保った後、該フラスコをオイルバス力も上げた。反応液は透明な液になっていた。パ ージパルブを徐々に開いて系內の圧力を常圧に戻した。留去した液は 9. 9gであり、 透明で、 2層に分離していた。留去した液を分析したところ約 lgの水を含んでいた。 その後、該フラスコをオイルパス力ら上げてパージパルプを徐々に開き系內の圧力を 常圧に戻した。該フラスコには反応液 218gを得た。 119Sn, 13C— NMRの分析結 果から、ジブチルスズォキシド基準で収率 11%でジプチルービス(2—ェチル一プチ ルォキシ)スズ、収率約 88%で 1, 1, 3, 3—テトラブチル— 1, 3—ビス(2—ェチル ーブチルォキシ)一ジスタンォキサンを含有していた。
(塔型反応器でジブチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジプチルスズァルコキシドを製造した。反 応器上部 2に供給ライン 4と抜き出しペントライン 5、反応器下部 3にガス供給ライン 7 と抜き出しライン 6を取り付けた內径 15mm、全長 850mm (有効長 750mm)の SUS 316製チューブリアクターにヘリパック No. 3 (日本国、東京特殊金網株式会ネ環)を 充填し、該チュープリアクターの下部フランジ部分及びフランジから約 60mmを 160 °Cに設定したヒーターで温調し、該加熱器上部から該チューブリアクターの上部フラ ンジまでを 140°Cに設定したヒーターで温調した。
ガス供給ライン 7から 0. 04NL/分で窒素ガスを供給し、供給ライン 4から上記で作 成した出発物質と反応物質の混合液を 20g/Hrで送液ポンプを用いて供給を開始 した。該リアクター内滞留時間は約 16分であり、ガスベントライン 5からは水を含む低 沸点物質がガス状で抜き出され、高沸点成分が抜き出しライン 6から流出され始めた 。この状態で 2時間連続送液、連続抜き出し運転を続けた。抜き出しライン 6から抜き 出された液を分析すると、ジブチルスズォキシド基準で収率約 94%のジプチルービ ス(2—ェチル一ブチルォキシ)スズと約 6%の 1, 1, 3, 3—テトラブチル一 1, 3—ビ ス(2—ェチル一プチルォキシ)一ジスタンォキサンからなるジブチルスズアルコキシ ドを含んでいた。トリプチルスズ (2—ェチループチルォキシド)は 0. 2%であった。一 方、ベントラインから抜き出されたガス相は冷却すると、 2層の透明な液であり、水分 を含んでいた。搭型反応器での脱水速度は、 0. 0033mol/Hrであり、式(16)で求 められる値 0. OOOSSmolZHrよりも大きかった。
実施例 2
(出発物質 1, 1, 3, 3—テトラブチル _ 1, 3—ビス (2—ェチル—プチルォキシ) 一ジスタン才キサンの作成)
容積 500mLのなす型フラスコに、ジプチルスズォキシド (米国、アルドリッチネ纖、 98%) 59. 8g (0. 15mol)及び 2—ェチルー 1ーブタノール (米国、アルドリッチ社製 、 98%) 122g (l. 2mol)を入れた。白色スラリー状の該混合物を入れたフラスコを、 温度調節器の付いたオイルパス(日本国、増田理化工業雌、 OBH— 24)と真空ポ ンプ(日本国、 ULVAC観、 G-50A)と真空コントローラー(日本国、岡野製作所 據、 VC— 10S)を接続したェパポレーター 本国、柴田ネ ±M、 R-144)に取り 付けた。オイルパス温度を 140°Cに設定し、該フラスコを該オイルパスに浸漬してェ パポレーターの回転を開始した。ェパポレーターのパージバルブを開放したまま常 圧で約 30分間回転攪拌と加熱した後、ェパポレーターのパージバルブを閉め、系内 を真空ポンプと真空コントローラーを用いて徐々に減圧し、約 70kPaとした。この状態 を 1時間保った後、該フラスコをオイルパスカゝら上げた。反応液は透明な液になって いた。パージバルブを徐々に開いて系内の圧力を常圧に戻した。留去した液は 3. 6 gであり、透明で、 2層に分離していた。留去した液を分析したところ約 2. 2gの水 んでいた。その後、該フラスコをオイルパス力 上げてパージパルプを徐々に開き系 内の圧力を常圧に戻した。該フラスコには反応液 175gを得た。 11 Sn, , 13C-NM Rの分析結果から、ジブチルスズォキシド基準で収率約 99%で 1, 1, 3, 3—テトラブ チルー 1, 3—ビス(2—ェチループチ/レオキシ)—ジスタンォキサンを含有していた。 (塔型反応器でジブチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジブチルスズアルコキシドを製造した。反 応器上部 2に供給ライン 4と抜き出しベントライン 5、反応器下部 3にガス供給ライン 7 と抜き出しライン 6を取り付けた内径 15mm、全長 1635mm (有効長 1450mm)の S US316製チューブリアクターにヘリパック No. 3 (日本国、東京特殊金網株式会社 製)を充填し、該チューブリアクタ一の下部フランジ部分及びフランジから約 60mmを 160°Cに設定したヒーターで温調し、該加熱器上部から該チュープリアクターの上部 フランジまでを 140°Cに設定したヒーターで温調した。
ガス供給ライン 7から 0. 04NLZ分で窒素ガスを供給し、供給ライン 4力 上記で作 成した出発物質と反応物質の混合液を2 Og/Hrで送液ポンプを用いて供給を開始 した。該リアクター内滞留時間は約 32分であった。抜き出しベントライン 5からは水を 含む低沸点物質がガス状で抜き出され、高沸点成分が抜き出しライン 6から流出され 始めた。この状態で 2時間連続送液、連続抜き出し運転を続けた。抜き出しライン 6か ら抜き出された生成物を分析すると、ジプチルスズォキシド基準で収率約 94%のジ ブチル一ビス(2—ェチル一プチルォキシ)スズと約 6%の 1, 1, 3, 3—テトラブチル - 1, 3—ビス(2—ェチル一ブチルォキシ)一ジスタンォキサンからなるジブチルスズ アルコキシドを含んでいた。トリプチルスズ(2—ェチループチルォキシド)は 0. 4%で あった。一方、抜き出しベントライン 5から抜き出されたガス相は冷却すると、 2層の透 明な液であり、水分を含んでいた。搭型反応器での脱水速度は、 0. 0033mol/Hr であり、式(16)で求められる値 0. 0005molZHrよりも大きかった。
麵例 3
(1, 1, 3, 3—テトラプチルー 1, 3ビス(2—ェチルへキシルォキシ)一ジスタンォキ サンの合成)
温度計、三方コック、ジムロート冷却器と連結した水分定量受器を備えた容積 2Lの 三口フラスコにジブチルスズォキシド(米国、アルドリッチ社製、 98%) 199. 8g (0. 8 0mol)、 2_ェチル—1—へキサノール (米国、アルドリッチネ ± 、脱水 99. 6%) 104 5g (8. Omol)及びトルエン (日本国、和光純薬工業握、有機合成用) 500gを入れ た。白色スラリ一状の混合物を入れた該フラスコを 130^に設定したオイルパス (日 本国、 Fine社製、 FWB-240)に浸漬した。約 30分間攪拌及び加熱した後、混合 物の温度が 119°Cになり水分定量受器に水とトルエンの回収が始まった。
この状態を約 3時間保った後、水分定量受器に約 7. 2mLの水を回収した。その後 、オイルパスの温度を 90°Cに下げ、混合物温度を下げた後、水分定量受器をはずし
、該フラスコを枝管付連結管、リービッヒ冷却器、減圧連結管及び 2つの蒸留液回収 容器と連結した。系内を 29kPaに減圧し該フラスコ力もトルエンを蒸留した後、さらに 系内を 0. 6kPaに減圧し過剰な 2—ェチル一へキサノールを蒸留した。蒸留によって 回収した液は 1420gであって、該フラスコには 295. 6gの生成物を得た。 llsSn, ¾,
13C_NMRの分析結果から生成物は純度 95%以上の 1, 1, 3, 3—テトラプチル一
1, 3ビス(2—ェチルへキシルォキシ)一ジスタンォキサンであった。
(塔型反応器でジブチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジブチルスズアルコキシドを製造した。反 応器上部 2に出発物質を導入する供給ライン 4と反応物質を導入する供給ライン 8と 抜き出しベントライン 5、反応器下部 3にガス供給ライン 7と抜き出しライン 6を取り付け た内径 15mm、全長 850mm (有効長 750mm)の SUS316製チューブリアクターに ヘリパック No. 3 (日本国、東京特殊金網株式会観)を充填し、該チューブリアクタ 一の下部フランジ部分及びフランジカ 約 60minを 160 に設定したヒーターで温 調し、該加熱器上部から該チューブリアクターの上部フランジまでを 140°Cに設定し たヒーターで温調した。
供給ライン 7から 0. 04NL/分で窒素ガスを供給し、供給ライン 4から上記で作成し た出発物質を 3g/Hrで送液ポンプを用いて供給し、供給ライン 8から反応物質 2— ェチル—1—へキサノール (米国、アルドリッチ觀、脱水 99. 6%)を ITgZHrで送 液ポンプを用いて供給を開始した。該リアクター内滞留時間は約 15分であり、抜き出 しベントライン 5からは水を含む低沸点物質がガス状で抜き出され、髙沸点成分が抜 き出しライン 6から流出され始めた。この状態で 2時間連続送液、連続抜き出し運転を 続けた。抜き出しライン 6から抜き出された液を分析すると、ジブチルスズォキシド基 準で収率約 45%のジブチルービス(2—ェチルーへキシルォキシ)スズと約 55%の 1 , 1, 3, 3—テトラブチル一 1, 3—ビス(2—ェチルーへキシルォキシ)一ジスタンォキ サンからなるジブチルスズァルコキシドを含んで 、た。トリプチルスズ(2—ェチノレープ チルォキシド)は 0. 3%であった。一方、ベントラインから抜き出されたガス相は冷却 すると、 2層の透明な液であり、水分を含んでいた。搭型反応器での脱水速度は、 0. 0018mol/Hrであり、式(16)で求められる値 0, 000058molZHrよりも大きかつ ヤ
C0052] 例 4
(塔型反応器でジブチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジブチルスズアルコキシドを製造した。反 応器上部 2に供給ライン 4と抜き出しベントライン 5、反応器下部 3にガス供給ライン 7 と抜き出しライン 6を取り付けた內径 15mm、全長 850mm (有効長 750mm)の SUS 316製チュープリアクターにヘリパック No. 3 (日本国、東京特殊金網株式会ネ環)を 充填し、該チューブリアクターの下部フランジ部分及びフランジから約 60mmを 160 °Cに設定したヒーターで温調し、該加熱器上部から該チュープリアクターの上部フラ ンジまでを 140°Cに設定したヒーターで温調した。
窒素供給ライン 7から 0. 04NL/分で窒素ガスを供給し、供給ライン 4から出発物 質ジプチルスズォキシド (米国、アルドリッチネ: h¾ 98%) 19. 9g(0. 08niol)と反応 物質 2—ェチル—1ーブタノール (米国、アルドリッチネ環、 98%) 817g(8mol)から なるスラリー液を 8gZHrで送液ポンプを用 Vヽて供給を開始した。該リアクター内滞留 時間は約 35分であった。抜き出しベントライン 5からは水を含む低沸点物質がガス状 で抜き出され、高沸点成分が抜き出しライン 6から流出され始めた。
この状態で 5時間連続送液、連続抜き出し運転を続けた。抜き出しライン 6から抜き 出された生成物を分析すると、ジブチルスズォキシド基準で収率約 61%のジブチル 一ビス(2—ェチル一プチルォキシ)スズと約 38%の 1, 1 3 3—テトラブチノレー 1, 3 一ビス(2—ェチループチルォキシ)一ジスタンォキサンからなるジブチルスズアルコ キシドを含んでいた。トリプチルスズ(2—ェチル—プチルォキシド)は 0. 1%であった 。一方、ベントライン 5から抜き出されたガス相は冷却すると、 2層の透明な液であり、 水分を含んでいた。搭型反応器での脱水速度は、 0. 00062mol/Hrであり、式(1 6)で求められる値 0. 00005molZHrよりも大きかった。
[0053] 実施例 5
(塔型反応器でジブチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジブチルスズァルコキシドを製造した。反 応器上部 2に供給ライン 4と抜き出しベントライン 5、反応器下部 3にガス供給ライン 7 と抜き出しライン 6を取り付けた内径 15mm、全長 850mm (有効長 750mm)の SUS 316製チューブリアクターにヘリパック No. 3 (日本国、東京特殊金網株式会ネ環)を 充填し、該チュープリアクターの下部フランジ部分及びフランジカも約 60mmを 170 °Cに設定したヒーターで温調し、該加熱器上部から該チューブリアクターの上部フラ ンジまでを 150°Cに設定したヒーターで温調した。
供給ライン 4力 実施例 1で使用したものと同じ方法で作製した出発物質 1, 1, 3, 3 ーテトラプチルー 1, 3—ビス(2—ェチルーブチルォキシ)—ジスタンォキサンと反応 物質 2—ェチルー 1—プタノール混合液を 8gZHrで送液ポンプを用いて供給を開 始した。次いでガス供給ライン 7から 2—ェチルー 1ーブタノール (米国、アルドリッチ ネ環、 98%)を lg/分で供給した。該リアクター内滞留時間は約 30分であり、抜き出 しベントライン 5からは水を含む低沸点物質がガス状で抜き出され、高沸点成分が抜 き出しライン 6から流出され始めた。
この状態で 2時間連続送液、連続抜き出し運転を続けた。抜き出しライン 6から抜き 出された液を分析すると、ジブチルスズォキシド基準で収率約 48%のジブチルービ ス(2—ェチループチノレオキシ)スズと約 52%の 1 , 1, 3, 3—テトラブチル一1, 3—ビ ス(2—ェチル一ブチルォキシ)一ジスタンォキサンからなるジプチ/レスズァルコキシ ドを含んでいた。トリプチルスズ(2—ェチループチルォキシド)は 0. 4%であった。一 方、ベントラインから抜き出されたガス相は冷却すると、 2層の透明な液であり、水分 を含んでいた。
実麵 6
(槽型反応器と塔型反応器を組み合わせてジブチルスズジアルコキシドを得る) 図 3に示すような槽型反応器と塔型反応器の組み合わせでジァルキルスズアルコ キシドを製造した。
撹拌槽上部 11に反応物質を導入する供給ライン 15及び出発物質を導入する供給 ライン 16及ぴ蒸留塔を備えた抜き出しベントライン 17、撹拌槽下部 12にガス供給ラ イン 18及び移送ライン 19、そして攪拌機、温調設備、各ライン操作に必要な計装設 備及ぴパルプ類を備えたパッフル付き 1Lの SUS304製の撹拌槽 9と、バッファー槽 24、バッファー槽 24力ら塔型反応器へ移送する中継ライン 25、そして反応器上部 1 3に中継ライン 25を接続し、反応物質を導入する供給ライン 22、蒸留塔を備えた抜き 出しベントライン 21、反応器下部 14にガス供給ライン 20及ぴ抜き出しライン 23を接 続し、温調設備、各ライン操作に必要な計装設備及びパルプ類を備えた内径 15mm 、全長 1635讓 (有効長 1450mm)の SUS316製チューブリアクターにヘリパック N o. 3 (日本国、東京特殊金網株式会社製)を充填した塔型反応器 10を使用した。 撹拌槽 9の内部を窒素置換したのち、供給ライン 15から反応物質 2—ェチル—1一 へキサノール (米国、アルドリッチ社製、脱水 99. 6%) 390g (3. Omol)を導入し、供 給ライン 16から出発物質ジプチルスズォキシド (米国、アルドリッチネ: hM、 98%) 199 . 8g (0. 80mol)を導入した。ガス供給ライン 18から 0. 02NL/分で窒素ガスを供 給し、攪拌しながら反応液が 160°Cになるように反応器を加熱し、抜き出しベントライ ン 17から発生するガスを抜き出した。この状態で 20分反応させたのち、移送ライン 1 9から約 40mlZ分で反応液を連続的に抜き出し、同時に反応器内部の液面が一定 になるように、供給ライン 16と供給ライン 15から出発物質と反応物質とのモル比が 1: 3. 75となる速度で連続的に供給し、抜き出しベントライン 17から発生するガスを連 続的に抜き出しながら、定常運転を開始した。
移送ライン 19からは、バッファー槽 24へ反応液を移送した。 2時間後バッファー槽 2 4の液を分析すると、ジブチルスズォキシド基準で収率約 5%のジブチルービス (2- ェチルーへキシルォキシ)スズと約 95%の 1, 1, 3, 3—テトラブチル一 1, 3—ビス(2 一ェチル—へキシルォキシ)―ジスタンォキサンからなる 1次生成ジブチルスズアル コキシドを含んでいた。槽型反応器での脱水速度は、 1. 26molZHrであり、式(16 )で求められる値 0. 13molZHrよりも大きかった。
(次レ、で、パッファー槽に蓄積した 1次生成ジプチルスルアルコキシドを出発物質とし て反応器 10でジブチルービス(2—ェチル一へキシルォキシ)スズ収率を高める。 ) 反応器 10の下部フランジ部分及びフランジから約 60mmを 160°Cに設定したヒー ターで温調し、該加熱器上部から該チューブリアクターの上部フランジまでを 140で に設定したヒーターで温調した。
ガス供給ライン 20から 0. 04NL/分で窒素ガスを供給し、バッファー槽 24から中 継ライン 25によつて上記で作成した 1次生成ジブチルスズアルコキシドを出発物質と して 5gZHrで送液ポンプを用いて供給し、供給ライン 22から反応物質 2—ェチルー 1一へキサノール(米国、アルドリッチ社製、脱水 99. 6%)を 15g/Hrで送液ポンプ を用いて供給を開始した。該リアクター内滞留時間は約 35分であり、抜き出しベント ライン 21からは水を含む低沸点物質がガス状で抜き出され、高沸点成分が抜き出し ライン 23から流出され始めた。
この状態で 2時間連続送液、連続抜き出し運転を続けた。抜き出しライン 23から抜 き出された液を分析すると、ジブチルスズォキシド基準で収率約 75 %のジブチル一 ビス(2—ェチルーへキシルォキシ)スズと約 24%の 1, 1, 3, 3—テトラブチル一 1, 3 —ビス (2—ェチル一へキシルォキシ)一ジスタンォキサンからなるジブチルスズアル コキシドを含んでいた。トリブチルスズ(2—ェチル―へキシルォキシド)は 0. 9%であ つた。一方、ベントラインから抜き出されたガス相は冷却すると、 2層の透明な液であり 、水分を含んでいた。搭型反応器での脱水速度は、 0. 021molZHrであり、式(16 )で求められる値 0. 00025mol/Hrよりも大きかった。
実施例 7
