WO2010016297A1 - アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法 - Google Patents

アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法 Download PDF

Info

Publication number
WO2010016297A1
WO2010016297A1 PCT/JP2009/056756 JP2009056756W WO2010016297A1 WO 2010016297 A1 WO2010016297 A1 WO 2010016297A1 JP 2009056756 W JP2009056756 W JP 2009056756W WO 2010016297 A1 WO2010016297 A1 WO 2010016297A1
Authority
WO
WIPO (PCT)
Prior art keywords
isomer
group
compound
tin
acid
Prior art date
Application number
PCT/JP2009/056756
Other languages
English (en)
French (fr)
Inventor
篠畑 雅亮
信寿 三宅
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN200980129670.0A priority Critical patent/CN102112482B/zh
Priority to BRPI0907002-8A priority patent/BRPI0907002B1/pt
Priority to CA2710923A priority patent/CA2710923C/en
Priority to EP09804784A priority patent/EP2226328B1/en
Priority to JP2010523783A priority patent/JP5069793B2/ja
Priority to ES09804784T priority patent/ES2399852T3/es
Priority to EA201070792A priority patent/EA024850B1/ru
Priority to US12/811,335 priority patent/US8168812B2/en
Priority to KR1020107022511A priority patent/KR101169163B1/ko
Publication of WO2010016297A1 publication Critical patent/WO2010016297A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/04Preparation of esters of carbonic or haloformic acids from carbon dioxide or inorganic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2224Compounds having one or more tin-oxygen linkages

