WO2005103471A1 - エンジンの制御装置および方法 - Google Patents

エンジンの制御装置および方法 Download PDF

Info

Publication number
WO2005103471A1
WO2005103471A1 PCT/JP2005/008387 JP2005008387W WO2005103471A1 WO 2005103471 A1 WO2005103471 A1 WO 2005103471A1 JP 2005008387 W JP2005008387 W JP 2005008387W WO 2005103471 A1 WO2005103471 A1 WO 2005103471A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion noise
engine
amount
control
output
Prior art date
Application number
PCT/JP2005/008387
Other languages
English (en)
French (fr)
Inventor
Naofumi Magarida
Shinobu Ishiyama
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US10/594,217 priority Critical patent/US7337767B2/en
Priority to EP05736573.6A priority patent/EP1741911B1/en
Publication of WO2005103471A1 publication Critical patent/WO2005103471A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control apparatus and method, and more particularly to an apparatus and method for suppressing rapid changes in combustion noise.
  • the combustion noise characteristics of the engine are said to roughly correspond to the output which is the product of torque and rotational speed. That is, as shown in FIG. 9, the contour line of the output of a certain engine and the contour line of combustion noise, that is, the equal output line P p and the equal combustion noise line C p in the rotation speed-torque plane coincide with each other within a predetermined range. That is, the peak points existing on the center side of the substantially arc-shaped equal output line P p and the equal combustion noise line C p have substantially similar characteristics such that the peak points substantially overlap each other.
  • the combustion noise in this case rises sharply in a short time at the initial stage of acceleration, which is surrounded by an ellipse in FIG. 10, and depending on the degree of acceleration, the driving comfort may be impaired.
  • pilot injection in which a small amount of fuel is introduced in advance prior to main injection.
  • a small amount of fuel which has been input in advance, burns first to form a seed fire, the ignition performance of the main injection fuel is improved, and the initial combustion of the main injection becomes slow.
  • explosive combustion due to ignition delay is avoided, and engine combustion noise can be suppressed.
  • black smoke is likely to be generated if pie injection is performed in a high load, high rotation speed region or the like, it is necessary to stop the pilot injection at any timing during output increase.
  • Patent Document 1 divides the operation range determined by the number of revolutions and torque into two: a pie mouth, an operation range requiring sit injection, and an unnecessary operation range, and from an operation range requiring pie mouth injection The sudden increase in combustion noise is suppressed by stopping pie-pit injection at the timing shifted from cylinder to cylinder when shifting to an unnecessary operating region.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 0 2 2 0 6 4 4
  • an object of the present invention is to improve the driving aptitude by suppressing a rapid change in combustion noise at the time of rapid operation. Disclosure of the invention
  • a control device for an engine comprising: combustion noise suppression means for suppressing combustion noise in a combustion chamber; and control means for controlling the combustion noise suppression means, target combustion noise characteristics corresponding to acceleration / deceleration demand amount.
  • Control amount setting means for setting the control amount of the combustion noise suppression means such that the fluctuation of the combustion noise becomes slower compared to the combustion noise characteristic corresponding to the output characteristic of the engine before and after acceleration / deceleration
  • the engine control device is characterized in that the control means controls the combustion noise suppressing means according to a control amount set in the setting means.
  • the target combustion noise characteristic corresponding to the acceleration / deceleration demand amount is controlled so that the fluctuation of the combustion noise becomes slower compared to the combustion noise characteristic corresponding to the engine output characteristic before and after acceleration / deceleration.
  • the setting means sets the control amount of the combustion noise suppressing means.
  • the control means is The combustion noise suppressing means is controlled in accordance with the fixed control amount. Therefore, in the present invention, it is possible to improve the driving comfort by suppressing the rapid change of the combustion noise at the time of the rapid acceleration operation or the like.
  • the engine is connected to a manual transmission means, and distribution of combustion noise values of the engine in a predetermined area on coordinates with the engine speed and torque as coordinate axes.
  • An iso-combustion noise line representing on the coordinates represents a distribution of the output value of the engine in the predetermined area in comparison with the iso-output line on the coordinates, and a torque from an arbitrary point on the coordinates is
  • the target combustion noise characteristic is set such that the absolute value of the amount of change of the rotational speed with respect to the amount of change is small.
  • an iso-combustion noise line C 1 showing the distribution of the combustion noise value of the engine on the coordinates having the engine speed and torque as coordinate axes is the output value of the engine.
  • the target combustion noise characteristic is set such that the amount of increase in the rotational speed with respect to the change on the torque increase side from any point on the coordinates becomes smaller Is set.
  • the target combustion noise characteristic is the absolute change in the rotational speed relative to the change in torque from an arbitrary point on the coordinates relative to the equal output noise line P1.
  • the isoburn noise line C 1 of the target combustion noise characteristic is set to be closer to “falling” or “longitudinal stripe” than the iso output line P 1.
  • the above-mentioned vehicle is equipped with a manual transmission means.
  • the engine operation trajectory D 1 first increases at the initial stage of the torque so that the rotational speed increases, so that the control amount is set to achieve the target combustion noise characteristics as in this embodiment.
  • the time characteristic CL 1 (see Fig.
  • the control means controls the combustion noise suppressing means in accordance with the setting of the control amount as described above, whereby the desired effects of the present invention can be realized with a simple configuration.
  • the engine is connected to an automatic transmission means, and the distribution of combustion noise values of the engine in a predetermined area on coordinates with the engine speed and torque of the engine as coordinate axes is obtained.
  • the target combustion noise characteristic is set such that the absolute value of the amount of change of the rotational speed with respect to the engine speed becomes large.
  • an iso-combustion noise line indicating the distribution of combustion noise values of the engine on the same coordinates is an output value of the engine on the coordinate with the engine speed and torque as the coordinate axis.
  • the target combustion noise characteristic is set so that the amount of increase in the number of revolutions with respect to the change in torque from an arbitrary point on the coordinate becomes larger compared to the iso-output line showing the distribution of .
  • the absolute value of the change in rotational speed with respect to the change in torque from an arbitrary point on the corresponding coordinate is larger than that in the equal output noise line.
  • the isoburn noise line C 2 of the target combustion noise characteristics is set to be “right-up” or “cross-stripe” compared to the iso-output line.
  • the iso-power line and the iso-combustion noise line C p substantially overlap, in a vehicle provided with automatic transmission means, as required for input.
  • the driving trajectory D2 of the engine is such that the number of rotations rapidly rises at the initial stage, and then the torque increases.
  • the vehicle Since it is usually set, by setting the control amount so as to realize the target combustion noise characteristic as in this embodiment, the vehicle is subjected to the driving locus D 2 in the vehicle in which such engine control is performed.
  • the control means controls the combustion noise suppressing means according to the setting of the control amount, whereby the desired effect of the present invention can be realized with a simple configuration.
  • the predetermined area is the engine speed and torque Both are areas smaller than a predetermined value.
  • the sudden change in combustion noise at the time of rapid operation is a problem mainly in the low rotational speed and low torque region. Therefore, as in this embodiment, an area in which a predetermined relationship is given to the equal output line and the equal combustion noise line of the target combustion noise on the coordinates with the engine speed and torque as coordinate axes,
  • the effects of the present invention can be realized within the range by setting both the rotational speed and the torque in a range smaller than a predetermined value.
  • Another preferred embodiment of the present invention is a request output calculation means for calculating a request output based on the acceleration / deceleration request amount, a transition time calculation means for calculating a transition time until the request output is reached, and A determination unit that determines whether a deviation between a required output and a current output is equal to or more than a predetermined value; and when the deviation is equal to or more than a predetermined value, the control amount is changed based on the transition time. And correction means for correcting so as to be slow.
  • the transition time calculation means calculates the transition time until the request output is reached. Then, the determination means determines whether the deviation between the required output and the current output is equal to or more than a predetermined value, and if the deviation is equal to or more than the predetermined value, the correction means burns the control amount based on the transition time. Make corrections so as to make noise fluctuation slower (symbol CL 2 a in Fig. 8). Therefore, in this embodiment, it is possible to more effectively suppress the rapid change of the combustion noise when there is a sudden operation such as a sudden acceleration by the driver.
  • Another preferred embodiment of the present invention is a setting step of setting a control amount of a combustion noise suppressing means for suppressing combustion noise in a combustion chamber, and in the case of a vehicle provided with a manual gear shifting means, the engine An iso-combustion noise line indicating the distribution of the combustion noise value of the engine in the predetermined area in the predetermined area on the coordinate having the rotational speed and the torque as a coordinate axis, the distribution of the output value of the engine in the predetermined area Compared with the iso-output line shown on the coordinates, the absolute value of the amount of change of the rotational speed with respect to the torque change from any point on the coordinates is smaller In the case of a vehicle equipped with an automatic transmission, the above-mentioned combustion noise line is compared with the above-mentioned equal output line, and the torque change from an arbitrary point on the above-mentioned coordinate is set. And a control step of setting the control amount so that the absolute value of the amount of change of the rotational speed becomes large, and a
  • the amount of increase in the number of revolutions with respect to the increase in torque is small compared to the equal output line for the equal combustion noise line of the target combustion noise characteristic.
  • the number of revolutions relative to the increase in torque relative to the equal output line is the equal combustion noise line of the target combustion noise characteristic.
  • the control amount is set to increase the increase amount of That is, in the case of a vehicle provided with a manual variable speed means, the absolute value of the change in rotational speed relative to the change in torque is smaller than the equal output line in the equal combustion noise line of the target combustion noise characteristic.
  • FIG. 1 is a schematic configuration view showing a first embodiment of the present invention.
  • FIG. 2 is a graph showing the operating trajectory, the output characteristic and the combustion noise characteristic in the first embodiment on one torque plane.