(塔型反応器でジブチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジブチルスズァルコキシドを製造した。反 応器上部 2に供給ライン 4と抜き出しベントライン 5、反応器下部 3に反応物質 2次供 給ライン 7と抜き出しライン 6を取り付けた内径 15mm、全長 1635mm (有効長 1450 mm)の SUS316製チューブリアクターにディクソンパッキング 3mm (日本国、東京特 殊金網株式会社製)を充填し、該チュープリアクターの下部フランジ部分及びフラン ジから約 60mmを 170°Cに設定したヒーターで温調し、該加熱器上部から該チュー ブリアクタ一の上部フランジまでを 150°Cに設定したヒーターで温調した。
ガス供給ライン 7から 0. 04NLZ分で窒素ガスを供給し、供給ライン 4から実施例 1 で使用したものと同じ方法で作製した出発物質 1, 1, 3, 3—テトラプチルー 1, 3—ビ ス( 2—ェチル -ブチルォキシ)一ジスタンォキサンと反応物質 2 -ェチル一 1ーブタ ノール混合液を 15g/Hrで送液ポンプを用いて供給を開始した。該リアクター内滞 留時間は約 50分であり、抜き出しベントライン 5からは水を含む低沸点物質がガス状
訂正された ¾紙 (規則91) で抜き出され、高沸点成分が抜き出しライン 6から流出され始めた。
この状態で 4時間連続送液、連続抜き出し運転を続けた。抜き出しライン 6から抜き 出された液を分析すると、ジブチルスズォキシド基準で収率約 63%のジブチルーピ ス(2—ェチループチルォキシ)スズと約 36%の 1, 1, 3, 3—テトラブチノレー 1, 3—ビ ス(2—ェチル一ブチルォキシ) -ジスタンォキサンからなるジブチルスズアルコキシ ドを含んでいた。トリブチルスズ(2—ェチルーブチルォキシド)は 0. 3%であった。一 方、ベントラインから抜き出されたガス相は冷却すると、 2層の透明な液であり、水分 を含んでいた。搭型反応器での脱水速度は、 0. 0016mol/Hrであり、式(16)で求 められる値 0. O0026mol/Hrよりも大きかった。
実施例 8
(出発物質 1, 1, 3, 3—テトラオクチル一 1, 3—ジ (ブチルォキシ)一ジスタンォキサ ンの作成)
容積 2Lのなす型フラスコに、ジォクチルスズォキシド(曰本国、和光純薬工業社製 、 95%) 217g (0. 6mol)及び 1—ブタノール(日本国、和光純薬工業ネ 、特級) 4 45g(6mol)を入れた。白色スラリー状の該混合物を入れたフラスコを、温度調節器 のつ 、たオイルバス(日本国、増田理化工業社製、 OBH-24)を接続したエバポレ 一ター(日本国、柴田観、 R- 144)に取り付けた。
オイルパス温度を 127°Cに設定し、該フラスコを該才ィルパスに浸漬してェパポレ 一ターの回転を開始した。ェパポレーターのパージパルプを開放したまま常圧で約 1 50分間回転攪拌と加熱した。その後、該フラスコをオイルパスから上げて放冷した。 該フラスコに 437gの粘稠な反応液を得た。 119Sn, ¾, 13C— NMRの分析結果から、 ジォクチルスズォキシド基準で収率 96%1, 1, 3, 3—テトラオクチルー 1, 3—ジ (ブ チルォキシ)一ジスタンォキサンを含有していて、ジォクチルージ (ブチルォキシ)ス ズは含まれて!/ヽなかった。
(塔型反応器でジォクチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1にお 1/、て、ジォクチルスズアルコキシドを製造した。 反応器上部 2に供給ライン 4と抜き出しベントライン 5、反応器下部 3にガス供給ライン 7と抜き出しライン 6を取り付けた内径 15mm、全長 850mm (有効長 750mm)の SU S316製チュープリアクターにヘリパック No. 3 (日本国、東京特殊金網株式会ネ環) を充填し、該チューブリアクターの下部フランジ部分及びフランジから約 60mmを 15 0°Cに設定したヒーターで温調し、該加熱器上部から該チューブリアクターの上部フ ランジまでを 140°Cに設定したヒーターで温調した。
ガス供給ライン 7から 80ml/分で二酸化炭素ガスを供給し、供給ライン 4力も上記 で得た反応液(出発物質 1, 1, 3, 3—テトラオクチル一 1, 3—ジ (プチルォキシ)一 ジスタンォキサンと反応物質 1—ブタノールからなる混合液)を 10g/Hrで送液ボン プを用いて供給を開始した。該リアクター内滞留時間は約 37分であり、該リアクター の内圧は圧力ゲージで約 0. 2MPa— Gであった。抜き出しベントライン 5からは水を 含む低沸点物質がガス状で抜き出され、髙沸点成分が抜き出しライン 6から流出され 始めた。
この状態で 4時間連続送液、連続抜き出し運転を続けた。抜き出しライン 6力 抜き 出された液を分析すると、ジォクチルスズォキシド基準で収率約 43%のジォクチル ージ (ブチルォキシ)スズと 1, 1, 3, 3—テトラオクチル— 1, 3—ジ (プチルォキシ)一 ジスタンォキサンからなるジォクチルスズアルコキシドを含んで Vヽた。トリオクチ/レスズ ブトキシドは 0. 1%であった。一方、ベントラインから抜き出されたガス相は冷却する と、 2層の透明な液であり、水分を含んでいた。搭型反応器での脱水速度は、 0. 001 7molZHrであり、式(16)で求められる値 0. 00025mol/Hrよりも大きかった。 窭細 9
(出発物質 1, 1, 3, 3—テトラプチルー 1, 3—ジ (ブチルォキシ)一ジスタンォキサン の作成)
容積 1Lのなす型フラスコに、ジプチルスズォキシド (米国、アルドリッチ社製、 98% ) 50g (0. 2mol)及び 1ーブタノール (日本国、和光純薬工業社製、特級) 178g (2. 4mol)を入れた。白色スラリー状の該混合物を入れたフラスコを、温度調節器のつい たオイルパス(曰本国、増田理化工業機、 OBH— 24)を接続したエバポレーター( 日本国、柴田社製、 R- 144)に取り付けた。
オイルパス温度を 127°Cに設定し、該フラスコを該オイルパスに浸漬してェパポレ 一ターの回転を開始した。エバポレーターのパージパルプを開放したまま常圧で約 2 時間回転攪拌と加熱した。その後、該フラスコをオイルパス力 上げて放冷した。該フ ラスコに 212gの粘稠な反応液を得た。 119Sn, 1H, 13C— NMRの分析結果から、ジブ チルスズォキシド基準で収率 98% 1, 1, 3, 3—テトラプチルー 1, 3—ジ (プチルォキ シ)一ジスタンォキサンを含有していて、ジブチル -ジ (ブチルォキシ)スズは含まれ ていな力つた。
(塔型反応器でジブチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジブチルスズアルコキシドを製造した。反 応器上部 2に供給ライン 4と抜き出しペントライン 5、反応器下部 3にガス供給ライン 7 と抜き出しライン 6を取り付けた内径 15mm、全長 850mm (有効長 750mm)の SUS 316製チューブリアクターにヘリパック No. 3 (日本国、東京特殊金網株式会據)を 充填し、該チュープリアクターの下部フランジ部分及びフランジから約 60mmを 150 °Cに設定したヒーターで温調し、該加熱器上部から該チューブリアクターの上部フラ ンジまでを 140°Cに設定したヒーターで温調した。
ガス供給ライン 7から 80mlZ分で二酸化炭素ガスを供給レ供給ライン 4から上記 で得た反応液(出発物質 1, 1, 3, 3—テトラブチル一 1, 3—ジ (プチルォキシ)一ジ スタンォキサンと反応物質 1ーブタノール力もなる混合液)を lOgZHrで送液ポンプ で供給を開始した。該リアクター内滞留時間は約 37分であり、該リアクターの内圧は 圧力ゲージで約 0. 2MPa— Gであった。抜き出しベントライン 5からは水を含む低沸 点物質がガス状で抜き出され、髙沸点成分が抜き出しライン 6から流出され始めた。 この状態で 4時間連続送液、連続抜き出し運転を続けた。抜き出しライン 6から抜き 出された液を分析すると、ジプチルスズォキシド基準で収率約 90%のジプチル一ジ( プチルォキシ)スズと 9%の 1, 1, 3, 3—テトラプチルー 1, 3—ジ (プチノレォキシ)一 ジスタンォキサンからなるジプチルスズアルコキシドを含んで V、た。トリプチルスズブト キシドは 0. 06%であった。一方、ベントラインから抜き出されたガス相は冷却すると、 2層の透明な液であり、水分 んでいた。搭型反応器での脱水速度は、 0. 0033 molZHrであり、式(16)で求められる値 0. 00025molZHrよりも大きかった。
実施 {列10
(出発物質 1, 1, 3, 3—テトラプチルー 1, 3_ビス(2—メチル _1_プロピルォキシ) 一ジスタンォキサンの作成)
容積 1Lのなす型フラスコに、ジブチルスズォキシド (米国、アルドリッチネ環、 98% ) 50g(0. 2mol)及び 2—メチルー 1—プロパノール(日本国、和光純薬工業社製、 特級) 178g(2. 4mol)を入れた。白色スラリー状の該混合物を入れたフラスコを、温 度調節器のついたオイルバス(日本国、増田理ィ匕工業機、 OBH— 24)を接続した エバポレーター (日本国、柴田社製、 R- 144)に取り付けた。
オイルパス温度を 118°Cに設定し、該フラスコを該オイノレパスに浸漬してェパポレ 一ターの回転を開始した。ェパポレーターのパージパルプを開放したまま常圧で約 2 時間回転攪拌と加熱した。その後、該フラスコをオイルパスから上げて放冷した。該フ ラスコに 196gの粘稠な反応液を得た。 119Sn, 'Η, 13C—NMRの分析結果から、ジブ チルスズォキシド基準で収率 76%で 1, 1, 3, 3—テトラブチルー 1, 3—ビス(2—メ チル一 1一プロピル才キシ)一ジスタンォキサンを含有して!/、て、ジブチルービス (2 ーメチル一 1—プロピルォキシ)スズは含まれて 、なかった。
(塔型反応器でジブチルスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジブチルスズアルコキシドを製造した。反 応器上部 2に供給ライン 4と抜き出しペントライン 5、反応器下部 3にガス供給ライン 7 と抜き出しライン 6を取り付けた内径 15mm、全長 1635mm (有効長 1450mm)の S US316製チューブリアクターにヘリパック No. 3 (日本国、東京特殊金網株式会社 製)を充填し、該チューブリアクターの下部フランジ部分及びフランジから約 60mmを 150°Cに設定したヒーターで温調し、該加熱器上部から該チューブリアクターの上部 フランジまでを 140°Cに設定したヒーターで温調した。
ガス供給ライン 7から 80ml/分で二酸化炭素ガスを供給し、供給ライン 4力も上記 で得た反応液 (出発物質 1, 1, 3, 3—テトラブチル— 1, 3_ビス (2—メチル _ 1ープ 口ピルォキシ)一ジスタンォキサンと反応物質 2—メチル一 1—プロパノールからなる 混合液)を 10g/Hrで送液ポンプを用いて供給を開始した。該リアクター内滞留時 間は約 22分であり、該リアクターの内圧は圧力ゲージで約 0. 2MPa— Gであった。 抜き出しベントライン 5からは水を含む低沸点物質がガス状で抜き出され、高沸点成 分が抜き出しライン 6から流出され始めた。 この状態で 4時間連続送液、連続抜き出し蓮転を続けた。抜き出しライン 6から抜き出 された液を分析すると、ジブチルスズォキシド基準で収率約 97%のジブチル一ビス ( 2—メチル一 1 -プロピルォキシ)スズと約 3%の 1 , 1, 3, 3—テトラプチル一 1, 3- ビス (2—メチル— 1一プロピルォキシ)—ジスタンォキサンからなるジブチルスズアル コキシドを含んでいた。トリプチルスズブチルォキシドは 0. 02%であった。一方、ベン トラインから抜き出されたガス相は冷却すると液状であり、水分 んでいた。搭型反 応器での脱水速度は、 0. 0038mol/Hrであり、式(16)で求められる値 0. 00051 mol/Hrよりも大きかった。
実細 11
工程— 1 (出発物質 1, 1, 3, 3—テトラプチルー 1, 3—ビス(2—メチルー 1一プロピ ルォキシ)一ジスタンォキサンの作成)
容積 1Lのなす型フラスコに、ジブチルスズォキシド(米国、アルドリッチネ; fc¾、 98% ) 50g (0. 2mol)及び 2—メチルー 1一プロパノール(日本国、和光純薬工業ネ環、 特級) 178g (2. 4mol)を入れた。白色スラリー状の該混合物を入れたフラスコを、温 度調節器のついたオイルパス(日本国、増田理化工業據、 OBH—24)を接続した エバポレーター (日本国、柴田社製、 R- 144)に取り付けた。
オイルパス温度を 118°Cに設定し、該フラスコを該オイルパスに浸漬してェパポレ 一ターの回転を開始した。ェパポレーターのパージパルプを開放したまま常圧で約 2 時間回転攪拌と加熱した。その後、該フラスコをオイルパスから上げて放冷した。該フ ラスコに 196gの粘稠な反応液を得た。 119Sn, 'U, 13C— NMRの分析結果から、ジブ チルスズォキシド基準で収率 76%で 1, 1, 3, 3—テトラプチル一 1, 3—ビス(2—メ チル一 1—プロピルォキシ)—ジスタンォキサンを含有していて、ジプチルービス(2 ーメチル一 1—プロピルォキシ)スズは含まれて V、なかった。
工程— 2 (塔型反応器でジプチ/レスズジアルコキシドを得る)
図 2に示すような塔型反応器 1において、ジプチルスズァルコキシドを製造した。反 応器上部 2に供給ライン 4と抜き出しベントライン 5、反応器下部 3にガス供給ライン 7 と抜き出しライン 6を取り付けた内径 15mm、全長 1635mm (有効長 1450mm)の S US316製チュープリアクターにヘリパック No. 3 (日本国、東京特殊金網株式会社 製)を充填し、該チュープリアクターの下部フランジ部分及ぴフランジから約 60mmを 150°Cに設定したヒーターで温調し、該加熱器上部から該チューブリアクターの上部 フランジまでを 140°Cに設定したヒーターで温調した。
ガス供給ライン 7から 80ml/分で二酸化炭素ガスを供給し、供給ライン 4力も上記 で得た反応液(出発物質 1, 1, 3, 3—テトラプチル一 1, 3_ビス (2—メチルー 1—プ 口ピルォキシ)一ジスタンォキサンと反応物質 2—メチル一 1一プロパノール力もなる 混合液)を lOgZHrで送液ポンプを用いて供給を開始した。該リアクター内滞留時 間は約 22分であり、該リアクターの内圧は圧力ゲージで約 0. 2MPa— Gであった。 抜き出しベントライン 5からは水を含む低沸点物質がガス状で抜き出され、高沸点成 分が抜き出しライン 6から流出され始めた。
この状態で工程一 1で作成した液がなくなるまで連続送液、連続抜き出し運転を続 けた。抜き出しライン 6から抜き出された液を SUS製 1Lの中継タンクにためた。ためら れた液を分析すると、ジプチルスズォキシド基準で収率約 97%のジプチル—ビス(2 ーメチルー 1一プロピルォキシ)スズと約 3%の 1, 1, 3, 3—テトラブチル一 1, 3—ビ ス (2—メチル一 1—プロピルォキシ) -ジスタンォキサンからなるジブチルスズアルコ キシドを含んでいた。トリブチルスズ (2—メチル—1—プロピルォキシド)は 0. 03%で あった。一方、ベントラインから抜き出されたガス相は冷却後、多段蒸留塔で水分を 除去し、 2—メチル一1—プロパノールを回収した。搭型反応器での脱水速度は、 0. 0168molZHrであり、式(16)で求められる値 0. 000648mol Hrよりも大きかつ た。
工程一 3 (ジアルキルスズアルコキシドカ 炭酸エステルを得る)
工程一 2で中継タンクにためられた反応液を 130で、約 65Paとした薄膜蒸留装置( 日本国、柴田科学ネ環 E— 420)に送液ポンプ(日本国、島津製作所ネ環 LC- 10AT)で 3g/分でフィードして揮発成分を留去し、非揮発成分を冷却して回収し、 回収液約 74gを得た。該回収液を 200mlオートクレープ(日本国、東洋髙圧ネ環)に 入れて蓋をした。オートクレープ内部を窒素置換した後、 SUSチューブとパルブを介 してオートクレープに接続された二酸化炭素のボンベの 2次圧を 4MPaに設定した後 、パルプを開け、オートクレープへ二酸化炭素導入した。 10分間攪拌し、パルプを閉め、オートクレープを攪拌したまま、温度を 120°Cまで 昇温した。この際、オートクレーブ内圧が 4MPaとなるように背圧弁で調整した。この 状態のまま 4時間反応させ、その後、パージラインから二酸化炭素を静かにパージし て常圧に戻し、素早くオートクレーブボトムに取り付けられている抜き出しラインから内 部の液を抜き出し、透明な反応液が得た。炭酸ジ (2—メチループ口ピル)がジブチル スズォキシド基準で収率 40%で得られていた。該透明な反応液を 130°C、約 65Paと した薄膜蒸留装置(日本国、柴田科對: fc$¾ E-420)に送液ポンプ(日本国、島津 製作所社製 LC― 10AT)で 3g/分でフィードして炭酸ジ (2—メチル一プロピル)を 含む揮発成分を留去し、非揮発成分を冷却して回収し、回収液約 62gを得た。この 炭酸ジ (2—メチル—プロピル)を含む揮発成分を冷却した液にはトリプチルスズ (2— メチル— 1—プロピルォキシド)は検出されなかった。塩素分析結果から塩素も検出さ れなかった。
該回収液を119 Sn, ¾, 13C_NMRの分析すると、 1, 1, 3, 3—テトラブチル一 1, 3 一ビス(2—メチルー 1—プロピルォキシ)—ジスタンォキサンを含有していて、ジブチ ルービス (2—メチル— 1—プロピルォキシ)スズは含まれて V、なかった。
工程一 4 (炭酸エステル製造後の回収液を出発物質としてジァルキルスズアルコキシ ドを
得る)
工程一 3で回収した回収液に回収液に含有される 1, 1, 3, 3—テトラプチル一 1, 3 —ビス(2—メチル一 1—プロピルォキシ)一ジスタンォキサンなどの有機スズ化合物 に含有されて!/、るスズ原子のモル数に対して約 10倍モルとなるように、反応物質とし て工程 _ 1で多段蒸留塔で脱水回収された 2—メチルー 1—プロパノールと不足分 は 2_メチル—1—プロパノール (和光純薬工業 、特級)を加えて、出発物質と反 応物質の混合液を作製した。工程一 2の供給ライン 4から供給する液を上記混合液と した他は、工程一 2と同様の操作をして該混合液がなくなるまで連続送液、連続抜き 出し運転を続けた。
抜き出しライン 6から抜き出された液を SUS製 1Lの中継タンクにためた。ためられ た液を分析すると、ジプチルスズォキシド基準で収率約 97%のジブチル一ビス (2- メチルー 1—プロピルォキシ)スズと約 3%の 1, 1, 3, 3—テトラプチル一 1, 3—ビス( 2—メチノレ一 1一プロピルォキシ)一ジスタンォキサンからなるジブチルスズアルコキ シドを含んでいた。一方、ベントラインから抜き出されたガス相は冷却後、多段蒸留塔 で水分を除去し、 2—メチル一 1一プロパノールを回収した。