Definitions

  • the present invention relates to the production of dialkyl tin dialkoxide compounds and / or tetraalkyl dialkoxy distannoxane compounds as catalysts used in the production of esters and carbonate esters, and the dialkyl tin dialkoxide compounds and / or tetraalkyl dialkoxydi
  • the present invention relates to ester and carbonate ester production using a stannoxane compound.
  • Dialkyl tin dialkoxide compounds and tetraalkyl dialkoxy distannoxane compounds are extremely useful as catalysts for ester synthesis catalysts, carbonate ester synthesis catalysts, transesterification reaction catalysts, silicone polymers, urethane curing catalysts, and the like.
  • carbonate esters are used as additives for gasoline additives for improving octane number, diesel fuel additives for reducing particles in exhaust gas, and organic compounds such as polycarbonate, urethane, pharmaceuticals and agricultural chemicals.
  • Patent Document 1 discloses a method for producing a carbonate ester in which an adduct formed by reacting an organometallic compound containing a dialkyltin dialkoxide with carbon dioxide is thermally decomposed.
  • Patent Document 2 discloses a method in which a dialkyltin oxide and an alcohol are subjected to a dehydration reaction, and low-boiling components including generated water are removed from the reaction solution.
  • This reaction is presumed to be a sequential equilibrium reaction with dehydration as shown in the following formulas (1) and (2). Manufactured while being pulled out of the system.
  • the reaction since the reaction is energetically unfavorable, it is necessary to react for a long time at a high temperature (for example, 180 ° C.). Thermal denaturation reactions of compounds and tetraalkyl dialkoxy distannoxane compounds may occur.
  • the dialkyltin compound is a solid, it may interfere with handling during production by a continuous process.
  • R and R ′ each independently represents an alkyl group.
  • R and R ′ each independently represents an alkyl group.
  • Non-Patent Document 1 discloses a method for producing diethyltin dibutoxide by reacting diethyldichlorotin and sodium butoxide. In this reaction, since sodium chloride is generated as a by-product as a by-product, the liquid after the reaction becomes a slurry, and there are cases where handling is difficult when purifying the tin compound and the like.
  • Patent Document 3 describes a method of regenerating a deactivated composition of a tin catalyst produced in a carbonate ester production process and using it again as a catalyst in the production of a carbonate ester.
  • the regeneration method comprises heat-treating a compound produced by reacting a composition containing a deactivator of a dialkyltin alkoxide compound, which is produced in a production process of a carbonic acid ester, with an acid and / or an acid anhydride. And regenerating the dialkyltin compound into a dialkyltin alkoxide compound.
  • the step of regenerating a dialkyltin compound into a dialkyltin dialkoxide compound is generated by reacting the dialkyltin compound with an alkaline aqueous solution to obtain a composition containing dialkyltin oxide, and reacting the composition with an alcohol.
  • This is a method for removing water-containing components from the reaction solution, and involves a dehydration reaction represented by the above formulas (1) and (2). It may be accompanied by a heat denaturation reaction of the alkyl dialkoxy distannoxane compound.
  • the dialkyl tin oxide is a solid, and a process for handling liquid and a process for handling solid are mixed, which may be difficult in industrial implementation.
  • an object of the present invention is to provide a method for producing a dialkyltin tin alkoxide compound without handling a solid tin compound.
  • a further object of the present invention is to provide a method of using the produced dialkyltin alkoxide compound in the production of carbonate esters.
  • the present invention [1] at least one alkyltin compound selected from the group consisting of i) and ii) below; i) having one tin atom, two Sn—R 1 (R 1 represents an alkyl group) bond, and two Sn—OX bonds (the group OX is a conjugate acid of OX, HOX is pKa Is a group OX which is a Bronsted acid of 0 or more and 6.8 or less).
  • R 2 OCOOR 2 R 2 is a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group (formula Wherein Y represents an alkylpolyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group)), and / or An alcohol represented by R 2 OH (R 2 represents
  • dialkyltin dialkoxide compound is a compound represented by the following formula (5): (Where: Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms derived from a dialkyl tin compound and / or a tetraalkyl distannoxane compound; R 2 is independently derived from a carbonate ester and / or alcohol, and has a linear or branched saturated or unsaturated hydrocarbon group or a hydrocarbon having a saturated or unsaturated cyclic hydrocarbon substituent.
  • Y—CH 2 — group (wherein Y represents an alkylpolyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group). ) [9] The production method according to any one of [1] to [8], wherein the tetraalkyl dialkoxy distannoxane compound is a compound represented by the following formula (6): (Where: Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms derived from a dialkyl tin compound and / or a tetraalkyl distannoxane compound; R 2 is independently derived from a carbonate ester and / or alcohol, and has a linear or branched saturated or unsaturated hydrocarbon group or a hydrocarbon having a saturated or unsaturated cyclic hydrocarbon substituent.
  • dialkyltin compound and / or the tetraalkyldistanoxane compound is a compound produced by a method comprising the following steps (1) to (2): Production method according to Step (1): Dialkyltin dialkoxide compounds having one tin atom, having two Sn—R 1 bonds and two Sn—OR 2 bonds, and / or tetraalkyl having one Sn—O—Sn bond A dialkoxy distannoxane compound, wherein each tin atom in the tetraalkyl distannoxane compound has two Sn-R 1 bonds and one Sn-OR 2 bond Alkyl group disproportionation reaction of at least one alkyl tin alkoxide compound selected from the group consisting of alk
  • An alkyltin composition comprising: An acid represented by the general formula HOX (Bronsted acid having a pKa of 0 or more and 6.8 or less) and / or a general formula XOX (the group OX is HOX which is a conjugate acid of OX, and the pKa is 0 or more and 6.
  • HOX which is an acid is a group OX which is a Bronsted acid having a pKa of 0 or more and 6.8 or less.
  • a tetraalkyldistanoxane compound having one Sn—O—Sn bond wherein each tin atom in the tetraalkyldistanoxane compound has two Sn—R 1 bonds, one A tetraalkyldistanoxane compound having a Sn-OX bond (the group OX is a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 to 6.8), Obtaining at least one alkyltin compound selected from the group of: However, the dialkyl tin compound, the tetraalkyl distannoxane compound, the dialkyl tin dialkoxide compound, the tetraalkyl dialkoxy distannoxane compound, the mono
  • R 1 directly bonded to tin is the same alkyl group, [11] [10]
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms
  • Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group
  • Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group.
  • W is a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group
  • Y is Represents an alkylpolyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group.
  • Step (C) The residual liquid of Step (B), an acid represented by the general formula HOX (Bronsted acid having a pKa of 0 or more and 6.8 or less), and / or the general formula XOX (the group OX is HOX which is a conjugate acid of OX is a group OX which is a Bronsted acid having a pKa of 0 or more and 6.8 or less.) And is reacted with an acid anhydride represented by the following i) and ii) Producing at least one selected alkyltin compound.
  • dialkyl tin compound and / or the tetraalkyl distannoxane compound is a compound produced by a method comprising the following steps (I) to (III): Step (I): a dialkyl tin dialkoxide represented by the following general formula (10) and carbon dioxide are reacted to form a carbonic ester and a tetraalkyl dialkoxy distannoxane represented by the following general formula (11) and / Or a step of obtaining a reaction liquid containing a conjugate of the tetraalkyl dialkoxy distannoxane and carbon dioxide; (Where: Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms; Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( In the formula, Y represents
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group (
  • Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms; O represents an oxygen atom; OX represents a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 or more and 6.8 or less.
  • OX represents a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 or more and 6.8 or less.
  • a dialkyltin compound and / or a tetraalkyldistanoxane compound can be easily converted into a dialkyltin alkoxide compound and / or a tetraalkyldialkoxydistanoxane compound without handling a solid tin compound. Can be converted.
  • the dialkyl tin alkoxide compound and / or the tetraalkyl dialkoxy distannoxane compound can be used as a catalyst for producing a carbonate ester.
  • Dialkyl tin dialkoxide compounds and / or tetraalkyl dialkoxy distannoxane compounds which are useful components, can be produced and reused in the production of carbonates, and thus are very useful in the industrial field.
  • the monoalkyltin dialkoxide compound and trialkyltin dialkoxide compound produced by the alkyl group disproportionation reaction of the dialkyltin dialkoxide compound and / or tetraalkyl dialkoxy distannoxane compound in the present embodiment are converted to the dialkyltin dialkoxide compound.
  • / or a flow diagram for explaining a method of regenerating as a tetraalkyl dialkoxy distannoxane compound The flowchart for demonstrating the manufacturing method of the improved carbonate ester which combined the manufacturing method of the carbonate ester and the manufacturing method of the dialkyl tin compound by this Embodiment is shown.
  • FIG. 2 is a flowchart for explaining a method for producing a carbonate ester in which the steps (A) to (C) and the step (Z) in the present embodiment are combined.
  • FIG. 2 shows a flowchart for explaining a method for producing a carbonate ester in which the steps (I) to (III) and the step (Z) in the present embodiment are combined.
  • the conceptual diagram showing the manufacturing apparatus of the carbonate ester in an Example is shown.
  • the conceptual diagram showing the manufacturing apparatus of the dialkyl tin dialkoxide and / or tetraalkyl dialkoxy distannoxane in an Example is shown.
  • the conceptual diagram showing the manufacturing apparatus of the carbonate ester and the dialkyl tin dialkoxide and / or tetraalkyl dialkoxy distannoxane in an Example is shown.
  • the conceptual diagram showing the manufacturing apparatus of the carbonate ester and the dialkyl tin dialkoxide and / or tetraalkyl dialkoxy distannoxane in an Example is shown.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the manufacturing method of this embodiment is At least one alkyltin compound selected from the group consisting of i) and ii) below; i) having one tin atom, two Sn—R 1 bonds (where R 1 represents an alkyl group), and two Sn—OX bonds (the group OX is a conjugate acid of OX, HOX is pKa Is a group OX which is a Bronsted acid of 0 or more and 6.8 or less).
  • R 2 OCOOR 2 R 2 represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group.)
  • R 2 OH R 2 represents the same group as R
  • the dialkyltin compound belonging to i) is a compound represented by the following formula (14).
  • R 1 in the above formula (14) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 And an alkyl group which is an aliphatic hydrocarbon group which is a number.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • a dialkyltin compound in which the number of carbon atoms constituting the group is an alkyl group other than the range shown above can also be used, but fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • OX 1 and OX 2 in the above formula (14) are particularly limited if their conjugate acids HOX 1 and HOX 2 are Bronsted acids and the pKa of the conjugate acid is 0 or more and 6.8 or less. However, it is preferably at least one substituent selected from the group consisting of an acyloxyl group and an aryloxy group, and its conjugate acid has a pKa of 0 or more and 6.8 or less. More preferably, it is a group in which the number of carbon atoms constituting the group is a number selected from integers of 0 to 12.
  • Such groups include linear or branched saturated alkyl groups such as acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, lauroyloxy group, carbonyl group and oxygen atom.
  • dialkyltin compound represented by the above formula (14) examples include dimethyl-diacetoxytin, dimethyl-dipropionyloxytin (each isomer), dimethyl-dibutyryloxytin (each isomer), dimethyl- Valeryloxytin (each isomer), dimethyl-dialauryloxytin (each isomer), dibutyl-diacetoxytin (each isomer), dibutyl-dipropionyloxytin (each isomer), dibutyl-dibutyryl Oxytin (each isomer), dibutyl-divaleryloxytin (each isomer), dibutyl-dilauryloxytin (each isomer), dioctyl-diacetoxytin (each isomer), dioctyl-dipropionyloxy Tin (each isomer), dioctyl-dibutyryloxytin
  • the tetraalkyldistanoxane compound is a compound represented by the following formula (15). (Where: Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms; O represents an oxygen atom; OX 3 and OX 4 are OX 3 and OX 4 in which HOX 3 and HOX 4 which are conjugate acids of OX 3 and OX 4 are Bronsted acids having a pKa of 0 to 6.8. )
  • R 1 in the above formula (15) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 Examples thereof include alkyl groups that are aliphatic hydrocarbon groups.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • tetraalkyl distannoxane compounds in which the number of carbon atoms constituting the group is an alkyl group outside the above range can be used, fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • OX 3 and OX 4 in the above formula (15) are particularly limited if their conjugate acids HOX 3 and HOX 4 are Bronsted acids and the pKa of the conjugate acid is 0 or more and 6.8 or less. However, it is preferably at least one substituent selected from the group consisting of an acyloxyl group and an aryloxy group, and its conjugate acid has a pKa of 0 or more and 6.8 or less. More preferably, it is a group in which the number of carbon atoms constituting the group is a number selected from integers of 0 to 12.
  • Such groups include linear or branched saturated alkyl groups such as acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, lauroyloxy group, carbonyl group and oxygen atom.
  • Specific examples of the compound represented by the formula (15) include 1,1,3,3-tetramethyl-1,3-diacetoxydistanoxane, 1,1,3,3-tetramethyl-1 , 3-dipropionyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dibutyryloxydistanoxane (each isomer), 1,1,3 3-tetramethyl-1,3-divalyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dilauryloxydistanoxane (each isomer) ), 1,1,3,3-tetrabutyl-1,3-diacetoxydistanoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-dipropionyloxydistanoxane ( Each isomer), 1,1,3,3-tetrabutyl-1,3-butyryloxydista
  • organotin compounds tend to have an associated structure, for example, dialkyltin dialkoxide forms a dimer structure, and tetraalkyldialkoxydistanoxane forms a ladder structure in which two or three molecules are associated. It is known that sometimes. Even when such an association state changes, it is common for those skilled in the art to represent a compound with a monomer structure.
  • the carbonate ester used in the present embodiment is not particularly limited, but a carbonate ester represented by the following formula (16) is preferably used.
  • R 2 OCOOR 2 (16) (Where: Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( In the formula, Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group. )
  • R 2 may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group, but OH groups R 2 groups constituting the carbonic acid ester
  • R 2 includes methyl group, ethyl group, propyl group (each isomer), butyl group (each isomer), pentyl group (each isomer), hexyl group (each isomer), heptyl group (each Isomer), octyl group (each isomer), nonyl group (each isomer), decyl group (each isomer), dodecyl group (each isomer), hexadecyl group (each isomer), octadecyl group (each isomer) And the like; cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group (each isomer), methyl-cyclopentyl group, methyl-cyclohexyl group, methyl-cycloheptyl group, methyl-cyclooctyl group (each isomer)
  • carbonates in which R 2 in the above formula (16) has 1 to 8 carbon atoms are more preferred.
  • carbonates in which R 2 is a group selected from an alkyl group and a cycloalkyl group are most preferable.
  • carbonate ester represented by the above formula (16) examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate (each isomer), dibutyl carbonate (each isomer), dipentyl carbonate (each isomer), dihexyl carbonate ( (Each isomer), carbonate esters such as diheptyl carbonate (each isomer), dioctyl carbonate (each isomer), and the like.
  • R 2 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and among them, R 2 is selected from an alkyl group and a cycloalkyl group.
  • Such R 2 includes methyl group, ethyl group, propyl group (each isomer), butyl group (each isomer), pentyl group (each isomer), hexyl group (each isomer), heptyl group (each Isomer), octyl group (each isomer), nonyl group (each isomer, decyl group (each isomer), dodecyl group (each isomer), hexadecyl group (each isomer), octadecyl group (each isomer)
  • An alkyl group such as: cyclopentyl group, cyclohexyl group, cycloheptyl group,
  • R 2 is an alkyl group having 1 to 8 carbon atoms in the above formula (17)
  • specific examples of such an alcohol include methanol, ethanol, propyl alcohol (each isomer).
  • Butyl alcohol Examples include alcohols such as benzene (each isomer), pentyl alcohol (each isomer), hexyl alcohol (each isomer), heptyl alcohol (each isomer), and octyl alcohol (each isomer).
  • W is a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group (wherein Y is Represents an alkylpolyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group. )
  • the alcohol illustrated by the said Formula (17) can be used.
  • the alcohol exemplified as the preferred example in the above formula (17) can be preferably used.
  • an alcohol having a boiling point at normal pressure higher than that of water is more preferable, and examples thereof include n-butanol, 3-methylpropanol, pentyl alcohol (each isomer). ), Hexyl alcohol (each isomer), heptyl alcohol (each isomer), and octyl alcohol (each isomer).
  • the composition ratio of these compounds is such that the dialkyltin compound and / or the tetraalkyldistanoxane compound and the carbonate ester.
  • the stoichiometric ratio with the ester is preferably 1: 0.1 to 1: 100.
  • the reaction temperature varies depending on the type and composition ratio of the reactants to be used, but is preferably in the temperature range of 20 ° C to 250 ° C. In order to complete the reaction at an early stage, it is preferable to carry out the reaction at a high temperature. However, if the reaction is carried out at an excessively high temperature, a dialkyltin compound and / or a tetraalkyldistanoxane compound and / or a reaction raw material are used. It may cause a thermal denaturation reaction of the product, dialkyltin dialkoxide compound and / or tetraalkyl dialkoxy distannoxane compound, and the yield of the target compound in the reaction may be reduced. Preferably, it is carried out in a temperature range of 30 ° C. to 230 ° C., more preferably in a temperature range of 50 ° C. to 200 ° C. In the reaction, it is not necessary to use a catalyst.
  • Solvents that can be used are dialkyl tin compounds and / or tetraalkyl distannoxane compounds that are reaction raw materials, and carbonate esters, and dialkyl tin dialkoxide compounds and / or tetraalkyl dialkoxy distannoxane compounds that are reaction products. Any solvent may be used as long as it does not react with.
  • Examples of such a solvent include linear, branched and cyclic hydrocarbons having 5 to 16 carbon atoms; ethers composed of linear, branched and cyclic hydrocarbons having 4 to 16 carbon atoms; Examples thereof include 1 to 16 linear, branched and cyclic halogenated hydrocarbons.
  • pentane (each isomer), hexane (each isomer), heptane (each isomer), octane (each isomer), nonane (each isomer), decane (each isomer), hexadecane (each Isomers), cyclohexane, cycloheptane, cyclooctane, benzene, toluene, xylene (each isomer), chained and cyclic hydrocarbons selected from ethylbenzene, etc .; diethyl ether, dipropyl ether (each isomer), dibutyl ether (Each isomer), dihexyl ether (each isomer), dioctyl ether (each isomer), diphenyl ether, and other ethers; methylene chloride, chloroform, carbon tetrachloride, chlorobenzen
  • an additive may be added for the purpose of adjusting fluidity and adjusting the reaction rate.
  • the additive which can be used can be added without limitation as long as it does not adversely affect the reaction.
  • examples of such additives include Lewis acidic compounds and Lewis basic compounds.
  • compounds such as SnF 2 and SnBr 2 can be used.
  • the pressure at which the reaction is carried out is not particularly limited and can be carried out under any of reduced pressure, atmospheric pressure, and pressurized conditions.
  • the reaction product in the reaction is a dialkyltin dialkoxide compound and / or tetra.
  • the reaction is preferably carried out under reduced pressure. It is. When it is carried out under reduced pressure, it is preferably carried out in the range of 10 Pa to 1 MPa, more preferably in the range of 1 kPa to 0.5 MPa.
  • the reaction is preferably carried out in an inert gas atmosphere such as argon, neon, nitrogen, etc., and these inert gases are preferably used after being dried by a dehydration column or the like.
  • the reaction time in which the reaction is carried out (retention time in the continuous method) varies depending on the compound used in the reaction, the reactor, temperature and pressure, and is not particularly limited, but is preferably 0.01 to 30 hours, Preferably, it can be carried out in the range of 0.1 to 20 hours.
  • the reaction can also be terminated after confirming the formation of a desired amount of dialkyltin dialkoxide compound and / or tetraalkyldialkoxy distannoxane compound.
  • the progress of the reaction is performed by sampling the reaction solution in the reactor and analyzing the amount of dialkyltin dialkoxide compound and / or tetraalkyl dialkoxy distannoxane compound by a method such as 119 Sn-NMR or gas chromatography.
  • the reaction is terminated when a dialkyltin dialkoxide compound and / or a tetraalkyldialkoxy distannoxane compound is produced in an amount of 10% or more relative to the number of moles of the dialkyltin compound and / or tetraalkyldistane oxane compound.
  • the reaction may be continued until the value reaches 90% or more.
  • a compound represented by XOR 2 described later is also produced. These compounds are obtained by gas chromatography. The reaction can be terminated after quantifying by a known method such as liquid chromatography or the like and confirming that a desired amount is produced.
  • a known reactor can be used.
  • conventionally known reactors such as a stirring tank, a pressurized stirring tank, a reduced pressure stirring tank, a tower reactor, a distillation tower, a packed tower, and a thin film distillation apparatus can be used in appropriate combination.
  • the material of the reactor is not particularly limited, and a known material can be used.
  • glass, stainless steel, carbon steel, Hastelloy, glass lining on the base material, or Teflon (registered trademark) coating can be used.
  • glass, glass lining, Teflon (registered trademark) coating may be applied, or a Hastelloy reactor may be appropriately selected. .
  • the reactor becomes too large. It is carried out at a composition ratio in the range of ⁇ 1: 50, more preferably 1: 1 to 1:30.
  • the reaction temperature varies depending on the type and composition ratio of the reactants to be used, but is preferably in the temperature range of 20 ° C to 250 ° C. In order to complete the reaction at an early stage, it is preferable to carry out the reaction at a high temperature. However, if the reaction is carried out at an excessively high temperature, a dialkyltin compound and / or a tetraalkyldistanoxane compound and / or a reaction raw material are used. It may cause a thermal denaturation reaction of the product, dialkyltin dialkoxide compound and / or tetraalkyl dialkoxy distannoxane compound, and the yield of the target compound in the reaction may be reduced. Preferably, it is carried out in a temperature range of 30 ° C. to 230 ° C., more preferably in a temperature range of 50 ° C. to 200 ° C. In the reaction, it is not necessary to use a catalyst.
  • Solvents that can be used are dialkyl tin compounds and / or tetraalkyl distannoxane compounds that are reaction raw materials, and carbonate esters, and dialkyl tin dialkoxide compounds and / or tetraalkyl dialkoxy distannoxane compounds that are reaction products. Any solvent may be used as long as it does not react with.
  • Examples of such a solvent include linear, branched and cyclic hydrocarbons having 5 to 16 carbon atoms; ethers composed of linear, branched and cyclic hydrocarbons having 4 to 16 carbon atoms; Examples thereof include 1 to 16 linear, branched and cyclic halogenated hydrocarbons.
  • pentane (each isomer), hexane (each isomer), heptane (each isomer), octane (each isomer), nonane (each isomer), decane (each isomer), hexadecane (each Isomers), cyclohexane, cycloheptane, cyclooctane, benzene, toluene, xylene (each isomer), chained and cyclic hydrocarbons selected from ethylbenzene, etc .; diethyl ether, dipropyl ether (each isomer), dibutyl ether (Each isomer), dihexyl ether (each isomer), dioctyl ether (each isomer), diphenyl ether, and other ethers; methylene chloride, chloroform, carbon tetrachloride, chlorobenzen
  • an additive may be added for the purpose of adjusting fluidity and adjusting the reaction rate.
  • the additive which can be used can be added without limitation as long as it does not adversely affect the reaction.
  • examples of such additives include Lewis acidic compounds and Lewis basic compounds.
  • compounds such as SnF 2 and SnBr 2 can be used.
  • the pressure at which the reaction is carried out is not particularly limited and can be performed under any of reduced pressure, atmospheric pressure, and pressurized conditions.
  • When carrying out the reaction while removing a part or all of the alkyl dialkoxy distannoxane compound and / or the compound represented by XOR 2 described below and / or by-product water from the reaction system Is preferably carried out under reduced pressure.
  • When it is carried out under reduced pressure it is preferably carried out in the range of 10 Pa to 1 MPa, more preferably in the range of 1 kPa to 0.5 MPa.
  • the reaction is preferably carried out in an inert gas atmosphere such as argon, neon, nitrogen, etc., and these inert gases are preferably used after being dried by a dehydration column or the like.
  • the reaction time in which the reaction is carried out (retention time in the continuous method) varies depending on the compound used in the reaction, the reactor, temperature and pressure, and is not particularly limited, but is preferably 0.01 to 30 hours, Preferably, it can be carried out in the range of 0.1 to 20 hours.
  • the reaction can also be terminated after confirming the formation of a desired amount of dialkyltin dialkoxide compound and / or tetraalkyldialkoxy distannoxane compound.
  • the progress of the reaction is performed by sampling the reaction solution in the reactor and analyzing the amount of dialkyltin dialkoxide compound and / or tetraalkyl dialkoxy distannoxane compound by a method such as 119 Sn-NMR or gas chromatography.
  • the reaction is terminated when a dialkyltin dialkoxide compound and / or a tetraalkyldialkoxy distannoxane compound is produced in an amount of 10% or more relative to the number of moles of the dialkyltin compound and / or tetraalkyldistane oxane compound.
  • the reaction may be continued until the value reaches 90% or more.
  • a compound represented by XOR 2 described later is also produced.
  • the reaction can be terminated after quantifying by a known method such as chromatography and confirming that a desired amount is produced.
  • water is produced as a by-product in addition to the compound represented by XOR 2 by the reaction.
  • the amount of water produced is quantified by, for example, a Karl Fischer moisture meter, etc., to produce a desired amount of the target compound.
  • the reaction can also be terminated by confirming that suitable water is produced.
  • a known reactor can be used.
  • conventionally known reactors such as a stirring tank, a pressurized stirring tank, a reduced pressure stirring tank, a tower reactor, a distillation tower, a packed tower, and a thin film distillation apparatus can be used in appropriate combination.
  • the material of the reactor is not particularly limited, and a known material can be used.
  • glass, stainless steel, carbon steel, Hastelloy, glass lining on the base material, or Teflon (registered trademark) coating can be used.
  • glass, glass lining, Teflon (registered trademark) coating may be applied, or a Hastelloy reactor may be appropriately selected. .
  • dialkyl tin dialkoxide compound and / or tetraalkyl dialkoxy distannoxane compound shown above the reaction of the dialkyl tin compound and / or tetraalkyl distannoxane compound with a carbonate, dialkyl tin compound and Only one of the reaction between the tetraalkyldistanoxane compound and the alcohol may be performed, or may be performed simultaneously.
  • the dialkyltin dialkoxide compound produced generated by the above-mentioned manufacturing method is demonstrated.
  • the dialkyl tin dialkoxide compound is a compound having one tin atom, two Sn—R 1 bonds, and two Sn—OR 2 bonds, and specifically, the following formula (19) It is a compound represented by these.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms derived from a dialkyl tin compound and / or a tetraalkyl distannoxane compound; R 2 each independently represents a hydrocarbon group derived from a carbonate ester and / or an alcohol. )
  • Specific examples of the compound represented by the formula (19) include dimethyl-dimethoxytin, dimethyl-diethoxytin, dimethyl-dipropoxytin (each isomer), dimethyl-dibutoxytin (each isomer), and dimethyl-dipentyloxytin.
  • generated by the above-mentioned manufacturing method is demonstrated.
  • the tetraalkyl dialkoxy distannoxane compound is a tetraalkyl dialkoxy distannoxane compound having one Sn-O-Sn bond, and each tin in the tetraalkyl dialkoxy distannoxane compound.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms derived from a tetraalkyl distannoxane compound and / or a dialkyl tin compound; R 2 each independently represents an alkyl group derived from a carbonate ester and / or an alcohol. )
  • Specific examples of the compound represented by the above formula (20) include 1,1,3,3-tetramethyl-1,3-diethoxydistanoxane, 1,1,3,3-tetramethyl-1 , 3-dipropoxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dibutoxydistanoxane (each isomer), 1,1,3,3- Tetramethyl-1,3-dipentyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dihexyloxydistanoxane (each isomer), 1,1, 3,3-tetramethyl-1,3-diheptyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dioctyloxydistanoxane (each isomer) 1,1,3,3-tetramethyl-1,3-di (phenoxy) di Tanoxane, 1,1,3,
  • an organic tin compound is likely to have an association structure.
  • a dialkyl tin dialkoxide compound forms a dimer structure
  • a tetraalkyl dialkoxy distannoxane compound has two or three molecules. It is known that there may be a case where they form an associated ladder structure. However, even if such an association state changes, it is known to those skilled in the art that a compound is represented by a monomer structure. Is common.
  • the group OX is a group derived from the dialkyltin compound and / or tetraalkyldistanoxane compound used in the reaction, and the dialkyltin compound represented by the formula (14) was used.
  • the group OX is a group derived from the group OX 1 and the group OX 2
  • the group OX is a group OX 3 is a group derived from the group OX 4 .
  • the group R 2 is derived from the carbonate ester and / or alcohol used in the reaction, and constitutes the carbonate ester when the carbonate ester represented by R 2 OCOOR 2 is used.
  • a group derived from the group R 2 when using the alcohol represented by R 2 OH is a group derived from the radical R 2 which constitutes the alcohol.
  • the group OX is an acyloxyl group
  • the compound represented by the above formula (21) is an ester compound, for example, ethyl acetate, propyl acetate (each isomer), butyl acetate (each isomer).
  • a dialkyltin dialkoxide compound and / or a tetraalkyldialkoxy distannoxane compound can be produced from a dialkyltin compound and / or a tetraalkyldistanoxane compound.
  • the desired dialkyltin dialkoxide compound and / or tetraalkyldialkoxy distannoxane compound is directly obtained by the reaction of a dialkyltin compound and / or a tetraalkyldistanoxane compound with a carbonate ester and / or an alcohol.
  • a dialkyl tin compound and / or a tetraalkyl distannoxane compound and a first carbonate ester and / or a first alcohol to react with the first dialkyl tin dialkoxide compound and And / or producing a first tetraalkyldialkoxy distannoxane compound, then a first dialkyltin dialkoxide compound and / or a first tetraalkyldialkoxy distannoxane compound and a second carbonate Preliminary / or reacted with the second alcohol, it is also possible to produce a desired second dialkyl tin dialkoxide compounds and / or second tetraalkyl dialkoxy distannoxane compound.
  • a compound represented by XOR 2 a dialkyl tin dialkoxide compound and / or a tetraalkyl dialkoxydioxide is reacted with an alkyl tin compound and a carbonate ester and / or an alcohol in the present embodiment.
  • the method for producing the stannoxane compound has been described.
  • the process of implementing the said manufacturing method is defined as process (Z).
  • the said manufacturing method can be used conveniently in the manufacturing method of the carbonic acid ester which uses a dialkyl tin dialkoxide compound.
  • the manufacturing method of the carbonate ester which combined the said manufacturing method is demonstrated.
  • the dialkyl tin compound and tetraalkyl distannoxane compound in the present embodiment described above are preferably a dialkyl tin compound and a tetraalkyl distant compound produced by the method of steps (1) and (2) described below. Stanoxane compounds are used.
  • Step (1) a dialkyltin dialkoxide compound having one tin atom and having two Sn—R 1 bonds and two Sn—OR 2 bonds, and / or one Sn—O—Sn A tetraalkyldialkoxy distannoxane compound having a bond, wherein each tin atom in the tetraalkyl distannoxane compound has two Sn-R 1 bonds, one Sn-OR 2 bond,
  • HOX which is an acid is a group OX which is a Bronsted acid having a pKa of 0 or more and 6.8 or less.
  • a tetraalkyldistanoxane compound having one Sn—O—Sn bond wherein each tin atom in the tetraalkyldistanoxane compound has two Sn—R 1 bonds, one A tetraalkyldistanoxane compound having a Sn-OX bond (the group OX is a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 to 6.8), Obtaining at least one alkyltin compound selected from the group consisting of:
  • the alkyl tin alkoxide compound here refers to the dialkyl tin dialkoxide compound and / or tetraalkyl dialkoxy distannoxane compound described above, and specifically, a dialkyl tin represented by the following formula (22): The compound and / or the tetraalkyl dialkoxy distannoxane compound represented by the following formula (23) is said.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms derived from a dialkyl tin compound and / or a tetraalkyl distannoxane compound; R 2 each independently represents a hydrocarbon group derived from a carbonate ester and / or an alcohol. )
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms derived from a tetraalkyl distannoxane compound and / or a dialkyl tin compound;
  • R 2 represents an alkyl group derived from a carbonate ester and / or an alcohol.
  • Specific examples of the compound represented by the formula (22) include dimethyl-dimethoxytin, dimethyl-diethoxytin, dimethyl-dipropoxytin (each isomer), dimethyl-dibutoxytin (each isomer), and dimethyl-dipentyloxytin.
  • Specific examples of the compound represented by the above formula (23) include 1,1,3,3-tetramethyl-1,3-diethoxydistanoxane, 1,1,3,3-tetramethyl-1 , 3-Dipropoxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dibutoxydistanoxane (each isomer), 1,1,3,3- Tetramethyl-1,3-dipentyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dihexyloxydistanoxane (each isomer), 1,1, 3,3-tetramethyl-1,3-diheptyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dioctyloxydistanoxane (each isomer) 1,1,3,3-tetramethyl-1,3-di (phenoxy) di Tanoxane, 1,1,3,
  • an organic tin compound is likely to have an association structure.
  • a dialkyl tin dialkoxide compound forms a dimer structure
  • a tetraalkyl dialkoxy distannoxane compound has two or three molecules. It is known that there may be a case where they form an associated ladder structure. However, even if such an association state changes, it is known to those skilled in the art that a compound is represented by a monomer structure. Is common.
  • the “alkyl group disproportionation reaction of the alkyltin alkoxide compound” in the step (1) means that the number of two R 1 groups bonded to tin (R 1 represents an alkyl group) is dialkyl tin dialkoxide compound.
  • R 1 represents an alkyl group
  • R and R ′ each independently represents a linear or branched alkyl group having 1 to 12 carbon atoms.
  • At least one of the products is a trialkyltin alkoxide compound shown below.
  • the trialkyltin alkoxide compound represented by the following formula (26) is reduced relative to the amount of dialkyltin dialkoxide compound and / or tetraalkyldialkoxy distannoxane compound. In many cases, about half of the stoichiometric ratio is generated.
  • the trialkyltin alkoxide compound referred to in the present embodiment has three Sn—R 1 bonds, and the alkyl group R 1 is derived from a dialkyltin dialkoxide compound and / or a tetraalkyldialkoxy distannoxane compound. An alkyl group.
  • Each R 1 independently represents an alkyl group derived from a dialkyl tin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound;
  • R 2 represents an alkyl group derived from a dialkyl tin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound.
  • trialkyltin alkoxide compound represented by the above formula (26) examples include trimethyl-methoxytin, trimethyl-ethoxytin, trimethyl-propoxytin (each isomer), trimethyl-butoxytin (each isomer), trimethyl-pentyloxy Tin (each isomer), trimethyl-hexyloxytin (each isomer), trimethyl-heptyloxytin (each isomer), trimethyl-octyloxytin (each isomer), butyl-dimethyl-methoxytin (each isomer) , Butyl-dimethyl-ethoxytin (each isomer), butyl-dimethyl-propoxytin (each isomer), butyl-dimethyl-butoxytin (each isomer), butyl-dimethyl-pentyloxytin (each isomer), butyl- Dimethyl-hexyloxytin (each iso
  • a trialkyltin alkoxide compound is generated. Therefore, when the balance of the alkyl group is taken into consideration, the above formula (22) and / or the above formula (23) are used.
  • a monoalkyltin alkoxide compound having one Sn—R 1 bond is formed simultaneously with the above trialkyltin alkoxide compound. Examples of such monoalkyltin alkoxide compounds include methyl-methoxytin oxide, methyl-ethoxytin oxide, methyl-propoxytin oxide (each isomer), methyl-butoxytin oxide (each isomer), and methyl-pentyloxytin.
  • Oxide (each isomer), methyl-hexyloxytin oxide (each isomer), methyl-heptyloxytin oxide (each isomer), methyl-octyloxytin oxide (each isomer), butyl-methoxytin oxide (each Isomer), butyl-ethoxytin oxide (each isomer), butyl-propoxytin oxide (each isomer), butyl-butoxytin oxide (each isomer), butyl-pentyloxytin oxide (each isomer), butyl -Hexyloxytin oxide (each isomer), butyl- Ptyloxytin oxide (each isomer), butyl-octyloxytin oxide (each isomer), octyl-methoxytin oxide (each isomer), octyl-ethoxytin oxide (each isomer), octyl
  • the chemical shift in 119 Sn-NMR Can be characterized. That is, at least one of the compounds generated by the alkyl group disproportionation reaction of the dialkyl tin dialkoxide compound and / or the tetraalkyl dialkoxy distannoxane compound is a monoalkyl tin alkoxide compound, and the monoalkyl tin alkoxide
  • the compound is characterized in that, when analyzed by 119 Sn-NMR in a deuterated chloroform solution, a tin atom showing a chemical shift at ⁇ 220 to ⁇ 610 ppm based on tetramethyltin is detected.
  • alkyl group product by disproportionation reactions trialkyltin alkoxide compound having three Sn-R 1 bonds and a monoalkyl tin alkoxide compound having one Sn-R 1 bonds
  • these compositions containing trialkyltin alkoxide compounds and monoalkyltin alkoxide compounds are referred to as “alkyltin compositions”.
  • the dialkyltin dialkoxide compound represented by the above formula (22) and / or the tetraalkyl dialkoxy distannoxane compound represented by the above formula (23) are often 119 Sn-NMR in a deuterated chloroform solution.
  • the product of the alkyl group disproportionation reaction has a plurality of signals in the range of ⁇ 220 to ⁇ 610 ppm. Therefore, in the product of the alkyl group disproportionation reaction, the formula (24) and In addition to the monoalkylalkoxytin oxide and monoalkyltin trialkoxytin exemplified in Formula (25), it is presumed that in many cases, other structures are also contained. Thus, a certain product by the alkyl group disproportionation reaction consists of a compound with an unknown structure, but these compounds with an unknown structure are contained in the alkyltin composition used in step (1). There is no problem. Moreover, there is no problem that the alkyl tin composition contains a dialkyl tin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound.
  • the product of the alkyl group disproportionation reaction of the dialkyl tin dialkoxide compound and / or the tetraalkyl dialkoxy distannoxane compound is easily estimated to have a structure other than the above-described examples. Furthermore, a compound comprising a unit in which two alkyl groups are bonded to tin and a unit in which an alkyl group is bonded to tin with an integer other than 2 may be generated by forming a stannoxane bone nucleus.
  • the estimated structure of the product from the alkyl group disproportionation reaction is shown below.
  • Each R 1 independently represents an alkyl group derived from a dialkyl tin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound;
  • R 2 each independently represents an alkyl group derived from a dialkyl tin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound.
  • the alkyltin composition in the present embodiment is a composition containing a trialkyltin alkoxide compound and a monoalkyltin alkoxide compound, but only a trialkyltin alkoxide compound and a monoalkyltin alkoxide compound. Or a tetraalkyl dialkoxy distannoxane compound and / or a dialkyl tin dialkoxide compound. Moreover, you may contain the product by an alkyl group disproportionation reaction as mentioned above.
  • the number of alkyl groups bonded to tin atoms in the alkyltin composition is other than 2 with respect to the number of moles of all tin atoms contained in the alkyltin composition.
  • the content of the compound is represented by mol%, it is an alkyl tin composition containing 10 mol% or more, preferably 30 mol% or more, more preferably 50 mol% or more.
  • the alkyltin composition may contain a dialkyltin dialkoxide compound, a tetraalkyldialkoxy distannoxane compound, a tetraalkyltin, a hexaalkyl distannoxane, tin oxide (SnO 2 ), or the like.
  • these compounds may be contained to the extent that they do not contradict the spirit of the present invention.
  • separated the composition containing a trialkyltin alkoxide compound and the composition containing a monoalkyltin alkoxide compound from the alkyltin composition can also be used.
  • Various known methods can be used as the separation method. For example, at least one method selected from distillation separation, extraction separation, and membrane separation can be used. Among them, the distillation separation method is preferably used.
  • the above-described alkyltin composition is converted into an acid represented by the general formula HOX (Bronsted acid having a pKa of 0 or more and 6.8 or less) and / or the general formula XOX (the group OX is represented by OX).
  • HOX which is a conjugate acid is a group OX which is a Bronsted acid having a pKa of 0 or more and 6.8 or less.
  • OX which is a conjugate acid
  • OX which is a Bronsted acid having a pKa of 0 or more and 6.8 or less.
  • Examples of the organic acid include carboxylic acid, sulfonic acid, phenol and the like, but preferably carboxylic acid is used.
  • Examples of the carboxylic acid include formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-methylbutanoic acid, pivalic acid, hexanoic acid, isocaproic acid, 2-ethylbutanoic acid, 2,2 -Dimethylbutanoic acid, heptanoic acid (each isomer), octanoic acid (each isomer), nonanoic acid (each isomer), decanoic acid (each isomer), undecanoic acid (each isomer), dodecanoic acid (each isomer) ), Tetradecanoic acid (each isomer), hexadecanoic acid (each isomer), acrylic acid, crotonic acid,
  • saturated monocarboxylic acids are preferably used. More preferably, a saturated monocarboxylic acid having a standard boiling point of 300 ° C. or lower, more preferably a saturated carboxylic acid having a standard boiling point of 250 ° C. or lower is used.
  • the standard boiling point refers to the boiling point at 1 atm, as described in the Chemical Dictionary (Kyoritsu Shuppan Co., Ltd., issued on October 1, 2003).
  • acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-methylbutanoic acid, pivalic acid, and hexanoic acid are preferably used.
  • examples of the acid anhydride represented by the general formula XOX include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, succinic anhydride, maleic anhydride.
  • examples thereof include aliphatic anhydrides such as acid, propionic anhydride, and glutaric anhydride; and aromatic acid anhydrides such as benzoic anhydride, phthalic anhydride, and pyromellitic anhydride.
  • an acid anhydride having a standard boiling point of 300 ° C. or lower is preferably used, and an acid anhydride having a standard boiling point of 200 ° C.
  • maleic anhydride and acetic anhydride are preferred from the viewpoint that it is easy to remove by-product carboxylic acid esters and the like from the system and that they can be easily obtained industrially.
  • These acids and acid anhydrides can be used alone or in combination of a plurality of types.
  • an acid water is often generated when the alkyltin composition is reacted with an acid.
  • distillation separation or membrane separation may be performed, or a dehydrating agent may be used.
  • water is often not generated in the reaction between the alkyltin composition and acetic anhydride, so that a method using only the acid anhydride is also preferable.
  • the reaction in the step (1) will be described.
  • the amount of acid and / or acid anhydride used is contained in the alkyltin composition in consideration of the reaction rate in step (1) and the yield of the final mixture of organotin compounds (details will be described later). It is preferable to use a range of 0.1 to 50 times the stoichiometric ratio with respect to the tin atom, and a range of 0.5 to 20 times should be used considering the reactor size and reaction rate. Is more preferable. If the stoichiometric ratio is less than 0.1, the reaction may be difficult to proceed. Conversely, even if the stoichiometric ratio is used more than 50 times, the reaction rate in the process and the final yield of organotin compound In many cases.
  • the reaction in the step (1) is preferably performed at a reaction temperature of ⁇ 20 ° C. or higher and 300 ° C. or lower, more preferably at a reaction temperature of ⁇ 10 ° C. or higher and 250 ° C. or lower.
  • a reaction temperature for example, a reaction in which an alkyl group bonded to tin is eliminated as alkane or alkene
  • the reaction is carried out at a reaction temperature of 0 ° C. or higher and 230 ° C. or lower.
  • reaction of a process (1) is performed in inert gas atmosphere, such as argon, neon, and nitrogen.
  • a solvent is used for the purpose of improving fluidity, facilitating the reaction operation, or efficiently removing the water from the system when produced in the reaction.
  • a solvent include linear, branched and cyclic hydrocarbons having 5 to 16 carbon atoms; ethers composed of linear, branched and cyclic hydrocarbons having 4 to 16 carbon atoms; Examples thereof include 1 to 16 linear, branched and cyclic halogenated hydrocarbons.
  • pentane (each isomer), hexane (each isomer), heptane (each isomer), octane (each isomer), nonane (each isomer), decane (each isomer), hexadecane (each Isomers), cyclohexane, cycloheptane, cyclooctane, benzene, toluene, xylene (each isomer), chained and cyclic hydrocarbons selected from ethylbenzene, etc .; diethyl ether, dipropyl ether (each isomer), dibutyl ether (Each isomer), dihexyl ether (each isomer), dioctyl ether (each isomer), diphenyl ether, and other ethers; methylene chloride, chloroform, carbon tetrachloride, chlorobenzen
  • the alkyl group redistribution reaction in the step (2) is an equilibrium reaction, and due to the general nature of the equilibrium reaction, a monoconcentration with respect to the number of moles of all tin atoms in the alkyltin composition is high.
  • the content of the alkyl tin alkoxide compound and the trialkyl tin alkoxide compound is expressed in mol%, and the monoalkyl tin alkoxide compound is an alkyl tin composition containing 10 mol% or more, preferably 30 mol% or more, more preferably 50 mol% or more. It is preferable to carry out the reaction of step (1) and the alkyl group redistribution reaction of step (2) using an alkyltin composition in which the trialkyltin alkoxide compound is accumulated and / or concentrated.
  • the composition containing the trialkyltin alkoxide compound and the composition containing the monoalkyltin alkoxide compound can be separated from the alkyltin composition.
  • the respective compositions are subjected to acid and / or under different temperature conditions. Acid anhydrides can be reacted.
  • the separation can be carried out by various known methods such as distillation separation, crystallization, membrane separation, filtration, solvent extraction, etc., but is preferably carried out by distillation separation.
  • the mixture of organotin compounds obtained in the step (1) may be used as it is as a raw material in the step (2), or an unreacted acid and / or acid anhydride and / or a tin atom generated by the reaction. After removing an organic compound or the like that does not contain, it may be used as a raw material in the step (2). Preferably, after removing the unreacted acid and / or acid anhydride, it is used as a raw material for the step (2).
  • step (2) When step (2) is performed without removing unreacted acid and / or acid anhydride, a dealkyl group reaction described later often occurs, and the dialkyl tin compound produced by the dealkyl group reaction and / or Alternatively, the yield of the tetraalkyl distannoxane compound is lowered.
  • known methods such as filtration, distillation separation, membrane separation, crystallization, solvent extraction, etc. Can be used.
  • a dealkylation reaction described later may occur simultaneously. If it is within the range, there is no problem.
  • a solid compound containing a tin atom may be generated.
  • a sublimable white solid may be generated depending on the compound contained in the alkyltin composition, reaction conditions, and the like. It was.
  • the white solid is presumed to be divalent diacetoxytin from the results of NMR analysis and the like, but the compound is also removed from the mixture obtained in step (1) before step (2).
  • the step (2) may be performed without removing the compound.
  • an alkyltin composition in addition to a mixture of organotin compounds having a group (OX group) derived from the acid and / or the acid anhydride, an alkyltin composition
  • an alcohol derived from an alkoxy group contained in the product may be generated, and the alcohol is preferably separated and recovered.
  • the recovered alcohol can be used as an alcohol (for example, an alcohol of formula (17), formula (18), or formula (36)) in another step of the present embodiment.
  • known methods such as distillation separation and membrane separation can be used, but distillation separation is preferred.
  • the temperature at which the by-produced alcohol is separated and recovered by distillation after reacting the acid and / or acid anhydride with the alkyl tin composition is preferably in the range of 0 ° C. to 100 ° C., more preferably 0 ° C. to 80 ° C. It is a range. Decomposition or dehydration condensation reaction between acid and alcohol may occur at high temperatures, and the yield of recovered alcohol may decrease. At low temperatures, organotin compounds may become solid and fluidity may deteriorate. More preferably, it is carried out in the range of 20 ° C. to 60 ° C.
  • the pressure varies depending on the type of compound used, the reaction temperature, etc., but is preferably in the range of 1 Pa to 1 MPa, more preferably in the range of 10 Pa to 10 kPa.
  • the pressure is high, the time for distilling and separating the alcohol becomes longer, and a dehydration condensation reaction between the acid and the alcohol may occur, and the yield of the recovered alcohol may be reduced. Therefore, the range of 10 Pa to 1 kPa is more preferable. To implement.
  • the operation of recovering the alcohol by distillation may be performed after the reaction operation of the acid and / or acid anhydride and the alkyltin composition is completed, or at the same time as the reaction of the acid and / or acid anhydride with the alkyltin composition. You may do it.
  • a known reactor can be used.
  • conventionally known reactors such as a stirring tank, a pressurized stirring tank, a reduced pressure stirring tank, a tower reactor, a distillation tower, a packed tower, and a thin film distillation apparatus can be used in appropriate combination.
  • the material of the reactor is not particularly limited, and a known material can be used.
  • glass, stainless steel, carbon steel, Hastelloy, glass lining on the base material, or Teflon (registered trademark) coating can be used.
  • glass, glass lining, Teflon (registered trademark) coating may be applied, or a Hastelloy reactor may be appropriately selected. .
  • organotin compound as used in the present embodiment is an organotin compound having a group (OX group) derived from the acid and / or acid anhydride, which is generated by the reaction in step (1).
  • the alkyltin compound as the raw material of the step (1) contains the trialkyltin alkoxide compound represented by the above formula (25), but the reaction of the step (1) is performed from the trialkyltin alkoxide compound.
  • R 1 represents an alkyl group
  • OX represents a group derived from an acid and / or an acid anhydride
  • Each R 1 independently represents an alkyl group; X represents a group derived from an acid and / or an acid anhydride; O represents an oxygen atom.
  • monoalkyltin alkoxide compounds have tin atoms showing a chemical shift at 200 to -200 ppm, based on tetramethyltin, when analyzed by 119 Sn-NMR in deuterated chloroform solution. It is difficult to identify all of them. Therefore, it is difficult to identify all structures of compounds produced from these monoalkyltin alkoxide compounds.
  • the reaction of a monoalkyltin alkoxide compound with an acid and / or an acid anhydride mainly consists of 1) a reaction in which the R 2 O group of the Sn—OR 2 bond of the monoalkyltin alkoxide compound is replaced with an XO group. And 2) a reaction in which the distanoxane bond represented by Sn—O—Sn is cleaved to form a Sn—OX bond is often combined, and the compound represented by the following formula (29) Is often generated.
  • Each R 1 independently represents an alkyl group; X represents a group derived from an acid and / or an acid anhydride; O represents an oxygen atom.
  • the products of the alkyl group disproportionation reaction of the dialkyl tin dialkoxide compound and / or the tetraalkyl dialkoxy distannoxane compound are presumed to have various structures.
  • a compound having a structure represented by the above formula (27) is estimated.
  • These compounds represented by the above formula (27) also react with the acid and / or acid anhydride in the step (1), and for example, it is estimated that the reaction represented by the following formula (30) proceeds.
  • Step (2) the mixture of the organotin compound obtained in the step (1) is subjected to a heat treatment, and an alkyl group redistribution reaction is performed, so that the monoalkyltin alkoxide compound and the trialkyl in the alkyltin composition are treated.
  • tin alkoxide compounds i) It has one tin atom, and the one tin atom has two Sn—R 1 (R 1 represents an alkyl group) bond and two Sn—OX bonds (the group OX is a conjugate of OX).
  • HOX which is an acid is a group OX which is a Bronsted acid having a pKa of 0 or more and 6.8 or less.
  • a tetraalkyldistanoxane compound having one Sn—O—Sn bond wherein each tin atom in the tetraalkyldistanoxane compound has two Sn—R 1 bonds, one A tetraalkyldistanoxane compound having a Sn-OX bond (the group OX is a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 to 6.8),
  • the alkyl group redistribution reaction means that two or more organic tin compounds having two or more different alkyl groups bonded to one tin atom are reacted with each other and bonded to one tin atom. This reaction averages the number of alkyl groups, and the alkyl group redistribution reaction is an equilibrium reaction.
  • the detailed reaction mechanism is unknown, as shown in the following formula (31), an organotin compound having three alkyl groups bonded to one tin atom and an alkyl bonded to one tin atom It is presumed that the reaction with an organotin compound having one group produces an organotin compound having two alkyl groups bonded to one tin atom.
  • Each R 1 independently represents an alkyl group; X represents a group derived from an acid and / or an acid anhydride; O represents an oxygen atom.
  • the alkyl group redistribution reaction proceeds by heat-treating a mixture of two or more kinds of organotin compounds having two or more different alkyl groups bonded to one tin atom.
  • the heat treatment is preferably carried out in a temperature range of 20 ° C. to 300 ° C., when the reaction is desired to proceed quickly or when it is desired to obtain a high concentration of dialkyl compound (tin compound having two Sn—R 1 bonds).
  • the reaction temperature is high, more preferably 50 ° C. to 280 ° C., and in order to increase the reaction rate, the heat treatment temperature is preferably high. In this case, an undesirable reaction such as decomposition may occur, and the yield may be lowered.
  • the reaction time When the temperature is lower than 20 ° C., the reaction time may be long. When the temperature is higher than 300 ° C., the yield of the dialkyl tin compound may be reduced due to modification of the organotin compound such as decomposition.
  • the reaction time varies depending on the compound used and the heat treatment temperature, but is 0.001 to 50 hours, preferably 0.01 to 10 hours, and 0.1 to 2 hours in view of industrial productivity. Set the reaction temperature and so on. The reaction may be completed if the desired dialkyltin compound is obtained using 119 Sn-NMR or the like.
  • the alkyl group redistribution reaction of this embodiment is presumed to be an equilibrium reaction, and a tin compound having two alkyl groups bonded to one tin atom at a concentration higher than that of the original system.
  • the equilibrium concentration of the compound to be used is measured with respect to the temperature, and the substituent is converted in the temperature range where the concentration of the product system is higher than that of the original system or by the method described later, and the product system is obtained.
  • the dialkyltin compound concentration at is increased.
  • the yield of the dialkyltin compound may be reduced if it takes time for cooling after the reaction.
  • reaction system tends to approach the equilibrium concentration at a low temperature during the cooling process, and it is preferable that the reaction system is quickly cooled after the heat treatment at a high temperature.
  • a method for cooling the reaction solution a known method can be preferably used.
  • a method using brine or a method of flushing to a reactor having a pressure lower than that of the heat treatment tank can be preferably used.
  • the alkyl group redistribution reaction can be performed in the presence or absence of a metal halide catalyst.
  • metal halide catalysts include tin (II) chloride, mercury (II) chloride, lead (II) chloride, mercury (II) fluoride, lead (II) fluoride, tin (II) fluoride, iodide Tin (II), lead iodide (II), mercury (II) iodide, tin (II) bromide, mercury (II) bromide, lead (II) bromide, etc.
  • a mixture of two or more types can also be used.
  • These metal halides can be suitably used in the range of 0.1 to 10% by weight with respect to the solution used for the heat treatment.
  • a solvent in the alkyl group redistribution reaction, it is not necessary to use a solvent, but a solvent can be used for the purpose of improving fluidity or facilitating the reaction operation.
  • solvents include linear, branched and cyclic hydrocarbons having 5 to 16 carbon atoms, ethers composed of linear, branched and cyclic hydrocarbons having 4 to 16 carbon atoms, Examples thereof include 1 to 16 linear, branched and cyclic halogenated hydrocarbons.
  • pentane (each isomer), hexane (each isomer), heptane (each isomer), octane (each isomer), nonane (each isomer), decane (each isomer), hexadecane (each Isomers), cyclohexane, cycloheptane, cyclooctane, benzene, toluene, xylene (each isomer), chained and cyclic hydrocarbons selected from ethylbenzene, etc .; diethyl ether, dipropyl ether (each isomer), dibutyl ether (Each isomer), dihexyl ether (each isomer), dioctyl ether (each isomer), diphenyl ether, and other ethers; methylene chloride, chloroform, carbon tetrachloride, chlorobenzen
  • solvents can be used alone or as a mixture of two or more.
  • a solvent can be used for the purpose of improving fluidity, facilitating the reaction operation, or efficiently removing the water from the system when it is produced in the reaction.
  • examples of such a solvent include linear, branched and cyclic hydrocarbons having 5 to 16 carbon atoms; ethers composed of linear, branched and cyclic hydrocarbons having 4 to 16 carbon atoms; Examples thereof include 1 to 16 linear, branched and cyclic halogenated hydrocarbons.
  • pentane (each isomer), hexane (each isomer), heptane (each isomer), octane (each isomer), nonane (each isomer), decane (each isomer), hexadecane (each Isomers), cyclohexane, cycloheptane, cyclooctane, benzene, toluene, xylene (each isomer), chained and cyclic hydrocarbons selected from ethylbenzene, etc .; diethyl ether, dipropyl ether (each isomer), dibutyl ether (Each isomer), dihexyl ether (each isomer), dioctyl ether (each isomer), diphenyl ether, and other ethers; methylene chloride, chloroform, carbon tetrachloride, chlorobenzen
  • a dealkylation reaction described later may occur at the same time.
  • the alkyl group redistribution reaction is an equilibrium reaction.
  • the alkyl group redistribution reaction depends on the substituent bonded to the tin atom and / or the temperature at which the alkyl group redistribution reaction is carried out.
  • the substituent bonded to the tin atom for example, a group other than an alkyl group (for example, the group R 1 in the above formula (31) corresponds to the tin atom) (for example, the above formula In (31), when the pKa of the conjugate acid of the group is 0 to 6.8, the equilibrium is often biased toward the production system, and conversely, the conjugation of the group When the acid has a pKa of 6.8-25, the equilibrium is often biased towards the original system. Further, it was found that when the pKa of the conjugate acid is 0 to 6.8, the equilibrium is biased toward the production system side as the temperature increases.
  • a group other than an alkyl group for example, the group R 1 in the above formula (31) corresponds to the tin atom
  • the pKa of the conjugate acid of the group when the acid has a pKa of 6.8-25, the equilibrium is often biased towards the original system. Further, it was found that when the pKa of the conjugate acid
  • the group OR 2 in the above formulas (24) and (25) has a pKa of greater than 6.8, and in step (1), the group OR 2 is converted to the group OX, whereby the step (2 ) Can cause an alkyl group redistribution reaction.
  • the dealkylation reaction is a compound having at least one Sn—R 1 bond (R 1 represents an alkyl group) and a HOX. And / or an acid anhydride represented by XOX (the group OX is a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 to 6.8).
  • XOX an acid anhydride represented by XOX
  • the group OX is a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 to 6.8.
  • Each R 1 independently represents an alkyl group; X represents a group derived from an acid and / or an acid anhydride; O represents an oxygen atom.
  • the reaction of the trialkyltin alkoxide compound and the acid HOX causes the dealkylation group reaction as described above and the substitution reaction of the alkoxy group of the trialkyltin alkoxide compound simultaneously.
  • the dealkylation group reaction as described above and the substitution reaction of the alkoxy group of the trialkyltin alkoxide compound simultaneously.
  • R 1 independently represents an alkyl group
  • R 2 represents an alkyl group
  • X represents a group derived from an acid and / or an acid anhydride
  • O represents an oxygen atom.
  • the dealkylation reaction as described above may occur in either step (1) or step (2) depending on the reaction conditions.
  • the alkyl group eliminated in the dealkylation reaction often does not recombine with the tin atom, the dialkyltin compound and / or tetraalkyldistane in the alkyl group redistribution reaction in step (2) Since the yield of the oxan compound may be reduced, it is preferable to set conditions that hardly cause the dealkylation reaction as the reaction conditions in the steps (1) and (2).
  • alkyl group disproportionation of a dialkyltin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound for example, alkyl group disproportionation of a dialkyltin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound.
  • a monoalkyl tin alkoxide compound and a trialkyl tin alkoxide compound produced by the reaction can be regenerated as a dialkyl tin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound (see FIG. 1). *
  • the manufacturing method of the alkyltin composition in the above-described step (1) will be described.
  • the alkyltin composition is not particularly limited as long as it is an alkyltin composition containing a monoalkyltin alkoxide compound and a trialkyltin alkoxide compound, but is preferably obtained by sequentially performing the following steps (a) to (c). An alkyl tin composition produced in the process of producing a carbonate ester.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( In the formula, Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group. )
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( In the formula, Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group. )
  • R 2 represents a linear or branched alkyl group having 2 to 8 carbon atoms.
  • R 1 in the above formula (34) used in the step (a) are methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer) ), Heptyl (each isomer), octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), and the number of carbon atoms constituting the group Examples thereof include an alkyl group which is an aliphatic hydrocarbon group which is a number selected from an integer of 1 to 12.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • a dialkyltin compound in which the number of carbon atoms constituting the group is an alkyl group other than the range shown above can also be used, but fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • Examples of the group R 2 in the above formula (34) include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer) ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), and the like, the number of carbon atoms constituting the group is selected from an integer of 1 to 12 An alkyl group which is an aliphatic hydrocarbon group.
  • the group OR 2 in the above formula (34) is preferably a methoxy group, an ethoxy group, a propyloxy group (each isomer), a butyloxy group (each isomer), or a pentyloxy group (each isomer).
  • dialkyltin dialkoxide represented by the above formula (34) include dimethyl-dimethoxytin, dimethyl-diethoxytin, dimethyl-dipropoxytin (each isomer), dimethyl-dibutoxytin (each isomer), dimethyl- Dipentyloxytin (each isomer), dimethyl-dihexyloxytin (each isomer), dimethyl-diheptyloxytin (each isomer), dimethyl-dioctyloxytin (each isomer), dibutyl-dimethoxytin (each isomer) ), Dibutyl-diethoxytin (each isomer), dibutyl-dipropoxytin (each isomer), dibutyl-dibutoxytin (each isomer), dibutyl-dipentyloxytin (each isomer), dibutyl-dihexyloxytin (each iso
  • an organic tin compound is likely to have an association structure.
  • a dialkyl tin dialkoxide compound forms a dimer structure
  • a tetraalkyl dialkoxy distannoxane compound has two or three molecules. It is known that there may be a case where they form an associated ladder structure. However, even if such an association state changes, it is known to those skilled in the art that a compound is represented by a monomer structure. Is common.
  • the manufacturing method of the dialkyl tin dialkoxide used in the step (a) is not particularly limited, a dialkyl tin dialkoxide manufacturing method (such as WO2005 / 111409) already disclosed can be preferably used. This is a process for producing a dialkyltin dialkoxide from a dialkyltin oxide and an alcohol. Hereinafter, the manufacturing method will be described.
  • Alcohols include methanol, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol (each isomer), octanol (each isomer) , Alcohols such as nonanol (each isomer), decanol (each isomer), etc., wherein the number of carbon atoms constituting the alcohol is a number selected from an integer of 1 to 12 is preferably used.
  • ethanol More preferably, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol (each isomer), octanol (each isomer), etc.
  • An alcohol in which the number of carbon atoms constituting the alcohol is a number selected from integers of 2 to 8.
  • Dialkyl tin oxide used in the production of dialkyl tin dialkoxide is dialkyl tin oxide represented by the following formula (37).
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms.
  • R 1 in the above formula (37) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), undecyl (each isomer), dodecyl (each isomer), etc., an aliphatic hydrocarbon group having 1 to 12 carbon atoms A certain alkyl group is mentioned. A linear or branched saturated alkyl group having 1 to 8 carbon atoms is more preferable, and an n-butyl group and an n-octyl group are more preferable.
  • a tetraalkyl dialkoxy distannoxane and / or a dialkyl tin dialkoxide is obtained while dehydrating the alcohol and the dialkyl tin oxide to remove the generated water from the system.
  • the temperature at which the reaction is carried out is, for example, in the range of 80 to 180 ° C., and is preferably 100 ° C. to 180 ° C., depending on the reaction pressure in order to distill off the produced water out of the system. In order to increase the reaction temperature, a high temperature is preferable. On the other hand, an unfavorable reaction such as decomposition may occur at a high temperature, and the yield may be lowered. Therefore, the reaction temperature is more preferably in the range of 100 ° C. to 160 ° C.
  • the reaction pressure is a pressure at which generated water can be removed out of the system, and depending on the reaction temperature, the reaction is performed at 20 to 1 ⁇ 10 6 Pa.
  • the reaction time of the dehydration reaction is not particularly limited, and is usually 0.001 to 50 hours, preferably 0.01 to 10 hours, and more preferably 0.1 to 2 hours.
  • the reaction may be terminated if a composition containing the desired amount of dialkyltin dialkoxide is obtained.
  • the progress of the reaction can also be determined by measuring the amount of water withdrawn out of the system, or it can be determined by sampling the reaction solution and using 119 Sn-NMR.
  • the composition containing a dialkyl tin dialkoxide mainly contains a dialkyl tin dialkoxide and a tetraalkyl dialkoxy distannoxane, but the tetraalkyl dialkoxy distannoxane and dialkyl tin contained in the composition.
  • the reaction is terminated after confirming that it has been obtained.
  • the alcohol used may be used as it is, or in some cases, the alcohol may be distilled off and used.
  • the removal method is preferably removal by a known distillation, and the distillation apparatus used for the distillation can be a known distillation facility. As a preferable distillation apparatus, a thin film distillation apparatus can be preferably used because it can be removed in a short time.
  • a known tank or tower reactor can be used.
  • the low-boiling point reaction mixture containing water may be extracted from the reactor in a gaseous state by distillation, and the high-boiling point reaction mixture containing the dialkyltin dialkoxide to be produced may be extracted in liquid form from the lower part of the reactor.
  • a reactor for example, a stirring tank, a multistage stirring tank, a distillation tower, a multistage distillation tower, a multitubular reactor, a continuous multistage distillation tower, a packed tower, a thin film evaporator, a reactor equipped with a support inside, Various known methods such as a method using a forced circulation reactor, a falling film evaporator, a drop evaporator, a trickle phase reactor, a reactor including a bubble column, and a combination of these may be used. In terms of efficiently shifting the equilibrium to the production system side, a method using a tower reactor is preferable, and a structure having a large gas-liquid contact area capable of promptly moving the formed water to the gas phase is preferable.
  • dialkyltin oxide used in this step is usually in a solid state.
  • a method of carrying out and then increasing the content of dialkyltin dialkoxide in a column reactor is most preferred.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added. A known method such as cooling water or brine can be used.
  • composition containing a dialkyltin dialkoxide obtained by the above production method mainly contains a dialkyltin dialkoxide and a tetraalkyldialkoxy distannoxane.
  • R 1 in the above formula (35) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), undecyl (each isomer), dodecyl (each isomer), etc., an aliphatic hydrocarbon group having 1 to 12 carbon atoms A certain alkyl group is mentioned. A linear or branched saturated alkyl group having 1 to 8 carbon atoms is more preferable, and an n-butyl group and an n-octyl group are more preferable.
  • Specific examples of the compound represented by the above formula (35) include 1,1,3,3-tetramethyl-1,3-diethoxydistanoxane, 1,1,3,3-tetramethyl-1 , 3-dipropoxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dibutoxydistanoxane (each isomer), 1,1,3,3- Tetramethyl-1,3-dipentyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dihexyloxydistanoxane (each isomer), 1,1, 3,3-tetramethyl-1,3-diheptyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dioctyloxydistanoxane (each isomer) 1,1,3,3-tetrabutyl-1,3-diethoxy distane Xan (each is
  • an organic tin compound is likely to have an association structure.
  • a dialkyl tin dialkoxide compound forms a dimer structure
  • a tetraalkyl dialkoxy distannoxane compound has two or three molecules. It is known that there may be a case where they form an associated ladder structure. However, even if such an association state changes, it is known to those skilled in the art that a compound is represented by a monomer structure. Is common.
  • a dialkyl tin dialkoxide represented by the above formula (34) is reacted with carbon dioxide, so that a carbonate ester, a tetraalkyl dialkoxy distannoxane represented by the above formula (35) and And / or a step of obtaining a reaction solution containing a conjugate of the tetraalkyl dialkoxy distannoxane and carbon dioxide.
  • the already disclosed methods for producing carbonate esters (WO03 / 055840, WO04 / 014840, etc.) are preferably used.
  • the dialkyl tin dialkoxide used in this step is the dialkyl tin dialkoxide produced by the reaction of the dialkyl tin oxide and the alcohol described above, and the dialkyl tin regenerated in the step (c) described later during the continuous production. It may be a dialkoxide. Moreover, it may be supplied from the step of regenerating dialkyl tin dialkoxide and / or tetraalkyl dialkoxy distannoxane described later.
  • step (a) gaseous carbon dioxide is absorbed in the above-described dialkyltin dialkoxide and chemically reacted to obtain a mixture containing a conjugate of dialkyltin dialkoxide and carbon dioxide.
  • the dialkyltin dialkoxide is reacted in a liquid state or in a liquid state with a solvent or the like.
  • a method of making it liquid by heating can be preferably used, and it may be made liquid by a solvent or the like.
  • the reaction pressure depends on the reaction temperature, but is preferably in the range of normal pressure to 1 MPa, and more preferably in the range of normal pressure to 0.6 MPa.
  • the reaction temperature depends on the reaction pressure, but is preferably in the range of ⁇ 40 ° C. to 80 ° C. Considering the fluidity during transfer, 0 ° C. to 80 ° C. is more preferable, and the most preferable range is room temperature ( For example, it is 20 ° C. to 80 ° C.
  • the reaction time may be in the range of several seconds to 100 hours, and in consideration of productivity, several minutes to 10 hours are preferable.
  • a known tank reactor or column reactor can be used. A plurality of reactors may be used in combination.
  • the reaction is a reaction between carbon dioxide gas (gas) and a composition (liquid) containing dialkyltin dialkoxide
  • the gas-liquid interface is enlarged to increase the contact area between the gas and the liquid in order to efficiently react. It is preferable to do.
  • Known knowledge can be used for such a reaction method by enlarging the gas-liquid interface. For example, in a tank reactor, a method of increasing the stirring speed or generating bubbles in the liquid is preferable. In the reactor, a method using a packed tower or a plate tower is preferable.
  • tower-type reactors include, for example, those of a tray tower type using trays such as foam trays, perforated plate trays, valve trays, countercurrent trays, Raschig rings, Lessing rings, pole rings, Berle saddles.
  • a packed tower type packed with various packing materials such as interlock saddle, Dixon packing, McMahon packing, helipak, sulzer packing, and melapack can be used.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used.
  • instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added.
  • a known method such as cooling water or brine can be used. Since the reaction is usually an exothermic reaction, it may be cooled, or it may be cooled by heat release from the reactor. Alternatively, heating may be performed for the purpose of simultaneously causing the carbonic esterification reaction.
  • known methods such as a method using a jacket and a method using an internal coil can be used.
  • the carbon dioxide gas supplied to the reactor and the composition containing dialkyltin dialkoxide may be supplied separately to the reactor, or may be mixed before being supplied to the reactor. You may supply from several places of a reactor. The completion of the reaction can be determined by, for example, 119 Sn-NMR analysis.
  • a reaction liquid containing a carbonate is obtained from the conjugate of dialkyltin dialkoxide obtained above and carbon dioxide by the following method.
  • the reaction conditions are in the range of 110 ° C. to 200 ° C.
  • the reaction temperature is preferably high in order to increase the reaction rate, but on the other hand, undesired reactions such as decomposition may occur at high temperatures, resulting in a decrease in yield. Therefore, it is preferably in the range of 120 ° C. to 180 ° C., in the range of 0.1 hour to 10 hours, and the reaction pressure is in the range of 1.5 MPa to 20 MPa, preferably 2.0 MPa to 10 MPa.
  • the reaction may be completed after the desired carbonate ester is formed in the reactor.
  • the progress of the reaction can be confirmed by sampling the reaction solution in the reactor and analyzing the carbonate produced by a method such as 1 H-NMR or gas chromatography. For example, with respect to the number of moles of dialkyltin dialkoxide and / or dialkyltin dialkoxide and carbon dioxide conjugate contained in the dialkyltin dialkoxide and / or dialkyltin dialkoxide and carbon dioxide conjugate.
  • the reaction may be terminated when it is produced at 10% or more, and when it is desired to increase the yield of carbonate ester, the reaction is continued until the value reaches 90% or more and then terminated.
  • a known reactor can be used as the reactor, and both a tower reactor and a tank reactor can be preferably used.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added. A known method such as cooling water or brine can be used.
  • step (b) the carbonate ester is separated from the reaction solution containing the carbonate ester obtained in the step (a), and a tetraalkyl dialkoxy distannoxane and / or a tetraalkyl dialkoxy distannoxane and carbon dioxide are separated.
  • This is a step of obtaining a residual liquid containing the conjugate of
  • a known method or apparatus can be preferably used as the separation method.
  • a preferred method is by distillation.
  • the reaction liquid transferred from step (a) is distilled batchwise or semi-batch or continuously to obtain a carbonate ester and a residual liquid.
  • a preferred distillation method is a method in which the reaction solution is supplied to a distiller, carbonate ester is separated as a gas phase component from the upper part of the distiller, and the residual liquid is extracted as a liquid component from the bottom of the distiller.
  • the temperature in this step depends on the boiling point and pressure of the carbonate ester, but may be in the range of room temperature (for example, 20 ° C.) to 200 ° C.
  • the temperature is preferably in the range of room temperature (for example, 20 ° C.) to 150 ° C.
  • the pressure depends on the type of carbonate and the temperature at which it is carried out, it is usually carried out under normal to reduced pressure conditions, and considering the productivity, the range of 100 Pa to 80 KPa is more preferable, and the range of 100 Pa to 50 KPa is the most preferable range. It is.
  • the time can be carried out in the range of 0.01 hours to 10 hours, and when carried out at a high temperature for a long time, the tin compound contained in the reaction solution may be modified or the carbonate ester may be reduced by a reverse reaction.
  • a range of 0.01 hours to 0.5 hours is preferred, and a range of 0.01 hours to 0.3 hours is most preferred.
  • a known distiller can be used as the distiller, and a column-type distiller and a tank-type distiller can be preferably used, or a plurality of distillers may be used in combination. More preferable distillers are a thin film evaporator and a thin film distiller, and a thin film evaporator equipped with a distillation tower and a thin film distiller are most preferable. As long as the material of the distiller and the line is not adversely affected, any known material may be used, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added. A known method such as cooling water or brine can be used.
  • the conjugate of dialkyltin dialkoxide and carbon dioxide has a structure in which the alkoxy group part of dialkyltin dialkoxide is partially or completely replaced (or changed) by the carbonate bond.
  • the structure in which the alkoxy group of the tetraalkyldialkoxydistanoxane is partially or completely replaced (or changed) by the carbonate bond is.
  • the conjugate of dialkyltin dialkoxide and carbon dioxide has a structure in which the alkoxy group part of the above-described dialkyltin dialkoxide is partially or completely replaced (or changed) by the carbonate bond described above. .
  • the presence of the bond with the carbon dioxide can be confirmed by a known method in combination with 119 Sn-NMR, 13 C-NMR, 1 H-NMR, X-ray structural analysis and the like.
  • the structure of the conjugate of dialkoxide and carbon dioxide is often a complex structure and may not be identified by current analysis technology.
  • the conjugate of dialkyltin dialkoxide and carbon dioxide in this embodiment Is not limited to the following structural examples.
  • the structure of a conjugate of tetraalkyl dialkoxy distannoxane and carbon dioxide is often a complex structure, and may not be identified by current analysis techniques.
  • the conjugate of alkyl dialkoxy distannoxane and carbon dioxide is not limited to the following structural examples.
  • Examples of conjugates of dialkyltin dialkoxides and carbon dioxide corresponding to the dialkyltin dialkoxides shown in the above formula (34) include structures represented by the following formulas (38), (39) and (40). An expression can be shown. These compounds may be monomers, aggregates, multimers, or polymers.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( In the formula, Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group. )
  • Examples of the conjugate of tetraalkyldialkoxy distannoxane and carbon dioxide corresponding to the tetraalkyldialkoxy distannoxane represented by the above formula (35) include the following formulas (41), (42), The structural formula represented by (43) can be shown. These compounds may be monomers, aggregates, multimers, or polymers.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( In the formula, Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group. )
  • R 1 and R 2 of the conjugates represented by the above formulas (38) to (43) are as described above, and examples of such conjugates with carbon dioxide include methoxy-methyl carbonate-dibutyl. -Tin, ethoxy-ethyl carbonate-dibutyl-tin, propoxy-propyl carbonate-dibutyl-tin (each isomer), butoxy-butyl carbonate-dibutyl-tin (each isomer), pentyloxy-pentyl carbonate- Dibutyl-tin (each isomer), hexyloxy-hexyl carbonate-dibutyl-tin (each isomer), heptyloxy-heptyl carbonate-dibutyl-tin (each isomer), benzyloxy-benzyl carbonate-dibutyl- Tin, methoxy-methyl carbonate dioctyl-tin, ethoxy-ethyl
  • the alkyltin composition contains a tetraalkyltin alkoxide compound and a monoalkyltin alkoxide compound, but a conjugate of these with carbon dioxide may be generated.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( In the formula, Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group. )
  • R 1 and R 2 of the conjugate represented by the above formula (44) are as described above.
  • Examples of such a conjugate with carbon dioxide include tributyl-methyl carbonate-tin, tributyl-ethyl. Carbonate-tin, tributyl-propyl carbonate-tin (each isomer), tributyl-butyl carbonate-tin (each isomer), tributyl-pentyl carbonate-tin (each isomer), tributyl-hexyl carbonate- Tin (each isomer), tributyl-heptyl carbonate-tin, tributyl-benzyl carbonate-tin, trioctyl-methyl carbonate-tin, trioctyl-ethyl carbonate-tin, trioctyl-propyl carbonate-tin (each isomer) ), Trioctyl-butyl carbonate-tin (each isomer),
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched saturated or unsaturated hydrocarbon group, a hydrocarbon group having a saturated or unsaturated cyclic hydrocarbon substituent, or a Y—CH 2 — group ( In the formula, Y represents an alkyl polyalkylene group, an aromatic group, or a cyclic saturated or unsaturated alkylene ether group. )
  • conjugates of such monoalkyltin alkoxide compounds and carbon dioxide include butyl-methoxy-di-methyl carbonate-tin, butyl-ethoxy-diethyl carbonate-tin, butyl-propyloxy-di- Propyl carbonate-tin (each isomer), butyl-butoxy-di-butyl carbonate-tin (each isomer), butyl-pentyloxy-di-pentyl carbonate-tin (each isomer), butyl-hexyloxy- Di-hexyl carbonate-tin (each isomer), butyl-heptyloxy-di-heptyl carbonate-tin (each isomer), butyl-benzyloxy-di-benzyl carbonate-tin, octyl-methoxy-di- Methyl carbonate-tin, octyl-ethoxy-di-e
  • Most preferred examples include (n-butyl) -di- (n-butyl carbonate)-(n-butoxy) -tin, (n-butyl) -di- (n-pentyl carbonate)-(n-pentyl Oxy) -tin, (n-butyl) -bis- (3-methylbutyl carbonate)-(3-methylbutoxy) -tin, (n-butyl) -di- (n-hexyl carbonate)-(n- (Hexyloxy) -tin, (n-butyl) -bis- (2-ethylbutyl carbonate)-(2-ethylbutoxy) -tin, (n-octyl) -di- (n-butyl carbonate)-(n -Butoxy) -tin, (n-octyl) -di- (n-pentyl carbonate)-(n-pentyloxy)
  • dialkyl tin dialkoxide tetraalkyl dialkoxy distannoxane, trialkyl tin alkoxide compound, and the combination of monoalkyl tin alkoxide compound and carbon dioxide may be a mixture or a single compound, respectively. They may be coordinated or meeting each other.
  • alkyltin alkoxides are easily exchanged for ligands, and it is difficult to specify the structure, and there is a possibility that there is a conjugate with coordinated and associated carbon dioxide in addition to the above.
  • step (c) will be described.
  • the residual liquid obtained in step (b) is reacted with the alcohol represented by the above formula (36), and water produced as a by-product is removed by distillation to regenerate dialkyltin dialkoxide.
  • the dialkyltin dialkoxide is used as the dialkyltin dialkoxide in step (a).
  • Examples of the alcohol represented by the above formula (36) include methanol, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol (each isomer). ), Octanol (each isomer), nonanol (each isomer), decanol (each isomer) and the like, wherein the number of carbon atoms constituting the alcohol is selected from an integer of 1 to 12 Certain alcohols are preferably used.
  • ethanol More preferably, they are ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol (each isomer), and octanol (each isomer). More preferably, the same alcohol as that used in the production of the above-described dialkyltin dialkoxide is used.
  • the conditions for removing water produced as a by-product in the reaction by distillation are preferably carried out under the same conditions as the distillation of water in the production of the dialkyltin dialkoxide.
  • the reaction may be terminated if a composition containing the desired amount of dialkyltin dialkoxide is obtained.
  • the progress of the reaction can also be determined by measuring the amount of water withdrawn out of the system, or it can be determined by sampling the reaction solution and using 119 Sn-NMR.
  • the composition containing the dialkyltin dialkoxide in step (a) the tetraalkyldialkoxy distannoxane and the dialkyltin dialkoxide contained in the composition containing the dialkyltin dialkoxide are used.
  • the alcohol used may be used as it is, or in some cases, the alcohol may be distilled off and used. Since there exists an advantage which can make the reactor of another process small, it is preferable to remove alcohol as much as possible.
  • the removal method is preferably removal by a known distillation, and the distillation apparatus used for the distillation can be a known distillation facility. As a preferable distillation apparatus, a thin film distillation apparatus can be preferably used because it can be removed in a short time.
  • this step (c) unlike the production step of dialkyltin dialkoxide by reaction of dialkyltin oxide and alcohol, there are few restrictions on the reactor because dialkyltin oxide which is usually solid is not used. That is, the type of the reactor for the dehydration reaction is not particularly limited, and a known tank or tower reactor can be used. A low-boiling reaction mixture containing water is withdrawn from the reactor in the form of a gas, and a high-boiling reaction mixture containing dialkyltin dialkoxide and / or tetraalkyl dialkoxy distannoxane produced is withdrawn in liquid form from the bottom of the reactor. Just do it.
  • a reactor for example, a stirring tank, a multistage stirring tank, a distillation tower, a multistage distillation tower, a multitubular reactor, a continuous multistage distillation tower, a packed tower, a thin film evaporator, a reactor equipped with a support inside, Various known methods such as a method using a forced circulation reactor, a falling film evaporator, a drop evaporator, a trickle phase reactor, a reactor including a bubble column, and a combination of these may be used.
  • a method using a tower reactor is preferable, and a structure having a large gas-liquid contact area capable of promptly moving the formed water to the gas phase is preferable.
  • a continuous method using a multitubular reactor, a multistage distillation column, and a packed column packed with a filler is particularly preferred.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added. A known method such as cooling water or brine can be used.
  • the alkyltin composition containing the monoalkyltin alkoxide compound and the trialkyltin alkoxide compound is extracted from the reaction system and used as the alkyltin composition in the step (1) described above, and the alkyltin compound is obtained by the step (2). It is preferable to regenerate the dialkyl tin dialkoxide and / or the tetraalkyl dialkoxy distannoxane by reaction of the alkyl tin compound with a carbonate and / or alcohol.
  • the regeneration of the dialkyl tin dialkoxide and / or tetraalkyl dialkoxy distannoxane is preferably carried out after the above-mentioned steps (b) and / or step (c), and the regenerated dialkyl tin dialkoxide and / or Alternatively, the tetraalkyl dialkoxy distannoxane is mixed with the dialkyl tin dialkoxide in step (a) and / or the residual liquid in step (b) and used as a raw material in step (c).
  • FIG. 2 is a flow diagram for explaining an improved method for producing a carbonate ester, which combines the method for producing a carbonate ester and the method for producing a dialkyltin compound according to the present embodiment.
  • part or all of the alkyltin composition extracted from step (b) and / or step (c) of the method for producing carbonate ester is used as a raw material for step (1).
  • the dialkyl tin dialkoxide and / or tetraalkyl dialkoxy distannoxane obtained through steps (1) to (2) and step (Z) may be used as the dialkyl tin dialkoxide in step (a). Alternatively, it may be mixed with the residual liquid of step (b) to be a raw material of step (c).
  • monoalkyltin alkoxide and trialkyltin alkoxide are regenerated as dialkyltin dialkoxide and / or tetraalkyldialkoxy distannoxane, Since it can be used again as a catalyst for producing an ester, there is an advantage that the amount of waste generated is greatly reduced.
  • the production method (step (Z)) of the dialkyltin dialkoxide compound and / or the tetraalkyldialkoxy distannoxane compound of the present embodiment is a monolith produced in the production step of the carbonate ester.
  • the following steps (A) to (B) are carried out using a dialkyltin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound produced by the method of the present embodiment as raw materials. Different from the above method Also it has a side surface of one of the steps in the production process of carbonic acid ester.
  • the step (A) is the same step as the above step (a) except that the dialkyltin dialkoxide compound produced in the step (Z) is used instead of the dialkyltin dialkoxide, and the method shown below Can be implemented.
  • the dialkyltin dialkoxide compound produced in the step (Z) for example, the dialkyltin dialkoxide compound produced in the step (Z) in the flow illustrated in FIGS. 1 and 2 may be used.
  • a dialkyltin dialkoxide compound produced by carrying out the step (Z) using the alkyltin compound obtained in the step (C) may be used.
  • the dialkyltin dialkoxide compound and / or the tetraalkyldialkoxy distannoxane compound produced in the step (Z) is absorbed with a gaseous carbon dioxide and subjected to a chemical reaction so as to cause a dialkyltin dialkyl.
  • a mixture containing a conjugate of the alkoxide compound and carbon dioxide is obtained.
  • the dialkyltin dialkoxide compound is reacted in a liquid state or in a liquid state with a solvent or the like.
  • a method of making it liquid by heating can be preferably used, and it may be made liquid by a solvent or the like.
  • the reaction pressure depends on the reaction temperature, but is preferably in the range of normal pressure to 1 MPa, and more preferably in the range of normal pressure to 0.6 MPa.
  • the reaction temperature depends on the reaction pressure, but is preferably in the range of ⁇ 40 ° C. to 80 ° C. Considering the fluidity during transfer, 0 ° C. to 80 ° C. is more preferable, and the most preferable range is room temperature ( For example, it is 20 ° C. to 80 ° C.
  • the reaction time may be in the range of several seconds to 100 hours, and in consideration of productivity, several minutes to 10 hours are preferable.
  • As the reactor a known tank reactor or column reactor can be used. A plurality of reactors may be used in combination.
  • the reaction is a reaction between carbon dioxide gas (gas) and a composition (liquid) containing a dialkyltin dialkoxide compound
  • the gas-liquid interface is enlarged to increase the contact area between the gas and the liquid. It is preferable to enlarge it.
  • Known knowledge can be used for such a reaction method by enlarging the gas-liquid interface. For example, in a tank reactor, a method of increasing the stirring speed or generating bubbles in the liquid is preferable. In the reactor, a method using a packed tower or a plate tower is preferable.
  • tower-type reactors include, for example, those of a tray tower type using trays such as foam trays, perforated plate trays, valve trays, countercurrent trays, Raschig rings, Lessing rings, pole rings, Berle saddles.
  • a packed tower type packed with various packing materials such as interlock saddle, Dixon packing, McMahon packing, helipak, sulzer packing, and melapack can be used.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used.
  • instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added.
  • a known method such as cooling water or brine can be used. Since the reaction is usually an exothermic reaction, it may be cooled, or it may be cooled by heat release from the reactor. Alternatively, heating may be performed for the purpose of simultaneously causing the carbonic esterification reaction.
  • known methods such as a method using a jacket and a method using an internal coil can be used.
  • the carbon dioxide gas supplied to the reactor and the composition containing the dialkyltin dialkoxide compound may be supplied separately to the reactor, or may be mixed before being supplied to the reactor. You may supply from several places of a reactor. The completion of the reaction can be determined by, for example, 119 Sn-NMR analysis.
  • a reaction liquid containing a carbonate is obtained from the conjugate of the dialkyltin dialkoxide compound obtained above and carbon dioxide by the following method.
  • the reaction conditions are in the range of 110 ° C. to 200 ° C.
  • the reaction temperature is preferably high in order to increase the reaction rate, but on the other hand, undesired reactions such as decomposition may occur at high temperatures, resulting in a decrease in yield. Therefore, it is preferably in the range of 120 ° C. to 180 ° C., in the range of 0.1 hour to 10 hours, and the reaction pressure is in the range of 1.5 MPa to 20 MPa, preferably 2.0 MPa to 10 MPa.
  • the reaction may be completed after the desired carbonate ester is formed in the reactor.
  • the progress of the reaction can be confirmed by sampling the reaction solution in the reactor and analyzing the carbonate produced by a method such as 1 H-NMR or gas chromatography. For example, when 10% or more of the dialkyl tin dialkoxide compound and / or the conjugate of the dialkyl tin dialkoxide compound and carbon dioxide is produced in an amount of 10% or more, the reaction may be terminated. The reaction is continued until the value reaches 90% or more, and then the reaction is completed.
  • a known reactor can be used as the reactor, and both a tower reactor and a tank reactor can be preferably used.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc.
  • instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added.
  • a known method such as cooling water or brine can be used.
  • process (B) is demonstrated.
  • the carbonate ester is separated from the reaction solution containing the carbonate ester obtained in the step (A), and the tetraalkyldialkoxy distannoxane compound and / or the tetraalkyldialkoxy distannoxane compound and the carbon dioxide are separated.
  • This is a step of obtaining a residual liquid containing a conjugate with carbon.
  • a known method or apparatus can be preferably used as the separation method.
  • a preferred method is by distillation.
  • the reaction liquid transferred from the step (A) is distilled batchwise or semi-batch or continuously to obtain a carbonate and a residual liquid.
  • a preferred distillation method is a method in which the reaction liquid is supplied to a distiller, carbonate ester is separated from the upper part of the distiller as a gas phase component, and the residual liquid is extracted as a liquid component from the bottom of the distiller.
  • the temperature in this step depends on the boiling point and pressure of the carbonate ester, but may be in the range of room temperature (for example, 20 ° C.) to 200 ° C. If the tin compound in the residual liquid is modified at high temperatures, Since it may decrease due to the reverse reaction, the temperature is preferably in the range of room temperature (for example, 20 ° C.) to 150 ° C.
  • the pressure depends on the type of carbonate and the temperature at which it is carried out, it is usually carried out under normal to reduced pressure conditions, and considering the productivity, the range of 100 Pa to 80 KPa is more preferable, and the range of 100 Pa to 50 KPa is the most preferable range. It is.
  • the time can be carried out in the range of 0.01 hours to 10 hours, and when carried out at a high temperature for a long time, the tin compound contained in the reaction solution may be modified or the carbonate ester may be reduced by a reverse reaction. A range of 0.01 hours to 0.5 hours is preferred, and a range of 0.01 hours to 0.3 hours is most preferred.
  • a known distiller can be used as the distiller, and a column-type distiller and a tank-type distiller can be preferably used, or a plurality of distillers may be used in combination. More preferable distillers are a thin film evaporator and a thin film distiller, and a thin film evaporator equipped with a distillation column and a thin film distiller are most preferable. As long as the material of the distiller and the line is not adversely affected, any known material may be used, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added. A known method such as cooling water or brine can be used.
  • step (C) is added to the above steps (A) to (B), and the alkyltin compound produced in the step (C) is converted into the alkyltin of step (Z). It can also be used as a compound.
  • an acid represented by the general formula HOX Borensted acid having a
  • tetraalkyldistanoxane compound having one Sn—O—Sn bond wherein each tin atom in the tetraalkyldistanoxane compound has two Sn—R 1 bonds, one A tetraalkyldistanoxane compound having a Sn-OX bond (the group OX is a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 to 6.8).
  • the step (C) is similar to the step (1) described above, and is performed by the following method.
  • the acid represented by the general formula HOX an organic acid is preferably used as such an acid.
  • the organic acid include carboxylic acid, sulfonic acid, phenol and the like, but preferably carboxylic acid is used.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-methylbutanoic acid, pivalic acid, hexanoic acid, isocaproic acid, 2-ethylbutanoic acid, 2,2 -Dimethylbutanoic acid, heptanoic acid (each isomer), octanoic acid (each isomer), nonanoic acid (each isomer), decanoic acid (each isomer), undecanoic acid (each isomer), dodecanoic acid (each isomer) ), Tetradecanoic acid (each isomer), hexadecanoic acid (each isomer), acrylic acid, crotonic acid, isocrotonic acid, vinyl acetic acid, methacrylic acid, angelic acid, tiglic acid, allyl acetic acid, unde
  • saturated monocarboxylic acids are preferably used. More preferably, a saturated monocarboxylic acid having a standard boiling point of 300 ° C. or lower, more preferably a saturated carboxylic acid having a standard boiling point of 250 ° C. or lower is used.
  • the standard boiling point refers to the boiling point at 1 atm, as described in the Chemical Dictionary (Kyoritsu Shuppan Co., Ltd., issued on October 1, 2003).
  • acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-methylbutanoic acid, pivalic acid, and hexanoic acid are preferably used.
  • examples of the acid anhydride represented by the general formula XOX include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, succinic anhydride, maleic anhydride.
  • examples thereof include aliphatic anhydrides such as acid, propionic anhydride, and glutaric anhydride; and aromatic acid anhydrides such as benzoic anhydride, phthalic anhydride, and pyromellitic anhydride.
  • an acid anhydride having a standard boiling point of 300 ° C. or lower is preferably used, and an acid anhydride having a standard boiling point of 200 ° C.
  • acids and acid anhydrides can be used alone or in combination of a plurality of types.
  • an acid for example, when a tetraalkyldialkoxydistanoxane compound is reacted with an acid, water is added. It is often generated. In order to remove the water, distillation separation or membrane separation may be performed, or a dehydrating agent may be used.
  • an acid anhydride in combination as a dehydrating agent.
  • water often does not form in the reaction of a tetraalkyldialkoxy distannoxane compound and acetic anhydride, so a method using only an acid anhydride is also preferable.
  • the amount of acid and / or acid anhydride used depends on the tin atom contained in the residue obtained in step (B), taking into account the reaction rate in step (C) and the final yield of dialkyltin compound.
  • the reaction in step (C) is preferably carried out at a reaction temperature of ⁇ 20 ° C. or more and 300 ° C. or less, more preferably at a reaction temperature of ⁇ 10 ° C. or more and 250 ° C. or less.
  • a reaction temperature ⁇ 20 ° C. or more and 300 ° C. or less
  • an unfavorable reaction such as decomposition may occur at a high temperature, and the yield may be lowered. Therefore, the reaction is more preferably performed at a reaction temperature of 0 ° C. or higher and 230 ° C. or lower.
  • reaction of a process (C) is performed in inert gas atmosphere, such as argon, neon, and nitrogen.
  • a solvent may be used for the purpose of improving fluidity, facilitating the reaction operation, or efficiently removing the water from the system when produced in the reaction. it can.
  • a solvent include linear, branched and cyclic hydrocarbons having 5 to 16 carbon atoms; ethers composed of linear, branched and cyclic hydrocarbons having 4 to 16 carbon atoms; Examples thereof include 1 to 16 linear, branched and cyclic halogenated hydrocarbons.
  • pentane (each isomer), hexane (each isomer), heptane (each isomer), octane (each isomer), nonane (each isomer), decane (each isomer), hexadecane (each Isomers), cyclohexane, cycloheptane, cyclooctane, benzene, toluene, xylene (each isomer), chained and cyclic hydrocarbons selected from ethylbenzene, etc .; diethyl ether, dipropyl ether (each isomer), dibutyl ether (Each isomer), dihexyl ether (each isomer), dioctyl ether (each isomer), diphenyl ether, and other ethers; methylene chloride, chloroform, carbon tetrachloride, chlorobenzen
  • the alkyltin compound produced in the step (C) is at least one selected from the group consisting of a dialkyltin compound represented by the following formula (48) and a tetraalkyldistanoxane compound represented by the following formula (49). Alkyl tin compounds.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms; O represents an oxygen atom; OX 3 and OX 4 are OX 3 and OX 4 in which HOX 3 and HOX 4 which are conjugate acids of OX 3 and OX 4 are Bronsted acids having a pKa of 0 to 6.8. )