  • FIG. 3A is a timing diagram showing a command pulse signal to the fuel injection valve when not performing the pi injection.
  • FIG. 3B is a timing chart showing a command pulse signal to the fuel injection valve when one pie shot injection is performed.
  • Fig. 3C shows the command pulse signal to the fuel injection valve in the case of performing the pi-well injection several times.
  • FIG. 4 is a graph showing time characteristics of target combustion noise before improvement according to the first embodiment and the present invention.
  • FIG. 5 is a schematic configuration view showing a second embodiment of the present invention.
  • FIG. 6 is a graph showing the operating trajectory, the output characteristic and the combustion noise characteristic in the second embodiment on a rotation speed-torque plane.
  • FIG. 7 is a flow chart showing an example of control in the second embodiment.
  • FIG. 8 is a graph showing time characteristics of target combustion noise before improvement according to the second embodiment and the present invention.
  • FIG. 9 is a graph showing the operating trajectory, the output characteristic and the combustion noise characteristic before improvement according to the present invention on a rotation speed-torque plane.
  • FIG. 10 is a graph showing time characteristics of target combustion noise before improvement according to the present invention.
  • a vehicle 1 includes an engine 10 which is a cylinder direct injection internal combustion engine such as a diesel engine or a gasoline engine.
  • the engine 10 has a cylinder 2 formed inside a cylinder block, in which a piston 3 is slidably inserted.
  • a combustion chamber is defined by the cylinder 2, the piston 3 and a cylinder head block (not shown).
  • the piston 3 is connected to the crankshaft 5 by a connecting rod (not shown).
  • An intake port and an exhaust port (not shown) are formed for each cylinder inside the cylinder head, and an intake valve and an exhaust valve (not shown) are set.
  • a throttle valve (intake throttle valve) (not shown) controlled by a throttle valve is provided in a part of the intake passage on the upstream side of the intake port.
  • a fuel injection valve 4 is provided toward each cylinder 2.
  • the fuel injection valve 4 is branched and connected to a common delivery pipe 6.
  • a low pressure pipe 8 is connected between the delivery pipe 6 and the fuel tank 7.
  • the low pressure pipe 8 is provided with a low pressure pump 9a for feeding the fuel and a high pressure pump 9b for pressurizing the fuel to the injection pressure.
  • VV T 11 is a mechanism for continuously changing the valve timing of the intake and exhaust valves by changing the phase of the rotation of the camshaft with respect to the rotation of the crankshaft 5, and is driven by oil pressure.
  • VV T 1 1 contains a number of duty-controllable solenoid valves to control this.
  • the vehicle 1 of the present embodiment includes a clutch 20 and a manual transmission 30.
  • the clutch 20 interrupts power transmission by operation of a clutch pedal (not shown) by the driver.
  • a clutch pedal not shown
  • the manual transmission 30 one of a plurality of forward gears and one reverse gear is selectively engaged by operation of the shift lever (not shown) by the driver, and the input rotation speed is desired. Convert mechanically to the output speed.
  • the power from the output shaft of the manual transmission 30 is transmitted to the drive wheel 32 via the differential gear mechanism 31.
  • the operation control of the engine 10 is performed by controlling the opening time of the fuel injection valve 4 by the electronic control unit (hereinafter referred to as ECU) 40, controlling the opening degree of the throttle valve, and the like.
  • ECU electronice control unit
  • the CPU that performs various arithmetic processing
  • ROM that stores control programs and initial values of control variables, etc.
  • RAM that temporarily stores control programs and data
  • It is configured to include input / output ports, A / D and DZA converters, storage devices, etc.
  • the ECU 40 has an accelerator opening sensor 51 provided in association with an accelerator pedal 50 operated by the driver, a crank angle sensor 52 provided opposite to a part of the crankshaft 5, delivery, and delivery.
  • Each output signal from various sensors such as a fuel pressure sensor P d provided in the pipe 6 is inputted. Also, according to the control signal from ECU 40 Thus, the above-described fuel injection valve 4 and VVT 11 and throttle valve etc. are controlled.
  • the storage device of the ECU 40 stores in advance a control amount map in which control amounts (main injection amount, presence / absence of pilot injection, amount and number of times) are set according to acceleration / deceleration request amount (requested rotation speed and required torque). It is done. '
  • the combustion noise suppressing means for suppressing the combustion noise in the combustion chamber control of the presence / absence, amount (pilot amount) and number of times (pilot number) of the above-described pilot injection is performed.
  • the command signal applied from the ECU 40 to the fuel injection valve 4 is such that only the main injection equivalent 51 is output like the pulse signal P a when the pilot injection is not performed.
  • pilot injection equivalent 52 is output prior to main injection equivalent 51 as shown by pulse signal Pb shown in FIG. 3B.
  • pilot injection divided into two or more times is performed as in the pulse signal Pc shown in FIG. 3C (so-called multi-pilot injection).
  • the effect of suppressing combustion noise is basically higher as the number of pilot injections, ie, the number of pilot injections, is larger, the number of pilots has a certain limit due to mechanical restrictions of the fuel injection valve 4 and the like.
  • the smaller the injection amount per pie-pit injection, that is, the pie-mouth amount the combustion noise suppression effect is not necessarily high.
  • the presence or absence of the pilot injection corresponding to the above-described target combustion noise characteristic ⁇ The amount of pi mouth and the number of pilots
  • the combustion noise characteristics shown in the equal combustion noise line C 1 of FIG. 2 are realized.
  • the target combustion noise characteristic in the present embodiment is an arbitrary point on the coordinate in comparison with the iso-output line P 1 showing the distribution of the output value of the engine on the coordinate similarly having the rotational speed and torque of the engine as coordinate axes.
  • Wanawa The target combustion noise characteristics are set so that the isocombustion noise line C 1 is closer to “lower right” or “vertical stripes” than the iso-output line P 1.
  • the ECU 40 when the driver depresses the accelerator pedal 50, the ECU 40 first detects the detected values of the accelerator opening sensor 51 and the crank angle sensor 52, And from the current torque command value, the operation trajectory until the end of acceleration is created. Then, by referring to the control amount map based on the rotational speed and torque of the operation trajectory, the fuel injection amount at each time until the acceleration end in the operation trajectory (the main injection amount at each time until the acceleration end, and the pilot injection described above The presence or absence, the amount of pilots and the number of pilots) are calculated. Then, according to the calculated main injection amount, the presence or absence of the pilot injection, the pilot amount and the number of pilots, the control output to the fuel injection valve 4 is sequentially performed by the ECU 40.
  • the operating trajectory D1 of the engine first shifts so that the torque rapidly rises in the initial stage, and then the rotational speed increases.
  • the combustion noise also rises rapidly at the initial stage as shown by a symbol CLp in FIG. 4 and then becomes flat. Therefore, the combustion noise will rise sharply in the initial short time (the area circled in Fig. 2), and depending on the degree of acceleration, the driving comfort may be impaired.
  • the present embodiment by setting a control amount on the control amount map that achieves the target combustion noise characteristic of the equal combustion noise line C 1 in FIG. As for the sex CL 1 (see Fig. 4), the slope is reduced at the early stage, and the change as a whole will be slowed down.
  • the control amount of the combustion noise suppressing means is controlled so that the fluctuation of the combustion noise becomes slower compared to the combustion noise characteristic corresponding to the output characteristic of the engine 10 before and after acceleration and deceleration.
  • the ECU 40 controls the fuel injection valve 4 in accordance with this control amount map. Therefore, at the time of rapid acceleration operation or the like, in the initial stage of acceleration as enclosed by an ellipse in FIG. Driving comfort can be improved by suppressing sudden changes in combustion noise.
  • the iso-combustion noise line C 1 of the target combustion noise characteristic is compared with the iso-output line P 1 indicating the distribution of the output value of the engine on the same coordinates.
  • the target combustion noise characteristic is set such that the absolute value of the change in rotational speed relative to the change in torque from an arbitrary point on the coordinate becomes smaller. That is, the isoburning noise line C1 of the target combustion noise characteristic is set to be closer to “falling to the right” or “vertical stripes” than the iso-output line P1.
  • the iso-power line P 1 and the iso-combustion noise line C p (refer to FIG.
  • pilot injection causes, for example, generation of black smoke
  • fuel consumption may be increased when performing injection control such as retardation of injection timing for the purpose of suppressing black smoke.
  • the pilot injection is not always performed in a fixed amount within a predetermined rotation speed / torque region, but depending on the acceleration operation speed or the acceleration operation amount within a predetermined time. Since the amount of control is variable, this also makes it possible to reduce fuel consumption with almost no loss of driving performance.
  • a vehicle 101 according to the second embodiment is provided with a belt type CVT (Continuously-Variable Transmission, hereinafter referred to as CVT) 130 which is a continuously variable transmission.
  • CVT Continuous-Variable Transmission
  • the crankshaft 5 of the engine 10 which is a driving source, is a well-known fluid type torque converter 1 21 which amplifies torque by the action of circulating oil and transmits it backward, It is known that the effective diameter of the transmission belt wound around both pulleys is changed by changing the mechanism 12 22 and the V groove width of the drive side and driven side pulleys by the hydraulic pressure.
  • CVT 1 3 0 is connected.
  • the output shaft of the CVT130 is transmitted to the drive wheels 132 via a reduction gear mechanism 131 including a differential gear mechanism.
  • the engine 10 and the CVT are operated in order to operate the engine 10 in the region close to the optimum fuel consumption line (preset, high torque region with good fuel consumption rate) as much as possible.
  • Separate optimum fuel consumption control is performed in cooperation with 130.
  • the operating trajectory D 2 when there is an acceleration request is such that the engine speed rapidly increases in the initial stage and then the torque increases.