続いて、工程 3と工程 4を 3回繰り返し、 3回目の工程 4で得られた中継タンク中の液 には工程 - 1で使用したジブチノレスズォキシド基準で収率約 95 %のジブチノレ一ビス (2—メチノレ一 1一プロピルォキシ)スズと約 2%の 1 , 1, 3, 3—テトラプチルー 1, 3— ビス (2—メチル— 1一プロピルォキシ)一ジスタンォキサンからなるジブチルスズアル コキシドを含んでいた。搭型反応器での脱水速度は、式 (16)で求められる値よりも大 きかった。トリブチルスズ(2—メチルー 1—プロピルォキシド)は 0. 05%であった。
[0060] 比齩例 1
(低沸点成分のみを連続的に抜き出す方法)
容積 1Lのなす型フラスコに、出発物質ジプチルスズォキシド (米国、アルドリッチ社 製、 98%) 50g(0. 2mol)及び反応物質 2—メチル一1—プロパノール(日本国、和 光純薬工業ネ環、特級) 178g(2. 4mol)を入れた。白色スラリー状の該混合物を入 れたフラスコを、温度調節器のついたオイルパス(日本国、増田理化工業ネ環、 OB H— 24)を接続したェパポレーター(日本国、柴田社製、 R- 144)に取り付けた。ォ ィルパス温度を 118°Cに設定し、該フラスコを該オイルパスに浸漬してェパポレータ 一の回転を開始した。ェパポレーターのパージパルプを開放したまま常圧で約 8時 間回転攪拌と加熱した。その後、該フラスコをオイルバス力 上げて放冷した。該フラ スコに 139gの粘稠な反応液を得た。 119Sn, 'Η, 13C— NMRの分析結果から、ジブ チルスズォキシド基準で収率 78%で 1, 1, 3, 3—テトラプチルー 1, 3—ビス(2—メ チル— 1一プロピルォキシ)—ジスタンォキサンを含有していて、ジブチル一ビス(2 —メチル一 1一プロピルォキシ)スズは含まれて 、な力つた。
[0061] 比較例 2
(低沸点成分のみを連続的に抜き出す方法)
冷却管とディーンスターク型水分受器を備えた 1Lなす形フラスコに、出発物質ジブ チルスズォキシド (米国、アルドリッチ機) 25g (0. lmol)と反応物質 2—ェチル— 1 —へキサノール(米国、アルドリッチ社製、脱水 99. 6%) 390g (3. Omol)トルエン 30 Oml (日本国、和光純薬工業社製 特級)を加えた。攪拌子で攪拌しながら 120°Cに 保温されたオイルバスで 12時間加熱環流した。ディーンスターク型水分受器には約 0. 8mlの水が得られ、フラスコ内にはジブチル酸化スズ基準で収率約 95%の 1, 1, 3, 3—テトラプチルー 1, 3—ビス(2—ェチルーへキシルォキシ)一ジスタンォキサン が得られ、ジブチルービス(2—ェチルーへキシルォキシ)スズは得られてレ、なかった
[0062] 比較例 3
(出発物質 1, 1, 3, 3—テトラブチル一 1, 3_ビス(2—メチル一1—プロピルォキ シ)一ジスタンォキサンの作成)
比較例 1の方法で、ジブチルスズォキシドと 2—メチル一 1一プロパノールからジブ チルスズォキシド基準で 78%の出発物質 1, 1, 3, 3—テトラプチルー 1, 3—ビス(2 —メチルー 1—プロピルォキシ)一ジスタンォキサンを含有する液を 139g得た。
(槽型反応器で低沸点生成物のみを連続的に抜き出す)
上記液を温調装置、攪拌装置、窒素ライン、パージラインを備えた 500mlの SUS 製オートクレープ(日本国、東洋高圧社製)に入れ、反応物質 2—メチルー 1—プロパ ノール(日本国、和光純薬工業社製、特級) 74g (lmol)をカ卩えて蓋をした。オートク レープ内部を窒素置換した後攪拌を開始し、パージラインをあけたまま設定温度を 1 25°Cとして加熱攪拌おこなった。温度上昇に伴って発生する気体成分をパージライ ンから 2時間かけて留去した。低沸点成分の留出がほとんど止まったのを確認して、 オートクレーブを放冷した。オートクレープ内部の反応液を119 Sn, ¾, 13C— NMR の分析すると、ジプチルスズォキシドと 2—メチルー 1—プロパノールからジブチルス ズォキシド基準で 79%の 1, 1, 3, 3—テトラプチルー 1, 3—ビス(2—メチル一1ープ 口ピルォキシ)一ジスタンォキサンを含有し、ジブチルービス(2—メチルー 1—プロピ ルォキシ)スズは得られてレ、なかった。
[0063] 比較例 4
(低沸点成分のみを連続的に抜き出す方法)
冷却管とディーンスターク型水分受器とサンプリング口を備えた容量 1Lの 2口フラ
IT正された招紙 (規則 91) スコに、出発物質ジブチルスズォキシド (米国、アルドリッチ ¾h ) 129g (0. 5mol)と 反応物質 2—ェチル—1ーブタノール (米国、アルドリッチネ環、 98%) 510g (5. Om ol)を加える。攪拌子で攪拌しながら 160°Cに保温されたオイルパスで 6時間加熱蒸 留し、生成する水を 2—ェチル _ 1—ブタノールと共に留去しながら反応させた。冷 却後フラスコ内にはジブチルスズォキシド基準で収率約 8%のジプチルービス(2— ェチル―プチルォキシ)スズが得られ、 1, 1, 3, 3—テトラプチルー 1, 3—ビス(2— ェチル一ブチルォキシ)一ジスタンォキサンは 80%。トリブチルスズ(2—ェチループ' チルォキシド)は 6%含まれていた。反応器での脱水速度は、 0. 045mol/Hrであり 、式(16)で求められる値 0. 273mol/Hrよりも小さかった。
[0064] 比 5
(低沸点成分のみを連続的に取り出す方法で、高温で反応させる方法)
リービッヒ冷却管とサンプリング口を備えた容量 1Lの 2口フラスコに、出発物質ジブ チルスズォキシド (米国、アルドリッチ社製) 129g (0. 5mol)と反応物質 2—ェチルー 1—へキサノール (米国、アルドリッチネ環、脱水 99. 6%) 651g (5. Omol)を加える 。攪抻子で攪拌しながら 190°Cに保温されたオイルパスで 2時間加熱蒸留し、生成す る水を 2—ェチルー 1—へキサノールと共に留去しながら反応させた。冷却後フラスコ 内にはジブチルスズォキシド基準で収率約 40%のジブチル一ビス(2—ェチル ヽ キシルォキシ)スズが得られ、 1, 1, 3, 3—テトラブチル— 1, 3_ビス(2—ェチルー へキシルォキシ) -ジスタンォキサンは 1 %であった。トリプチルスズ(2—ェチルーへ キシルォキシド)は 29%含まれていた。反応器での脱水速度は、 0. 175mol/Hrで あり、式(16)で求められる値 3. 44mol/Hrよりも小さかった。
[0065] 比較例 6
(トリプチルスズ化合物及び塩素含有化合物を含むジブチルスズァルコキシドによる 炭酸エステル合成)
三方コックを備えた lOOmLなすフラスコに 0. 3LZ分の窒素ガスを流し、ジブチル スズジブトキシド (ァズマックスネ: h 、トリブチルスズ化合物含有量 1. 5mol%、塩素原 子含有量 7600ppm) 23. 80g (0. 063mol)及び 3—メチル _1—ブタノール (米国 、アルドリッチネ環、脱水 99+%) 26. 44g (0. 30mol)をガスタイト型シリンジ (Ham iltonネ環、 1050TLL)によって仕込んだ後、該フラスコを振り液体を均一に混ぜた 。混合液を、パルプを備えた 150mLの SUS316L製圧力容器(Swagelokネ環、 31 6L-50DF4- 150)にシリンジによって移し、パルプを閉め容器を密閉した。磁気 誘導式攪拌機、マントル型ヒーター、温度計、圧力計、 2つのガスパージバルブ及び 液体サンプリングバルブを備えた容積 200mlの高圧容器 (東洋高圧ネ; h¾、 FCシリー ズオートクレーブシステム)に、減圧弁を備えた窒素ボンベと SUS316製チューブに よって接続した。窒素ボンベの圧力を減圧弁によって 0. 5MPaに設定し、該高圧容 器のガスパージパルプを開き容器内の圧力が 0. 5MPaになるまで窒素を導入した。 別のガスパージパルプを開き容器の圧力を常圧に戻した。この操作を3回繰り返し容 器内の窒素置換を行った。混合液の入った該圧力容器の重量を測り、該高圧容器 の液体サンプリングバルブに接続した後、圧力容器を窒素によって 0. 5MPa昇圧し た。液体サンプリングパルプを徐々に開き、混合液を高圧容器に導入した。圧力容 器の重量変化から高圧容器に仕込んだ混合液量を求めた。オートクレープの加熱を 開始し、攪拌機を回転数 450rpmで蓮転し、混合液を 120°Cに加熱した後、減圧弁 を備えた炭酸ガスボンベ (昭和炭酸ネ ±¾、純度 99. 99vol%)を高圧容器のガスパー ジパルプに接続した。炭酸ガスボンベの 2次圧を減圧弁によって 4. 5MPaに設定し 、ガスパージパノレブを開き、炭酸ガスを高圧容器の導入し、圧力を 4. OMPaに調整 した。加熱及び攪拌を 2時間行った後、ヒーターを容器から取り外し、容器内温度が 常温になるまで放冷した。その後、ガスパージパルプを開き、容器内圧力が 0. 05M Paになるまで炭酸ガスを除 、た。液体サンプリングパルプに三方コックを備えた 100 mL三口フラスコにテフロン (登録商標)チューブによって接続し、該パルブを開き混 合液をフラスコに移した。フラスコの重量測定より採取した混合液量を求めたところ、 22. 07gであった。次いで、該フラスコに枝管付連結管、温度計、リービッヒ冷却器、 減圧連結管及び 2つの蒸留液回収容器に接続した。該フラスコをオイルパスに浸漬 し、混合液温度 120°Cに昇温した後、真空ポンプと真空コントローラーによって約 32 kPaに徐々に減圧し約 1. 5時間保持し、蒸気温度 96°Cの留分 1を 11. 51g得た。次 いで、系內をさらに 0. 15〜0. 06kPaに減圧し約 1時間保持し、蒸気温度 64〜80 °Cの留分 2を 2. 30g得た。留分 2について GC— FID分析を行った結果、炭酸ジ一 3 一メチルブチルが 0. 20g含まれており、さらに塩素分析を行った結果、塩素原子含 有量力 S70ppmであり、 n9Sn— NMRの分析結果から、トリプチルスズ化合物が 0. 7 wt%であった。
[0066] 比較例 7
(多量にトリプチルスズィ匕合物^"有するジブチルスズァルコキシドによる炭酸エステ ル合成)
ジブチルスズジメトキシド (米国、アルドリッチ社製、トリプチルスズ化合物 3. 5mol %含有)を 23. 56g(0. O79mol)及ぴ 3—メチルー 1ーブタノール(米国、アルドリツ チ社製、脱水 99 + %) 33. 06g (0. 38mol)を比較例 6と同様な方法によって髙圧容 器に仕込み、同様に加熱及び攪拌を行った。その後、同様に混合液温度を下げ、炭 スを除いた後、混合液を 37. 51g三方コックを備えた lOOmL三口フラスコに採 取した。次いで、該フラスコに枝管付連結管、温度計、リービッヒ冷却器、減圧連結管 及び 2つの蒸留液回収容器に接続した。該フラスコをオイルパスに浸漬し、混合液温 度 120°Cに昇温した後、真空ポンプと真空コントローラーによって 97〜13kPaに徐 々に減圧し約 1. 5時間保持し、蒸気温度 54〜98°Cの留分 1を 16. 85g得た。次い で、系内をさらに 0. 06〜0. 2kPaに減圧し約 1時間保持し、蒸気温度 79〜81°Cの 留分 2を 1. 71g得た。留分 2について GC— FID分析を行った結果、炭酸ジ一 3—メ チルプチルが 1. 61g含まれており、さらに119 Sn— NMR分析を行った結果、該炭酸 エステルに含まれているトリプチルスズ化合物が 1. 2wt%混入したことを確認した。
[0067] 実施例 12
(出発物質 1, 1, 3, 3—テトラブチル— 1, 3—ジ (ブチルォキシ)一ジスタンォ キサンの作成)
容積 2000mLのなす型フラスコに、ジプチ/レスズォキシド (米国、アルドリッチ標) 542g(2. 18mol)及び 1—ブタノール(日本国、和光ネ環) 1400g (18. 9mol)を入 れた。白色スラリー状の該混合物を入れたフラスコを、温度調節器のついたオイルパ ス(日本国、増田理ィ匕工業ネ懷、 OBH— 24)と真空ポンプ(日本国、 ULVACネ環、 G—50A)と真空コントローラー(日本国、岡野製作所ネ環、 VC—10S)を接続した ェパポレーター (日本国、柴田社製、 R- 144)に取り付けた。ェパポレーターのパー ジパルプ出口は常圧で流れている窒素ガスのラインと接続した。エバポレーターのパ ージパルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒 素を流し、常圧に戻した。オイルバス温度を 126°Cに設定し、該フラスコを該オイルバ スに浸漬してェパポレーターの回転を開始した。ェパポレーターのパージパルプを 開放したまま常圧で約 30分間回転攪拌と加熱した後、混合液が沸騰し、低沸成分の 蒸留が始まった。この状態を 6時間保った後、パージバルブを閉め、系內を徐々に減 圧し、系内の圧力が 76〜54kPaの状態で残存低沸成分を蒸留した。低沸成分が出 なくなった後、該フラスコをオイルパスからあげた。反応液は透明な液になっていた。 留去した液は 1255gであり、透明で、 2層に分離していた。留去した液を分析したとこ ろ約 19. 6gの水を含んでいた。その後、該フラスコをオイルパス力もあげてパージパ ルブを徐々に開き系内の圧力を常圧に戻した。該フラスコには反応液 686gを得た。 119Sn, 'Η, 13C—NM の分析結果から、生成物 1, 1, 3, 3—テトラプチルー 1, 3_ ジ (プチルォキシ)一ジスタンォキサンがジブチルスズォキシド基準で収率 99 %を得 た。同様な操作を 6回繰り返し、 1, 1, 3, 3—テトラプチル一 1, 3—ジ (ブチルォキシ )—ジスタンォキサンを合計 4120g得た。
(塔型反応器でジブチルスズジアルコキシドを得る)
図 4に示すような塔型反応器 31にお 、て、ジブチルスズアルコキシドを製造した。 反応器上部 32に供給ライン 26と供給ライン 27、熱交灘 28、低沸成分回収ライン 3 4、凝縮器 35、気液分離器 36、背圧弁 37、ベントライン 38、液相回収ライン 39、反 応器下部 33にガス供給ライン 29、熱交觸 30と抜き出しライン 40を取り付けた内径 50mm、全長 4000mmの SUS316製の塔型反応器 31に GOODROLL Type A (日本国、東京特殊金網株式会社)を充填した。該反応器を 140°Cに設定したヒータ 一で温調した。
ガス供給ライン 29から 1ープタノール(日本国、和光純薬工業株式会ネ懷、工業用 品)を 399gZHrで、及び二酸化炭素を 3NL/Hrで供給し、熱交 β30によって 全ての 1—ブタノールを気化させ、反応器下部 33に供給した。供給ライン 26から出 発物質 1, 1, 3, 3—テトラプチル一 1, 3—ジ (ブチルォキシ)一ジスタンォキサンを 2 10g/Hrで、供給ライン 27から反応物質 1—ブタノール(日本国、和光純薬工業株 式会社製、工業用品)を 95 lgZHrで送液ポンプを用いて供給を開始した。該反応 器内滞留時間は約 30分であった。反応器内の液温度が 140°Cで背圧弁 37の圧力 が 0. 096MPa— Gになるように調整し、この状態で約 10時間連続供給した後、系内 が定常状態に達した。反応器上部 32から低沸成分回収ラインを経て凝縮器 35にお いて液化させた後、液相回収ライン 39から低沸成分を 753g/Hrで回収し、一方で 、反応器下部 33からジブチルスズァルコキシドを含む成分を 807g/Hrで抜き出し ライン 40から回収された 0回収された液を分析すると、ジプチルスズォキシド基準で 収率 41. 3%のジブチル一ジ (プチルォキシ)スズと 58. 7%の 1, 1, 3, 3—テトラブ チルー 1, 3—ジ (ブチル才キシ)—ジスタンォキサンからなるジプチルスズアルコキシ ドを含んでいた。トリプチルスズブトキシドは 0. 04%であった。一方、液相回収ライン 39から回収された液は透明であり、 2500ppmの水分を含んでいた。搭型反応器で の脱水速度は、 0. 144mol/Hrであり、式(16)で求められる値 0. 0015mol/Hr よりも大き力つた。
実細は 3
(塔型反応器でジプチルスズジアルコキシドを得る)
図 4に示すような塔型反応器 31にお!/、て、ジブチルスズァルコキシドを製造した。 反応器上部 32に供給ライン 26と供給ライン 27、熱交鶴28、低沸成分回収ライン 3 4、凝縮器 35、気液分離器 36、背圧弁 37、ベントライン 38、液相回収ライン 39、反 応器下部 33にガス供給ライン 29、熱交 30と抜き出しライン 40を取り付けた内径 50mm、全長 4000mmの SUS316製塔型反応器 31に METAL GAUZE CY( スイス国、 Sulzer Chemtech Ltd社製)を充填した。該反応器を 140でに設定し たヒーターで温調した。
ガス供給ライン 29から 1ブタノール(日本国、和光純薬工業株式会«、工業用品 )を 566g/Hrで、及び COを 3NL/Hrで供給し、熱交換器 30によって全ての 1—
2
ブタノールを気化させ、反応器下部 33に供給した。供給ライン 26から実施例 12と同 じ方法で作製した出発物質 1, 1, 3, 3—テトラプチルー 1, 3—ジ (プチルォキシ)一 ジスタンォキサンを 280gZHrで、供給ライン 27から反応物質 1—ブタノール(日本 国、和光純薬工業株式会據、工業用品)を 1330g/Hrで送液ポンプを用いて供 給を開始した。該反応器内滞留時間は約 13分であった。反応器内の液温度が 140 °Cで背圧弁 37の圧力が 0. 096MPa— Gになるように調整し、この状態で約 10時間 連続供給した後、系内が定常状態に達した。反応器上部 32から低沸成分回収ライン を経て凝縮器 35において液ィ匕させた後、液相回収ライン 39から低沸成分を 1006g /Hrで回収し、一方で、反応器下部 33からジブチルスズァルコキシドを含む成分を 抜き出しライン 40から 1170gZHrで回収された。生成物抜き出しライン 40から回収 された液を分析すると、ジブチルスズォキシド基準で収率 37. 5%のジプチノレ一ジ( ブチルォキシ)スズと 62. 4%の 1, 1, 3, 3—テトラブチルー 1, 3—ジ (ブチノレオキシ )一ジスタンォキサンカゝらなるジプチルスズアルコキシドを含んでいた。トリプチルスズ ブトキシドは 0. 022%であった。一方、液相回収ライン 39から回収された液は透明 であり、 2200ppmの水分を含んでいた。搭型反応器での脱水速度は、 0. 39mol/ Hrであり、式(16)で求められる値 0. 0015mol/Hrよりも大きかった。