  • R 1 in the formula (48) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 Examples thereof include alkyl groups that are aliphatic hydrocarbon groups.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • a dialkyltin compound in which the number of carbon atoms constituting the group is an alkyl group other than the range shown above can also be used, but fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • OX 1 and OX 2 in the above formula (48) are particularly limited if their conjugate acids HOX 1 and HOX 2 are Bronsted acids and the pKa of the conjugate acid is 0 or more and 6.8 or less. However, it is preferably at least one substituent selected from the group consisting of an acyloxyl group and an aryloxy group, and its conjugate acid has a pKa of 0 or more and 6.8 or less. More preferably, it is a group in which the number of carbon atoms constituting the group is a number selected from integers of 0 to 12.
  • Such groups include linear or branched saturated alkyl groups such as acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, lauroyloxy group, carbonyl group and oxygen atom.
  • dialkyltin compound represented by the above formula (48) include dimethyl-diacetoxytin, dimethyl-dipropionyloxytin (each isomer), dimethyl-dibutyryloxytin (each isomer), dimethyl- Valeryloxytin (each isomer), dimethyl-dialauryloxytin (each isomer), dibutyl-diacetoxytin (each isomer), dibutyl-dipropionyloxytin (each isomer), dibutyl-dibutyryl Oxytin (each isomer), dibutyl-divaleryloxytin (each isomer), dibutyl-dilauryloxytin (each isomer), dioctyl-diacetoxytin (each isomer), dioctyl-dipropionyloxy Tin (each isomer), dioctyl-dibutyryloxyt
  • R 1 in the above formula (49) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 Examples thereof include alkyl groups that are aliphatic hydrocarbon groups.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • tetraalkyl distannoxane compounds in which the number of carbon atoms constituting the group is an alkyl group outside the above range can be used, fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • OX 3 and OX 4 in the above formula (49) are particularly limited if their conjugate acids HOX 3 and HOX 4 are Bronsted acids and the pKa of the conjugate acid is 0 or more and 6.8 or less. However, it is preferably at least one substituent selected from the group consisting of an acyloxyl group and an aryloxy group, and the pKa of the conjugate acid is preferably 0 or more and 6.8 or less. More preferably, it is a group in which the number of carbon atoms constituting the group is a number selected from integers of 0 to 12.
  • Such groups include linear or branched saturated alkyl groups such as acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, lauroyloxy group, carbonyl group and oxygen atom.
  • Specific examples of the compound represented by the above formula (49) include 1,1,3,3-tetramethyl-1,3-diacetoxy distannoxane, 1,1,3,3-tetramethyl-1 , 3-dipropionyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dibutyryloxydistanoxane (each isomer), 1,1,3 3-tetramethyl-1,3-divalyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dilauryloxydistanoxane (each isomer) ), 1,1,3,3-tetrabutyl-1,3-diacetoxydistanoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-dipropionyloxydistanoxane ( Each isomer), 1,1,3,3-tetrabutyl-1,3-butyryloxydista
  • organotin compounds tend to have an associated structure, for example, dialkyltin dialkoxide forms a dimer structure, and tetraalkyldialkoxydistanoxane forms a ladder structure in which two or three molecules are associated. It is known that sometimes. Even when such an association state changes, it is common for those skilled in the art to represent a compound with a monomer structure.
  • FIG. 3 is a flow diagram for explaining a new method for producing a carbonate ester that is a combination of steps (A) to (C) and step (Z) described above. Furthermore, as another method for producing the carbonate ester shown in FIG. 3 above, a dialkyltin compound and / or a tetraalkyldistanoxane compound is produced by a method including the following steps (I) to (III): A method for performing the step (Z) using the dialkyltin compound and / or the tetraalkyldistanoxane compound will be described.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched alkyl group having 2 to 8 carbon atoms.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms;
  • Each R 2 independently represents a linear or branched alkyl group having 2 to 8 carbon atoms.
  • Step (III) the residual liquid of Step (II), an acid represented by the general formula HOX (Bronsted acid having a pKa of 0 or more and 6.8 or less), and / or the general formula XOX (the group OX is HOX which is a conjugate acid of OX is a group OX which is a Bronsted acid having a pKa of 0 or more and 6.8 or less), and the acid and / or the acid
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms; O represents an oxygen atom; OX represents a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 or more and 6.8 or less. )
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms; O represents an oxygen atom; OX represents a group OX in which HOX, which is a conjugate acid of OX, is a Bronsted acid having a pKa of 0 or more and 6.8 or less. )
  • R 1 in the above formula (50) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 Examples thereof include alkyl groups that are aliphatic hydrocarbon groups.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • a dialkyltin compound in which the number of carbon atoms constituting the group is an alkyl group other than the range shown above can also be used, but fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • R 2 in the above formula (50) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 Examples thereof include alkyl groups that are aliphatic hydrocarbon groups.
  • the group OR 2 in the above formula (50) is preferably a methoxy group, an ethoxy group, a propyloxy group (each isomer), a butyloxy group (each isomer), a pentyloxy group (each isomer), hexyl.
  • dialkyltin dialkoxide represented by the above formula (50) include dimethyl-dimethoxytin, dimethyl-diethoxytin, dimethyl-dipropoxytin (each isomer), dimethyl-dibutoxytin (each isomer), dimethyl- Dipentyloxytin (each isomer), dimethyl-dihexyloxytin (each isomer), dimethyl-diheptyloxytin (each isomer), dimethyl-dioctyloxytin (each isomer), dibutyl-dimethoxytin (each isomer) ), Dibutyl-diethoxytin (each isomer), dibutyl-dipropoxytin (each isomer), dibutyl-dibutoxytin (each isomer), dibutyl-dipentyloxytin (each isomer), dibutyl-dihexyloxytin (each is
  • R 1 in the above formula (51) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 Examples thereof include alkyl groups that are aliphatic hydrocarbon groups.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • tetraalkyl distannoxane compounds in which the number of carbon atoms constituting the group is an alkyl group outside the above range can be used, fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • OX 3 and OX 4 in the above formula (51) are particularly limited if the conjugate acids HOX 3 and HOX 4 are Bronsted acids and the pKa of the conjugate acid is 0 or more and 6.8 or less. However, it is preferably at least one substituent selected from the group consisting of an acyloxyl group and an aryloxy group, and its conjugate acid has a pKa of 0 or more and 6.8 or less. More preferably, it is a group in which the number of carbon atoms constituting the group is a number selected from integers of 0 to 12.
  • Such groups include linear or branched saturated alkyl groups such as acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, lauroyloxy group, carbonyl group and oxygen atom.
  • Specific examples of the compound represented by the above formula (51) include 1,1,3,3-tetramethyl-1,3-diacetoxy distannoxane, 1,1,3,3-tetramethyl-1 , 3-dipropionyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dibutyryloxydistanoxane (each isomer), 1,1,3 3-tetramethyl-1,3-divalyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dilauryloxydistanoxane (each isomer) ), 1,1,3,3-tetrabutyl-1,3-diacetoxydistanoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-dipropionyloxydistanoxane ( Each isomer), 1,1,3,3-tetrabutyl-1,3-butyryloxydista
  • organotin compounds tend to have an associated structure, for example, dialkyltin dialkoxide forms a dimer structure, and tetraalkyldialkoxydistanoxane forms a ladder structure in which two or three molecules are associated. It is known that sometimes. Even when such an association state changes, it is common for those skilled in the art to represent a compound with a monomer structure.
  • dialkyltin compound represented by the above formula (52) and the tetraalkyldistanoxane compound represented by the above formula (53) will be described later.
  • step (I) a dialkyltin dialkoxide represented by the above formula (50) and carbon dioxide are reacted to form a carbonate and a tetraalkyl dialkoxy distannoxane represented by the above formula (51) and / or Or it is the process of obtaining the reaction liquid containing the conjugate
  • the step (I) is similar to the above-mentioned step (a) and can be carried out in the same manner.
  • the dialkyltin dialkoxide used in step (I) can be produced by the method described above, and the dialkyltin dialkoxide used in this step is also produced by reaction of dialkyltin oxide with alcohol. Dialkyltin dialkoxides are preferred. The manufacturing method is shown below.
  • Alcohols include methanol, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol (each isomer), octanol (each isomer) , Alcohols such as nonanol (each isomer), decanol (each isomer), etc., wherein the number of carbon atoms constituting the alcohol is a number selected from an integer of 1 to 12 is preferably used.
  • ethanol More preferably, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol (each isomer), octanol (each isomer), etc.
  • An alcohol in which the number of carbon atoms constituting the alcohol is a number selected from integers of 2 to 8.
  • Dialkyl tin oxide used in the production of dialkyl tin dialkoxide is dialkyl tin oxide represented by the following formula (54).
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms.
  • R 1 in the above formula (54) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), undecyl (each isomer), dodecyl (each isomer), etc., an aliphatic hydrocarbon group having 1 to 12 carbon atoms A certain alkyl group is mentioned. A linear or branched saturated alkyl group having 1 to 8 carbon atoms is more preferable, and an n-butyl group and an n-octyl group are more preferable.
  • a tetraalkyl dialkoxy distannoxane and / or a dialkyl tin dialkoxide is obtained while dehydrating the alcohol and the dialkyl tin oxide to remove the generated water from the system.
  • the temperature at which the reaction is carried out is, for example, in the range of 80 to 180 ° C., and is preferably 100 ° C. to 180 ° C., depending on the reaction pressure in order to distill off the produced water out of the system. In order to increase the reaction temperature, a high temperature is preferable. On the other hand, an unfavorable reaction such as decomposition may occur at a high temperature, and the yield may be lowered. Therefore, the reaction temperature is more preferably in the range of 100 ° C. to 160 ° C.
  • the reaction pressure is a pressure at which generated water can be removed out of the system, and depending on the reaction temperature, the reaction is performed at 20 to 1 ⁇ 10 6 Pa.
  • the reaction time of the dehydration reaction is not particularly limited, and is usually 0.001 to 50 hours, preferably 0.01 to 10 hours, and more preferably 0.1 to 2 hours.
  • the reaction may be terminated if a composition containing the desired amount of dialkyltin dialkoxide is obtained.
  • the progress of the reaction can also be determined by measuring the amount of water withdrawn out of the system, or it can be determined by sampling the reaction solution and using 119 Sn-NMR.
  • the composition containing a dialkyl tin dialkoxide mainly contains a dialkyl tin dialkoxide and a tetraalkyl dialkoxy distannoxane, but the tetraalkyl dialkoxy distannoxane and dialkyl tin contained in the composition.
  • the reaction is terminated after confirming that it has been obtained.
  • the alcohol used may be used as it is, or in some cases, the alcohol may be distilled off and used.
  • the removal method is preferably removal by a known distillation, and the distillation apparatus used for the distillation can be a known distillation facility. As a preferable distillation apparatus, a thin film distillation apparatus can be preferably used because it can be removed in a short time.
  • a known tank or tower reactor can be used.
  • the low-boiling point reaction mixture containing water may be extracted from the reactor in a gaseous state by distillation, and the high-boiling point reaction mixture containing the dialkyltin dialkoxide to be produced may be extracted in liquid form from the lower part of the reactor.
  • a reactor for example, a stirring tank, a multistage stirring tank, a distillation tower, a multistage distillation tower, a multitubular reactor, a continuous multistage distillation tower, a packed tower, a thin film evaporator, a reactor equipped with a support inside, Various known methods such as a method using a forced circulation reactor, a falling film evaporator, a drop evaporator, a trickle phase reactor, a reactor including a bubble column, and a combination of these may be used. In terms of efficiently shifting the equilibrium to the production system side, a method using a tower reactor is preferable, and a structure having a large gas-liquid contact area capable of promptly moving the formed water to the gas phase is preferable.
  • dialkyltin oxide used in this step is usually in a solid state.
  • a method of carrying out and then increasing the content of dialkyltin dialkoxide in a column reactor is most preferred.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added. A known method such as cooling water or brine can be used.
  • step (I) gaseous carbon dioxide is absorbed in the dialkyltin dialkoxide and chemically reacted to obtain a mixture containing a conjugate of dialkyltin dialkoxide and carbon dioxide.
  • the dialkyltin dialkoxide is reacted in a liquid state or in a liquid state with a solvent or the like.
  • a method of making it liquid by heating can be preferably used, and it may be made liquid by a solvent or the like.
  • the reaction pressure depends on the reaction temperature, but is preferably in the range of normal pressure to 1 MPa, and more preferably in the range of normal pressure to 0.6 MPa.
  • the reaction temperature depends on the reaction pressure, but is preferably in the range of ⁇ 40 ° C.
  • the reaction time may be in the range of several seconds to 100 hours, and in consideration of productivity, several minutes to 10 hours are preferable.
  • a known tank reactor or column reactor can be used as the reactor.
  • a plurality of reactors may be used in combination. Since the reaction is a reaction between carbon dioxide gas (gas) and a composition (liquid) containing dialkyltin dialkoxide, the gas-liquid interface is enlarged to increase the contact area between the gas and the liquid in order to efficiently react. It is preferable to do.
  • a method of increasing the stirring speed or generating bubbles in the liquid is preferable.
  • a method using a packed tower or a plate tower is preferable.
  • tower-type reactors include, for example, those of a tray tower type using trays such as foam trays, perforated plate trays, valve trays, countercurrent trays, Raschig rings, Lessing rings, pole rings, Berle saddles.
  • a packed tower type packed with various packing materials such as interlock saddle, Dixon packing, McMahon packing, helipak, sulzer packing, and melapack can be used.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added. A known method such as cooling water or brine can be used. Since the reaction is usually an exothermic reaction, it may be cooled, or it may be cooled by heat release from the reactor. Alternatively, heating may be performed for the purpose of simultaneously causing the carbonic esterification reaction. For the cooling and heating of the reactor, known methods such as a method using a jacket and a method using an internal coil can be used.
  • the carbon dioxide gas supplied to the reactor and the composition containing dialkyltin dialkoxide may be supplied separately to the reactor, or may be mixed before being supplied to the reactor. You may supply from several places of a reactor. The completion of the reaction can be determined by, for example, 119 Sn-NMR analysis.
  • a reaction liquid containing a carbonate is obtained from the conjugate of dialkyltin dialkoxide obtained above and carbon dioxide by the following method.
  • the reaction conditions are in the range of 110 ° C. to 200 ° C.
  • the reaction temperature is preferably high in order to increase the reaction rate, but on the other hand, undesired reactions such as decomposition may occur at high temperatures, resulting in a decrease in yield. Therefore, it is preferably in the range of 120 ° C. to 180 ° C., in the range of 0.1 hour to 10 hours, and the reaction pressure is in the range of 1.5 MPa to 20 MPa, preferably 2.0 MPa to 10 MPa.
  • the reaction may be completed after the desired carbonate ester is formed in the reactor.
  • the progress of the reaction can be confirmed by sampling the reaction solution in the reactor and analyzing the carbonate produced by a method such as 1 H-NMR or gas chromatography.
  • the reaction may be terminated when 10% or more of the dialkyltin dialkoxide and / or the conjugate of dialkyltin dialkoxide and carbon dioxide is formed, and the value is desired when the yield of carbonate ester is increased.
  • the reaction is continued until 90% or more is reached, and the process is terminated.
  • a known reactor can be used as the reactor, and both a tower reactor and a tank reactor can be preferably used.
  • the material of the reactor and the line may be any known material as long as it does not have an adverse effect, but SUS304, SUS316, SUS316L, etc.
  • instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added.
  • a known method such as cooling water or brine can be used.
  • step (II) is a process similar to the process (b) demonstrated above, and is implemented by the same method.
  • the carbonate ester is separated from the reaction solution containing the carbonate ester obtained in the step (I), and the tetraalkyl dialkoxy distannoxane and / or the tetraalkyl dialkoxy distannoxane and the dioxide are separated.
  • This is a step of obtaining a residual liquid containing a conjugate with carbon.
  • a known method or apparatus can be preferably used as the separation method.
  • a preferred method is by distillation.
  • the reaction liquid transferred from step (a) is distilled batchwise, semibatch, or continuously to obtain a carbonate and a residual liquid.
  • a preferred distillation method is a method in which the reaction liquid is supplied to a distiller, carbonate ester is separated from the upper part of the distiller as a gas phase component, and the residual liquid is extracted as a liquid component from the bottom of the distiller.
  • the temperature in this step depends on the boiling point and pressure of the carbonate ester, but may be in the range of room temperature (for example, 20 ° C.) to 200 ° C. If the tin compound in the residual liquid is modified at high temperatures, Since it may decrease due to the reverse reaction, the temperature is preferably in the range of room temperature (for example, 20 ° C.) to 150 ° C.
  • the pressure depends on the type of carbonate and the temperature at which it is carried out, it is usually carried out under normal to reduced pressure conditions, and considering the productivity, the range of 100 Pa to 80 KPa is more preferable, and the range of 100 Pa to 50 KPa is the most preferable range. It is.
  • the time can be carried out in the range of 0.01 hours to 10 hours, and when carried out at a high temperature for a long time, the tin compound contained in the reaction solution may be modified or the carbonate ester may be reduced by a reverse reaction. A range of 0.01 hours to 0.5 hours is preferred, and a range of 0.01 hours to 0.3 hours is most preferred.
  • a known distiller can be used as the distiller, and a column-type distiller and a tank-type distiller can be preferably used, or a plurality of distillers may be used in combination. More preferable distillers are a thin film evaporator and a thin film distiller, and a thin film evaporator equipped with a distillation column and a thin film distiller are most preferable. As long as the material of the distiller and the line is not adversely affected, any known material may be used, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used. If necessary, instrumentation equipment such as flow meters and thermometers, and known process equipment such as reboilers, pumps, condensers, etc. may be added. A known method such as cooling water or brine can be used.
  • the next step (III) is a step similar to the step (C) shown above, and a similar method can be performed.
  • an organic acid is preferably used as such an acid.
  • the organic acid include carboxylic acid, sulfonic acid, phenol and the like, but preferably carboxylic acid is used.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-methylbutanoic acid, pivalic acid, hexanoic acid, isocaproic acid, 2-ethylbutanoic acid, 2,2 -Dimethylbutanoic acid, heptanoic acid (each isomer), octanoic acid (each isomer), nonanoic acid (each isomer), decanoic acid (each isomer), undecanoic acid (each isomer), dodecanoic acid (each isomer) ), Tetradecanoic acid (each isomer), hexadecanoic acid (each isomer), acrylic acid, crotonic acid, isocrotonic acid, vinyl acetic acid, methacrylic acid, angelic acid, tiglic acid, allyl acetic acid, unde
  • saturated monocarboxylic acids are preferably used. More preferably, a saturated monocarboxylic acid having a standard boiling point of 300 ° C. or lower, more preferably a saturated carboxylic acid having a standard boiling point of 250 ° C. or lower is used.
  • the standard boiling point refers to the boiling point at 1 atm, as described in the Chemical Dictionary (Kyoritsu Shuppan Co., Ltd., issued on October 1, 2003).
  • acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-methylbutanoic acid, pivalic acid, and hexanoic acid are preferably used.
  • the acid anhydride represented by the general formula XOX includes acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, isovaleric anhydride, succinic anhydride, maleic anhydride
  • examples thereof include aliphatic anhydrides such as acid, propionic anhydride, and glutaric anhydride; and aromatic acid anhydrides such as benzoic anhydride, phthalic anhydride, and pyromellitic anhydride.
  • an acid anhydride having a standard boiling point of 300 ° C. or lower is preferably used, and an acid anhydride having a standard boiling point of 200 ° C.
  • acids and acid anhydrides can be used alone or in combination of a plurality of types.
  • an acid for example, when a tetraalkyldialkoxydistanoxane compound is reacted with an acid, water is added. It is often generated. In order to remove the water, distillation separation or membrane separation may be performed, or a dehydrating agent may be used.
  • an acid anhydride in combination as a dehydrating agent.
  • water often does not form in the reaction of a tetraalkyldialkoxy distannoxane compound and acetic anhydride, so a method using only an acid anhydride is also preferable.
  • the amount of acid and / or acid anhydride used is determined based on the tin atom contained in the residue obtained in step (II), taking into account the reaction rate in step (III) and the final yield of dialkyltin compound.
  • the reaction of step (III) is preferably carried out at a reaction temperature of ⁇ 20 ° C. or higher and 300 ° C. or lower, more preferably at a reaction temperature of ⁇ 10 ° C. or higher and 250 ° C. or lower.
  • a reaction temperature of ⁇ 20 ° C. or higher and 300 ° C. or lower
  • an unfavorable reaction such as decomposition may occur at a high temperature, and the yield may be lowered. Therefore, the reaction is more preferably performed at a reaction temperature of 0 ° C. or higher and 230 ° C. or lower.
  • reaction of process (III) is performed in inert gas atmosphere, such as argon, neon, and nitrogen.
  • step (III) it is not necessary to use a solvent, but a solvent is used for the purpose of improving fluidity, facilitating the reaction operation, or efficiently removing the water from the system when produced in the reaction.
  • a solvent examples include linear, branched and cyclic hydrocarbons having 5 to 16 carbon atoms; ethers composed of linear, branched and cyclic hydrocarbons having 4 to 16 carbon atoms; Examples thereof include 1 to 16 linear, branched and cyclic halogenated hydrocarbons.
  • pentane (each isomer), hexane (each isomer), heptane (each isomer), octane (each isomer), nonane (each isomer), decane (each isomer), hexadecane (each Isomers), cyclohexane, cycloheptane, cyclooctane, benzene, toluene, xylene (each isomer), chained and cyclic hydrocarbons selected from ethylbenzene, etc .; diethyl ether, dipropyl ether (each isomer), dibutyl ether (Each isomer), dihexyl ether (each isomer), dioctyl ether (each isomer), diphenyl ether, and other ethers; methylene chloride, chloroform, carbon tetrachloride, chlorobenzen
  • the alkyltin compound produced in the step (III) is at least one selected from the group consisting of a dialkyltin compound represented by the following formula (52) and a tetraalkyldistanoxane compound represented by the following formula (53). Alkyl tin compounds.
  • Each R 1 independently represents a linear or branched alkyl group having 1 to 12 carbon atoms; O represents an oxygen atom; OX 3 and OX 4 are OX 3 and OX 4 in which HOX 3 and HOX 4 which are conjugate acids of OX 3 and OX 4 are Bronsted acids having a pKa of 0 to 6.8. )
  • R 1 in the above formula (52) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 Examples thereof include alkyl groups that are aliphatic hydrocarbon groups.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • a dialkyltin compound in which the number of carbon atoms constituting the group is an alkyl group other than the range shown above can also be used, but fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • OX 1 and OX 2 in the above formula (52) are particularly limited if their conjugate acids HOX 1 and HOX 2 are Bronsted acids and the pKa of the conjugate acid is 0 or more and 6.8 or less. However, it is preferably at least one substituent selected from the group consisting of an acyloxyl group and an aryloxy group, and its conjugate acid has a pKa of 0 or more and 6.8 or less. More preferably, it is a group in which the number of carbon atoms constituting the group is a number selected from integers of 0 to 12.
  • Such groups include linear or branched saturated alkyl groups such as acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, lauroyloxy group, carbonyl group and oxygen atom.
  • dialkyltin compound represented by the above formula (52) examples include dimethyl-diacetoxytin, dimethyl-dipropionyloxytin (each isomer), dimethyl-dibutyryloxytin (each isomer), dimethyl- Valeryloxytin (each isomer), dimethyl-dialauryloxytin (each isomer), dibutyl-diacetoxytin (each isomer), dibutyl-dipropionyloxytin (each isomer), dibutyl-dibutyryl Oxytin (each isomer), dibutyl-divaleryloxytin (each isomer), dibutyl-dilauryloxytin (each isomer), dioctyl-diacetoxytin (each isomer), dioctyl-dipropionyloxy Tin (each isomer), dioctyl-dibutyryloxytin
  • R 1 in the above formula (53) examples include methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), heptyl (each isomer). ), Octyl (each isomer), nonyl (each isomer), decyl (each isomer), dodecyl (each isomer), etc., the number of carbon atoms constituting the group is selected from an integer of 1 to 12 Examples thereof include alkyl groups that are aliphatic hydrocarbon groups.
  • it is a linear or branched alkyl group in which the number of carbon atoms constituting the group is a number selected from an integer of 1 to 8.
  • tetraalkyl distannoxane compounds in which the number of carbon atoms constituting the group is an alkyl group outside the above range can be used, fluidity may be deteriorated or productivity may be impaired.
  • n-butyl group and n-octyl group are more preferable.
  • OX 3 and OX 4 in the above formula (53) are particularly limited if their conjugate acids HOX 3 and HOX 4 are Bronsted acids and the pKa of the conjugate acid is 0 or more and 6.8 or less. However, it is preferably at least one substituent selected from the group consisting of an acyloxyl group and an aryloxy group, and its conjugate acid has a pKa of 0 or more and 6.8 or less. More preferably, it is a group in which the number of carbon atoms constituting the group is a number selected from integers of 0 to 12.
  • Such groups include linear or branched saturated alkyl groups such as acetoxy group, propionyloxy group, butyryloxy group, valeryloxy group, lauroyloxy group, carbonyl group and oxygen atom.
  • Specific examples of the compound represented by the formula (53) include 1,1,3,3-tetramethyl-1,3-diacetoxy distannoxane, 1,1,3,3-tetramethyl-1 , 3-dipropionyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dibutyryloxydistanoxane (each isomer), 1,1,3 3-tetramethyl-1,3-divalyloxydistanoxane (each isomer), 1,1,3,3-tetramethyl-1,3-dilauryloxydistanoxane (each isomer) ), 1,1,3,3-tetrabutyl-1,3-diacetoxydistanoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-dipropionyloxydistanoxane ( Each isomer), 1,1,3,3-tetrabutyl-1,3-butyryloxydistanox
  • organotin compounds tend to have an associated structure, for example, dialkyltin dialkoxide forms a dimer structure, and tetraalkyldialkoxydistanoxane forms a ladder structure in which two or three molecules are associated. It is known that sometimes. Even when such an association state changes, it is common for those skilled in the art to represent a compound with a monomer structure.
  • the dialkyl tin compound and / or tetraalkyl distannoxane compound obtained by carrying out the steps (I) to (III) described above is used as the dialkyl tin compound and / or tetraalkyl distannoxane compound of step (Z).
  • FIG. 4 is a flow diagram for explaining a new method for producing a carbonate ester in which the above-mentioned steps (I) to (III) and step (Z) are combined.
  • the production method (step (Z)) of the dialkyltin dialkoxide compound and / or tetraalkyldialkoxy distannoxane compound of the present embodiment includes a dialkyl tin compound and / or a tetraalkyl distannoxane compound, an acid and Since a dialkyl tin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound can be produced without reacting with a solid tin compound by reacting with / and an acid anhydride, the conventional method This is a simpler manufacturing method than Moreover, as described above, by combining various steps with the step (Z), the step (Z) can be used as a part of a process for producing a new carbonate ester.
  • These new carbonic acid ester production methods include dialkyltin dialkoxide compounds and / or monoalkyltin alkoxide compounds and trialkyltin alkoxide compounds, which are produced in the carbonic acid ester production method and have lost catalytic activity in carbonic acid ester synthesis.
  • it since it includes a step of regenerating to a tetraalkyl dialkoxy distannoxane compound, the cost and waste problems in the carbonate ester production step can be solved. Therefore, the manufacturing method according to the present embodiment is extremely important in industry.
  • NMR analysis method Apparatus JNM-A400 FT-NMR system manufactured by JEOL Ltd.
  • (1) Preparation of 1 H, 13 C and 119 Sn-NMR analysis samples About 0.3 g of sample solution was weighed and deuterated chloroform A solution prepared by adding 0.05 g of tetramethyltin (manufactured by Wako Pure Chemical Industries, Ltd., Wako First Grade) as an internal standard substance to about 0.7 g (Aldrich Corp., 99.8%) and mixing them uniformly with an NMR analysis sample did.
  • (2) Quantitative analysis method Quantitative analysis of the analysis sample solution was performed based on a calibration curve prepared by analyzing each standard substance.
  • Detector FID (1) Sample for gas chromatography analysis About 0.05 g of sample is weighed, about 1 g of acetone (made by Wako Pure Chemical Industries, Japan, dehydration) and toluene (made by Wako Pure Chemical Industries, Japan) as an internal standard substance. A solution obtained by adding about 0.02 g of dehydration) and mixing them uniformly was used as a sample for gas chromatography analysis. (2) Quantitative analysis method Each standard substance was analyzed, and based on the prepared calibration curve, quantitative analysis of the analysis sample solution was performed.
  • Inductively coupled plasma mass spectrometry apparatus SPQ-8000, manufactured by Seiko Denshi, Japan
  • Inductively coupled plasma mass spectrometry sample About 0.15 g of the sample was incinerated with dilute sulfuric acid and then dissolved in dilute nitric acid.
  • Quantitative analysis method Each standard substance was analyzed, and based on the prepared calibration curve, quantitative analysis of the analysis sample solution was performed.
  • the evaporator purge valve outlet was connected to a line of nitrogen gas flowing at normal pressure. After the evaporator purge valve was closed and the system was depressurized, the purge valve was gradually opened, and nitrogen was passed through the system to return to normal pressure.
  • the oil bath temperature was set to about 145 ° C., the flask was immersed in the oil bath, and the rotation of the evaporator was started. Distillation of water-containing 3-methyl-1-butanol began when heated under atmospheric pressure nitrogen for about 40 minutes with the evaporator purge valve open.
  • the purge valve was closed, the pressure inside the system was gradually reduced, and excess 3-methyl-1-butanol was distilled while the pressure inside the system was 74 to 35 kPa. After the fraction ceased to come out, the flask was taken out of the oil bath. After the flask was cooled to near room temperature (25 ° C.), the flask was taken out of the oil bath, the purge valve was gradually opened, and the pressure in the system was returned to atmospheric pressure. In the flask, 1173 g of a reaction solution was obtained.
  • Step (A-2) Production of carbonate ester and recovery of alkyltin composition
  • Carbonate ester was produced in a continuous production apparatus as shown in FIG.
  • a column reactor 102 filled with a metal gauze CY manufactured by Sulzer Chemtech Ltd., Switzerland
  • a metal gauze CY manufactured by Sulzer Chemtech Ltd., Switzerland
  • 1,1,3,3- Tetrabutyl-1,3-bis (3-methylbutyloxy) distannoxane was fed at 4388 g / hr
  • 3-methyl-1-butanol manufactured by Kuraray Co., Ltd.
  • the inside of the reactor 102 was adjusted by a heater and a reboiler 112 so that the liquid temperature was 160 ° C., and was adjusted by a pressure control valve so that the pressure was about 120 kPa-G.
  • the residence time in the reactor was about 17 minutes.
  • the purified 3-methyl-1-butanol was transported to the column reactor 102 via the transfer line 2 at the bottom of the distillation column 101.
  • Di-n-butyl-bis (3-methylbutyloxy) tin and 1,1,3,3-tetra-n-butyl-1,3-bis (3-methylbutyloxy) from the bottom of the tower reactor 102 A composition containing distannoxane (hereinafter referred to as a catalyst composition) was obtained and supplied to the thin film evaporator 103 (manufactured by Shinko Environmental Solution Co., Ltd.) via the transfer line 5.
  • Carbon dioxide was supplied to the autoclave from the transfer line 9 at 973 g / hr, and the internal pressure of the autoclave was maintained at 4 MPa-G.
  • the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the carbon dioxide and the catalyst composition were reacted to obtain a reaction liquid containing bis (3-methylbutyl carbonate).
  • the reaction solution was transferred to the decarburization tank 105 via the transfer line 10 and the control valve to remove residual carbon dioxide, and carbon dioxide was recovered from the transfer line 11. Thereafter, the reaction solution is transferred to a thin film evaporator 106 (made by Shinko Environmental Solution Co., Ltd.) at about 142 ° C.
  • n-butyl-1,3-bis (3-methylbutyloxy) -distanoxane is adjusted and supplied so as to be about 4388 g / hr to obtain a fraction containing bis (3-methylbutyl) carbonate
  • the flow of 1,1,3,3-tetrabutyl-1,3-bis (3-methylbutyloxy) -distaneoxane is about 4388 g / hr through the transfer line 13 and the transfer line 4 in the evaporation residue. Regulated and circulated to the column reactor 102.
  • a fraction containing bis (3-methylbutyl carbonate) is passed through a condenser 126 and a transfer line 14, and is charged with a packed metal gauze CY (manufactured by Sulzer Chemtech Ltd., Switzerland), and is equipped with a reboiler 117 and a condenser 127.
  • 959 g / hr was supplied to No. 107, and after distillation purification, 944 g / hr of 99 wt% bis (3-methylbutyl) carbonate was obtained from the recovery line 15.
  • the oil bath temperature was set to about 165 ° C., the flask was immersed in the oil bath, and the rotation of the evaporator was started. Distillation of water-containing 2-ethyl-1-butanol began when it was heated for about 40 minutes under atmospheric pressure nitrogen with the purge valve of the evaporator open. After maintaining this state for 7 hours, the purge valve was closed, the pressure inside the system was gradually reduced, and excess 2-ethyl-1-butanol was distilled while the pressure inside the system was 74 to 25 kPa. After the fraction ceased to come out, the flask was taken out of the oil bath.
  • Carbonate was produced in a continuous production apparatus as shown in FIG.
  • the 1,1,3,3-tetra-n-octyl-1,3- prepared above from the transfer line 4 was added to a column reactor 102 filled with a metal gauze CY and having an inner diameter of 151 mm and an effective length of 5040 mm.
  • Bis (2-ethylbutyloxy) distannoxane was fed at 6074 g / hr, and 2-ethyl-1-butanol purified by the distillation column 101 was fed from the transfer line 2 at 12260 g / hr.
  • the inside of the reactor 102 was adjusted by a heater and a reboiler 112 so that the liquid temperature was 160 ° C., and was adjusted by a pressure control valve so that the pressure was about 120 kPa-G.
  • the residence time in the reactor was about 17 minutes.
  • 12344 g / hr containing water via the transfer line 6 and 2-ethyl-1-butanol containing 958 g / hr via the feed line 1 are charged with the charge Metal Gause CY. Then, it was transported to a distillation column 101 equipped with a reboiler 111 and a condenser 121, and purified by distillation.
  • Carbon dioxide was supplied to the autoclave from the transfer line 9 at 973 g / hr, and the internal pressure of the autoclave was maintained at 4 MPa-G.
  • the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the carbon dioxide and the catalyst composition were reacted to obtain a reaction solution containing bis (2-ethylbutyl) carbonate.
  • the reaction solution was transferred to the decarburization tank 105 via the transfer line 10 and the control valve to remove residual carbon dioxide, and carbon dioxide was recovered from the transfer line 11. Thereafter, the reaction solution is transferred to the thin film evaporator 106 at about 142 ° C.
  • a fraction containing bis (2-ethylbutyl carbonate) is fed through a condenser 126 and a transfer line 14 to a distillation column 107 filled with a metal gauze CY and charged with a reboiler 117 and a condenser 127 at a rate of 959 g / hr.
  • 99 wt% bis (2-ethylbutyl carbonate) was obtained at 1075 g / hr from the recovery line 16.
  • the purge valve was gradually opened, and nitrogen was passed through the system to return to normal pressure.
  • the oil bath temperature was set to 126 ° C., the flask was immersed in the oil bath, and the rotation of the evaporator was started.
  • the evaporator purge valve was opened, the mixture was boiled and heated at atmospheric pressure for about 30 minutes.
  • the purge valve was closed, the pressure inside the system was gradually reduced, and the remaining low-boiling components were distilled while the pressure inside the system was 76 to 54 kPa.
  • the flask was taken out of the oil bath after the low boiling point component was not generated.
  • the reaction solution was a clear solution.
  • the flask was lifted from the oil bath, the purge valve was gradually opened, and the pressure in the system was returned to normal pressure.
  • 952 g of a reaction solution was obtained.
  • the reaction solution was 1,1,3,3-tetra-n-butyl-1,3-di (butyloxy) -distanoxane, and di-n -Yield 99% based on butyltin oxide.
  • the same operation was repeated 12 times to obtain a total of 11488 g of 1,1,3,3-tetra-n-butyl-1,3-di (butyloxy) -distanoxane.
  • Step (C-2) Production of carbonate ester Carbonate ester was produced in a continuous production apparatus as shown in FIG. 1,1,3,3-tetrabutyl-1,3-di (butyloxy) -distanoxane produced in step 1 from feed line 4 into a column reactor filled with Melapak 750Y and having an inner diameter of 151 mm and an effective length of 5040 mm 1-butanol purified in the distillation column 101 from the supply line 2 at a rate of 4201 g / hr was fed to the column reactor 102 at a rate of 24717 g / hr.
  • the inside of the reactor was adjusted by a heater and reboiler 112 so that the liquid temperature was 160 ° C., and was adjusted by a pressure control valve so that the pressure was about 250 kPa-G.
  • the residence time in the reactor was about 10 minutes.
  • a distillation column equipped with reboiler 111 and condenser 121 charged with 1-butanol containing 24715 g / hr containing water from the upper part of the reactor via transfer line 6 and 824 g / hr containing 1-butanol via feed line 1 and filling metal Gause CY. It was transported to 101 and subjected to distillation purification.
  • a fraction containing high-concentration water was condensed by the condenser 121 and recovered from the transfer line 3.
  • the purified 1-butanol was transported via the transfer line 2 at the bottom of the distillation column 101.
  • a composition containing dibutyltin dibutoxide and 1,1,3,3-tetra-n-butyl-1,3-di (butyloxy) -distanoxane (hereinafter referred to as a catalyst composition) is obtained from the bottom of the tower reactor 102.
  • the thin film evaporator 103 was supplied via the transfer line 5.
  • the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the carbon dioxide and the catalyst composition were reacted to obtain a reaction solution containing dibutyl carbonate.
  • the reaction solution was transferred to the decarburization tank 105 via the transfer line 10 and the control valve to remove residual carbon dioxide, and carbon dioxide was recovered from the transfer line 11. Thereafter, the reaction solution is transported through a transfer line 12 to a thin film evaporator 106 at 140 ° C.
  • the distanoxane flow rate is adjusted to about 4201 g / hr and supplied to obtain a fraction containing dibutyl carbonate, while the evaporation residue is transferred via transfer lines 13 and 4 to 1,1,3,
  • the flow rate of 3-tetra-n-butyl-1,3-di (butyloxy) -distaneoxane is adjusted to about 4201 g / hr and is circulated to the column reactor 102.
  • Example 1 Under an atmospheric pressure nitrogen atmosphere, 240 g of di-n-butyltin diacetate (manufactured by Aldrich, USA) and 692 g of bis (3-methylbutyl carbonate) produced in the step (A-2) of Reference Example 1 were added in a volume of 2 L. The flask was placed in an eggplant-shaped flask, and a Dimroth cooler and a three-way cock were attached to the flask. The flask was immersed in an oil bath heated to 150 ° C., and the contents were heated for 5 hours while stirring. The flask was attached to a rotary evaporator connected to an oil bath with a temperature controller, a vacuum pump, and a vacuum controller.
  • the purge valve outlet of the rotary evaporator was connected to a nitrogen gas line flowing at atmospheric pressure. After the system was purged with nitrogen, the oil bath temperature was set to 150 ° C., the flask was immersed in the oil bath, and the rotation of the rotary evaporator was started. While the purge valve of the rotary evaporator is open, low-boiling components are distilled off for about 7 hours under nitrogen at atmospheric pressure. Subsequently, the system is gradually depressurized, and the residual low-boiling components are removed while the system pressure is 76 kPa to 10 kPa. Distilled off. After the distillation of low boiling components was not observed, the flask was raised from the oil bath and cooled.
  • the flask 287 g of residual liquid was obtained. From the analysis results of 1 H, 13 C, and 119 Sn-NMR, the residual liquid in the flask was a solution containing 92.0 wt% of di-n-butyl-bis (3-methylbutyloxy) tin. On the other hand, 598 g of low boiling point components were recovered. When the low boiling point component was analyzed by gas chromatography, the low boiling point component contained about 28 wt% of isoamyl acetate.
  • Example 2 Instead of di-n-butyltin diacetate, 310 g of 1,1,3,3-tetra-n-butyl-1,3-diacetoxy distannoxane (Aldrich, USA) was used and biscarbonate ( A residual solution of 399 g was obtained in the same manner as in Example 1 except that 900 g of di (n-butyl) carbonate was used instead of 3-methylbutyl. The residual liquid contained 93.4 wt% of di-n-butyl-di (n-butyloxy) tin. The low boiling point component contained 29.4 wt% butyl acetate.
  • Example 3 In place of di-n-butyltin diacetate, 290 g of di-n-butyltin dilaurate (Aldrich, USA) was used, and 326 g of diethyl carbonate (Aldrich, USA) was used instead of bis (3-methylbutyl carbonate). A residual liquid of 165 g was obtained in the same manner as in Example 1 except that the oil bath temperature was 130 ° C. The residual liquid contained 83.5 wt% of di-n-butyl-diethyltin. Moreover, the low boiling point component contained 47.3 wt% of ethyl laurate.
  • Example 4 Instead of di-n-butyltin diacetate, 300 g of di-n-butyltin dilaurate is used, and 343 g of dimethyl carbonate (manufactured by Aldrich, USA) is used instead of bis (3-methylbutyl carbonate).
  • 343 g of dimethyl carbonate manufactured by Aldrich, USA
  • bis (3-methylbutyl carbonate) was used instead of bis (3-methylbutyl carbonate).
  • the residual liquid contained 40.8 wt% of di-n-butyl-dimethyltin.
  • the low boiling point component contained 30 wt% of methyl laurate.
  • Example 5 The same procedure as in Example 1 was carried out except that 135 g of di-n-butyltin diacetate was used and 494 g of diphenyl carbonate (manufactured by Aldrich, USA) was used instead of bis (3-methylbutyl carbonate). 162 g was obtained.
  • the residual liquid contained 95.4 wt% of di-n-butyl-diphenyltin.
  • the low boiling point component contained 23 wt% of phenyl acetate.
  • Example 6 In an atmospheric pressure nitrogen atmosphere, 221 g of di-n-butyltin diacetate and 515 g of 2-ethyl-1-butanol (special grade, manufactured by Wako Pure Chemical Industries, Japan) were placed in a 2 L eggplant type flask. was attached to a rotary evaporator connected to an oil bath with a temperature controller, a vacuum pump and a vacuum controller. The purge valve outlet of the rotary evaporator was connected to a nitrogen gas line flowing at atmospheric pressure. After the system was purged with nitrogen, the oil bath temperature was set to 140 ° C., the flask was immersed in the oil bath, and rotation of the rotary evaporator was started.
  • the residual liquid in the flask was a solution containing 96.0 wt% of di-n-butyl-bis (2-ethylbutyloxy) tin.
  • 563 g of a low boiling point component was recovered.
  • the low boiling point component was analyzed by gas chromatography, the low boiling point component contained about 30.9 wt% of acetic acid (2-ethylbutyl).
  • Example 7 Example 6 except that 255 g of di-n-butyltin diacetate was used and 961 g of 3-methyl-1-butanol (manufactured by Tokyo Chemical Industry Co., Ltd., Japan) was used instead of 2-ethyl-1-butanol. The same method was performed to obtain 306 g of residual liquid.
  • the residual liquid contained 92.7 wt% of di-n-butyl-bis (3-methylbutyloxy) tin.
  • the low boiling point component contained 18.0 wt% of isoamyl acetate.
  • Example 8 Instead of di-n-butyltin diacetate, 322 g of 1,1,3,3-tetra-n-butyl-1,3-diacetoxy distannoxane was used and instead of 2-ethyl-1-butanol Except for using 1034 g of n-butanol, the same method as in Example 6 was performed to obtain 424 g of a residual liquid.
  • the residual liquid was 77.3 wt% of di-n-butyl-di (n-butyloxy) tin and 19 of 1,1,3,3-tetra-n-butyl-1,3-di (n-butyloxy) distannoxane. Contained 9 wt%.
  • the low boiling point component contained 17.2 wt% of butyl acetate.
  • Example 9 Example except that 341 g of di-n-butyltin dilaurate was used in place of di-n-butyltin diacetate, and 363 g of methanol (manufactured by Aldrich, USA) was used in place of 2-ethyl-1-butanol 6 was performed, and 206 g of residual liquid was obtained.
  • the residual liquid contained 59.5 wt% di-n-butyl-dimethoxytin and 38.1 wt% di-n-butyltin dilaurate.
  • the low boiling point component contained 34.8 wt% of methyl laurate.
  • Example 10 Example 6 except that 320 g of di-n-butyltin diacetate was used and 1029 g of phenol (manufactured by Wako Pure Chemical Industries, Ltd., for nucleic acid extraction) was used instead of 2-ethyl-1-butanol. Then, 389 g of a residual liquid was obtained. The residual liquid contained 95.3 wt% of di-n-butyl-diphenoxytin. Further, the low boiling point component contained 22 wt% of phenyl acetate.
  • Example 11 In an atmospheric pressure nitrogen atmosphere, 289 g of di-n-butyltin diacetate and 1024 g of bis (2-ethylbutyl) carbonate were placed in a 2 L eggplant type flask, and the flask was connected to an oil bath with a temperature controller and a vacuum pump. And a rotary evaporator connected to a vacuum controller. The purge valve outlet of the rotary evaporator was connected to a nitrogen gas line flowing at atmospheric pressure. After the system was purged with nitrogen, the oil bath temperature was set to 280 ° C., the flask was immersed in the oil bath, and the rotation of the rotary evaporator was started.
  • Example 12 Except that 310 g of di-n-butyltin diacetate was used, 934 g of 3-methyl-1-butanol was used, and the temperature of the oil bath was changed to 30 ° C., the same method as in Example 11 was performed, and 356 g of the residual liquid was obtained. Obtained.
  • the residual liquid contained 53.5 wt% of di-n-butyl-bis (3-methylbutyl) tin.
  • the low boiling point component contained about 12.8 wt% of isoamyl acetate.
  • Step (13-1) Production of Dialkyltin Catalyst
  • a eggplant-shaped flask having a volume of 5000 mL 972 g (2.7 mol) of di-n-octyltin oxide (manufactured by Sankyo Gosei Co., Ltd.) and 3-methyl-1 -2100 g (23.9 mol) of butanol were added.
  • the flask was attached to an evaporator connected to an oil bath with a temperature controller, a vacuum pump, and a vacuum controller.
  • the evaporator purge valve outlet was connected to a line of nitrogen gas flowing at normal pressure.
  • the purge valve was gradually opened, and nitrogen was passed through the system to return to normal pressure.
  • the oil bath temperature was set to about 145 ° C.
  • the flask was immersed in the oil bath, and the rotation of the evaporator was started.
  • Distillation of water-containing 3-methyl-1-butanol began when heated under atmospheric pressure nitrogen for about 40 minutes with the evaporator purge valve open.
  • the purge valve was closed, the pressure inside the system was gradually reduced, and excess 3-methyl-1-butanol was distilled while the pressure inside the system was 74 to 35 kPa. After the fraction ceased to come out, the flask was taken out of the oil bath.
  • Carbonate ester was produced in a continuous production apparatus as shown in FIG.
  • the 1,1,3,3-tetra-n-octyl-1,3-produced above from the transfer line 4 was added to a column reactor 102 filled with a metal gauze CY and having an inner diameter of 151 mm and an effective length of 5040 mm.
  • Bis (3-methylbutyloxy) distannoxane was fed at 5887 g / hr, and 3-methyl-1-butanol purified in the distillation column 101 was fed from transfer line 2 at 14953 g / hr.
  • the inside of the reactor 102 was adjusted by a heater and a reboiler 112 so that the liquid temperature was 160 ° C., and was adjusted by a pressure control valve so that the pressure was about 120 kPa-G.
  • the residence time in the reactor was about 17 minutes. From the top of the reactor, 15037 g / hr of 3-methyl-1-butanol containing water is charged via the transfer line 6, and 824 g / hr of 3-methyl-1-butanol is charged via the supply line 1, and the metal gauze CY is charged. Then, it was transported to a distillation column 101 equipped with a reboiler 111 and a condenser 121, and purified by distillation.
  • Carbon dioxide was supplied to the autoclave from the transfer line 9 at 973 g / hr, and the internal pressure of the autoclave was maintained at 4 MPa-G.
  • the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the carbon dioxide and the catalyst composition were reacted to obtain a reaction liquid containing bis (3-methylbutyl carbonate).
  • the reaction solution was transferred to the decarburization tank 105 via the transfer line 10 and the control valve to remove residual carbon dioxide, and carbon dioxide was recovered from the transfer line 11. Thereafter, the reaction solution is transferred to the thin film evaporator 106 at about 142 ° C.
  • the fraction containing bis (3-methylbutyl carbonate) is fed through a condenser 126 and a transfer line 14 to a distillation column 107 filled with a metal gauze CY and charged with a reboiler 117 and a condenser 127 at a rate of 959 g / hr.
  • 944 g / hr of 99 wt% bis (3-methylbutyl) carbonate was obtained from the recovery line 15.
  • the alkyltin alkoxide catalyst composition in the transfer line 13 was analyzed by 119 Sn, 1 H, 13 C-NMR.
  • 1,3-bis (3-methylbutyloxy) distannoxane was supplied at 18 g / hr, and 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyl was extracted from the extraction line 16. 200 g of an alkyltin composition containing (oxy) distannoxane was extracted. The analysis by 119 Sn-NMR revealed that 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) distannoxane was contained in an amount of about 60 wt%.
  • Step (13-3) Substituent Exchange Reaction of Alkyl Tin Composition Containing 1,1,3,3-Tetra-n-octyl-1,3-bis (3-methylbutyloxy) distanoxane
  • Step (13-2) 350 g of an alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) distannoxane obtained in 1 above was placed in a 1 L eggplant type flask under a nitrogen atmosphere.
  • acetic acid Japan, Wako Pure Chemical Industries, special grade
  • 325 g of acetic anhydride Japan, Wako Pure Chemical Industries, special grade
  • the flask was equipped with a fractionation head with a reflux condenser connected to a distillate receiver, and a thermometer. After the atmosphere in the flask was replaced with vacuum-nitrogen, the flask was immersed in an oil bath heated to 50 ° C. did. The inside of the container was gradually evacuated, and excess acetic acid and acetic anhydride were distilled off to obtain a distillate.
  • the distillate When the distillate was analyzed by gas chromatography, the distillate contained acetic acid, acetic anhydride, and 3-methyl-1-butanol. 368 g of residue was obtained in the flask. The residue was subjected to 1 H and 119 Sn-NMR measurements. The residue was found to be tri-n-octylacetoxytin and di-n-octyldiacetoxytin, and from ⁇ 240 to ⁇ 605 ppm in 119 Sn-NMR. It was a mixture of organotin compounds containing tin atoms exhibiting multiple chemical shifts. In the mixture, tri-n-octylacetoxytin was 27.9 wt% and di-n-octyldiacetoxytin was 50.0 wt%.
  • Step (13-4) Alkyl group redistribution reaction
  • 365 g of the mixture obtained in Step (13-3) was mixed with a 500 mL metal pressure vessel (Japan, Pressure Glass Industrial Co., Ltd., TSV-N2 type).
  • the metal pressure vessel was immersed in an oil bath heated to 200 ° C. and heated for 3 hours. After cooling the pressure-resistant reaction vessel to near room temperature, the reaction solution was recovered.
  • the reaction solution was a mixture of organotin compounds containing di-n-octyldiacetoxytin and tri-n-octylacetoxytin, -N-octyl-diacetoxytin was 94.0 wt% and tri-n-octylacetoxytin was about 3 wt%.
  • the flask was equipped with a distillation head with a reflux condenser connected to a distillate receiver, and a thermometer. After the atmosphere in the flask was replaced with vacuum-nitrogen, the flask was immersed in an oil bath heated to 140 ° C. did. After heating for about 5 hours with stirring, the system was gradually depressurized to distill off the low-boiling components, and 410 g of residue was obtained in the flask.
  • Step (14-1) Separation of tri-n-octyl (3-methylbutyloxy) tin 1,1,3,3-tetra-obtained by the same method as in Step (13-2) of Example 13 180 g of an alkyltin composition containing n-octyl-1,3-bis (3-methylbutyloxy) distannoxane was placed in a 500 mL eggplant-shaped flask. A 45 cm long distillation column packed with 3 and a fractionation head with a reflux condenser connected to a distillate receiver and a thermometer were attached, and the inside of the vessel was replaced with vacuum-nitrogen.
  • the inside of the container was under atmospheric pressure nitrogen, and the flask was immersed in an oil bath heated to about 230 ° C. After about 20 minutes, when the temperature of the contents of the flask reached about 210 ° C., the inside of the container was gradually depressurized, and the component to be distilled was recovered. Finally, distillation was terminated when the pressure in the vessel was about 0.01 kPa. 1 H and 119 Sn-NMR measurements were performed on the distillate and the residue in the flask. The distillate was tri-n-octyl (3-methylbutyloxy) tin.
  • the residue in the flask contained 73.5 wt% of 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) -distaneoxane, and was ⁇ 240 in 119 Sn-NMR. It was a mixture of organotin compounds containing tin atoms exhibiting multiple chemical shifts at ⁇ 605 ppm. The obtained distillate was 33.2 g, and the residue in the flask was 146.8 g.
  • the flask was equipped with a fractionation head with a reflux condenser connected to a distillate receiver, and a thermometer. After the atmosphere in the flask was replaced with vacuum-nitrogen, the flask was immersed in an oil bath heated to 50 ° C. did.
  • the inside of the container was gradually evacuated to distill off excess acetic anhydride and the like to obtain 30.5 g of residue in the flask.
  • the residue was subjected to 1 H and 119 Sn-NMR measurement, the residue was tri-n-octylacetoxytin.
  • the residue obtained in step (14-1) containing 73.5 wt% of 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) -distanoxane 145 g was put into a 500 mL metal pressure vessel, and then 180.6 g of acetic anhydride was added and stirred.
  • the metal pressure vessel was immersed in an oil bath heated to 200 ° C.
  • the residue was a mixture containing di-n-octyldiacetoxytin and n-octyltriacetoxytin, and the di-n- -Octyldiacetoxytin was 78.5 wt%, and n-octyltriacetoxytin was 21.3 wt%.
  • the mixture was mixed with the previously obtained tri-n-octylacetoxytin and used as a raw material for the next step (14-3).
  • Step (14-3) Alkyl Group Redistribution Reaction Under a nitrogen atmosphere, except that 183 g of the mixture obtained in Step (14-2) was used instead of the mixture obtained in Step (13-3),
  • the reaction solution of Example 1 (the same method as in 13-4 was collected and the reaction solution was collected.
  • the reaction solution was subjected to 1 H and 119 Sn-NMR measurement, and the reaction solution was di-n-octyldi It was a mixture containing acetoxytin and n-octyltriacetoxytin, and di-n-octyldiacetoxytin in the mixture was 94.5 wt%.
  • Step (14-4) Alkylation of dialkyltin compound Using 182 g of the mixture obtained in Step (14-3) instead of the mixture obtained in Step (13-4), 3-methyl-1-butanol Except for using 213 g, the same method as in step (13-5) of Example 13 was performed to obtain 210 g of a residue.
  • the residue was subjected to 1 H and 119 Sn-NMR measurement, the residue contained 91 wt% of di-n-octyl-bis (3-methylbutyloxy) tin.
  • 239 g of a low boiling point component was recovered, and the low boiling point component contained 42.2 wt% of isoamyl acetate.
  • Step (15-1) Production of dialkyltin catalyst In a eggplant-shaped flask having a volume of 5000 mL, 893 g (2.48 mol) of di-n-octyltin oxide (manufactured by Sankyo Gosei Co., Ltd.) and 2-ethyl-1 -2403 g (23.6 mol) of butanol were added. The flask was attached to an evaporator connected to an oil bath with a temperature controller, a vacuum pump, and a vacuum controller. The evaporator purge valve outlet was connected to a line of nitrogen gas flowing at normal pressure.
  • the purge valve was gradually opened, and nitrogen was passed through the system to return to normal pressure.
  • the oil bath temperature was set to about 165 ° C.
  • the flask was immersed in the oil bath, and the rotation of the evaporator was started.
  • Distillation of water-containing 2-ethyl-1-butanol began when it was heated for about 40 minutes under atmospheric pressure nitrogen with the purge valve of the evaporator open.
  • the purge valve was closed, the pressure inside the system was gradually reduced, and excess 2-ethyl-1-butanol was distilled while the pressure inside the system was 74 to 25 kPa.
  • Step (15-2) Production of carbonate ester and recovery of alkyltin composition
  • Carbonate ester was produced in a continuous production apparatus as shown in FIG.
  • the 1,1,3,3-tetra-n-octyl-1,3- prepared above from the transfer line 4 was added to a column reactor 102 filled with a metal gauze CY and having an inner diameter of 151 mm and an effective length of 5040 mm.
  • Bis (2-ethylbutyloxy) distannoxane was fed at 6074 g / hr, and 2-ethyl-1-butanol purified by the distillation column 101 was fed from the transfer line 2 at 12260 g / hr.
  • the inside of the reactor 102 was adjusted by a heater and a reboiler 112 so that the liquid temperature was 160 ° C., and was adjusted by a pressure control valve so that the pressure was about 120 kPa-G.
  • the residence time in the reactor was about 17 minutes.
  • 12344 g / hr containing water via the transfer line 6 and 2-ethyl-1-butanol containing 958 g / hr via the feed line 1 are charged with the charge Metal Gause CY. Then, it was transported to a distillation column 101 equipped with a reboiler 111 and a condenser 121, and purified by distillation.
  • Carbon dioxide was supplied to the autoclave from the transfer line 9 at 973 g / hr, and the internal pressure of the autoclave was maintained at 4 MPa-G.
  • the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the carbon dioxide and the catalyst composition were reacted to obtain a reaction solution containing bis (2-ethylbutyl) carbonate.
  • the reaction solution was transferred to the decarburization tank 105 via the transfer line 10 and the control valve to remove residual carbon dioxide, and carbon dioxide was recovered from the transfer line 11. Thereafter, the reaction solution is transferred to the thin film evaporator 106 at about 142 ° C.
  • a fraction containing bis (2-ethylbutyl carbonate) is fed through a condenser 126 and a transfer line 14 to a distillation column 107 filled with a metal gauze CY and charged with a reboiler 117 and a condenser 127 at a rate of 959 g / hr.
  • 1075 g / hr of 99 wt% bis (2-ethylbutyl) carbonate was obtained from the recovery line 15.
  • the catalyst composition in the transfer line 13 was analyzed by 119 Sn, 1 H, 13 C-NMR.
  • 1,3-bis (2-ethylbutyloxy) distannoxane was supplied at 18 g / hr, and 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyl) was extracted from the extraction line 16. 180 g of an alkyltin composition containing (oxy) distannoxane was extracted. As a result of analysis by 119 Sn-NMR, it was found that tri-n-octyl-1,3-bis (2-ethylbutyloxy) distannoxane was contained in an amount of about 55 wt%.
  • Step (15-4) Alkyl Group Redistribution Reaction Under a nitrogen atmosphere, except that 196 g of the mixture obtained in Step (15-3) was used instead of the mixture obtained in Step (13-3), The reaction solution was recovered in the same manner as in step (13-4) of Example 1. The reaction solution was subjected to 1 H and 119 Sn-NMR measurement. As a result, the reaction solution was a mixture containing di-n-octyldiacetoxytin and n-octyltriacetoxytin, and the di- n-octyldiacetoxytin was 96.3 wt%.
  • Step (15-5) Alkylation of dialkyltin compound Using 195 g of the mixture obtained in step (15-4) instead of the mixture obtained in step (13-4), 3-methyl-1-butanol
  • Step (15-5) Alkylation of dialkyltin compound Using 195 g of the mixture obtained in step (15-4) instead of the mixture obtained in step (13-4), 3-methyl-1-butanol
  • 258 g of 2-ethyl-1-butanol was used instead of 232
  • 232 g of a residue was obtained.
  • the residue was subjected to 1 H and 119 Sn-NMR measurement, the residue contained 95.7 wt% of di-n-octyl-bis (2-ethylbutyloxy) tin.
  • Step (16-1) Substituent Exchange Reaction The reaction was performed using an apparatus as shown in FIG.
  • the deactivated composition obtained by the same method as in Step (13-2) of Example 13 was stored in the storage tank 201. 4.27 kg of the deactivator composition was charged into the stirring tank 204 equipped with the distillation tower from the storage tank 201 via the line 21.
  • the stirring tank 204 was heated to about 40 ° C., and 0.93 kg of acetic acid was charged into the stirring tank 204 from the storage tank 202 via the line 22. After stirring for about 1 hour, the inside of the stirring tank 204 is depressurized to about 0.13 kPa, and the stirring tank 204 is heated to 80 ° C. to distill the low-boiling components.
  • the stirring tank 204 containing the residue was brought to atmospheric pressure with nitrogen, heated to about 200 ° C., and stirred for about 2 hours.
  • the residue obtained in the stirring tank 204 was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the residue was found to be 90.2 wt% di-n-octyltin diacetate, tri-n-octyltin. It contained about 0.5 wt% acetate.
  • the residue was heated to about 200 ° C.
  • the gas phase component was condensed by the condenser 207 via the line 27 and collected in the stirring tank 208.
  • One liquid phase component was recovered in the storage tank 206 via the line 26.
  • the compound recovered in the stirring tank 208 was analyzed by 119 Sn, 1 H-NMR. As a result, the residue was found to be 98.4 wt% of di-n-octyltin diacetate and about 0.1% of tri-n-octyltin acetate. It contained 3 wt%.
  • the liquid phase component recovered in the storage tank 206 was 0.28 kg.
  • the liquid phase component was transferred to the storage tank 201 via the line 20 and recycled as a raw material in the step (16-1).
  • Step (16-3) Alkoxylation of Dialkyltin Compound 15-33 kg of n-propanol (made by Wako Pure Chemical Industries, Ltd., dehydration) from the storage tank 210 through the line 30 to the stirring tank 208 equipped with a distillation column. Was introduced. After heating to about 100 ° C. with the stirring tank 208 sealed, the reaction was carried out for about 40 hours, and then unreacted n-propanol was distilled and collected from the line 28.
  • the distillation component was 15.33 kg and contained 86.8 wt% n-propanol and 11.2 wt% propyl acetate.
  • Step (17-1) Substituent Exchange Reaction The reaction was performed using an apparatus as shown in FIG.
  • An alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) distannoxane obtained by the same method as in step (13-2) of Example 13 Stored in storage tank 201.
  • An alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) distannoxane is transferred from a storage tank 201 via a line 21 to a stirring tank 204 equipped with a distillation column.
  • Example 16 Except that 4.56 kg was charged and 1.23 kg of propionic acid (made by Wako Pure Chemical Industries, Japan) was used instead of acetic acid, and 2.54 kg of propionic anhydride was used instead of acetic anhydride.
  • low boiling components such as unreacted propionic anhydride were distilled, and about 2.37 kg of low boiling components were recovered from line 24.
  • the low boiling component contained propionic acid, propionic anhydride, and 3-methyl-1-butanol.
  • a residue was obtained in the stirring tank 204. The residue was sampled and analyzed by 119 Sn, 1 H-NMR.
  • Step (17-2) Alkyl Group Redistribution Reaction Subsequently, the reaction was carried out using an apparatus as shown in FIG. Except for the pressure of the thin film evaporator 205 being about 0.13 kPa, the same method as in step (16-2) of Example 16 was performed, and di-n-octyl-di (propionyloxy) tin was added to the stirring tank 208. Was obtained, and a mixture containing about 0.4 wt% of tri-n-octyl-propionyloxytin was obtained. On the other hand, 0.31 kg of the liquid phase component was recovered in the storage tank 206, and the liquid phase component was transferred to the storage tank 201 via the line 20 and recycled as the raw material of the step (17-1).
  • Step (17-3) Alkoxylation of dialkyltin compound 12.73 kg of ethanol (dehydrated in Japan, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of n-propanol, and the stirring tank 208 was heated to about 80 ° C. Except that the reaction was carried out for about 80 hours, the same method as in step (16-3) of Example 16 was carried out, and unreacted ethanol was distilled and recovered from line 28.
  • the distillation component was 13.21 kg, and contained 83.7 wt% ethanol and 13.9 wt% ethyl propionate.
  • Step (18-1) Substituent Exchange Reaction The reaction was performed using an apparatus as shown in FIG. An alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) distanoxane obtained in the same manner as in Step (13-2) of Example 13 Instead, an alkyltin containing 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyloxy) distanoxane obtained by the same method as in step (15-2) of Example 15 The composition was stored in storage tank 201.
  • An alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyloxy) distannoxane is transferred from a storage tank 201 via a line 21 to a stirring tank 204 equipped with a distillation column.
  • a low-boiling component such as unreacted acetic anhydride was obtained by performing the same method as in step (16-1) of Example 16 except that 3.95 kg was charged and 0.83 kg of acetic acid and 1.68 kg of acetic anhydride were used. And about 1.59 kg of low-boiling components were recovered from the line 24.
  • the low boiling point component When the low boiling point component was analyzed by gas chromatography, the low boiling point component contained acetic acid, acetic anhydride, and 2-ethyl-1-butanol. A residue was obtained in the stirring tank 204. The residue was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the residue was found to be 44.8 wt% di-n-octyltin diacetate and 25.2 wt% tri-n-octyltin acetate. Contained.
  • Step (18-2) Alkyl Group Redistribution Reaction Subsequently, the reaction was carried out using an apparatus as shown in FIG. The same method as in step (16-2) of Example 16 was performed to obtain a mixture containing 98.9 wt% of di-n-octyltin diacetate in the stirring tank 208. On the other hand, 0.24 kg of the liquid phase component was recovered in the storage tank 206, and the liquid phase component was transferred to the storage tank 201 via the line 20 and recycled as the raw material of the step (18-1).
  • Step (18-3) Alkoxylation of dialkyltin compound Example 1 except that 10.75 kg of ethanol was used instead of n-propanol, the stirring tank 208 was heated to about 80 ° C., and the reaction was performed for about 150 hours. The same method as in step 16 (16-3) was performed, and unreacted ethanol was recovered by distillation from the line 28. The distillation component was 10.94 kg, and contained 85.2 wt% ethanol and 12.2 wt% ethyl acetate. Subsequently, instead of 3-methyl-1-butanol, 3.91 kg of 2-ethyl-1-butanol was charged into the stirring tank 208, and the same method as in the step (16-3) of Example 16 was performed.
  • the low-boiling components containing 2-ethyl-1-butanol and the like were recovered from the line 28.
  • the low-boiling component was 3.29 kg, and the low-boiling component contained 72.3 wt% 2-ethyl-1-butanol and 21.3 wt% ethanol.
  • the residue obtained in the stirring tank 208 was collected in the storage tank 209 via the line 29.
  • the recovered material was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the recovered material contained 97.4 wt% of di-n-octyl-bis (2-ethylbutyloxy) tin.
  • Step (19-1) Substituent Exchange Reaction The reaction was performed using an apparatus as shown in FIG. An alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) distanoxane obtained in the same manner as in Step (13-2) of Example 13 Instead, an alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-dibutyloxydistanoxane obtained by the same method as in step (3-2) of Reference Example 3 was used. Stored in storage tank 201.
  • the low-boiling component When the low-boiling component was analyzed by gas chromatography, the low-boiling component contained hexanoic acid, hexanoic anhydride, and n-butanol. A residue was obtained in the stirring tank 204. The residue was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the residue was found to contain 47.3 wt% di-n-butyl-dipropionyloxytin and tri-n-butyl-propionyloxytin. It contained 20.7 wt%.
  • Step (19-3) Alkylation of dialkyltin compound Except that 32.57 kg of n-butanol was used instead of n-propanol, the stirring tank 208 was heated to about 120 ° C., and the reaction was performed for about 80 hours.
  • unreacted n-butanol was distilled and recovered from line 28.
  • the distillation component was 33.97 kg and contained 83.8 wt% n-butanol and 14.7 wt% butyl hexanoate.
  • the residue obtained in the stirring tank 208 was collected in the storage tank 209 via the line 29.
  • the recovered material was sampled and analyzed by 119 Sn, 1 H-NMR.
  • the recovered material was found to contain 76.1 wt% di-n-butyl-di (n-butyloxy) tin, tri-n-butyl- ( n-Butyloxy) tin contained 10.9 wt%.
  • Step (20-1) Substituent Exchange Reaction The reaction was performed using an apparatus as shown in FIG. An alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) distanoxane obtained in the same manner as in Step (13-2) of Example 13 Instead, an alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-dibutyloxydistanoxane obtained by the same method as in step (3-2) of Reference Example 3 was used. Stored in storage tank 201.
  • the low-boiling component When the low-boiling component was analyzed by gas chromatography, the low-boiling component contained hexanoic acid, hexanoic anhydride, and n-butanol. A residue was obtained in the stirring tank 204. The residue was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the residue was found to contain 47.3 wt% di-n-butyl-dipropionyloxytin and tri-n-butyl-propionyloxytin. It contained 20.7 wt%.
  • Step (20-3) Alkylation of dialkyltin compound Except that 32.57 kg of n-butanol was used instead of n-propanol, the stirring tank 208 was heated to about 120 ° C., and the reaction was performed for about 80 hours.
  • unreacted n-butanol was distilled and recovered from line 28.
  • the distillation component was 33.97 kg and contained 83.8 wt% n-butanol and 14.7 wt% butyl hexanoate.
  • the residue obtained in the stirring tank 208 was collected in the storage tank 209 via the line 29. The recovered material was sampled and analyzed by 119 Sn, 1 H-NMR.
  • the recovered material was found to contain 76.1 wt% di-n-butyl-di (n-butyloxy) tin, tri-n-butyl- ( n-Butyloxy) tin contained 10.9 wt%.
  • Step (21-1) Production of carbonate ester using regenerated dialkyltin dialkoxide compound
  • step (15-2) of Example 15 the alkyltin alkoxide catalyst composition was extracted from the extraction line 16 at 18 g / hr.
  • a mixture containing 97.4 wt% of di-n-octyl-bis (2-ethylbutyloxy) tin obtained in the step (18-3) of Example 18 from the supply line 17 at 18 g / hr. Supplied.
  • the regenerated di-n-octyl-bis (2-ethylbutyloxy) tin was supplied to the column reactor 102 via the line 4.
  • the temperature in the autoclave is set to 120 ° C., the residence time is adjusted to about 4 hours, and the reaction between carbon dioxide and di-n-octyl-bis (3-methylbutyloxy) tin is carried out to produce bis (3-methylbutyl carbonate). ) was obtained.
  • the reaction solution was transferred to the decarburization tank 402 via the line 43 and the control valve at 7253 g / hr, the remaining carbon dioxide was removed, and the carbon dioxide was recovered from the line 44. Thereafter, the reaction liquid was transferred to a thin film evaporator 403 at about 142 ° C. and about 0.5 kPa via a line 45, and a fraction containing bis (3-methylbutyl) carbonate was obtained.
  • the fraction containing bis (3-methylbutyl carbonate) was charged through a condenser 405 and a line 47, filled with a packing metal gauze CY, and supplied to a distillation column 406 equipped with a reboiler 408 and a condenser 407 for distillation purification. .
  • 99 wt% of bis (3-methylbutyl carbonate) was obtained at 1351 g / hr.
  • the liquid phase component separated by the thin film evaporator 403 was recovered in the storage tank 404 through the line 46 at about 58990 g / Hr.
  • the liquid phase component was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the liquid phase component was 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyl It was a mixture containing about 98 wt% of (oxy) distannoxane.
  • the liquid phase component recovered in the storage tank 404 in the step (22-1) was fed via a line 53 to a stirring tank 405 equipped with a distillation column, 4.11 kg.
  • the stirring tank 405 was heated to about 40 ° C., and 1.18 kg of acetic acid was charged into the stirring tank 405 from the line 55.
  • the inside of the stirring tank 405 is decompressed to about 0.13 kPa, the stirring tank 405 is heated to about 80 ° C., and low boiling components are distilled. 0.98 kg was recovered.
  • the pressure in the stirring tank 405 was returned to atmospheric pressure with nitrogen, heated to about 100 ° C., and 1.67 kg of acetic anhydride was charged through a line 55.
  • the pressure in the stirring tank 405 is reduced to about 1 kPa, the stirring tank 405 is heated to about 120 ° C., and low boiling components such as unreacted acetic anhydride are distilled. About 1.82 kg of low boiling component was recovered.
  • the low boiling component was analyzed by gas chromatography, the low boiling component contained acetic acid, acetic anhydride and 3-methyl-1-butanol.
  • a residue was obtained in the stirring tank 405.
  • the residue was sampled and analyzed by 119 Sn, 1 H-NMR.
  • the residue contained 90.7 wt% of di-n-octyltin diacetate.
  • stirring tank 405 is depressurized and low boiling components including unreacted 3-methyl-1-butanol are recovered from line 55. did. 3.11 kg of the low boiling point component was recovered, and the low boiling point component contained 69.5 wt% of 3-methyl-1-butanol and 30.5 wt% of n-propanol.
  • the residue obtained in the stirring tank 405 was collected in the storage tank 406 via the line 56.
  • the recovered material was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the recovered material contained 96.0 wt% of di-n-octyl-bis (3-methylbutyloxy) tin.
  • the same method as in step (21-1) was carried out except that the recovered product containing di-n-octyl-bis (3-methylbutyloxy) tin obtained in step (22-3) was used. From line 49, 99 wt% bis (3-methylbutyl carbonate) was obtained at 1350 g / hr.
  • Step (23-1) Production of carbonate ester Carbonate ester was produced in a continuous production apparatus as shown in FIG. The mixture containing 97.4 wt% of di-n-octyl-bis (2-ethylbutyloxy) tin obtained in the step (18-3) of Example 18 was placed in an autoclave 401 via a line 41 at 7318 g / Feeded by hr. Carbon dioxide was supplied from the line 42 at 973 g / hr to the autoclave, and the internal pressure of the autoclave was maintained at 4 MPa-G.
  • the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the reaction between carbon dioxide and di-n-octyl-bis (2-ethylbutyloxy) tin was carried out to produce bis (2-ethylbutyl carbonate). ) was obtained.
  • the reaction solution was transferred to the decarburization tank 402 via the line 43 and the control valve at 8188 g / hr, the remaining carbon dioxide was removed, and the carbon dioxide was recovered from the line 44. Thereafter, the reaction solution was transferred via a line 45 to a thin film evaporator 403 at about 150 ° C.
  • the liquid phase component separated by the thin film evaporator 403 was recovered in the storage tank 404 through the line 46 at a rate of about 6074 g / hr.
  • the liquid phase component was sampled and analyzed by 119 Sn, 1 H-NMR.
  • the liquid phase component was 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyl). It was a mixture containing about 98 wt% of (oxy) distannoxane.
  • 2.04 kg of the liquid phase component recovered in the storage tank 404 in the step (23-1) is fed.
  • 0.55 kg of acetic acid and 0.78 kg of acetic anhydride were used, about 0.86 kg of low boiling components were recovered from the line 55. .
  • the low boiling point component was analyzed by gas chromatography, the low boiling point component contained acetic acid, acetic anhydride, and 2-ethyl-1-butanol.
  • a residue was obtained in the stirring tank 405. The residue was sampled and analyzed by 119 Sn, 1 H-NMR.
  • Step (23-3) Alkoxylation of dialkyltin compound
  • Step (22-3) of Example 22 Alkoxylation of dialkyltin compound
  • 5.28 kg of ethanol was used instead of n-propanol.
  • Distillation from line 55 5.38 kg of component was recovered.
  • the distillation component contained 85.3 wt% ethanol and 12.3 wt% ethyl acetate.
  • a method similar to that in the step (22-3) of Example 22 was carried out except that 1.92 kg of 2-ethyl-1-butanol was used instead of 3-methyl-1-butanol. 1.52 kg was recovered.
  • the residue obtained in the stirring tank 405 was collected in the storage tank 406 via the line 56.
  • the recovered material was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the recovered material contained 96.5 wt% of di-n-octyl-bis (2-ethylbutyloxy) tin.
  • Step (23-4) Production of Carbonate Ester Instead of the mixture containing 97.4 wt% of di-n-octyl-bis (2-ethylbutyloxy) tin obtained in Step (16-3) of Example 16
  • the same method as in the step (22-1) was carried out except that the recovered product containing di-n-octyl-bis (2-ethylbutyloxy) tin obtained in the step (23-3) was used. From line 49, 99 wt% of bis (2-ethylbutyl carbonate) was obtained at 1350 g / hr.
  • Step (24-1) Production of Carbonic Acid Ester Carbonic acid ester was produced in a continuous production apparatus as shown in FIG. The mixture containing 76.1 wt% of di-n-butyl-di (n-butyloxy) tin obtained in the step (19-3) of Example 19 was added to the autoclave 401 via the line 41 at 6666 g / hr. Feeded. Carbon dioxide was supplied to the autoclave from the line 42 at 970 g / hr, and the autoclave internal pressure was maintained at 4 MPa-G.
  • the temperature in the autoclave is set to 120 ° C., the residence time is adjusted to about 4 hours, the reaction between carbon dioxide and di-n-butyl-di (n-butyloxy) tin is performed, and di (n-butyl) carbonate is removed.
  • a reaction solution containing was obtained.
  • the reaction solution was transferred to the decarburization tank 402 via the line 43 and the control valve at 7722 g / hr, the remaining carbon dioxide was removed, and the carbon dioxide was recovered from the line 44. Thereafter, the reaction solution was transferred through a line 45 to a thin film evaporator 403 at about 150 ° C. and about 0.5 kPa to obtain a fraction containing di (n-butyl carbonate).
  • the fraction containing di (n-butyl carbonate) was charged through a condenser 405 and a line 47 and filled with a metal gauze CY and supplied to a distillation column 406 equipped with a reboiler 408 and a condenser 407 for distillation purification. .
  • 99 wt% of di (n-butyl carbonate) was obtained at 1165 g / hr.
  • the liquid phase component separated by the thin film evaporator 403 was collected in the storage tank 404 via the line 46.
  • the liquid phase component was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the liquid phase component was 1,1,3,3-tetra-n-butyl-1,3-di (n-butyloxy). It was a mixture containing about 77 wt% of distannoxane.
  • Step (24-2) Substituent exchange reaction Instead of the liquid phase component recovered in the storage tank 404 in the step (21-1), 4.06 kg of the liquid phase component recovered in the storage tank 404 in the step (24-1) is fed. Except that 2.55 kg of hexanoic acid was used in place of acetic acid and 4.99 kg of hexanoic anhydride was used in place of acetic anhydride, the same method as in step (22-2) of Example 22 was carried out. About 4.74 kg of lower boiling components were recovered. When the low-boiling component was analyzed by gas chromatography, the low-boiling component contained hexanoic acid, hexanoic anhydride, and n-butanol. A residue was obtained in the stirring tank 405. The residue was sampled and analyzed by 119 Sn, 1 H-NMR. The residue contained 56.4 wt% di-n-butyl-dipropionyloxytin.
  • Step (24-3) Alkylation of Dialkyltin Compound
  • 24.59 kg of n-butanol was used instead of n-propanol.
  • 25.51 kg of distilled components were recovered.
  • the distillation component contained 83.7 wt% n-butanol and 14.8 wt% butyl hexanoate.
  • the residue obtained in the stirring tank 405 was recovered in the storage tank 406 via the line 56.
  • the recovered material was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the recovered material contained 77.2 wt% of di-n-butyl-di (n-butyloxy) tin.
  • Step (24-4) Production of Carbonate Ester Instead of the mixture containing di-n-butyl-di (n-butyloxy) tin obtained in Step (16-3) of Example 16, Step (24- The same method as in step (24-1) was carried out except that the recovered material containing di-n-butyl-di (n-butyloxy) tin obtained in 3) was used. Di (n-butyl) was obtained at 1165 g / hr.
  • Step (25-1) Preparation of dialkyltin catalyst The same method as in Step (15-1) of Example 15 except that 890 g of di-n-octyltin oxide and 2803 g of 2-ethyl-1-butanol were used. As a result, a solution containing 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyloxy) -distanoxane was obtained. 1,1,3,3-Tetra-n-octyl-1,3-bis (2-ethylbutyloxy) -distanoxane was obtained in a yield of 99% based on di-n-octyltin oxide. The same operation was repeated 12 times to obtain a total of 13400 g of 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyloxy) -distanoxane.
  • Carbonic acid ester was produced in a continuous production apparatus as shown in FIG.
  • the 1,1,3,3-tetra-n-octyl-1,3-bis prepared above from line 60 was added to a column reactor 604 packed with metal gauze CY and having an inner diameter of 151 mm and an effective length of 5040 mm.
  • (2-Ethylbutyloxy) distannoxane was fed at 6074 g / hr
  • 2-ethyl-1-butanol purified by distillation column 601 was fed from line 62 at 12260 g / hr.
  • the inside of the reactor 604 was adjusted by a heater and a reboiler 605 so that the liquid temperature was 160 ° C., and was adjusted by a pressure control valve so that the pressure was about 120 kPa-G.
  • a reboiler is charged with 12344 g / hr of 2-ethyl-1-butanol containing water from the top of the reactor via line 64 and 958 g / hr of 2-ethyl-1-butanol via line 61 and the charge Metal Gause CY. It was transported to a distillation column 601 equipped with 603 and a condenser 602 and purified by distillation.
  • the thin film evaporator 606 2-ethyl-1-butanol was distilled off.
  • the alkyltin alkoxide catalyst composition is transported from the lower part of the thin film evaporator 606 via the line 66 to obtain di-n-octyl-bis (2-ethylbutyloxy) tin and 1,1,3,3-tetra-n-octyl.
  • the flow rate of -1,3-bis (2-ethylbutyloxy) distannoxane was adjusted to about 6945 g / hr and supplied to the autoclave 608.
  • Carbon dioxide was supplied to the autoclave from the line 69 at 973 g / hr, and the internal pressure of the autoclave was maintained at 4 MPa-G.
  • the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the reaction between carbon dioxide and the alkyltin alkoxide catalyst composition was performed to obtain a reaction solution containing bis (2-ethylbutyl carbonate).
  • the reaction solution was transferred to the decarburization tank 609 via the line 70 and the control valve to remove residual carbon dioxide, and carbon dioxide was recovered from the line 71. Thereafter, the reaction solution is transferred to a thin film evaporator 610 having a temperature of about 142 ° C.
  • the fraction containing bis (2-ethylbutyl carbonate) is purified by distillation through a condenser 611 and a line 74, charged at 959 g / hr to a distillation column 614 filled with a metal gauze CY and charged with a reboiler 613 and a condenser 612. After that, 1075 g / hr of 99 wt% bis (2-ethylbutyl carbonate) was obtained from the line 75.
  • Step (25-3) Substituent Exchange Reaction
  • the evaporation residue recovered in the storage tank 615 in the step (25-2) was fed via a line 76 to 3.16 kg to a stirring tank 616 equipped with a distillation column.
  • the stirring tank 616 was heated to about 40 ° C., and 1.03 kg of acetic acid was charged into the stirring tank 616 from the line 77.
  • the inside of the stirring tank 616 is decompressed to about 0.13 kPa, the stirring tank 616 is heated to about 80 ° C., and low boiling components are distilled. 0.85 kg was recovered.
  • the low boiling component was analyzed by gas chromatography, the low boiling component contained acetic acid and 2-methyl-1-butanol.
  • the pressure in the stirring vessel 616 was returned to atmospheric pressure with nitrogen, heated to about 100 ° C., and 1.46 kg of acetic anhydride was charged through a line 77.
  • the pressure in the stirring tank 616 is reduced to about 1 kPa, the stirring tank 616 is heated to about 120 ° C., and low boiling components such as unreacted acetic anhydride are distilled. About 1.59 kg of low boiling component was recovered.
  • a residue was obtained in the stirring vessel 616. The residue was sampled and analyzed by 119 Sn, 1 H-NMR. The residue contained 90.5 wt% of di-n-octyltin diacetate.
  • the system in stirring tank 616 is depressurized and low boiling components including unreacted 3-methyl-1-butanol and the like are recovered from line 79. did. 2.80 kg of the low-boiling component was recovered, and the low-boiling component contained 70.1 wt% 2-ethyl-1-butanol and 28.9 wt% n-propanol.
  • the residue obtained in the stirring tank 616 was collected in the storage tank 617 via the line 78.
  • the recovered material was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the recovered material contained 97.0 wt% of di-n-octyl-bis (2-ethylbutyloxy) tin.
  • Step (25-5) Production of Carbonic Acid Ester Containing 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyloxy) distanoxane obtained in Step (25-1)
  • the recovered product containing di-n-octyl-bis (2-ethylbutyloxy) tin obtained in step (25-4) was used instead of The process was carried out to obtain 99 wt% bis (2-ethylbutyl carbonate) from line 75 at 1075 g / hr.
  • Step (26-1) Production of dialkyltin catalyst The same method as in Step (13-1) of Example 13 except that 963 g of di-n-octyltin oxide and 2120 g of 3-methyl-1-butanol were used. 1120 g of reaction solution was obtained. From the analysis results of 119 Sn, 1 H, 13 C-NMR, 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) -distaneoxane was found to be di-n-octyltin. It was confirmed that the yield was 99% based on the oxide. The same operation was repeated 12 times to obtain a total of 13990 g.
  • step (24-2) of Example 24 was performed to obtain 940 g / hr of 99 wt% bis (3-methylbutyl) carbonate from line 75.
  • the evaporation residue in the thin film evaporator 610 was stored in the storage tank 615 through the line 73.
  • the evaporation residue was 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) -distanoxane.
  • the evaporation residue collected in the storage tank 615 in the step (26-2) is fed via a line 76 to a stirring tank 616 equipped with a distillation column, and 2.86 kg of acetic acid Instead of using 1.00 kg of propionic acid and using 1.47 kg of propionic anhydride instead of acetic anhydride, the same procedure as in step (24-3) of Example 24 was performed, and the mixture remained in the stirring tank 616. I got a thing.
  • the residue was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the residue contained 90.2 wt% of di-n-octyl-dipropionyloxytin.
  • the same procedure as in Step (24-4) of Example 24 was performed, except that 7.78 kg of ethanol was used instead of n-propanol, and distillation was performed from line 79. It was collected.
  • the distillation component was 8.07 kg and contained 83.0 wt% ethanol and 14.0 wt% ethyl propionate.
  • 2.44 kg of 3-methyl-1-butanol was used instead of 2-ethyl-1-butanol, and low boiling components containing unreacted 3-methyl-1-butanol and the like were recovered from line 79. .
  • the low boiling point component contained 72.2 wt% 3-methyl-1-butanol and 24.9 wt% ethanol.
  • the residue obtained in the stirring tank 616 was collected in the storage tank 617 via the line 78.
  • the recovered material was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the recovered material contained 95.0 wt% of di-n-octyl-bis (3-methylbutyloxy) tin.
  • Step (26-5) Production of Carbonic Acid Ester Containing 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyloxy) distanoxane obtained in Step (26-1)
  • Step (26-1) is the same as Step (26-1) except that the recovered product containing di-n-octyl-bis (3-methylbutyloxy) tin obtained in Step (26-4) was used instead of the mixture.
  • the process was carried out to obtain 99 wt% bis (3-methylbutyl carbonate) from line 75 at 940 g / hr.
  • Step (27-1) Recovery of an alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-bis (3-methylbutyloxy) distanoxane Step of Reference Example 1 (A-2 ), After the continuous operation is performed for about 230 hours, an alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-bis (3-methylbutyloxy) distannoxane is extracted from the extraction line 16. On the other hand, 1,1,3,3-tetra-n-butyl-1,3-bis (3-methylbutyl) produced in the step (A-1) of Reference Example 1 from the supply line 17 was extracted.
  • Oxy) distanoxane was fed at 18 g / hr. As a result of analysis by 119 Sn-NMR, it was found that tri-n-butyl-1,3-bis (3-methylbutyloxy) distanoxane was contained in an amount of about 50 wt%. Deactivation of 1,1,3,3-tetra-n-butyl-1,3-bis (3-methylbutyloxy) distanoxane to -n-butyl (3-methylbutyloxy) tin and -240 to -605 ppm Multiple NMR shifts of the components were seen.
  • Step (27-2) Substituent Exchange Reaction The reaction was performed using an apparatus as shown in FIG. An alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-bis (3-methylbutyloxy) distanoxane obtained in the same manner as in Step (13-2) of Example 13 Instead, an alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-bis (3-methylbutyloxy) distannoxane obtained by the same method as in step (27-1) is stored. Stored in 201.
  • An alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-bis (3-methylbutyloxy) distannoxane is transferred from a storage tank 201 via a line 21 to a stirring tank 204 equipped with a distillation column.
  • a low-boiling component such as unreacted acetic anhydride was prepared by the same method as in step (16-1) of Example 16 except that 5.96 kg was added and 1.66 kg of acetic acid and 3.24 kg of acetic anhydride were used. And about 3.08 kg of low-boiling components were recovered from the line 24.
  • a residue was obtained in the stirring tank 204. The residue was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the residue contained 46.1 wt% di-n-butyltin diacetate and 23.0 wt% tri-n-butyltin acetate. It was.
  • Step (28-1) Recovery of an alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-bis (2-ethylbutyloxy) distanoxane Step of Reference Example 2 (B- In 2), after carrying out continuous operation for about 210 hours, an alkyltin composition containing 1,1,3,3-tetra-n-butyl-1,3-bis (2-ethylbutyloxy) distannoxane from the extraction line 16 On the other hand, 1,1,3,3-tetra-n-butyl-1,3-bis (2-ethyl) produced in the step (B-1) of Reference Example 1 from the supply line 17 was extracted.
  • Butyloxy) distannoxane was fed at 18 g / hr. As a result of analysis by 119 Sn-NMR, it was found that tri-n-butyl-1,3-bis (2-ethylbutyloxy) distannoxane was contained in an amount of about 50 wt%. Deactivation of 1,1,3,3-tetra-n-butyl-1,3-bis (2-ethylbutyloxy) distannoxane to -n-butyl (2-ethylbutyloxy) tin and -240 to -605 ppm Multiple NMR shifts of the components were seen.
  • Step (28-3) Alkyl Group Redistribution Reaction Subsequently, the reaction was carried out using an apparatus as shown in FIG. The same method as in step (16-2) of Example 16 was performed to obtain a mixture containing 88.4 wt% of di-n-butyl-dipropionyloxytin in the stirring tank 208. On the other hand, 0.32 kg of the liquid phase component was recovered in the storage tank 206, and the liquid phase component was transferred to the storage tank 201 via the line 20 and recycled as the raw material of the step (28-2).
  • the residue obtained in the stirring tank 208 was collected in the storage tank 209 via the line 29.
  • the recovered material was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the recovered material contained 98.4 wt% of di-n-butyl-bis (2-ethylbutyloxy) tin.
  • Step (29-1) Substituent Exchange Reaction The reaction was performed using an apparatus as shown in FIG. An alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (3-methylbutyloxy) distanoxane obtained in the same manner as in Step (13-2) of Example 13 Instead, an alkyltin containing 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyloxy) distanoxane obtained by the same method as in step (15-2) of Example 15 The composition was stored in storage tank 201.
  • An alkyltin composition containing 1,1,3,3-tetra-n-octyl-1,3-bis (2-ethylbutyloxy) distannoxane is transferred from a storage tank 201 via a line 21 to a stirring tank 204 equipped with a distillation column.
  • a low-boiling component such as unreacted acetic anhydride was obtained by performing the same method as in step (18-1) of Example 18 except that 3.95 kg was charged and 0.99 kg of acetic acid and 2.19 kg of acetic anhydride were used. And about 2.09 kg of low-boiling components were recovered from the line 24.
  • a residue was obtained in the stirring tank 204. The residue was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the residue was found to be 49.1 wt% di-n-octyltin diacetate and 25.5 wt% tri-n-octyltin acetate. Contained.
  • Step (29-3) Alkylation of dialkyltin compound Example except that 14.85 kg of ethanol was used instead of n-propanol, the stirring tank 208 was heated to about 80 ° C., and the reaction was carried out for about 150 hours. The same method as in step 16 (16-3) was performed, and unreacted ethanol was recovered by distillation from the line 28. The distillation component was 15.08 kg, and contained 87.4 wt% ethanol and 10.4 wt% ethyl acetate. The residue obtained in the stirring tank 208 was collected in the storage tank 209 via the line 29. The recovered material was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the recovered material contained 91.1 wt% of di-n-octyl-diethoxytin.
  • Step (29-4) Production of Carbonic Acid Ester Carbonic acid ester was produced in a continuous production apparatus as shown in FIG. The mixture containing 91.1 wt% of di-n-octyl-diethoxytin obtained in the step (29-3) was fed to the autoclave 401 via the line 41 at 5073 g / hr. Carbon dioxide was supplied from the line 42 at 973 g / hr to the autoclave, and the internal pressure of the autoclave was maintained at 4 MPa-G.
  • the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the reaction between carbon dioxide and di-n-octyl-diethoxytin was performed to obtain a reaction solution containing diethyl carbonate.
  • the reaction solution was transferred to the decarburization tank 402 via the line 43 and the control valve at 6129 g / hr, the remaining carbon dioxide was removed, and the carbon dioxide was recovered from the line 44. Thereafter, the reaction solution was transferred to a thin film evaporator 403 at about 150 ° C. and about 0.5 kPa via a line 45, and a fraction containing diethyl carbonate was obtained.
  • the fraction containing diethyl carbonate was charged through a condenser 405 and a line 47, filled with a metal gauze CY, and supplied to a distillation column 406 equipped with a reboiler 408 and a condenser 407 for distillation purification. From line 49, 99 wt% diethyl carbonate was obtained at 1165 g / hr.
  • the liquid phase component separated by the thin film evaporator 403 was collected in the storage tank 404 via the line 46. The liquid phase component was sampled and analyzed by 119 Sn, 1 H-NMR. As a result, the liquid phase component was about 98 wt% of 1,1,3,3-tetra-n-octyl-1,3-diethoxy-distanoxane. % Containing mixture.
  • Step (I-1) Substituent Exchange Reaction 1,1,3,3-Tetra-n-octyl-1,3-bis (3) obtained by the same method as in Step (13-2) of Example 13 -390 g of an alkyltin composition containing -methylbutyloxy) distannoxane was placed in a 1 L eggplant type flask in a nitrogen atmosphere, 106 g of acetic acid and 361 g of acetic anhydride were added, and the mixture was stirred at 25 ° C for 1 hour. The flask was equipped with a fractionation head with a reflux condenser connected to a distillate receiver, and a thermometer.
  • the flask was immersed in an oil bath heated to 50 ° C. did.
  • the inside of the container was gradually evacuated, and excess acetic acid and acetic anhydride were distilled off to obtain 410 g of residue in the flask.
  • the residue was subjected to 1 H and 119 Sn-NMR measurements.
  • the residue was found to be tri-n-octylacetoxytin and di-n-octyldiacetoxytin, and from ⁇ 240 to ⁇ 605 ppm in 119 Sn-NMR. It was a mixture of organotin compounds containing tin atoms exhibiting multiple chemical shifts. In the mixture, tri-n-octylacetoxytin was 27.9 wt% and di-n-octyldiacetoxytin was 49.9 wt%.
  • Step (I-2) Alkyl Group Redistribution Reaction Under a nitrogen atmosphere, 408 g of the mixture obtained in Step (I-2) was placed in a 500 mL metal pressure vessel. The metal pressure vessel was immersed in an oil bath heated to 200 ° C. and heated for 3 hours. After cooling the pressure-resistant reaction vessel to near room temperature, the reaction solution was recovered.
  • the reaction solution was a mixture of organotin compounds containing di-n-octyldiacetoxytin and tri-n-octylacetoxytin, The amount of -n-octyl-diacetoxytin was 91.5 wt% and tri-n-octylacetoxytin was about 5 wt%.
  • Step (I-3) Alkoxylation of dialkyltin compound 405 g of the mixture obtained in Step (I-2) was placed in a 1 L eggplant-shaped flask and immersed in an oil bath heated to 50 ° C. While stirring the contents, 500 mL of a 0.1 mol / L aqueous potassium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added, resulting in white precipitation. The mixture was filtered through filter paper, and the filtration residue was dried at 80 ° C. to recover 302 g of a white solid. The white solid was dioctyl tin oxide.
  • step (I-3) the di-n-octyl-diacetoxytin obtained in the step (I-2) and 3-methyl-1-butanol are not directly reacted, but di-n-octyl-di Acetoxytin and an aqueous alkali solution (potassium hydroxide aqueous solution) are reacted to form dioctyltin oxide, and then reacted with dioctyltin oxide and 3-methyl-1-butanol to produce 1,1,3,3-tetra-n.
  • aqueous alkali solution potassium hydroxide aqueous solution
  • Step (II-1) Reaction of Tetrakis (dimethylamino) tin with Carbonate Ester Under atmospheric pressure nitrogen atmosphere, 290 g of tetrakis (dimethylamino) tin (manufactured by Gelest, USA) and step (A- 1010 g of bis (3-methylbutyl) carbonate produced in 2) was placed in a 2 L eggplant type flask, and a Dimroth condenser and a three-way cock were attached to the flask. The flask was immersed in an oil bath heated to 150 ° C., and the contents were heated for 5 hours while stirring.
  • the flask was attached to a rotary evaporator connected to an oil bath with a temperature controller, a vacuum pump, and a vacuum controller.
  • the purge valve outlet of the rotary evaporator was connected to a nitrogen gas line flowing at atmospheric pressure. After the system was purged with nitrogen, the oil bath temperature was set to 150 ° C., the flask was immersed in the oil bath, and the rotation of the rotary evaporator was started. While the purge valve of the rotary evaporator is open, low-boiling components are distilled off for about 7 hours under nitrogen at atmospheric pressure.
  • the system is gradually depressurized, and the residual low-boiling components are removed while the system pressure is 76 kPa to 10 kPa. Distilled off. After the distillation of low boiling components was not observed, the flask was raised from the oil bath and cooled. In the flask, 292 g of residual liquid was obtained. From the analysis results of 1 H, 13 C, and 119 Sn-NMR, the residual liquid in the flask was a solution containing 98.0 wt% of tetrakis (dimethylamino) tin, and no tin alkoxide was obtained.
  • Step (III-1) Reaction of tetrakis (dimethylamino) tin with alcohol
  • 285 g of tetrakis (dimethylamino) tin and 1320 g of 3-methyl-1-butanol were placed in a 2 L eggplant type flask.
  • the flask was equipped with a Dimroth cooler and a three-way cock.
  • the flask was immersed in an oil bath heated to 135 ° C., and the contents were heated for 5 hours while stirring.
  • the flask was attached to a rotary evaporator connected to an oil bath with a temperature controller, a vacuum pump, and a vacuum controller.
  • the purge valve outlet of the rotary evaporator was connected to a nitrogen gas line flowing at atmospheric pressure. After the system was purged with nitrogen, the oil bath temperature was set to 150 ° C., the flask was immersed in the oil bath, and the rotation of the rotary evaporator was started. While the purge valve of the rotary evaporator is open, low-boiling components are distilled off for about 7 hours under nitrogen at atmospheric pressure. Subsequently, the system is gradually depressurized, and the residual low-boiling components are removed while the system pressure is 76 kPa to 10 kPa. Distilled off. After the distillation of low boiling components was not observed, the flask was raised from the oil bath and cooled.
  • the flask 288 g of residual liquid was obtained. From the analysis results of 1 H, 13 C, and 119 Sn-NMR, the residual liquid in the flask was a solution containing 98.0 wt% of tetrakis (dimethylamino) tin, and no tin alkoxide was obtained.
  • the production method (step (Z)) of the dialkyltin dialkoxide compound and / or tetraalkyldialkoxy distannoxane compound of the present embodiment includes a dialkyl tin compound and / or a tetraalkyl distannoxane compound, an acid and Since a dialkyltin dialkoxide compound and / or a tetraalkyl dialkoxy distannoxane compound can be produced without reacting with a solid tin compound by reacting with an acid anhydride / This is a simpler manufacturing method. Moreover, as described above, by combining various steps with the step (Z), the step (Z) can be used as a part of a process for producing a new carbonate ester.
  • These new carbonic acid ester production methods include dialkyltin dialkoxide compounds and / or monoalkyltin alkoxide compounds and trialkyltin alkoxide compounds, which are produced in the carbonic acid ester production method and have lost catalytic activity in carbonic acid ester synthesis.
  • dialkyltin dialkoxide compounds and / or monoalkyltin alkoxide compounds and trialkyltin alkoxide compounds which are produced in the carbonic acid ester production method and have lost catalytic activity in carbonic acid ester synthesis.
  • the cost and waste problems in the carbonate ester production step can be solved. Therefore, the present invention is extremely important in industry.
  • FIG. 5 101, 107: Distillation tower 102: Tower reactor 103, 106: Thin film evaporator 104: Autoclave 105: Decarburization tank 121, 123, 126, 127: Condenser 111, 112, 117: Reboiler 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17: line (FIG. 6) 201, 202, 203, 206, 209, 210, 211: Storage tank 204, 208: Stirring tank equipped with distillation tower 205: Thin film evaporator 207: Condenser 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31: Line (Fig.
  • 601 and 614 distillation column 604: column reactor 606 and 610: thin film evaporator 608: autoclave 609: decarburization tank 615, 617: storage tank 616: stirring tank equipped with distillation tower 602, 607, 611, 612: condenser 603, 605, 613: Reboiler 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79: Line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、1つのスズ原子を有し、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物等から選択される少なくとも一つのアルキルスズ化合物と、ROCOOR(Rは直鎖状もしくは分岐鎖状の飽和もしくは不飽和の 炭化水素基等を表す。)で表される炭酸エステル、および/または、ROH(Rは、前記Rと同じ基を表す。)で表されるアルコールと、を触媒の非存在下において反応させて、 XORで表される化合物と、1つのスズ原子を有し、2つのSn-R結合と、2つのSn-OR結合 と、を有するジアルキルスズジアルコキシド化合物等と、を製造する方法を提供する。