  • the number and torque and gear ratio of C VT 1 3 0 are set ⁇ realized.
  • a control amount map in which control amounts (main injection amount, presence / absence of pilot injection, amount and number of times) according to acceleration / deceleration request amount (requested rotation speed and request torque) are preset is stored in the storage device of ECU 140. It is memorized.
  • the control of the presence / absence, amount (pilot amount) and number of times (pilot number) of the above-described pilot injection is performed.
  • the presence or absence of pilot injection * pilot amount and the number of pilots are experimentally determined in advance for each rotation speed and torque region, and as a result of using this control amount map, FIG. Shown in the isoburn noise line C 2 Combustion noise characteristics are realized.
  • the target combustion noise characteristic in the present embodiment is an arbitrary point on the coordinate in comparison with the iso-output line P 1 showing the distribution of the output value of the engine on the coordinate similarly having the rotational speed and torque of the engine as coordinate axes. Is set according to the equal combustion noise line C 2 in FIG. 6 so that the absolute value of the change in rotational speed relative to the change in torque from the above becomes large. That is, the target combustion noise characteristics are set so that the isocombustion noise line C2 is closer to the “upper right corner” or the “horizontal stripe” than the isopower line P2. In other words, in the present embodiment, the combustion noise amount before noise suppression shown in the iso-combustion noise line C p of FIG.
  • FIG. 7 is a flowchart showing the processing of the second embodiment.
  • the ECU 140 calculates the current output and the current accelerator opening and the accelerator opening from the detection values of the crank angle sensor 52 and the accelerator opening sensor, or the storage area on the ROM of the ECU 140 Is read from (S10).
  • the required output and the accelerator opening change rate are calculated (S 20).
  • the required output is calculated based on the current rotational speed and the current accelerator opening degree.
  • the accelerator opening change rate is calculated based on the reading history of the current accelerator opening which is held at predetermined time intervals.
  • step S 3 0 it is determined whether the difference between the required output and the current output exceeds a predetermined reference value (S 3 0) o If the result is negative, the process proceeds to step, assuming that the acceleration operation is not rapid.
  • step S30 since the operation amount per predetermined time is large, that is, the acceleration operation is rapid, calculation of the control amount using the control amount map and Based on the control amount correction. That is, first, the driving locus is calculated from the current output and the required output (S 4 0).
  • the route connecting the two is the target value setting for the optimal fuel consumption control described above. This is performed by setting the speed-torque target value for operating in a region as close to 0 as possible as possible to the optimum fuel consumption line.
  • the operating trajectory D 2 is a path in which the engine speed rapidly increases at the initial stage, and then the torque increases.
  • the gear ratio of 30 is set.
  • control amount is calculated based on the calculated driving locus D 2 and the control amount map (S 50).
  • control amount map is referred to using the coordinate value of the point that the point corresponding to the next step on the operation trajectory D 2 occupies on the rotation number torque plane, and the corresponding control amount The value of the presence or absence of injection, the amount of pie mouth and the number of pie mouths) are read out.
  • the combustion noise has a time characteristic as indicated by a symbol C L 2 in FIG. 8, for example.
  • the time required for reaching the required output is calculated (S 60). This calculation is performed by a predetermined function that uses the current rotation speed, current output, and change rate of accelerator opening as input variables.
  • step S50 is corrected based on the driving trajectory calculated in step S40 and the required arrival time calculated in step S60 (S70).
  • This correction is shown in FIG. 8 as combustion noise CL 2 a, so that the fluctuation of combustion noise becomes slower (ie, the combustion noise becomes more linear from the start of acceleration operation to the point at which the required output is reached). Transition to a certain map or function) It is carried out using.
  • the correction amount for the required arrival time is set such that the amount of correction gradually increases as the required arrival time increases.
  • the control output to the fuel injection valve 4 is performed by the ECU 40 according to the base injection amount calculated in step S 90 or the control amount corrected in step S 70 (S 80).
  • the operating trajectory D2 of the engine first increases rapidly at the initial stage, and then the torque increases.
  • the combustion noise also rises rapidly at the initial stage as shown by a symbol CL p in FIG. Therefore, the combustion noise will rise sharply in the initial short time (the area circled in Fig. 8), which may impair the driving comfort depending on the degree of acceleration.
  • the present embodiment by setting a control amount on the control amount map that achieves the target combustion noise characteristic of the equal combustion noise line C 2 in FIG. In the case of 2), the inclination is reduced for the initial stage, and the change is generally slowed down.
  • the control amount of the combustion noise suppressing means is controlled so that the fluctuation of the combustion noise becomes slower compared to the combustion noise characteristic corresponding to the output characteristic of the engine 10 before and after acceleration and deceleration.
  • the ECU 140 controls the fuel injection valve 4 according to this control amount map. Therefore, in the case of a sudden acceleration operation or the like, it is possible to improve the driving comfort by suppressing the rapid change of the combustion noise at the initial stage of acceleration as surrounded by an ellipse in FIG.
  • the equal combustion noise line C 2 of the target combustion noise characteristic is compared to the equal combustion noise line C p (see FIG. 9) determined from the engine speed and torque.
  • the number of revolutions increases, it is biased to take a gradually larger torque value (that is, it becomes closer to “right-up” or “horizontal stripe”).
  • automatic shifting is carried out to achieve the required driving performance with optimal fuel consumption.
  • the operating trajectory D2 of the engine is usually set so that the engine speed rapidly rises in the initial stage and then the torque rises.
  • the control amount map so as to realize the target combustion noise characteristic as in the present embodiment, the time characteristic CL 2 of the target combustion noise when traversing the operation trajectory D 2 (see FIG. 8) However, the slope is reduced for the initial stage and the change is slowed as a whole. Therefore, the ECU 140 controls the fuel injection valve 4 according to the control amount map, whereby the desired effect of the present invention can be realized with a simple configuration.
  • the time until reaching the required output calculated based on the acceleration / deceleration request amount is calculated, and based on this transition time, the ECU 140 controls the control amount and the fluctuation of the combustion noise is slow. Correct to become (symbol CL 2 a in Fig. 8). Therefore, in the present embodiment, it is possible to more effectively suppress the rapid change of the combustion noise when there is a sudden operation such as a sudden acceleration by the driver.
  • the control based on the control amount map and the correction based on the transition time, etc. are executed when the deviation between the required output and the current output is equal to or more than a predetermined value, In these cases, these executions can be avoided, and this will also make it possible to suppress the deterioration of fuel consumption.
  • the vehicle 1 equipped with the manual transmission 30 has combustion noise characteristics close to “falling right” or “vertical stripes” as shown in FIG.
  • the combustion noise characteristics are set according to the type of transmission, such as setting combustion noise characteristics close to “right-up” or “horizontal stripes” as shown in FIG.
  • the desired noise suppression effect can be easily realized or estimated by reversing the inclinations of the combustion noise lines C 1 and C 2. That is, the present invention can be realized as a method of setting the combustion noise characteristic or the combustion noise suppression control amount using this phenomenon, or as an engine control method including these.
  • combustion noise suppression means in the present invention include, for example, selective reduction of the internal pressure of the delivery pipe 6 by control of the high pressure pump 9b, variable nozzle type tarpotic Selective reduction of supercharging pressure in vehicles equipped with a Yarder (a supercharger with a movable nozzle vane installed around the rotor of the exhaust side turbine and variable supercharging pressure), VV T 1 1
  • Other control methods that can control combustion conditions or suppress noise such as changing the valve timing by changing the valve timing, changing the valve lift amount, changing the ignition timing in the case of an engine that is ignited by a spark plug such as a gasoline engine Any combination of can be used.
  • the target combustion noise characteristic of the engine is set for the entire range of the rotational speed and torque.
  • the target combustion noise characteristic in the present invention is the engine rotational speed and The torque may be set only in a region smaller than a predetermined value.
  • the problem of sudden changes in combustion noise at the time of rapid operation is mainly in the low rpm and low torque regions. Therefore, in such a region where the iso-output line and the target combustion noise equivalent combustion noise line are given the predetermined relationship on the coordinates with the engine rotation speed and torque as coordinate axes, the rotation speed and the tote are necessarily required. It does not have to be the entire range in Luku, and this is a sudden spike of combustion noise at the time of sudden operation!
  • [Effects of the present invention can be realized within the range that requires the suppression of such changes, that is, by setting both the engine speed and the torque to be smaller than predetermined values.
  • the equal combustion noise lines C 1 and C 2 of the target combustion noise characteristics are referred to as “falling right” on the rotation speed-torque plane with reference to the equal output lines P 1 and P 2. Since the embodiment is set to “falling to the right” (second embodiment), there is an advantage that the combustion noise characteristic can be improved without a change in the output characteristic.
  • the setting of the combustion noise characteristic in the present invention may be performed on the basis of the combustion noise characteristic corresponding to the equal output line or the equal combustion noise line C p, and in this case (other control For any reason, there is an advantage that the effect of the present invention can be realized even in an engine with a low degree of agreement or correlation between the output characteristics and the combustion noise characteristics.
  • the present invention can also be applied to a sudden deceleration operation such as downshifting for using engine brakes. is there.
  • the present invention is applied to a manual transmission (manual stepped transmission) and a CVT-equipped vehicle.
  • the present invention is not limited to a stepped automatic transmission or a belt CVT.
  • the present invention is also applicable to vehicles equipped with a continuously variable transmission.
  • the present invention is applied to a fuel injection type engine 10
  • the present invention is not limited to the fuel injection type engine, but can be applied to a camber type or mixer type engine. Also belongs to the category of the present invention.