実施例 14
(塔型反応器でジプチルスズジアルコキシドを得る)
図 5に示すような塔型反応器 46にお V、て、ジブチノレスズァルコキシドを製造した。 反応器上部 47に供給ライン 41と供給ライン 42、熱交脑 43、低沸成分回収ライン 4 9、凝縮器 50、低沸成分貯蔵槽 51、背圧弁 52、ベントライン 53、液相回収ライン 54 、反応器下部 48に反応器下部に滞留する反応液を循環する循環ライン 44、リボイラ 一 45と抜き出しライン 55を内径 50mm、全長 3500mmの SUS316製ダウンカマー 付きシーブトレーを塔型反応器 46に取り付けた。各シーブトレーは約 9gのホールド アップ量を有し、 50mmの間隔で設置した。該塔型反応器を 140でに設定したヒータ 一で温調した 0
供給ライン 41から実施例 12と同じ方法で作製した出発物質 1, 1, 3, 3—テトラブ チルー 1, 3—ジ (プチ/レオキシ)一ジスタンォキサンを 280g/Hrで、供給ライン 42 から反応物質 1—プタノール(日本国、和光純薬工業株式会據、工業用品)を 140 OgZHrで送液ポンプを用いて供給を開始した。該反応器内滞留時間は約 24分で あった。反応器下部に滞留する反応液は循環ライン 44とリボイラー 45によって 6000 g/Hrで、温度が約 140^0で循環加熱した。反応器内の液温度が 140でで背圧弁 5 2の圧力が 0. 096MPa— Gになるように調整し、この状態で約 10時間連続供給した 後、系内が定常状態に達した。反応器上部 47から低沸成分回収ライン 49を経て凝 縮器 50にお ヽて液ィ匕させた後、液相回収ライン 54から低沸成分を lOlOgZHrで回 収し、一方で、反応器下部 48からジブチルスズアルコキシドを含む成分を 670gZH rで抜き出しライン 55から回収された。回収された液を分析すると、ジブチルスズォキ シド基準で収率 44. 4%のジプチル一ジ(プチルォキシ)スズと 55. 0%の 1, 1, 3, 3 ーテトラプチルー 1, 3—ジ (プチルォキシ)一ジスタンォキサンからなるジブチルスズ アルコキシドを含んでいた。トリプチルスズプトキシドは 0. 05%であった。一方、液相 回収ライン 54から回収された液は透明であり、 2300ppmの水分を含んでいた。搭型 反応器での脱水速度は、 0. 20molZHrであり、式(16)で求められる値 0. 0015m ol/Hrよりも大き力つた。
麵例 15
(塔型反応器でジプチルスズジアルコキシドを得る)
図 5に示すような塔型反応器 46において、ジプチルスズァルコキシドを製造した。 反応器上部 47に供給ライン 41と供給ライン 42、熱交換器 43、低沸成分回収ライン 4 9、凝縮器 50、低沸成分貯蔵槽 51、背圧弁 52、ベントライン 53、液相回収ライン 54 、反応器下部 48に反応器下部に滞留する反応液を循環する循環ライン 44、リボイラ 一 45と抜き出しライン 55を取り付けた内径 50mm、全長 4000mmの SUS316製の 塔型反応器 46に MELLAPAK 750Y (スイス国、 Sulzer Chemtech Ltdネ環) を充填した。該塔型反応器を 140°Cに設定したヒーターで温調した。
供給ライン 41から実施例 12と同じ方法で作製した出発物質 1, 1, 3, 3—テトラプ チルー 1, 3—ジ (プチルォキシ)—ジスタンォキサンを 280g/Hrで、供給ライン 42 から反応物質 1—プタノール(日本国、和光純薬工業株式会ネ環、工業用品)を 133 Og/Hrで送液ポンプを用いて供給を開始した。該反応器内滞留時間は約 13分で あった。反応器下部に滞留する反応液は循環ライン 44とリボイラー 45によって 6000 g/Hrで、温度が約 140°Cで循環加熱した。反応器内の液温度が 140 で背圧弁 5 2の圧力が 0. 096MPa— Gになるように調整し、この状態で約 10時間連続供給した 後、系内が定常状態に達した。反応器上部 47から低沸成分回収ライン 49を経て凝 縮器 50にお 、て液化させた後、液相回収ライン 54から低沸成分を 1006g ¾rで回 収し、一方で、反応器下部 48からジプチルスズアルコキシドを含む成分を 604g/H rで抜き出しライン 55から回収された。抜き出しライン 55から回収された液を分析する と、ジブチルスズォキシド基準で収率 46. 3%のジブチルージ (プチ/レオキシ)スズと
53. 6%の 1, 1, 3, 3—テトラブチノレー 1, 3—ジ (ブチルォキシ)一ジスタンォキサン 力もなるジブチルスズアルコキシドを含んでいた。トリプチルスズブトキシドは 0. 022
%であった。一方、液相回収ライン 54力も回収された液は透明であり、 2200ppmの 水分を含んでいた。搭型反応器での脱水速度は、 0. 21molZHrであり、式(16)で 求められる値 0. OOOSlniolZHrよりも大きかった。
71] 窭翩 16
(塔型反応器でジブチルスズジアルコキシドを得る)
図 6に示すような塔型反応器 61にお 1/、て、ジブチルスズァルコキシドを製造した。 反応器上部 63に供給ライン 56と供給ライン 57、熱交 58、低沸成分回収ライン 6
5、凝縮器 66、低沸成分貯蔵槽 67、背圧弁 68、ベントライン 69、液相回収ライン 70
、そして反応器中部 62に低沸成分回収ライン 71と凝縮器 72、低沸成分貯蔵槽 73、 ガスライン 74、液相回収ライン 75、そして反応器下部 64に反応器下部に滞留する反 応液を循環する循環ライン 59、リボイラー 60と抜き出しライン 76を取り付けた内径 50 mm、全長 4000mmの SUS316製の塔型反応器 61に MELLAPAK 750Y (スィ ス国、 Sulzer Chemtech Ltdネ; fc¾)を充填した。該塔型反応器を 140°Cに設定し たヒーターで温調した。
供給ライン 56から実施例 12と同じ方法で作製した出発物質 1, 1, 3, 3—テトラプ チル一 1, 3—ジ (プチルォキシ)一ジスタンォキサンを 280gZHrで、供給ライン 57 ' から反応物質 1—プタノール(日本国、和光純薬工業株式会據、工業用品)を 133 2g/Hrで送液ポンプを用いて供給を開始した。該反応器内滞留時間は約 13分で あった。反応器下部に滞留する反応液は循環ライン 59とリボイラー 60によって 6000 g/Hrで、温度が約 140°Cで循環加熱した。反応器内の液温度が 140°Cで背圧弁 6 8の圧力が 0. 096MPa— Gになるように調整し、この状態で約 10時間連続供給した 後、系内が定常状態に達した。反応器上部 63から低沸成分回収ライン 65を経て凝 縮器 66において液化させた後、液相回収ライン 70から低沸成分を 512gZHr、また 反応器中部 62から低沸成分回収ライン 75を経て低沸成分 496gZHrで回収された 。一方で、反応器下部 64からジプチルスズァルコキシドを含む成分を 603gZHrで 抜き出しライン 76から回収された。抜き出しライン 76から回収された液を分析すると、 ジプチルスズォキシド基準で収率 47. 5%のジブチノレージ (プチ,レオキシ)スズと 52 . 4%の 1, 1, 3, 3—テトラプチルー 1, 3—ジ (プチルォキシ)一ジスタンォキサンか らなるジブチルスズアルコキシドを含んでいた。トリブチルスズブトキシドは 0. 021% であった。一方、液相回収ライン 70と 75から回収された液は透明であり、 2200ppm の水分を含んでいた。搭型反応器での脱水速度は、 0. 21mol/Hrであり、式(16) で求められる値 0· 00081molZHrよりも大きかった。
実飾 II 7
(塔型反応器でジブチルスズジアルコキシドを得る)
図 7に示すような塔型反応器 82にお!/ヽて、ジブチルスズアルコキシドを製造した。 反応器上部 84に低沸成分回収ライン 86、凝縮器 87、低沸成分貯蔵槽 88、背圧弁 8 9、ベントライン 90、液相回収ライン 91、そして反応器中部 83に供給ライン 77と供給 ライン 78、熱交浦 79、そして反応器下部 85に反応器下部に滞留する反応液を循 環する循環ライン 80、リボイラー 81と抜き出しライン 92を取り付けた内径 50mm、全 長 4000mmの SUS316製の塔型反応器 82に MELLAPAK 750Y (スイス国、 Su lzer Chemtech Ltd社製)を充填した。該塔型反応器を 140°Cに設定したヒータ 一で温調した。
供給ライン 77から実施例 12と同じ方法で作製した出発物質 1, 1, 3, 3—テトラプ チルー 1, 3—ジ (プチルォキシ)一ジスタンォキサンを 280gZHrで、供給ライン 78 から反応物質 1—ブタノール(日本国、和光純薬工業株式会ネ環、工業用品)を 133 Og/Hrで送液ポンプを用 Vヽて供給を開始した。該反応器内滞留時間は約 6分であ つた。反応器下部に滞留する反応液は循環ライン 80とリポイラ一 81によって 6000g ZHrで、温度が約 140°Cで循環加熱した。反応器内の液温度が 140°Cで背圧弁 89 の圧力が 0. 096MPa— Gになるように調整し、この状態で約 10時間連続供給した 後、系内が定常状態に達した。反応器上部 84から低沸成分回収ライン 86を経て凝 縮器 87において液化させた後、液相回収ライン 91から低沸成分を 1031gZHrで回 収し、一方で、反応器下部 85からジブチルスズアルコキシドを含む成分を抜き出しラ イン 92から 602g/Hrで回収された。回収された液を分析すると、ジブチルスズォキ シド基準で収率 47. 0%のジプチルージ(プチルォキシ)スズと 52. 9%の 1, 1, 3, 3 —テトラブチルー 1, 3—ジ (プチルォキシ)一ジスタンォキサンからなるジブチルスズ アルコキシドを含んでいた。トリブチルスズブトキシドは 0. 012%であった。一方、液 相回収ライン 91から回収された液は透明であり、 2200ppmの水分を含んでいた。搭 型反応器での脱水速度は、 0. 21mol/Hrであり、式(16)で求められる値 0. 0003 7mol/Hrよりも大きかった。
実漏 18
(塔型反応器でジブチルスズジアルコキシドを得る)
図 8に示すような塔型反応器 99にお!/、て、ジブチルスズアルコキシドを製造した。 反応器上部 101に低沸成分回収ライン 103、凝縮器 104、低沸成分貯蔵槽 105、背 圧弁 106、ペントライン 107、液相回収ライン 108、そして反応器中部 100に供給ライ ン 93と供給ライン 94、熱交^^ 95、そして反応器下部 102に反応器下部に有機溶 媒供給ライン 96、滞留する反応液を循環する循環ライン 97、リボイラー 98と抜き出し ライン 109を取り付けた内径 50mm、全長 4000mmの SUS316製の塔型反応器 99 に MELLAPAK 750Y (スイス国、 Sulzer Chemtech Ltdネ ±¾)を充填した。該 塔型反応器を 140°Cに設定したヒーターで温調した。
供給ライン 93から実施例 12と同じ方法で作製した出発物質 1, 1, 3, 3—テトラブ チル一 1, 3—ジ (プチルォキシ)一ジスタンォキサンを 280g/Hrで、供給ライン 94 から反応物質 1—ブタノール(日本国、和光純薬工業株式会社製、工業用品)を 133 OgZHrで送液ポンプを用いて供給を開始した。該反応器内滞留時間は約 6分であ つた。反応器下部 102に有機溶媒供給ライン 96からへキサン(日本国、和光純薬ェ 業株式会婦、脱水グレード)を 300gZHrで送液ポンプを用いて供給し、滞留する 反応液は循環ライン 97とリボイラー 98によって 6000g/Hrで、温度が約 140°Cで循 環加熱した。反応器內の液温度が 140°Cで背圧弁 106の圧力が 0. 12MPa_Gに なるように調整し、この状態で約 10時間連続供給した後、系内が定常状態に達した 。反応器上部 101から低沸成分回収ライン 103を経て凝縮器 104にお!/、て液ィ匕させ た後、液相回収ライン 108から低沸成分を 1088g/Hrで回収し、一方で、反応器下 部 102からジブチルスズァルコキシドを含む成分を抜き出しライン 109から 821gZH rで回収された。抜き出しライン 109から回収された液を分析すると、ジプチ/レスズォ キシド基準で収率 54. 0%のジブチル一ジ (ブチルォキシ)スズと 46. 0%の 1, 1, 3 , 3 -テトラプチノレ一 1, 3—ジ (ブチルォキシ) -ジスタンォキサンからなるジブチルス ズァルコキシドを含んでいた。トリプチルスズブトキシドは 0. 013%であった。一方、 液相回収ライン 108から回収された液は透明であり、 2500ρρπιの水分を含んで 、た 。搭型反応器での脱水速度は、 0. 24molZHrであり、式(16)で求められる値 0. 0 0037molZHrよりも大きかった。
寞續 19
(横型薄膜蒸留装置でジブチルスズジアルコキシドを得る)
図 9に示すような横型薄膜蒸留装置 113 (日本国、日南機械機、 PFD1)におい て、ジブチルスズァルコキシドを製造した。反応器上部 114に供給ライン 110と供給 ライン 111、熱交換器 112、低沸成分回収ライン 116、凝縮器 117、低沸成分貯蔵槽 118、ベントライン 119、液相回収ライン 120、反応器下部 115に抜き出しライン 121 を内径 50mm、全長 1100mmの SUS316製横型薄膜装置 113に取り付けた。該反 応器を 120°Cに設定したヒーターで温調した。
供給ライン 110から実施例 12と同じ方法で作製した出発物質 1, 1, 3, 3—テトラブ チルー 1, 3—ジ (ブチルォキシ)—ジスタンォキサンを 4600g/Hrで、アルコール供 給ライン 111から反応物質 1—プタノール(日本国、和光純薬工業株式会ネ環、工業 用品)を 22000g/Hrで送液ポンプを用いて供給を開始した。該反応器内滞留時間 は約 6分であった。反応器内の液温度が 120°Cになるように調整し、この状態で約 2 時間連続供給した後、系内が定常状態に達した。低沸成分回収ライン 116を経て凝 縮器 117において液化させた後、液相回収ライン 120から低沸成分を 18000/Hr で回収し、一方で、反応器下部 115からジブチルスズアルコキシドを含む成分を抜き 出しライン 121から 8600gZHrで回収された。回収された液を分析すると、ジブチル スズォキシド基準で収率 34. 2%のジブチル一ジ (ブチルォキシ)スズと 65. 7%の 1 , 1, 3, 3—テトラブチル一 1, 3—ジ (ブチルォキシ)一ジスタンォキサンからなるジブ チルスズアルコキシドを含んでいた。トリプチルスズブトキシドは 0. 015%であった。 一方、液相回収ライン 120から回収された液は透明であり、 2000ρρπιの水分 Sr^ん でいた。搭型反応器での脱水速度は、 2. 5mol/Hrであり、式(16)で求められる値 0. 0061mol/Hrよりも大きかった。
実施例 20
工程一 1 (出発物質 1, 1, 3, 3—テトラブチル一 1, 3—ジ (プチルォキシ)一ジスタン ォキサンの作成)
容積 3000mLのなす型フラスコに、ジプチルスズォキシド (米国、アルドリッチネ環) 759g (3. 05mol)及ぴ 1ープタノール(日本国、和光ネ: h¾) 1960g(26. 5mol)を入 れた。白色スラリー状の該混合物を入れたフラスコを、温度調節器のついたオイルバ ス(日本国、増田理化工業社製、 OBH— 24)と真空ポンプ(日本国、 ULVACネ環、 G— 50A)と真空コントローラー(曰本国、岡野製作所社製、 VC— 10S)を接続した ェパポレーター(日本国、柴田ネ ±¾、 R- 144)に取り付けた。ェパポレーターのパー ジパルプ出口は常圧で流れている窒素ガスのラインと接続した。ェパポレーターのパ ージパルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒 素を流し、常圧に戻した。オイルパス温度を 127°Cに設定し、該フラスコを該オイルパ スに浸漬してェパポレーターの回転を開始した。ェパポレーターのパージパルプを 開放したまま常圧で約 40分間回転攪拌と加熱した後、混合液が沸騰し、低沸成分の 蒸留が始まった。この状態を 7時間保った後、パージパルプを閉め、系內を徐々に減 圧し、系内の圧力が 76〜54kPaの状態で残存低沸成分を蒸留した。低沸成分が出 なくなった後、該フラスコをオイルパスカゝらあげた。反応液は透明な液になっていた。 留去した液は 1737gであり、透明で、 2層に分離していた。留去した液を分析したとこ ろ約 27. 6gの水を含んでいた。その後、該フラスコをオイルパス力もあげてパージパ ルプを徐々に開き系内の圧力を常圧に戻した。該フラスコには反応液 958gを得た。 119Sn, 13C_NMRの分析結果から、生成物 1, 1, 3, 3—テトラプチル— 1, 3_ ジ (プチルォキシ)一ジスタンォキサンがジブチルスズォキシド基準で収率 99%を得 た。同様な操作を 6回繰り返し、 1, 1, 3, 3—テトラプチルー 1, 3—ジ (ブチルォキシ )一ジスタンォキサンを合計 5748gを得た。
工程一 2 (塔型反応器でジプチルスズジアルコキシドを得る)
図 4に示すような塔型反応器において、ジブチルスズァルコキシドを製造した。反応 器上部 32に供給ライン 26と供給ライン 27、熱交難 28、低沸成分回収ライン 34、 «器 35、低沸成分貯蔵槽 36、背圧弁 37、ベントライン 38、液相回収ライン 39、反 応器下部 33にガス供給ライン 29、熱交鶴30と抜き出しライン 40を取り付けた内径 50mm,全長 4000mmの SUS316製の塔型反応器 31に GOODROLL Type A (曰本国、東京特殊金網株式会ネ環)を充填した。該反応器を 140°Cに設定したヒー ターで温調した。ガス供給ライン 29から 1ープタノール(曰本国、和光純薬工業株式 会ネ ±¾、工業用品)を 399gZHrで、及び二酸ィ匕炭素を 3NLZHrで供給し、熱交換 器 30によって全ての 1ープタノールを気化させ、反応器下部 33に供給した。供給ラ イン 26から出発物質 1, 1, 3, 3—テトラブチル— 1, 3—ジ (ブチノレオキシ)一ジスタ ンォキサンを 210g/Hrで、供給ライン 27から反応物質 1—ブタノール(日本国、和 光純薬工業株式会ネ環、工業用品)を 95 lg/Hrで送液ポンプを用いて供給を開始 した。該反応器内滞留時間は約 30分であった。
工程一 3 (ジアルキルスズアルコキシドカも炭酸エステルを得る)