Description

アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法
 本発明は、エステルおよび炭酸エステル製造に用いられる触媒としてのジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の製造、ならびに該ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を使用したエステルおよび炭酸エステル製造に関する。
 ジアルキルスズジアルコキシド化合物やテトラアルキルジアルコキシジスタンオキサン化合物は、エステル合成触媒、炭酸エステル合成触媒、エステル交換反応触媒、シリコーンポリマーやウレタン硬化触媒等の触媒として極めて有用である。中でも、炭酸エステルは、オクタン価向上のためのガソリン添加剤、排ガス中のパーティクルを減少させるためのディーゼル燃料添加剤等の添加剤として使用されるほか、ポリカーボネートやウレタン、医薬・農薬等の有機化合物を合成する際のアルキル化剤、カルボニル化剤、溶剤等、あるいはリチウム電池の電解液、潤滑油原料、ボイラー配管の防錆用脱酸素剤の原料として使用されるなど有用な化合物である。ジアルキルスズジアルコキシド化合物やテトラアルキルジアルコキシジスタンオキサン化合物は、その合成触媒として特に注目されている。例えば、特許文献1にはジアルキルスズジアルコキシドを含む有機金属化合物を二酸化炭素と反応させて形成される付加物を熱分解させる炭酸エステルの製造方法が開示されている。
 ジアルキルスズジアルコキシド化合物やテトラアルキルジアルコキシジスタンオキサン化合物の製造方法としては、様々な方法が知られている。
 例えば、特許文献2には、ジアルキルスズオキシドとアルコールとを脱水反応させ、発生する水を含む低沸成分を反応液から除去する方法が開示されている。当該反応は、下記式(1)および(2)に示す、脱水を伴う逐次平衡反応であると推測され、ジアルキルスズジアルコキシドを高収率で得るためには、各脱水反応により生成する水を系外に抜き出しながら製造される。その上、エネルギー的に不利な反応であるために、高温(例えば、180℃)で長時間反応することが必要であり、高温下での長期間の加熱により、生成物であるジアルキルスズジアルコキシド化合物やテトラアルキルジアルコキシジスタンオキサン化合物の熱変性反応が生起する場合がある。また、ジアルキルスズ化合物が固体であるため、連続プロセスによって製造する際のハンドリングに支障をきたす場合があった。
Figure JPOXMLDOC01-appb-C000012
 (式中:
 RおよびR’は、各々独立して、アルキル基を表す。)
Figure JPOXMLDOC01-appb-C000013
(式中:
 RおよびR’は、各々独立して、アルキル基を表す。)
 また、非特許文献1には、ジエチルジクロロスズとナトリウムブトキシドとを反応させて、ジエチルスズジブトキシドを製造する方法が開示されている。当該反応においては、副生物として塩化ナトリウムが固体として生成するため、反応後の液がスラリー状となり、スズ化合物の精製等を実施する際にハンドリングに困難を伴う場合があった。
 一方、特許文献3には、炭酸エステルの製造工程において生成するスズ触媒の失活体組成物を再生し、再び、炭酸エステルの製造における触媒として使用する方法が記載されている。該再生方法は、炭酸エステルの製造工程において生成する、ジアルキルスズアルコキシド化合物の失活体を含む組成物を、酸および/または酸無水物と反応させて製造した化合物を熱処理することによりジアルキルスズ化合物を製造し、さらに該ジアルキルスズ化合物をジアルキルスズアルコキシド化合物に再生する方法である。
先行技術文献
国際公開第2003/055840号 米国特許第5545600号明細書 国際公開第2008/044575号 Journal of Chemical Society,740頁,1964年
 しかしながら、ジアルキルスズ化合物をジアルキルスズジアルコキシド化合物に再生する工程は、ジアルキルスズ化合物をアルカリ水溶液と反応させてジアルキル酸化スズを含有する組成物を得、該組成物とアルコールとを反応させて、発生する水を含む成分を反応液より除去する方法であり、上記式(1)および式(2)で表されるような脱水反応を伴うことから、上述したような、ジアルキルスズジアルコキシド化合物やテトラアルキルジアルコキシジスタンオキサン化合物の熱変性反応を伴う場合がある。さらに、該工程において、ジアルキル酸化スズが固体であり、液体の取り扱う工程と固体の取り扱う工程が混在することになり、工業的な実施において困難を伴う場合があった。
 以上のように、固体状態の化合物を扱うことなく、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を簡便に製造する技術の開発は、依然として、課題として残されているのが現状である。
 そこで、本発明の目的は、固体のスズ化合物を取り扱うことなく、ジアルキルスズスズアルコキシド化合物を製造する方法を提供することである。本発明のさらなる目的は、製造されるジアルキルスズアルコキシド化合物を炭酸エステルの製造に使用する方法を提供することである。
 本発明者は、上記課題に対して鋭意検討を重ねた結果、特定のジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルおよび/またはアルコールとを反応させて、ジアルキルスズアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を製造する方法により解決できることを見出し、本発明を完成させるに至った。
 即ち、本発明は、
[1] 下記i)およびii)からなる群から選択される少なくとも1つのアルキルスズ化合物と、
 i)1つのスズ原子を有し、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物;
 ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物;
 ROCOOR(Rは直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)で表される炭酸エステル、および/または、
 ROH(Rは、前記Rと同じ基を表す。)で表されるアルコールと、
を触媒の非存在下において反応させて、
 XORで表される化合物と、
 1つのスズ原子を有し、2つのSn-R結合と、2つのSn-OR結合と、を有するジアルキルスズジアルコキシド化合物、および/または、
 1つのSn-O-Sn結合を有するテトラアルキルジアルコキシジスタンオキサン化合物であって、該テトラアルキルジアルコキシジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OR結合と、を有するテトラアルキルジアルコキシジスタンオキサン化合物と、
 を製造する方法、
[2] 該炭酸エステルROCOORおよび/または該アルコールROHにおいて、Rが直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、または飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基である[1]に記載の製造方法、
[3] 該炭酸ジアルキルROCOORおよび/または該アルコールROHにおいて、Rが、直鎖状または分岐鎖状の炭素数1~8のアルキル基である[1]または[2]記載の製造方法、
[4] 該ジアルキルスズ化合物が、下記式(3)で表される化合物である[1]~[3]のうちいずれかに記載の製造方法、
Figure JPOXMLDOC01-appb-C000014
  
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは酸素原子を表し;
 OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXであり;
 aおよびbは、各々0~2の整数であり、a+b=2である)
[5] 該テトラアルキルジスタンオキサン化合物が、下記式(4)で表される化合物である[1]~[4]のうちいずれかに記載の製造方法、
Figure JPOXMLDOC01-appb-C000015
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは酸素原子を表し;
 OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXである。)
[6] 基OXがアシルオキシル基である[1]~[5]のうちいずれかに記載の製造方法、
[7] 該ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルおよび/またはアルコールとの反応を、20℃以上250℃以下の温度で実施する[1]~[6]のうちいずれかに記載の製造方法、
[8] 該ジアルキルスズジアルコキシド化合物が、下記式(5)で表される化合物である請求項1記載の製造方法、
Figure JPOXMLDOC01-appb-C000016
(式中:
 Rは、各々独立して、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物に由来し、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、炭酸エステルおよび/またはアルコールに由来し、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
[9] 該テトラアルキルジアルコキシジスタンオキサン化合物が、下記式(6)で表される化合物である[1]~[8]のうちいずれかに記載の製造方法、
Figure JPOXMLDOC01-appb-C000017
(式中:
 Rは、各々独立して、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物に由来し、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Rは、各々独立して、炭酸エステルおよび/またはアルコールに由来し、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
[10] 該ジアルキルスズ化合物および/または該テトラアルキルジスタンオキサン化合物が、以下の工程(1)~(2)を含む方法によって製造される化合物である[1]~[9]のうちいずれかに記載の製造方法、
 工程(1):
 1つのスズ原子を有し、2つのSn-R結合と、2つのSn-OR結合と、を有するジアルキルスズジアルコキシド化合物、および/または、1つのSn-O-Sn結合を有するテトラアルキルジアルコキシジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OR結合と、を有するテトラアルキルジアルコキシジスタンオキサン化合物からなる群から選ばれる少なくとも1つのアルキルスズアルコキシド化合物のアルキル基不均化反応(スズに結合した2つのR基の数が、ジアルキルスズアルコキシド化合物の場合は2分子間で、テトラアルキルジアルコキシジスタンオキサン化合物の場合は分子内および/または分子間で不均化し、1個のSn-R結合を持つモノアルキルスズアルコキシド化合物と3個のSn-R結合を持つトリアルキルスズアルコキシド化合物に変化する反応)で生成する、モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物を含むアルキルスズ組成物を、
 一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と反応させて、該酸および/または該酸無水物に由来する基(OX基)を有する有機スズ化合物の混合物を製造する工程;
 工程(2):
 該工程(1)で得られた該有機スズ化合物の混合物を加熱処理し、アルキル基再分配反応をおこなって、該アルキルスズ組成物中の、該モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物から、
 i)1つのスズ原子を有し、前記1つのスズ原子が、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物、
 ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物、
の群から選ばれる少なくとも1つのアルキルスズ化合物を得る工程;
 ただし、上記した該ジアルキルスズ化合物、該テトラアルキルジスタンオキサン化合物、該ジアルキルスズジアルコキシド化合物、該テトラアルキルジアルコキシジスタンオキサン化合物、該モノアルキルスズアルコキシド化合物、該トリアルキルスズアルコキシド化合物のスズに直接結合したRは同じアルキル基である、
[11]
 該アルキルスズ組成物が、下記工程(a)~工程(c)を順次おこなって得られる炭酸エステルを製造する過程において生成するアルキルスズ組成物である[10]記載の製造方法、
 工程(a):下記一般式(7)で表されるジアルキルスズジアルコキシドと二酸化炭素とを反応させて、炭酸エステルと下記一般式(8)で表されるテトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む反応液を得る工程;
Figure JPOXMLDOC01-appb-C000018
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
Figure JPOXMLDOC01-appb-C000019
(式中:
 Rは、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Rは、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 工程(b):該反応液から蒸留によって炭酸エステルを分離し、該テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程;
 工程(c):該残留液と下記一般式(9)で表されるアルコールとを反応させて、副生する水を除去してジアルキルスズジアルコキシドを再生し、該ジアルキルスズジアルコキシドを工程(a)のジアルキルスズジアルコキシドとして使用する工程、
Figure JPOXMLDOC01-appb-C000020
(式中:
 Wは、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
[12] 該炭酸エステルを製造する過程において生成するアルキルスズ組成物から、ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンを再生する[10]記載の方法をおこなう工程を、
 [11]記載の工程(b)および/または工程(c)の後に実施し、再生されたジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンを、
 工程(a)のジアルキルスズジアルコキシドとして使用し、
 工程(b)の残留液と混合して工程(c)の原料として使用する
[11]記載の製造方法、
[13] [1]記載の方法に、下記工程(A)~工程(B)をさらに含む炭酸エステルの製造方法、
 工程(A):請求項1記載の、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物と、二酸化炭素とを反応させて、炭酸エステルとテトラアルキルジアルコキシジスタンオキサン化合物および/または該テトラアルキルジアルコキシジスタンオキサン化合物と二酸化炭素との結合体を含む反応液を得る工程;
 工程(B):該反応液から蒸留によって炭酸エステルを分離し、テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程。
[14] [13]記載の方法に、下記工程(C)をさらに含み、該工程(C)で製造されるアルキルスズ化合物を[1]記載のアルキルスズ化合物として使用する炭酸エステルの製造方法、
 工程(C):該工程(B)の残留液と、一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と反応させて、下記i)、ii)の群から選ばれる少なくとも1つのアルキルスズ化合物を製造する工程。
 i)1つのスズ原子を有し、2つのSn-R(Rはアルキル基を表す。)結合と2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物、
 ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物。
[15] 該ジアルキルスズ化合物および/または該テトラアルキルジスタンオキサン化合物が、以下の工程(I)~工程(III)を含む方法によって製造される化合物である請求項1記載の方法、
 工程(I):下記一般式(10)で表されるジアルキルスズジアルコキシドと二酸化炭素とを反応させて、炭酸エステルと下記一般式(11)で表されるテトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む反応液を得る工程;
Figure JPOXMLDOC01-appb-C000021
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
Figure JPOXMLDOC01-appb-C000022
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 工程(II):該反応液から蒸留によって炭酸エステルを分離し、該テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程;
 工程(III):該工程(II)の残留液と、一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と反応させて、該酸および/または該酸無水物に由来する基(OX基)を有する化合物であって、下記式(12)で表されるジアルコキシスズ化合物および/または下記式(13)で表されるテトラアルキルジスタンオキサン化合物を製造する工程。
Figure JPOXMLDOC01-appb-C000023
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは、酸素原子を表し;
 OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXを表す。)
Figure JPOXMLDOC01-appb-C000024
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは、酸素原子を表し;
 OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXを表す。)
[16] 該アルキル基Rが、炭素数1~8の直鎖のアルキル基である[1]~[15]のうちいずれかに記載の製造方法、
[17] 該アルキル基Rが、n-ブチル基またはn-オクチル基である[16]記載の製造方法、
[18] 該酸HOXが、カルボン酸である[10]、[14]、[15]のうちいずれかに記載の製造方法、
[19] 該カルボン酸が、酢酸、プロピオン酸、マレイン酸からなる群から選ばれるカルボン酸である[18]記載の製造方法、
[20] 該酸無水物XOXが、無水酢酸、無水プロピオン酸、無水マレイン酸からなる群から選ばれる酸無水物である[10]、[14]、[15]のうちいずれかに記載の製造方法、
を開示する。
 本発明によれば、固体のスズ化合物を取り扱うことなく、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物を、簡便に、ジアルキルスズアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物に変換することができる。該ジアルキルスズアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を、炭酸エステルの製造用触媒として使用することができる。また、炭酸エステルの製造に使用するジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物のアルキル基不均化反応によって生成するモノアルキルスズアルコキシド化合物とテトラアルキルスズアルコキシド化合物とから、有用な成分である、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を製造し、炭酸エステルの製造に再使用することができるため、工業分野において大変有用である。
本実施の形態における、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物のアルキル基不均化反応によって生成するモノアルキルスズアルコキシド化合物およびトリアルキルスズアルコキシド化合物をジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物として再生する方法を説明するためのフロー図を示す。 炭酸エステルの製造方法と本実施の形態によるジアルキルスズ化合物の製造方法を組み合わせた、改良された炭酸エステルの製造方法を説明するためのフロー図を示す。 本実施の形態における工程(A)~工程(C)および工程(Z)を組み合わせた炭酸エステルの製造方法を説明するためのフロー図を示す。 本実施の形態における工程(I)~工程(III)および工程(Z)を組み合わせた炭酸エステルの製造方法を説明するためのフロー図を示す。 実施例における炭酸エステルの製造装置を表す概念図を示す。 実施例におけるジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンの製造装置を表す概念図を示す。 実施例における、炭酸エステル、ならびに、ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンの製造装置を表す概念図を示す。 実施例における、炭酸エステル、ならびに、ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンの製造装置を表す概念図を示す。
発明を実施するための形態
 以下、本発明を実施するための形態(以下、「本実施の形態」という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施の形態の製造方法は、
 下記i)およびii)からなる群から選択される少なくとも1つのアルキルスズ化合物と、
 i)1つのスズ原子を有し、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物;、
 ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物;
 ROCOOR(Rは、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)で表される炭酸エステル、および/または、
 ROH(Rは、前記Rと同じ基を表す。)で表されるアルコールと、
を触媒の非存在下において反応させて、
 XORで表される化合物と、
 1つのスズ原子を有し、2つのSn-R結合と、2つのSn-OR結合と、を有するジアルキルスズジアルコキシド化合物、および/または、
 1つのSn-O-Sn結合を有するテトラアルキルジアルコキシジスタンオキサン化合物であって、該テトラアルキルジアルコキシジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OR結合と、を有するテトラアルキルジアルコキシジスタンオキサン化合物と、
 を製造する方法である。
<ジアルキルスズ化合物>
 まず、i)に属するジアルキルスズ化合物について説明する。
 該ジアルキルスズ化合物は、下記式(14)で表される化合物である。
Figure JPOXMLDOC01-appb-C000025
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは酸素原子を表し;
 OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXであり;
 aおよびbは、各々0~2の整数であり、a+b=2である)
 上記式(14)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるジアルキルスズ化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(14)におけるOXおよびOXは、その共役酸であるHOXおよびHOXがブレンステッド酸であって、該共役酸のpKaが、0以上6.8以下であれば、特に制限はないが、好ましくは、アシルオキシル基、アリールオキシ基よりなる群から選ばれる少なくとも1種の置換基であって、その共役酸のpKaが、0以上6.8以下のものが好ましい。さらに好ましくは、該基を構成する炭素原子の数が、0~12の整数より選ばれる数である基であることが好ましい。このような基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ラウロイルオキシ基等の、直鎖状もしくは分岐鎖状の飽和アルキル基とカルボニル基と酸素原子から構成されるアシルオキシル基;フェノキシ基、メチルフェノキシ基(各異性体)、エチルフェノキシ基(各異性体)、プロピルフェノキシ基(各異性体)、ブチルフェノキシ基(各異性体)、ペンチルフェノキシ基(各異性体)、ヘキシルフェノキシ基(各異性体)、ジメチルフェノキシ基(各異性体)、メチルエチルフェノキシ基(各異性体)、メチルプロピルフェノキシ基(各異性体)、メチルブチルフェノキシ基(各異性体)、メチルペンチルフェノキシ基(各異性体)、ジエチルフェノキシ基(各異性体)、エチルプロピルフェノキシ基(各異性体)、エチルブチルフェノキシ基(各異性体)、ジプロピルフェノキシ基(各異性体)、トリメチルフェノキシ基(各異性体)、ジメチルエチルフェノキシ基(各異性体)、ジメチルプロピルフェノキシ基(各異性体)、ジメチルブチルフェノキシ基(各異性体)、メチルエチルプロピルフェノキシ基、メチルジメチルフェノキシ基、トリエチルフェノキシ基(各異性体)等のアリールオキシ基;等を挙げることができる。
 上記式(14)で表されるジアルキルスズ化合物の具体例としては、ジメチル-ジアセトキシスズ、ジメチル-ジプロピオニルオキシスズ(各異性体)、ジメチル-ジブチリルオキシスズ(各異性体)、ジメチル-バレリルオキシスズ(各異性体)、ジメチル-ジラウロリルオキシスズ(各異性体)、ジブチル-ジアセトキシスズ(各異性体)、ジブチル-ジプロピオニルオキシスズ(各異性体)、ジブチル-ジブチリルオキシスズ(各異性体)、ジブチル-ジバレリルオキシスズ(各異性体)、ジブチル-ジラウロリルオキシスズ(各異性体)、ジオクチル-ジアセトキシスズ(各異性体)、ジオクチル-ジプロピオニルオキシスズ(各異性体)、ジオクチル-ジブチリルオキシスズ(各異性体)、ジオクチル-バレリルオキシスズ(各異性体)、ジオクチル-ジラウロリルオキシスズ(各異性体)等のジアルキル-ジアシルオキシスズ;ジメチル-ジフェノキシスズ、ジメチル-ジ(メチルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルフェノキシ)スズ(各異性体)、ジメチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジメチル-ジ(トリエチルフェノキシ)スズ(各異性体)、ジブチル-ジフェノキシスズ(各異性体)、ジブチル-ジ(メチルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルフェノキシ)スズ(各異性体)、ジブチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジブチル-ジ(トリエチルフェノキシ)スズ(各異性体)、ジオクチル-ジフェノキシスズ(各異性体)、ジオクチル-ジ(メチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(トリエチルフェノキシ)スズ(各異性体)等のアルキル-ジアリールオキシスズ等を挙げることができる。
<テトラアルキルジスタンオキサン化合物>
 次に、ii)に属するテトラアルキルジスタンオキサン化合物について説明する。
 該テトラアルキルジスタンオキサン化合物は、下記式(15)で表される化合物である。
Figure JPOXMLDOC01-appb-C000026
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは酸素原子を表し;
 OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXである。)
 上記式(15)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるテトラアルキルジスタンオキサン化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(15)におけるOXおよびOXは、その共役酸であるHOXおよびHOXがブレンステッド酸であって、該共役酸のpKaが、0以上6.8以下であれば、特に制限はないが、好ましくは、アシルオキシル基、アリールオキシ基よりなる群から選ばれる少なくとも1種の置換基であって、その共役酸のpKaが、0以上6.8以下のものが好ましい。さらに好ましくは、該基を構成する炭素原子の数が、0~12の整数より選ばれる数である基であることが好ましい。このような基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ラウロイルオキシ基等の、直鎖状もしくは分岐鎖状の飽和アルキル基とカルボニル基と酸素原子から構成されるアシルオキシル基;フェノキシ基、メチルフェノキシ基(各異性体)、エチルフェノキシ基(各異性体)、プロピルフェノキシ基(各異性体)、ブチルフェノキシ基(各異性体)、ペンチルフェノキシ基(各異性体)、ヘキシルフェノキシ基(各異性体)、ジメチルフェノキシ基(各異性体)、メチルエチルフェノキシ基(各異性体)、メチルプロピルフェノキシ基(各異性体)、メチルブチルフェノキシ基(各異性体)、メチルペンチルフェノキシ基(各異性体)、ジエチルフェノキシ基(各異性体)、エチルプロピルフェノキシ基(各異性体)、エチルブチルフェノキシ基(各異性体)、ジプロピルフェノキシ基(各異性体)、トリメチルフェノキシ基(各異性体)、ジメチルエチルフェノキシ基(各異性体)、ジメチルプロピルフェノキシ基(各異性体)、ジメチルブチルフェノキシ基(各異性体)、メチルエチルプロピルフェノキシ基、メチルジメチルフェノキシ基、トリエチルフェノキシ基(各異性体)等のアリールオキシ基;等を挙げることができる。
 上記式(15)で表される化合物の具体例としては、1,1,3,3-テトラメチル-1,3-ジアセトキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジアセトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジアセトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)等の1,1,3,3-テトラアルキル-1,3-ジアシルオキシジスタンオキサン;1,1,3,3-テトラメチル-1,3-ジフェノキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(トリエチルフェノキシ)スズ(各異性体)、1,1,3,3-テトラブチル1,3-ジフェノキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(トリエチルフェノキシ)スズ(各異性体)、1,1,3,3-テトラオクチル1,3-ジフェノキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(トリエチルフェノキシ)スズ(各異性体)等の1,1,3,3-テトラアルキル-1,3-ジアリールオキシジスタンオキサンを挙げることができる。
 一般に、有機スズ化合物は会合構造をとりやすく、例えばジアルキルスズジアルコキシドはダイマー構造を形成したり、テトラアルキルジアルコキシジスタンオキサンは、2分子または3分子が会合したラダー構造を形成して存在する場合もあることが知られている。このような会合状態が変化する場合であっても、単量体構造で化合物を表すことは、当業者にとっては一般的である。
<炭酸エステル>
 本実施の形態で使用される炭酸エステルは、特に制限はないが、下記式(16)で表される炭酸エステルが好ましく使用される。
(化16)
      ROCOOR2              (16)
(式中:
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 上記式(16)で表される炭酸エステルとしては、Rが脂肪族炭化水素基であっても芳香族炭化水素基であってもよいが、炭酸エステルを構成するR基にOH基が結合したROH構造のヒドロキシル化合物の酸性が低いほうがROXとして脱離しやすいため、上記R中、酸素に結合する炭素が、メチルまたはメチレン構造であることが好ましい。このようなRとしては、メチル基、エチル基、プロピル基(各異性体)、ブチル基(各異性体)、ペンチル基(各異性体)、ヘキシル基(各異性体)、ヘプチル基(各異性体)、オクチル基(各異性体)、ノニル基(各異性体)、デシル基(各異性体)、ドデシル基(各異性体)、ヘキサデシル基(各異性体)、オクタデシル基(各異性体)等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基(各異性体)、メチル-シクロペンチル基、メチル-シクロヘキシル基、メチル-シクロヘプチル基、メチル-シクロクチル基(各異性体)、エチルシクロペンチル基、エチルシクロヘキシル基、エチルシクロヘプチル基、エチルシクロクチル基(各異性体)、プロピルシクロペンチル基、プロピルシクロヘキシル基、プロピルシクロヘプチル基、プロピルシクロクチル基(各異性体)、シクロペンチルメチル基、シクロヘキシルメチル基、シクロヘプチルメチル基、シクロオクチルメチル基(各異性体)、シクロペンチルエチル基、シクロヘキシルエチル基、シクロヘプチルエチル基、シクロオクチルエチル基(各異性体)、シクロペンチルプロピル基、シクロヘキシルプロピル基、シクロヘプチルプロピル基、シクロオクチルプロピル基(各異性体)等のシクロアルキル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロヘキシルメチル基、シクロヘキシルエチル基等の環状炭化水素置換基を有する炭化水素基、フェニルメチル基、フェニルエチル基、トリルメチル基、トリルエチル基(各異性体)、キシリルメチル基(各異性体)、キシリルエチル基(各異性体)等のアリール置換炭化水素基、メトキシメチル基、メトキシエチル基、メトキシプロピル基(各異性体)、メトキシブチル基(各異性体)、メトキシペンチル基(各異性体)、メトキシヘキシル基(各異性体)、エトキシメチル基、エトキシエチル基、エトキシプロピル基(各異性体)、エトキシブチル基(各異性体)、エトキシペンチル基(各異性体)、エトキシヘキシル基(各異性体)、ポリオキシエチレン基等のポリオキシアルキレン基を挙げることができる。これらの中でも流動性や反応後の分離を考慮すれば、さらに好ましくは、上記式(16)において、Rが炭素数1~8である炭酸エステルである。炭化水素中でもRがアルキル基、シクロアルキル基から選ばれる基である炭酸エステルが最も好ましい。上記式(16)で表される炭酸エステルの具体例としては、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル(各異性体)、炭酸ジブチル(各異性体)、炭酸ジペンチル(各異性体)、炭酸ジヘキシル(各異性体)、炭酸ジヘプチル(各異性体)、炭酸ジオクチル(各異性体)等の炭酸エステルを挙げることができる。
<アルコール>
 本実施の形態におけるアルコールとしては、特に制限はないが、下記式(17)で表されるアルコールである。
(化17)
         ROH     (17)
(式中:
 Rは、上記式(16)におけるRと同じ定義を有する。)
 上記式(17)で表されるアルコールとしては、Rが脂肪族炭化水素基であっても芳香族炭化水素基であってもよいが、中でも、Rがアルキル基、シクロアルキル基から選ばれる基であるアルコールが好ましい。このようなRとしては、メチル基、エチル基、プロピル基(各異性体)、ブチル基(各異性体)、ペンチル基(各異性体)、ヘキシル基(各異性体)、ヘプチル基(各異性体)、オクチル基(各異性体)、ノニル基(各異性体
、デシル基(各異性体)、ドデシル基(各異性体)、ヘキサデシル基(各異性体)、オクタデシル基(各異性体)等のアルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基(各異性体)、メチル-シクロペンチル基、メチル-シクロヘキシル基、メチル-シクロヘプチル基、メチル-シクロクチル基(各異性体)、エチルシクロペンチル基、エチルシクロヘキシル基、エチルシクロヘプチル基、エチルシクロクチル基(各異性体)、プロピルシクロペンチル基、プロピルシクロヘキシル基、プロピルシクロヘプチル基、プロピルシクロクチル基(各異性体)、シクロペンチルメチル基、シクロヘキシルメチル基、シクロヘプチルメチル基、シクロオクチルメチル基(各異性体)、シクロペンチルエチル基、シクロヘキシルエチル基、シクロヘプチルエチル基、シクロオクチルエチル基(各異性体)、シクロペンチルプロピル基、シクロヘキシルプロピル基、シクロヘプチルプロピル基、シクロオクチルプロピル基(各異性体)等のシクロアルキル基を挙げることができる。これらの中でも、さらに好ましくは、上記式(17)において、Rが炭素数1~8のアルキル基であるアルコールである。このようなアルコールの具体例としては、メタノール、エタノール、プロピルアルコール(各異性体)、ブチルアルコール(各異性体)、ペンチルアルコール(各異性体)、ヘキシルアルコール(各異性体)、ヘプチルアルコール(各異性体)、オクチルアルコール(各異性体)等のアルコールを挙げることができる。
 また、本発明の別の形態では、下記式(18)で表されるアルコールを使用する。
Figure JPOXMLDOC01-appb-C000027
      
(式中:
 Wは、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 式(18)で表されるアルコールに制限はないが、上記式(17)で例示したアルコールを使用することができる。好ましい例としても上記式(17)で好ましい例として例示したアルコールを好適に使用することができる。後述するが、水との分離を容易にするために、常圧での沸点が水より高いアルコールが更に好ましく、このような例として、n-ブタノール、3-メチルプロパノール、ペンチルアルコール(各異性体)、ヘキシルアルコール(各異性体)、ヘプチルアルコール(各異性体)、オクチルアルコール(各異性体)を挙げることができる。
<ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルとの反応> 
 次に、本実施の形態における、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルとの反応について説明する。
 当該反応において、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルとの反応において、これらの化合物の組成比は、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルとの化学量論比が、好ましくは1:0.1~1:100である。反応速度を速めて反応を早く完結させるためには、大過剰の炭酸エステルを使用することが好ましいが、あまりに大量の炭酸エステルを使用すれば反応器が大きくなりすぎることから、好ましくは1:0.3~1:50、さらに好ましくは1:1~1:30の範囲の組成比で実施される。
 反応温度は、使用する反応剤の種類や組成比によって異なるが、好ましくは、20℃~250℃の温度範囲である。反応を早期に完結させるためには高温にて反応を実施することが好ましいが、あまりに高温で実施すると、反応原料であるジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物、および/または、反応生成物である、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の熱変性反応等を生起して、当該反応における目的化合物の収率を低下させる場合があることから、より好ましくは、30℃~230℃の温度範囲、さらに好ましくは、50℃~200℃の温度範囲において実施される。また、当該反応において、触媒を使用する必要はない。
 当該反応において、溶媒を用いる必要はないが、流動性を向上させる、あるいは反応操作を容易にする目的で溶媒を用いることができる。使用できる溶媒は、反応原料であるジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物、および炭酸エステルや、 反応生成物であるジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物と反応しないものであれば、どのような溶媒であってもよい。このような溶媒として、例えば、炭素数5~16の直鎖状、分岐状、環状の炭化水素;炭素数4~16の直鎖状、分岐状、環状の炭化水素からなるエーテル類;炭素数1~16の直鎖状、分岐状、環状のハロゲン化炭化水素類などが挙げられる。具体的には、ペンタン(各異性体)、ヘキサン(各異性体)、ヘプタン(各異性体)、オクタン(各異性体)、ノナン(各異性体)、デカン(各異性体)、ヘキサデカン(各異性体)、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、キシレン(各異性体)、エチルベンゼンなどから選ばれる鎖状、環状の炭化水素;ジエチルエーテル、ジプロピルエーテル(各異性体)、ジブチルエーテル(各異性体)、ジヘキシルエーテル(各異性体)、ジオクチルエーテル(各異性体)、ジフェニルエーテルなどから選ばれるエーテル類;塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、テトラクロロエタン、ジクロロベンゼン(異性体)などから選ばれるハロゲン化炭化水素類を用いることができる。また、当該反応において、炭酸エステルを過剰量使用した場合は、余剰の炭酸エステルを溶媒として使用することもできる。これらの溶媒は単独でも2種類以上の混合物として使用することもできる。
 溶媒の他に、添加剤を加える必要はないが、流動性の調整や、反応速度の調整の目的で添加剤を加えても構わない。使用できる添加剤は、反応に悪影響を及ぼすものでなければ制限なく添加できる。このような添加剤としては、ルイス酸性の化合物、ルイス塩基性化合物が挙げられる。たとえば、SnFや、SnBrなどの化合物が使用できる。
 当該反応が実施される圧力は特に限定されず、減圧、大気圧、加圧のいずれの条件においてもおこなうことができるが、当該反応における反応生成物である、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物、および/または、後述するXORで表される化合物の一部もしくは全部を、反応系より除去しながら当該反応を実施する場合には、好ましくは減圧下でおこなわれる。減圧下で実施する場合は、好ましくは10Pa~1MPaの範囲で実施され、より好ましくは1kPa~0.5MPaの範囲で実施される。また、当該反応は、アルゴン、ネオン、窒素などの不活性ガス雰囲気下で行われることが好ましく、これらの不活性ガスは、脱水カラム等により乾燥された状態のものが好ましく使用される。
 当該反応が実施される反応時間(連続法では滞留時間)は、当該反応において使用される化合物や反応器、温度や圧力によって異なり、特に制限はないが、好ましくは0.01~30時間、より好ましくは0.1~20時間の範囲で実施できる。また、所望量のジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の生成を確認したのち、反応を終了することもできる。反応の進行は、反応器内の反応液をサンプリングし、119Sn-NMRやガスクロマトグラフィーなどの方法によって、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の生成量を分析する方法などで確認できる。例えば、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物が、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物のモル数に対して、10%以上生成したら反応を終了してもよく、該値を90%以上になるまで反応を続けてから終了してもよい。
 また、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルROCOORとの反応において、後述するXORで表される化合物も生成するが、これらの化合物を、ガスクロマトグラフィーや液体クロマトグラフィー等の公知の方法によって定量し、所望量生成していることを確認したのち、反応を終了することもできる。
 本実施の形態の各反応で使用する反応器に特に制限はなく、公知の反応器が使用できる。例えば攪拌槽、加圧式攪拌槽、減圧式攪拌槽、塔型反応器、蒸留塔、充填塔、薄膜蒸留器など、従来公知の反応器を適宜組み合わせて使用できる。反応器の材質にも特に制限はなく、公知の材質が使用できる。例えば、ガラス製、ステンレス製、炭素鋼製、ハステロイ製や、基材にグラスライニングを施したものや、テフロン(登録商標)コーティングをおこなったものも使用できる。工程や条件によっては、酸による腐食が顕著となる場合もあるので、そのような場合にはガラス製やグラスライニング、テフロン(登録商標)コーティングを施したり、ハステロイ製反応器を適宜選択してよい。
<ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、アルコールとの反応>
 次に、本実施の形態における、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、アルコールとの反応について説明する。
 当該反応において、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、アルコールとの反応において、これらの化合物の組成比は、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、アルコールとの化学量論比が、好ましくは1:0.1~1:100である。反応速度を速めて反応を早く完結させるためには、大過剰のアルコールを使用することが好ましいが、あまりに大量のアルコールを使用すれば反応器が大きくなりすぎることから、好ましくは1:0.3~1:50、さらに好ましくは1:1~1:30の範囲の組成比で実施される。
 反応温度は、使用する反応剤の種類や組成比によって異なるが、好ましくは、20℃~250℃の温度範囲である。反応を早期に完結させるためには高温にて反応を実施することが好ましいが、あまりに高温で実施すると、反応原料であるジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物、および/または、反応生成物である、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の熱変性反応等を生起して、当該反応における目的化合物の収率を低下させる場合があることから、より好ましくは、30℃~230℃の温度範囲、さらに好ましくは、50℃~200℃の温度範囲において実施される。また、当該反応において、触媒を使用する必要はない。
 当該反応において、溶媒を用いる必要はないが、流動性を向上させる、あるいは反応操作を容易にする目的で溶媒を用いることができる。使用できる溶媒は、反応原料であるジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物、および炭酸エステルや、反応生成物であるジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物と反応しないものであれば、どのような溶媒であってもよい。このような溶媒として、例えば、炭素数5~16の直鎖状、分岐状、環状の炭化水素;炭素数4~16の直鎖状、分岐状、環状の炭化水素からなるエーテル類;炭素数1~16の直鎖状、分岐状、環状のハロゲン化炭化水素類などが挙げられる。具体的には、ペンタン(各異性体)、ヘキサン(各異性体)、ヘプタン(各異性体)、オクタン(各異性体)、ノナン(各異性体)、デカン(各異性体)、ヘキサデカン(各異性体)、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、キシレン(各異性体)、エチルベンゼンなどから選ばれる鎖状、環状の炭化水素;ジエチルエーテル、ジプロピルエーテル(各異性体)、ジブチルエーテル(各異性体)、ジヘキシルエーテル(各異性体)、ジオクチルエーテル(各異性体)、ジフェニルエーテルなどから選ばれるエーテル類;塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、テトラクロロエタン、ジクロロベンゼン(異性体)などから選ばれるハロゲン化炭化水素類を用いることができる。また、当該反応において、アルコールを過剰量使用した場合は、余剰のアルコールを溶媒として使用することもできる。これらの溶媒は単独でも2種類以上の混合物として使用することもできる。
 溶媒の他に、添加剤を加える必要はないが、流動性の調整や、反応速度の調整の目的で添加剤を加えても構わない。使用できる添加剤は、反応に悪影響を及ぼすものでなければ制限なく添加できる。このような添加剤としては、ルイス酸性の化合物、ルイス塩基性化合物が挙げられる。たとえば、SnFや、SnBrなどの化合物が使用できる。
 当該反応が実施される圧力は特に限定されず、減圧、大気圧、加圧のいずれの条件においてもおこなうことができるが、当該反応における反応生成物である、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物、および/または、後述するXORで表される化合物、および/または、副生する水の一部もしくは全部を、反応系より除去しながら当該反応を実施する場合には、好ましくは減圧下でおこなわれる。減圧下で実施する場合は、好ましくは10Pa~1MPaの範囲で実施され、より好ましくは1kPa~0.5MPaの範囲で実施される。また、当該反応は、アルゴン、ネオン、窒素などの不活性ガス雰囲気下で行われることが好ましく、これらの不活性ガスは、脱水カラム等により乾燥された状態のものが好ましく使用される。
 当該反応が実施される反応時間(連続法では滞留時間)は、当該反応において使用される化合物や反応器、温度や圧力によって異なり、特に制限はないが、好ましくは0.01~30時間、より好ましくは0.1~20時間の範囲で実施できる。また、所望量のジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の生成を確認したのち、反応を終了することもできる。反応の進行は、反応器内の反応液をサンプリングし、119Sn-NMRやガスクロマトグラフィーなどの方法によって、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の生成量を分析する方法などで確認できる。例えば、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物が、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物のモル数に対して、10%以上生成したら反応を終了してもよく、該値を90%以上になるまで反応を続けてから終了してもよい。
 また、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、アルコールROHとの反応において、後述するXORで表される化合物も生成するが、これらの化合物を、ガスクロマトグラフィーや液体クロマトグラフィー等の公知の方法によって定量し、所望量生成していることを確認したのち、反応を終了することもできる。あるいは、該反応によってXORで表される化合物の他に、水が副生するが、該水の生成量を、例えば、カールフィッシャ-水分計等によって定量し、所望量の目的化合物の生成に見合う水が生成していることを確認して反応を終了することもできる。
 本実施の形態の各反応で使用する反応器に特に制限はなく、公知の反応器が使用できる。例えば攪拌槽、加圧式攪拌槽、減圧式攪拌槽、塔型反応器、蒸留塔、充填塔、薄膜蒸留器など、従来公知の反応器を適宜組み合わせて使用できる。反応器の材質にも特に制限はなく、公知の材質が使用できる。例えば、ガラス製、ステンレス製、炭素鋼製、ハステロイ製や、基材にグラスライニングを施したものや、テフロン(登録商標)コーティングをおこなったものも使用できる。工程や条件によっては、酸による腐食が顕著となる場合もあるので、そのような場合にはガラス製やグラスライニング、テフロン(登録商標)コーティングを施したり、ハステロイ製反応器を適宜選択してよい。
 以上に示した、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の製造において、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と炭酸エステルとの反応、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物とアルコールとの反応のうち、どちらか一方だけを実施してもよいし、同時に実施してもよい。
<ジアルキルスズジアルコキシド化合物>
 上述の製造方法によって生成するジアルキルスズジアルコキシド化合物について説明する。
 該ジアルキルスズジアルコキシド化合物は、1つのスズ原子を有し、2つのSn-R結合と、2つのSn-OR結合と、を有する化合物であり、具体的には、下記式(19)で表される化合物である。
Figure JPOXMLDOC01-appb-C000028
(式中:
 Rは、各々独立して、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物に由来し、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、炭酸エステルおよび/またはアルコールに由来する炭化水素基を表す。)
 上記式(19)で表される化合物の具体例としては、ジメチル-ジメトキシスズ、ジメチル-ジエトキシスズ、ジメチル-ジプロポキシスズ(各異性体)、ジメチル-ジブトキシスズ(各異性体)、ジメチル-ジペンチルオキシスズ(各異性体)、ジメチル-ジヘキシルオキシスズ(各異性体)、ジメチル-ジヘプチルオキシスズ(各異性体)、ジメチル-ジオクチルオキシスズ(各異性体)、ジメチル-ジフェノキシスズ、ジメチル-ジ(メチルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルフェノキシ)スズ、ジメチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジメチル-ジ(フェニルメトキシ)スズ、ジメチル-ジ(フェニルエトキシ)スズ(各異性体)、ジメチル-ジ(メチルフェニルメトキシ)スズ(各異性体)、ジブチル-ジメトキシスズ(各異性体)、ジブチル-ジエトキシスズ(各異性体)、ジブチル-ジプロポキシスズ(各異性体)、ジブチル-ジブトキシスズ(各異性体)、ジブチル-ジペンチルオキシスズ(各異性体)、ジブチル-ジヘキシルオキシスズ(各異性体)、ジブチル-ジヘプチルオキシスズ(各異性体)、ジブチル-ジオクチルオキシスズ(各異性体)、ジブチル-ジフェノキシスズ(各異性体)、ジブチル-ジ(メチルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチル-フェノキシ)スズ(各異性体)、ジブチル-ジ(フェニルメトキシ)スズ、ジブチル-ジ(フェニルエトキシ)スズ(各異性体)、ジブチル-ジ(メチルフェニルメトキシ)スズ(各異性体)、ジオクチル-ジメトキシスズ、ジオクチル-ジエトキシスズ、ジオクチル-ジプロポキシスズ(各異性体)、ジオクチル-ジブトキシスズ(各異性体)、ジオクチル-ジペンチルオキシスズ(各異性体)、ジオクチル-ジヘキシルオキシスズ(各異性体)、ジオクチル-ジヘプチルオキシスズ(各異性体)、ジオクチル-ジオクチルオキシスズ(各異性体)、ジオクチル-ジフェノキシスズ(各異性体)、ジオクチル-ジ(メチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチル-フェノキシ)スズ(各異性体)、ジオクチル-ジ(フェニルメトキシ)スズ(各異性体)、ジオクチル-ジ(フェニルエトキシ)スズ(各異性体)、ジオクチル-ジ(メチルフェニルメトキシ)スズ(各異性体)等が挙げられる。
<テトラアルキルジアルコキシジスタンオキサン化合物>
 上述の製造方法によって生成するテトラアルキルジアルコキシジスタンオキサン化合物について説明する。
 該テトラアルキルジアルコキシジスタンオキサン化合物は、1つのSn-O-Sn結合を有するテトラアルキルジアルコキシジスタンオキサン化合物であって、該テトラアルキルジアルコキシジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OR結合と、を有する化合物である。具体的には、下記式(20)で表される化合物である。
Figure JPOXMLDOC01-appb-C000029
(式中:
 Rは、各々独立して、テトラアルキルジスタンオキサン化合物および/またはジアルキルスズ化合物に由来し、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Rは、各々独立して、炭酸エステルおよび/またはアルコールに由来するアルキル基を表す。)
 上記式(20)で表される化合物の具体例としては、1,1,3,3-テトラメチル-1,3-ジエトキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(フェノキシ)ジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン、1,1,3,3-テトラメチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルフェノキシ)スタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(フェニルメトキシ)ジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジ(フェニルエトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルフェニルメトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジエトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(フェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(エチルフェノキシ)スタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(フェニルメトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(フェニルエトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(メチルフェニルメトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジエトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(フェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(エチルフェノキシ)スタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(フェニルメトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(フェニルエトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(メチルフェニルメトキシ)ジスタンオキサン(各異性体)等が挙げられる。
 先にも述べたが、一般に、有機スズ化合物は会合構造をとりやすく、例えば、ジアルキルスズジアルコキシド化合物はダイマー構造を形成したり、テトラアルキルジアルコキシジスタンオキサン化合物は、2分子または3分子が会合したラダー構造を形成して存在する場合もあることが知られているが、このような会合状態が変化する場合であっても、単量体構造で化合物を表すことは、当業者にとっては一般的である。
<化合物XOR
 また、上述の製造方法において、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の他に、下記式(21)で表される化合物が生成する。
(化21)
        XOR   (21)
(式中:
 Xは、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物に由来する基を表し;
 Rは、炭酸エステルおよび/またはアルコールに由来するアルキル基を表し;
 Oは、酸素原子を表す。)
 上記式(21)において、基OXは、反応に用いたジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物に由来する基であり、上記式(14)で表されるジアルキルスズ化合物を使用した場合には、基OXは、基OX、基OXに由来する基であり、上記式(15)で表されるテトラアルキルジスタンオキサン化合物を使用した場合には、基OXは、基OX、基OXに由来する基である。
 また、上記式(21)において、基Rは、反応に使用した炭酸エステルおよび/またはアルコールに由来し、ROCOORで表される炭酸エステルを使用した場合には該炭酸エステルを構成する基Rに由来する基であり、ROHで表されるアルコールを使用した場合には、該アルコールを構成する基Rに由来する基である。
 具体的には、基OXがアシルオキシル基である場合、上記式(21)で表される化合物はエステル化合物であり、例えば、酢酸エチル、酢酸プロピル(各異性体)、酢酸ブチル(各異性体)、酢酸ペンチル(各異性体)、酢酸ヘキシル(各異性体)、酢酸ヘプチル(各異性体)、酢酸オクチル(各異性体)、プロピオン酸エチル、プロピオン酸プロピル(各異性体)、プロピオン酸ブチル(各異性体)、プロピオン酸ペンチル(各異性体)、プロピオン酸ヘキシル(各異性体)、プロピオン酸ヘプチル(各異性体)、プロピオン酸オクチル(各異性体)、酪酸エチル、酪酸プロピル(各異性体)、酪酸ブチル(各異性体)、酪酸ペンチル(各異性体)、酪酸ヘキシル(各異性体)、酪酸ヘプチル(各異性体)、酪酸オクチル(各異性体)、吉草酸エチル、吉草酸プロピル(各異性体)、吉草酸ブチル(各異性体)、吉草酸ペンチル(各異性体)、吉草酸ヘキシル(各異性体)、吉草酸ヘプチル(各異性体)、吉草酸オクチル(各異性体)、ラウリン酸エチル、ラウリン酸プロピル(各異性体)、ラウリン酸ブチル(各異性体)、ラウリン酸ペンチル(各異性体)、ラウリン酸ヘキシル(各異性体)、ラウリン酸ヘプチル(各異性体)、ラウリン酸オクチル(各異性体)等の化合物が相当する。
 以上に示した方法によって、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物から、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を製造することができる。その際、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルおよび/またはアルコールとの反応によって、直接、所望するジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を製造することもできるし、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、第1の炭酸エステルおよび/または第1のアルコールとを反応させて、第1のジアルキルスズジアルコキシド化合物および/または第1のテトラアルキルジアルコキシジスタンオキサン化合物を製造し、ついで、第1のジアルキルスズジアルコキシド化合物および/または第1のテトラアルキルジアルコキシジスタンオキサン化合物と、第2の炭酸エステルおよび/または第2のアルコールと反応させて、所望する第2のジアルキルスズジアルコキシド化合物および/または第2のテトラアルキルジアルコキシジスタンオキサン化合物を製造することもできる。
 以上の説明では、本実施の形態のうちの、アルキルスズ化合物と炭酸エステルおよび/またはアルコールとを反応させて、XORで表される化合物と、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物と、を製造する方法について説明した。なお、当該製造方法を実施する工程を、工程(Z)として定義する。当該製造方法は、ジアルキルスズジアルコキシド化合物を使用する炭酸エステルの製造方法において、好適に使用することができる。以下、当該製造方法を組み合わせた炭酸エステルの製造方法について説明する。
<ジアルキルスズ化合物/テトラアルキルジスタンオキサン化合物の製造方法>
 上述した、本実施の形態におけるジアルキルスズ化合物およびテトラアルキルジスタンオキサン化合物は、好ましくは、以下に説明する、工程(1)および工程(2)方法により製造されるジアルキルスズ化合物およびテトラアルキルジスタンオキサン化合物が使用される。
 工程(1):1つのスズ原子を有し、2つのSn-R結合と、2つのSn-OR結合と、を有するジアルキルスズジアルコキシド化合物、および/または、1つのSn-O-Sn結合を有するテトラアルキルジアルコキシジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OR結合と、を有するテトラアルキルジアルコキシジスタンオキサン化合物からなる群から選ばれる少なくとも1つのアルキルスズアルコキシド化合物のアルキル基不均化反応(スズに結合した2つのR基の数が、ジアルキルスズアルコキシド化合物の場合は2分子間で、テトラアルキルジアルコキシジスタンオキサン化合物の場合は分子内および/または分子間で不均化し、1個のSn-R結合を持つモノアルキルスズアルコキシド化合物と3個のSn-R結合を持つトリアルキルスズアルコキシド化合物に変化する反応)で生成する、モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物を含むアルキルスズ組成物を、
 一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と反応させて、該酸および/または該酸無水物に由来する基(OX基)を有する有機スズ化合物の混合物を製造する工程;
 工程(2):工程(1)で得られた該有機スズ化合物の混合物を加熱処理し、アルキル基再分配反応をおこなって、該アルキルスズ組成物中の、該モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物から、
 i)1つのスズ原子を有し、前記1つのスズ原子が、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物、
 ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物、
の群から選ばれる少なくとも1つのアルキルスズ化合物を得る工程。
<アルキル基不均化反応>
 まず、上記工程(1)の「アルキルスズアルコキシド化合物のアルキル基不均化反応」について説明する。
 ここでいうアルキルスズアルコキシド化合物とは、上記で説明したジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を指し、具体的には、下記式(22)で表されるジアルキルスズ化合物および/または下記式(23)で表されるテトラアルキルジアルコキシジスタンオキサン化合物を言う。
Figure JPOXMLDOC01-appb-C000030
(式中:
 Rは、各々独立して、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物に由来し、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、炭酸エステルおよび/またはアルコールに由来する炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000031
(式中:
 Rは、各々独立して、テトラアルキルジスタンオキサン化合物および/またはジアルキルスズ化合物に由来し、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Rは、炭酸エステルおよび/またはアルコールに由来するアルキル基を表す。)
 上記式(22)で表される化合物の具体例としては、ジメチル-ジメトキシスズ、ジメチル-ジエトキシスズ、ジメチル-ジプロポキシスズ(各異性体)、ジメチル-ジブトキシスズ(各異性体)、ジメチル-ジペンチルオキシスズ(各異性体)、ジメチル-ジヘキシルオキシスズ(各異性体)、ジメチル-ジヘプチルオキシスズ(各異性体)、ジメチル-ジオクチルオキシスズ(各異性体)、ジメチル-ジフェノキシスズ、ジメチル-ジ(メチルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルフェノキシ)スズ、ジメチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジメチル-ジ(フェニルメトキシ)スズ、ジメチル-ジ(フェニルエトキシ)スズ(各異性体)、ジメチル-ジ(メチルフェニルメトキシ)スズ(各異性体)、ジブチル-ジメトキシスズ(各異性体)、ジブチル-ジエトキシスズ(各異性体)、ジブチル-ジプロポキシスズ(各異性体)、ジブチル-ジブトキシスズ(各異性体)、ジブチル-ジペンチルオキシスズ(各異性体)、ジブチル-ジヘキシルオキシスズ(各異性体)、ジブチル-ジヘプチルオキシスズ(各異性体)、ジブチル-ジオクチルオキシスズ(各異性体)、ジブチル-ジフェノキシスズ(各異性体)、ジブチル-ジ(メチルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチル-フェノキシ)スズ(各異性体)、ジブチル-ジ(フェニルメトキシ)スズ、ジブチル-ジ(フェニルエトキシ)スズ(各異性体)、ジブチル-ジ(メチルフェニルメトキシ)スズ(各異性体)、ジオクチル-ジメトキシスズ、ジオクチル-ジエトキシスズ、ジオクチル-ジプロポキシスズ(各異性体)、ジオクチル-ジブトキシスズ(各異性体)、ジオクチル-ジペンチルオキシスズ(各異性体)、ジオクチル-ジヘキシルオキシスズ(各異性体)、ジオクチル-ジヘプチルオキシスズ(各異性体)、ジオクチル-ジオクチルオキシスズ(各異性体)、ジオクチル-ジフェノキシスズ(各異性体)、ジオクチル-ジ(メチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチル-フェノキシ)スズ(各異性体)、ジオクチル-ジ(フェニルメトキシ)スズ(各異性体)、ジオクチル-ジ(フェニルエトキシ)スズ(各異性体)、ジオクチル-ジ(メチルフェニルメトキシ)スズ(各異性体)等が挙げられる。
 上記式(23)で表される化合物の具体例としては、1,1,3,3-テトラメチル-1,3-ジエトキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(フェノキシ)ジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン、1,1,3,3-テトラメチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルフェノキシ)スタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(フェニルメトキシ)ジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジ(フェニルエトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルフェニルメトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジエトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(フェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(エチルフェノキシ)スタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(フェニルメトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(フェニルエトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジ(メチルフェニルメトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジエトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(フェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(エチルフェノキシ)スタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(フェニルメトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(フェニルエトキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジ(メチルフェニルメトキシ)ジスタンオキサン(各異性体)等が挙げられる。
 先にも述べたが、一般に、有機スズ化合物は会合構造をとりやすく、例えば、ジアルキルスズジアルコキシド化合物はダイマー構造を形成したり、テトラアルキルジアルコキシジスタンオキサン化合物は、2分子または3分子が会合したラダー構造を形成して存在する場合もあることが知られているが、このような会合状態が変化する場合であっても、単量体構造で化合物を表すことは、当業者にとっては一般的である。
 上記工程(1)の「アルキルスズアルコキシド化合物のアルキル基不均化反応」とは、スズに結合した2つのR基(Rはアルキル基を表す。)の数が、ジアルキルスズジアルコキシド化合物の場合は2分子間で、テトラアルキルジアルコキシジスタンオキサン化合物の場合は分子内および/または分子間で不均化し、1個のSn-R結合を持つモノアルキルスズアルコキシド化合物と、3個のSn-R結合を持つトリアルキルスズアルコキシド化合物と、に変化する反応である。
 例えば、テトラアルキルジアルコキシジスタンオキサン化合物の場合は、下記式(24)に示されるアルキル基不均化反応により、ジアルキルスズジアルコキシド化合物の場合は、下記式(25)に示されるアルキル基不均化反応が生起すると推測される。
Figure JPOXMLDOC01-appb-C000032
 (式中:
 RおよびR’は、各々独立して、直鎖状または分岐状の炭素数1~12のアルキル基を表す。)
 該アルキル基不均化反応における全ての生成物について、その構造を同定することは難しいが、生成物の少なくとも1種は、下記に示すトリアルキルスズアルコキシド化合物である。例えば、該アルキル基不均化反応において、下記式(26)で示されるトリアルキルスズアルコキシド化合物が、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の減少量に対して、化学量論比でおよそ半分程度生成している場合が多い。本実施の形態でいうトリアルキルスズアルコキシド化合物は、3個のSn-R結合を持ち、該アルキル基Rは、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物に由来するアルキル基である。
Figure JPOXMLDOC01-appb-C000033
(式中:
 Rは、各々独立して、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物に由来するアルキル基を表し;
 Rは、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物に由来するアルキル基を表す。)
 上記式(26)で表されるトリアルキルスズアルコキシド化合物の例としては、トリメチル-メトキシスズ、トリメチル-エトキシスズ、トリメチル-プロポキシスズ(各異性体)、トリメチル-ブトキシスズ(各異性体)、トリメチル-ペンチルオキシスズ(各異性体)、トリメチル-ヘキシルオキシスズ(各異性体)、トリメチル-ヘプチルオキシスズ(各異性体)、トリメチル-オクチルオキシスズ(各異性体)、ブチル-ジメチル-メトキシスズ(各異性体)、ブチル-ジメチル-エトキシスズ(各異性体)、ブチル-ジメチル-プロポキシスズ(各異性体)、ブチル-ジメチル-ブトキシスズ(各異性体)、ブチル-ジメチル-ペンチルオキシスズ(各異性体)、ブチル-ジメチル-ヘキシルオキシスズ(各異性体)、ブチル-ジメチル-ヘプチルオキシスズ(各異性体)、ブチル-ジメチル-オクチルオキシスズ(各異性体)、ブチル-ジメチル-ノニルオキシスズ(各異性体)、ブチル-ジメチル-デシルオキシスズ(各異性体)、ジブチル-メチル-メトキシスズ、ジブチル-メチル-エトキシスズ(各異性体)、ジブチル-メチル-プロポキシスズ(各異性体)、ジブチル-メチル-ブトキシスズ(各異性体)、ジブチル-メチル-ペンチルオキシスズ(各異性体)、ジブチル-メチル-ヘキシルオキシスズ(各異性体)、ジブチル-メチル-ヘプチルオキシスズ(各異性体)、ジブチル-メチル-オクチルオキシスズ(各異性体)、ブチル-ジエチル-メトキシスズ(各異性体)、ブチル-ジエチル-エトキシスズ(各異性体)、ブチル-ジエチル-プロポキシスズ(各異性体)、ブチル-ジエチル-ブトキシスズ(各異性体)、ブチル-ジエチル-ペンチルオキシスズ(各異性体)、ブチル-ジエチル-ヘキシルオキシスズ(各異性体)、ブチル-ジエチル-ヘプチルオキシスズ(各異性体)、ブチル-ジエチル-オクチルオキシスズ(各異性体)、ジブチル-エチル-メトキシスズ(各異性体)、ジブチル-エチル-エトキシスズ(各異性体)、ジブチル-エチル-プロポキシスズ(各異性体)、ジブチル-エチル-ブトキシスズ(各異性体)、ジブチル-エチル-ペンチルオキシスズ(各異性体)、ジブチル-エチル-ヘキシルオキシスズ(各異性体)、ジブチル-エチル-ヘプチルオキシスズ(各異性体)、ジブチル-エチル-オクチルオキシスズ(各異性体)、ブチル-ジプロピル-メトキシスズ(各異性体)、ブチル-ジプロピル-エトキシスズ(各異性体)、ブチル-ジプロピル-プロポキシスズ(各異性体)、ブチル-ジプロピル-ブトキシスズ(各異性体)、ブチル-ジプロピル-ペンチルオキシスズ(各異性体)、ブチル-ジプロピル-ヘキシルオキシスズ(各異性体)、ブチル-ジプロピル-ヘプチルオキシスズ(各異性体)、ブチル-ジプロピル-オクチルオキシスズ(各異性体)、ジブチル-プロピル-メトキシスズ(各異性体)、ジブチル-プロピル-エトキシスズ(各異性体)、ジブチル-プロピル-プロポキシスズ(各異性体)、ジブチル-プロピル-ブトキシスズ(各異性体)、ジブチル-プロピル-ペンチルオキシスズ(各異性体)、ジブチル-プロピル-ヘキシルオキシスズ(各異性体)、ジブチル-プロピル-ヘプチルオキシスズ(各異性体)、ジブチル-プロピル-オクチルオキシスズ(各異性体)、トリブチル-メトキシスズ、トリブチル-エトキシスズ、トリブチル-プロポキシスズ(各異性体)、トリブチル-ブトキシスズ(各異性体)、トリブチル-ペンチルオキシスズ(各異性体)、トリブチル-ヘキシルオキシスズ(各異性体)、トリブチル-ヘプチルオキシスズ(各異性体)、トリブチル-オクチルオキシスズ(各異性体)、オクチル-ジメチル-メトキシスズ(各異性体)、オクチル-ジメチル-エトキシスズ(各異性体)、オクチル-ジメチル-プロポキシスズ(各異性体)、オクチル-ジメチル-ブトキシスズ(各異性体)、オクチル-ジメチル-ペンチルオキシスズ(各異性体)、オクチル-ジメチル-ヘキシルオキシスズ(各異性体)、オクチル-ジメチル-ヘプチルオキシスズ(各異性体)、オクチル-ジメチル-オクチルオキシスズ(各異性体)、オクチル-ジメチル-ノニルオキシスズ(各異性体)、オクチル-ジメチル-デシルオキシスズ(各異性体)、ジオクチル-メチル-メトキシスズ(各異性体)、ジオクチル-メチル-エトキシスズ(各異性体)、ジオクチル-メチル-プロポキシスズ(各異性体)、ジオクチル-メチル-ブトキシスズ(各異性体)、ジオクチル-メチル-ペンチルオキシスズ(各異性体)、ジオクチル-メチル-ヘキシルオキシスズ(各異性体)、ジオクチル-メチル-ヘプチルオキシスズ(各異性体)、ジオクチル-メチル-オクチルオキシスズ(各異性体)、オクチル-ジエチル-メトキシスズ(各異性体)、オクチル-ジエチル-エトキシスズ(各異性体)、オクチル-ジエチル-プロポキシスズ(各異性体)、オクチル-ジエチル-ブトキシスズ(各異性体)、オクチル-ジエチル-ペンチルオキシスズ(各異性体)、オクチル-ジエチル-ヘキシルオキシスズ(各異性体)、オクチル-ジエチル-ヘプチルオキシスズ(各異性体)、オクチル-ジエチル-オクチルオキシスズ(各異性体)、ジオクチル-エチル-メトキシスズ(各異性体)、ジオクチル-エチル-エトキシスズ(各異性体)、ジオクチル-エチル-プロポキシスズ(各異性体)、ジオクチル-エチル-ブトキシスズ(各異性体)、ジオクチル-エチル-ペンチルオキシスズ(各異性体)、ジオクチル-エチル-ヘキシルオキシスズ(各異性体)、ジオクチル-エチル-ヘプチルオキシスズ(各異性体)、ジオクチル-エチル-オクチルオキシスズ(各異性体)、オクチル-ジプロピル-メトキシスズ(各異性体)、オクチル-ジプロピル-エトキシスズ(各異性体)、オクチル-ジプロピル-プロポキシスズ(各異性体)、オクチル-ジプロピル-ブトキシスズ(各異性体)、オクチル-ジプロピル-ペンチルオキシスズ(各異性体)、オクチル-ジプロピル-ヘキシルオキシスズ(各異性体)、オクチル-ジプロピル-ヘプチルオキシスズ(各異性体)、オクチル-ジプロピル-オクチルオキシスズ(各異性体)、ジオクチル-プロピル-メトキシスズ(各異性体)、ジオクチル-プロピル-エトキシスズ(各異性体)、ジオクチル-プロピル-プロポキシスズ(各異性体)、ジオクチル-プロピル-ブトキシスズ(各異性体)、ジオクチル-プロピル-ペンチルオキシスズ(各異性体)、ジオクチル-プロピル-ヘキシルオキシスズ(各異性体)、ジオクチル-プロピル-ヘプチルオキシスズ(各異性体)、ジオクチル-プロピル-オクチルオキシスズ(各異性体)、オクチル-ジブチル-メトキシスズ(各異性体)、オクチル-ジブチル-エトキシスズ(各異性体)、オクチル-ジブチル-プロポキシスズ(各異性体)、オクチル-ジブチル-ブトキシスズ(各異性体)、オクチル-ジブチル-ペンチルオキシスズ(各異性体)、オクチル-ジブチル-ヘキシルオキシスズ(各異性体)、オクチル-ジブチル-ヘプチルオキシスズ(各異性体)、オクチル-ジブチル-オクチルオキシスズ(各異性体)、ジオクチル-ブチル-メトキシスズ(各異性体)、ジオクチル-ブチル-エトキシスズ(各異性体)、ジオクチル-ブチル-プロポキシスズ(各異性体)、ジオクチル-ブチル-ブトキシスズ(各異性体)、ジオクチル-ブチル-ペンチルオキシスズ(各異性体)、ジオクチル-ブチル-ヘキシルオキシスズ(各異性体)、ジオクチル-ブチル-ヘプチルオキシスズ(各異性体)、ジオクチル-ブチル-オクチルオキシスズ(各異性体)、トリオクチル-メトキシスズ(各異性体)、トリオクチル-エトキシスズ、トリオクチル-プロポキシスズ(各異性体)、トリオクチル-ブトキシスズ(各異性体)、トリオクチル-ペンチルオキシスズ(各異性体)、トリオクチル-ヘキシルオキシスズ(各異性体)、トリオクチル-ヘプチルオキシスズ(各異性体)、トリオクチル-オクチルオキシスズ(各異性体)等のトリアルキル-アルコキシスズが挙げられる。
 上記したように、アルキル基不均化反応において、トリアルキルスズアルコキシド化合物が生成することから、アルキル基のバランスを考慮すれば、上記式(22)および/または上記式(23)で示したように、上記したトリアルキルスズアルコキシド化合物と同時に、1個のSn-R結合を持つモノアルキルスズアルコキシド化合物が生成していると推定される。このようなモノアルキルスズアルコキシド化合物としては、メチル-メトキシスズオキシド、メチル-エトキシスズオキシド、メチル-プロポキシスズオキシド(各異性体)、メチル-ブトキシスズオキシド(各異性体)、メチル-ペンチルオキシスズオキシド(各異性体)、メチル-ヘキシルオキシスズオキシド(各異性体)、メチル-ヘプチルオキシスズオキシド(各異性体)、メチル-オクチルオキシスズオキシド(各異性体)、ブチル-メトキシスズオキシド(各異性体)、ブチル-エトキシスズオキシド(各異性体)、ブチル-プロポキシスズオキシド(各異性体)、ブチル-ブトキシスズオキシド(各異性体)、ブチル-ペンチルオキシスズオキシド(各異性体)、ブチル-ヘキシルオキシスズオキシド(各異性体)、ブチル-ヘプチルオキシスズオキシド(各異性体)、ブチル-オクチルオキシスズオキシド(各異性体)、オクチル-メトキシスズオキシド(各異性体)、オクチル-エトキシスズオキシド(各異性体)、オクチル-プロポキシスズオキシド(各異性体)、オクチル-ブトキシスズオキシド(各異性体)、オクチル-ペンチルオキシスズオキシド(各異性体)、オクチル-ヘキシルオキシスズオキシド(各異性体)、オクチル-ヘプチルオキシスズオキシド(各異性体)、オクチル-オクチルオキシスズオキシド(各異性体)のモノアルキルアルコキシスズオキシド;メチル-トリメトキシスズ、メチル-トリエトキシスズ、メチル-トリプロポキシスズ(各異性体)、メチル-トリブトキシスズ(各異性体)、メチル-トリペンチルオキシスズ(各異性体)、メチル-トリヘキシルオキシスズ(各異性体)、メチル-トリヘプチルオキシスズ(各異性体)、メチル-トリオクチルオキシスズ(各異性体)、ブチル-トリメトキシスズ(各異性体)、ブチル-トリエトキシスズ(各異性体)、ブチル-トリプロポキシスズ(各異性体)、ブチル-トリブトキシスズ(各異性体)、ブチル-トリペンチルオキシスズ(各異性体)、ブチル-トリヘキシルオキシスズ(各異性体)、ブチル-トリヘプチルオキシスズ(各異性体)、ブチル-トリオクチルオキシスズ(各異性体)、オクチル-トリメトキシスズ(各異性体)、オクチル-トリエトキシスズ(各異性体)、オクチル-トリプロポキシスズ(各異性体)、オクチル-トリブトキシスズ(各異性体)、オクチル-トリペンチルオキシスズ(各異性体)、オクチル-トリヘキシルオキシスズ(各異性体)、オクチル-トリヘプチルオキシスズ(各異性体)、オクチル-トリオクチルオキシスズ(各異性体)等のモノアルキル-トリアルコキシスズ等が例示される。
 該モノアルキルスズアルコキシド化合物について、その構造を特性することは困難であるが、上で述べたような、「1個のSn-R結合をもつ」以外に、119Sn-NMRにおける化学シフトで特徴づけることができる。すなわち、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物のアルキル基不均化反応によって生成する化合物の少なくとも1種は、モノアルキルスズアルコキシド化合物であって、該モノアルキルスズアルコキシド化合物は、重クロロホルム溶液中で119Sn-NMRにより分析した際に、テトラメチルスズ基準で、-220~-610ppmに化学シフトを示すスズ原子が検出される特徴がある。
 すなわち、該アルキル基不均化反応による生成物は、3個のSn-R結合を持つトリアルキルスズアルコキシド化合物、および、1個のSn-R結合を持つモノアルキルスズアルコキシド化合物であって、重クロロホルム溶液中で119Sn-NMRにより分析した際にテトラメチルスズ基準で、-220~-610ppmに化学シフトを示すスズ原子を含有するモノアルキルスズアルコキシド化合物である。本実施の形態においては、これらの、トリアルキルスズアルコキシド化合物およびモノアルキルスズアルコキシド化合物を含む組成物を、「アルキルスズ組成物」と呼称する。
 上記式(22)で表されるジアルキルスズジアルコキシド化合物および/または上記式(23)で表されるテトラアルキルジアルコキシジスタンオキサン化合物は、多くの場合、重クロロホルム溶液中で119Sn-NMRにより分析した際に、テトラメチルスズ基準で、200~-200ppmに化学シフトを示すスズ原子をもち、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物のアルキル基不均化反応の結果、上記した-220ppm~-610ppmの範囲に化学シフトを示すスズ原子が検出される。殆どの場合、アルキル基不均化反応による生成物は、該-220~-610ppmの範囲に複数のシグナルをもつことから、アルキル基不均化反応による生成物中には、式(24)および/または式(25)に例示した、モノアルキルアルコキシスズオキシド、モノアルキルスズトリアルコキシスズのみではなく、多くの場合、他の構造も含有していると推察される。このようにアルキル基不均化反応によるある生成物は、構造が不明な化合物からなっているが、これらの、構造が不明な化合物が、工程(1)で使用されるアルキルスズ組成物に含有されていることは何ら問題ない。また、アルキルスズ組成物に、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物が含有されていることも何ら問題ない。
 ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物のアルキル基不均化反応による生成物は、上記した例以外の構造をとることも容易に推定される。さらに、スタノキサン骨核を形成することで、スズに2つのアルキル基が結合したユニットと、スズに2以外の整数でアルキル基が結合したユニットと、からなる化合物が生成していてもよい。上記した例と併せて、アルキル基不均化反応による生成物の推定構造を下に示す。
Figure JPOXMLDOC01-appb-C000034
 