  • the present invention can be used to suppress sudden changes in engine combustion noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 燃焼室の燃焼騒音を抑制する燃焼騒音抑制手段と、当該燃焼騒音抑制手段を制御する制御手段と、を備えたエンジンの制御装置において、加減速要求量に対応する目標燃焼騒音特性が、加減速前後に亘る前記エンジンの出力特性に対応する燃焼騒音特性に比して燃焼騒音の変動が緩慢になるように、前記燃焼騒音抑制手段の制御量を設定する制御量設定手段を更に備え、前記制御手段は、前記設定手段に設定されている制御量に従って前記燃焼騒音抑制手段を制御する。急加速操作などの際に、加速初期における燃焼騒音の急激な変化を抑制して、運転快適性を向上できる。

Description

明細書 ェンジンの制御装置および方法 技術分野
本発明は、エンジンの制御装置および方法に関し、特に燃焼騒音の急激な変化を 抑制するようにしたものに関する。 背景技術
エンジンの燃焼騒音特性は、 トルクと回転数の積である出力に概ね対応するもの といわれている。すなわち、 図 9に示すように、 回転数一トルク平面における或る エンジンの出力の等高線と燃焼騒音の等高線、すなわち等出力線 P pと等燃焼騒音 線 C pとは、所定範囲内で互いに一致、すなわち略弧状をなす等出力線 P pと等燃 焼騒音線 C pとの中央側に存在するピーク点をほぼ共通として互いに概ね重なる ような、 概ね相似の特性となる。
他方、例えば手動変速機を備えた車両においては、走行中に変速することなくァ クセルペダルを踏み込んだ場合の運転軌跡 D pは、 図 9に示すように、 まずトルク が急上昇し、 続いて回転数が上昇するように推移する。
ここで、 この場合における燃焼騒音は、 図 1 0において楕円で囲まれるような加 速初期における短い時間に急激に上昇することになり、加速の程度によっては運転 快適性を損なうおそれがある。
燃焼騒音を抑制する技術として、メイン噴射に先立ち微少量の燃料を先行投入す るパイロット噴射が知られている。 このパイロット噴射によれば、先行投入される 微少量の燃料が先に燃焼して種火となり、メイン噴射の燃料の着火性が向上されて メイン噴射の初期の燃焼が緩慢になる。その結果、着火遅れによる爆発的な燃焼が 回避されて、 ェンジンの燃焼騒音を抑制することができる。 他方、パイ口ット噴射を高負荷高回転数領域等に行うと黒煙が発生しやすくなる ため、出力増大中のいずれかのタイミングでパイロット噴射を停止する必要がある 。 しかし、 この停止を全気筒で一斉に実施する場合には、 燃焼騒音が急激に増加し て運転者に違和感を与え、 運転快適性を損なってしまう。そこで特許文献 1は、 回 転数とトルクで定まる運転領域を、パイ口、シト噴射が必要な運転領域と不要な運転 領域との 2つに分け、パイ口ット噴射が必要な運転領域から不要な運転領域に移行 する際におけるパイ口ット噴射の停止を、気筒ごとにずらしたタイミングで実施す ることとして、 燃焼騒音の急激な増加を抑制している。
【特許文献 1】 特開 2 0 0 2— 2 0 6 4 4 7号公報
しかし、特許文献 1の技術では、所定の回転数—トルク領域の全域において一様 にパイ口ット噴射を行うので、急加速時などに燃焼騒音が急変する点に変わりはな く、 加速の程度によっては運転快適性を損なうおそれがある。
そこで本発明の目的は、急操作時における燃焼騒音の急激な変化を抑制し運転快 適性を向上することにある。 発明の開示
本発明は、燃焼室の燃焼騒音を抑制する燃焼騒音抑制手段と、 当該燃焼騒音抑制 手段を制御する制御手段と、 を備えたエンジンの制御装置において、加減速要求量 に対応する目標燃焼騒音特性が、加減速前後に亘る前記エンジンの出力特性に対応 する燃焼騒音特性に比して燃焼騒音の変動が緩慢になるように、前記燃焼騒音抑制 手段の制御量を設定する制御量設定手段を更に備え、前記制御手段は、前記設定手 段に設定されている制御量に従って前記燃焼騒音抑制手段を制御することを特徴 とするエンジンの制御装置である。
本発明では、加減速要求量に対応する目標燃焼騒音特性が、加減速前後に亘るェ ンジンの出力特性に対応する燃焼騒音特性に比して燃焼騒音の変動が緩慢になる ように、 制御量設定手段が燃焼騒音抑制手段の制御量を設定する。 制御手段は、 設 定されている制御量に従って燃焼騒音抑制手段を制御する。したがって本発明では 、急加速操作などの際に燃焼騒音の急激な変化を抑制して運転快適性を向上するこ とができる。
本発明の好適な実施形態の一つでは、 前記エンジンは手動変速手段に接続され、 前記エンジンの回転数とトルクとを座標軸とした座標上の所定領域内における前 記ェンジンの燃焼騒音値の分布を前記座標上で示す等燃焼騒音線が、前記所定領域 内における前記エンジンの出力値の分布を前記座標上で示す等出力線に比して、前 記座標上の任意の点からのトルクの変化量に対する回転数の変化量の絶対値が小 さくなるように、 前記目標燃焼騒音特性が設定されている。
この実施形態では、 図 2に示すように、エンジンの回転数とトルクとを座標軸と した座標上でエンジンの燃焼騒音値の分布を示す等燃焼騒音線 C 1が、当該ェンジ ンの出力値の分布を同じ座標上で示す等出力線 P 1に比して、当該座標上の任意の 点からのトルクの増大側への変化に対する回転数の増大量が小さくなるように、目 標燃焼騒音特性が設定されている。換言すれば、 目標燃焼騒音特性は、 等燃焼騒音 線 C 1が等出力線 P 1に比して、当該座標上の任意の点からのトルクの変化量に対 する回転数の変化量の絶対値が小さくなるように、すなわち、 目標燃焼騒音特性の 等燃焼騒音線 C 1が、 等出力線 P 1に比して、 「お下がり」 ないし 「縦縞」 に近く なるように設定されている。 ここで、 上述のとおり等出力線 P 1と、 本発明による 改良前の等燃焼騒音線 C p (図 9参照) とが概ね重なるものである一方、 手動変速 手段を備えた車両では、上述のようにエンジンの運転軌跡 D 1が、 まず初期段階で トルクが急上昇し、続いて回転数が上昇するように推移するため、 この実施形態の ような目標燃焼騒音特性を実現するように制御量を設定することにより、その運転 軌跡 D 1を迪るときの目標燃焼騒音の時間特性 C L 1 (図 4参照) が、 初期段階に ついて傾きが小さくされ、 全体として変化が緩慢にされる。 したがって、 このよう な制御量の設定に従つて制御手段が燃焼騒音抑制手段を制御することにより、簡易 な構成で本発明に所期の効果を実現することができる。 本発明の別の好適な実施形態では、前記エンジンは自動変速手段に接続され、前 記エンジンの回転数とトルクとを座標軸とした座標上の所定領域内における前記 ェンジンの燃焼騒音値の分布を前記座標上で示す等燃焼騒音線が、前記所定領域内 における前記エンジンの出力値の分布を前記座標上で示す等出力線に比して、前記 座標上の任意の点からのトルクの変化量に対する回転数の変化量の絶対値が大き くなるように、 前記目標燃焼騒音特性が設定されている。
この実施形態では、 図 6に示すように、エンジンの燃焼騒音値の分布を同じ座標 上で示す等燃焼騒音線が、当該エンジンの回転数とトルクとを座標軸とした座標上 でエンジンの出力値の分布を示す等出力線に比して、当該座標上の任意の点からの トルクの増大側への変化に対する回転数の増大量が大きくなるように、目標燃焼騒 音特性が設定されている。換言すれば、 目標燃焼騒音特性は、 等燃焼騒音線 C 2が 等出力線に比して、当該座標上の任意の点からのトルクの変化量に対する回転数の 変化量の絶対値が大きくなるように、すなわち、 目標燃焼騒音特性の等燃焼騒音線 C 2が、 等出力線に比して、 「右上がり」 ないし 「横縞」 に近くなるように設定さ れている。 ここで、 上述のとおり等出力線と、 本発明による改良前の等燃焼騒音線 C p (図 9参照) とが概ね重なるものである一方、 自動変速手段を備えた車両では 、入力要求どおりの走行を最適な燃費によって実現するために自動変速手段と連携 したエンジン制御が行われる結果、エンジンの運転軌跡 D 2は、 まず初期段階で回 転数が急上昇し、 続いてトルクが上昇するように設定されるのが通常であるため、 この実施形態のような目標燃焼騒音特性を実現するように制御量を設定すること により、そのようなエンジン制御が行われる車両において運転軌跡 D 2を迪るとき の目標燃焼騒音の時間特性 C L 2 (図 8参照) が、 初期段階について傾きが大きく 、 またその後については傾きが小さくされ、 全体として変化が緩慢にされる。 した がって、この制御量の設定に従って制御手段が燃焼騒音抑制手段を制御することに より、 簡易な構成で本発明に所期の効果を実現することができる。
本発明の別の好適な実施形態では、前記所定領域は前記エンジンの回転数とトル クとがいずれも所定値より小さい領域である。
急操作時における燃焼騒音の急激な変化が問題となるのは、主として低回転数お よび低トルクの領域である。 したがって、 この実施形態のようにエンジンの回転数 とトルクとを座標軸とした座標上において等出力線と目標燃焼騒音の等燃焼騒音 線とに所定の関係を付与するような領域を、前記エンジンの回転数とトルクとがい ずれも所定値より小さい領域とすることにより、本発明による効果をその範囲内で 実現できる。
本発明の別の好適な実施形態は、前記加減速要求量に基づいて要求出力を算出す る要求出力算出手段と、前記要求出力に達するまでの移行時間を算出する移行時間 算出手段と、前記要求出力と現在の出力との偏差が所定値以上であるかを判定する 判定手段と、 前記偏差が所定値以上である場合に、 前記移行時間に基づいて、 前記 制御量を前記燃焼騒音の変動が緩慢になるように補正する補正手段と、を更に備え る。