工程ー2から得た反応液を80°0、約 6. 5kPaとした薄膜蒸留装置(日本国、神鋼環 境ソリューションネ環)に送液ポンプを用 ヽて 807gZHrで供給して揮発成分を留去 し、非揮発成分を冷却して回収し、 241g/Hrで 990mlオートクレープ(日本国、東 洋高圧觀)に供給した。 SUSチューブとパルプを介してオートクレープに接続され た二酸化炭素のボンベの 2次圧を 4MPaに設定した後、パルブを開け、マスフローコ ントローラー(日本国、オーパルネ; h^)を用いてオートクレープへ二酸化炭素を 28g /Hrで供給した。温度を 120°Cまで昇温した。オートクレープにおける滞留時間は 約 1時間であった。二酸化炭素と反応した液をパルプを介して除炭槽に移送し常圧 に戻した後、反応液を 130で、約 1. 3kPaとした薄膜蒸留装置(日本国、神鋼環境ソ リューシヨンネ ±^)に送液ポンプを用いて 267g/Hrで供給して炭酸ジブチル^^む 揮発成分を留去し、非揮発成分を冷却して回収した。この炭酸ジブチルを含む揮発 成分をディクソンパッキング (6mm φ )を充填した內径 50mm塔長 2000mmの連続 多段蒸留塔の中段に約 202g/Hrで供給して、蒸留分離を行った。冷却した液には 1—プタノール及び炭酸ジブチルの混合物であり、炭酸ジブチルは 98wt%であった oこの混合液にトリプチルスズブチルォキシは検出されな力 た。塩素分析結果から 塩素も検出されな力 た。一方、非揮発成分を119 Sn, 'Η, 13C— NMRの分析すると、 1, 1, 3, 3—テトラプチノレ一 1, 3—ジ (プチルォキシ)一ジスタンォキサンを含有して V、て、ジブチルージ (プチルォキシ)スズは含まれて 、なかった。
工程一 3で回収した非揮発成分に含有される 1, 1, 3, 3—テトラプチルー 1, 3—ジ (プチルォキシ)一ジスタンォキサンを送液ポンプを用いて塔型反応器 31に戻し、ェ 程一 2を繰り返した。
工程 _2の反応器内の液温度が 140°Cで背圧弁 37の圧力が 0. 096MPa_Gにな るように調整し、この状態で約 10時間連続供給した後、系内が定常状態に達した。 反応器上部 32から低沸成分回収ライン 34¾¾て凝縮器 35において液化させた後、 液相回収ライン 39から低沸成分を 753g/Hrで回収し、一方で、反応器下部 33から ジプチルスズァルコキシドを含む成分を抜き出しライン 40から 807g/Hrで回収され た。回収された液を分析すると、ジブチルスズォキシド基準で収率 41. 3%のジブチ ル―ジ(ブチルォキシ)スズと 58. 7%の 1, 1, 3, 3—テトラプチルー 1, 3—ジ (プチ ル才キシ)—ジスタンォキサン力もなるジプチ/レスズァルコキシドを含んでいた。トリブ チルスズプトキシドは 0. 04%であった。一方、液相回収ライン 39から回収された液 は透明であり、 2500Ppmの水分を含んでいた。搭型反応器での脱水速度は、 0. 14 4molZHrであり、式(16)で求められる値 0. 0015mol/Hrよりも大きかった。また 工程一 3から得た炭酸ジブチルの収率は約 30g/Hrであった。得られた炭酸ジブチ ルには塩素化合物及ぴトリプチルイ匕合物が含まれなかった。
実施例 21
(実施例 20製造方法で得られた炭酸ジブチルから炭酸ジフエ-ルを製造する) (触媒の調製)
フエノール 80gと一酸ィ匕鉛 32gを 180°Cで 12時間加熱し、生成する水をフエノール と共に留去することにより触^ Aを調製した。
(炭酸プチルフエエルの製造) 図 10に示すような装置で実施例 20から得た炭酸ジブチルを用 V、て炭酸プチルフ ェニルを製造する。段数 40のシープトレーを充填した内径約 50mm塔長 2000mm の連続多段蒸留塔 124の中段に炭酸ジブチルとフエノール及び触媒 Aからなる混合 液 (混合液中の炭酸ジプチルとフヱノールの重量比が 65/35、 Pb濃度が約 lwt% となるように調整した)を、熱交纏123を経て供給ライン 122から送液ポンプを用い て約 270g/Hで連続的に供給して、反応を行った。反応及び蒸留に必要な熱量は 塔下部液を循環ライン 131とリボイラー 130を経て循環加熱させることにより供給した 連続多段蒸留塔 124の塔底部の液温度は 231で、塔頂圧力は背圧弁 128によつ て約 200kPaに調整し、還流比は約 2とした。連続多段蒸留塔 124の塔頂から留出 する低沸成分は低沸成分回収ライン 125を経て凝縮器 126で凝縮した後、低沸成分 貯蔵槽 127を経てライン 129より約 67gZHrで連続的に抜き出した。塔底からは高 沸成分回収ライン 131を経て抜き出しライン 132へ約 203g/Hrで連続的に抜き出 した。液相回収ライン 129から抜き出された液の組成は 1—ブタノール約 27wt%、フ ェノール約 72wt%、炭酸ジブチル約 lwt%であった。抜き出しライン 132の液の組 成は、 1—ブタノール 330ppm、フエノール約 llwt%、炭酸ジブチル約 65wt0/0、炭 酸ブチルフエニル約 21%、炭酸ジフエニル約 lwt%、 Pb濃度約 lwt0/0であった。 (炭酸ブチルフエエルの不均化反応から炭酸ジフエエルを製造する)
図 11に示すような装置で炭酸ジフエニルを製造する。段数 40のシーブトレーを充 填した内径約 5cm塔長 2mの連続多段蒸留塔 135の中段に炭酸ブチルフエエルを 余熱器 134を経て供給ライン 133から送液ポンプを用いて約 203gZHrで連続的に 供給して、反応を行った。反応及び蒸留に必要な熱量は塔下部液を循環ライン 142 とリボイラー 141を経て循環加熱させることにより供給した。連続多段蒸留塔 135の塔 底部の液温度は 237°C、塔頂圧力は圧力調整弁 139によって約 27kPaに調整し、 還流比は約 2とした。連続多段蒸留塔 135の塔頂から留出する低沸成分は低沸成分 回収ライン 136を経て、凝縮器 137で凝縮した後、低沸成分貯蔵槽 138を経てライン 140より約 172gZHrで連続的に抜き出した。塔底からは抜き出しライン 143を経て 約 3 lgZHrで連続的に抜き出した。液相回収ライン 140から抜き出された液の組成 は 1ーブタノール約 390ppm、フエノール約 13wt%であり、炭酸ジブチル約 86wt% 、炭酸ブチルフエエル約 1 %であった。抜き出しライン 143から抜き出された液の 組成は、炭酸ジブチルが約 500ppm、炭酸プチルフエニル約 26wt°ん炭酸ジフエ二 ル約 65wt%、 Pb濃度約 8wt%であった。
次いで、図 12に示すような装置で炭酸ジフエエルの精製を実施した。ディクソンパ ッキング (6mm φ )を充填した内径約 5cm塔長 2mの連続多段蒸留塔 146の中段に 抜き出しライン 143から連続的に液を供給ライン 144と熱交歸 145を経て約 315g /Hrで供給して、蒸留分離を行った。蒸留分離に必要な熱量は塔下部液を循環ラ イン 153とリボイラー 152を経て循環させることにより供給した。連続多段蒸留塔 146 の塔底部の液温度は 210°C、塔頂圧力は圧力調整弁 150によって約 1. 5kPaに調 整し、還流比は約 1とした。連続多段蒸留塔 146の塔頂力ゝら留出する低沸成分は低 沸成分回収ライン 147を経て、凝縮器 148で凝縮した後、低沸成分貯蔵槽 149を経 て液相回収ライン 151から約 288g/Hrで連続的に抜き出した。塔底からは抜き出し ライン 154から系外へ約 27gZHrで連続的に抜き出した。液相回収ライン 151から 抜き出された液の組成は炭酸ジブチル約 200ppm、炭酸ブチルフエニル約 29wt% 、炭酸ジフエ-ル約 71wt%であった。ディクソンパッキング (6mm φ )を充填した内 径約 5cm塔長 4mの連続多段蒸留塔 157の中段に液相回収ライン 151から連続的 に抜き出された液を移送ラインライン 155と熱交觀 156を経て約 288gZHrで供給 して、蒸留分離を行った。蒸留分離に必要な熱量は塔下部液を循環ライン 164とリポ イラ一 163を経て循環加熱させることにより供給した。連続多段蒸留塔 157の塔底部 の液温度は 198°C、塔頂圧力は圧力調整弁 161によって約 6kPaに調整し、還流比 は約 6とした。連続多段蒸留塔 157の塔頂力ゝら留出する低沸成分は低沸成分回収ラ イン 158を経て、凝縮器 159で凝縮した後、低沸成分貯蔵槽 160を経て液相回収ラ イン 162より約 90g/Hrで連続的に抜き出した。塔底力、らは抜き出しライン 165から 系外へ約 198gZHrで連続的に抜き出した。液相回収ライン 162から抜き出された 液の組成は炭酸ジプチル約 700ppm、炭酸ブチルフエ-ル約 93wt°/。、炭酸ジフエ ニル約 7wt%であった。抜き出しライン 165へ抜き出された液の組成は、炭酸ブチル フエニルは検出限界以下、炭酸ジフエエル 99wt%であった。また、該反応液中の塩 素濃度は検出限界以下であった。 実施例 22
(実施例 21から得た炭酸ジフヱニルからへキサメチレンジイソシァネートを製造する) 攪拌装置、温度計、滴下ロートを備えた 500mlフラスコに、実施例 21から得た炭酸 ジフエエル 161g (0. 75モル)及びフエノール(Aldrich社製を予め蒸留したもの) 14 2g (l. 5モル)を入れ、乾燥窒素で置換後、フラスコを 50°Cのウォーターバスに浸漬 し、攪拌を開始した。フラスコ内部の固形分が溶解したのを確認後、ウォーターバス 温度を 45°Cとした。滴下ロートには、 45〜50°Cに保温された 1, 6—へキサメチレン ジァミン (Aldrich社製を予め蒸留したもの) 35g (0. 3モル)が入れられており、この 滴下ロートよりフラスコ内部に滴下開始した。フラスコ内の液温が 50〜60°Cとなるよう に滴下速度を調整しながら約 20分かけて滴下した。滴下終了後、ウォーターバスの 設定温度を、フラスコ内の液温が 50°Cとなるように調整して約 1時間攪拌を続けた。 この反応液を高速液体クロマトグラフィー及びゲルパーミエーシヨンクロマトグラフィー で分析した結果、 1, 6—へキサメチレンジァミンの反応率は 100%で、 1, 6—へキサ メチレンジ力ルバミン酸フエニルが収率 99. 6%、選択率 99. 6%で生成していること がわ力、つた。尿素化合物は約 0. 4%であった。
上記のようにして製造した反応液を余熱器を通してディクソンパッキング(6mm φ ) を充填した内径 2インチ塔長 4mの連続多段蒸留塔の中段に供給して、過剰のフエノ ールを蒸留塔上部力 ガス状で抜き出し、蒸留塔下部から液状の高沸点混合物を 連続的に抜き出した。塔底部はリボイラーで 130°Cで加熱循環し、塔頂部の圧力は 約 20kPaとなるように調整した。塔底から抜き出された液は、移送ラインとポンプを通 してディクソンパッキング(6mm φ )を充填した内径 2インチ塔長 4mの連続多段蒸留 塔の下から lm付近からフィードして熱分解をおこなった。塔底部はリボイラーで 220 °Cで加熱循環し、塔頂部の圧力は約 2. 6kPaとなるように調整した。塔の上部から 2 m付近からガス状でへキサメチレンジイソシァネートを含む成分を抜き出し、塔の上 部からはガス状でフエノールを抜き出した。へキサメチレンジイソシァネートを含む成 分は、ディクソンパッキング (6mm φ )を充填した内径 2インチ塔長 4mの連続多段蒸 留塔の中段にフィードしてへキサメチレンジイソシァネートの精製をおこなった。塔底 部はリボイラーで 120°Cで加熱循環し、塔頂部の圧力は約 0. 13kPaとなるように調
訂正された^紙 (画! 191) 整した。塔頂部力 抜き出された成分はへキサメチレンジイソシァネートが純度 99. 9 %で得られた。また塔底部から抜き出された成分は炭酸ジフエニルが主成分であつ た。
比較例 8
(塩素化合物を含んだジフエニルカーボネートからへキサメチレンジイソシァネートを 得る。)
攪拌装置、温度計、滴下ロートを備えた 500mlフラスコに、ジフエエルカーボネート (ドイツ国、バイエル社製、加水分解性塩素化合物 15ppmを含有) 161g (0. 75モノレ )及びフエノール(米国、 Aldrich社製を、予め蒸留したもの) 142g (l. 5モル)を入れ 、乾燥窒素で置換後、フラスコを 50°Cのウォーターバスに浸漬し、攪拌を開始した。 フラスコ内部の固形分が溶解したのを確認後、ウォーターバス温度を 45°Cとした。 滴下ロートには、 45〜50°Cに保温された 1, 6—へキサメチレンジァミン(米国、 Aldri ch社製を予め蒸留したもの) 35g (0. 3モル)が入れられており、この滴下ロートよりフ ラスコ内部に滴下開始した。フラスコ内の液温が 50〜60°Cとなるように滴下速度を調 整しながら約 20分かけて滴下した。滴下終了後、ウォーターバスの設定温度を、フラ スコ内の液温が 50°Cとなるように調整して約 1時間攪拌を続けた。
この反応液を高速液体クロマトグラフィー及びゲルパーミエーシヨンクロマトグラフィ 一で分析した結果、 1, 6—へキサメチレンジァミンの反応率は 99%で、 1, 6—へキ サメチレンジ力ルバミン酸フエニルが収率 99%、選択率 99. 6%で生成していること がわかった。尿素化合物は約 0. 5%であった。
上記のようにして製造した反応液を、予熱器を通して、ディクソンパッキング (6mm Φ )を充填した内径 2インチ、塔長 4mの連続多段蒸留塔の中段にフィードして、過剰 のフエノールを蒸留塔上部からガス状で抜き出し、蒸留塔下部から液状の高沸点混 合物を連続的に抜き出した。塔底部はリボイラーで 130°Cで加熱循環し、塔頂部の 圧力は約 20kPaとなるように調整した。塔底から抜き出された液は、移送ラインとボン プを通してディクソンパッキング(6mm φ )を充填した内径 2インチ塔長 4mの連続多 段蒸留塔の下から lm付近力 フィードして熱分解を行った。塔底部はリボイラーで 2 20°Cで加熱循環し、塔頂部の圧力は約 2. 6kPaとなるように調整した。
訂正された用紙 (規則 91》 塔の上部力 2m付近からガス状でへキサメチレンジイソシァネートを含む成分を抜 き出し、塔の上部力ゝらはガス状でフエノールを抜き出した。へキサメチレンジイソシァ ネートを含む成分は、ディクソンパッキング (6mm φ )を充填した内径 2インチ、塔長 4 mの連続多段蒸留塔の中段にフィードして、へキサメチレンジイソシァネートの精製 を行った。塔底部はリポイラ一で 120°Cで加熱循環し、塔頂部の圧力は約 130Paと なるように調整した。
塔頂部力も抜き出された成分はへキサメチレンジイソシァネートが純度 99. 3%で 得られた。また塔底部力、ら抜き出された成分はジフエ二ルカーポネートが主成分であ つた。得られたへキサメチレンジイソシァネートは 5ppmの加水分解性塩素化合物を 含有していた。
[0079] 実施例 23
(実施例 21から得た炭酸ジフエニルからポリカーボネートを製造する)
実施例 21から得た炭酸ジフエニル (NMR分析結果、メチル基を含む不純物 (アル キル基末端のメチル基を除く)は検出されな力つた) 23. 5gとビスフエノール A22. 8g とを、攪拌装置を備えた真空反応装置に入れ、窒素ガスで置換しながら 8kPaで 30 分間、 4kPaで 90分間重合させた。その後、 270°Cまで昇温し、 0. 07kPaで 1時間 重合させた。得られた芳香族ポリカーボネートの色は無色透明で良好であり、数平均 分子量は 10500であった。
[0080] 比齩例 9
(塩素化合物を含有する炭酸ジフエエルからポリカーボネートを得る)
炭酸ジフエ二ル (ドイツ国、パイエルネ環、塩素として 15ppm含有) 23. 5gとビスフ ェノール A22. 8gとを、攪拌装置を備えた真空反応装置に入れ、窒素ガスで置換し ながら 8kPaで 30分間、 4kPaで 90分間重合させた。その後、 270°Cまで昇温し、 0. 07kPaで 1時間重合させた。高分子量体は得られず、数平均分子量 800以下のオリ ゴマーを含む未反応物が得られた。
[0081] 比較例 10
(多量にトリブチルスズィ匕合物^有するジブチルスズァルコキシドによる炭酸エステ ル合成) 比較例 5から得られたジブチルスズ (2-ェチル -へキシルォキシド)(トリプチルス ズ (2—ェチルーへキシルォキシド) 29mo /0含有) 120gを比較例 6と同様な方法に よって高圧容器に仕込み、同様に加熱及び攪拌を行った。その後、同様に混合液温 度を下げ、炭酸ガスを除いた後、混合液を 100g三方コックを備えた 200mL三ロフラ スコに採取した。次いで、該フラスコに枝管付連結管、温度計、リービッヒ冷却器、減 圧連結管及び 2つの蒸留液回収容器に接続した。該フラスコをオイルパスに浸漬し、 混合液温度 130°Cに昇温した後、真空ポンプと真空コントローラーによって系内を 0 . 13kPaに減圧し、蒸気温度約 125°Cの留分を 18g得た。 GC— FID分析を行った 結果、炭酸ジー 2_ェチルへキシルが 55wt%含まれており、さらに 119Sn— NMR 分析を行った結果、該炭酸エステルに含まれて!/ヽるトリブチルスズ化合物が約 44wt %混人したことを確認した。
比蛟例 11
(触媒の調製)
フエノール 40gと一酸化鉛 8gを 180°Cで 10時間加熱し、生成する水をフエノールと 共に留去することにより蝕 ¾Aを調製した。
(炭酸ジフエエルの製造)
1000m 一トクレーブ(日本国、東洋高圧ネ環)に、比較例 7と同じ方法で得たジ (3—メチル一 1—プチル)カーボネート約 110g、予め蒸留精製したフエノール (米国 、 Aldrich社製) 490g、及び触媒 A (触媒 Aは、オートクレーブ内の内容物に対して 鉛濃度が 0. 4重量%となるような量)を入れて蓋をした。
オートクレープ内を窒素置換した後、パルプを閉めて攪拌を開始し、オートクレープ の内部液温が 230^まで昇温した。オートクレープの下部に窒素を SOmlZ分で導 入して、オートクレープ内の^ £が 100から 200kPaの範囲になるように、オートタレ ーブ上部のパルプを操作して、低沸成分を約 4時間留去し続けた。 4時間後、窒素 の導入を止め、オートクレープを放冷した。
内容物を分析したところ、ジ (3—メチル一1—プチル)カーボネート約 0. 28mol, 3 —メチル _ 1一ブチル(フエニル)カーボネート約 0. 21mol、ジフエ-ルカーボネート 約 0. 026molを得ていた。 反応液を真空コントローラー及び真空ポンプに接続した冷却管とディーンスターク 管とを備えた 1000m つ口フラスコに移し、攪拌のための攪拌子を入れた。このフラ スコを 150°Cとしたオイルパスに浸漬し、攪拌を開始し、徐々に減圧して約 lOOkPaと した。この状態で未反応のフエノールとジ (3—メチル一 1ーブチル)カーボネートを留 去し、主に 3—メチルー 1一ブチル(フエニル)力ーボネートとジフエ二ルカーポネート 力 なる反応液を得た。