(式中:
 Rは、各々独立して、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物に由来するアルキル基を表し;
 Rは、各々独立して、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物に由来するアルキル基を表す。)
 本実施の形態でいうアルキルスズ組成物は、上でも述べたように、トリアルキルスズアルコキシド化合物とモノアルキルスズアルコキシド化合物とを含む組成物であるが、トリアルキルスズアルコキシド化合物とモノアルキルスズアルコキシド化合物のみからなる組成物であってもよいし、テトラアルキルジアルコキシジスタンオキサン化合物および/またはジアルキルスズジアルコキシド化合物を含有してもよい。また、上記したような、アルキル基不均化反応による生成物を含有していてもよい。
 本実施の形態で好ましく使用されるアルキルスズ組成物は、該アルキルスズ組成物に含有される全スズ原子のモル数に対して、アルキルスズ組成物中の、スズ原子に結合するアルキル基の個数が2以外である化合物の含有量をモル%で表して、10mol%以上、好ましくは30mol%以上、さらに好ましくは50mol%以上を含有するアルキルスズ組成物である。
 該アルキルスズ組成物は、場合によっては、ジアルキルスズジアルコキシド化合物、テトラアルキルジアルコキシジスタンオキサン化合物、テトラアルキルスズ、ヘキサアルキルジスタンオキサン、酸化スズ(SnO)等が含まれることがあるが、本発明の趣旨に反しない程度にこれらの化合物が含有されていることは差し支えない。
 また、アルキルスズ組成物から、トリアルキルスズアルコキシド化合物を含む組成物と、モノアルキルスズアルコキシド化合物を含む組成物とを分離した組成物を用いることもできる。該分離の方法としては、様々な公知の方法を使用することができる。例えば、蒸留分離、抽出分離、膜分離から選ばれる少なくとも1つの方法を用いることができ、中でも蒸留分離の方法が好ましく使用される。
 工程(1)は、上記したアルキルスズ組成物を、一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と反応させて、該酸および/または該酸無水物に由来する基(OX基)を有する有機スズ化合物の混合物を製造する工程である。
 工程(1)において、一般式HOXで表される酸としては、このような酸としては、有機酸が好ましく使用される。有機酸としては、カルボン酸、スルホン酸、フェノール等を例示することができるが、好ましくはカルボン酸が使用される。カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、n-酪酸、イソ酪酸、吉草酸、イソ吉草酸、2-メチルブタン酸、ピバリン酸、ヘキサン酸、イソカプロン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、ヘプタン酸(各異性体)、オクタン酸(各異性体)、ノナン酸(各異性体)、デカン酸(各異性体)、ウンデカン酸(各異性体)、ドデカン酸(各異性体)、テトラデカン酸(各異性体)、ヘキサデカン酸(各異性体)、アクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、メタクリル酸、アンゲリカ酸、チグリン酸、アリル酢酸、ウンデセン酸(各異性体)等の飽和もしくは不飽和脂肪族モノカルボン酸化合物;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸(各異性体)、オクタン二酸(各異性体)、ノナン二酸(各異性体)、デカン二酸(各異性体)、マレイン酸、フマル酸、メチルマレイン酸、メチルフマル酸、ペンテン二酸(各異性体)、イタコン酸、アリルマロン酸等の飽和もしくは不飽和脂肪族ジカルボン酸;1,2,3-プロパントリカルボン酸、1,2,3-プロペントリカルボン酸、2,3-ジメチルブタン-1,2,3-トリカルボン酸等の飽和もしくは不飽和脂肪族トリカルボン酸化合物;安息香酸、メチル安息香酸(各異性体)、エチル安息香酸(各異性体)、プロピル安息香酸(各異性体)、ジメチル安息香酸(各異性体)、トリメチル安息香酸(各異性体)等の芳香族者カルボン酸化合物;フタル酸、イソフタル酸、テレフタル酸、メチルイソフタル酸(各異性体)等の芳香族ジカルボン酸化合物;ヘミメリト酸、トリメリト酸、トリメシン酸等の芳香族トリカルボン酸化合物等を挙げることができる。これらのカルボン酸の中でも、飽和モノカルボン酸が好ましく使用される。より好ましくは、標準沸点が300℃以下の飽和モノカルボン酸、さらに好ましくは標準沸点が250℃以下の飽和ものカルボン酸が使用される。標準沸点とは、化学大辞典(共立出版株式会社、2003年10月1日発行)に記載されているように、1気圧における沸点を指す。具体的には、酢酸、プロピオン酸、n-酪酸、イソ酪酸、吉草酸、イソ吉草酸、2-メチルブタン酸、ピバリン酸、ヘキサン酸が好ましく使用される。
 また、工程(1)において、一般式XOXで表される酸無水物としては、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水イソ吉草酸、無水コハク酸、無水マレイン酸、無水プロピオン酸、無水グルタル酸等の脂肪族無水物;無水安息香酸、無水フタル酸、無水ピロメリト酸等の芳香族酸無水物を挙げることができる。これらの中でも、好ましくは標準沸点が300℃以下の酸無水物が使用され、反応後、過剰の酸無水物の除去を容易にするため、さらに好ましくは標準沸点が200℃以下の酸無水物が使用される。さらに、副生するカルボン酸エステル等を系外へ除去することが容易であり、工業的に容易に入手できるという点から、無水マレイン酸、無水酢酸が好ましい。
 これらの酸および酸無水物は単独でも複数種を混合しても用いることができるが、酸を使用する場合、アルキルスズ組成物と酸を反応させた場合、水が生成する場合が多い。該水を除去するために、蒸留分離や膜分離をおこなったり、脱水剤を使用してもよい。また、脱水剤として酸無水物を組み合わせて使用するのも好ましい。さらに、酸無水物のみを使用する場合は、アルキルスズ組成物と無水酢酸との反応において水が生成しない場合が多いことから、酸無水物のみを使用する方法も好ましい。
 工程(1)における反応について説明する。
 酸および/または酸無水物の使用量は、工程(1)における反応速度や最終的な有機スズ化合物の混合物(後で詳細を説明する)の収率を勘案して、アルキルスズ組成物に含有されるスズ原子に対して化学量論比で0.1~50倍の範囲を使用することが好ましく、反応器の大きさや、反応速度を考慮すれば0.5~20倍の範囲を使用することがさらに好ましい。化学量論比で0.1より少ない場合反応が進行しにくい場合があり、逆に化学量論比で50倍より多く使用しても当該工程における反応速度や最終的な有機スズ化合物の収率に影響を与えない場合が多い。
 工程(1)の反応は、好ましくは-20℃以上300℃以下の反応温度で実施し、より好ましくは-10℃以上250℃以下の反応温度で実施し、反応速度を高めるためには反応温度は高温が好ましいが、一方で、高温では分解等(例えば、スズに結合しているアルキル基がアルカンやアルケンとして脱離する反応)の好ましくない反応も起こる場合もあり、収率が低下することもあるので、さらに好ましくは0℃以上230℃以下の反応温度で実施する。また、工程(1)の反応は、アルゴン、ネオン、窒素などの不活性ガス雰囲気下で行われることが好ましい。
 工程(1)では溶媒を用いる必要はないが、流動性を向上させる、あるいは反応操作を容易にする、あるいは反応において生成する場合に該水を効率よく系外に除去する目的で溶媒を用いることができる。このような溶媒として、例えば、炭素数5~16の直鎖状、分岐状、環状の炭化水素;炭素数4~16の直鎖状、分岐状、環状の炭化水素からなるエーテル類;炭素数1~16の直鎖状、分岐状、環状のハロゲン化炭化水素類などが挙げられる。具体的には、ペンタン(各異性体)、ヘキサン(各異性体)、ヘプタン(各異性体)、オクタン(各異性体)、ノナン(各異性体)、デカン(各異性体)、ヘキサデカン(各異性体)、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、キシレン(各異性体)、エチルベンゼンなどから選ばれる鎖状、環状の炭化水素;ジエチルエーテル、ジプロピルエーテル(各異性体)、ジブチルエーテル(各異性体)、ジヘキシルエーテル(各異性体)、ジオクチルエーテル(各異性体)、ジフェニルエーテルなどから選ばれるエーテル類;塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、テトラクロロエタン、ジクロロベンゼン(異性体)などから選ばれるハロゲン化炭化水素類を用いることができる。これらの溶媒は単独でも2種類以上の混合物として使用することもできる。
 後述するが、工程(2)のアルキル基再分配反応は、平衡反応であり、平衡反応の一般的な性質から、高濃度(例えば、アルキルスズ組成物の全スズ原子のモル数に対して、モノアルキルスズアルコキシド化合物およびトリアルキルスズアルコキシド化合物の含有量をモル%で表して、10mol%以上、好ましくは30mol%以上、更に好ましくは50mol%以上を含有するアルキルスズ組成物)で、モノアルキルスズアルコキシド化合物およびトリアルキルスズアルコキシド化合物が蓄積および/または濃縮されたアルキルスズ組成物を使用して、工程(1)の反応をおこない、工程(2)のアルキル基再分配反応をおこなうことが好ましい。
<アルキルスズ組成物よりトリアルキルスズアルコキシド化合物を分離する場合>
 工程(1)を実施する前に、アルキルスズ組成物から、トリアルキルスズアルコキシド化合物を含む組成物と、モノアルキルスズアルコキシド化合物を含む組成物とを分離することもできる。なお、アルキルスズ組成物から、トリアルキルスズアルコキシド化合物を含む組成物と、モノアルキルスズアルコキシド化合物を含む組成物と、を分離する場合、それぞれの組成物を、異なる温度条件下において、酸および/または酸無水物を反応させることができる。
 該分離は、蒸留分離、晶析、膜分離、濾過、溶媒抽出等の、様々な公知の方法を使用することができるが、好ましくは蒸留分離によって実施される。
<未反応物・副生物の除去>
 工程(1)において得られる有機スズ化合物の混合物は、そのまま工程(2)の原料として使用してもよいし、未反応の酸および/または酸無水物、および/または、反応により生成したスズ原子を含有しない有機化合物等を除去したのち、工程(2)の原料として使用してもよい。好ましくは、未反応の酸および/または酸無水物を除去したのち工程(2)の原料として使用する。未反応の酸および/または酸無水物を除去せずに工程(2)をおこなうと、後述する脱アルキル基反応を生起する場合が多く、該脱アルキル基反応によって、生成するジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物の収量が低下するからである。未反応の酸および/または酸無水物、および/または、反応により生成したスズ原子を含有しない有機化合物の除去方法としては、濾過、蒸留分離、膜分離、晶析、溶媒抽出等の公知の方法を用いることができる。
 また、該工程(1)、および/または、未反応の酸および/または酸無水物を除去する操作において、後述する脱アルキル基反応が同時に生起する場合があるが、本実施の形態の要旨の範囲内であれば何ら差し支えない。
 さらに、工程(1)において、スズ原子を含む固体状の化合物が生成する場合がある。本発明者らが検討したところ、例えば、アルキルスズ組成物と酢酸とを反応させた場合、アルキルスズ組成物に含有される化合物や反応条件等によって、昇華性のある白色の固体が生成する場合があった。該白色の固体は、NMR分析等の結果から、2価のジアセトキシスズであると推測しているが、該化合物についても、工程(1)で得られる混合物より除去してから工程(2)をおこなってもよいし、該化合物を除去することなく工程(2)をおこなってもよい。
 また、該工程(1)の反応条件によっては、該工程(1)において、該酸および/または該酸無水物に由来する基(OX基)を有する有機スズ化合物の混合物の他に、アルキルスズ組成物に含有されるアルコキシ基に由来するアルコールが生成する場合があり、好ましくは、該アルコールを分離回収する。回収されたアルコールは、本実施の形態の他の工程におけるアルコール(例えば、式(17)、式(18)、式(36)のアルコール)として使用することができる。該アルコールを分離回収する方法としては、蒸留分離、膜分離等の公知の方法を使用することができるが、好ましくは、蒸留分離である。
 酸および/または酸無水物とアルキルスズ組成物とを反応後、副生したアルコールを蒸留によって分離回収する際の温度は、好ましくは0℃~100℃の範囲、より好ましくは0℃~80℃の範囲である。高温では分解や酸とアルコールとの脱水縮合反応が起こる場合があり、回収するアルコールの収率が低下する場合があり、低温では、有機スズ化合物が固体になり流動性が悪くなる場合があるため、更に好ましくは、20℃~60℃の範囲で実施する。圧力は、用いる化合物の種類や反応温度などにより異なるが、好ましくは1Pa~1MPaの範囲で実施し、より好ましくは10Pa~10kPaの範囲で実施する。圧力が高いとアルコールを蒸留分離する時間が長くなり、酸とアルコールとの脱水縮合反応が起こる場合があり、回収するアルコールの収率が低下する場合があるため、さらに好ましくは10Pa~1kPaの範囲で実施する。
 アルコールを蒸留によって回収する操作は、酸および/または酸無水物とアルキルスズ組成物との反応操作を完了した後おこなってもよいし、酸および/または酸無水物とアルキルスズ組成物との反応と同時におこなってもよい。
 酸および/または酸無水物とアルキルスズ組成物との反応、および、アルコールの分離回収において使用する反応器に特に制限はなく、公知の反応器が使用できる。例えば攪拌槽、加圧式攪拌槽、減圧式攪拌槽、塔型反応器、蒸留塔、充填塔、薄膜蒸留器など、従来公知の反応器を適宜組み合わせて使用できる。反応器の材質にも特に制限はなく、公知の材質が使用できる。例えば、ガラス製、ステンレス製、炭素鋼製、ハステロイ製や、基材にグラスライニングを施したものや、テフロン(登録商標)コーティングをおこなったものも使用できる。工程や条件によっては、酸による腐食が顕著となる場合もあるので、そのような場合にはガラス製やグラスライニング、テフロン(登録商標)コーティングを施したり、ハステロイ製反応器を適宜選択してよい。
<有機スズ化合物>
 ここで、工程(1)の反応によって生成する有機スズ化合物の混合物について説明する。
 本実施の形態でいう「有機スズ化合物」とは、工程(1)の反応によって生成する、該酸および/または酸無水物に由来する基(OX基)を有する有機スズ化合物である。上記したように、工程(1)の原料であるアルキルスズ化合物は、上記式(25)で表されるトリアルキルスズアルコキシド化合物を含有するが、該トリアルキルスズアルコキシド化合物からは工程(1)の反応によって、3つのSn-R結合(Rはアルキル基を表す)を持ち、1つのSn-OX結合(OXは、酸および/または酸無水物に由来する基を表す)を持つ化合物が生成する。具体的には、下記式(28)で表される化合物である。
Figure JPOXMLDOC01-appb-C000035
(式中:
 Rは、各々独立して、アルキル基を表し;
 Xは、酸および/または酸無水物に由来する基を表し;
 Oは、酸素原子を表す。)
 一方、上述したモノアルキルスズアルコキシド化合物からは、工程(1)の反応によって、1個のSn-R結合を持ち、1~3個のSn-OX基を持つ化合物が生成する。先に、モノアルキルスズアルコキシド化合物は、重クロロホルム溶液中で119Sn-NMRにより分析した際に、テトラメチルスズ基準で、200~-200ppmに化学シフトを示すスズ原子をもち、それらの化合物の構造を全て同定することは難しいと述べた。したがって、これらのモノアルキルスズアルコキシド化合物から生成する化合物についても、全ての構造を同定することは難しい。しかしながら、モノアルキルスズアルコキシド化合物と、酸および/または酸無水物との反応は、主に、1)モノアルキルスズアルコキシド化合物のSn-OR結合のRO基がXO基に置換される反応と、2)Sn-O-Snで表されるジスタノキサン結合が開裂してSn-OX結合を生成する反応と、が組み合わさった反応である場合が多く、下記式(29)で表される化合物を生成する場合が多い。
Figure JPOXMLDOC01-appb-C000036
 
(式中:
 Rは、各々独立して、アルキル基を表し、
 Xは、酸および/または酸無水物に由来する基を表し;
 Oは、酸素原子を表す。)
 また、上でも述べたように、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物のアルキル基不均化反応による生成物は、様々な構造をとると推定され、アルキル基不均化反応による生成物として、上記式(27)で表される構造の化合物が推定される。これら上記式(27)のような化合物も、工程(1)において、酸および/または酸無水物と反応し、例えば、下記式(30)で表される反応が進行すると推測される。
Figure JPOXMLDOC01-appb-C000037
    
(式中:
 RおよびRは式(27)における定義と同じであり、
 Oは、酸素原子を表す。)
<工程(2)>
 次に、工程(2)について説明する。
 工程(2)は、工程(1)で得られた該有機スズ化合物の混合物を加熱処理し、アルキル基再分配反応をおこなって、該アルキルスズ組成物中の、該モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物から、
 i)1つのスズ原子を有し、前記1つのスズ原子が、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物、
 ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物、
の群から選ばれる少なくとも1つのアルキルスズ化合物を得る工程である。
 ここでいう、アルキル基再分配反応とは、1つのスズ原子に結合しているアルキル基の数が2以上異なる2種以上の有機スズ化合物を反応させて、1つのスズ原子に結合しているアルキル基の数を平均化させる反応であり、該アルキル基再分配反応は平衡反応である。詳細な反応機構は不明であるが、下記式(31)のように、1つのスズ原子に結合しているアルキル基が3個である有機スズ化合物と、1つのスズ原子に結合しているアルキル基が1個である有機スズ化合物との反応により、1つのスズ原子に結合しているアルキル基が2個である有機スズ化合物を生成するものと推測している。
Figure JPOXMLDOC01-appb-C000038
(式中:
 Rは、各々独立して、アルキル基を表し、
 Xは、酸および/または酸無水物に由来する基を表し;
 Oは、酸素原子を表す。)
 該アルキル基再分配反応は、1つのスズ原子に結合しているアルキル基の数が2以上異なる2種以上の有機スズ化合物の混合物を加熱処理することにより進行する。
 該加熱処理は、好ましくは20℃~300℃の温度範囲で行われ、反応を早く進めたい場合や、ジアルキル体(2個のSn-R結合を有するスズ化合物)の濃度を多く得たい場合には、平衡を右にずらすためには反応温度が高いことが有利であり、より好ましくは50℃~280℃、反応速度を高めるためには加熱処理温度は高温が好ましいが、一方で、高温では分解等の好ましくない反応も起こる場合もあり、収率が低下することもあるので、さらに好ましくは80℃~260℃の温度範囲で行われる。20℃より低い温度では反応時間が長期になる場合があり、300℃より高い場合は分解等の有機スズ化合物の変性により、ジアルキルスズ化合物の収率が低下する場合がある。反応時間は、使用する化合物や、加熱処理温度によって異なるが、0.001~50時間、好ましくは0.01~10時間、工業的な生産性を考慮すれば0.1~2時間となるように反応温度等を設定しておこなう。反応の終了は119Sn-NMR等を用いて所望のジアルキルスズ化合物が得られていれば終了してよい。後記するように、本実施の形態のアルキル基再分配反応は平衡反応と推定しており、1つのスズ原子に結合したアルキル基が2個であるスズ化合物を原系よりも高められた濃度で得るために、使用する化合物の平衡濃度を温度に対して測定し、原系よりも生成系の濃度が高くなるような温度領域で、あるいは後記する方法によって、置換基を変換して、生成系でのジアルキルスズ化合物濃度が高くなるように実施する。また、高温で(例えば、150℃以上)で加熱処理した場合、反応後、冷却に時間を要するとジアルキルスズ化合物の収率が低下する場合がある。これは、反応系が、冷却過程で低温での平衡濃度に近づこうとするためであり、高温で加熱処理した後は速やかに冷却することが好ましい。反応液の冷却方法は、公知の方法が好ましく使用でき、例えばブラインによる方法や、加熱処理槽よりも低圧の反応器へフラッシュする方法などが好ましく使用できる。
 該アルキル基再分配反応は、金属ハロゲン化物触媒存在下においても不在下においても行うことができる。金属ハロゲン化物触媒の例としては、塩化スズ(II)、塩化水銀(II)、塩化鉛(II)、フッ化水銀(II)、フッ化鉛(II)、フッ化スズ(II)、ヨウ化スズ(II)、ヨウ化鉛(II)ヨウ化水銀(II)、臭化スズ(II)、臭化水銀(II)、臭化鉛(II)などが挙げられ、これらの金属ハロゲン化物を単独でも2種類以上の混合物でも使用することができる。これらの金属ハロゲン化物は熱処理に使用される溶液に対して0.1重量%~10重量%の範囲で好適に使用できる。
 該アルキル基再分配反応において、溶媒を用いる必要はないが、流動性を向上させる、あるいは反応操作を容易にする目的で溶媒を用いることができる。このような溶媒として、例えば、炭素数5~16の直鎖状、分岐状、環状の炭化水素、炭素数4~16の直鎖状、分岐状、環状の炭化水素からなるエーテル類、炭素数1~16の直鎖状、分岐状、環状のハロゲン化炭化水素類などが挙げられる。具体的には、ペンタン(各異性体)、ヘキサン(各異性体)、ヘプタン(各異性体)、オクタン(各異性体)、ノナン(各異性体)、デカン(各異性体)、ヘキサデカン(各異性体)、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、キシレン(各異性体)、エチルベンゼンなどから選ばれる鎖状、環状の炭化水素;ジエチルエーテル、ジプロピルエーテル(各異性体)、ジブチルエーテル(各異性体)、ジヘキシルエーテル(各異性体)、ジオクチルエーテル(各異性体)、ジフェニルエーテルなどから選ばれるエーテル類;塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、テトラクロロエタン、ジクロロベンゼン(異性体)などから選ばれるハロゲン化炭化水素類を用いることができる。これらの溶媒は単独でも2種類以上の混合物として使用することができる。流動性を向上させる、あるいは反応操作を容易にする、あるいは反応において生成する場合に該水を効率よく系外に除去する目的で溶媒を用いることができる。このような溶媒として、例えば、炭素数5~16の直鎖状、分岐状、環状の炭化水素;炭素数4~16の直鎖状、分岐状、環状の炭化水素からなるエーテル類;炭素数1~16の直鎖状、分岐状、環状のハロゲン化炭化水素類などが挙げられる。具体的には、ペンタン(各異性体)、ヘキサン(各異性体)、ヘプタン(各異性体)、オクタン(各異性体)、ノナン(各異性体)、デカン(各異性体)、ヘキサデカン(各異性体)、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、キシレン(各異性体)、エチルベンゼンなどから選ばれる鎖状、環状の炭化水素;ジエチルエーテル、ジプロピルエーテル(各異性体)、ジブチルエーテル(各異性体)、ジヘキシルエーテル(各異性体)、ジオクチルエーテル(各異性体)、ジフェニルエーテルなどから選ばれるエーテル類;塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、テトラクロロエタン、ジクロロベンゼン(異性体)などから選ばれるハロゲン化炭化水素類を用いることができる。これらの溶媒は単独でも2種類以上の混合物として使用することもできる。
 また、工程(2)において、後述する脱アルキル基反応が同時に生起しても差し支えない。
 上述のように、該アルキル基再分配反応は平衡反応であると推定している。本発明者らが鋭意検討した結果、該アルキル基再分配反応は、スズ原子に結合している置換基および/または該アルキル基再分配反応を実施する温度に依存することを見出した。スズ原子に結合している置換基について述べると、例えば、スズ原子に結合している、アルキル基(例えば、上記式(31)においては基Rが相当する)以外の基(例えば、上記式(31)においては、基OXが相当する)について、該基の共役酸のpKaが0~6.8の場合、多くの場合、平衡は生成系に偏っており、反対に、該基の共役酸のpKaが6.8~25の場合、多くの場合、平衡は原系に偏っている。また、共役酸のpKaが0~6.8の場合では、高温ほど生成系側に平衡が偏っていることを見出した。
 すなわち、一般的に、上記式(24)、(25)における基ORはpKaが6.8よりも大きく、工程(1)で、基ORを基OXに変換することによって、工程(2)においてアルキル基再分配反応を生起し得るのである。
 先に、「脱アルキル基反応」という語を使用したが、脱アルキル基反応とは、少なくとも1個のSn-R結合(Rはアルキル基を表す)を有する化合物と、HOXで表される酸、および/または、XOXで表される酸無水物(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を反応させて、スズ原子に結合しているアルキル基(R)を脱離させて、スズ原子に、酸および/または酸無水物に由来する基OXが結合した、Sn-OX結合を有する有機スズ化合物を生成する反応である。脱アルキル基反応の詳細な反応機構は不明であるが、例えば、下記式(32)のように、トリアルキルスズ化合物と酸HOXとの反応により、Sn-OX結合を有する化合物が生成すると推測している。
Figure JPOXMLDOC01-appb-C000039

(式中:
 Rは、各々独立して、アルキル基を表し;
 Xは、酸および/または酸無水物に由来する基を表し;
 Oは、酸素原子を表す。)
 また、例えば、下記式(33)のように、トリアルキルスズアルコキシド化合物と酸HOXとの反応によって、上記したような脱アルキル基反応と、トリアルキルスズアルコキシド化合物のアルコキシ基の置換反応が同時に生起することもある。
Figure JPOXMLDOC01-appb-C000040

(式中:
 Rは、各々独立して、アルキル基を表し;
 Rは、アルキル基を表し;
 Xは、酸および/または酸無水物に由来する基を表し;
 Oは、酸素原子を表す。)
 以上に示したような脱アルキル基反応は、反応条件によっては、工程(1)でも工程(2)でも生起する場合がある。しかしながら、脱アルキル基反応において脱離したアルキル基は、多くの場合、スズ原子と再び結合することがないため、工程(2)のアルキル基再分配反応におけるジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物の収率を低下させる場合があることから、工程(1)および工程(2)の反応条件として、脱アルキル基反応を生起しにくい条件を設定することが好ましい。
 以上に説明した工程(1)~工程(2)、および、工程(Z)を組み合わせることによって、例えば、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物のアルキル基不均化反応によって生成するモノアルキルスズアルコキシド化合物およびトリアルキルスズアルコキシド化合物をジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物として再生する方法とすることができる(図1参照)。 
<アルキルスズ組成物の製造方法>
 上記した工程(1)におけるアルキルスズ組成物の製造方法について説明する。
 該アルキルスズ組成物は、モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物を含むアルキルスズ組成物であれば、特に限定されないが、好ましくは、下記工程(a)~工程(c)を順次おこなって得られる、炭酸エステルを製造する過程において生成するアルキルスズ組成物である。
 工程(a):下記一般式(34)で表されるジアルキルスズジアルコキシドと二酸化炭素とを反応させて、炭酸エステルと下記一般式(35)で表されるテトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む反応液を得る工程;
Figure JPOXMLDOC01-appb-C000041
  
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
Figure JPOXMLDOC01-appb-C000042
  