この実施形態では、要求出力算出手段が加減速要求量に基づいて要求出力を算出 すると、 移行時間算出手段が、 要求出力に達するまでの移行時間を算出する。そし て判定手段が、要求出力と現在の出力との偏差が所定値以上であるかを判定し、偏 差が所定値以上である場合に、補正手段が制御量を、移行時間に基づいて燃焼騒音 の変動が緩慢になるように補正する (図 8における符号 C L 2 a )。 したがって、 この実施形態では、運転者による急加速などの急操作があった場合についての燃焼 騒音の急激な変化を更に効果的に抑制できる。
本発明の別の好適な実施形態では、燃焼室の燃焼騒音を抑制する燃焼騒音抑制手 段の制御量を設定する設定ステップであって、手動変速手段を備えた車両の場合に は、前記エンジンの回転数とトルクとを座標軸とした座標上の所定領域内における 前記ェンジンの燃焼騒音値の分布を前記座標上で示す等燃焼騒音線が、前記所定領 域内における前記エンジンの出力値の分布を前記座標上で示す等出力線に比して、 前記座標上の任意の点からのトルク変化に対する回転数の変化量の絶対値が小さ くなるように制御量を設定し、 また自動変速手段を備えた車両の場合には、前記等 燃焼騒音線が前記等出力線に比して、前記座標上の任意の点からのトルク変化に対 する回転数の変化量の絶対値が大きくなるように制御量を設定する設定ステップ と、 設定された制御量に従って前記燃焼騒音抑制手段を制御する制御ステップと、 を含む。
この実施形態では、手動変速手段を備えた車両の場合には、 目標燃焼騒音特性の 等燃焼騒音線が等出力線に比して、 トルクの増大側への変化に対する回転数の増大 量が小さくなるように制御量を設定し、また自動変速手段を備えた車両の場合には 、 目標燃焼騒音特性の等燃焼騒音線が等出力線に比して、 トルクの増大側への変化 に対する回転数の増大量が大きくなるように制御量を設定する。すなわち、手動変 速手段を備えた車両の場合には、目標燃焼騒音特性の等燃焼騒音線が等出力線に比 して、トルクの変化量に対する回転数の変化量の絶対値が小さくなるように制御量 を設定し、 また自動変速手段を備えた車両の場合には、 目標燃焼騒音特性の等燃焼 騒音線が等出力線に比して、 トルクの変化量に対する回転数の変化量の絶対値が大 きくなるように制御量を設定する。 したがって、 この実施形態では、 請求項 2およ び同 3に相当する設定を容易に実行できる。 図面の簡単な説明
図 1は、 本発明の第 1実施形態を示す概略構成図である。
図 2は、第 1実施形態における運転軌跡、 出力特性および燃焼騒音特性を回転数 一トルク平面上で表すグラフである。
図 3 Aは、パイ口ット噴射を行わない場合の燃料噴射弁への指令パルス信号を示 すタイミング図である。
図 3 Bは、パイ口ッ卜噴射を 1回行う場合の燃料噴射弁への指令パルス信号を示 すタイミング図である。
図 3 Cは、パイ口ッ卜噴射を複数回行う場合の燃料噴射弁への指令パルス信号を 示すタイミング図である。
図 4は、第 1実施形態および本発明による改良前における目標燃焼騒音の時間特 性を示すグラフである。
図 5は、 本発明の第 2実施形態を示す概略構成図である。
図 6は、第 2実施形態における運転軌跡、 出力特性おょぴ燃焼騒音特性を回転数 ―トルク平面上で表すグラフである。
図 7は、 第 2実施形態における制御の一例を示すフロー図である。
図 8は、第 2実施形態および本発明による改良前における目標燃焼騒音の時間特 性を示すグラフである。
図 9は、本発明による改良前における運転軌跡、 出力特性および燃焼騒音特性を 回転数—トルク平面上で表すグラフである。
図 1 0は、本発明による改良前における目標燃焼騒音の時間特性を示すグラフで ある。 発明を実施するための最良の形態
本発明の好適な実施形態につき、 以下に説明する。 図 1において、本発明の第 1 実施形態に係る車両 1は、ディーゼルエンジンやガソリンエンジンなどの筒内直接 噴射式の内燃機関であるエンジン 1 0を備えている。エンジン 1 0は、 シリンダブ ロックの内部に形成されたシリンダ 2を有し、その中にピストン 3が摺動可能に挿 入されている。 シリンダ 2、 ピストン 3および不図示のシリンダヘッドブロックに よって、 燃焼室が画成される。
ピストン 3は不図示のコンロッドによりクランクシャフト 5に連結されている。 シリンダへッドの内部には、不図示の吸気ポートおよび排気ポートが各気筒ごとに 形成され、 また不図示の吸気弁および排気弁がセットされている。吸気ポートの上 流側の吸気通路の一部には、スロットルァクチユエ一夕によって制御される不図示 のスロットル弁 (吸気絞り弁) が設けられている。 各シリンダ 2に向けて、燃料噴射弁 4が設けられている。燃料噴射弁 4は共通の デリバリ管 6に分岐して接続されている。 デリバリ管 6と燃料タンク 7との間を、 低圧配管 8が接続している。低圧配管 8には、燃料を送給する低圧ポンプ 9 aおよ び燃料を噴射圧力まで加圧する高圧ポンプ 9 bが設けられている。
吸排気弁を駆動するカムシャフトには、バルブタイミング可変機構(以下 VV T という) 1 1が設けられている。 VV T 1 1は、 クランクシャフト 5の回転に対す るカムシャフトの回転の位相を変化させて、吸排気弁のバルブタイミングを連続的 に変更するための機構であり、 油圧によって駆動される。 VV T 1 1は、 これを制 御するためのデューティ制御可能な多数のソレノィドバルブを含んでいる。
本実施形態の車両 1は、 クラッチ 2 0および手動変速機 3 0を備えている。 クラ ツチ 2 0は、運転者による不図示のクラッチペダルの操作により動力伝達を断続す る。手動変速機 3 0は、 運転者による不図示の変速レバーの操作により、 複数の前 進ギヤ段および後進ギヤ段の一つを選択的に嚙み合った状態とし、入力回転数を所 望の出力回転数に機械的に変換する。手動変速機 3 0の出力軸からの動力は、ディ ファレンシャルギヤ機構 3 1を介して駆動輪 3 2に伝達される。
エンジン 1 0の運転制御は、 電子制御ユニット (以下 E C Uという) 4 0による 燃料噴射弁 4の開弁時間の制御や、スロットル弁の開度の制御などによって行なわ れる。
E C U 4 0は、 その詳細は図示しないが、 各種演算処理を行う C P U、 制御プロ グラムや各制御変数の初期値などを格納した R OM、制御プログラムやデータを一 時的に保持する R AM、入出力ポート、 A/Dおよび DZA変換器ならびに記憶装 置等を含んで構成されている。
E C U 4 0には、運転者によって操作されるアクセルペダル 5 0に関連して設け られたアクセル開度センサ 5 1、クランクシャフト 5の一部に対向して設けられた クランク角センサ 5 2、デリバリ管 6に設けられた燃料圧力センサ P dなどの各種 センサ類からの各出力信号が入力される。 また、 E C U 4 0からの制御信号によつ て、前述の燃料噴射弁 4や V V T 1 1、スロットル弁等が制御されるようになって いる。
E C U 4 0の記憶装置には、 加減速要求量(要求回転数と要求トルク) に応じた 制御量(メイン噴射量、 パイロット噴射の有無、 量および回数) が設定された制御 量マップが予め記憶されている。 '
本実施形態では、燃焼室の燃焼騒音を抑制する燃焼騒音抑制手段として、上述し たパイロット噴射の有無、 量 (パイロット量) および回数 (パイロット回数) の制 御が行われる。 図 3 Aに示すように、 E C U 4 0から燃料噴射弁 4に与えられる指 令信号は、パイロット噴射を行わない場合にはパルス信号 P aのようにメイン噴射 相当分 5 1のみが出力される。 しかし、燃焼騒音を抑制するためにパイロット噴射 を行う場合には、 図 3 Bに示されるパルス信号 P bのように、パイロット噴射相当 分 5 2がメイン噴射相当分 5 1に先立って出力される。 また、燃焼騒音を抑制すベ き必要性が高い場合には、図 3 Cに示されるパルス信号 P cのように 2回以上複数 回に分けたパイロット噴射が行われる (いわゆるマルチパイロット噴射)。 パイ口 ット噴射の回数すなわちパイロット回数が多いほど、基本的には燃焼騒音の抑制効 果が高いが、パイロット回数には燃料噴射弁 4の機械的制約などから一定の限界が ある。 また、 1回のパイ口ット噴射あたりの噴射量すなわちパイ口ット量は、 小さ いほど燃焼騒音の抑制効果が高いとも限らない。 本実施形態の制御量マップでは、 これらの要因を考慮して、上述した目標燃焼騒音特性に対応するパイロット噴射の 有無 ·パイ口ット量およびパイロット回数が、 回転数—トルク領域ごとに予め実験 的に定められており、 この制御量マップの使用の結果として、 図 2の等燃焼騒音線 C 1に示される燃焼騒音特性が実現される。
本実施形態における目標燃焼騒音特性は、同じくエンジンの回転数とトルクとを 座標軸とした座標上でエンジンの出力値の分布を示す等出力線 P 1に比して、当該 座標上の任意の点からのトルクの変化量に対する回転数の変化量の絶対値が小さ くなるように、 図 2における等燃焼騒音線 C 1のとおりに設定されている。すなわ ち、 目標燃焼騒音特性は、 等燃焼騒音線 C 1が、 等出力線 P 1に比して、 「右下が り」 ないし 「縦縞」 に近くなるように設定されている。 換言すれば、 本実施形態で は、等出力線 P 1と概ね重なるものであるところの図 9の等燃焼騒音線 C pに示さ れる騒音抑制前の燃焼騒音量と、図 2の等燃焼騒音線 C 1に示される燃焼騒音量と の差分に相当する燃焼騒音抑制が、パイ口ット噴射の有無 ·パイ口ット量およびパ ィロット回数の制御によつて実現されるように、制御量マップが予め作成されてお り、 この制御量マップに従って燃料噴射弁 4が制御される。 なお、 図 2においては 、 略弧状をなす等出力線 P 1と等燃焼騒音線 C 1は、 それらの中心側(図中右上側 ) に向かうほど高い値を示している。
以上のとおり構成された第 1実施形態では、運転者によるアクセルペダル 5 0の 踏み込みが行われると、 まず E C U 4 0では、 アクセル開度センサ 5 1およびクラ ンク角センサ 5 2の各検出値、および現在のトルク指令値から、加速終了までの運 転軌跡が作成される。そして、運転軌跡の回転数およびトルクに基づく制御量マツ プの参照により、運転軌跡における加速終了までの各時点における燃料噴射量(加 速終了までの各時点におけるメイン噴射量、および上述したパイロット噴射の有無 、 パイロット量およびパイロット回数) が算出される。 そして、 算出されたメイン 噴射量、 パイロット噴射の有無、 パイロット量およびパイロット回数に従って、 E C U 4 0によって燃料噴射弁 4に対する制御出力が順次行われる。