次いで、減圧度を約 50kPaに調整し、オイルパス温度を 220°Cとして攪拌、反応を 継続した。ジ (3—メチル一 1ーブチル)カーボネートを留去しながら 6時間継続して反 応を終了した。反応液を分析すると、ジフエ二ルカーボネートが約 0. 26mol(56g) 生成していた。
次いで、該フラスコにヘリパック No. 2を充填した内径約 25mm塔長 500mmのガラ ス管、枝管付連結管、?崴度計、リービッヒ冷却器、減圧連結管及び 2つの蒸留液回収 織に接続した。該フラスコをオイルパスに浸漬し、混合液温度 185°Cに昇温した後 、真空ポンプと真空コントローラーによって徐々に減圧し低沸成分を留去した後、さら に系内を約 2kPaに減圧した。蒸気温度 175°Cの留分を約 50g得た。この留分につ いて GC—FID分析を行った結果、炭酸ジフエ-ルが 98wt%含まれており、さら〖こ119 Sn_NMR分析を行った結果、該炭酸ジフエエルに含まれて 1、るトリプチルスズ化合 物が約 1. 5wt%混入したことを確認した。
比纏 12
(トリプチルスズ化合物含有不純物を含んだ炭酸ジフエニルからへキサメチレンジイソ シァネートを得る。 )
攪拌装置、温度計、滴下ロートを備えた 500mlフラスコに、比較例 11と同じ方法に よって得た炭酸ジフエニル(トリプチルスズ化合物を約 1. 5wt%含有していた) 160g (0. 75モル)及ぴフエノール(米国、 Aldrich社製を、予め蒸留したもの) 142g (l. 5 モル)を入れ、乾燥窒素で置換後、フラスコを 50°Cのウォーターパスに浸漬し、攪拌 を開始した。
フラスコ内部の固形分が溶解したのを確認後、ウォーターパス温度を 45°Cとした。 滴下ロートには、 45〜50°Cに保温された 1, 6—へキサメチレンジァミン(米国、 Aldri ch社製を予め蒸留したもの) 35g (0. 3モル)が入れられており、この滴下ロートよりフ ラスコ内部に滴下開始した。フラスコ内の液温が 50〜60°Cとなるように滴下速度を調 整しながら約 20分かけて滴下した。滴下終了後、ウォーターバスの設定温度を、フラ スコ内の液温が 50°Cとなるように調整して約 1時間攪拌を続けた。
この反応液を高速液体クロマトグラフィー及びゲルパーミエーシヨンクロマトグラフィ 一で分析した結果、 1, 6—へキサメチレンジァミンの反応率は 99%で、 1, 6—へキ サメチレンジ力ルバミン酸フエ-ルが収率 99%、選択率 99. 6%で生成していること がわかった。尿素化合物は約 0. 5%であった。
上記のようにして製造した反応液を、予熱器を通して、ディクソンパッキング(6mm Ψ )を充填した内径 2インチ、塔長 4mの連続多段蒸留塔の中段にフィードして、過剰 のフエノールを蒸留塔上部からガス状で抜き出し、蒸留塔下部から液状の高沸点混 合物を連続的に抜き出した。塔底部はリボイラーで 130°Cで加熱循環し、塔頂部の 圧力は約 20kPaとなるように調整した。塔底から抜き出された液は、移送ラインとボン プを通してディクソンパッキング(6mm φ )を充填した内径 2インチ塔長 4mの連続多 段蒸留塔の下から lm付近からフィードして熱分解を行った。塔底部はリボイラーで 2 20°Cで加熱循環し、塔頂部の圧力は約 2. 6kPaとなるように調整した。
塔の上部から 2m付近力 ガス状でへキサメチレンジイソシァネートを含む成分を抜 き出し、塔の上部からはガス状でフエノールを抜き出した。へキサメチレンジイソシァ ネートを含む成分は、ディクソンパッキング(6mm φ )を充填した内径 2インチ、塔長 4 mの連続多段蒸留塔の中段にフィードして、へキサメチレンジイソシァネートの精製 を行った。塔底部はリボイラーで 120°Cで加熱循環し、塔頂部の圧力は約 130Paと なるように調整した。
塔頂部から抜き出された成分は茶色に着色し、へキサメチレンジイソシァネートが 純度 95%で得られた。また塔底部から抜き出された成分はジフエ二ルカーボネート が主成分であった。
比較例 13
(トリプチルスズィ匕合物含有不純物を含んだ炭酸ジフエニルからポリカーボネートを得 る)
訂正された用紙 (細 !191) 比較例 11と同じ方法によつて得た炭酸ジフエ二ル(トリプチルスズ化合物を約 1. 5 wt%含有していた) 24. 5gと、ビスフエノール A23. 2gとを、攪拌装置を備えた真空 反応装置に入れ、窒素ガスで置換しながら 8kPaで 30分間、 4kPaで 90分間重合さ せた。その後、 270°Cまで昇温し、 0. 07kPaで 1時間重合させた。得られた芳香族ポ リカーボネートは茶色であり、数平均分子量は 9000であった。
比較例 14
(炭酸ジメチルカ 炭酸ジフヱニルを製造する)
(触媒の調製)
チタンテトラブトキシド(日本国、東京化成社製) 340g (lmol)とフエノール: 1882g (2 Omol)を 180°Cで 6B寺間力 f]熱し、生成する 1—ブタノールをフエノールとともに留去す ることによつて触媒 Bを調製した。
(炭酸ジフニニルの製造)
図 13に示すような装置で炭酸ジフエニルを製造する。段数 40のシーブトレーを装 備した内径約 50mm塔長 2000mmの連続多段蒸留塔 172の塔頂 173に炭酸ジメ チルとフエノール及びメチルフエニルカーボネートからなる混合液を、供給ライン 166 力も熱交換器 167及び供給ライン 168を経て液状で 312gZHrで連続的に供給して 、反応を行った。上記混合物の各成分は、運転時の供給ライン 168における液の組 成が、炭酸ジメチル 50. lwt%、フエノール 44. 6wt%、炭酸メチルフエニル 5. Owt %になるような量を用いた。連続多段蒸留塔の塔底 174には、炭酸ジメチルをガス供 給ライン 169より熱交換器 170に導入してガス状にした炭酸ジメチルをガス供給ライ ン 171を経て 550gZHrで供給した。触媒 Bは、移送ライン 178における Ti濃度が 0 . 046wt%になるような量を触媒導入ライン 213より供給した。連続多段蒸留塔 172 の塔底温度は 203°C、塔頂圧力は 0. 65MPa- Gであった。塔頂 173より留出するガ スを低沸回収ライン 175を経て凝縮器 176におレ、て液ィ匕した後、液相回収ライン 17 7より 551g/Hrで抜き出した。塔底 174から 31 lg/Hrで抜き出した反応混合物は 移送ライン 178を経て蒸発器 179に導入した。ここでは触媒及び芳香族炭酸エステ ル類を含む濃縮液が形成された。この濃縮液の一部を移送ライン 180及び循環ライ ン 181からリボイラー 182及び循環ライン 183を経て蒸発器 179に循環した。濃縮液
訂正された ¾紙 (規則 91) の残りを蒸発器 179から移送ライン 180、移送ライン 184及び供耠ライン 166を経て 再び連続多段蒸留塔 172に lOgZHrで供給した。蒸発器 179で形成された濃縮液 の一部は抜き出しライン 185から 0. 5gZHr系外に抜き出した。移送ライン 178にお ける Ti濃度が 0. 046wt%に維持されるように、触媒 Bを触媒導入ライン 213から供 給した。一方、蒸発器 179の蒸発物を低沸回収ライン 186より凝縮器 187において 液化し、得られた液体を移送ライン 188、移送ライン 189を経て段数 20のシーブトレ 一を装着した内径 50mm塔長 1000mmの棚段塔力 なる連続多段蒸留塔 193内で 反応を行った。移送ライン 189の液の組成は炭酸ジメチル 42. lwt%、フエノール 24 . 5wt%、炭^^チルフエニル 28. lwt%、炭酸ジフエニル 4. 5wt%であった。触媒 は移送ライン 201における Ti濃度が 0. 046wt%になるように触媒導入ライン 212か ら供給した。連続多段蒸留塔 193の塔底温度は 198°C、塔頂圧力は 38kPaであつ た。塔頂 194から留出するガスを低沸成分回収ライン 196を経て凝縮器 197で液ィ匕 させ、一部は移送ライン 199より塔頂 194に戻し、残りの凝縮液は移送ライン 198及 び移送ライン 200より熱交蘭 167及び供給ライン 168を経て連続多段蒸留塔 173 に再循環させた。この再循環操作を開始させてからは供給ライン 168における組成 が同じになるように供給ライン 166からフエノールを新たに供給した。連続多段蒸留 塔の塔底 195の反応混合物の一部を循環ライン 190からリボイラー 191及び循環ラ イン 192を経て塔底 195に再循環させ、残りの反応混合物を移送ライン 201から 690 gZHrで蒸発器 202に供給した。蒸発器 202では触媒及び芳香族炭酸エステルを 含む濃縮液が形成された。この濃縮液の一部を移送ライン 203及ぴ循環ライン 204 からリボイラー 205及び循環 206を経て蒸発器 202に循環させた。濃縮液の残りを蒸 発器 202から移送ライン 203、移送ライン 207及ぴ移送ライン 189を経て再ぴ連続多 段蒸留塔 193に 20gZHrで供給した。蒸発器 202で形成された蒸気の濃縮液の一 部は抜き出しライン 208から系外に lg/Hrで抜き出した。移送ライン 201における Ti 濃度が 0. 046wt%に維持されるように触媒 Bを触媒導入ライン 212から供給した。 蒸発器 202から留出するガスは低沸成分回収ライン 209より凝縮器 210を経て液相 回収ライン 211から 682g/Hrで抜き出した。回収された液組成は 98%が炭酸ジフ ェニルであり、1 H— NMR分析よりメチル基含有不純物は 90ppmであった。 比較例 15
(メチル基含有不純物を含んだ炭酸ジフエニルからへキサメチレンジイソシァネートを 得る。)
攪拌装置、温度計、滴下ロートを備えた 500mlフラスコに、比較例 14から得た炭酸 ジフエニル(炭酸メチルフエ二ルを約 90ppm含有していた) 161g (0. 75モル)及び フエノール(米国、 Aldrich社製を、予め蒸留したもの) 142g (l. 5モル)を入れ、乾 燥窒素で置換後、フラスコを 50°Cのウォーターバスに浸漬し、攪拌を開始した。
フラスコ内部の固形分が溶解したのを確認後、ウォーターバス温度を 45°Cとした。 滴下ロートには、 45〜50°Cに保温された 1, 6—へキサメチレンジァミン(米国、 Aldri ch社製を予め蒸留したもの) 35g (0. 3モル)が入れられており、この滴下ロートよりフ ラスコ内部に滴下開始した。フラスコ内の液温が 50〜60°Cとなるように滴下速度を調 整しながら約 20分かけて滴下した。滴下終了後、ウォーターバスの設定温度を、フラ スコ内の液温が 50°Cとなるように調整して約 1時間攪拌を続けた。
この反応液を高速液体クロマトグラフィー及びゲルパーミエーシヨンクロマトグラフィ 一で分析した結果、 1, 6—へキサメチレンジァミンの反応率は 99%で、 1, 6—へキ サメチレンジ力ルバミン酸フエニルが収率 99%、選択率 99. 6%で生成していること がわかった。尿素化合物は約 0. 5%であった。
上記のようにして製造した反応液を、予熱器を通して、ディクソンパッキング(6mm φ )を充填した内径 2インチ、塔長 4mの連続多段蒸留塔の中段にフィードして、過剰 のフエノールを蒸留塔上部からガス状で抜き出し、蒸留塔下部から液状の高沸点混 合物を連続的に抜き出した。塔底部はリボイラーで 130°Cで加熱循環し、塔頂部の 圧力は約 20kPaとなるように調整した。塔底力も抜き出された液は、移送ラインとボン プを通してディクソンパッキング(6mm φ )を充填した内径 2インチ塔長 4mの連続多 段蒸留塔の下から lm付近からフィードして熱分解を行った。塔底部はリボイラーで 2 20°Cで加熱循環し、塔頂部の圧力は約 2. 6kPaとなるように調整した。
塔の上部から 2m付近からガス状でへキサメチレンジイソシァネートを含む成分を抜 き出し、塔の上部からはガス状でフエノールを抜き出した。へキサメチレンジイソシァ ネートを含む成分は、ディクソンパッキング(6mm φ )を充填した内径 2インチ、塔長 4
訂正された 紙 (顯 1191) mの連続多段蒸留塔の中段にフィードして、へキサメチレンジイソシァネートの精製 を行った。塔底部はリボイラーで 120°Cで加熱循環し、塔頂部の圧力は約 130Paと なるように調整した。
塔頂部から抜き出された成分は淡茶色に着色し、へキサメチレンジイソシァネート が純度 98%で得られた。また塔底部から抜き出された成分はジフエ二ルカーポネー トが主成分であった。
[0087] 比較例 16
(メチル基含有不純物を含む炭酸ジフエ二ルからポリカーボネートを得る) 比較例 14から得た炭酸ジフエ ル (炭 チルフエ二ルを約 90pPm含有して 、た) 23. 5gと、ビスフエノール A22. 8gとを、攪拌装置を備えた真空反応装置に入れ、窒 素ガスで置換しながら 8kPaで 30分間、 4kPaで 90分間重合させた。その後、 270°C まで昇温し、 0. 07kPaで 1時間重合させた。得られた芳香族ポリカーボネートの色は 無色透明で良好であり、数平均分子量は 9500であった。
[0088] 比續 17
(横型薄膜装置でジブチルスズジアルコキシドを得る)
図 9に示すような横型薄膜装置(日本国、 日南機械社製、 PFD1)において、ジブチ ルスズァルコキシドを製造した。反応器上部 114にスズアルコキシド供給ライン 110と アルコール供給ライン 111、熱交觸 112、低沸成分回収ライン 116、凝縮器 117、 低沸成分貯蔵タンク 118、ベントライン 119、液相回収ライン 120、反応器下部 115 に生成物抜き出しライン 121を内径 50mm、全長 1100mmの SUS316製横型薄膜 装置 113に取り付けた。該反応器は内温を 120°Cに設定したヒーターで温調し、内 圧を 54kPaに真空ポンプ及ぴ真空コントローラーによって調整した。
供給ライン 110から実施例 12と同じ方法で作製した出発物質 1, 1, 3, 3—テトラブ チルー 1, 3—ジ (プチルォキシ)一ジスタンォキサンを 4600g/Hrで、供給ライン 11 1から反応物質 1—ブタノール(日本国、和光純薬工業ネ環、脱水グレード含水量 50 ppm)を 22000g/Hrで送液ポンプを用いて供給を開始した。該反応器内滞留時間 は約 10分であった。反応器内の液温度が約 100°Cになるように調整し、この状態で 約 1時間連続供給した後、系内が定常状態に達した。反応器上部 114から低沸成分 を 21000gZHrで回収し、一方で、反応器下部 115からジブチルスズアルコキシドを 含む成分を 5600gZHrで回収された。抜き出しライン 121から回収された液を分析 すると、ジブチル一ジ (プチルォキシ)スズは含まれておらず、未反応の 1, 1, 3, 3- テトラブチル一 1, 3—ジ (プチルォキシ)一ジスタンォキサンが全て回収された。液相 回収ライン 120から回収された液は透明であり、 50ppmの水分を含んでおり、脱水 反応が起こらな力 た。
実施例 24
(塔型反応器でジブチルスズジアルコキシドを得る)
図(14)に示すような塔型反応器 219において、ジブチルスズァルコキシドを製造し た。反応器上部 221に低沸成分回収ライン 223、凝縮器 224、分離器 225、背圧弁 226、ベントライン 227、有機層還流ライン 228、水層回収ライン 229、そして反応器 中部 220に供給ライン 214と供給ライン 215、熱交^: 216、そして反応器下部 222 に反応器下部に滞留する反応液を循環する循環ライン 217、リボイラー 218と抜き出 しライン 230を取り付けた内径 50mm、全長 4000mmの SUS316製の塔型反応器 2 19に MELLAPAK 750Y (スイス国、 Sulzer Chemtech Ltdネ環)を充填した。 該反応器を 140°Cに設定したヒーターで温調した。
供給ライン 214から実施例 12と同じ方法で作製した出発物質 1, 1, 3, 3—テトラブ チル一 1, 3—ジ (プチルォキシ)一ジスタンォキサンを 280gZHrで、供給ライン 215 から反応物質 1ーブタノール(日本国、和光純薬工業株式会社製、工業用品)を 133 Og/Hrで送液ポンプを用いて供給を開始した。該反応器内滞留時間は約 6分であ つた。反応器下部に滞留する反応液は循環ライン 217とリボイラー 218によって 600 Og/Hrで、温度が約 141 で循環加熱した。反応器上部 221から低沸成分回収ラ イン 223を経て凝縮器 224にお V、て液化させた低沸成分は、 2000g/Hrで回収さ れ、分離器 225において有機層と水層が徐々に分離する。分離器 225中の有機層、 すなわち 1—プタノールは有機層還流ライン 228を経て反応器上部 221に 1994g/ Hrで戻され、一方で高濃度の水を含む下層の液は水層回収ライン 229から 6gZHr で回収された。反応器下部 222からジブチルスズアルコキシドを含む成分を抜き出し ライン 230から 1604gZHrで回収された。反応器内の液温度が 140°Cで背圧弁 22 6の圧力が 0. 096MPa— Gになるように調整し、この状態で約 10時間連続供給した 後、系内が定常状態に達した。抜き出しライン 230から回収された液を分析すると、 ジプチノレスズォキシド基準で 74. 2%のジブチルージ (プチルォキシ)スズと 25. 7% の 1, 1, 3, 3—テトラブチル一 1, 3—ジ (ブチノレオキシ)一ジスタンォキサン力 なる ジブチルスズアルコキシドを含んでいた。トリブチルスズブトキシドは 0. 015%であつ た。一方、水層回収ライン 229から回収された液は透明であり、 90wt%の水分を含 んでいた。搭型反応器での脱水速度は、 0. 33molZHrであり、式(16)で求められ る値 0. 00037mol/Hrよりも大き力、つた。
図面の簡単な説明
[図 1]1, 1, 3, 3—テトラブチノレー 1、 3—ビス (2—ェチルへキシルォキシ)一ジステノ キサン加熱時 (180°C)のトリブチルー (2—ェチルへキシルォキシ)—スズの生成を示 す図。
[図 2]本発明にカゝかる塔型反応器の実施例を示す概念図。
[図 3]本発明にかかる槽型反応器と塔型反応器を組み合わせた反応器の実施例を 示す概念図。
[図 4]本発明にカゝかる塔型反応器の実施例を示す概念図。
[図 5]本発明にカゝかる塔型反応器の実施例を示す概念図。
[図 6]本発明に力かる塔型反応器の実施例を示す概念図。
[図 7]本発明にかかる塔型反応器の実施例を示す概念図。
[図 8]本発明にかかる塔型反応器の実施例を示す概念図。
[図 9]本発明にかかる横型薄膜蒸留装置の実施例を示す概念図。
[図 10]本発明にかかる連続多段蒸留塔の実施例を示す概念図。
[図 11]本発明にかかる連続多段蒸留塔の実施例を示す概念図。
[図 12]本発明にかかる連続多段蒸留塔の実施例を示す概念図。
[図 13]本発明にかかる連続多段蒸留塔の実施例を示す概念図。
園 14]本発明にかかる塔型反応器の実施例を示す概念図。