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 工程(b):該反応液から蒸留によって炭酸エステルを分離し、テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程;
 工程(c):該残留液と下記一般式(36)で表されるアルコールとを反応させて、副生する水を蒸留によって除去してジアルキルスズジアルコキシドを再生し、該ジアルキルスズジアルコキシドを工程(a)のジアルキルスズジアルコキシドとして使用する工程。
Figure JPOXMLDOC01-appb-C000043
(式中:
 Rは、直鎖状または分岐鎖状の炭素数2~8のアルキル基を表す。)
 まず、工程(a)について説明する。
 工程(a)において使用する、上記式(34)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるジアルキルスズ化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(34)における基Rの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が2~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。したっがって、上記式(34)における基ORとしては、好ましくは、メトキシ基、エトキシ基、プロピルオキシ基(各異性体)、ブチルオキシ基(各異性体)、ペンチルオキシ基(各異性体)、ヘキシルオキシ基(各異性体)、ヘプチルオキシ基(各異性体)、オクチルオキシ基(各異性体)、ノニルオキシ基(各異性体)、デシルオキシ基(各異性体)、ドデシルオキシ基(各異性体)等のアルコキシ基であり、さらに好ましくは、エトキシ基、プロピルオキシ基(各異性体)、ブチルオキシ基(各異性体)、ペンチルオキシ基(各異性体)、ヘキシルオキシ基(各異性体)、ヘプチルオキシ基(各異性体)、オクチルオキシ基(各異性体)である。
 上記式(34)で表されるジアルキルスズジアルコキシドの具体例としては、ジメチル-ジメトキシスズ、ジメチル-ジエトキシスズ、ジメチル-ジプロポキシスズ(各異性体)、ジメチル-ジブトキシスズ(各異性体)、ジメチル-ジペンチルオキシスズ(各異性体)、ジメチル-ジヘキシルオキシスズ(各異性体)、ジメチル-ジヘプチルオキシスズ(各異性体)、ジメチル-ジオクチルオキシスズ(各異性体)、ジブチル-ジメトキシスズ(各異性体)、ジブチル-ジエトキシスズ(各異性体)、ジブチル-ジプロポキシスズ(各異性体)、ジブチル-ジブトキシスズ(各異性体)、ジブチル-ジペンチルオキシスズ(各異性体)、ジブチル-ジヘキシルオキシスズ(各異性体)、ジブチル-ジヘプチルオキシスズ(各異性体)、ジブチル-ジオクチルオキシスズ(各異性体)、ジオクチル-ジメトキシスズ、ジオクチル-ジエトキシスズ、ジオクチル-ジプロポキシスズ(各異性体)、ジオクチル-ジブトキシスズ(各異性体)、ジオクチル-ジペンチルオキシスズ(各異性体)、ジオクチル-ジヘキシルオキシスズ(各異性体)、ジオクチル-ジヘプチルオキシスズ(各異性体)、ジオクチル-ジオクチルオキシスズ(各異性体)等が挙げられる。
 先にも述べたが、一般に、有機スズ化合物は会合構造をとりやすく、例えば、ジアルキルスズジアルコキシド化合物はダイマー構造を形成したり、テトラアルキルジアルコキシジスタンオキサン化合物は、2分子または3分子が会合したラダー構造を形成して存在する場合もあることが知られているが、このような会合状態が変化する場合であっても、単量体構造で化合物を表すことは、当業者にとっては一般的である。
 工程(a)において使用されるジアルキルスズジアルコキシドの製造方法は、特に限定されないが、既に開示されているジアルキルスズジアルコキシドの製造方法(WO2005/111049など)が好ましく利用できる。これは、ジアルキル酸化スズとアルコールとから、ジアルキルスズジアルコキシドを製造する工程である。以下、該製造方法について説明する。
 アルコールとしては、メタノール、エタノール、プロパノール(各異性体)、ブタノール(各異性体)、ペンタノール(各異性体)、ヘキサノール(各異性体)、ヘプタノール(各異性体)、オクタノール(各異性体)、ノナノール(各異性体)、デカノール(各異性体)等のアルコールであって、該アルコールを構成する炭素原子の数が1~12の整数から選ばれる数であるアルコールが好ましく使用される。さらに好ましくは、エタノール、プロパノール(各異性体)、ブタノール(各異性体)、ペンタノール(各異性体)、ヘキサノール(各異性体)、ヘプタノール(各異性体)、オクタノール(各異性体)等の、該アルコールを構成する炭素原子の数が2~8の整数から選ばれる数であるアルコールである。
 ジアルキルスズジアルコキシドの製造で使用するジアルキル酸化スズは、下記式(37)で示したジアルキル酸化スズを用いる。
Figure JPOXMLDOC01-appb-C000044
 (式中:
 Rは、各々独立して、直鎖状または分岐状の炭素数1~12のアルキル基を表す。)
 上記式(37)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ウンデシル(各異性体)、ドデシル(各異性体)等の炭素数1~12の脂肪族炭化水素基であるアルキル基が挙げられる。より好ましくは炭素数1~8の直鎖状または分岐鎖状の飽和アルキル基であり、さらに好ましくは、n-ブチル基、n-オクチル基である。
 アルコールとジアルキル酸化スズとを脱水反応させ、生成する水を系外に除去しながらテトラアルキルジアルコキシジスタンオキサンおよび/またはジアルキルスズジアルコキシドを得る。該反応が実施される温度は、例えば、80~180℃の範囲で、生成する水を系外に蒸留除去するために、反応圧力にもよるが、100℃~180℃が好ましく、反応速度を高めるためには反応温度は高温が好ましいが、一方で、高温では分解等の好ましくない反応も起こる場合もあり、収率が低下することもあるので、更に好ましくは100℃~160℃の範囲である。反応の圧力は、生成する水が系外に除去できる圧力であり、反応温度にもよるが、20~1×10Paで行われる。脱水反応の反応時間に、特に制限はなく通常0.001~50時間、好ましくは0.01~10時間、より好ましくは0.1~2時間である。ジアルキルスズジアルコキシドを所望量含有する組成物が得られれば反応を終了してよい。反応の進行は、系外へ抜き出される水の量を測定することによっても求められるし、反応液をサンプリングして、119Sn-NMRによる方法でも求めることができる。
 ジアルキルスズジアルコキシドを含有する組成物は、主に、ジアルキルスズジアルコキシドとテトラアルキルジアルコキシジスタンオキサンを含有するが、該組成物に含有されるテトラアルキルジアルコキシジスタンオキサンとジアルキルスズジアルコキシドのモル比率が、両者を併せたモル%で表して、0:100~80:20の範囲である組成物、より好ましくは、10:90~70:30の範囲となった組成物を得たことを確認して反応を終了する。使用したアルコールはそのまま共存した状態で使用してもよいし、場合によってはアルコールを蒸留除去して使用してもよい。他の工程の反応器を小さくできる利点があるので、できるだけアルコールを除去しておくことが好ましい。除去する方法は、公知の蒸留による除去が好ましく、また蒸留に使用する蒸留器は公知の蒸留設備が使用できる。好ましい蒸留装置としては、短時間で除去できることから薄膜蒸留装置が好ましく使用できる。脱水反応の反応器の形式に特に制限はなく、公知の槽状、塔状の反応器が使用できる。水を含む低沸点反応混合物はガス状で蒸留によって反応器から抜き出し、製造されるジアルキルスズジアルコキシドを含む高沸点反応混合物を反応器下部から液状で抜き出せればよい。このような反応器として、たとえば攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、多管式反応器、連続多段蒸留塔、充填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、落滴蒸発器、細流相反応器、気泡塔のいずれかを含む反応器を用いる方式、およびこれらを組み合わせた方式等、公知の種々の方法が用いられる。平衡を生成系側に効率的にずらすという点では、塔状の反応器を用いる方法が好ましく、また形成される水を気相にすみやかに移動させられる気-液接触面積の大きな構造が好ましい。多管式反応器、多段蒸留塔、充填剤を充填した充填塔を用いた連続法も使用できるが、本工程で使用するジアルキル酸化スズが通常固体状であるため、まず、槽状反応器で実施し、次いで塔型反応器でジアルキルスズジアルコキシドの含有量をあげる方法が最も好ましい。反応器およびラインの材質は、悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 なお、上の製造方法で得られるジアルキルスズジアルコキシドを含有する組成物は、主に、ジアルキルスズジアルコキシドとテトラアルキルジアルコキシジスタンオキサンとを含有するが、テトラアルキルジアルコキシジスタンオキサンは、上記式(35)で表される化合物である。
 上記式(35)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ウンデシル(各異性体)、ドデシル(各異性体)等の炭素数1~12の脂肪族炭化水素基であるアルキル基が挙げられる。より好ましくは炭素数1~8の直鎖状または分岐鎖状の飽和アルキル基であり、さらに好ましくは、n-ブチル基、n-オクチル基である。
 上記式(35)で表される化合物の具体例としては、1,1,3,3-テトラメチル-1,3-ジエトキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジエトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジエトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジプロポキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジブトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジペンチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジヘキシルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジヘプチルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジオクチルオキシジスタンオキサン(各異性体)等が挙げられる。
 先にも述べたが、一般に、有機スズ化合物は会合構造をとりやすく、例えば、ジアルキルスズジアルコキシド化合物はダイマー構造を形成したり、テトラアルキルジアルコキシジスタンオキサン化合物は、2分子または3分子が会合したラダー構造を形成して存在する場合もあることが知られているが、このような会合状態が変化する場合であっても、単量体構造で化合物を表すことは、当業者にとっては一般的である。
 工程(a)は、上記式(34)で表されるジアルキルスズジアルコキシドと二酸化炭素とを反応させて、炭酸エステルと、上記式(35)で表されるテトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む反応液を得る工程である。
 本工程は、既に開示されている炭酸エステルの製造方法(WO03/055840、WO04/014840など)が好ましく使用される。
 本工程で使用するジアルキルスズジアルコキシドは、上述の、ジアルキル酸化スズとアルコールとの反応によって製造されたジアルキルスズジアルコキシドの場合と、連続製造時に、後述の工程(c)において再生されるジアルキルスズジアルコキシドの場合がある。また、後述するジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンを再生する工程から供給される場合もある。
 工程(a)では、まず、上記したジアルキルスズジアルコキシドにガス状の二酸化炭素を吸収させ、化学反応させてジアルキルスズジアルコキシドと二酸化炭素との結合体を含む混合物を得る。
 該化学反応させる際には、該ジアルキルスズジアルコキシドを液状、もしくは溶媒等によって液状として反応させる。液状とするには、加熱によって液状とする方法が好ましく使用でき、また、溶媒等によって液状としてもよい。反応させる圧力は、反応させる温度にもよるが、常圧~1MPaの範囲が好ましく、常圧~0.6MPaの範囲が更に好ましい。該反応させる温度は、反応させる圧力にもよるが、-40℃~80℃の範囲が好ましく、移送の際の流動性を考慮すると、0℃~80℃が更に好ましく、最も好ましい範囲は常温(例えば、20℃)~80℃である。反応時間は数秒~100時間の範囲で実施してよく、生産性等を考慮すれば、数分~10時間が好ましい。反応器は公知の槽型反応器、塔型反応器が使用できる。また複数の反応器を組み合わせて使用してもよい。反応は二酸化炭素ガス(気体)とジアルキルスズジアルコキシドを含有する組成物(液体)の反応であるため、効率よく反応させるためには、気液界面を大きくしてガスと液の接触面積を大きくすることが好ましい。このような気液界面を大きくして反応させる方法は公知の知見が利用でき、例えば、槽型反応器では、攪拌速度を上げたり、液中に気泡を発生させるような方法が好ましく、塔型反応器では、充填塔を利用したり、棚段塔を利用する方法が好ましい。このような塔型反応器の例としては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、向流トレイ等のトレイを使用した棚段塔方式のものや、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、ヘリパック、スルザーパッキング、メラパック等の各種充填物を充填した充填塔方式のものなどが利用できる。反応器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。反応は通常発熱反応であるから、冷却してもよいし、または反応器の放熱によって冷却してもよい。あるいは炭酸エステル化反応を併発させる目的であれば加熱してもよい。反応器の冷却、加熱はジャケットによる方法、内部コイルによる方法など公知の方法が使用できる。反応器に供給する二酸化炭素ガスとジアルキルスズジアルコキシドを含有する組成物はそれぞれ別々に反応器に供給してもよいし、反応器に供給する前に混合しておいてもよい。反応器の複数箇所から供給してもかまわない。反応終了は、例えば、119Sn-NMR分析によって決定することができる。
 次に、上記で得られたジアルキルスズジアルコキシドと二酸化炭素との結合体から、以下の方法により、炭酸エステルを含む反応液を得る。
 反応条件は、110℃~200℃の範囲、反応速度を高めるためには反応温度は高温が好ましいが、一方で、高温では分解等の好ましくない反応も起こる場合もあり、収率が低下することもあるので、好ましくは120℃~180℃の範囲であり、0.1時間~10時間の範囲、反応圧力は、1.5MPa~20MPa、好ましくは2.0MPa~10MPaの範囲である。反応は所望の炭酸エステルが反応器中に生成してから終了すればよい。反応の進行は、反応器内の反応液をサンプリングし、H-NMRやガスクロマトグラフィーなどの方法で生成した炭酸エステルを分析する方法などで確認できる。例えば、ジアルキルスズジアルコキシドおよび/またはジアルキルスズジアルコキシドと二酸化炭素との結合体中に含まれていたジアルキルスズジアルコキシドおよび/またはジアルキルスズジアルコキシドと二酸化炭素との結合体のモル数に対して10%以上生成したら反応を終了してもよく、炭酸エステルの収量を多くしたい場合、該値を90%以上になるまで反応を続けてから終了する。反応器は公知の反応器が使用でき、塔型反応器、槽型反応器共に好ましく使用できる。反応器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 次に、工程(b)を説明する。本工程は、工程(a)で得られた、炭酸エステルを含む反応液から、炭酸エステルを分離し、テトラアルキルジアルコキシジスタンオキサンおよび/またはテトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程である。分離方法は公知の方法や装置が好適に利用できる。好ましい方法は蒸留による方法である。
 工程(a)から移送された反応液をバッチあるいはセミバッチ、あるいは連続的に蒸留して炭酸エステルと残留液を得る。好ましい蒸留方法は、該反応液を蒸留器に供給し、炭酸エステルを気相成分として蒸留器上部から系外へ分離し、残留液を液状成分として蒸留器の底部から抜き出す方法である。本工程の温度は該炭酸エステルの沸点や圧力にもよるが、常温(例えば、20℃)~200℃の範囲でよく、高温では残留液中のスズ化合物の変性がおこる場合や、炭酸エステルが逆反応によって減少してしまう場合もあるので常温(例えば、20℃)~150℃の範囲が好ましい。圧力は、炭酸エステルの種類や、実施する温度にもよるが、通常、常圧~減圧条件でおこない、生産性を考慮すれば、100Pa~80KPaの範囲がさらに好ましく、100Pa~50KPaが最も好ましい範囲である。時間は、0.01時間~10時間の範囲で実施でき、高温で長時間実施すると、該反応液に含まれるスズ化合物が変性する場合や、炭酸エステルが逆反応によって減少する場合もあるため、0.01時間~0.5時間の範囲が好ましく、0.01時間~0.3時間の範囲が最も好ましい。蒸留器は公知の蒸留器が使用でき、塔型蒸留器、槽型蒸留器も好ましく使用することができるし、複数組み合わせて使用しても構わない。更に好ましい蒸留器は薄膜蒸発器、薄膜蒸留器であり、蒸留塔を備えた薄膜蒸発器、薄膜蒸留器が最も好ましい。蒸留器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 以上で説明した工程(a)および工程(b)において、ジアルキルスズジアルコキシドと二酸化炭素との結合体、テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体という語を使用したが、これらについて説明する。
 ここでいう、ジアルキルスズジアルコキシドと二酸化炭素との結合体とは、ジアルキルスズジアルコキシドのアルコキシ基部分が、カルボナート結合に一部または全部置き換わった(あるいは変化した)構造である。テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体についても同様に、テトラアルキルジアルコキシジスタンオキサンのアルコキシ基の部分が、カルボナート結合に一部または全部置き換わった(あるいは変化した)構造である。
 さらに、本実施の形態におけるジアルキルスズジアルコキシドと二酸化炭素との結合体、および、テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体について以下に例を挙げて説明する。上記したように、ジアルキルスズジアルコキシドと二酸化炭素との結合体とは、前述したジアルキルスズジアルコキシドのアルコキシ基部分が、上記したカルボナート結合に一部または全部置き換わった(あるいは変化した)構造である。該二酸化炭素との結合体の結合の存在については、119Sn-NMRや13C-NMR、H-NMR、X線構造解析などを組み合わせて公知の方法で確認することができるが、ジアルキルスズジアルコキシドと二酸化炭素との結合体の構造は、複雑な構造となる場合が多く、現在の分析技術では特定できない場合もあり、本実施の形態の、ジアルキルスズジアルコキシドと二酸化炭素との結合体は下記構造例に限定されない。テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体の構造についても、同様に、複雑な構造となる場合が多く、現在の分析技術では特定できない場合もあり、本実施の形態の、テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体は下記構造例に限定されない。
 前記した式(34)に示すジアルキルスズジアルコキシドに対応する、ジアルキルスズジアルコキシドと二酸化炭素との結合体の例としては、下記式(38)、(39)、(40)に代表される構造式を示すことができる。なお、これらの化合物は、単量体であっても会合体であっても多量体、重合体であってもかまわない。
Figure JPOXMLDOC01-appb-C000045
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 前記した式(35)に示すテトラアルキルジアルコキシジスタンオキサンに対応する、テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体の例としては、下記式(41)、(42)、(43)に代表される構造式を示すことができる。なお、これらの化合物は、単量体であっても会合体であっても多量体、重合体であってもかまわない。
Figure JPOXMLDOC01-appb-C000046
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 上記した式(38)から(43)で示した結合体のRおよびRの例は前述した通りであり、そのような二酸化炭素との結合体の例として、メトキシ-メチルカルボナート-ジブチル-スズ、エトキシ-エチルカルボナート-ジブチル-スズ、プロポキシ-プロピルカルボナート-ジブチル-スズ(各異性体)、ブトキシ-ブチルカルボナート-ジブチル-スズ(各異性体)、ペンチルオキシ-ペンチルカルボナート-ジブチル-スズ(各異性体)、ヘキシルオキシ-ヘキシルカルボナート-ジブチル-スズ(各異性体)、ヘプチルオキシ-ヘプチルカルボナート-ジブチル-スズ(各異性体)、ベンジルオキシ-ベンジルカルボナート-ジブチル-スズ、メトキシ-メチルカルボナートジオクチル-スズ、エトキシ-エチルカルボナート-ジオクチル-スズ、プロポキシ-プロピルカルボナート-ジオクチル-スズ(各異性体)、ブトキシ-ブチルカルボナート-ジオクチル-スズ(各異性体)、ペンチルオキシ-ペンチルカルボナート-ジオクチル-スズ(各異性体)、ヘキシルオキシ-ヘキシルカルボナート-ジオクチル-スズ(各異性体)、ヘプチルオキシ-ヘプチルカルボナート-ジオクチル-スズ(各異性体)、ベンジルオキシ-ベンジルカルボナート-ジオクチル-スズなどアルコキシ-アルキルカルボナート-ジアルキル-スズ、アラルキルオキシ-アラルキルカルボナート-ジアルキル-スズや、1-メトキシ-3-メチルカルボナート-1,1,3,3-テトラブチル-ジスタンオキサン、1-エトキシ-3-エチルカルボナート-1,1,3,3-テトラブチル-ジスタンオキサン、1-プロポキシ-3-プロピルカルボナート-1,1,3,3-テトラブチル-ジスタンオキサン(各異性体)、1-ブトキシ-3-ブチルカルボナート-1,1,3,3-テトラブチル-ジスタンオキサン(各異性体)、1-ペンチルオキシ-3-ペンチルカルボナート-1,1,3,3-テトラブチル-ジスタンオキサン(各異性体)、1-ヘキシルオキシ-3-ヘキシルカルボナート-1,1,3,3-テトラブチル-ジスタンオキサン(各異性体)、1-ヘプチルオキシ-3-ヘプチルカルボナート-1,1,3,3-テトラブチル-ジスタンオキサン(各異性体)、1-ベンジルオキシ-3-ベンジルカルボナート-1,1,3,3-テトラブチル-ジスタンオキサン、1-メトキシ-3-メチルカルボナート-1,1,3,3-テトラオクチル-ジスタンオキサン、1-エトキシ-3-エチルカルボナート-1,1,3,3-テトラオクチル-ジスタンオキサン、1-プロポキシ-3-プロピルカルボナート-1,1,3,3-テトラオクチル-ジスタンオキサン(各異性体)、1-ブトキシ-3-ブチルカルボナート-1,1,3,3-テトラオクチル-ジスタンオキサン(各異性体)、1-ペンチルオキシ-3-ペンチルカルボナート-1,1,3,3-テトラオクチル-ジスタンオキサン(各異性体)、1-ヘキシルオキシ-3-ヘキシルカルボナート-1,1,3,3-テトラオクチル-ジスタンオキサン(各異性体)、1-ヘプチルオキシ-3-ヘプチルカルボナート-1,1,3,3-テトラオクチル-ジスタンオキサン、(各異性体)、1-ベンジルオキシ-3-ベンジルカルボナート-1,1,3,3-テトラオクチル-ジスタンオキサンなどの1-アルコキシ-3-アルキルカルボナート-1,1,3,3-テトラアルキル-ジスタンオキサン、1-アラルキルオキシ-3-アラルキルカルボナート-1,1,3,3-テトラアルキル-ジスタンオキサンなどが挙げられる。上記した群のうちから単独で選ばれてもよいし、上記した群から選ばれる混合物であってもよい。
 式(38)から(43)で示される二酸化炭素との結合体のうち、Rが、n-ブチル基、n-オクチル基から選ばれるものが好ましい。
 上述したように、アルキルスズ組成物は、テトラアルキルスズアルコキシド化合物、モノアルキルスズアルコキシド化合物を含有するが、これらと二酸化炭素との結合体が生成する場合がある。
 例えば、上記式(26)で表されるトリアルキルスズアルコキシド化合物と、二酸化炭素との結合体の例を下記式(44)に示す。
Figure JPOXMLDOC01-appb-C000047
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 上記した式(44)で示した結合体のR、Rの例は前述した通りであり、そのような二酸化炭素との結合体の例として、トリブチル-メチルカルボナート-スズ、トリブチル-エチルカルボナート-スズ、トリブチル-プロピルカルボナート-スズ(各異性体)、トリブチル-ブチルカルボナート-スズ(各異性体)、トリブチル-ペンチルカルボナート-スズ(各異性体)、トリブチル-ヘキシルカルボナート-スズ(各異性体)、トリブチル-ヘプチルカルボナート-スズ、トリブチル-ベンジルカルボナート-スズ、トリオクチル-メチルカルボナート-スズ、トリオクチル-エチルカルボナート-スズ、トリオクチル-プロピルカルボナート-スズ(各異性体)、トリオクチル-ブチルカルボナート-スズ(各異性体)、トリオクチル-ペンチルカルボナート-スズ(各異性体)、トリオクチル-ヘキシルカルボナート-スズ(各異性体)、トリオクチル-ヘプチルカルボナート-スズ(各異性体)、トリオクチル-ベンジルカルボナート-スズなどのトリアルキル-アルキルカルボナート-スズやトリアルキル-アラルキルカルボナート-スズ等が挙げられる。上記した群のうちから単独で選ばれてもよいし、上記した群から選ばれる混合物であってもよい。
 また、上記式(27)で示したモノアルキルスズアルコキシド化合物と二酸化炭素との結合体の構造例を、下記式(45)、(46)、(47)に挙げることができる。式(45)、(46)、(47)で示した化合物の二酸化炭素結合体は多様な構造をとりやすく、下記式(45)、(46)、(47)に限定されない。
Figure JPOXMLDOC01-appb-C000048
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
 このようなモノアルキルスズアルコキシド化合物と二酸化炭素との結合体の例としては、ブチル-メトキシ-ジ-メチルカルボナート-スズ、ブチル-エトキシ-ジ-エチルカルボナート-スズ、ブチル-プロピロキシ-ジ-プロピルカルボナート-スズ(各異性体)、ブチル-ブトキシ-ジ-ブチルカルボナート-スズ(各異性体)、ブチル-ペンチロキシ-ジ-ペンチルカルボナート-スズ(各異性体)、ブチル-ヘキシルオキシ-ジ-ヘキシルカルボナート-スズ(各異性体)、ブチル-ヘプチルオキシ-ジ-ヘプチルカルボナート-スズ(各異性体)、ブチル-ベンジルオキシ-ジ-ベンジルカルボナート-スズ、オクチル-メトキシ-ジ-メチルカルボナート-スズ、オクチル-エトキシ-ジ-エチルカルボナート-スズ、オクチル-プロポキシ-ジ-プロピルカルボナート-スズ(各異性体)、オクチル-ブトキシ-ジ-ブチルカルボナート-スズ(各異性体)、オクチル-ペンチルオキシ-ジ-ペンチルカルボナート-スズ(各異性体)、オクチル-ヘキシルオキシ-ジ-ヘキシルカルボナート-スズ(各異性体)、オクチル-ヘプチルオキシ-ジ-ヘプチルカルボナート-スズ(各異性体)、オクチル-ベンジルオキシ-ジ-ベンジルカルボナート-スズなどのアルキル-アルコキシ-ジ-アルキルカルボナート-スズやアルキル-アラルキルオキシ-ジ-アラルキルカルボナート-スズ;ブチル-メチルカルボナート-スズオキシド、ブチル-エチルカルボナート-スズオキシド、ブチル-プロピルカルボナート-スズオキシド(各異性体)、ブチル-ブチルカルボナート-スズオキシド(各異性体)、ブチル-ペンチルカルボナート-スズオキシド(各異性体)、ブチル-ヘキシルカルボナート-スズオキシド(各異性体)、ブチル-ヘプチルカルボナート-スズオキシド(各異性体)、ブチル-ベンジルカルボナート-スズオキシド、オクチル-メチルカルボナート-スズオキシ、オクチル-エチルカルボナート-スズオキシ、オクチル-プロピルカルボナート-スズオキシ(各異性体)、オクチル-ブチルカルボナート-スズオキシ(各異性体)、オクチル-ペンチルカルボナート-スズオキシ(各異性体)、オクチル-ヘキシルカルボナート-スズオキシ(各異性体)、オクチル-ヘプチルカルボナート-スズオキシ(各異性体)、オクチル-ベンジルカルボナート-スズオキシなどのアルキル-アルキルカルボナート-スズオキシドやアルキル-アラルキルカルボナート-スズオキシド;1,1,3-トリブチル-1,3-ジ-メチルカルボナート-3-メトキシ-ジスタンオキサン、1,1,3-トリブチル-1,3-ジ-エチルカルボナート-3-エトキシ-ジスタンオキサン、1,1,3-トリブチル-1,3-ジ-プロピルカルボナート-3-プロポキシ-ジスタンオキサン(各異性体)、1,1,3-トリブチル-1,3-ジ-ブチルカルボナート-3-ブトキシ-ジスタンオキサン(各異性体)、1,1,3-トリブチル-1,3-ジ-ペンチルカルボナート-3-ペンチルオキシ-ジスタンオキサン(各異性体)、1,1,3-トリブチル-1,3-ジ-ヘキシルカルボナート-3-ヘキシルオキシ-ジスタンオキサン(各異性体)、1,1,3-トリブチル-1,3-ジ-ヘプチルカルボナート-3-ヘプチルオキシ-ジスタンオキサン(各異性体)、1,1,3-トリブチル-1,3-ジ-ベンジルカルボナート-3-ベンジルオキシ-ジスタンオキサン、1,1,3-トリオクチル-1,3-ジ-メチルカルボナート-3-メトキシ-ジスタンオキサン、1,1,3-トリオクチル-1,3-ジ-エチルカルボナート-3-エトキシ-ジスタンオキサン、1,1,3-トリオクチル-1,3-ジ-プロピルカルボナート-3-プロポキシ-ジスタンオキサン(各異性体)、1,1,3-トリオクチル-1,3-ジ-ブチルカルボナート-3-ブトキシ-ジスタンオキサン(各異性体)、1,1,3-トリオクチル-1,3-ジ-ペンチルカルボナート-3-ペンチルオキシ-ジスタンオキサン(各異性体)、1,1,3-トリオクチル-1,3-ジ-ヘキシルカルボナート-3-ヘキシルオキシ-ジスタンオキサン(各異性体)、1,1,3-トリオクチル-1,3-ジ-ヘプチルカルボナート-3-ヘプチルオキシ-ジスタンオキサン(各異性体)、1,1,3-トリオクチル-1,3-ジ-ベンジルカルボナート-3-ベンジルオキシ-ジスタンオキサンなどのトリアルキル-ジ-アルキルカルボナート-アルコキシ-ジスタンオキサンやトリアルキル-ジアラルキルカルボナート-アラルキルオキシ-ジスタンオキサン等が挙げられる。上記した群のうちから単独で選ばれてもよいし、上記した群から選ばれる混合物であってもよい。
 最も好ましい例としては、(n-ブチル)-ジ-(n-ブチルカルボナート)-(n-ブトキシ)-スズ、(n-ブチル)-ジ-(n-ペンチルカルボナート)-(n-ペンチルオキシ)-スズ、(n-ブチル)-ビス-(3-メチルブチルカルボナート)-(3-メチルブトキシ)-スズ、(n-ブチル)-ジ-(n-ヘキシルカルボナート)-(n-ヘキシルオキシ)-スズ、(n-ブチル)-ビス-(2-エチルブチルカルボナート)-(2-エチルブトキシ)-スズ、(n-オクチル)-ジ-(n-ブチルカルボナート)-(n-ブトキシ)-スズ、(n-オクチル)-ジ-(n-ペンチルカルボナート)-(n-ペンチルオキシ)-スズ、(n-オクチル)-ジ-(n-ヘキシルカルボナート)-(n-ヘキシルオキシ)-スズ、(n-オクチル)-ビス-(3-メチルブチルカルボナート)-(3-メチルブトキシ)-スズ、(n-オクチル)-ビス-(2-エチルブチルカルボナート)-(2-エチルブトキシ)-スズ、(n-ブチル)-(n-ブチルカルボナート)-スズオキシド、(n-ブチル)-(n-ペンチルカルボナート)-スズオキシド、(n-ブチル)-(3-メチルブチルカルボナート)-スズオキシド、(n-ブチル)-(n-ヘキシルカルボナート)-スズオキシド、(n-ブチル)-(2-エチルブチルカルボナート)-スズオキシド、(n-オクチル)-(n-ブチルカルボナート)-スズオキシド、(n-オクチル)-(n-ペンチルカルボナート)-スズオキシド、(n-オクチル)-(n-ヘキシルカルボナート)-スズオキシド、(n-オクチル)-(3-メチルブチルカルボナート)-スズオキシド、(n-オクチル)-(2-エチルブチルカルボナート)-スズオキシド、1,1,3-トリ-(n-ブチル)-1,3-ジ-(n-ブチルカルボナート)-3-(n-ブトキシ)-ジスタンオキサン、1,1,3-トリ-(n-ブチル)-1,3-ジ-(n-ペンチルカルボナート)-3-(n-ペンチルオキシ)-ジスタンオキサン、1,1,3-トリ-(n-ブチル)-1,3-ビス-(3-メチルブチルカルボナート)-3-(3-メチルブトキシ)-ジスタンオキサン、1,1,3-トリ-(n-ブチル)-1,3-ジ-(n-ヘキシルカルボナート)-3-(n-ヘキシルオキシ)-ジスタンオキサン、1,1,3-トリ-(n-ブチル)-1,3,3-ビス-(2-エチルブチルカルボナート)-3-(2-エチルブトキシ)-ジスタンオキサン、1,1,3-トリ-(n-オクチル)-1,3-ジ-(n-ブチルカルボナート)-3-(n-ブトキシ)-ジスタンオキサン、1,1,3-トリ-(n-オクチル)-1,3-ジ-(n-ペンチルカルボナート)-3-(n-ペンチルオキシ)-ジスタンオキサン、1,1,3-トリ-(n-オクチル)-1,3-ビス-(3-メチルブチルカルボナート)-3-(3-メチルブトキシ)-ジスタンオキサン、1,1,3-トリ-(n-オクチル)-1,3-ジ-(n-ヘキシルカルボナート)-3-(n-ヘキシルオキシ)-ジスタンオキサン、1,1,3-トリ-(n-オクチル)-1,3-ビス-(2-エチルブチルカルボナート)-3-(2-エチルブトキシ)-ジスタンオキサンである。
 上記したジアルキルスズジアルコキシド、テトラアルキルジアルコキシジスタンオキサン、トリアルキルスズアルコキシド化合物、モノアルキルスズアルコキシド化合物と二酸化炭素との結合体は、それぞれ混合物であっても、単独であっても構わないし、相互に配位、会合していても構わない。一般的に、アルキルスズアルコキシドは配位子が交換しやすく、構造の特定が困難であったり、上記した以外にも配位、会合した二酸化炭素との結合体も存在する可能性はある。ただし、現在の解析技術で特定できないにすぎず、上記したようなアルキル基、アルコキシ基、カルボナート基の規定に基づいたジアルキルスズジアルコキシド、テトラアルキルジアルコキシジスタンオキサン、トリアルキルスズアルコキシド化合物、モノアルキルスズアルコキシド化合物と二酸化炭素との結合体は、本実施の形態において使用することができる。
 次に、工程(c)を説明する。本工程(c)は、工程(b)で得た残留液と、上記式(36)で表されるアルコールとを反応させて、副生する水を蒸留によって除去してジアルキルスズジアルコキシドを再生し、該ジアルキルスズジアルコキシドを工程(a)のジアルキルスズジアルコキシドとして使用する工程である。
 上記式(36)で表されるアルコールとしては、メタノール、エタノール、プロパノール(各異性体)、ブタノール(各異性体)、ペンタノール(各異性体)、ヘキサノール(各異性体)、ヘプタノール(各異性体)、オクタノール(各異性体)、ノナノール(各異性体)、デカノール(各異性体)等のアルコールであって、該アルコールを構成する炭素原子の数が1~12の整数から選ばれる数であるアルコールが好ましく使用される。さらに好ましくは、エタノール、プロパノール(各異性体)、ブタノール(各異性体)、ペンタノール(各異性体)、ヘキサノール(各異性体)、ヘプタノール(各異性体)、オクタノール(各異性体)であり、さらに好ましくは、上記したジアルキルスズジアルコキシドの製造で使用したアルコールと同じアルコールを使用する。
 該反応で副生する水を蒸留によって除去する条件は、上記したジアルキルスズジアルコキシドの製造における水の蒸留と同様の条件で実施することが好ましい。ジアルキルスズジアルコキシドを所望量含有する組成物が得られれば反応を終了してよい。反応の進行は、系外へ抜き出される水の量を測定することによっても求められるし、反応液をサンプリングして、119Sn-NMRによる方法でも求めることができる。該ジアルキルスズジアルコキシドを含有する組成物を、工程(a)で使用するためには、ジアルキルスズジアルコキシドを含有する組成物に含有されるテトラアルキルジアルコキシジスタンオキサンとジアルキルスズジアルコキシドのモル比率が、両者を併せたモル%で表して、0:100~80:20の範囲である組成物、より好ましくは、10:90~70:30の範囲となった組成物を得たことを確認して反応を終了する。使用したアルコールはそのまま共存した状態で使用してもよいし、場合によってはアルコールを蒸留除去して使用してもよい。他の工程の反応器を小さくできる利点があるので、できるだけアルコールを除去しておくことが好ましい。除去する方法は、公知の蒸留による除去が好ましく、また蒸留に使用する蒸留器は公知の蒸留設備が使用できる。好ましい蒸留装置としては、短時間で除去できることから薄膜蒸留装置が好ましく使用できる。
 本工程(c)では、ジアルキル酸化スズとアルコールとの反応によるジアルキルスズジアルコキシドの製造工程とは異なって、通常固体であるジアルキル酸化スズを使用しないので、反応器の制約は少ない。すなわち、脱水反応の反応器の形式に特に制限はなく、公知の槽状、塔状の反応器が使用できる。水を含む低沸点反応混合物はガス状で蒸留によって反応器から抜き出し、製造されるジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンを含む高沸点反応混合物を反応器下部から液状で抜き出せればよい。このような反応器として、たとえば攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、多管式反応器、連続多段蒸留塔、充填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、落滴蒸発器、細流相反応器、気泡塔のいずれかを含む反応器を用いる方式、およびこれらを組み合わせた方式等、公知の種々の方法が用いられる。平衡を生成系側に効率的にずらすという点で、塔状の反応器を用いる方法が好ましく、また形成される水を気相にすみやかに移動させられる気-液接触面積の大きな構造が好ましい。多管式反応器、多段蒸留塔、充填剤を充填した充填塔を用いた連続法が特に好ましい。反応器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 以上、ジアルキルスズジアルコキシドを使用した炭酸エステルの製造例を示したが、該炭酸エステルの製造過程において、モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物とが生成する。該モノアルキルスズアルコキシド化合物および該トリアルキルスズアルコキシド化合物は、上記の炭酸エステルの製造を繰り返しおこなっているうちに、反応系内に徐々に蓄積し、反応速度が低下したり、炭酸エステルの収率が低下する場合がある。したがって、反応系よりモノアルキルスズアルコキシド化合物およびトリアルキルスズアルコキシド化合物を含むアルキルスズ組成物を一部抜き出し、上述した工程(1)のアルキルスズ組成物として使用し、工程(2)によりアルキルスズ化合物を得、該アルキルスズ化合物と、炭酸エステルおよび/またはアルコールとの反応によって、ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンを再生することが好ましい。該ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンの再生は、好ましくは、上述の工程(b)および/または工程(c)の後に実施し、再生されたジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンは、工程(a)のジアルキルスズジアルコキシド、および/または、工程(b)の残留液と混合して工程(c)の原料として使用される。
 図2は、炭酸エステルの製造方法と本実施の形態によるジアルキルスズ化合物の製造方法とを組み合わせた、改良された炭酸エステルの製造方法を説明するフロー図を示す。前記したように、炭酸エステルの製造方法の工程(b)および/または工程(c)から抜き出されるアルキルスズ組成物の一部または全部を、工程(1)の原料として使用する。工程(1)~工程(2)および工程(Z)を経て得られたジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンは、工程(a)のジアルキルスズジアルコキシドとして使用してもよいし、工程(b)の残留液と混合して工程(c)の原料としてもよい。炭酸エステルの製造において、ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンのアルキル基不均化反応によって生成するモノアルキルスズアルコキシド化合物およびトリアルキルスズアルコキシド化合物は、炭酸エステルの製造のための触媒としての活性はなく、いわゆる失活体として系外に除去する必要があり、系外に除去された失活体は廃棄せざるを得なかった。本実施の形態の方法の、改良された炭酸エステルの製造方法によると、モノアルキルスズアルコキシドおよびトリアルキルスズアルコキシドは、ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンとして再生され、炭酸エステル製造用の触媒として再び使用することができるため、廃棄物の生成量が圧倒的に減少する利点がある。
 以上で説明したように、本実施の形態のジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の製造方法(工程(Z))は、該炭酸エステルの製造工程において生成するモノアルキルスズアルコキシド化合物および/またはトリアルキルスズジアルコキシド化合物からの、ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンの再生工程における1つの工程としての側面があるが、これとは別に、本実施の形態の方法で製造されるジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を原料とし、下記工程(A)~工程(B)を実施する炭酸エステルの製造方法であって、上記の方法とは異なる炭酸エステルの製造方法における工程の1つという側面をも有する。
 工程(A):本実施の形態の製造方法で製造されるジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物と、二酸化炭素とを反応させて、炭酸エステルとテトラアルキルジアルコキシジスタンオキサン化合物および/または該テトラアルキルジアルコキシジスタンオキサン化合物と二酸化炭素との結合体を含む反応液を得る工程;
 工程(B):該反応液から蒸留によって炭酸エステルを分離し、テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程。
 工程(A)は、ジアルキルスズジアルコキシドの代わりに、工程(Z)で製造されるジアルキルスズジアルコキシド化合物を使用する以外は、上記した工程(a)と同様の工程であり、以下に示す方法によって実施することができる。工程(Z)で製造されるジアルキルスズジアルコキシド化合物としては、例えば、図1および2に例示したフローにおいて工程(Z)で製造されるジアルキルスズジアルコキシド化合物を使用してもよいし、後述の、工程(C)で得られるアルキルスズ化合物を使用して工程(Z)を実施して製造されるジアルキルスズジアルコキシド化合物を使用してもよい。
 工程(A)では、まず、工程(Z)で製造されたジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物にガス状の二酸化炭素を吸収させ、化学反応させてジアルキルスズジアルコキシド化合物と二酸化炭素との結合体を含む混合物を得る。
 該化学反応させる際には、該ジアルキルスズジアルコキシド化合物を液状、もしくは溶媒等によって液状として反応させる。液状とするには、加熱によって液状とする方法が好ましく使用でき、また、溶媒等によって液状としてもよい。反応させる圧力は、反応させる温度にもよるが、常圧~1MPaの範囲が好ましく、常圧~0.6MPaの範囲が更に好ましい。該反応させる温度は、反応させる圧力にもよるが、-40℃~80℃の範囲が好ましく、移送の際の流動性を考慮すると、0℃~80℃が更に好ましく、最も好ましい範囲は常温(例えば、20℃)~80℃である。反応時間は数秒~100時間の範囲で実施してよく、生産性等を考慮すれば、数分~10時間が好ましい。反応器は公知の槽型反応器、塔型反応器が使用できる。また複数の反応器を組み合わせて使用してもよい。反応は二酸化炭素ガス(気体)とジアルキルスズジアルコキシド化合物を含有する組成物(液体)の反応であるため、効率よく反応させるためには、気液界面を大きくしてガスと液の接触面積を大きくすることが好ましい。このような気液界面を大きくして反応させる方法は公知の知見が利用でき、例えば、槽型反応器では、攪拌速度を上げたり、液中に気泡を発生させるような方法が好ましく、塔型反応器では、充填塔を利用したり、棚段塔を利用する方法が好ましい。このような塔型反応器の例としては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、向流トレイ等のトレイを使用した棚段塔方式のものや、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、ヘリパック、スルザーパッキング、メラパック等の各種充填物を充填した充填塔方式のものなどが利用できる。反応器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。反応は通常発熱反応であるから、冷却してもよいし、または反応器の放熱によって冷却してもよい。あるいは炭酸エステル化反応を併発させる目的であれば加熱してもよい。反応器の冷却、加熱はジャケットによる方法、内部コイルによる方法など公知の方法が使用できる。反応器に供給する二酸化炭素ガスとジアルキルスズジアルコキシド化合物を含有する組成物はそれぞれ別々に反応器に供給してもよいし、反応器に供給する前に混合しておいてもよい。反応器の複数箇所から供給してもかまわない。反応終了は、例えば、119Sn-NMR分析によって決定することができる。
 次に、上記で得られたジアルキルスズジアルコキシド化合物と二酸化炭素との結合体から、以下の方法により、炭酸エステルを含む反応液を得る。
 反応条件は、110℃~200℃の範囲、反応速度を高めるためには反応温度は高温が好ましいが、一方で、高温では分解等の好ましくない反応も起こる場合もあり、収率が低下することもあるので、好ましくは120℃~180℃の範囲であり、0.1時間~10時間の範囲、反応圧力は、1.5MPa~20MPa、好ましくは2.0MPa~10MPaの範囲である。反応は所望の炭酸エステルが反応器中に生成してから終了すればよい。反応の進行は、反応器内の反応液をサンプリングし、H-NMRやガスクロマトグラフィーなどの方法で生成した炭酸エステルを分析する方法などで確認できる。例えば、ジアルキルスズジアルコキシド化合物および/またはジアルキルスズジアルコキシド化合物と二酸化炭素との結合体のモル数に対して10%以上生成したら反応を終了してもよく、炭酸エステルの収量を多くしたい場合、該値を90%以上になるまで反応を続けてから終了する。反応器は公知の反応器が使用でき、塔型反応器、槽型反応器共に好ましく使用できる。反応器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 次に、工程(B)を説明する。本工程は、工程(A)で得られた、炭酸エステルを含む反応液から、炭酸エステルを分離し、テトラアルキルジアルコキシジスタンオキサン化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物と二酸化炭素との結合体を含む残留液を得る工程である。分離方法は公知の方法や装置が好適に利用できる。好ましい方法は蒸留による方法である。
 工程(A)から移送された反応液をバッチあるいはセミバッチ、または連続的に蒸留して炭酸エステルと残留液を得る。好ましい蒸留方法は、該反応液を蒸留器に供給し、炭酸エステルを気相成分として蒸留器上部から系外へ分離し、残留液を液状成分として蒸留器の底部から抜き出す方法である。本工程の温度は該炭酸エステルの沸点や圧力にもよるが、常温(例えば、20℃)~200℃の範囲でよく、高温では残留液中のスズ化合物の変性がおこる場合や、炭酸エステルが逆反応によって減少してしまう場合もあるので常温(例えば、20℃)~150℃の範囲が好ましい。圧力は、炭酸エステルの種類や、実施する温度にもよるが、通常、常圧~減圧条件でおこない、生産性を考慮すれば、100Pa~80KPaの範囲がさらに好ましく、100Pa~50KPaが最も好ましい範囲である。時間は、0.01時間~10時間の範囲で実施でき、高温で長時間実施すると、該反応液に含まれるスズ化合物が変性する場合や、炭酸エステルが逆反応によって減少する場合もあるため、0.01時間~0.5時間の範囲が好ましく、0.01時間~0.3時間の範囲が最も好ましい。蒸留器は公知の蒸留器が使用でき、塔型蒸留器、槽型蒸留器も好ましく使用することができるし、複数組み合わせて使用しても構わない。更に好ましい蒸留器は薄膜蒸発器、薄膜蒸留器であり、蒸留塔を備えた薄膜蒸発器、薄膜蒸留器が最も好ましい。蒸留器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 さらに、本実施の形態では、上記の工程(A)~工程(B)に、下記工程(C)を付加して、該工程(C)で製造されるアルキルスズ化合物を、工程(Z)のアルキルスズ化合物として使用することもできる。
 工程(C):工程(B)の残留液と、一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と、反応させて、下記i)、ii)の群から選ばれる少なくとも1つのアルキルスズ化合物を製造する工程;
 i)1つのスズ原子を有し、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物、
 ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物。
 当該工程(C)は、上で説明した、工程(1)と類似していて、以下のような方法で実施される。
 工程(C)において、一般式HOXで表される酸としては、このような酸としては、有機酸が好ましく使用される。有機酸としては、カルボン酸、スルホン酸、フェノール等を例示することができるが、好ましくはカルボン酸が使用される。カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、n-酪酸、イソ酪酸、吉草酸、イソ吉草酸、2-メチルブタン酸、ピバリン酸、ヘキサン酸、イソカプロン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、ヘプタン酸(各異性体)、オクタン酸(各異性体)、ノナン酸(各異性体)、デカン酸(各異性体)、ウンデカン酸(各異性体)、ドデカン酸(各異性体)、テトラデカン酸(各異性体)、ヘキサデカン酸(各異性体)、アクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、メタクリル酸、アンゲリカ酸、チグリン酸、アリル酢酸、ウンデセン酸(各異性体)等の飽和もしくは不飽和脂肪族モノカルボン酸化合物;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸(各異性体)、オクタン二酸(各異性体)、ノナン二酸(各異性体)、デカン二酸(各異性体)、マレイン酸、フマル酸、メチルマレイン酸、メチルフマル酸、ペンテン二酸(各異性体)、イタコン酸、アリルマロン酸等の飽和もしくは不飽和脂肪族ジカルボン酸;1,2,3-プロパントリカルボン酸、1,2,3-プロペントリカルボン酸、2,3-ジメチルブタン-1,2,3-トリカルボン酸等の飽和もしくは不飽和脂肪族トリカルボン酸化合物;安息香酸、メチル安息香酸(各異性体)、エチル安息香酸(各異性体)、プロピル安息香酸(各異性体)、ジメチル安息香酸(各異性体)、トリメチル安息香酸(各異性体)等の芳香族者カルボン酸化合物;フタル酸、イソフタル酸、テレフタル酸、メチルイソフタル酸(各異性体)等の芳香族ジカルボン酸化合物;ヘミメリト酸、トリメリト酸、トリメシン酸等の芳香族トリカルボン酸化合物等を挙げることができる。これらのカルボン酸の中でも、飽和モノカルボン酸が好ましく使用される。より好ましくは、標準沸点が300℃以下の飽和モノカルボン酸、さらに好ましくは標準沸点が250℃以下の飽和ものカルボン酸が使用される。標準沸点とは、化学大辞典(共立出版株式会社、2003年10月1日発行)に記載されているように、1気圧における沸点を指す。具体的には、酢酸、プロピオン酸、n-酪酸、イソ酪酸、吉草酸、イソ吉草酸、2-メチルブタン酸、ピバリン酸、ヘキサン酸が好ましく使用される。
 また、工程(C)において、一般式XOXで表される酸無水物としては、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水イソ吉草酸、無水コハク酸、無水マレイン酸、無水プロピオン酸、無水グルタル酸等の脂肪族無水物;無水安息香酸、無水フタル酸、無水ピロメリト酸等の芳香族酸無水物を挙げることができる。これらの中でも、好ましくは標準沸点が300℃以下の酸無水物が使用され、反応後、過剰の酸無水物の除去を容易にするため、さらに好ましくは標準沸点が200℃以下の酸無水物が使用される。さらに、副生するカルボン酸エステル等を系外へ除去することが容易であり、工業的に容易に入手できるという点から、無水マレイン酸、無水酢酸が好ましい。
 これらの酸および酸無水物は単独でも複数種を混合しても用いることができるが、酸を使用する場合、例えば、テトラアルキルジアルコキシジスタンオキサン化合物と酸を反応させた場合、水が生成する場合が多い。該水を除去するために、蒸留分離や膜分離をおこなったり、脱水剤を使用してもよい。また、脱水剤として酸無水物を組み合わせて使用するのも好ましい。さらに、酸無水物のみを使用する場合は、例えば、テトラアルキルジアルコキシジスタンオキサン化合物と無水酢酸との反応において水が生成しない場合が多いことから、酸無水物のみを使用する方法も好ましい。
 酸および/または酸無水物の使用量は、工程(C)における反応速度や最終的なジアルキルスズ化合物の収率を勘案して、工程(B)で得た残留物に含有されるスズ原子に対して化学量論比で0.1~50倍の範囲を使用することが好ましく、反応器の大きさや、反応速度を考慮すれば0.5~20倍の範囲を使用することがさらに好ましい。化学量論比で0.1より少ない場合反応が進行しにくい場合があり、逆に化学量論比で50倍より多く使用しても当該工程における反応速度や最終的なジアルキルスズ化合物の収率に影響を与えない場合が多い。
 工程(C)の反応は、好ましくは-20℃以上300℃以下の反応温度で実施し、より好ましくは-10℃以上250℃以下の反応温度で実施し、反応速度を高めるためには反応温度は高温が好ましいが、一方で、高温では分解等の好ましくない反応も起こる場合もあり、収率が低下することもあるので、さらに好ましくは0℃以上230℃以下の反応温度で実施する。また、工程(C)の反応は、アルゴン、ネオン、窒素などの不活性ガス雰囲気下で行われることが好ましい。
 工程(C)では溶媒を用いる必要はないが、流動性を向上させる、反応操作を容易にする、あるいは反応において生成する場合に該水を効率よく系外に除去する目的で溶媒を用いることができる。このような溶媒として、例えば、炭素数5~16の直鎖状、分岐状、環状の炭化水素;炭素数4~16の直鎖状、分岐状、環状の炭化水素からなるエーテル類;炭素数1~16の直鎖状、分岐状、環状のハロゲン化炭化水素類などが挙げられる。具体的には、ペンタン(各異性体)、ヘキサン(各異性体)、ヘプタン(各異性体)、オクタン(各異性体)、ノナン(各異性体)、デカン(各異性体)、ヘキサデカン(各異性体)、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、キシレン(各異性体)、エチルベンゼンなどから選ばれる鎖状、環状の炭化水素;ジエチルエーテル、ジプロピルエーテル(各異性体)、ジブチルエーテル(各異性体)、ジヘキシルエーテル(各異性体)、ジオクチルエーテル(各異性体)、ジフェニルエーテルなどから選ばれるエーテル類;塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、テトラクロロエタン、ジクロロベンゼン(異性体)などから選ばれるハロゲン化炭化水素類を用いることができる。これらの溶媒は単独でも2種類以上の混合物として使用することもできる。
 当該工程(C)で製造されるアルキルスズ化合物は、下記式(48)で表されるジアルキルスズ化合物、下記式(49)で表されるテトラアルキルジスタンオキサン化合物の群から選ばれる少なくとも1つのアルキルスズ化合物である。
Figure JPOXMLDOC01-appb-C000049
 (式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは酸素原子を表し;
 OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXであり;
 aおよびbは、各々0~2の整数であり、a+b=2である)
Figure JPOXMLDOC01-appb-C000050

(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは酸素原子を表し;
 OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXである。)
 上記式(48)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるジアルキルスズ化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(48)におけるOXおよびOXは、その共役酸であるHOXおよびHOXがブレンステッド酸であって、該共役酸のpKaが、0以上6.8以下であれば、特に制限はないが、好ましくは、アシルオキシル基、アリールオキシ基よりなる群から選ばれる少なくとも1種の置換基であって、その共役酸のpKaが、0以上6.8以下のものが好ましい。さらに好ましくは、該基を構成する炭素原子の数が、0~12の整数より選ばれる数である基であることが好ましい。このような基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ラウロイルオキシ基等の、直鎖状もしくは分岐鎖状の飽和アルキル基とカルボニル基と酸素原子から構成されるアシルオキシル基;フェノキシ基、メチルフェノキシ基(各異性体)、エチルフェノキシ基(各異性体)、プロピルフェノキシ基(各異性体)、ブチルフェノキシ基(各異性体)、ペンチルフェノキシ基(各異性体)、ヘキシルフェノキシ基(各異性体)、ジメチルフェノキシ基(各異性体)、メチルエチルフェノキシ基(各異性体)、メチルプロピルフェノキシ基(各異性体)、メチルブチルフェノキシ基(各異性体)、メチルペンチルフェノキシ基(各異性体)、ジエチルフェノキシ基(各異性体)、エチルプロピルフェノキシ基(各異性体)、エチルブチルフェノキシ基(各異性体)、ジプロピルフェノキシ基(各異性体)、トリメチルフェノキシ基(各異性体)、ジメチルエチルフェノキシ基(各異性体)、ジメチルプロピルフェノキシ基(各異性体)、ジメチルブチルフェノキシ基(各異性体)、メチルエチルプロピルフェノキシ基、メチルジメチルフェノキシ基、トリエチルフェノキシ基(各異性体)等のアリールオキシ基;等を挙げることができる。
 上記式(48)で表されるジアルキルスズ化合物の具体例としては、ジメチル-ジアセトキシスズ、ジメチル-ジプロピオニルオキシスズ(各異性体)、ジメチル-ジブチリルオキシスズ(各異性体)、ジメチル-バレリルオキシスズ(各異性体)、ジメチル-ジラウロリルオキシスズ(各異性体)、ジブチル-ジアセトキシスズ(各異性体)、ジブチル-ジプロピオニルオキシスズ(各異性体)、ジブチル-ジブチリルオキシスズ(各異性体)、ジブチル-ジバレリルオキシスズ(各異性体)、ジブチル-ジラウロリルオキシスズ(各異性体)、ジオクチル-ジアセトキシスズ(各異性体)、ジオクチル-ジプロピオニルオキシスズ(各異性体)、ジオクチル-ジブチリルオキシスズ(各異性体)、ジオクチル-バレリルオキシスズ(各異性体)、ジオクチル-ジラウロリルオキシスズ(各異性体)等のジアルキル-ジアシルオキシスズ;ジメチル-ジフェノキシスズ、ジメチル-ジ(メチルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルフェノキシ)スズ(各異性体)、ジメチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジメチル-ジ(トリエチルフェノキシ)スズ(各異性体)、ジブチル-ジフェノキシスズ(各異性体)、ジブチル-ジ(メチルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルフェノキシ)スズ(各異性体)、ジブチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジブチル-ジ(トリエチルフェノキシ)スズ(各異性体)、ジオクチル-ジフェノキシスズ(各異性体)、ジオクチル-ジ(メチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(トリエチルフェノキシ)スズ(各異性体)等のアルキル-ジアリールオキシスズ等を挙げることができる。
 上記式(49)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるテトラアルキルジスタンオキサン化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(49)におけるOXおよびOXは、その共役酸であるHOXおよびHOXがブレンステッド酸であって、該共役酸のpKaが、0以上6.8以下であれば、特に制限はないが、好ましくは、アシルオキシル基、アリールオキシ基よりなる群から選ばれる少なくとも1種の置換基であって、その共役酸のpKaが、0以上6.8以下のものが好ましい。さらに好ましくは、該基を構成する炭素原子の数が、0~12の整数より選ばれる数である基であることが好ましい。このような基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ラウロイルオキシ基等の、直鎖状もしくは分岐鎖状の飽和アルキル基とカルボニル基と酸素原子から構成されるアシルオキシル基;フェノキシ基、メチルフェノキシ基(各異性体)、エチルフェノキシ基(各異性体)、プロピルフェノキシ基(各異性体)、ブチルフェノキシ基(各異性体)、ペンチルフェノキシ基(各異性体)、ヘキシルフェノキシ基(各異性体)、ジメチルフェノキシ基(各異性体)、メチルエチルフェノキシ基(各異性体)、メチルプロピルフェノキシ基(各異性体)、メチルブチルフェノキシ基(各異性体)、メチルペンチルフェノキシ基(各異性体)、ジエチルフェノキシ基(各異性体)、エチルプロピルフェノキシ基(各異性体)、エチルブチルフェノキシ基(各異性体)、ジプロピルフェノキシ基(各異性体)、トリメチルフェノキシ基(各異性体)、ジメチルエチルフェノキシ基(各異性体)、ジメチルプロピルフェノキシ基(各異性体)、ジメチルブチルフェノキシ基(各異性体)、メチルエチルプロピルフェノキシ基、メチルジメチルフェノキシ基、トリエチルフェノキシ基(各異性体)等のアリールオキシ基;等を挙げることができる。
 上記式(49)で表される化合物の具体例としては、1,1,3,3-テトラメチル-1,3-ジアセトキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジアセトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジアセトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)等の1,1,3,3-テトラアルキル-1,3-ジアシルオキシジスタンオキサン;1,1,3,3-テトラメチル-1,3-ジフェノキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(トリエチルフェノキシ)スズ(各異性体)、1,1,3,3-テトラブチル1,3-ジフェノキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(トリエチルフェノキシ)スズ(各異性体)、1,1,3,3-テトラオクチル1,3-ジフェノキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(トリエチルフェノキシ)スズ(各異性体)等の1,1,3,3-テトラアルキル-1,3-ジアリールオキシジスタンオキサンを挙げることができる。
 一般に、有機スズ化合物は会合構造をとりやすく、例えばジアルキルスズジアルコキシドはダイマー構造を形成したり、テトラアルキルジアルコキシジスタンオキサンは、2分子または3分子が会合したラダー構造を形成して存在する場合もあることが知られている。このような会合状態が変化する場合であっても、単量体構造で化合物を表すことは、当業者にとっては一般的である。
 図3は、上で説明した、工程(A)~工程(C)および工程(Z)を組み合わせた炭酸エステルの新しい製造方法を説明するフロー図である。
 さらに、上記図3で示した炭酸エステルの新しい製造方法の別法として、下記工程(I)~工程(III)を含む方法によってジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物を製造し、該ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物を使用して工程(Z)をおこなう方法を説明する。
 工程(I):下記一般式(50)で表されるジアルキルスズジアルコキシドと二酸化炭素とを反応させて、炭酸エステルと下記一般式(51)で表されるテトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む反応液を得る工程;
Figure JPOXMLDOC01-appb-C000051
  
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数2~8のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000052
  
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数2~8のアルキル基を表す。)
 工程(II):該反応液から蒸留によって炭酸エステルを分離し、テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程;
 工程(III);該工程(II)の残留液と、一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と、を反応させて、該酸および/または該酸無水物に由来する基(OX基)を有する化合物であって、下記式(52)で表されるジアルコキシスズ化合物および/または下記式(53)で表されるテトラアルキルジスタンオキサン化合物を製造する工程。
Figure JPOXMLDOC01-appb-C000053
  
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは、酸素原子を表し;
 OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXを表す。)
Figure JPOXMLDOC01-appb-C000054
  