ここで、手動変速手段を備えた車両では、 図 2に示されるようにエンジンの運転 軌跡 D 1が、 まず初期段階でトルクが急上昇し、続いて回転数が上昇するように推 移する。本発明による改良前であれば、 その場合も燃焼騒音も同様に、 図 4におい て符号 C L pで示すとおり、 初期段階で急上昇し、 続いて横ばいとなる。 したがつ て、 初期の短い時間 (図 2において楕円で囲んだ領域) に燃焼騒音が急激に上昇す ることになり、 加速の程度によっては、 運転快適性を損なうおそれがある。 これに 対し、本実施形態では、 図 2における等燃焼騒音線 C 1の目標燃焼騒音特性を実現 するような制御量を制御量マップ上に設定することにより、目標燃焼騒音の時間特 性 C L 1 (図 4参照) が、 初期段階について傾きが小さくされ、 全体として変化が 緩慢にされることになる。
以上のとおり、本実施形態では、加減速前後に亘るエンジン 1 0の出力特性に対 応する燃焼騒音特性に比して燃焼騒音の変動が緩慢になるように、燃焼騒音抑制手 段の制御量を制御量マップ上に設定し、この制御量マップに従つて E C U 4 0が燃 料噴射弁 4を制御するので、急加速操作などの際に、 図 4において楕円で囲まれる ような加速初期における燃焼騒音の急激な変化を抑制して、運転快適性を向上する ことができる。
また本実施形態では、 図 2に示すように、 目標燃焼騒音特性の等燃焼騒音線 C 1 が、 当該エンジンの出力値の分布を同じ座標上で示す等出力線 P 1に比して、 当該 座標上の任意の点からのトルクの変化量に対する回転数の変化量の絶対値が小さ くなるように、 目標燃焼騒音特性が設定されている。すなわち目標燃焼騒音特性の 等燃焼騒音線 C 1が、 等出力線 P 1に比して、 「右下がり」 ないし 「縦縞」 に近く なるように設定されている。 ここで、 上述のとおり等出力線 P 1と、本発明による 改良前の等燃焼騒音線 C p (図 9参照) とが概ね相似形である一方、 手動変速手段 を備えた車両では、上述のようにエンジンの運転軌跡 D 1が、 まず初期段階でトル クが急上昇し、続いて回転数が上昇するように推移するため、本実施形態のような 目標燃焼騒音特性を実現するように制御量マップを構成したことにより、その運転 軌跡 D 1に従って出力される目標燃焼騒音の時間特性 C L 1 (図 4参照) が、 初期 段階について傾きが小さくされ、 全体として変化が緩慢にされる。 したがって、 こ の制御量マップに従って E C U 4 0が燃料噴射弁 4を制御することにより、簡易な 構成で本発明に所期の効果を実現することができる。
また、パイロット噴射は例えば黒煙の発生の原因になるため、黒煙を抑制する目 的で噴射時期の遅角等の噴射制御を行う場合には燃料消費の増大を招くおそれが あるところ、本実施形態ではパイロット噴射を所定の回転数一トルク領域で常に一 定量で実行するのではなく、加速操作速度ないし所定時間内の加速操作量に応じて 制御量が可変されるので、 これによつて、運転性能をほとんど損なうことなしに燃 料消費を低減することも可能となる。
次に、 第 2実施形態について説明する。 図 5において、 第 2実施形態に係る車両 1 0 1 は、 無段変速機であるベルト式 C V T ( Cont inuous ly-Variable Transmiss ion、 以下 C V Tという) 1 3 0を備えたものである。
駆動源であるエンジン 1 0のクランクシャフト 5には、循環するオイルの作用に よりトルクを増幅して後方に伝達する周知の流体式のトルクコンバータ 1 2 1と、 遊星歯車などからなる前後進切替機構 1 2 2と、駆動側および従動側のプーリの V 溝幅を油圧力によつて可変することで両プ一リに巻き掛けられた伝動ベルトの有 効径を可変して変速する周知の C V T 1 3 0とが接続されている。 C VT 1 3 0の 出力軸は、ディファレンシャルギヤ機構を含んだ減速機構 1 3 1を介して駆動輪 1 3 2に伝達される。
本実施形態の E C U 1 4 0では、エンジン 1 0を可及的に最適燃費線(予め設定 された、 燃料消費率が良い高トルク域) に近い領域で運転するために、 エンジン 1 0と C V T 1 3 0との連携による別途の最適燃費制御が行われる。この最適燃費制 御の結果、 図 6に示すように、加速要求があった場合の運転軌跡 D 2は、 まず初期 段階でエンジン回転数が急上昇し、続いてトルクが上昇するように、エンジン回転 数およびトルクと C VT 1 3 0の変速比とが設定 ·実現される。
E C U 1 4 0の記憶装置には、 加減速要求量(要求回転数と要求トルク) に応じ た制御量(メイン噴射量、 パイロット噴射の有無、 量および回数) が予め設定され た制御量マップが記憶されている。
本実施形態においても、 燃焼室の燃焼騒音を抑制する燃焼騒音抑制手段として、 上述したパイロット噴射の有無、 量(パイロット量) および回数 (パイロット回数 ) の制御が行われる。 本実施形態の制御量マップでは、 パイロット噴射の有無 *パ イロット量およびパイロット回数は、回転数一トルク領域ごとに予め実験的に定め られており、 この制御量マップの使用の結果として、 図 6の等燃焼騒音線 C 2に示 される燃焼騒音特性が実現される。
本実施形態における目標燃焼騒音特性は、同じくエンジンの回転数とトルクとを 座標軸とした座標上でエンジンの出力値の分布を示す等出力線 P 1に比して、当該 座標上の任意の点からのトルクの変化量に対する回転数の変化量の絶対値が大き くなるように、 図 6における等燃焼騒音線 C 2のとおりに設定されている。すなわ ち、 目標燃焼騒音特性は、 等燃焼騒音線 C 2が、 等出力線 P 2に比して、 「右上が り」 ないし 「横縞」 に近くなるように設定されている。 換言すれば、 本実施形態で は、等出力線 P 2と概ね重なるものであるところの図 9の等燃焼騒音線 C pに示さ れる騒音抑制前の燃焼騒音量と、図 6の等燃焼騒音線 C 2に示される燃焼騒音量と の差分に相当する燃焼騒音抑制が、パイ口ット噴射の有無 ·パイ口ット量およびパ イロット回数の制御によって実現されるように、不図示の制御量マップが予め作成 されており、 この制御量マップに従って燃料噴射弁 4が制御される。 なお、 図 6に おいては、 略弧状をなす等出力線 P 2と等燃焼騒音線 C 2は、 それらの中心側(図 中右上側) に向かうほど高い値を示している。
以上のとおり構成された第 2実施形態の動作について説明する。図 7は第 2実施 形態の処理を示すフロ一図である。 まず、 E C U 1 4 0によって、 現在出力 '現在 回転数および現在アクセル開度が、クランク角センサ 5 2やアクセル開度センサの 検出値から演算され、または E C U 1 4 0の R OM上の記憶領域から読み出される ( S 1 0 )。 次に、 要求出力およびアクセル開度変化率が算出される (S 2 0 )。 要 求出力は、現在回転数と現在アクセル開度とに基づいて算出される。アクセル開度 変化率は、所定時間おきに保持される現在アクセル開度の読み込み履歴に基づいて 算出される。
次に、要求出力と現在出力の差が、所定の基準値を上回っているかが判断される ( S 3 0 ) o ここで否定の場合は、 加速操作が急速でない場合であるとして、 処理 はステップ S 9 0に移行し、通常の燃料噴射量の算出、すなわち現在回転数と現在 ァクセル開度とに基づくベース噴射量の算出が行われる。 そしてステップ S 3 0で肯定の場合には、所定時間あたりの操作量が大きい、つ まり加速操作が急速である場合であるため、制御量マップを利用した制御量の算出 と、 到達所要時間に基づく制御量の補正とが行われる。 すなわち、 まず、 現在出力 と要求出力から運転軌跡が算出される (S 4 0 )。 ここでは現在出力と要求出力と から回転数一トルク平面における運転軌跡の開始点と終了点が決定され、両者を結 ぶ経路は、 上述の最適燃費制御のための目標値設定、 すなわち、 エンジン 1 0を可 及的に最適燃費線に近い領域で運転するための回転数一トルク目標値の設定によ つて行われる。 この最適燃費制御によって、 運転軌跡 D 2が、 図 6に示すように、 まず初期段階でエンジン回転数が急上昇し、続いてトルクが上昇する経路になるよ うに、 エンジン回転数およびトルクと C V T 1 3 0の変速比が設定される。
次に、算出された運転軌跡 D 2と制御量マップとに基づいて、制御量が算出され る (S 5 0 )。 ここでは、 運転軌跡 D 2上の次ステップに相当する点が回転数ート ルク平面上で占める地点の座標値を入力変数として、制御量マップが参照され、対 応する制御量(パイ口ット噴射の有無、 パイ口ット量およびパイ口ット回数) の値 が読み出される。
仮に、ステップ S 5 0で算出された制御量のみによって補正が行われた場合には 、その燃焼騒音は、例えば図 8において符号 C L 2で示されるような時間特性をも つことになる。
次に、 アクセル開度変化率に基づいて、要求出力に到達するまでの到達所要時間 が算出される (S 6 0 )。 この演算は、 現在回転数、 現在出力およびアクセル開度 変化率を入力変数とする所定の関数により実行される。
次に、ステップ S 4 0で算出された運転軌跡、 およびステップ S 6 0で算出され た到達所要時間に基づいて、ステップ S 5 0で算出された制御量が補正される (S 7 0 )。 この補正は、 図 8に燃焼騒音 C L 2 aとして示されるように、 燃焼騒音の 変動がより緩慢になるように(すなわち燃焼騒音が加速操作開始時点から要求出力 到達時点に至るまで、 より直線的に推移するように)、 所定のマップまたは関数を 利用して実施される。 このマップまたは関数では、例えば到達所要時間が大である ほど補正量が漸増するように、 到達所要時間に対する補正量が設定されている。 そして、 ステップ S 9 0で算出されたベース噴射量、 またはステップ S 7 0で補 正された制御量に従って、 E C U 4 0によって燃料噴射弁 4への制御出力が行われ る (S 8 0 )。