Claims

請求の範囲
出発物質として、スズ一酸素ースズ結合を有する有機スズ化合物の群から選ばれる 少なくとも 1種のアルキルスズ化合物と、反応物質として、ヒドロキシ化合物とを脱水反 応に付し、出発物質と反応物質に対応するアルキルスズアルコキシド類を得ることを 含むアルキルスズアルコキシドの製造方法にお!/、て、反応器に出発物質と反応物質 を連続的に供給し、反応器から水を含む低沸点成分を取り出し、反応器底部成分と してアルキルスズアルコキシド類を含む反応液を連続的に取り出すことを特徴とする 上記方法。
出発物質である前記少なくとも 1種のアルキルスズ化合物が、テトラアルキル一ジァ ルコキシ— 1, 3—ジスタンォキサン類、及び/又はスズー酸素—スズ結合を介して 重合体として一般的に存在するジアルキルスズォキシド類である請求項 1記載の方 法。
前記テトラアルキルージアルコキシ一1, 3—ジスタンォキサン類が、下記化学式(1 )で表されるテトラアルキルージアルコキシ _ 1, 3 _ジスタンォキサン類である請求項 2記載の方法。
[化 1]
Figure imgf000092_0001
(式中、 R1 R2、 R 及ひ *R5は、それぞれ、アルキル基、ァラルキル基又はァリール 基であり、同一であっても、それぞれ異なっていてもよい。 R3、 R6は、それぞれアルキ ル基、ァラルキル基である。 a及ぴ bは 0から 2の整数であって、 a+bは 2であり、 c及 ぴ dは 0力ら 2の整数であって、 c+dは 2である。 )
前記ジアルキルスズォキシド類が、下記化学式 (2)で表されるジァルキルスズォキ シド類の重合体である請求項 2記載の方法。
[化 2]
Figure imgf000093_0001
(式中、 R7及ひ 8は、それぞれ、アルキル基、ァラルキル基又はァリール基であり、同 一であっても、それぞれ異なっていてもよい。 e及び ίは 0から 2の整数であって、 e+f は 2である。 )
[5] 前記出発物質が、それぞれ、単量体、 2量体 (同一種類の単量体の会合体又は異 なる種類の単量体どうしの会合体)多量体、又は重合体の V、ずれであってもよ Vヽ請求 項 2記載の方法。
[6] 前記ヒドロキシ化合物が、下記化学式 (3)で表されるアルコールである請求項 1記 載の方法。
[化 3]
R9OH ( 3 )
(式中、 R9は、 n—ブチル基、 2—メチルプロピル基、直鎖状又は分岐状の炭素数 5 〜12のアルキル基、炭素数 5〜 12のシクロアルキル基、直鎖状又は分岐状の炭素 数 2〜12のアルケニル基、無置換又は置換された炭素数 6〜19のァリール、及ぴ直 鎖状又は分岐状の炭素数 1〜 14のアルキルと炭素数 5〜 14のシクロアルキルからな る群力も選ばれるアルキルを含む炭素数 7〜20のァラルキル基などを表す。)
[7] 前記アルコールが、 1—ブタノール、 2—メチルー 1—プロパノール、及ぴ炭素数 5 から炭素数 8のアルキルアルコールからなる群から選ばれるアルコールである請求項 6記載の方法。
[8〕 出発物質と反応物質とを反応器に連続的に供給し、該反応器内にお 、て液相又 は気一液相で両物質間の脱水反応を行わせると同時に、製造されるアルキルスズァ ルコキシド又はアルキルスズアルコキシド混合物を含む高沸点反応混合物を該反応 器の下部カゝら液状で抜き出し、一方で、生成する水を含む低沸点反応混合物を蒸留 によって該反応器からガス状で連続的に抜き出すことを含む請求項 1記載の方法。
[9] 前記反応器が、出発物質と前記反応物質を供給するためのそれぞれのライン又は 該出発物質と該反応物質の混合液を供給するためのライン、及ぴ水を含む低沸点 反応混合物を抜き出すためのライン、及ぴ髙沸点反応混合物を抜き出すためのライ ンを備えて ヽる請求項 1又は請求項 8記載の方法。
[10] 前記水を含む低沸点反応混合物を抜き出すためのラインが気相成分を抜き出す 位置にあり、前記高沸点反応混合物を抜き出すためのラインが下方で液相成分を抜 き出す位置にある請求項 9記載の方法。
[11] 前記反応器が槽状又は塔状である請求項 1から 10のいずれか一項に記載の方法
[12] 前記反応器が、攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、連続多段蒸留塔、充 填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、 落滴蒸発器、細流相反応器、又は気泡塔のいずれかを含む型式である請求項 1から 11の!/ヽずれか一項に記載の方法。
[13] 不活性ガス及び/又は、気体状の反応物質及び/又は、気体状の不活性な有機 ィ匕合物及び/又は、水と共沸混合物を形成する有機溶媒を供給する請求項 1から請 求項 12記載の V、ずれか一項に記載の方法。
[14] 不活性ガスが、窒素、二酸化炭素、又はアルゴンから選ばれる請求項 13記載の方 法。
[15] 前記脱水反応を 60°Cから 160°Cまでの範囲で行う請求項 1記載の方法。 出発物質と反応物質の比率として、出発物質中に含まれるスズ原子の合計モル数 と、反応物質のモル数の比が、 3から 100の範囲である請求項 1記載の方法。
脱水反応を下記式 (4)で表される脱水速度で行う請求項 4から 16の V、ずれか一項 に記載の方法。
1]
60Χ+10Γ
脱水速度 > ( 4 )
Figure imgf000095_0001
(式中、脱水速度は、脱水反応で形成される水のうち、単位時間当りに系外に抜き出 す水量 [mol'hr一1]を表し、 Xは出発物質に含まれる一般式 (2)で表されるアルキル スズ化合物中のスズ原子モル数の合計 [mol]を表し、 Yは出発物質に含まれる化学 式( 1 )で表されるアルキルスズ化合物中のスズ原子モル数 [mol]を表し、 Tは脱水反 応温度 [K]を表し、 Rは気体定数 =8. 314J'mol— ^K— 1を表し、 Α及ぴ Βはアルキ ルスズ化合物の種類に依存する係数である;ここで、
上記式 (4)の係 [Α及び Bは出発物質であるアルキルスズ化合物の種類に依存し 、基準物質を定めて求める係数である。出発物質に化学式 (1)で表されるアルキル スズィ匕合物が含まれる場合は、上記 A及ぴ Bはそれぞれ出発物質に含まれる化学式 (1)で表されるアルキルスズ化合物から任意に選ばれるアルキルスズ化合物を基準 物質として、該基準物質の熱分解反応の頻度因子及び活性ィヒエネルギーを表すも のであって、下記式 (5)で得られる A及び Bであり、そして出発物質に化学式 (1)で 表されるアルキルスズ化合物が含まれず、化学式 (2)で表されるアルキルスズ化合物 が含まれる場合は、 A及び Bはそれぞれ出発物質に含まれる化学式 (2)で表される アルキルスズ化合物と反応物質とから形成される下記化学式 (7)で表されるアルキル スズアルコキシドから任意に選ばれるアルキルスズアルコキシドを基準物質として、該 基準物質の熱分解反応の頻度因子及ぴ活性化エネルギーを表すものであって、下 記式 (5)で得られる A及ぴ Bである,
[数 2]
Figure imgf000096_0001
(式中、 kは 1次反応速度定数 [hr— 、 Aは頻度因子 [hr_1]、 Bは活性化エネルギー [Ι'πιοΓ1] Rは気体定数
Figure imgf000096_0002
Tは熱分解反応温度 [K]を表す 。上記 kは該熱分解反応の 1次反応速度定数を表し、下記式 (6)で得られる kである 園
k 't = -Ml - X) ( 6 )
(式中、
kは 1次反応速度定数 [hr— 、 tは加熱時間、 X[hr]は基準物質の初期濃度に対す る減少率 [molZmol]を表す。 ) )
[化 4]
Figure imgf000097_0001
(式中、 R1D、 Ru、 R13、及 Ό¾14は出発物質の R7又《R8のいずれかに対応し、 g、 h、 i、及び jは出発物質の e又は fのいずれに対応し、 R12及び R15の少なくとも 1つは反応 物質の R9に対応する。 g及ぴ hは 0から 2の整数であって、 g+hは 2であり、 i及び jは 0 から 2の整数であって、 i+j=2である。 ))
[18] 請求項 1〜17の!/、ずれか 1項に記載の方法で製造されたジアルキルスズアルコキ シドを触媒として用いることを特徵とする炭酸エステルの製造方法。
[19] 請求項 1〜 17のレ、ずれか 1項に記載の方法で製造されたジアルキルスズアルコキ シドを触媒として用いて製造される炭酸エステル。
[20] 請求項 19記載の炭酸エステルを用いて製造されるイソシァネート類。
[21] 請求項 19記載の炭酸エステルを用いて製造されるポリカーボネート類。
PCT/JP2005/009032 2004-05-19 2005-05-18 アルキルスズアルコキシド類の製造方法 WO2005111049A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES05741483.1T ES2451495T3 (es) 2004-05-19 2005-05-18 Procedimiento para la producción de alcóxidos de alquilestaño
US11/596,885 US7541482B2 (en) 2004-05-19 2005-05-18 Process for production of alkyltin alkoxides
EP05741483.1A EP1760085B1 (en) 2004-05-19 2005-05-18 Process for production of alkyltin alkoxides
JP2006513613A JP4257798B2 (ja) 2004-05-19 2005-05-18 アルキルスズアルコキシド類の製造方法
BRPI0511251-6A BRPI0511251B1 (pt) 2004-05-19 2005-05-18 "processo para produção de alcóxidos de alquil- estanho e processo para produção de um éster de carbonato"
CN2005800224660A CN1997654B (zh) 2004-05-19 2005-05-18 烃基锡醇盐的生产方法
CA2566880A CA2566880C (en) 2004-05-19 2005-05-18 Process for production of alkyltin alkoxides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004148710 2004-05-19
JP2004-148710 2004-05-19