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは、酸素原子を表し;
 OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXを表す。)
 上で示した化合物について、まず説明する。
 上記式(50)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるジアルキルスズ化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(50)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が2~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。したがって、上記式(50)における基ORとしては、好ましくは、メトキシ基、エトキシ基、プロピルオキシ基(各異性体)、ブチルオキシ基(各異性体)、ペンチルオキシ基(各異性体)、ヘキシルオキシ基(各異性体)、ヘプチルオキシ基(各異性体)、オクチルオキシ基(各異性体)、ノニルオキシ基(各異性体)、デシルオキシ基(各異性体)、ドデシルオキシ基(各異性体)等のアルコキシ基であり、さらに好ましくは、エトキシ基、プロピルオキシ基(各異性体)、ブチルオキシ基(各異性体)、ペンチルオキシ基(各異性体)、ヘキシルオキシ基(各異性体)、ヘプチルオキシ基(各異性体)、オクチルオキシ基(各異性体)である。
 上記式(50)で表されるジアルキルスズジアルコキシドの具体例としては、ジメチル-ジメトキシスズ、ジメチル-ジエトキシスズ、ジメチル-ジプロポキシスズ(各異性体)、ジメチル-ジブトキシスズ(各異性体)、ジメチル-ジペンチルオキシスズ(各異性体)、ジメチル-ジヘキシルオキシスズ(各異性体)、ジメチル-ジヘプチルオキシスズ(各異性体)、ジメチル-ジオクチルオキシスズ(各異性体)、ジブチル-ジメトキシスズ(各異性体)、ジブチル-ジエトキシスズ(各異性体)、ジブチル-ジプロポキシスズ(各異性体)、ジブチル-ジブトキシスズ(各異性体)、ジブチル-ジペンチルオキシスズ(各異性体)、ジブチル-ジヘキシルオキシスズ(各異性体)、ジブチル-ジヘプチルオキシスズ(各異性体)、ジブチル-ジオクチルオキシスズ(各異性体)、ジオクチル-ジメトキシスズ、ジオクチル-ジエトキシスズ、ジオクチル-ジプロポキシスズ(各異性体)、ジオクチル-ジブトキシスズ(各異性体)、ジオクチル-ジペンチルオキシスズ(各異性体)、ジオクチル-ジヘキシルオキシスズ(各異性体)、ジオクチル-ジヘプチルオキシスズ(各異性体)、ジオクチル-ジオクチルオキシスズ(各異性体)等が挙げられる。
 上記式(51)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるテトラアルキルジスタンオキサン化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(51)におけるOXおよびOXは、その共役酸であるHOXおよびHOXがブレンステッド酸であって、該共役酸のpKaが、0以上6.8以下であれば、特に制限はないが、好ましくは、アシルオキシル基、アリールオキシ基よりなる群から選ばれる少なくとも1種の置換基であって、その共役酸のpKaが、0以上6.8以下のものが好ましい。さらに好ましくは、該基を構成する炭素原子の数が、0~12の整数より選ばれる数である基であることが好ましい。このような基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ラウロイルオキシ基等の、直鎖状もしくは分岐鎖状の飽和アルキル基とカルボニル基と酸素原子から構成されるアシルオキシル基;フェノキシ基、メチルフェノキシ基(各異性体)、エチルフェノキシ基(各異性体)、プロピルフェノキシ基(各異性体)、ブチルフェノキシ基(各異性体)、ペンチルフェノキシ基(各異性体)、ヘキシルフェノキシ基(各異性体)、ジメチルフェノキシ基(各異性体)、メチルエチルフェノキシ基(各異性体)、メチルプロピルフェノキシ基(各異性体)、メチルブチルフェノキシ基(各異性体)、メチルペンチルフェノキシ基(各異性体)、ジエチルフェノキシ基(各異性体)、エチルプロピルフェノキシ基(各異性体)、エチルブチルフェノキシ基(各異性体)、ジプロピルフェノキシ基(各異性体)、トリメチルフェノキシ基(各異性体)、ジメチルエチルフェノキシ基(各異性体)、ジメチルプロピルフェノキシ基(各異性体)、ジメチルブチルフェノキシ基(各異性体)、メチルエチルプロピルフェノキシ基、メチルジメチルフェノキシ基、トリエチルフェノキシ基(各異性体)等のアリールオキシ基;等を挙げることができる。
 上記式(51)で表される化合物の具体例としては、1,1,3,3-テトラメチル-1,3-ジアセトキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジアセトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジアセトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)等の1,1,3,3-テトラアルキル-1,3-ジアシルオキシジスタンオキサン;1,1,3,3-テトラメチル-1,3-ジフェノキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(トリエチルフェノキシ)スズ(各異性体)、1,1,3,3-テトラブチル1,3-ジフェノキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(トリエチルフェノキシ)スズ(各異性体)、1,1,3,3-テトラオクチル1,3-ジフェノキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(トリエチルフェノキシ)スズ(各異性体)等の1,1,3,3-テトラアルキル-1,3-ジアリールオキシジスタンオキサンを挙げることができる。
 一般に、有機スズ化合物は会合構造をとりやすく、例えばジアルキルスズジアルコキシドはダイマー構造を形成したり、テトラアルキルジアルコキシジスタンオキサンは、2分子または3分子が会合したラダー構造を形成して存在する場合もあることが知られている。このような会合状態が変化する場合であっても、単量体構造で化合物を表すことは、当業者にとっては一般的である。
 上記式(52)で表されるジアルキルスズ化合物および上記式(53)で表されるテトラアルキルジスタンオキサン化合物については、後で説明する。
 次に、各工程について説明する。
 工程(I)は、上記式(50)で表されるジアルキルスズジアルコキシドと二酸化炭素とを反応させて、炭酸エステルと上記式(51)で表されるテトラアルキルジアルコキシジスタンオキサンおよび/またはテトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む反応液を得る工程である。
 該工程(I)は、上述の工程(a)と類似していて、同様の方法で実施することができる。
 工程(I)で使用されるジアルキルスズジアルコキシドは、上記で説明した方法によって製造することができ、本工程において使用するジアルキルスズジアルコキシドについても、ジアルキル酸化スズとアルコールとの反応によって製造されるジアルキルスズジアルコキシドが好適である。その製造方法を以下に示す。
 アルコールとしては、メタノール、エタノール、プロパノール(各異性体)、ブタノール(各異性体)、ペンタノール(各異性体)、ヘキサノール(各異性体)、ヘプタノール(各異性体)、オクタノール(各異性体)、ノナノール(各異性体)、デカノール(各異性体)等のアルコールであって、該アルコールを構成する炭素原子の数が1~12の整数から選ばれる数であるアルコールが好ましく使用される。さらに好ましくは、エタノール、プロパノール(各異性体)、ブタノール(各異性体)、ペンタノール(各異性体)、ヘキサノール(各異性体)、ヘプタノール(各異性体)、オクタノール(各異性体)等の、該アルコールを構成する炭素原子の数が2~8の整数から選ばれる数であるアルコールである。
 ジアルキルスズジアルコキシドの製造で使用するジアルキル酸化スズは、下記式(54)で示したジアルキル酸化スズを用いる。
Figure JPOXMLDOC01-appb-C000055
(式中:
 Rは、各々独立して、直鎖状または分岐状の炭素数1~12のアルキル基を表す。)
 上記式(54)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ウンデシル(各異性体)、ドデシル(各異性体)等の炭素数1~12の脂肪族炭化水素基であるアルキル基が挙げられる。より好ましくは炭素数1~8の直鎖状または分岐鎖状の飽和アルキル基であり、さらに好ましくは、n-ブチル基、n-オクチル基である。
 アルコールとジアルキル酸化スズとを脱水反応させ、生成する水を系外に除去しながらテトラアルキルジアルコキシジスタンオキサンおよび/またはジアルキルスズジアルコキシドを得る。該反応が実施される温度は、例えば、80~180℃の範囲で、生成する水を系外に蒸留除去するために、反応圧力にもよるが、100℃~180℃が好ましく、反応速度を高めるためには反応温度は高温が好ましいが、一方で、高温では分解等の好ましくない反応も起こる場合もあり、収率が低下することもあるので、更に好ましくは100℃~160℃の範囲である。反応の圧力は、生成する水が系外に除去できる圧力であり、反応温度にもよるが、20~1×10Paで行われる。脱水反応の反応時間に、特に制限はなく通常0.001~50時間、好ましくは0.01~10時間、より好ましくは0.1~2時間である。ジアルキルスズジアルコキシドを所望量含有する組成物が得られれば反応を終了してよい。反応の進行は、系外へ抜き出される水の量を測定することによっても求められるし、反応液をサンプリングして、119Sn-NMRによる方法でも求めることができる。
 ジアルキルスズジアルコキシドを含有する組成物は、主に、ジアルキルスズジアルコキシドとテトラアルキルジアルコキシジスタンオキサンを含有するが、該組成物に含有されるテトラアルキルジアルコキシジスタンオキサンとジアルキルスズジアルコキシドのモル比率が、両者を併せたモル%で表して、0:100~80:20の範囲である組成物、より好ましくは、10:90~70:30の範囲となった組成物を得たことを確認して反応を終了する。使用したアルコールはそのまま共存した状態で使用してもよいし、場合によってはアルコールを蒸留除去して使用してもよい。他の工程の反応器を小さくできる利点があるので、できるだけアルコールを除去しておくことが好ましい。除去する方法は、公知の蒸留による除去が好ましく、また蒸留に使用する蒸留器は公知の蒸留設備が使用できる。好ましい蒸留装置としては、短時間で除去できることから薄膜蒸留装置が好ましく使用できる。脱水反応の反応器の形式に特に制限はなく、公知の槽状、塔状の反応器が使用できる。水を含む低沸点反応混合物はガス状で蒸留によって反応器から抜き出し、製造されるジアルキルスズジアルコキシドを含む高沸点反応混合物を反応器下部から液状で抜き出せればよい。このような反応器として、たとえば攪拌槽、多段攪拌槽、蒸留塔、多段蒸留塔、多管式反応器、連続多段蒸留塔、充填塔、薄膜蒸発器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、落滴蒸発器、細流相反応器、気泡塔のいずれかを含む反応器を用いる方式、およびこれらを組み合わせた方式等、公知の種々の方法が用いられる。平衡を生成系側に効率的にずらすという点では、塔状の反応器を用いる方法が好ましく、また形成される水を気相にすみやかに移動させられる気-液接触面積の大きな構造が好ましい。多管式反応器、多段蒸留塔、充填剤を充填した充填塔を用いた連続法も使用できるが、本工程で使用するジアルキル酸化スズが通常固体状であるため、まず、槽状反応器で実施し、次いで塔型反応器でジアルキルスズジアルコキシドの含有量をあげる方法が最も好ましい。反応器およびラインの材質は、悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 工程(I)では、ジアルキルスズジアルコキシドにガス状の二酸化炭素を吸収させ、化学反応させてジアルキルスズジアルコキシドと二酸化炭素との結合体を含む混合物を得る。
 該化学反応させる際には、該ジアルキルスズジアルコキシドを液状、もしくは溶媒等によって液状として反応させる。液状とするには、加熱によって液状とする方法が好ましく使用でき、また、溶媒等によって液状としてもよい。反応させる圧力は、反応させる温度にもよるが、常圧~1MPaの範囲が好ましく、常圧~0.6MPaの範囲が更に好ましい。該反応させる温度は、反応させる圧力にもよるが、-40℃~80℃の範囲が好ましく、移送の際の流動性を考慮すると、0℃~80℃が更に好ましく、最も好ましい範囲は常温(例えば、20℃)~80℃である。反応時間は数秒~100時間の範囲で実施してよく、生産性等を考慮すれば、数分~10時間が好ましい。反応器は公知の槽型反応器、塔型反応器が使用できる。また複数の反応器を組み合わせて使用してもよい。反応は二酸化炭素ガス(気体)とジアルキルスズジアルコキシドを含有する組成物(液体)の反応であるため、効率よく反応させるためには、気液界面を大きくしてガスと液の接触面積を大きくすることが好ましい。このような気液界面を大きくして反応させる方法は公知の知見が利用でき、例えば、槽型反応器では、攪拌速度を上げたり、液中に気泡を発生させるような方法が好ましく、塔型反応器では、充填塔を利用したり、棚段塔を利用する方法が好ましい。このような塔型反応器の例としては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、向流トレイ等のトレイを使用した棚段塔方式のものや、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、ヘリパック、スルザーパッキング、メラパック等の各種充填物を充填した充填塔方式のものなどが利用できる。反応器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。反応は通常発熱反応であるから、冷却してもよいし、または反応器の放熱によって冷却してもよい。あるいは炭酸エステル化反応を併発させる目的であれば加熱してもよい。反応器の冷却、加熱はジャケットによる方法、内部コイルによる方法など公知の方法が使用できる。反応器に供給する二酸化炭素ガスとジアルキルスズジアルコキシドを含有する組成物はそれぞれ別々に反応器に供給してもよいし、反応器に供給する前に混合しておいてもよい。反応器の複数箇所から供給してもかまわない。反応終了は、例えば、119Sn-NMR分析によって決定することができる。
 次に、上記で得られたジアルキルスズジアルコキシドと二酸化炭素との結合体から、以下の方法により、炭酸エステルを含む反応液を得る。
 反応条件は、110℃~200℃の範囲、反応速度を高めるためには反応温度は高温が好ましいが、一方で、高温では分解等の好ましくない反応も起こる場合もあり、収率が低下することもあるので、好ましくは120℃~180℃の範囲であり、0.1時間~10時間の範囲、反応圧力は、1.5MPa~20MPa、好ましくは2.0MPa~10MPaの範囲である。反応は所望の炭酸エステルが反応器中に生成してから終了すればよい。反応の進行は、反応器内の反応液をサンプリングし、H-NMRやガスクロマトグラフィーなどの方法で生成した炭酸エステルを分析する方法などで確認できる。例えば、ジアルキルスズジアルコキシドおよび/またはジアルキルスズジアルコキシドと二酸化炭素との結合体のモル数に対して10%以上生成したら反応を終了してもよく、炭酸エステルの収量を多くしたい場合、該値を90%以上になるまで反応を続けてから終了する。反応器は公知の反応器が使用でき、塔型反応器、槽型反応器共に好ましく使用できる。反応器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 次の工程(II)を説明する。本工程(II)は、上で説明した工程(b)と類似の工程であり、同様の方法により実施される。
 工程(II)は、工程(I)で得られた、炭酸エステルを含む反応液から、炭酸エステルを分離し、テトラアルキルジアルコキシジスタンオキサンおよび/またはテトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程である。分離方法は公知の方法や装置が好適に利用できる。好ましい方法は蒸留による方法である。
 工程(a)から移送された反応液をバッチあるいはセミバッチ、または連続的に蒸留して炭酸エステルと残留液を得る。好ましい蒸留方法は、該反応液を蒸留器に供給し、炭酸エステルを気相成分として蒸留器上部から系外へ分離し、残留液を液状成分として蒸留器の底部から抜き出す方法である。本工程の温度は該炭酸エステルの沸点や圧力にもよるが、常温(例えば、20℃)~200℃の範囲でよく、高温では残留液中のスズ化合物の変性がおこる場合や、炭酸エステルが逆反応によって減少してしまう場合もあるので常温(例えば、20℃)~150℃の範囲が好ましい。圧力は、炭酸エステルの種類や、実施する温度にもよるが、通常、常圧~減圧条件でおこない、生産性を考慮すれば、100Pa~80KPaの範囲がさらに好ましく、100Pa~50KPaが最も好ましい範囲である。時間は、0.01時間~10時間の範囲で実施でき、高温で長時間実施すると、該反応液に含まれるスズ化合物が変性する場合や、炭酸エステルが逆反応によって減少する場合もあるため、0.01時間~0.5時間の範囲が好ましく、0.01時間~0.3時間の範囲が最も好ましい。蒸留器は公知の蒸留器が使用でき、塔型蒸留器、槽型蒸留器も好ましく使用することができるし、複数組み合わせて使用しても構わない。更に好ましい蒸留器は薄膜蒸発器、薄膜蒸留器であり、蒸留塔を備えた薄膜蒸発器、薄膜蒸留器が最も好ましい。蒸留器およびラインの材質は悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316Lなどが安価でもあり、好ましく使用できる。必要に応じて、流量計、温度計などの計装機器、リボイラー、ポンプ、コンデンサーなどの公知のプロセス装置を付加してよく、加熱はスチーム、ヒーターなどの公知の方法でよく、冷却も自然冷却、冷却水、ブライン等公知の方法が使用できる。
 次の工程(III)は、上で示した工程(C)と類似の工程であり、同様の方法を実施することができる。
 該工程(III)において、一般式HOXで表される酸としては、このような酸としては、有機酸が好ましく使用される。有機酸としては、カルボン酸、スルホン酸、フェノール等を例示することができるが、好ましくはカルボン酸が使用される。カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、n-酪酸、イソ酪酸、吉草酸、イソ吉草酸、2-メチルブタン酸、ピバリン酸、ヘキサン酸、イソカプロン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、ヘプタン酸(各異性体)、オクタン酸(各異性体)、ノナン酸(各異性体)、デカン酸(各異性体)、ウンデカン酸(各異性体)、ドデカン酸(各異性体)、テトラデカン酸(各異性体)、ヘキサデカン酸(各異性体)、アクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、メタクリル酸、アンゲリカ酸、チグリン酸、アリル酢酸、ウンデセン酸(各異性体)等の飽和もしくは不飽和脂肪族モノカルボン酸化合物;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸(各異性体)、オクタン二酸(各異性体)、ノナン二酸(各異性体)、デカン二酸(各異性体)、マレイン酸、フマル酸、メチルマレイン酸、メチルフマル酸、ペンテン二酸(各異性体)、イタコン酸、アリルマロン酸等の飽和もしくは不飽和脂肪族ジカルボン酸;1,2,3-プロパントリカルボン酸、1,2,3-プロペントリカルボン酸、2,3-ジメチルブタン-1,2,3-トリカルボン酸等の飽和もしくは不飽和脂肪族トリカルボン酸化合物;安息香酸、メチル安息香酸(各異性体)、エチル安息香酸(各異性体)、プロピル安息香酸(各異性体)、ジメチル安息香酸(各異性体)、トリメチル安息香酸(各異性体)等の芳香族者カルボン酸化合物;フタル酸、イソフタル酸、テレフタル酸、メチルイソフタル酸(各異性体)等の芳香族ジカルボン酸化合物;ヘミメリト酸、トリメリト酸、トリメシン酸等の芳香族トリカルボン酸化合物等を挙げることができる。これらのカルボン酸の中でも、飽和モノカルボン酸が好ましく使用される。より好ましくは、標準沸点が300℃以下の飽和モノカルボン酸、さらに好ましくは標準沸点が250℃以下の飽和ものカルボン酸が使用される。標準沸点とは、化学大辞典(共立出版株式会社、2003年10月1日発行)に記載されているように、1気圧における沸点を指す。具体的には、酢酸、プロピオン酸、n-酪酸、イソ酪酸、吉草酸、イソ吉草酸、2-メチルブタン酸、ピバリン酸、ヘキサン酸が好ましく使用される。
 また、工程(III)において、一般式XOXで表される酸無水物としては、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水イソ吉草酸、無水コハク酸、無水マレイン酸、無水プロピオン酸、無水グルタル酸等の脂肪族無水物;無水安息香酸、無水フタル酸、無水ピロメリト酸等の芳香族酸無水物を挙げることができる。これらの中でも、好ましくは標準沸点が300℃以下の酸無水物が使用され、反応後、過剰の酸無水物の除去を容易にするため、さらに好ましくは標準沸点が200℃以下の酸無水物が使用される。さらに、副生するカルボン酸エステル等を系外へ除去することが容易であり、工業的に容易に入手できるという点から、無水マレイン酸、無水酢酸が好ましい。
 これらの酸および酸無水物は単独でも複数種を混合しても用いることができるが、酸を使用する場合、例えば、テトラアルキルジアルコキシジスタンオキサン化合物と酸を反応させた場合、水が生成する場合が多い。該水を除去するために、蒸留分離や膜分離をおこなったり、脱水剤を使用してもよい。また、脱水剤として酸無水物を組み合わせて使用するのも好ましい。さらに、酸無水物のみを使用する場合は、例えば、テトラアルキルジアルコキシジスタンオキサン化合物と無水酢酸との反応において水が生成しない場合が多いことから、酸無水物のみを使用する方法も好ましい。
 酸および/または酸無水物の使用量は、工程(III)における反応速度や最終的なジアルキルスズ化合物の収率を勘案して、工程(II)で得た残留物に含有されるスズ原子に対して化学量論比で0.1~50倍の範囲を使用することが好ましく、反応器の大きさや、反応速度を考慮すれば0.5~20倍の範囲を使用することがさらに好ましい。化学量論比で0.1より少ない場合反応が進行しにくい場合があり、逆に化学量論比で50倍より多く使用しても当該工程における反応速度や最終的なジアルキルスズ化合物の収率に影響を与えない場合が多い。
 工程(III)の反応は、好ましくは-20℃以上300℃以下の反応温度で実施し、より好ましくは-10℃以上250℃以下の反応温度で実施し、反応速度を高めるためには反応温度は高温が好ましいが、一方で、高温では分解等の好ましくない反応も起こる場合もあり、収率が低下することもあるので、さらに好ましくは0℃以上230℃以下の反応温度で実施する。また、工程(III)の反応は、アルゴン、ネオン、窒素などの不活性ガス雰囲気下で行われることが好ましい。
 工程(III)では溶媒を用いる必要はないが、流動性を向上させる、あるいは反応操作を容易にする、あるいは反応において生成する場合に該水を効率よく系外に除去する目的で溶媒を用いることができる。このような溶媒として、例えば、炭素数5~16の直鎖状、分岐状、環状の炭化水素;炭素数4~16の直鎖状、分岐状、環状の炭化水素からなるエーテル類;炭素数1~16の直鎖状、分岐状、環状のハロゲン化炭化水素類などが挙げられる。具体的には、ペンタン(各異性体)、ヘキサン(各異性体)、ヘプタン(各異性体)、オクタン(各異性体)、ノナン(各異性体)、デカン(各異性体)、ヘキサデカン(各異性体)、シクロヘキサン、シクロヘプタン、シクロオクタン、ベンゼン、トルエン、キシレン(各異性体)、エチルベンゼンなどから選ばれる鎖状、環状の炭化水素;ジエチルエーテル、ジプロピルエーテル(各異性体)、ジブチルエーテル(各異性体)、ジヘキシルエーテル(各異性体)、ジオクチルエーテル(各異性体)、ジフェニルエーテルなどから選ばれるエーテル類;塩化メチレン、クロロホルム、四塩化炭素、クロロベンゼン、テトラクロロエタン、ジクロロベンゼン(異性体)などから選ばれるハロゲン化炭化水素類を用いることができる。これらの溶媒は単独でも2種類以上の混合物として使用することもできる。
 当該工程(III)で製造されるアルキルスズ化合物は、下記式(52)で表されるジアルキルスズ化合物、下記式(53)で表されるテトラアルキルジスタンオキサン化合物の群から選ばれる少なくとも1つのアルキルスズ化合物である。
Figure JPOXMLDOC01-appb-C000056
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは酸素原子を表し;
 OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXであり;
 aおよびbは、各々0~2の整数であり、a+b=2である)
Figure JPOXMLDOC01-appb-C000057
(式中:
 Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
 Oは酸素原子を表し;
 OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXである。)
 上記式(52)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるジアルキルスズ化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(52)におけるOXおよびOXは、その共役酸であるHOXおよびHOXがブレンステッド酸であって、該共役酸のpKaが、0以上6.8以下であれば、特に制限はないが、好ましくは、アシルオキシル基、アリールオキシ基よりなる群から選ばれる少なくとも1種の置換基であって、その共役酸のpKaが、0以上6.8以下のものが好ましい。さらに好ましくは、該基を構成する炭素原子の数が、0~12の整数より選ばれる数である基であることが好ましい。このような基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ラウロイルオキシ基等の、直鎖状もしくは分岐鎖状の飽和アルキル基とカルボニル基と酸素原子から構成されるアシルオキシル基;フェノキシ基、メチルフェノキシ基(各異性体)、エチルフェノキシ基(各異性体)、プロピルフェノキシ基(各異性体)、ブチルフェノキシ基(各異性体)、ペンチルフェノキシ基(各異性体)、ヘキシルフェノキシ基(各異性体)、ジメチルフェノキシ基(各異性体)、メチルエチルフェノキシ基(各異性体)、メチルプロピルフェノキシ基(各異性体)、メチルブチルフェノキシ基(各異性体)、メチルペンチルフェノキシ基(各異性体)、ジエチルフェノキシ基(各異性体)、エチルプロピルフェノキシ基(各異性体)、エチルブチルフェノキシ基(各異性体)、ジプロピルフェノキシ基(各異性体)、トリメチルフェノキシ基(各異性体)、ジメチルエチルフェノキシ基(各異性体)、ジメチルプロピルフェノキシ基(各異性体)、ジメチルブチルフェノキシ基(各異性体)、メチルエチルプロピルフェノキシ基、メチルジメチルフェノキシ基、トリエチルフェノキシ基(各異性体)等のアリールオキシ基;等を挙げることができる。
 上記式(52)で表されるジアルキルスズ化合物の具体例としては、ジメチル-ジアセトキシスズ、ジメチル-ジプロピオニルオキシスズ(各異性体)、ジメチル-ジブチリルオキシスズ(各異性体)、ジメチル-バレリルオキシスズ(各異性体)、ジメチル-ジラウロリルオキシスズ(各異性体)、ジブチル-ジアセトキシスズ(各異性体)、ジブチル-ジプロピオニルオキシスズ(各異性体)、ジブチル-ジブチリルオキシスズ(各異性体)、ジブチル-ジバレリルオキシスズ(各異性体)、ジブチル-ジラウロリルオキシスズ(各異性体)、ジオクチル-ジアセトキシスズ(各異性体)、ジオクチル-ジプロピオニルオキシスズ(各異性体)、ジオクチル-ジブチリルオキシスズ(各異性体)、ジオクチル-バレリルオキシスズ(各異性体)、ジオクチル-ジラウロリルオキシスズ(各異性体)等のジアルキル-ジアシルオキシスズ;ジメチル-ジフェノキシスズ、ジメチル-ジ(メチルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルフェノキシ)スズ(各異性体)、ジメチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジメチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジメチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジメチル-ジ(トリエチルフェノキシ)スズ(各異性体)、ジブチル-ジフェノキシスズ(各異性体)、ジブチル-ジ(メチルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルフェノキシ)スズ(各異性体)、ジブチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジブチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジブチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジブチル-ジ(トリエチルフェノキシ)スズ(各異性体)、ジオクチル-ジフェノキシスズ(各異性体)、ジオクチル-ジ(メチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(プロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ペンチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ヘキシルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルエチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルペンチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジエチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(ジプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(トリメチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルエチルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ビス(ジメチルブチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(メチルエチルプロピルフェノキシ)スズ(各異性体)、ジオクチル-ジ(エチルジメチルフェノキシ)スズ(各異性体)、ジオクチル-ジ(トリエチルフェノキシ)スズ(各異性体)等のアルキル-ジアリールオキシスズ等を挙げることができる。
 上記式(53)におけるRの例としては、メチル、エチル、プロピル(各異性体)、ブチル(各異性体)、ペンチル(各異性体)、ヘキシル(各異性体)、ヘプチル(各異性体)、オクチル(各異性体)、ノニル(各異性体)、デシル(各異性体)、ドデシル(各異性体)等の、該基を構成する炭素原子の数が1~12の整数より選ばれる数である脂肪族炭化水素基であるアルキル基が挙げられる。好ましくは、該基を構成する炭素原子の数が1~8の整数より選ばれる数である直鎖状または分岐鎖状のアルキル基である。該基を構成する炭素原子の数が以上に示した範囲以外のアルキル基であるテトラアルキルジスタンオキサン化合物も使用できるが、流動性が悪くなったり、生産性を損なったりする場合がある。工業的生産時の入手の容易さを考慮すれば、n-ブチル基、n-オクチル基がさらに好ましい。
 上記式(53)におけるOXおよびOXは、その共役酸であるHOXおよびHOXがブレンステッド酸であって、該共役酸のpKaが、0以上6.8以下であれば、特に制限はないが、好ましくは、アシルオキシル基、アリールオキシ基よりなる群から選ばれる少なくとも1種の置換基であって、その共役酸のpKaが、0以上6.8以下のものが好ましい。さらに好ましくは、該基を構成する炭素原子の数が、0~12の整数より選ばれる数である基であることが好ましい。このような基の具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレリルオキシ基、ラウロイルオキシ基等の、直鎖状もしくは分岐鎖状の飽和アルキル基とカルボニル基と酸素原子から構成されるアシルオキシル基;フェノキシ基、メチルフェノキシ基(各異性体)、エチルフェノキシ基(各異性体)、プロピルフェノキシ基(各異性体)、ブチルフェノキシ基(各異性体)、ペンチルフェノキシ基(各異性体)、ヘキシルフェノキシ基(各異性体)、ジメチルフェノキシ基(各異性体)、メチルエチルフェノキシ基(各異性体)、メチルプロピルフェノキシ基(各異性体)、メチルブチルフェノキシ基(各異性体)、メチルペンチルフェノキシ基(各異性体)、ジエチルフェノキシ基(各異性体)、エチルプロピルフェノキシ基(各異性体)、エチルブチルフェノキシ基(各異性体)、ジプロピルフェノキシ基(各異性体)、トリメチルフェノキシ基(各異性体)、ジメチルエチルフェノキシ基(各異性体)、ジメチルプロピルフェノキシ基(各異性体)、ジメチルブチルフェノキシ基(各異性体)、メチルエチルプロピルフェノキシ基、メチルジメチルフェノキシ基、トリエチルフェノキシ基(各異性体)等のアリールオキシ基;等を挙げることができる。
 上記式(53)で表される化合物の具体例としては、1,1,3,3-テトラメチル-1,3-ジアセトキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジアセトキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジアセトキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジプロピオニルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジブチリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジバレリルオキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル-1,3-ジラウロリルオキシジスタンオキサン(各異性体)等の1,1,3,3-テトラアルキル-1,3-ジアシルオキシジスタンオキサン;1,1,3,3-テトラメチル-1,3-ジフェノキシジスタンオキサン、1,1,3,3-テトラメチル-1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラメチル-1,3-ジ(トリエチルフェノキシ)スズ(各異性体)、1,1,3,3-テトラブチル1,3-ジフェノキシジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラブチル1,3-ジ(トリエチルフェノキシ)スズ(各異性体)、1,1,3,3-テトラオクチル1,3-ジフェノキシジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(プロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ヘキシルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルペンチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(ジプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(トリメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルエチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ビス(ジメチルブチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(メチルエチルプロピルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(エチルジメチルフェノキシ)ジスタンオキサン(各異性体)、1,1,3,3-テトラオクチル1,3-ジ(トリエチルフェノキシ)スズ(各異性体)等の1,1,3,3-テトラアルキル-1,3-ジアリールオキシジスタンオキサンを挙げることができる。
 一般に、有機スズ化合物は会合構造をとりやすく、例えばジアルキルスズジアルコキシドはダイマー構造を形成したり、テトラアルキルジアルコキシジスタンオキサンは、2分子または3分子が会合したラダー構造を形成して存在する場合もあることが知られている。このような会合状態が変化する場合であっても、単量体構造で化合物を表すことは、当業者にとっては一般的である。
 上記した工程(I)~工程(III)を実施して得られるジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物を、工程(Z)のジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物として使用することにより、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を製造することができるが、該ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物は、上記工程(I)のジアルキルスズジアルコキシドとして好適に使用できる。図4は、上記した工程(I)~工程(III)および工程(Z)を組み合わせた炭酸エステルの新しい製造方法を説明するフロー図を示す。
 本実施の形態のジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の製造方法(工程(Z))は、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、酸および/または酸無水物と、を反応させることによって、固体のスズ化合物を取り扱うことなく、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を製造することができるため、従来の方法に比べて簡便な製造方法である。
 また、上記したように、工程(Z)に様々な工程を組み合わせることによって、工程(Z)を、新しい炭酸エステルの製造工程の一部として使用することができる。これらの新しい炭酸エステルの製造方法は、該炭酸エステルの製造方法において生成する、炭酸エステル合成での触媒活性を失ったモノアルキルスズアルコキシド化合物およびトリアルキルスズアルコキシド化合物を、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物に再生する工程を含むため、炭酸エステル製造工程におけるコストや廃棄物の問題を解決することができる。したがって、本実施の形態に係る製造方法は、産業上極めて重要である。
実施例
 以下、本実施の形態を実施例および比較例によりさらに具体的に説明するが、本実施の形態はこれらの実施例のみに限定されるものではない。
 なお、本実施の形態に用いる分析方法は、以下のとおりである。
<分析方法>
1)NMR分析方法
 装置:日本電子(株)社製JNM-A400 FT-NMRシステム
(1)H、13Cおよび119Sn-NMR分析サンプルの調製
 サンプル溶液を約0.3g秤量し、重クロロホルム(アルドリッチ社製、99.8%)を約0.7gと内部標準物質としてテトラメチルスズ(和光純薬工業社製、和光一級)を0.05g加えて均一に混合した溶液をNMR分析サンプルとした。
(2)定量分析法
 各標準物質について分析を実施し作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
2)ガスクロマトグラフィー分析法
 装置:日本国、島津社製 GC-2010
 カラム:米国、アジレントテクノロジーズ社製 DB-1
     長さ30m、内径0.250mm、膜厚1.00μm
 カラム温度:50℃で5分間保持後、昇温速度10℃/分で200℃まで昇温
       200℃で5分間保持後、昇温速度10℃/分で300℃まで昇温
 検出器:FID
(1)ガスクロマトグラフィー分析サンプル
 サンプルを約0.05g秤量し、アセトン(日本国、和光純薬工業社製、脱水)を約1gと内部標準物質としてトルエン(日本国、和光純薬工業社製、脱水)を約0.02g加えて均一に混合した溶液を、ガスクロマトグラフィー分析のサンプルとした。
(2)定量分析法
 各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
3)誘導結合型プラズマ質量分析法
 装置:日本国、セイコー電子社製、SPQ-8000
(1)誘導結合型プラズマ質量分析サンプル 
 試料約0.15gを希硫酸で灰化させた後、希硝酸に溶解した。
(2)定量分析法
 各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
[参考例1]炭酸ビス(3-メチルブチル)の製造
工程(A-1):ジアルキルスズ触媒の製造
 容積5000mLのナス型フラスコに、ジブチルスズオキシド(日本国、三共有機合成社製)627g(2.7mol)及び3-メチル-1-ブタノール(日本国、クラレ社製)2000g(22.7mol)を入れた。該フラスコを、温度調節器のついたオイルバス(日本国、増田理化工業社製、OBH-24)と真空ポンプ(日本国、ULVAC社製、G-50A)と真空コントローラー(日本国、岡野製作所社製、VC-10S)を接続したエバポレーター(日本国、柴田社製、R-144)に取り付けた。エバポレーターのパージバルブ出口は常圧で流れている窒素ガスのラインと接続した。エバポレーターのパージバルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒素を流し、常圧に戻した。オイルバス温度を約145℃に設定し、該フラスコを該オイルバスに浸漬してエバポレーターの回転を開始した。エバポレーターのパージバルブを開放したまま大気圧窒素下で約40分間加熱したところで、水を含む3-メチル-1-ブタノールの蒸留が始まった。この状態を7時間保った後、パージバルブを閉め、系内を徐々に減圧し、系内の圧力が74~35kPaの状態で過剰の3-メチル-1-ブタノールを蒸留した。留分が出なくなった後、該フラスコをオイルバスからあげた。該フラスコが室温(25℃)付近まで冷却されたのち、該フラスコをオイルバスからあげてパージバルブを徐々に開き系内の圧力を大気圧に戻した。該フラスコには反応液1173gが得られた。119Sn、H、13C-NMRの分析結果から、1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンがジブチルスズオキシドに対して収率99%で得られたことを確認した。同様の操作を12回繰り返し、1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンを合計10345g得た。
工程(A-2):炭酸エステルの製造およびアルキルスズ組成物の回収
 図5に示すような連続製造装置において、炭酸エステルを製造した。充填物Metal Gauze CY(スイス国、Sulzer Chemtech Ltd.製)を充填した、内径151mm,有効長さ5040mmの塔型反応器102に、移送ライン4から上記で製造した1,1,3,3-テトラブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを4388g/hrで供給し、移送ライン2から蒸留塔101で精製された3-メチル-1-ブタノール(日本国、クラレ社製)を14953g/hrで供給した。該反応器内102は液温度が160℃になるようにヒーターおよびリボイラー112によって調整し、圧力が約120kPa-Gになるように圧力調節バルブによって調整した。該反応器内の滞留時間は約17分であった。反応器上部から移送ライン6を経て水を含む3-メチル-1-ブタノール15037g/hrを、および、供給ライン1を経て3-メチル-1-ブタノール(日本国、クラレ社製)825g/hrを、充填物Metal Gauze CY(スイス国、Sulzer Chemtech Ltd.社製)を充填し、リボイラー111およびコンデンサー121を備えた蒸留塔101に輸送し、蒸留精製を行った。蒸留塔101の上部では高濃度の水を含む留分がコンデンサー121によって凝縮され回収ライン3から回収された。精製された3-メチル-1-ブタノールは、蒸留塔101の下部にある移送ライン2を経て塔型反応器102に輸送した。塔型反応器102の下部からジ-n-ブチル-ビス(3-メチルブチルオキシ)スズと1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含む組成物(以下、触媒組成物という)を得、移送ライン5を経て薄膜蒸発装置103(日本国、神鋼環境ソリューション社製)に供給した。薄膜蒸発装置103において3-メチル-1-ブタノールを留去し、コンデンサー123、移送ライン8および移送ライン4を経て塔型反応器102に戻した。薄膜蒸発装置103の下部から移送ライン7を経て触媒組成物を輸送し、ジ-n-ブチル-ビス(3-メチルブチルオキシ)スズと1,1,3,3-テトラブチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンの流量が約5130g/hrになるように調節しオートクレーブ104に供給した。オートクレーブに移送ライン9より、二酸化炭素を973g/hrで供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素と触媒組成物との反応を行い、炭酸ビス(3-メチルブチル)を含む反応液を得た。該反応液を移送ライン10と調節バルブを介して除炭槽105に移送し残存二酸化炭素を除去し、移送ライン11から二酸化炭素を回収した。その後、該反応液を、移送ライン12を経て約142℃、約0.5kPaとした薄膜蒸発装置106(日本国、神鋼環境ソリューション社製)に移送し、1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンの流量が約4388g/hrになるように調節し供給して、炭酸ビス(3-メチルブチル)を含む留分を得、一方で蒸発残渣を移送ライン13と移送ライン4を介して、1,1,3,3-テトラブチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンの流量が約4388g/hrになるように調節し塔型反応器102に循環した。炭酸ビス(3-メチルブチル)を含む留分はコンデンサー126および移送ライン14を経て、充填物Metal Gauze CY(スイス国、Sulzer Chemtech Ltd.社製)を充填しリボイラー117およびコンデンサー127を備えた蒸留塔107に959g/hrで供給して、蒸留精製を行った後、回収ライン15から99wt%の炭酸ビス(3-メチルブチル)を944g/hr得た。
[参考例2]炭酸ビス(2-エチルブチル)の製造
工程(B-1):ジアルキルスズ触媒の製造
 容積5000mLのナス型フラスコに、ジ-n-オクチルスズオキシド(日本国、三共有機合成社製)893g(2.48mol)および2-エチル-1-ブタノール2403g(23.6mol)を入れた。該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したエバポレーターに取り付けた。エバポレーターのパージバルブ出口は常圧で流れている窒素ガスのラインと接続した。エバポレーターのパージバルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒素を流し、常圧に戻した。オイルバス温度を約165℃に設定し、該フラスコを該オイルバスに浸漬してエバポレーターの回転を開始した。エバポレーターのパージバルブを開放したまま大気圧窒素下で約40分間加熱したところで、水を含む2-エチル-1-ブタノールの蒸留が始まった。この状態を7時間保った後、パージバルブを閉め、系内を徐々に減圧し、系内の圧力が74~25kPaの状態で過剰の2-エチル-1-ブタノールを蒸留した。留分が出なくなった後、該フラスコをオイルバスからあげた。該フラスコが室温(25℃)付近まで冷却されたのち、該フラスコをオイルバスからあげてパージバルブを徐々に開き系内の圧力を大気圧に戻した。該フラスコには反応液1114gが得られた。119Sn、H、13C-NMRの分析結果から、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)-ジスタンオキサンがジ-n-オクチルスズオキシドに対して収率99%で得られたことを確認した。同様の操作を12回繰り返し、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)-ジスタンオキサンを合計13380g得た。
工程(B-2):炭酸エステルの製造およびアルキルスズ組成物の回収
 図5に示すような連続製造装置において、炭酸エステルを製造した。充填物Metal Gauze CYを充填した、内径151mm,有効長さ5040mmの塔型反応器102に、移送ライン4から上記で製造した1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを6074g/hrで供給し、移送ライン2から蒸留塔101で精製された2-エチル-1-ブタノールを12260g/hrで供給した。該反応器内102は液温度が160℃になるようにヒーターおよびリボイラー112によって調整し、圧力が約120kPa-Gになるように圧力調節バルブによって調整した。該反応器内の滞留時間は約17分であった。反応器上部から移送ライン6を経て水を含む2-エチル-1-ブタノール12344g/hrを、および、供給ライン1を経て2-エチル-1-ブタノール958g/hrを、充填物Metal Gauze CYを充填しリボイラー111およびコンデンサー121を備えた蒸留塔101に輸送し、蒸留精製を行った。蒸留塔101の上部では高濃度の水を含む留分がコンデンサー121によって凝縮され回収ライン3から回収された。精製された2-エチル-1-ブタノールは、蒸留塔101の下部にある移送ライン2を経て塔型反応器102に輸送した。塔型反応器102の下部からジ-n-オクチル-ビス(2-エチルブチルオキシ)スズと1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含む組成物(以下、触媒組成物という)を得、移送ライン5を経て薄膜蒸発装置103に供給した。薄膜蒸発装置103において2-エチル-1-ブタノールを留去し、コンデンサー123、移送ライン8および移送ライン4を経て塔型反応器102に戻した。薄膜蒸発装置103の下部から移送ライン7を経て触媒組成物を輸送し、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズと1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの流量が約6945g/hrになるように調節しオートクレーブ104に供給した。オートクレーブに移送ライン9より、二酸化炭素を973g/hrで供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素と触媒組成物との反応を行い、炭酸ビス(2-エチルブチル)を含む反応液を得た。該反応液を移送ライン10と調節バルブを介して除炭槽105に移送し残存二酸化炭素を除去し、移送ライン11から二酸化炭素を回収した。その後、該反応液を、移送ライン12を経て約142℃、約0.5kPaとした薄膜蒸発装置106に移送し、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの流量が約6074g/hrになるように調節し供給して、炭酸ビス(2-エチルブチル)を含む留分を得、一方で蒸発残渣を移送ライン13と移送ライン4を介して、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの流量が約6074g/hrになるように調節し塔型反応器102に循環した。炭酸ビス(2-エチルブチル)を含む留分はコンデンサー126および移送ライン14を経て、充填物Metal Gauze CYを充填しリボイラー117およびコンデンサー127を備えた蒸留塔107に959g/hrで供給して、蒸留精製を行った後、回収ライン16から99wt%の炭酸ビス(2-エチルブチル)を1075g/hrで得た。
[参考例3]炭酸ジ(n-ブチル)の製造
工程(C-1):テトラアルキルジアルコキシジスタンオキサンの製造
 容積3000mLのナス型フラスコに、ジ-n-ブチルスズオキシド692g(2.78mol)および1-ブタノール(日本国、和光純薬工業社製)2000g(27mol)を入れた。白色スラリー状の該混合物を入れたフラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したエバポレーターに取り付けた。エバポレーターのパージバルブ出口は常圧で流れている窒素ガスのラインと接続した。エバポレーターのパージバルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒素を流し、常圧に戻した。オイルバス温度を126℃に設定し、該フラスコを該オイルバスに浸漬してエバポレーターの回転を開始した。エバポレーターのパージバルブを開放したまま常圧で約30分間回転攪拌と加熱した後、混合液が沸騰し、低沸成分の蒸留が始まった。この状態を8時間保った後、パージバルブを閉め、系内を徐々に減圧し、系内の圧力が76~54kPaの状態で残存低沸成分を蒸留した。低沸成分が出なくなった後、該フラスコをオイルバスからあげた。反応液は透明な液になっていた。その後、該フラスコをオイルバスからあげてパージバルブを徐々に開き系内の圧力を常圧に戻した。該フラスコには反応液952gを得た。119Sn、H、13C-NMRにより分析をおこなったところ、反応液は1,1,3,3-テトラ-n-ブチル-1,3-ジ(ブチルオキシ)-ジスタンオキサンであり、ジ-n-ブチルスズオキシド基準で収率99%であった。同様な操作を12回繰り返し、1,1,3,3-テトラ-n-ブチル-1,3-ジ(ブチルオキシ)-ジスタンオキサンを合計11488g得た。
工程(C-2):炭酸エステルの製造
 図5に示すような連続製造装置において、炭酸エステルを製造した。充填物Mellapak 750Yを充填した、内径151mm,有効長さ5040mmの塔型反応器に供給ライン4から工程1で製造した1,1,3,3-テトラブチル-1,3-ジ(ブチルオキシ)-ジスタンオキサンを4201g/hrで、供給ライン2から蒸留塔101で精製した1-ブタノールを24717g/hrで、塔型反応器102に供給した。該反応器内は液温度が160℃になるようにヒーターおよびリボイラー112によって調整し、圧力が約250kPa-Gになるように圧力調節バルブによって調整した。該反応器内の滞留時間は約10分であった。反応器上部から移送ライン6を経て水を含む1-ブタノール24715g/hrおよび供給ライン1を経て1-ブタノール824g/hrを、充填物Metal Gauze CYを充填しリボイラー111およびコンデンサー121を備えた蒸留塔101に輸送し、蒸留精製を行った。蒸留塔101の上部では高濃度の水を含む留分がコンデンサー121によって凝縮され移送ライン3から回収された。蒸留塔101の下部にある移送ライン2を経て精製された1-ブタノールを輸送した。塔型反応器102の下部からジブチルスズジブトキシドと1,1,3,3-テトラ-n-ブチル-1,3-ジ(ブチルオキシ)-ジスタンオキサンを含む組成物(以下、触媒組成物という)を得、移送ライン5を経て薄膜蒸発装置103に供給した。薄膜蒸発装置103において1-ブタノールを留去し、コンデンサー123、移送ライン8および移送ライン4を経て塔型反応器102に戻した。薄膜蒸発装置103の下部から移送ライン7を経て触媒組成物を輸送し、ジブチルスズジブトキシドと1,1,3,3-テトラ-n-ブチル-1,3-ジ(ブチルオキシ)-ジスタンオキサンの活性成分の流量が約4812g/hrになるように調節しオートクレーブ104に供給した。オートクレーブに供給ライン9を介し二酸化炭素を973g/hrで供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調製し、二酸化炭素と触媒組成物との反応を行い、炭酸ジブチルを含む反応液を得た。該反応液を移送ライン10と調節バルブを介して除炭槽105に移送し残存二酸化炭素を除去し、移送ライン11から二酸化炭素を回収した。その後、該反応液を移送ライン12を経て140℃、約1.4kPaとした薄膜蒸発装置106に輸送し、1,1,3,3-テトラ-n-ブチル-1,3-ジ(ブチルオキシ)-ジスタンオキサンの流量が約4201g/hrになるように調節し供給して炭酸ジブチルを含む留分を得、一方で、蒸発残渣を移送ライン13と移送ライン4を介して、1,1,3,3-テトラ-n-ブチル-1,3-ジ(ブチルオキシ)-ジスタンオキサン流量が約4201g/hrになるように調節し塔型反応器102に循環する。炭酸ジブチルを含む留分はコンデンサー126および移送ライン14を経て、充填物Metal Gauze CYを充填しリボイラー117およびコンデンサー127を備えた蒸留塔107に830g/hrで供給して、蒸留精製を行った後、移送ライン16から99wt%の炭酸ビス(3-メチルブチル)を814g/hr得た。
[実施例1]
 大気圧窒素雰囲気下において、ジ-n-ブチルスズジアセテート(米国、Aldrich社製)240gと、参考例1の工程(A-2)で製造された炭酸ビス(3-メチルブチル)692gを容積2Lのナス型フラスコに入れ、該フラスコにジムロート冷却器と三方コックを取り付けた。該フラスコを150℃に加熱したオイルバスに浸漬し、内容物を攪拌しながら5時間加熱した。該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したロータリーエバポレーターに取り付けた。ロータリーエバポレーターのパージバルブ出口は大気圧で流れている窒素ガスのラインに接続した。系内を窒素置換した後、オイルバス温度を150℃に設定し、該フラスコを該オイルバスに浸漬してロータリーエバポレーターの回転を開始した。ロータリーエバポレーターのパージバルブを開放したまま大気圧窒素下で約7時間低沸成分の留去を行い、続いて系内を徐々に減圧にし、系内圧力が76kPa~10kPaの状態で残存低沸成分を留去した。低沸成分の留出がみられなくなった後、該フラスコをオイルバスから上げ冷却した。該フラスコには残留液287gが得られた。H、13C、119Sn-NMRの分析結果から、該フラスコ中の残留液はジ-n-ブチル-ビス(3-メチルブチルオキシ)スズを92.0wt%含有する溶液であった。
 一方、低沸成分は598g回収された。該低沸成分をガスクロマトグラフィーにより分析したところ、該低沸成分は酢酸イソアミルを約28wt%含有していた。
[実施例2]
 ジ-n-ブチルスズジアセテートの代わりに、1,1,3,3-テトラ-n-ブチル-1,3-ジアセトキシジスタンオキサン(米国、Aldrich社製)310gを使用し、炭酸ビス(3-メチルブチル)の代わりに、炭酸ジ(n-ブチル)900gを使用した以外は、実施例1と同様の方法をおこない、残留液399gを得た。該残留液は、ジ-n-ブチル-ジ(n-ブチルオキシ)スズを93.4wt%含有していた。また、低沸成分は酢酸ブチルを29.4wt%含有していた。
[実施例3]
 ジ-n-ブチルスズジアセテートの代わりに、ジ-n-ブチルスズジラウレート(米国、Aldrich社製)290gを使用し、炭酸ビス(3-メチルブチル)の代わりに炭酸ジエチル(米国、Aldrich社製)326gを使用し、オイルバスの温度を130℃とした以外は、実施例1と同様の方法をおこない、残留液165gを得た。該残留液はジ-n-ブチル-ジエチルスズを83.5wt%含有していた。また、低沸成分は、ラウリン酸エチルを47.3wt%含有していた。
[実施例4]
 ジ-n-ブチルスズジアセテートの代わりに、ジ-n-ブチルスズジラウレート300gを使用し、炭酸ビス(3-メチルブチル)の代わりに炭酸ジメチル(米国、Aldrich社製)343gを使用し、オイルバスの温度を90℃とし、20時間加熱をおこなった以外は、実施例1と同様の方法をおこない、残留液206gを得た。該残留液はジ-n-ブチル-ジメチルスズを40.8wt%含有していた。また、低沸成分は、ラウリン酸メチルを30wt%含有していた。
[実施例5]
 ジ-n-ブチルスズジアセテートを135g使用し、炭酸ビス(3-メチルブチル)の代わりに炭酸ジフェニル(米国、Aldrich社製)494gを使用した以外は、実施例1と同様の方法をおこない、残留液162gを得た。該残留液はジ-n-ブチル-ジフェニルスズを95.4wt%含有していた。また、低沸成分は、酢酸フェニルを23wt%含有していた。
[実施例6]
 大気圧窒素雰囲気下において、ジ-n-ブチルスズジアセテート221gと、2-エチル-1-ブタノール(日本国、和光純薬工業社製、特級)515gを容積2Lのナス型フラスコに入れ、該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したロータリーエバポレーターに取り付けた。ロータリーエバポレーターのパージバルブ出口は大気圧で流れている窒素ガスのラインに接続した。系内を窒素置換した後、オイルバス温度を140℃に設定し、該フラスコを該オイルバスに浸漬してロータリーエバポレーターの回転を開始した。ロータリーエバポレーターのパージバルブを開放したまま大気圧窒素下で約7時間低沸成分の留去を行い、続いて系内を徐々に減圧にし、系内圧力が76kPa~10kPaの状態で残存低沸成分を留去した。低沸成分の留出がみられなくなった後、該フラスコをオイルバスから上げ冷却した。該フラスコには残留液274gが得られた。H、13C、119Sn-NMRの分析結果から、該フラスコ中の残留液はジ-n-ブチル-ビス(2-エチルブチルオキシ)スズを96.0wt%含有する溶液であった。
 一方、低沸成分は563g回収された。該低沸成分をガスクロマトグラフィーにより分析したところ、該低沸成分は酢酸(2-エチルブチル)を約30.9wt%含有していた。
[実施例7]
 ジ-n-ブチルスズジアセテートを255g使用し、2-エチル-1-ブタノールの代わりに、3-メチル-1-ブタノール(日本国、東京化成社製)961gを使用した以外は、実施例6と同様の方法をおこない、残留液306gを得た。該残留液はジ-n-ブチル-ビス(3-メチルブチルオキシ)スズを92.7wt%含有していた。また、低沸成分は、酢酸イソアミルを18.0wt%含有していた。
[実施例8]
 ジ-n-ブチルスズジアセテートの代わりに、1,1,3,3-テトラ-n-ブチル-1,3-ジアセトキシジスタンオキサン322gを使用し、2-エチル-1-ブタノールの代わりに、n-ブタノール1034gを使用した以外は、実施例6と同様の方法をおこない、残留液424gを得た。該残留液はジ-n-ブチル-ジ(n-ブチルオキシ)スズを77.3wt%、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)ジスタンオキサンを19.9wt%含有していた。また、低沸成分は、酢酸ブチルを17.2wt%含有していた。
[実施例9]
 ジ-n-ブチルスズジアセテートの代わりに、ジ-n-ブチルスズジラウレート341gを使用し、2-エチル-1-ブタノールの代わりに、メタノール(米国、Aldrich社製)363gを使用した以外は、実施例6と同様の方法をおこない、残留液206gを得た。該残留液はジ-n-ブチル-ジメトキシスズを59.5wt%、ジ-n-ブチルスズジラウレートを38.1wt%含有していた。また、低沸成分は、ラウリン酸メチルを34.8wt%含有していた。
[実施例10]
 ジ-n-ブチルスズジアセテートを320g使用し、2-エチル-1-ブタノールの代わりにフェノール(日本国、和光純薬工業社製、核酸抽出用)1029gを使用した以外は、実施例6と同様の方法をおこない、残留液389gを得た。該残留液はジ-n-ブチル-ジフェノキシスズを95.3wt%含有していた。また、低沸成分は、酢酸フェニルを22wt%含有していた。
[実施例11]
 大気圧窒素雰囲気下において、ジ-n-ブチルスズジアセテート289gと、炭酸ビス(2-エチルブチル)1024gを容積2Lのナス型フラスコに入れ、該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したロータリーエバポレーターに取り付けた。ロータリーエバポレーターのパージバルブ出口は大気圧で流れている窒素ガスのラインに接続した。系内を窒素置換した後、オイルバス温度を280℃に設定し、該フラスコを該オイルバスに浸漬してロータリーエバポレーターの回転を開始した。ロータリーエバポレーターのパージバルブを開放したまま大気圧窒素下で約7時間低沸成分の留去を行い、続いて系内を徐々に減圧にし、系内圧力が76kPa~10kPaの状態で残存低沸成分を留去した。低沸成分の留出がみられなくなった後、該フラスコをオイルバスから上げ冷却した。該フラスコには残留液365gが得られた。H、13C、119Sn-NMRの分析結果から、該フラスコ中の残留液はジ-n-ブチル-ビス(2-エチルブチルオキシ)スズを79.7wt%、トリ-n-ブチル-(2-エチルブチルオキシ)スズを7.6wt%含有する溶液であった。
 一方、低沸成分は888g回収された。該低沸成分をガスクロマトグラフィーにより分析したところ、該低沸成分は酢酸(2-エチルブチル)を約25.2wt%含有していた。
[実施例12]
 ジ-n-ブチルスズジアセテートを310g使用し、3-メチル-1-ブタノール934gを使用し、オイルバスの温度を30℃とした以外は、実施例11と同様の方法をおこない、残留液356gを得た。該残留液はジ-n-ブチル-ビス(3-メチルブチル)スズを53.5wt%含有していた。また、低沸成分は、酢酸イソアミルを約12.8wt%含有していた。
[実施例13]
工程(13-1):ジアルキルスズ触媒の製造
 容積5000mLのナス型フラスコに、ジ-n-オクチルスズオキシド(日本国、三共有機合成社製)972g(2.7mol)および3-メチル-1-ブタノール2100g(23.9mol)を入れた。該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したエバポレーターに取り付けた。エバポレーターのパージバルブ出口は常圧で流れている窒素ガスのラインと接続した。エバポレーターのパージバルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒素を流し、常圧に戻した。オイルバス温度を約145℃に設定し、該フラスコを該オイルバスに浸漬してエバポレーターの回転を開始した。エバポレーターのパージバルブを開放したまま大気圧窒素下で約40分間加熱したところで、水を含む3-メチル-1-ブタノールの蒸留が始まった。この状態を7時間保った後、パージバルブを閉め、系内を徐々に減圧し、系内の圧力が74~35kPaの状態で過剰の3-メチル-1-ブタノールを蒸留した。留分が出なくなった後、該フラスコをオイルバスからあげた。該フラスコが室温(25℃)付近まで冷却されたのち、該フラスコをオイルバスからあげてパージバルブを徐々に開き系内の圧力を大気圧に戻した。該フラスコには反応液1176gが得られた。119Sn、H、13C-NMRの分析結果から、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンがジ-n-オクチルスズオキシドに対して収率99%で得られたことを確認した。同様の操作を12回繰り返し、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンを合計14120g得た。
工程(13-2):炭酸エステルの製造およびアルキルスズ組成物の回収
 図5に示すような連続製造装置において、炭酸エステルを製造した。充填物Metal Gauze CYを充填した、内径151mm,有効長さ5040mmの塔型反応器102に、移送ライン4から上記で製造した1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを5887g/hrで供給し、移送ライン2から蒸留塔101で精製された3-メチル-1-ブタノールを14953g/hrで供給した。該反応器内102は、液温度が160℃になるようにヒーターおよびリボイラー112によって調整し、圧力が約120kPa-Gになるように圧力調節バルブによって調整した。該反応器内の滞留時間は約17分であった。反応器上部から移送ライン6を経て水を含む3-メチル-1-ブタノール15037g/hrを、および、供給ライン1を経て3-メチル-1-ブタノール824g/hrを、充填物Metal Gauze CYを充填しリボイラー111およびコンデンサー121を備えた蒸留塔101に輸送し、蒸留精製を行った。蒸留塔101の上部では高濃度の水を含む留分がコンデンサー121によって凝縮され回収ライン3から回収された。精製された3-メチル-1-ブタノールは、蒸留塔101の下部にある移送ライン2を経て塔型反応器102に輸送した。塔型反応器102の下部からジ-n-オクチル-ビス(3-メチルブチルオキシ)スズと1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含む組成物(以下、触媒組成物という)を得、移送ライン5を経て薄膜蒸発装置103に供給した。薄膜蒸発装置103において3-メチル-1-ブタノールを留去し、コンデンサー123、移送ライン8および移送ライン4を経て塔型反応器102に戻した。薄膜蒸発装置103の下部から移送ライン7を経て触媒組成物を輸送し、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズと1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンの流量が約6627g/hrになるように調節しオートクレーブ104に供給した。オートクレーブに移送ライン9より、二酸化炭素を973g/hrで供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素と触媒組成物との反応を行い、炭酸ビス(3-メチルブチル)を含む反応液を得た。該反応液を移送ライン10と調節バルブを介して除炭槽105に移送し残存二酸化炭素を除去し、移送ライン11から二酸化炭素を回収した。その後、該反応液を、移送ライン12を経て約142℃、約0.5kPaとした薄膜蒸発装置106に移送し、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンの流量が約5887g/hrになるように調節し供給して、炭酸ビス(3-メチルブチル)を含む留分を得、一方で蒸発残渣を移送ライン13と移送ライン4を介して、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンの流量が約5887g/hrになるように調節し塔型反応器102に循環した。炭酸ビス(3-メチルブチル)を含む留分はコンデンサー126および移送ライン14を経て、充填物Metal Gauze CYを充填しリボイラー117およびコンデンサー127を備えた蒸留塔107に959g/hrで供給して、蒸留精製を行った後、回収ライン15から99wt%の炭酸ビス(3-メチルブチル)を944g/hr得た。移送ライン13のアルキルスズアルコキシド触媒組成物を119Sn,H,13C-NMRによる分析を行ったところ、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンが含まれており、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズは含まれていなかった。上記連続運転を約240時間行った後、抜き出しライン16から触媒組成物を18g/hrで抜き出し、一方で供給ライン17から上記方法で製造した1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを18g/hrで供給し、抜き出しライン16から、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を200g抜き出した。119Sn-NMRによる分析を行ったところ、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンが約60wt%含まれている以外に、トリ-n-オクチル(3-メチルブチルオキシ)スズおよび-240~-605ppmに、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンの失活成分の複数のNMRシフトが見られた。
工程(13-3):1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の置換基交換反応
 工程(13-2)で得られた1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物350gを、窒素雰囲気下において、1Lナス型フラスコに入れ、ついで、酢酸(日本国、和光純薬工業社製、特級)95gと無水酢酸(日本国、和光純薬工業社製、特級)325gを加え、25℃で1時間撹拌した。該フラスコに、留出液受器と連結した還流冷却器付き分留頭、および温度計を取り付け、該フラスコ内を真空-窒素置換したのち、該フラスコを、50℃に加熱したオイルバスに浸漬した。容器内を徐々に減圧し、余剰の酢酸および無水酢酸等を留去し、留出物を得た。該留出物についてガスクロマトグラフィー分析をおこなったところ、該留出物は、酢酸、無水酢酸、3-メチル-1-ブタノールを含有していた。該フラスコ内に残留物を368g得た。残留物についてHおよび119Sn-NMR測定をおこなったところ、該残留物はトリ-n-オクチルアセトキシスズおよびジ-n-オクチルジアセトキシスズ、および、119Sn-NMRにおいて-240~-605ppmに複数の化学シフトを示すスズ原子を含有する有機スズ化合物の混合物であった。該混合物において、トリ-n-オクチルアセトキシスズは27.9wt%、ジ-n-オクチルジアセトキシスズは50.0wt%であった。
工程(13-4):アルキル基再分配反応
 窒素雰囲気下において、工程(13-3)で得られた混合物365gを、500mL金属製圧力容器(日本国、耐圧硝子工業社製、TSV-N2型)に入れた。該金属製圧力容器を200℃に加熱したオイルバスに浸漬し、3時間加熱した。該耐圧反応容器を室温付近まで冷却したのち、反応液を回収した。反応液について、Hおよび119Sn-NMR測定をおこなったところ、該反応液は、ジ-n-オクチルジアセトキシスズ、トリ-n-オクチルアセトキシスズを含有する有機スズ化合物の混合物であり、ジ-n-オクチル-ジアセトキシスズが94.0wt%、トリ-n-オクチルアセトキシスズが約3wt%であった。
工程(13-5):ジアルキルスズ化合物のアルコキシ化
 工程(13-4)で得られた混合物363g、および3-メチル-1-ブタノール366gを2L4つ口フラスコに入れた。該フラスコに、留出液受器と連結した還流冷却器付き分留頭、および温度計を取り付け、該フラスコ内を真空-窒素置換したのち、該フラスコを、140℃に加熱したオイルバスに浸漬した。約5時間、攪拌しながら加熱したのち、系内を徐々に減圧して低沸成分を留去し、該フラスコに残留物を410g得た。該残留物についてHおよび119Sn-NMR測定をおこなったところ、該残留物は、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズ、トリ-n-オクチル-(3-メチルブチルオキシ)スズを含有する有機スズ化合物の混合物であり、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズが93.3wt%、トリ-n-オクチル-(3-メチルブチルオキシ)スズが約3.1wt%であった。
 一方、低沸成分は453g回収され、該低沸成分は、酢酸イソアミルを45wt%含有していた。
[実施例14]
工程(14-1):トリ-n-オクチル(3-メチルブチルオキシ)スズの分離
 実施例13の工程(13-2)と同様の方法で得られた1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物180gを500mLナス型フラスコに入れ、該フラスコに、三方コック、ヘリパックNo.3を充填した長さ45cmの蒸留カラムおよび留出液受器と連結した還流冷却器付き分留頭、および温度計を取り付け、容器内を真空-窒素置換した。容器内を大気圧窒素下とし、該フラスコを約230℃に加熱したオイルバスに浸漬した。約20分後、該フラスコの内容物の温度が約210℃となったところで、容器内を徐々に減圧し、留出する成分を回収した。最終的に、容器内の圧力が約0.01kPaとしたところで蒸留を終了した。留出液およびフラスコ内の残存物について、Hおよび119Sn-NMR測定をおこなった。留出液はトリ-n-オクチル(3-メチルブチルオキシ)スズであった。フラスコ内の残存物は、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンを73.5wt%含有し、119Sn-NMRにおいて-240~-605ppmに複数の化学シフトを示すスズ原子を含有する有機スズ化合物の混合物であった。得られた留出液は33.2g、フラスコ内の残存物は146.8gであった。
工程(14-2):置換基交換反応
 工程(14-1)で得られたトリ-n-オクチル(3-メチルブチルオキシ)スズ32.1gを300mLナス型フラスコに入れ、ついで、無水酢酸27.2gを加え、25℃で1時間撹拌した。該フラスコに、留出液受器と連結した還流冷却器付き分留頭、および温度計を取り付け、該フラスコ内を真空-窒素置換したのち、該フラスコを、50℃に加熱したオイルバスに浸漬した。容器内を徐々に減圧し、余剰の無水酢酸等を留去し、該フラスコ内に残留物を30.5g得た。残留物についてHおよび119Sn-NMR測定をおこなったところ、該残留物はトリ-n-オクチルアセトキシスズであった。
 一方、工程(14-1)で得られた、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンを73.5wt%含有する残存物145gを、500mL金属製圧力容器に入れ、ついで、無水酢酸を180.6g加え、撹拌した。該金属製圧力容器を200℃に加熱したオイルバスに浸漬し、3時間加熱した。該金属製圧力容器を室温(約25℃)付近まで冷却したのち、内容物を、500mLナス型フラスコに移した。該フラスコに留出液受器と連結した還流冷却器付き分留頭、および温度計を取り付け、該フラスコ内を真空-窒素置換したのち、該フラスコを、50℃に加熱したオイルバスに浸漬した。容器内を徐々に減圧し、酢酸イソアミルと余剰の無水酢酸を留去し、該フラスコ内に残留物を155g得た。残留物についてHおよび119Sn-NMR測定をおこなったところ、該残留物は、ジ-n-オクチルジアセトキシスズとn-オクチルトリアセトキシスズを含有する混合物であり、該混合物中のジ-n-オクチルジアセトキシスズは78.5wt%、n-オクチルトリアセトキシスズは21.3wt%であった。該混合物を、先に得られたトリ-n-オクチルアセトキシスズと混合し、次の工程(14-3)の原料とした。
工程(14-3):アルキル基再分配反応
 窒素雰囲気下において、工程(14-2)で得られた混合物183gを、工程(13-3)で得られた混合物の代わりに使用した以外は、実施例1の工程(13-4と同様の方法をおこない、反応液を回収した。反応液について、Hおよび119Sn-NMR測定をおこなったところ、該反応液は、ジ-n-オクチルジアセトキシスズとn-オクチルトリアセトキシスズを含有する混合物であり、該混合物中のジ-n-オクチルジアセトキシスズは94.5wt%であった。
工程(14-4):ジアルキルスズ化合物のアルコキシ化
 工程(13-4)で得られた混合物の代わりに工程(14-3)で得られた混合物182gを使用し、3-メチル-1-ブタノール213gを使用した以外は、実施例13の工程(13-5)と同様の方法をおこない、残留物を210g得た。該残留物についてHおよび119Sn-NMR測定をおこなったところ、該残留物は、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを91wt%含有していた。一方、低沸成分を239g回収し、該低沸成分は酢酸イソアミルを42.2wt%含有していた。
[実施例15]
工程(15-1):ジアルキルスズ触媒の製造
 容積5000mLのナス型フラスコに、ジ-n-オクチルスズオキシド(日本国、三共有機合成社製)893g(2.48mol)および2-エチル-1-ブタノール2403g(23.6mol)を入れた。該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したエバポレーターに取り付けた。エバポレーターのパージバルブ出口は常圧で流れている窒素ガスのラインと接続した。エバポレーターのパージバルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒素を流し、常圧に戻した。オイルバス温度を約165℃に設定し、該フラスコを該オイルバスに浸漬してエバポレーターの回転を開始した。エバポレーターのパージバルブを開放したまま大気圧窒素下で約40分間加熱したところで、水を含む2-エチル-1-ブタノールの蒸留が始まった。この状態を7時間保った後、パージバルブを閉め、系内を徐々に減圧し、系内の圧力が74~25kPaの状態で過剰の2-エチル-1-ブタノールを蒸留した。留分が出なくなった後、該フラスコをオイルバスからあげた。該フラスコが室温(25℃)付近まで冷却されたのち、該フラスコをオイルバスからあげてパージバルブを徐々に開き系内の圧力を大気圧に戻した。該フラスコには反応液1114gが得られた。119Sn、H、13C-NMRの分析結果から、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)-ジスタンオキサンがジ-n-オクチルスズオキシドに対して収率99%で得られたことを確認した。同様の操作を12回繰り返し、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)-ジスタンオキサンを合計13380g得た。
工程(15-2):炭酸エステルの製造およびアルキルスズ組成物の回収
 図5に示すような連続製造装置において、炭酸エステルを製造した。充填物Metal Gauze CYを充填した、内径151mm,有効長さ5040mmの塔型反応器102に、移送ライン4から上記で製造した1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを6074g/hrで供給し、移送ライン2から蒸留塔101で精製された2-エチル-1-ブタノールを12260g/hrで供給した。該反応器内102は液温度が160℃になるようにヒーターおよびリボイラー112によって調整し、圧力が約120kPa-Gになるように圧力調節バルブによって調整した。該反応器内の滞留時間は約17分であった。反応器上部から移送ライン6を経て水を含む2-エチル-1-ブタノール12344g/hrを、および、供給ライン1を経て2-エチル-1-ブタノール958g/hrを、充填物Metal Gauze CYを充填しリボイラー111およびコンデンサー121を備えた蒸留塔101に輸送し、蒸留精製を行った。蒸留塔101の上部では高濃度の水を含む留分がコンデンサー121によって凝縮され回収ライン3から回収された。精製された2-エチル-1-ブタノールは、蒸留塔101の下部にある移送ライン2を経て塔型反応器102に輸送した。塔型反応器102の下部からジ-n-オクチル-ビス(2-エチルブチルオキシ)スズと1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含む組成物(以下、触媒組成物という)を得、移送ライン5を経て薄膜蒸発装置103に供給した。薄膜蒸発装置103において2-エチル-1-ブタノールを留去し、コンデンサー123、移送ライン8および移送ライン4を経て塔型反応器102に戻した。薄膜蒸発装置103の下部から移送ライン7を経て触媒組成物を輸送し、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズと1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの流量が約6945g/hrになるように調節しオートクレーブ104に供給した。オートクレーブに移送ライン9より、二酸化炭素を973g/hrで供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素と触媒組成物との反応を行い、炭酸ビス(2-エチルブチル)を含む反応液を得た。該反応液を移送ライン10と調節バルブを介して除炭槽105に移送し残存二酸化炭素を除去し、移送ライン11から二酸化炭素を回収した。その後、該反応液を、移送ライン12を経て約142℃、約0.5kPaとした薄膜蒸発装置106に移送し、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの流量が約6074g/hrになるように調節し供給して、炭酸ビス(2-エチルブチル)を含む留分を得、一方で蒸発残渣を移送ライン13と移送ライン4を介して、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの流量が約6074g/hrになるように調節し塔型反応器102に循環した。炭酸ビス(2-エチルブチル)を含む留分はコンデンサー126および移送ライン14を経て、充填物Metal Gauze CYを充填しリボイラー117およびコンデンサー127を備えた蒸留塔107に959g/hrで供給して、蒸留精製を行った後、回収ライン15から99wt%の炭酸ビス(2-エチルブチル)を1075g/hr得た。移送ライン13の触媒組成物を119Sn,H,13C-NMRによる分析を行ったところ、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンが含まれており、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズは含まれていなかった。上記連続運転を約220時間行った後、抜き出しライン16から触媒組成物を18g/hrで抜き出し、一方で供給ライン17から上記方法で製造した1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを18g/hrで供給し、抜き出しライン16から、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を180g抜き出した。119Sn-NMRによる分析を行ったところ、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンが約55wt%含まれている以外に、トリ-n-オクチル(2-エチルブチルオキシ)スズおよび-240~-605ppmに、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの失活成分の複数のNMRシフトが見られた。
工程(15-3):1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の置換基交換反応
 工程(13-2)で得られたアルキルスズ組成物の代わりに工程(15-2)で得られた1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物195gを使用し、無水酢酸220gを使用(酢酸は使用しなかった)した以外は、実施例13の工程(13-3)と同様の方法をおこない、トリ-n-オクチルアセトキシスズおよびジ-n-オクチルジアセトキシスズ、および、119Sn-NMRにおいて-240~-605ppmに複数の化学シフトを示すスズ原子を含有する有機スズ化合物の混合物を198g得た。該混合物において、トリ-n-オクチルアセトキシスズは25.1wt%、ジ-n-オクチルジアセトキシスズは54.9wt%であった。
工程(15-4):アルキル基再分配反応
 窒素雰囲気下において、工程(15-3)で得られた混合物196gを、工程(13-3)で得られた混合物の代わりに使用した以外は、実施例1の工程(13-4)と同様の方法をおこない、反応液を回収した。反応液について、Hおよび119Sn-NMR測定をおこなったところ、該反応液は、ジ-n-オクチルジアセトキシスズとn-オクチルトリアセトキシスズを含有する混合物であり、該混合物中のジ-n-オクチルジアセトキシスズは96.3wt%であった。
工程(15-5):ジアルキルスズ化合物のアルコキシ化
 工程(13-4)で得られた混合物の代わりに工程(15-4)で得られた混合物195gを使用し、3-メチル-1-ブタノールの代わりに2-エチル-1-ブタノール258gを使用した以外は、実施例13の工程(13-5)と同様の方法をおこない、残留物を232g得た。該残留物についてHおよび119Sn-NMR測定をおこなったところ、該残留物は、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを95.7wt%含有していた。
[実施例16]
工程(16-1):置換基交換反応
 図6のような装置を使用して反応をおこなった。
 実施例13の工程(13-2)と同様の方法で得た失活体組成物を貯槽201に貯蔵した。蒸留塔を備えた撹拌槽204に、貯槽201よりライン21を経て失活体組成物を4.27kg投入した。該撹拌槽204を約40℃に加熱し、貯槽202よりライン22を経て酢酸0.93kgを撹拌槽204に投入した。約1時間撹拌をおこなったのち、撹拌槽204の系内を約0.13kPaに減圧し、撹拌槽204を焼く80℃に加熱して、低沸成分の蒸留をおこない、ライン24より低沸成分を0.94kg回収した。続いて、該撹拌槽204内の圧力を窒素で大気圧に戻し、約100℃に加熱して、貯槽203よりライン23を経て無水酢酸を1.87kg投入した。約3時間撹拌をおこなったのち、撹拌槽204内を約1kPaに減圧し、該撹拌槽204を約120℃に加熱して、未反応の無水酢酸等の低沸成分を蒸留し、ライン24より低沸成分を約1.76kg回収した。撹拌槽204には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチルスズジアセテートを45.2wt%、トリ-n-オクチルスズアセテートを25.4wt%含有していた。
工程(16-2):アルキル基再分配反応
 引き続き、図6のような装置を使用して反応をおこなった。
 残留物を含む撹拌槽204を、窒素で大気圧とし、約200℃に加熱して約2時間撹拌をおこなった。撹拌槽204に得られた残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチルスズジアセテートを90.2wt%、トリ-n-オクチルスズアセテートを約0.5wt%含有していた。続いて、該残留物を、ライン25を経て、約200℃に加熱し、系内を約0.26kPaに減圧した薄膜蒸発装置205にフィードし、蒸留分離をおこなった。気相成分をライン27を経てコンデンサー207で凝縮し、撹拌槽208に回収した。一方の液相成分は、ライン26を経て貯槽206に回収した。撹拌槽208に回収した化合物について119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチルスズジアセテートを98.4wt%、トリ-n-オクチルスズアセテートを約0.3wt%含有していた。一方、貯槽206に回収した液相成分は0.28kgであった。該液相成分をライン20を経て貯槽201に移送し、工程(16-1)の原料としてリサイクルした。
工程(16-3):ジアルキルスズ化合物のアルコキシ化
 蒸留塔を備えた撹拌槽208に、貯槽210よりライン30を経て、n-プロパノール(日本国、和光純薬工業社製、脱水)15.33kgを投入した。撹拌槽208を密閉とした状態で約100℃に加熱し、約40時間反応をおこなったのち、未反応のn-プロパノールをライン28より蒸留回収した。該蒸留成分は15.33kgであり、n-プロパノールを86.8wt%、酢酸プロピルを11.2wt%含有していた。
 続いて、撹拌槽208に、貯槽211よりライン31を経て、3-メチル-1-ブタノール3.74kgを投入した。撹拌槽208を約130℃に加熱し、約3時間撹拌した後、撹拌槽208の系内を減圧し、未反応の3-メチル-1-ブタノール等を含む低沸成分を、ライン28より回収した。該低沸成分を3.28kg回収したが、該低沸成分には3-メチル-1-ブタノールが69.5wt%、n-プロパノールが30.5wt%含有されていた。
 該撹拌槽208に得られた残留物をライン29を介して貯槽209に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを97.1wt%含有していた。
[実施例17]
工程(17-1):置換基交換反応
 図6のような装置を使用して反応をおこなった。
 実施例13の工程(13-2)と同様の方法で得た1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を貯槽201に貯蔵した。蒸留塔を備えた撹拌槽204に、貯槽201よりライン21を経て1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を4.56kg投入し、酢酸の代わりにプロピオン酸(日本国、和光純薬工業社製)1.23kgを使用し、無水酢酸の代わりに無水プロピオン酸2.54kgを使用した以外は、実施例16の工程(16-1)と同様の方法をおこない、未反応の無水プロピオン酸等の低沸成分を蒸留し、ライン24より低沸成分を約2.37kg回収した。該低沸成分についてガスクロマトグラフィー分析をおこなったところ、該低沸成分は、プロピオン酸、無水プロピオン酸、3-メチル-1-ブタノールを含有していた。撹拌槽204には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチル-ジ(プロピオニルオキシ)スズを46.8wt%、トリ-n-オクチル-(プロピオニルオキシ)スズを25.3wt%含有していた。
工程(17-2):アルキル基再分配反応
 引き続き、図6のような装置を使用して反応をおこなった。
 薄膜蒸発装置205の圧力を約0.13kPaとした以外は、実施例16の工程(16-2)と同様の方法をおこない、撹拌槽208に、ジ-n-オクチル-ジ(プロピオニルオキシ)スズを98.5wt%、トリ-n-オクチル-プロピオニルオキシスズを約0.4wt%含有する混合物を得た。一方、貯槽206に液相成分を0.31kg回収し、該液相成分をライン20を経て貯槽201に移送し、工程(17-1)の原料としてリサイクルした。
工程(17-3):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりにエタノール(日本国、和光純薬工業社製、脱水)12.73kgを使用し、撹拌槽208を約80℃に加熱し、約80時間反応をおこなった以外は、実施例16の工程(16-3)と同様の方法をおこない、未反応のエタノールをライン28より蒸留回収した。該蒸留成分は13.21kgであり、エタノールを83.7wt%、プロピオン酸エチルを13.9wt%含有していた。
 続いて、3-メチル-1-ブタノール3.99kgを撹拌槽208に投入し、実施例16の工程(16-3)と同様の方法をおこない、未反応の3-メチル-1-ブタノール等を含む低沸成分を、ライン28より回収した。該低沸成分は3.26kgであり、該低沸成分には3-メチル-1-ブタノールを74.5wt%、エタノールを25.5wt%含有していた。
 該撹拌槽208に得られた残留物をライン29を介して貯槽209に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを97.9wt%含有していた。
[実施例18]
工程(18-1):置換基交換反応
 図6のような装置を使用して反応をおこなった。
 実施例13の工程(13-2)と同様の方法で得た1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の代わりに、実施例15の工程(15-2)と同様の方法で得た1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を貯槽201に貯蔵した。蒸留塔を備えた撹拌槽204に、貯槽201よりライン21を経て1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を3.95kg投入し、酢酸を0.83kg、無水酢酸を1.68kg使用した以外は、実施例16の工程(16-1)と同様の方法をおこない、未反応の無水酢酸等の低沸成分を蒸留し、ライン24より低沸成分を約1.59kg回収した。該低沸成分についてガスクロマトグラフィー分析をおこなったところ、該低沸成分は、酢酸、無水酢酸、2-エチル-1-ブタノールを含有していた。撹拌槽204には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチルスズジアセテートを44.8wt%、トリ-n-オクチルスズアセテートを25.2wt%含有していた。
工程(18-2):アルキル基再分配反応
 引き続き、図6のような装置を使用して反応をおこなった。
 実施例16の工程(16-2)と同様の方法をおこない、撹拌槽208に、ジ-n-オクチルスズジアセテートを98.9wt%含有する混合物を得た。一方、貯槽206に液相成分を0.24kg回収し、該液相成分を、ライン20を経て貯槽201に移送し、工程(18-1)の原料としてリサイクルした。
工程(18-3):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりにエタノール10.75kgを使用し、撹拌槽208を約80℃に加熱し、約150時間反応をおこなった以外は、実施例16の工程(16-3)と同様の方法をおこない、未反応のエタノールをライン28より蒸留回収した。該蒸留成分は10.94kgであり、エタノールを85.2wt%、酢酸エチルを12.2wt%含有していた。
 続いて、3-メチル-1-ブタノールの代わりに2-エチル-1-ブタノール3.91kgを撹拌槽208に投入し、実施例16の工程(16-3)と同様の方法をおこない、未反応の2-エチル-1-ブタノール等を含む低沸成分を、ライン28より回収した。該低沸成分は3.29kgであり、該低沸成分には2-エチル-1-ブタノールを72.3wt%、エタノールを21.3wt%含有していた。
 該撹拌槽208に得られた残留物を、ライン29を介して貯槽209に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを97.4wt%含有していた。
[実施例19]
工程(19-1):置換基交換反応
 図6のような装置を使用して反応をおこなった。
 実施例13の工程(13-2)と同様の方法で得た1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の代わりに、参考例3の工程(3-2)と同様の方法で得た1,1,3,3-テトラ-n-ブチル-1,3-ジブチルオキシジスタンオキサンを含むアルキルスズ組成物を貯槽201に貯蔵した。蒸留塔を備えた撹拌槽204に、貯槽201よりライン21を経て1,1,3,3-テトラ-n-ブチル-1,3-ジブチルオキシジスタンオキサンを含むアルキルスズ組成物を5.41kg投入し、酢酸の代わりにヘキサン酸を3.21kg、無水酢酸の代わりに無水ヘキサン酸を6.81kg使用した以外は、実施例16の工程(16-1)と同様の方法をおこない、未反応の無水ヘキサン酸等の低沸成分を蒸留し、ライン24より低沸成分を約6.29kg回収した。該低沸成分についてガスクロマトグラフィー分析をおこなったところ、該低沸成分は、ヘキサン酸、無水ヘキサン酸、n-ブタノールを含有していた。撹拌槽204には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-ブチル-ジプロピオニルオキシスズを47.3wt%、トリ-n-ブチル-プロピオニルオキシスズを20.7wt%含有していた。
工程(19-2):アルキル基再分配反応
 引き続き、図6のような装置を使用して反応をおこなった。
 実施例16の工程(16-2)と同様の方法をおこない、撹拌槽208に、ジ-n-ブチル-ジプロピオニルオキシスズを90.2wt%含有する混合物を得た。一方、貯槽206に液相成分を0.46kg回収し、該液相成分を、ライン20を経て貯槽201に移送し、工程(19-1)の原料としてリサイクルした。
工程(19-3):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりにn-ブタノール32.57kgを使用し、撹拌槽208を約120℃に加熱し、約80時間反応をおこなった以外は、実施例16の工程(16-3)と同様の方法をおこない、未反応のn-ブタノールをライン28より蒸留回収した。該蒸留成分は33.97kgであり、n-ブタノールを83.8wt%、ヘキサン酸ブチルを14.7wt%含有していた。
 該撹拌槽208に得られた残留物を、ライン29を介して貯槽209に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-ブチル-ジ(n-ブチルオキシ)スズを76.1wt%、トリ-n-ブチル-(n-ブチルオキシ)スズを10.9wt%含有していた。
[実施例20]
工程(20-1):置換基交換反応
 図6のような装置を使用して反応をおこなった。
 実施例13の工程(13-2)と同様の方法で得た1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の代わりに、参考例3の工程(3-2)と同様の方法で得た1,1,3,3-テトラ-n-ブチル-1,3-ジブチルオキシジスタンオキサンを含むアルキルスズ組成物を貯槽201に貯蔵した。蒸留塔を備えた撹拌槽204に、貯槽201よりライン21を経て1,1,3,3-テトラ-n-ブチル-1,3-ジブチルオキシジスタンオキサンを含むアルキルスズ組成物を5.41kg投入し、酢酸の代わりにヘキサン酸を3.21kg、無水酢酸の代わりに無水ヘキサン酸を6.81kg使用した以外は、実施例16の工程(16-1)と同様の方法をおこない、未反応の無水ヘキサン酸等の低沸成分を蒸留し、ライン24より低沸成分を約6.29kg回収した。該低沸成分についてガスクロマトグラフィー分析をおこなったところ、該低沸成分は、ヘキサン酸、無水ヘキサン酸、n-ブタノールを含有していた。撹拌槽204には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-ブチル-ジプロピオニルオキシスズを47.3wt%、トリ-n-ブチル-プロピオニルオキシスズを20.7wt%含有していた。
工程(20-2):アルキル基再分配反応
 引き続き、図6のような装置を使用して反応をおこなった。
 実施例16の工程(16-2)と同様の方法をおこない、撹拌槽208に、ジ-n-ブチル-ジプロピオニルオキシスズを90.2wt%含有する混合物を得た。一方、貯槽206に液相成分を0.46kg回収し、該液相成分を、ライン20を経て貯槽201に移送し、工程(19-1)の原料としてリサイクルした。
工程(20-3):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりにn-ブタノール32.57kgを使用し、撹拌槽208を約120℃に加熱し、約80時間反応をおこなった以外は、実施例16の工程(16-3)と同様の方法をおこない、未反応のn-ブタノールをライン28より蒸留回収した。該蒸留成分は33.97kgであり、n-ブタノールを83.8wt%、ヘキサン酸ブチルを14.7wt%含有していた。
 該撹拌槽208に得られた残留物を、ライン29を介して貯槽209に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-ブチル-ジ(n-ブチルオキシ)スズを76.1wt%、トリ-n-ブチル-(n-ブチルオキシ)スズを10.9wt%含有していた。
[実施例21]
工程(21-1):再生されたジアルキルスズジアルコキシド化合物を使用した炭酸エステルの製造
 実施例15の工程(15-2)において、抜き出しライン16よりアルキルスズアルコキシド触媒組成物を18g/hrで抜き出し、一方で供給ライン17から、実施例18の工程(18-3)で得た、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを97.4wt%含有する混合物を18g/hrで供給した。再生されたジ-n-オクチル-ビス(2-エチルブチルオキシ)スズは、ライン4を経て塔型反応器102に供給された。実施例15の工程(15-2)と同様の方法で運転をおこない、ライン15より99wt%の炭酸ビス(2-エチルブチル)を約1075g/hrで回収した。炭酸ビス(2-エチルブチル)の回収量は、再生させたジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを使用する前後で変化しなかった。
[実施例22]
工程(22-1):炭酸エステルの製造
 図7に示すような連続製造装置において炭酸エステルを製造した。
 実施例16の工程(16-3)で得た、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを97.1wt%含有する混合物を、ライン41を介して、オートクレーブ401に6944g/hrでフィードした。ライン42より二酸化炭素を1390g/Hrで該オートクレーブに供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素とジ-n-オクチル-ビス(3-メチルブチルオキシ)スズとの反応を行い、炭酸ビス(3-メチルブチル)を含む反応液を得た。該反応液をライン43と調節バルブを介して除炭槽402に7253g/hrで移送し、残存している二酸化炭素を除去し、ライン44から二酸化炭素を回収した。その後、該反応液を、ライン45を経て約142℃、約0.5kPaとした薄膜蒸発装置403に移送し、炭酸ビス(3-メチルブチル)を含む留分を得た。炭酸ビス(3-メチルブチル)を含む留分はコンデンサー405およびライン47を経て、充填物Metal Gauze CYを充填し、リボイラー408およびコンデンサー407を備えた蒸留塔406に供給して、蒸留精製を行った。ライン49から99wt%の炭酸ビス(3-メチルブチル)を1351g/hrで得た。一方、薄膜蒸発装置403で分離された液相成分を、ライン46を経て約58990g/Hrで貯槽404に回収した。該液相成分をサンプリングし、119Sn、H-NMRにより分析したところ、該液相成分は、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを約98wt%含有する混合物であった。
工程(22-2):置換基交換反応
 工程(22-1)で貯槽404に回収した液相成分を、ライン53を介して、蒸留塔を具備した撹拌槽405に4.11kgフィードした。該撹拌槽405を約40℃に加熱し、ライン55より酢酸1.18kgを撹拌槽405に投入した。約1時間撹拌をおこなったのち、撹拌槽405の系内を約0.13kPaに減圧し、撹拌槽405を約80℃に加熱して、低沸成分の蒸留をおこない、ライン55より低沸成分を0.98kg回収した。続いて、該撹拌槽405内の圧力を窒素で大気圧に戻し、約100℃に加熱して、ライン55を経て無水酢酸を1.67kg投入した。約3時間撹拌をおこなったのち、撹拌槽405内を約1kPaに減圧し、該撹拌槽405を約120℃に加熱して、未反応の無水酢酸等の低沸成分を蒸留し、ライン55より低沸成分を約1.82kg回収した。該低沸成分についてガスクロマトグラフィー分析をおこなったところ、該低沸成分は、酢酸、無水酢酸、3-メチル-1-ブタノールを含有していた。撹拌槽405には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチルスズジアセテートを90.7wt%含有していた。
工程(22-3):ジアルキルスズ化合物のアルコキシ化
 蒸留塔を備えた撹拌槽405に、ライン55より、n-プロパノール14.56kgを投入した。撹拌槽405を密閉とした状態で約100℃に加熱し、約40時間反応をおこなったのち、未反応のn-プロパノールをライン55より蒸留回収した。該蒸留成分は14.56kgであり、n-プロパノールを86.9wt%、酢酸プロピルを11.2wt%含有していた。
 続いて、撹拌405に、ライン55より、3-メチル-1-ブタノール3.55kgを投入した。撹拌槽405を約130℃に加熱し、約3時間撹拌した後、撹拌槽405の系内を減圧し、未反応の3-メチル-1-ブタノール等を含む低沸成分を、ライン55より回収した。該低沸成分を3.11kg回収したが、該低沸成分には3-メチル-1-ブタノールが69.5wt%、n-プロパノールが30.5wt%含有されていた。
 該撹拌槽405に得られた残留物をライン56を介して貯槽406に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを96.0wt%含有していた。
工程(22-4):炭酸エステルの製造
 実施例16の工程(16-3)で得た、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを97.1wt%含有する混合物の代わりに、工程(22-3)で得たジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを含有する回収物を使用した以外は、工程(21-1)と同様の方法を実施し、ライン49から99wt%の炭酸ビス(3-メチルブチル)を1350g/hrで得た。
[実施例23]
工程(23-1):炭酸エステルの製造
 図7に示すような連続製造装置において炭酸エステルを製造した。
 実施例18の工程(18-3)で得た、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを97.4wt%含有する混合物を、ライン41を介して、オートクレーブ401に7318g/hrでフィードした。ライン42より二酸化炭素を973g/hrで該オートクレーブに供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素とジ-n-オクチル-ビス(2-エチルブチルオキシ)スズとの反応を行い、炭酸ビス(2-エチルブチル)を含む反応液を得た。該反応液をライン43と調節バルブを介して除炭槽402に8188g/hrで移送し、残存している二酸化炭素を除去し、ライン44から二酸化炭素を回収した。その後、該反応液を、ライン45を経て約150℃、約0.5kPaとした薄膜蒸発装置403に移送し、炭酸ビス(2-エチルブチル)を含む留分を得た。炭酸ビス(2-エチルブチル)を含む留分はコンデンサー405およびライン47を経て、充填物Metal Gauze CYを充填し、リボイラー408およびコンデンサー407を備えた蒸留塔406に供給して、蒸留精製を行った。ライン49から99wt%の炭酸ビス(2-エチルブチル)を1351g/hrで得た。一方、薄膜蒸発装置403で分離された液相成分を、ライン46を経て約6074g/hrで貯槽404に回収した。該液相成分をサンプリングし、119Sn、H-NMRにより分析したところ、該液相成分は、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを約98wt%含有する混合物であった。
工程(23-2):置換基交換反応
 工程(21-1)で貯槽404に回収した液相成分の代わりに工程(23-1)で貯槽404に回収した液相成分を2.04kgフィードし、酢酸0.55kgを使用し、無水酢酸を0.78kg使用した以外は、実施例22の工程(22-2)と同様の方法をおこない、ライン55より低沸成分を約0.86kg回収した。該低沸成分についてガスクロマトグラフィー分析をおこなったところ、該低沸成分は、酢酸、無水酢酸、2-エチル-1-ブタノールを含有していた。撹拌槽405には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチルスズジアセテートを88.1wt%含有していた。
工程(23-3):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりにエタノール5.28kgを使用した以外は、実施例22の工程(22-3)と同様の方法をおこない、ライン55より蒸留成分を5.38kg回収した。該蒸留成分はエタノールを85.3wt%、酢酸エチルを12.3wt%含有していた。
 続いて、3-メチル-1-ブタノールの代わりに2-エチル-1-ブタノール1.92kgを使用した以外は、実施例22の工程(22-3)と同様の方法をおこない、低沸成分を1.52kg回収した。該撹拌槽405に得られた残留物をライン56を介して貯槽406に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを96.5wt%含有していた。
工程(23-4):炭酸エステルの製造
 実施例16の工程(16-3)で得た、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを97.4wt%含有する混合物の代わりに、工程(23-3)で得たジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを含有する回収物を使用した以外は、工程(22-1)と同様の方法を実施し、ライン49から99wt%の炭酸ビス(2-エチルブチル)を1350g/hrで得た。
[実施例24]
工程(24-1):炭酸エステルの製造
 図7に示すような連続製造装置において炭酸エステルを製造した。
 実施例19の工程(19-3)で得た、ジ-n-ブチル-ジ(n-ブチルオキシ)スズを76.1wt%含有する混合物を、ライン41を介して、オートクレーブ401に6666g/hrでフィードした。ライン42より二酸化炭素を970g/hrで該オートクレーブに供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素とジ-n-ブチル-ジ(n-ブチルオキシ)スズとの反応を行い、炭酸ジ(n-ブチル)を含む反応液を得た。該反応液をライン43と調節バルブを介して除炭槽402に7722g/hrで移送し、残存している二酸化炭素を除去し、ライン44から二酸化炭素を回収した。その後、該反応液を、ライン45を経て約150℃、約0.5kPaとした薄膜蒸発装置403に移送し、炭酸ジ(n-ブチル)を含む留分を得た。炭酸ジ(n-ブチル)を含む留分はコンデンサー405およびライン47を経て、充填物Metal Gauze CYを充填し、リボイラー408およびコンデンサー407を備えた蒸留塔406に供給して、蒸留精製を行った。ライン49から99wt%の炭酸ジ(n-ブチル)を1165g/hrで得た。一方、薄膜蒸発装置403で分離された液相成分を、ライン46を経て貯槽404に回収した。該液相成分をサンプリングし、119Sn、H-NMRにより分析したところ、該液相成分は、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)ジスタンオキサンを約77wt%含有する混合物であった。
工程(24-2):置換基交換反応
 工程(21-1)で貯槽404に回収した液相成分の代わりに工程(24-1)で貯槽404に回収した液相成分を4.06kgフィードし、酢酸の代わりにヘキサン酸2.55kgを使用し、無水酢酸の代わりに無水ヘキサン酸を4.99kg使用した以外は、実施例22の工程(22-2)と同様の方法をおこない、ライン55より低沸成分を約4.74kg回収した。該低沸成分についてガスクロマトグラフィー分析をおこなったところ、該低沸成分は、ヘキサン酸、無水ヘキサン酸、n-ブタノールを含有していた。撹拌槽405には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-ブチル-ジプロピオニルオキシスズを56.4wt%含有していた。
工程(24-3):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりにn-ブタノール24.59kgを使用した以外は、実施例22の工程(22-3)と同様の方法をおこない、ライン55より蒸留成分を25.51kg回収した。該蒸留成分はn-ブタノールを83.7wt%、ヘキサン酸ブチルを14.8wt%含有していた。一方、該撹拌槽405に得られた残留物をライン56を介して貯槽406に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-ブチル-ジ(n-ブチルオキシ)スズを77.2wt%含有していた。
工程(24-4):炭酸エステルの製造
 実施例16の工程(16-3)で得た、ジ-n-ブチル-ジ(n-ブチルオキシ)スズを含有する混合物の代わりに、工程(24-3)で得たジ-n-ブチル-ジ(n-ブチルオキシ)スズを含有する回収物を使用した以外は、工程(24-1)と同様の方法を実施し、ライン49から99wt%の炭酸ジ(n-ブチル)を1165g/hrで得た。
[実施例25]
工程(25-1):ジアルキルスズ触媒の製造
 ジ-n-オクチルスズオキシド890gおよび2-エチル-1-ブタノール2803gを使用した以外は、実施例15の工程(15-1)と同様の方法をおこない、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)-ジスタンオキサンを含有する溶液を得た。1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)-ジスタンオキサンは、ジ-n-オクチルスズオキシドに対して収率99%で得られた。同様の操作を12回繰り返し、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)-ジスタンオキサンを合計13400g得た。
工程(25-2):炭酸エステルの製造
 図8に示すような連続製造装置において、炭酸エステルを製造した。充填物Metal Gauze CYを充填した、内径151mm,有効長さ5040mmの塔型反応器604に、ライン60から上記で製造した1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを6074g/hrで供給し、ライン62から蒸留塔601で精製された2-エチル-1-ブタノールを12260g/hrで供給した。該反応器内604は液温度が160℃になるようにヒーターおよびリボイラー605によって調整し、圧力が約120kPa-Gになるように圧力調節バルブによって調整した。反応器上部からライン64を経て水を含む2-エチル-1-ブタノール12344g/hrを、および、ライン61を経て2-エチル-1-ブタノール958g/hrを、充填物Metal Gauze CYを充填しリボイラー603およびコンデンサー602を備えた蒸留塔601に輸送し、蒸留精製を行った。蒸留塔601の上部では高濃度の水を含む留分がコンデンサー602によって凝縮されライン63から回収された。精製された2-エチル-1-ブタノールは、蒸留塔601の下部にあるライン62を経て塔型反応器604に輸送した。塔型反応器604の下部からジ-n-オクチル-ビス(2-エチルブチルオキシ)スズと1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズアルコキシド触媒組成物を得、ライン65を経て薄膜蒸発装置606に供給した。薄膜蒸発装置606において2-エチル-1-ブタノールを留去した。薄膜蒸発装置606の下部からライン66を経てアルキルスズアルコキシド触媒組成物を輸送し、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズと1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの流量が約6945g/hrになるように調節しオートクレーブ608に供給した。オートクレーブにライン69より、二酸化炭素を973g/hrで供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素とアルキルスズアルコキシド触媒組成物との反応を行い、炭酸ビス(2-エチルブチル)を含む反応液を得た。該反応液をライン70と調節バルブを介して除炭槽609に移送し残存二酸化炭素を除去し、ライン71から二酸化炭素を回収した。その後、該反応液を、ライン72を経て約142℃、約0.5kPaとした薄膜蒸発装置610に移送し、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの流量が約6074g/hrになるように調節し供給して、炭酸ビス(2-エチルブチル)を含む留分を得、一方で蒸発残渣をライン73を介して、貯槽615に回収した。該回収成分は、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンであった。炭酸ビス(2-エチルブチル)を含む留分はコンデンサー611およびライン74を経て、充填物Metal Gauze CYを充填しリボイラー613およびコンデンサー612を備えた蒸留塔614に959g/hrで供給して、蒸留精製を行った後、ライン75から99wt%の炭酸ビス(2-エチルブチル)を1075g/hr得た。
工程(25-3):置換基交換反応
 工程(25-2)で貯槽615に回収した蒸発残渣を、ライン76を介して、蒸留塔を具備した撹拌槽616に3.16kgフィードした。該撹拌槽616を約40℃に加熱し、ライン77より酢酸1.03kgを撹拌槽616に投入した。約1時間撹拌をおこなったのち、撹拌槽616の系内を約0.13kPaに減圧し、撹拌槽616を約80℃に加熱して、低沸成分の蒸留をおこない、ライン79より低沸成分を0.85kg回収した。該低沸成分についてガスクロマトグラフィー分析をおこなったところ、該低沸成分は、酢酸、2-メチル-1-ブタノールを含有していた。続いて、該撹拌槽616内の圧力を窒素で大気圧に戻し、約100℃に加熱して、ライン77を経て無水酢酸を1.46kg投入した。約3時間撹拌をおこなったのち、撹拌槽616内を約1kPaに減圧し、該撹拌槽616を約120℃に加熱して、未反応の無水酢酸等の低沸成分を蒸留し、ライン79より低沸成分を約1.59kg回収した。撹拌槽616には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチルスズジアセテートを90.5wt%含有していた。
工程(25-4):ジアルキルスズ化合物のアルコキシ化
 蒸留塔を備えた撹拌槽616に、ライン77より、n-プロパノール13.73kgを投入した。撹拌槽405を密閉とした状態で約100℃に加熱し、約40時間反応をおこなったのち、未反応のn-プロパノールをライン79より蒸留回収した。該蒸留成分は13.73kgであり、n-プロパノールを87.8wt%、酢酸プロピルを10.4wt%含有していた。
 続いて、撹拌槽616に、ライン77より、2-エチル-1-ブタノール3.11kgを投入した。撹拌槽616を約130℃に加熱し、約3時間撹拌した後、撹拌槽616の系内を減圧し、未反応の3-メチル-1-ブタノール等を含む低沸成分を、ライン79より回収した。該低沸成分を2.80kg回収したが、該低沸成分には2-エチル-1-ブタノールが70.1wt%、n-プロパノールが28.9wt%含有されていた。
 該撹拌槽616に得られた残留物をライン78を介して貯槽617に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを97.0wt%含有していた。
工程(25-5):炭酸エステルの製造
 工程(25-1)で得た、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含有する混合物の代わりに、工程(25-4)で得たジ-n-オクチル-ビス(2-エチルブチルオキシ)スズを含有する回収物を使用した以外は、工程(24-1)と同様の方法を実施し、ライン75から99wt%の炭酸ビス(2-エチルブチル)を1075g/hrで得た。
[実施例26]
工程(26-1):ジアルキルスズ触媒の製造
 ジ-n-オクチルスズオキシド963gおよび3-メチル-1-ブタノール2120gを使用した以外は、実施例13の工程(13-1)と同様の方法をおこない、反応液1120gを得た。119Sn、H、13C-NMRの分析結果から、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンがジ-n-オクチルスズオキシドに対して収率99%で得られたことを確認した。同様の操作を12回繰り返し、を合計13990g得た。
工程(26-2):炭酸エステルの製造
 図8に示すような連続製造装置において、炭酸エステルを製造した。
ライン60より、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの代わりに、工程(26-1)で得られた1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンを使用し、2-エチル-1-ブタノールの代わりに3-メチル-1-ブタノールを使用した以外は、実施例24の工程(24-2)と同様の方法をおこない、ライン75から99wt%の炭酸ビス(3-メチルブチル)を940g/hr得た。一方、薄膜蒸発装置610における蒸発残渣を、ライン73を介して貯槽615に貯蔵した。該蒸発残渣は、1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)-ジスタンオキサンであった。
工程(26-3):置換基交換反応
 工程(26-2)で貯槽615に回収した蒸発残渣を、ライン76を介して、蒸留塔を具備した撹拌槽616に2.86kgフィードし、酢酸の代わりにプロピオン酸1.00kgを使用し、無水酢酸の代わりに無水プロピオン酸を1.47kg使用した以外は、実施例24の工程(24-3)と同様の方法をおこない、撹拌槽616に残留物を得た。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチル-ジプロピオニルオキシスズを90.2wt%含有していた。
工程(26-4):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりにエタノール7.78kgを使用した以外は、実施例24の工程(24-4)と同様の方法をおこない、ライン79より蒸留回収した。該蒸留成分は8.07kgであり、エタノールを83.0wt%、プロピオン酸エチルを14.0wt%含有していた。
 続いて、2-エチル-1-ブタノールの代わりに3-メチル-1-ブタノール2.44kgを使用し、未反応の3-メチル-1-ブタノール等を含む低沸成分を、ライン79より回収した。該低沸成分を2.05kg回収したが、該低沸成分には3-メチル-1-ブタノールが72.2wt%、エタノールが24.9wt%含有されていた。
 該撹拌槽616に得られた残留物を、ライン78を介して貯槽617に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを95.0wt%含有していた。
工程(26-5):炭酸エステルの製造
 工程(26-1)で得た、1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含有する混合物の代わりに、工程(26-4)で得たジ-n-オクチル-ビス(3-メチルブチルオキシ)スズを含有する回収物を使用した以外は、工程(26-1)と同様の方法を実施し、ライン75から99wt%の炭酸ビス(3-メチルブチル)を940g/hrで得た。
[実施例27]
工程(27-1):1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の回収
 参考例1の工程(A-2)において、連続運転を約230時間行った後、抜き出しライン16から1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を18g/hrで抜き出し、一方で供給ライン17から、参考例1の工程(A-1)で製造した1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを18g/hrで供給した。119Sn-NMRによる分析を行ったところ、1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンが約50wt%含まれている以外に、トリ-n-ブチル(3-メチルブチルオキシ)スズおよび-240~-605ppmに、1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンの失活成分の複数のNMRシフトが見られた。
工程(27-2):置換基交換反応
 図6のような装置を使用して反応をおこなった。
 実施例13の工程(13-2)と同様の方法で得た1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の代わりに、工程(27-1)と同様の方法で得た1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を貯槽201に貯蔵した。蒸留塔を備えた撹拌槽204に、貯槽201よりライン21を経て1,1,3,3-テトラ-n-ブチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を5.96kg投入し、酢酸を1.66kg、無水酢酸を3.24kg使用した以外は、実施例16の工程(16-1)と同様の方法をおこない、未反応の無水酢酸等の低沸成分を蒸留し、ライン24より低沸成分を約3.08kg回収した。撹拌槽204には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-ブチルスズジアセテートを46.1wt%、トリ-n-ブチルスズアセテートを23.0wt%含有していた。
工程(27-3):アルキル基再分配反応
 引き続き、図6のような装置を使用して反応をおこなった。
 実施例16の工程(16-2)と同様の方法をおこない、撹拌槽208に、ジ-n-ブチルスズジアセテートを87.7wt%含有する混合物を得た。一方、貯槽206に液相成分を0.44kg回収し、該液相成分を、ライン20を経て貯槽201に移送し、工程(27-2)の原料としてリサイクルした。
工程(27-4):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりに炭酸ビス(3-メチルブチル)11.89kgを使用し、撹拌槽208を約80℃に加熱し、約150時間反応をおこなった以外は、実施例16の工程(16-3)と同様の方法をおこない、未反応の炭酸ビス(3-メチルブチル)をライン28より蒸留回収した。該蒸留成分は13.17kgであり、炭酸ビス(3-メチルブチル)を67.4wt%、酢酸イソアミルを42.3wt%含有していた。
 該撹拌槽208に得られた残留物を、ライン29を介して貯槽209に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-ブチル-ビス(3-メチルブチルオキシ)スズを98.4wt%含有していた。
[実施例28]
工程(28-1):1,1,3,3-テトラ-n-ブチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物をの回収
 参考例2の工程(B-2)において、連続運転を約210時間行った後、抜き出しライン16から1,1,3,3-テトラ-n-ブチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を18g/hrで抜き出し、一方で供給ライン17から、参考例1の工程(B-1)で製造した1,1,3,3-テトラ-n-ブチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを18g/hrで供給した。119Sn-NMRによる分析を行ったところ、1,1,3,3-テトラ-n-ブチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンが約50wt%含まれている以外に、トリ-n-ブチル(2-エチルブチルオキシ)スズおよび-240~-605ppmに、1,1,3,3-テトラ-n-ブチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンの失活成分の複数のNMRシフトが見られた。
工程(28-2):置換基交換反応
 図6のような装置を使用して反応をおこなった。
 実施例13の工程(13-2)と同様の方法で得た1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の代わりに、工程(28-1)と同様の方法で得た1,1,3,3-テトラ-n-ブチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を貯槽201に貯蔵した。蒸留塔を備えた撹拌槽204に、貯槽201よりライン21を経て失活体組成物を4.42kg投入し、酢酸の代わりにプロピオン酸を1.43kg、無水酢酸の代わりに無水プロピオン酸を2.94kg使用した以外は、実施例16の工程(16-1)と同様の方法をおこない、未反応の無水酢酸等の低沸成分を蒸留し、ライン24より低沸成分を約2.75kg回収した。撹拌槽204には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-ブチル-ジプロピオニルオキシスズを45.3wt%、トリ-n-ブチル-プロピオニルオキシスズを21.8wt%含有していた。
工程(28-3):アルキル基再分配反応
 引き続き、図6のような装置を使用して反応をおこなった。
 実施例16の工程(16-2)と同様の方法をおこない、撹拌槽208に、ジ-n-ブチル-ジプロピオニルオキシスズを88.4wt%含有する混合物を得た。一方、貯槽206に液相成分を0.32kg回収し、該液相成分を、ライン20を経て貯槽201に移送し、工程(28-2)の原料としてリサイクルした。
工程(28-4):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりに炭酸ビス(2-エチルブチル)23.30kgを使用し、撹拌槽208を約80℃に加熱し、約150時間反応をおこなった以外は、実施例16の工程(16-3)と同様の方法をおこない、未反応の炭酸ビス(2-エチルブチル)をライン28より蒸留回収した。該蒸留成分は18.29kgであり、炭酸ビス(2-エチルブチル)を79.2wt%、プロピオン酸(2-エチルブチル)を16.3wt%含有していた。
 該撹拌槽208に得られた残留物を、ライン29を介して貯槽209に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-ブチル-ビス(2-エチルブチルオキシ)スズを98.4wt%含有していた。
[実施例29]
工程(29-1):置換基交換反応
 図6のような装置を使用して反応をおこなった。
 実施例13の工程(13-2)と同様の方法で得た1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物の代わりに、実施例15の工程(15-2)と同様の方法で得た1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を貯槽201に貯蔵した。蒸留塔を備えた撹拌槽204に、貯槽201よりライン21を経て1,1,3,3-テトラ-n-オクチル-1,3-ビス(2-エチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物を3.95kg投入し、酢酸を0.99kg、無水酢酸を2.19kg使用した以外は、実施例18の工程(18-1)と同様の方法をおこない、未反応の無水酢酸等の低沸成分を蒸留し、ライン24より低沸成分を約2.09kg回収した。撹拌槽204には残留物が得られた。該残留物をサンプリングし、119Sn、H-NMRにより分析したところ、該残留物は、ジ-n-オクチルスズジアセテートを49.1wt%、トリ-n-オクチルスズアセテートを25.5wt%含有していた。
工程(29-2):アルキル基再分配反応
 引き続き、図6のような装置を使用して反応をおこなった。
 実施例16の工程(16-2)と同様の方法をおこない、撹拌槽208に、ジ-n-オクチルスズジアセテートを89.8wt%含有する混合物を得た。一方、貯槽206に液相成分を0.30kg回収し、該液相成分を、ライン20を経て貯槽201に移送し、工程(29-1)の原料としてリサイクルした。
工程(29-3):ジアルキルスズ化合物のアルコキシ化
 n-プロパノールの代わりにエタノール14.85kgを使用し、撹拌槽208を約80℃に加熱し、約150時間反応をおこなった以外は、実施例16の工程(16-3)と同様の方法をおこない、未反応のエタノールをライン28より蒸留回収した。該蒸留成分は15.08kgであり、エタノールを87.4wt%、酢酸エチルを10.4wt%含有していた。
 該撹拌槽208に得られた残留物を、ライン29を介して貯槽209に回収した。該回収物をサンプリングし、119Sn、H-NMRにより分析したところ、該回収物は、ジ-n-オクチル-ジエトキシスズを91.1wt%含有していた。
工程(29-4):炭酸エステルの製造
 図7に示すような連続製造装置において炭酸エステルを製造した。
 工程(29-3)で得た、ジ-n-オクチル-ジエトキシスズを91.1wt%含有する混合物を、ライン41を介して、オートクレーブ401に5073g/hrでフィードした。ライン42より二酸化炭素を973g/hrで該オートクレーブに供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素とジ-n-オクチル-ジエトキシスズとの反応を行い、炭酸ジエチルを含む反応液を得た。該反応液をライン43と調節バルブを介して除炭槽402に6129g/hrで移送し、残存している二酸化炭素を除去し、ライン44から二酸化炭素を回収した。その後、該反応液を、ライン45を経て約150℃、約0.5kPaとした薄膜蒸発装置403に移送し、炭酸ジエチルを含む留分を得た。炭酸ジエチルを含む留分はコンデンサー405およびライン47を経て、充填物Metal Gauze CYを充填し、リボイラー408およびコンデンサー407を備えた蒸留塔406に供給して、蒸留精製を行った。ライン49から99wt%の炭酸ジエチルを1165g/hrで得た。一方、薄膜蒸発装置403で分離された液相成分を、ライン46を経て貯槽404に回収した。該液相成分をサンプリングし、119Sn、H-NMRにより分析したところ、該液相成分は、1,1,3,3-テトラ-n-オクチル-1,3-ジエトキシ-ジスタンオキサンを約98wt%含有する混合物であった。
[比較例1]
工程(I-1):置換基交換反応
 実施例13の工程(13-2)と同様の方法で得られた1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを含むアルキルスズ組成物390gを、窒素雰囲気下において、1Lナス型フラスコに入れ、ついで、酢酸106gと無水酢酸361gを加え、25℃で1時間撹拌した。該フラスコに、留出液受器と連結した還流冷却器付き分留頭、および温度計を取り付け、該フラスコ内を真空-窒素置換したのち、該フラスコを、50℃に加熱したオイルバスに浸漬した。容器内を徐々に減圧し、余剰の酢酸および無水酢酸等を留去し、該フラスコ内に残留物を410g得た。残留物についてHおよび119Sn-NMR測定をおこなったところ、該残留物はトリ-n-オクチルアセトキシスズおよびジ-n-オクチルジアセトキシスズ、および、119Sn-NMRにおいて-240~-605ppmに複数の化学シフトを示すスズ原子を含有する有機スズ化合物の混合物であった。該混合物において、トリ-n-オクチルアセトキシスズは27.9wt%、ジ-n-オクチルジアセトキシスズは49.9wt%であった。
工程(I-2):アルキル基再分配反応
 窒素雰囲気下において、工程(I-2)で得られた混合物408gを、500mL金属製圧力容器に入れた。該金属製圧力容器を200℃に加熱したオイルバスに浸漬し、3時間加熱した。該耐圧反応容器を室温付近まで冷却したのち、反応液を回収した。反応液について、Hおよび119Sn-NMR測定をおこなったところ、該反応液は、ジ-n-オクチルジアセトキシスズ、トリ-n-オクチルアセトキシスズを含有する有機スズ化合物の混合物であり、ジ-n-オクチル-ジアセトキシスズが91.5wt%、トリ-n-オクチルアセトキシスズが約5wt%であった。
工程(I-3):ジアルキルスズ化合物のアルコキシ化
 工程(I-2)で得られた混合物405gを容積1Lのナス型フラスコに入れ、50℃に加熱したオイルバスに浸漬した。内容物を攪拌しながら0.1mol/L水酸化カリウム水溶液(和光純薬工業社製)500mLを加えたところ白色沈殿が生じた。混合液を濾紙で濾過し、ろ過残渣を80℃乾燥したところ、302gの白色固体を回収した。該白色固体は、ジオクチル酸化スズであった。
 該白色固体300gと3-メチル-1-ブタノール1836gを容積3Lのナス型フラスコに入れた。該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したロータリーエバポレーターに取り付けた。ロータリーエバポレーターのパージバルブ出口は大気圧で流れている窒素ガスのラインに接続した。系内を窒素置換した後、オイルバス温度を146℃に設定し、該フラスコを該オイルバスに浸漬してロータリーエバポレーターの回転を開始した。ロータリーエバポレーターのパージバルブを開放したまま大気圧窒素下で約7時間低沸成分の留去を行い、続いて系内を徐々に減圧にし、系内圧力が76kPa~30kPaの状態で残存低沸成分を留去した。低沸成分の留出がみられなくなった後、該フラスコをオイルバスから上げ冷却した。該フラスコには残留液366gが得られた。H、13C、119Sn-NMRの分析結果から、該フラスコ中の残留液に含有される1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンは96.4wt%であった。
 該工程(I-3)では、工程(I-2)で得られたジ-n-オクチル-ジアセトキシスズと3-メチル-1-ブタノールとを直接反応させず、ジ-n-オクチル-ジアセトキシスズとアルカリ水溶液(水酸化カリウム水溶液)を反応させて、ジオクチル酸化スズとしたのち、該ジオクチル酸化スズと3-メチル-1-ブタノールと反応させて1,1,3,3-テトラ-n-オクチル-1,3-ビス(3-メチルブチルオキシ)ジスタンオキサンを得たが、該ジオクチル酸化スズは固体であり、濾過によって固体を回収するという操作をおこなわなければならないことから、工業的な実施においては操作が煩雑となる。
[比較例2]
工程(II-1):テトラキス(ジメチルアミノ)スズと炭酸エステルとの反応
 大気圧窒素雰囲気下において、テトラキス(ジメチルアミノ)スズ(米国、Gelest社製)290gと、参考例1の工程(A-2)で製造された炭酸ビス(3-メチルブチル)1010gを容積2Lのナス型フラスコに入れ、該フラスコにジムロート冷却器と三方コックを取り付けた。該フラスコを150℃に加熱したオイルバスに浸漬し、内容物を攪拌しながら5時間加熱した。該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したロータリーエバポレーターに取り付けた。ロータリーエバポレーターのパージバルブ出口は大気圧で流れている窒素ガスのラインに接続した。系内を窒素置換した後、オイルバス温度を150℃に設定し、該フラスコを該オイルバスに浸漬してロータリーエバポレーターの回転を開始した。ロータリーエバポレーターのパージバルブを開放したまま大気圧窒素下で約7時間低沸成分の留去を行い、続いて系内を徐々に減圧にし、系内圧力が76kPa~10kPaの状態で残存低沸成分を留去した。低沸成分の留出がみられなくなった後、該フラスコをオイルバスから上げ冷却した。該フラスコには残留液292gが得られた。H、13C、119Sn-NMRの分析結果から、該フラスコ中の残留液はテトラキス(ジメチルアミノ)スズを98.0wt%含有する溶液であり、スズアルコキシドは得られなかった。
[比較例3]
工程(III-1):テトラキス(ジメチルアミノ)スズとアルコールとの反応
 大気圧窒素雰囲気下において、テトラキス(ジメチルアミノ)スズ285gと、3-メチル-1-ブタノール1320gを容積2Lのナス型フラスコに入れ、該フラスコにジムロート冷却器と三方コックを取り付けた。該フラスコを135℃に加熱したオイルバスに浸漬し、内容物を攪拌しながら5時間加熱した。該フラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したロータリーエバポレーターに取り付けた。ロータリーエバポレーターのパージバルブ出口は大気圧で流れている窒素ガスのラインに接続した。系内を窒素置換した後、オイルバス温度を150℃に設定し、該フラスコを該オイルバスに浸漬してロータリーエバポレーターの回転を開始した。ロータリーエバポレーターのパージバルブを開放したまま大気圧窒素下で約7時間低沸成分の留去を行い、続いて系内を徐々に減圧にし、系内圧力が76kPa~10kPaの状態で残存低沸成分を留去した。低沸成分の留出がみられなくなった後、該フラスコをオイルバスから上げ冷却した。該フラスコには残留液288gが得られた。H、13C、119Sn-NMRの分析結果から、該フラスコ中の残留液はテトラキス(ジメチルアミノ)スズを98.0wt%含有する溶液であり、スズアルコキシドは得られなかった。
 本実施の形態のジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物の製造方法(工程(Z))は、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、酸および/または酸無水物とを反応させることによって、固体のスズ化合物を取り扱うことなく、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物を製造することができるため、従来の方法に比べて簡便な製造方法である。
 また、上記したように、工程(Z)に様々な工程を組み合わせることによって、工程(Z)を、新しい炭酸エステルの製造工程の一部として使用することができる。これらの新しい炭酸エステルの製造方法は、該炭酸エステルの製造方法において生成する、炭酸エステル合成での触媒活性を失ったモノアルキルスズアルコキシド化合物およびトリアルキルスズアルコキシド化合物を、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物に再生する工程を含むため、炭酸エステル製造工程におけるコストや廃棄物の問題を解決することができる。したがって、本発明は、産業上極めて重要である。
符号の説明
(図5)
 101、107:蒸留塔
 102:塔型反応器
 103、106:薄膜蒸発装置
 104:オートクレーブ
 105:除炭槽
 121、123、126、127:コンデンサー
 111、112、117:リボイラー
 1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17:ライン
(図6)
 201、202、203、206、209、210、211:貯槽
 204、208:蒸留塔を具備した撹拌槽
 205:薄膜蒸発装置
 207:コンデンサー
 20、21、22、23、24、25、26、27、28、29、30、31:ライン
(図7)
 401:オートクレーブ
 402:除炭槽
 403:薄膜蒸発装置
 404、409:貯槽
 406:蒸留塔
 405、407:コンデンサー
 408:リボイラー
 41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56:ライン
(図8)
 601、614:蒸留塔
 604:塔型反応器
 606、610:薄膜蒸発装置
 608:オートクレーブ
 609:除炭槽
 615、617:貯槽
 616:蒸留塔を具備した撹拌槽
 602、607、611、612:コンデンサー
 603、605、613:リボイラー
 61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79:ライン
 