ここで、 自動変速手段を備えた車両では上述の最適燃費制御の結果、 図 6に示さ れるようにエンジンの運転軌跡 D 2が、まず初期段階でエンジン回転数が急上昇し 、 続いてトルクが上昇するように推移するため、 本発明による改良前であれば、 そ の燃焼騒音も図 8で符号 C L pで示すとおり、初期段階で急上昇し、続いて横ばい となる。 したがって、 初期の短い時間 (図 8において楕円で囲んだ領域) に燃焼騒 音量が急激に上昇することになり、加速の程度によつては運転快適性を損なうおそ れがある。 これに対し、本実施形態では、 図 6の等燃焼騒音線 C 2の目標燃焼騒音 特性を実現するような制御量を制御量マップ上に設定することにより、目標燃焼,騒 音の時間特性 C L 2が、初期段階について傾きが小さくされ、全体として変化が緩 慢にされることになる。
以上のとおり、本実施形態では、加減速前後に亘るエンジン 1 0の出力特性に対 応する燃焼騒音特性に比して燃焼騒音の変動が緩慢になるように、燃焼騒音抑制手 段の制御量を制御量マップ上に設定し、この制御量マップに従って E C U 1 4 0が 燃料噴射弁 4を制御する。 したがって、 急加速操作などの際に、 図 8において楕円 で囲まれるような加速初期における燃焼騒音の急激な変化を抑制して、運転快適性 を向上することができる。
また本実施形態では、 図 6に示すように、 目標燃焼騒音特性の等燃焼騒音線 C 2 が、 エンジン回転数とトルクから決まる等燃焼騒音線 C p (図 9参照) に比して、 エンジン回転数が大となるに従い漸次大きいトルク値をとるように偏向して(すな わち、 より 「右上がり」 ないし 「横縞」 に近くなつて) いる。 自動変速手段を備え た車両では、入力要求どおりの走行を最適な燃費によって実現するために自動変速 手段と連携した燃料噴射制御が行われる結果、エンジンの運転軌跡 D 2は、 まず初 期段階でエンジン回転数が急上昇し、続いてトルクが上昇するように設定されるの が通常である。 したがって、本実施形態のような目標燃焼騒音特性を実現するよう に制御量マップを構成することにより、その運転軌跡 D 2を迪るときの目標燃焼騒 音の時間特性 C L 2 (図 8参照) が、 初期段階について傾きが小さくされ、 全体と して変化が緩慢にされる。 したがって、 この制御量マップに従って E C U 1 4 0が 燃料噴射弁 4を制御することにより、簡易な構成で本発明に所期の効果を実現する ことができる。
さらに本実施 態では、加減速要求量に基づいて算出された要求出力に達するま での時間を算出し、 この移行時間に基づいて、 E C U 1 4 0が制御量を、 燃焼騒音 の変動が緩慢になるように補正する (図 8における符号 C L 2 a )。 したがって本 実施形態では、運転者による急加速などの急操作があった場合において、燃焼騒音 の急激な変化を更に効果的に抑制できる。 また、 このように制御量マップに基づく 制御や移行時間等に基づくその補正を、要求出力と現在の出力との偏差が所定値以 上である場合に実行することとしたので、急加速時以外の場合にはこれらの実行が 回避され、 これによつて燃費の悪化を抑制することも可能となる。
また、上記各実施形態では、手動変速機 3 0を備えた車両 1については図 2のよ うな 「右下がり」 ないし 「縦縞」 に近い燃焼騒音特性を設定する一方、 自動変速機 である C V T 1 3 0を備えた車両 1 0 1については図 6のような「右上がり」ない し 「横縞」 に近い燃焼騒音特性を設定する、 というように、 変速機の種類に応じて 燃焼騒音特性の等燃焼騒音線 C 1 , C 2の傾きを逆向きとすることで容易に所望の 騒音抑制効果を実現または推定できる。すなわち本発明は、 この現象を利用した燃 焼騒音特性ないし燃焼騒音抑制制御量の設定方法として、あるいはこれらを含んだ エンジン制御方法としても実現することができる。
なお、上記各実施形態では、燃焼室の燃焼騒音を抑制するための燃焼騒音抑制手 段としてパイロット噴射を利用し、その有無、量および回数を制御することで燃焼 騒音を任意のタイミングおよび量で制御することとしたが、本発明における燃焼騒 音抑制手段としては、例えば高圧ポンプ 9 bの制御によるデリバリ管 6の内部圧力 の選択的減少、可変ノズル型ターポチヤージャー(排気側タービンの回転翼の周り に可動式のノズルべーンを設け、過給圧を可変とした過給器) を搭載した車両にお ける過給圧の選択的減少、 VV T 1 1の制御によるバルブタイミングゃバルブリフ 卜量の変更、ガソリンエンジンなど点火プラグによって点火するエンジンの場合に おける点火タイミングの変更など、燃焼条件を制御し又は騒音を抑制しうる他の手 段およびこれらの任意の組合せを利用することができる。
また、 上記各実施形態では、 エンジンの目標燃焼騒音特性を、 その回転数とトル クとに係る全領域について設定することとしたが、本発明における目標燃焼騒音特 性は、エンジンの回転数とトルクとがいずれも所定値より小さい領域についてのみ 設定することとしてもよい。急操作時における燃焼騒音の急激な変化が問題となる のは、 主として低回転数および低トルクの領域である。 したがって、 このようにェ ンジンの回転数とトルクとを座標軸とした座標上において等出力線と目標燃焼騒 音の等燃焼騒音線とに所定の関係を付与するような領域は必ずしも回転数及びト ルクにおける全領域である必要はなく、これを急操作時における燃焼騒音の急! [な 変化の抑制が必要な領域、つまりエンジンの回転数とトルクとがいずれも所定値よ り小さい領域とすることにより、 本発明による効果をその範囲内で実現できる。 また、 上記各実施形態では目標燃焼騒音特性の等燃焼騒音線 C 1 , C 2を、 等出 力線 P l, P 2を基準として、 回転数—トルク平面上において 「右下がり」 (第 1 実施形態) または 「右下がり」 (第 2実施形態) となるように設定したので、 出力 特性の変化を伴うことなく燃焼騒音特性を改善できるという利点がある。しかしな がら、本発明における燃焼騒音特性の設定は、等出力線に対応する燃焼騒音特性ま たはその等燃焼騒音線 C pを基準として行ってもよく、 この場合には(他の制御な どの理由により)出力特性と燃焼騒音特性との一致度ないし相関が低いエンジンに おいても本発明による効果を実現できるという利点がある。 また、上記各実施形態では本発明を急加速操作時について適用した例について説 明したが、本発明はエンジンブレーキ利用のためのシフトダウン時などの急減速操 作時について適用することも可能である。
また上記各実施形態では本発明をマニュアルトランスミッション車(手動式有段 変速車)および C V T搭載車に適用した例について説明したが、本発明は有段の自 動変速機や、ベルト式 C V T以外の無段変速機を搭載した車両についても適用でき るものである。また上記各実施形態では本発明を燃料噴射式のエンジン 1 0につい て適用した例について説明したが、本発明は燃料噴射式に限らず、キヤブレタ式や ミキサ式のエンジンについても適用でき、かかる構成も本発明の範疇に属するもの である。
産業上の利用可能性
本発明はェンジンの燃焼騒音の急激な変化を抑制するために利用できる。

Claims

請求の範囲
1 . 燃焼室の燃焼騒音を抑制する燃焼騒音抑制手段と、 当該燃焼騒音抑制手段を 制御する制御手段と、 を備えたエンジンの制御装置において、
加減速要求量に対応する目標燃焼騒音特性が、加減速前後に亘る前記エンジンの 出力特性に対応する燃焼騒音特性に比して燃焼騒音の変動が緩慢になるように、前 記燃焼騒音抑制手段の制御量を設定する制御量設定手段を更に備え、
前記制御手段は、前記設定手段に設定されている制御量に従って前記燃焼騒音抑 制手段を制御することを特徴とするエンジンの制御装置。
2 . 請求項 1に記載のエンジンの制御装置であって、
前記ェンジンは手動変速手段に接続され、
前記エンジンの回転数とトルクとを座標軸とした座標上の所定領域内における 前記ェンジンの燃焼騒音値の分布を前記座標上で示す等燃焼騒音線が、前記所定領 域内における前記エンジンの出力値の分布を前記座標上で示す等出力線に比して、 前記座標上の任意の点からのトルクの変化量に対する回転数の変化量の絶対値が 小さくなるように、前記目標燃焼騒音特性が設定されていることを特徴とするェン ジンの制御装置。
3 . 請求項 1に記載のエンジンの制御装置であって、
前記ェンジンは自動変速手段に接続され、
前記エンジンの回転数とトルクとを座標軸とした座標上の所定領域内における 前記エンジンの燃焼騒音値の分布を前記座標上で示す等燃焼騒音線が、前記所定領 域内における前記エンジンの出力値の分布を前記座標上で示す等出力線に比して、 前記座標上の任意の点からのトルクの変化量に対する回転数の変化量の絶対値が 大きくなるように、前記目標燃焼騒音特性が設定されていることを特徴とするェン ジンの制御装置。
4. 請求項 2または 3に記載のエンジンの制御装置であって、
前記所定領域は前記エンジンの回転数とトルクとがいずれも所定値より小さい 領域であることを特徴とするエンジンの制御装置。
5 . 請求項 1ないし 4のいずれかに記載のエンジンの制御装置であって、 前記加減速要求量に基づいて要求出力を算出する要求出力算出手段と、 前記要求出力に達するまでの移行時間を算出する移行時間算出手段と、 前記要求出力と現在の出力との偏差が所定値以上であるかを判定する判定手段 と、
前記偏差が所定値以上である場合に、前記移行時間に基づいて、前記制御量を前 記燃焼騒音の変動が緩慢になるように補正する補正手段と、
を更に備えたことを特徴とするエンジンの制御装置。