Publications (1)

Publication Number Publication Date
WO2005111049A1 true WO2005111049A1 (ja) 2005-11-24

Family

ID=35394121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009032 WO2005111049A1 (ja) 2004-05-19 2005-05-18 アルキルスズアルコキシド類の製造方法

Country Status (11)

Country Link
US (1) US7541482B2 (ja)
EP (1) EP1760085B1 (ja)
JP (1) JP4257798B2 (ja)
KR (1) KR100831518B1 (ja)
CN (1) CN1997654B (ja)
BR (1) BRPI0511251B1 (ja)
CA (1) CA2566880C (ja)
ES (1) ES2451495T3 (ja)
RU (1) RU2338749C2 (ja)
TW (1) TWI299042B (ja)
WO (1) WO2005111049A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114130A1 (ja) 2006-03-30 2007-10-11 Asahi Kasei Chemicals Corporation 二酸化炭素回収利用、移送用混合物
JP2007269653A (ja) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corp アルキルスズアルコキシドの製造方法
WO2008044575A1 (fr) 2006-10-11 2008-04-17 Asahi Kasei Chemicals Corporation Procédé de production de dialcoxydes de dialkyl étain
WO2009139062A1 (ja) 2008-05-15 2009-11-19 旭化成ケミカルズ株式会社 イソシアネートの製造方法
WO2009139061A1 (ja) 2008-05-15 2009-11-19 旭化成ケミカルズ株式会社 炭酸ジアリールを用いるイソシアネートの製造方法
WO2010016297A1 (ja) 2008-08-08 2010-02-11 旭化成ケミカルズ株式会社 アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法
US7842828B2 (en) 2006-02-23 2010-11-30 Asahi Kasei Chemicals Corporation Method for separating out and recovering dialkyltin dialkoxide
US8053595B2 (en) 2006-11-17 2011-11-08 Asahi Kasei Chemicals Corporation Process for producing isocyanates
US8362293B2 (en) 2007-01-11 2013-01-29 Asahi Kasei Chemicals Corporation Process for producing isocyanates
JP2013107909A (ja) * 2013-03-11 2013-06-06 Asahi Kasei Chemicals Corp 炭酸ジアリールを用いるイソシアネートの製造方法
WO2015046167A1 (ja) 2013-09-26 2015-04-02 旭化成ケミカルズ株式会社 アルキルスズ化合物
US9056819B2 (en) 2007-03-30 2015-06-16 Asahi Kasei Chemicals Corporation Isocyanate production process using composition containing carbamic acid ester and aromatic hydroxy compound, and composition for transfer and storage of carbamic acid ester
JP2016041664A (ja) * 2014-08-18 2016-03-31 三菱瓦斯化学株式会社 ジアルキルカーボネートの製造方法
WO2024176969A1 (ja) * 2023-02-22 2024-08-29 国立研究開発法人産業技術総合研究所 炭酸ジエステルの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781503A1 (en) * 2013-03-18 2014-09-24 Bayer MaterialScience AG Oxidative carbonylation of monohydroxy aryl compounds by methyl formate
KR101659645B1 (ko) 2013-10-02 2016-09-26 롯데첨단소재(주) 방향족 탄산에스테르의 제조방법
CN110152648B (zh) * 2018-02-12 2022-01-04 中国石油化工股份有限公司 锡催化剂的制备方法、锡催化剂及其应用
KR102560231B1 (ko) * 2018-04-11 2023-07-26 인프리아 코포레이션 낮은 폴리알킬 오염물을 갖는 모노알킬 주석 화합물,이의 조성물 및 방법
TWI722719B (zh) 2019-12-16 2021-03-21 財團法人工業技術研究院 觸媒與其前驅物與碳酸二烷基酯的形成方法
CN114392635A (zh) * 2022-02-28 2022-04-26 稀美资源(广东)有限公司 一种乙醇钽自动恒温收集分装器
US12060377B2 (en) 2022-08-12 2024-08-13 Gelest, Inc. High purity tin compounds containing unsaturated substituent and method for preparation thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583084A (en) 1948-12-15 1952-01-22 Union Carbide & Carbon Corp Hydrocarbon tin alcoholates
US2700675A (en) 1950-07-12 1955-01-25 Advance Solvents & Chemical Co Method of preparing monomeric organotin dialkoxides
NL6612421A (ja) 1965-09-02 1967-03-03
US5545600A (en) 1994-12-21 1996-08-13 Knudsen; George A. Process for the preparation of dialkyltin dialkoxide
JP2003192644A (ja) 2001-12-27 2003-07-09 Asahi Kasei Corp 炭酸エステルの製造法
JP2003192643A (ja) 2001-12-27 2003-07-09 Asahi Kasei Corp 炭酸エステルの製造方法
WO2004014840A1 (ja) 2002-08-07 2004-02-19 Asahi Kasei Chemicals Corporation 炭酸エステルの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745219A (en) * 1963-05-07 1973-07-10 M & T Chemicals Inc Composition and method for controlling bacteria with organotin compounds
US3651015A (en) * 1969-03-05 1972-03-21 Asahi Chemical Ind Process for producing polyacetal resin
US4554110A (en) * 1983-12-27 1985-11-19 General Electric Company Process for the preparation of aromatic carbonates
US5759941A (en) * 1995-02-10 1998-06-02 Exxon Chemical Patents Inc Process for the preparation of dialkyltin dialkoxide from alkyl carbamate and alcohol
KR100545615B1 (ko) 2001-12-27 2006-01-24 아사히 가세이 케미칼즈 가부시키가이샤 탄산에스테르의 제조 방법
DE10204524A1 (de) 2002-02-05 2003-08-07 Bayer Ag Zusammensetzungen enthaltend Polycarbonat
US6903179B2 (en) 2002-05-30 2005-06-07 Bayer Materialscience Llc Polyurethane/ureas useful for the production of spandex and a process for their production
BRPI0411714B1 (pt) * 2003-06-27 2015-06-02 Asahi Kasei Chemicals Corp Método para produzir um carbonato aromático

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583084A (en) 1948-12-15 1952-01-22 Union Carbide & Carbon Corp Hydrocarbon tin alcoholates
US2700675A (en) 1950-07-12 1955-01-25 Advance Solvents & Chemical Co Method of preparing monomeric organotin dialkoxides
NL6612421A (ja) 1965-09-02 1967-03-03
US5545600A (en) 1994-12-21 1996-08-13 Knudsen; George A. Process for the preparation of dialkyltin dialkoxide
JP2003192644A (ja) 2001-12-27 2003-07-09 Asahi Kasei Corp 炭酸エステルの製造法
JP2003192643A (ja) 2001-12-27 2003-07-09 Asahi Kasei Corp 炭酸エステルの製造方法
WO2004014840A1 (ja) 2002-08-07 2004-02-19 Asahi Kasei Chemicals Corporation 炭酸エステルの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1760085A4 *
SOCIETY OF CHEMICAL INDUSTRY, vol. 72, no. 7, 1969, pages 1543

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842828B2 (en) 2006-02-23 2010-11-30 Asahi Kasei Chemicals Corporation Method for separating out and recovering dialkyltin dialkoxide
US8362289B2 (en) 2006-03-30 2013-01-29 Asahi Kasei Chemicals Corporation Mixture for recovery utilization or transfer of carbon dioxide
JP2007269653A (ja) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corp アルキルスズアルコキシドの製造方法
WO2007114130A1 (ja) 2006-03-30 2007-10-11 Asahi Kasei Chemicals Corporation 二酸化炭素回収利用、移送用混合物
KR101070711B1 (ko) 2006-03-30 2011-10-07 아사히 가세이 케미칼즈 가부시키가이샤 이산화탄소 회수 이용, 이송용 혼합물
WO2008044575A1 (fr) 2006-10-11 2008-04-17 Asahi Kasei Chemicals Corporation Procédé de production de dialcoxydes de dialkyl étain
US8008518B2 (en) 2006-10-11 2011-08-30 Asahi Kasei Chemicals Corporation Process for producing dialkyl tin dialkoxides
JP4827927B2 (ja) * 2006-10-11 2011-11-30 旭化成ケミカルズ株式会社 ジアルキルスズジアルコキシドの製造方法
US8053595B2 (en) 2006-11-17 2011-11-08 Asahi Kasei Chemicals Corporation Process for producing isocyanates
US8362293B2 (en) 2007-01-11 2013-01-29 Asahi Kasei Chemicals Corporation Process for producing isocyanates
US9637445B2 (en) 2007-03-30 2017-05-02 Asahi Kasei Chemicals Corporation Isocyanate production process using composition containing carbamic acid ester and aromatic hydroxy compound, and composition for transfer and storage of carbamic acid ester
US9056819B2 (en) 2007-03-30 2015-06-16 Asahi Kasei Chemicals Corporation Isocyanate production process using composition containing carbamic acid ester and aromatic hydroxy compound, and composition for transfer and storage of carbamic acid ester
US8895774B2 (en) 2008-05-15 2014-11-25 Asahi Kasei Chemicals Corporation Process for producing isocyanates using diaryl carbonate
WO2009139062A1 (ja) 2008-05-15 2009-11-19 旭化成ケミカルズ株式会社 イソシアネートの製造方法
JPWO2009139062A1 (ja) * 2008-05-15 2011-09-15 旭化成ケミカルズ株式会社 イソシアネートの製造方法
JP5242678B2 (ja) * 2008-05-15 2013-07-24 旭化成ケミカルズ株式会社 炭酸ジアリールを用いるイソシアネートの製造方法
JP5592786B2 (ja) * 2008-05-15 2014-09-17 旭化成ケミカルズ株式会社 イソシアネートの製造方法
WO2009139061A1 (ja) 2008-05-15 2009-11-19 旭化成ケミカルズ株式会社 炭酸ジアリールを用いるイソシアネートの製造方法
US9233918B2 (en) 2008-05-15 2016-01-12 Asahi Kasei Chemicals Corporation Isocyanate production process
WO2010016297A1 (ja) 2008-08-08 2010-02-11 旭化成ケミカルズ株式会社 アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法
US8168812B2 (en) 2008-08-08 2012-05-01 Asahi Kasei Chemicals Corporation Process for producing alkyl tin alkoxide compound and process for producing carbonic acid ester using said compound
JP2013107909A (ja) * 2013-03-11 2013-06-06 Asahi Kasei Chemicals Corp 炭酸ジアリールを用いるイソシアネートの製造方法
WO2015046167A1 (ja) 2013-09-26 2015-04-02 旭化成ケミカルズ株式会社 アルキルスズ化合物
KR20160048171A (ko) 2013-09-26 2016-05-03 아사히 가세이 케미칼즈 가부시키가이샤 알킬주석 화합물
US9844775B2 (en) 2013-09-26 2017-12-19 Asahi Kasei Kabushiki Kaisha Alkyl tin compound
JP2016041664A (ja) * 2014-08-18 2016-03-31 三菱瓦斯化学株式会社 ジアルキルカーボネートの製造方法
WO2024176969A1 (ja) * 2023-02-22 2024-08-29 国立研究開発法人産業技術総合研究所 炭酸ジエステルの製造方法

Also Published As

Publication number Publication date
RU2338749C2 (ru) 2008-11-20
JP4257798B2 (ja) 2009-04-22
CN1997654B (zh) 2011-05-11
RU2006144954A (ru) 2008-06-27
BRPI0511251B1 (pt) 2014-12-09
JPWO2005111049A1 (ja) 2008-07-31
EP1760085A1 (en) 2007-03-07
TW200613314A (en) 2006-05-01
US7541482B2 (en) 2009-06-02
EP1760085B1 (en) 2014-02-26
CA2566880C (en) 2012-04-24
BRPI0511251A (pt) 2007-11-27
KR100831518B1 (ko) 2008-05-22
ES2451495T3 (es) 2014-03-27
EP1760085A4 (en) 2009-07-01
CN1997654A (zh) 2007-07-11
TWI299042B (en) 2008-07-21
US20080275262A1 (en) 2008-11-06
KR20070010202A (ko) 2007-01-22
CA2566880A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
WO2005111049A1 (ja) アルキルスズアルコキシド類の製造方法
KR101363232B1 (ko) 탄산디아릴을 이용하는 이소시아네이트의 제조 방법
JP3413613B2 (ja) ジアルキルカーボネート類からジアリールカーボネート類を連続的に製造する方法
EP1460056B1 (en) Method for producing a carbonic ester
EP1640357B1 (en) Method for producing aromatic carbonate
JP4264124B2 (ja) ジアルキルスズジアルコキシドの分離回収方法
CN104151162B (zh) 使用烷基锡醇盐化合物的碳酸酯的制造方法
US8952189B2 (en) Process for preparing diaryl carbonates or alkyl aryl carbonates from dialkyl carbonates
EP1535896B1 (en) Process for producing carbonic ester
WO2008044575A1 (fr) Procédé de production de dialcoxydes de dialkyl étain
JP2012092096A (ja) ジアルキルカーボネートからジアリールカーボネートを調製する方法
JP2012140355A (ja) 炭酸エステルの製造方法
JP2009280502A (ja) 有機カーボネートの製造方法
CN105579461B (zh) 烷基锡化合物
JP5650777B2 (ja) 炭酸ジアリールを用いるイソシアネートの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006513613

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3382/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2566880

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11596885

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005741483

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067026672

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006144954

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200580022466.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067026672

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005741483

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0511251

Country of ref document: BR