Claims (20)

  1.  下記i)およびii)からなる群から選択される少なくとも1つのアルキルスズ化合物と、
     i)1つのスズ原子を有し、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物;
     ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物;
     ROCOOR(Rは直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)で表される炭酸エステル、および/または、
     ROH(Rは、前記Rと同じ基を表す。)で表されるアルコールと、
    を触媒の非存在下において反応させて、
     XORで表される化合物と、
     1つのスズ原子を有し、2つのSn-R結合と、2つのSn-OR結合と、を有するジアルキルスズジアルコキシド化合物、および/または、
     1つのSn-O-Sn結合を有するテトラアルキルジアルコキシジスタンオキサン化合物であって、該テトラアルキルジアルコキシジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OR結合と、を有するテトラアルキルジアルコキシジスタンオキサン化合物と、
     を製造する方法。
  2.  該炭酸エステルROCOORおよび/または該アルコールROHにおいて、Rが直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、または飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基である請求項1に記載の製造方法。
  3.  該炭酸ジアルキルROCOORおよび/または該アルコールROHにおいて、Rが、直鎖状または分岐鎖状の炭素数1~8のアルキル基である請求項2記載の製造方法。
  4.  該ジアルキルスズ化合物が、下記式(1)で表される化合物である請求項1記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
      
    (式中:
     Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
     Oは酸素原子を表し;
     OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXであり;
     aおよびbは、各々0~2の整数であり、a+b=2である)
  5.  該テトラアルキルジスタンオキサン化合物が、下記式(2)で表される化合物である請求項1記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002
      

    (式中:
     Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
     Oは酸素原子を表し;
     OXおよびOXは、OXおよびOXの共役酸であるHOXおよびHOXが、pKaが0以上6.8以下のブレンステッド酸であるOXおよびOXである。)
  6.  基OXがアシルオキシル基である請求項1記載の製造方法。
  7.  該ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物と、炭酸エステルおよび/またはアルコールとの反応を、20℃以上250℃以下の温度で実施する請求項1記載の製造方法。
  8.  該ジアルキルスズジアルコキシド化合物が、下記式(3)で表される化合物である請求項1記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003
      

    (式中:
     Rは、各々独立して、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物に由来し、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
     Rは、各々独立して、炭酸エステルおよび/またはアルコールに由来し、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
  9.  該テトラアルキルジアルコキシジスタンオキサン化合物が、下記式(4)で表される化合物である請求項1記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
      

    (式中:
     Rは、各々独立して、ジアルキルスズ化合物および/またはテトラアルキルジスタンオキサン化合物に由来し、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
     Rは、各々独立して、炭酸エステルおよび/またはアルコールに由来し、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
  10.  該ジアルキルスズ化合物および/または該テトラアルキルジスタンオキサン化合物が、以下の工程(1)~(2)を含む方法によって製造される化合物である請求項1記載の製造方法。
     工程(1):
     1つのスズ原子を有し、2つのSn-R結合と、2つのSn-OR結合と、を有するジアルキルスズジアルコキシド化合物、および/または、1つのSn-O-Sn結合を有するテトラアルキルジアルコキシジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OR結合と、を有するテトラアルキルジアルコキシジスタンオキサン化合物からなる群から選ばれる少なくとも1つのアルキルスズアルコキシド化合物のアルキル基不均化反応(スズに結合した2つのR基の数が、ジアルキルスズアルコキシド化合物の場合は2分子間で、テトラアルキルジアルコキシジスタンオキサン化合物の場合は分子内および/または分子間で不均化し、1個のSn-R結合を持つモノアルキルスズアルコキシド化合物と3個のSn-R結合を持つトリアルキルスズアルコキシド化合物に変化する反応)で生成する、モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物を含むアルキルスズ組成物を、
     一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と反応させて、該酸および/または該酸無水物に由来する基(OX基)を有する有機スズ化合物の混合物を製造する工程;
     工程(2):
     該工程(1)で得られた該有機スズ化合物の混合物を加熱処理し、アルキル基再分配反応をおこなって、該アルキルスズ組成物中の、該モノアルキルスズアルコキシド化合物とトリアルキルスズアルコキシド化合物から、
     i)1つのスズ原子を有し、前記1つのスズ原子が、2つのSn-R(Rはアルキル基を表す。)結合と、2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物、
     ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物、
    の群から選ばれる少なくとも1つのアルキルスズ化合物を得る工程;
     ただし、上記した該ジアルキルスズ化合物、該テトラアルキルジスタンオキサン化合物、該ジアルキルスズジアルコキシド化合物、該テトラアルキルジアルコキシジスタンオキサン化合物、該モノアルキルスズアルコキシド化合物、該トリアルキルスズアルコキシド化合物のスズに直接結合したRは同じアルキル基である。
  11.  該アルキルスズ組成物が、下記工程(a)~工程(c)を順次おこなって得られる炭酸エステルを製造する過程において生成するアルキルスズ組成物である請求項10記載の製造方法。
     工程(a):下記一般式(5)で表されるジアルキルスズジアルコキシドと二酸化炭素とを反応させて、炭酸エステルと下記一般式(6)で表されるテトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む反応液を得る工程;
    Figure JPOXMLDOC01-appb-C000005
      

    (式中:
     Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
     Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
    Figure JPOXMLDOC01-appb-C000006
      

    (式中:
     Rは、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
     Rは、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
     工程(b):該反応液から蒸留によって炭酸エステルを分離し、該テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程;
     工程(c):該残留液と下記一般式(7)で表されるアルコールとを反応させて、副生する水を除去してジアルキルスズジアルコキシドを再生し、該ジアルキルスズジアルコキシドを工程(a)のジアルキルスズジアルコキシドとして使用する工程。
    Figure JPOXMLDOC01-appb-C000007
          

    (式中:
     Wは、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
  12.  該炭酸エステルを製造する過程において生成するアルキルスズ組成物から、ジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンを再生する、請求項10記載の方法をおこなう工程を、
     請求項11記載の工程(b)および/または工程(c)の後に実施し、再生されたジアルキルスズジアルコキシドおよび/またはテトラアルキルジアルコキシジスタンオキサンを、
     工程(a)のジアルキルスズジアルコキシドとして使用し、
     工程(b)の残留液と混合して工程(c)の原料として使用する
    請求項11記載の製造方法。
  13.  請求項1記載の方法に、下記工程(A)~工程(B)をさらに含む炭酸エステルの製造方法。
     工程(A):請求項1記載の、ジアルキルスズジアルコキシド化合物および/またはテトラアルキルジアルコキシジスタンオキサン化合物と、二酸化炭素とを反応させて、炭酸エステルとテトラアルキルジアルコキシジスタンオキサン化合物および/または該テトラアルキルジアルコキシジスタンオキサン化合物と二酸化炭素との結合体を含む反応液を得る工程;
     工程(B):該反応液から蒸留によって炭酸エステルを分離し、テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程。
  14.  請求項13記載の方法に、下記工程(C)をさらに含み、該工程(C)で製造されるアルキルスズ化合物を請求項1記載のアルキルスズ化合物として使用する炭酸エステルの製造方法。
     工程(C):該工程(B)の残留液と、一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と反応させて、下記i)、ii)の群から選ばれる少なくとも1つのアルキルスズ化合物を製造する工程。
     i)1つのスズ原子を有し、2つのSn-R(Rはアルキル基を表す。)結合と2つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するジアルキルスズ化合物、
     ii)1つのSn-O-Sn結合を有するテトラアルキルジスタンオキサン化合物であって、該テトラアルキルジスタンオキサン化合物中の各々のスズ原子が、2つのSn-R結合と、1つのSn-OX結合(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)と、を有するテトラアルキルジスタンオキサン化合物。
  15.  該ジアルキルスズ化合物および/または該テトラアルキルジスタンオキサン化合物が、以下の工程(I)~工程(III)を含む方法によって製造される化合物である請求項1記載の方法。
     工程(I):下記一般式(8)で表されるジアルキルスズジアルコキシドと二酸化炭素とを反応させて、炭酸エステルと下記一般式(9)で表されるテトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む反応液を得る工程;
    Figure JPOXMLDOC01-appb-C000008
      

    (式中:
     Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12であるアルキル基を表し;
     Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
    Figure JPOXMLDOC01-appb-C000009
      
    (式中:
     Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
     Rは、各々独立して、直鎖状もしくは分岐鎖状の飽和もしくは不飽和の炭化水素基、飽和もしくは不飽和の環状炭化水素置換基を有する炭化水素基、またはY-CH-基(式中、Yは、アルキルポリアルキレン基、芳香族基、または環状飽和もしくは不飽和アルキレンエーテル基を表す。)を表す。)
     工程(II):該反応液から蒸留によって炭酸エステルを分離し、該テトラアルキルジアルコキシジスタンオキサンおよび/または該テトラアルキルジアルコキシジスタンオキサンと二酸化炭素との結合体を含む残留液を得る工程;
     工程(III):該工程(II)の残留液と、一般式HOX(pKaが0以上6.8以下のブレンステッド酸)で表される酸、および/または、一般式XOX(基OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXである。)で表される酸無水物と反応させて、該酸および/または該酸無水物に由来する基(OX基)を有する化合物であって、下記式(10)で表されるジアルコキシスズ化合物および/または下記式(11)で表されるテトラアルキルジスタンオキサン化合物を製造する工程。
    Figure JPOXMLDOC01-appb-C000010
      
    (式中:
     Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
     Oは、酸素原子を表し;
     OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXを表す。)
    Figure JPOXMLDOC01-appb-C000011
      

    (式中:
     Rは、各々独立して、直鎖状または分岐鎖状の炭素数1~12のアルキル基を表し;
     Oは、酸素原子を表し;
     OXは、OXの共役酸であるHOXが、pKaが0以上6.8以下のブレンステッド酸である基OXを表す。)
  16.  該アルキル基Rが、炭素数1~8の直鎖のアルキル基である請求項1~15のうちいずれか一項に記載の製造方法。
  17.  該アルキル基Rが、n-ブチル基またはn-オクチル基である請求項16記載の製造方法。
  18.  該酸HOXが、カルボン酸である請求項10、14、15のうちいずれか一項に記載の製造方法。
  19.  該カルボン酸が、酢酸、プロピオン酸、マレイン酸からなる群から選ばれるカルボン酸である請求項18記載の製造方法。
  20.  該酸無水物XOXが、無水酢酸、無水プロピオン酸、無水マレイン酸からなる群から選ばれる酸無水物である請求項10、14、15のうちいずれか一項に記載の製造方法。
     
PCT/JP2009/056756 2008-08-08 2009-03-31 アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法 WO2010016297A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN200980129670.0A CN102112482B (zh) 2008-08-08 2009-03-31 烷基锡醇盐化合物的制造方法及使用该化合物的碳酸酯的制造方法
BRPI0907002-8A BRPI0907002B1 (pt) 2008-08-08 2009-03-31 processos para produzir um composto, e, para produzir um éster de ácido carbônico
CA2710923A CA2710923C (en) 2008-08-08 2009-03-31 Process for producing alkyl tin alkoxide compound and process for producing carbonic acid ester using said compound
EP09804784A EP2226328B1 (en) 2008-08-08 2009-03-31 Process for production of alkyl tin alkoxide compound, and process for production of carbonate ester using the compound
JP2010523783A JP5069793B2 (ja) 2008-08-08 2009-03-31 アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法
ES09804784T ES2399852T3 (es) 2008-08-08 2009-03-31 Procedimiento para la fabricación de un compuesto de alcóxido de alquil estaño y procedimiento para la producción de éster carbonato con utilización del compuesto
EA201070792A EA024850B1 (ru) 2008-08-08 2009-03-31 Способ получения соединения алкоксида алкилолова и способ получения эфира карбоновой кислоты с использованием указанного соединения
US12/811,335 US8168812B2 (en) 2008-08-08 2009-03-31 Process for producing alkyl tin alkoxide compound and process for producing carbonic acid ester using said compound
KR1020107022511A KR101169163B1 (ko) 2008-08-08 2009-03-31 알킬주석 알콕시드 화합물의 제조 방법 및 이 화합물을 이용한 탄산에스테르의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-206205 2008-08-08
JP2008206205 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016297A1 true WO2010016297A1 (ja) 2010-02-11

Family

ID=41663523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056756 WO2010016297A1 (ja) 2008-08-08 2009-03-31 アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法

Country Status (11)

Country Link
US (1) US8168812B2 (ja)
EP (1) EP2226328B1 (ja)
JP (1) JP5069793B2 (ja)
KR (1) KR101169163B1 (ja)
CN (2) CN104151162B (ja)
BR (1) BRPI0907002B1 (ja)
CA (1) CA2710923C (ja)
EA (1) EA024850B1 (ja)
ES (1) ES2399852T3 (ja)
TW (1) TW201008953A (ja)
WO (1) WO2010016297A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046167A1 (ja) 2013-09-26 2015-04-02 旭化成ケミカルズ株式会社 アルキルスズ化合物
JP2015530998A (ja) * 2012-08-24 2015-10-29 ダウ グローバル テクノロジーズ エルエルシー テトラメチルスタンノキシ化合物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662379A1 (en) * 2012-05-07 2013-11-13 Universiteit Antwerpen Recycling of organotin compounds
ITMI20131026A1 (it) * 2013-06-20 2014-12-20 Dow Global Technologies Llc Processo per la produzione di un espanso poliuretanico che utilizza un catalizzatore tetraalchilstannossi
WO2014134716A1 (en) 2013-03-08 2014-09-12 The University Of British Columbia Substituted organofluoroborates as imaging agents
KR101627018B1 (ko) * 2013-10-01 2016-06-03 제일모직주식회사 유기금속화합물을 이용한 탄산에스테르의 제조방법
KR101659645B1 (ko) 2013-10-02 2016-09-26 롯데첨단소재(주) 방향족 탄산에스테르의 제조방법
CN112547313B (zh) * 2020-11-18 2021-10-22 东北大学 一种羟基柠檬酸在锡石矿物浮选中的应用
CN112480164A (zh) * 2020-12-11 2021-03-12 安徽金禾实业股份有限公司 一种蔗糖-6-乙酯生产中回收制备有机锡催化剂的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545600A (en) 1994-12-21 1996-08-13 Knudsen; George A. Process for the preparation of dialkyltin dialkoxide
WO2003055840A1 (fr) 2001-12-27 2003-07-10 Asahi Kasei Chemicals Corporation Procede de production d'ester carbonique
WO2004014840A1 (ja) 2002-08-07 2004-02-19 Asahi Kasei Chemicals Corporation 炭酸エステルの製造方法
JP2005298433A (ja) * 2004-04-15 2005-10-27 Asahi Kasei Chemicals Corp ジアルキルスズアルコキシド
WO2005111049A1 (ja) 2004-05-19 2005-11-24 Asahi Kasei Chemicals Corporation アルキルスズアルコキシド類の製造方法
JP2006028066A (ja) * 2004-07-14 2006-02-02 Mitsubishi Rayon Co Ltd カルボン酸エステルの製造方法およびジスタノキサン化合物の製造方法
WO2008044575A1 (fr) 2006-10-11 2008-04-17 Asahi Kasei Chemicals Corporation Procédé de production de dialcoxydes de dialkyl étain

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414174B1 (en) * 2001-03-22 2002-07-02 Sandia Corporation Tin(II) alkoxide hydrolysis products for use as base catalysts
US7147284B2 (en) 2004-06-10 2006-12-12 Virco Mgmt. Corporation Student desk chair with rockers rails

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545600A (en) 1994-12-21 1996-08-13 Knudsen; George A. Process for the preparation of dialkyltin dialkoxide
WO2003055840A1 (fr) 2001-12-27 2003-07-10 Asahi Kasei Chemicals Corporation Procede de production d'ester carbonique
WO2004014840A1 (ja) 2002-08-07 2004-02-19 Asahi Kasei Chemicals Corporation 炭酸エステルの製造方法
JP2005298433A (ja) * 2004-04-15 2005-10-27 Asahi Kasei Chemicals Corp ジアルキルスズアルコキシド
WO2005111049A1 (ja) 2004-05-19 2005-11-24 Asahi Kasei Chemicals Corporation アルキルスズアルコキシド類の製造方法
JP2006028066A (ja) * 2004-07-14 2006-02-02 Mitsubishi Rayon Co Ltd カルボン酸エステルの製造方法およびジスタノキサン化合物の製造方法
WO2008044575A1 (fr) 2006-10-11 2008-04-17 Asahi Kasei Chemicals Corporation Procédé de production de dialcoxydes de dialkyl étain

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CHEMICAL SOCIETY, 1964, pages 740
See also references of EP2226328A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530998A (ja) * 2012-08-24 2015-10-29 ダウ グローバル テクノロジーズ エルエルシー テトラメチルスタンノキシ化合物
WO2015046167A1 (ja) 2013-09-26 2015-04-02 旭化成ケミカルズ株式会社 アルキルスズ化合物
KR20160048171A (ko) 2013-09-26 2016-05-03 아사히 가세이 케미칼즈 가부시키가이샤 알킬주석 화합물
US9844775B2 (en) 2013-09-26 2017-12-19 Asahi Kasei Kabushiki Kaisha Alkyl tin compound

Also Published As

Publication number Publication date
JP5069793B2 (ja) 2012-11-07
KR101169163B1 (ko) 2012-07-30
BRPI0907002B1 (pt) 2021-02-09
CN104151162A (zh) 2014-11-19
EP2226328A1 (en) 2010-09-08
KR20100120721A (ko) 2010-11-16
EA024850B1 (ru) 2016-10-31
TWI374145B (ja) 2012-10-11
CN104151162B (zh) 2016-08-24
BRPI0907002A2 (pt) 2020-08-18
TW201008953A (en) 2010-03-01
EA201070792A1 (ru) 2011-02-28
EP2226328A4 (en) 2012-02-22
JPWO2010016297A1 (ja) 2012-01-19
CA2710923C (en) 2014-07-08
US20100292496A1 (en) 2010-11-18
US8168812B2 (en) 2012-05-01
EP2226328B1 (en) 2012-12-26
CA2710923A1 (en) 2010-02-11
ES2399852T3 (es) 2013-04-03
CN102112482B (zh) 2016-01-20
CN102112482A (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
JP5069793B2 (ja) アルキルスズアルコキシド化合物の製造方法、及び当該化合物を用いた炭酸エステルの製造方法
US7435842B2 (en) Process for producing carbonic ester
JP4257798B2 (ja) アルキルスズアルコキシド類の製造方法
JP4827927B2 (ja) ジアルキルスズジアルコキシドの製造方法
JP4397810B2 (ja) 炭酸エステルの製造方法
JP4264124B2 (ja) ジアルキルスズジアルコキシドの分離回収方法
JP5777276B2 (ja) スズアルコキシドからアルコールを回収する方法
US9844775B2 (en) Alkyl tin compound
RU2414474C2 (ru) Способ получения диалкоксидов диалкилолова
JPS6145634B2 (ja)
RU2280023C2 (ru) Способ получения эфира угольной кислоты

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129670.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010523783

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4542/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2710923

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009804784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12811335

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 201070792

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20107022511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0907002

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100722