6 . 燃焼室の燃焼騒音を抑制する燃焼騒音抑制手段の制御量を設定する設定ステ ップであって、手動変速手段を備えた車両の場合には、 前記エンジンの回転数とト ルクとを座標軸とした座標上の所定領域内における前記エンジンの燃焼騒音値の 分布を前記座標上で示す等燃焼騒音線が、前記所定領域内における前記エンジンの 出力値の分布を前記座標上で示す等出力線に比して、前記座標上の任意の点からの トルク変化に対する回転数の変化量の絶対値が小さくなるように制御量を設定し、 また自動変速手段を備えた車両の場合には、前記等燃焼騒音線が前記等出力線に比 して、前記座標上の任意の点からのトルク変化に対する回転数の変化量の絶対値が 大きくなるように制御量を設定する設定ステツプと、
設定された制御量に従って前記燃焼騒音抑制手段を制御する制御ステップと、 を含むことを特徴とするエンジンの制御方法。
PCT/JP2005/008387 2004-04-26 2005-04-26 エンジンの制御装置および方法 WO2005103471A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/594,217 US7337767B2 (en) 2004-04-26 2005-04-26 Device and method for controlling engine
EP05736573.6A EP1741911B1 (en) 2004-04-26 2005-04-26 Device and method for controlling engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004130315A JP4174773B2 (ja) 2004-04-26 2004-04-26 エンジンの制御装置および方法
JP2004-130315 2004-04-26

Publications (1)

Publication Number Publication Date
WO2005103471A1 true WO2005103471A1 (ja) 2005-11-03

Family

ID=35197040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008387 WO2005103471A1 (ja) 2004-04-26 2005-04-26 エンジンの制御装置および方法

Country Status (5)

Country Link
US (1) US7337767B2 (ja)
EP (1) EP1741911B1 (ja)
JP (1) JP4174773B2 (ja)
CN (1) CN100455786C (ja)
WO (1) WO2005103471A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7832297B2 (en) 2005-04-19 2010-11-16 Hewatt Chris B Method and apparatus for gyroscopic propulsion
DE102005059908A1 (de) * 2005-12-15 2007-06-28 Robert Bosch Gmbh Verfahren zur Dosierung von Kraftstoff in Brennräume eines Verbrennungsmotors
JP2007332816A (ja) * 2006-06-13 2007-12-27 Denso Corp 燃料噴射制御装置
JP4635974B2 (ja) * 2006-07-12 2011-02-23 トヨタ自動車株式会社 ディーゼル機関の制御装置
JP4538442B2 (ja) * 2006-11-11 2010-09-08 ボッシュ株式会社 パイロット噴射制御方法及びその装置
DE102007010263B3 (de) * 2007-03-02 2008-04-10 Siemens Ag Vorrichtung zum Betreiben eines Piezoaktuators
FR2914019B1 (fr) * 2007-03-19 2009-05-15 Peugeot Citroen Automobiles Sa Procede de controle pour limiter le bruit de combustion et systeme pour la mise en oeuvre du procede
US7426917B1 (en) * 2007-04-04 2008-09-23 General Electric Company System and method for controlling locomotive smoke emissions and noise during a transient operation
JP4872789B2 (ja) * 2007-05-10 2012-02-08 トヨタ自動車株式会社 車両駆動ユニットの制御装置
JP4315218B2 (ja) * 2007-06-12 2009-08-19 トヨタ自動車株式会社 燃料噴射制御装置
DE102008004365A1 (de) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors, Computerprogramm und Steuergerät
JP2010048192A (ja) * 2008-08-22 2010-03-04 Denso Corp 燃料噴射制御装置
JP5595097B2 (ja) * 2010-04-16 2014-09-24 ダイハツ工業株式会社 燃焼騒音評価方法、燃焼騒音評価装置
KR101198793B1 (ko) * 2010-09-14 2012-11-07 현대자동차주식회사 파일럿 분사 개수 제어 장치 및 방법
JP5730679B2 (ja) * 2011-06-16 2015-06-10 ヤンマー株式会社 エンジン装置
KR101786651B1 (ko) * 2011-08-12 2017-10-19 현대자동차주식회사 디젤 차량의 아이들 스로틀 밸브 제어 방법
JP2015113805A (ja) 2013-12-13 2015-06-22 トヨタ自動車株式会社 内燃機関
KR101637700B1 (ko) * 2014-10-20 2016-07-07 현대자동차주식회사 엔진 연소음 피드백제어 방법
CN109505707A (zh) * 2017-09-14 2019-03-22 郑州宇通客车股份有限公司 一种降低发动机燃烧噪声的方法及装置
CN109505706A (zh) * 2017-09-14 2019-03-22 郑州宇通客车股份有限公司 降低发动机燃烧噪声的方法及装置
JP6555323B2 (ja) * 2017-11-10 2019-08-07 マツダ株式会社 圧縮着火式エンジンの制御装置
CN109578575B (zh) * 2019-01-02 2020-07-31 盛瑞传动股份有限公司 自动变速器控制方法
CN112319861B (zh) * 2020-10-26 2022-04-22 中国运载火箭技术研究院 一种用于水平起降航天运载器质心控制的贮箱布局方法
CN113654638A (zh) * 2021-08-02 2021-11-16 江铃汽车股份有限公司 一种获取电驱动系统振动噪声等高域图的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019117A (ja) * 1996-06-28 1998-01-23 Unisia Jecs Corp 変速機の変速制御装置
JP2001241345A (ja) * 2000-02-29 2001-09-07 Mazda Motor Corp ディーゼルエンジンの燃料制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138336A1 (de) * 1991-11-21 1993-05-27 Man Nutzfahrzeuge Ag Laermarmes kraftfahrzeug, insbesondere lastkraftwagen oder omnibus
CN1184205A (zh) * 1997-09-18 1998-06-10 姚保民 气动发动机
CN2350539Y (zh) * 1998-08-18 1999-11-24 崔勋 汽车发动机动力控制器
JP4196535B2 (ja) * 2000-11-02 2008-12-17 トヨタ自動車株式会社 車両用制御装置および記録媒体
JP4505702B2 (ja) * 2000-12-01 2010-07-21 マツダ株式会社 ディーゼルエンジンの燃料噴射制御装置
JP2002206447A (ja) * 2001-01-11 2002-07-26 Hino Motors Ltd エンジンの燃料噴射方法
US6866610B2 (en) * 2001-03-30 2005-03-15 Toyota Jidosha Kabushiki Kaisha Control apparatus and method for vehicle having internal combustion engine and continuously variable transmission, and control apparatus and method for internal combustion engine
JP3551160B2 (ja) 2001-03-30 2004-08-04 トヨタ自動車株式会社 車両の制御装置
JP4277677B2 (ja) * 2003-06-27 2009-06-10 株式会社デンソー ディーゼル機関の噴射量制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019117A (ja) * 1996-06-28 1998-01-23 Unisia Jecs Corp 変速機の変速制御装置
JP2001241345A (ja) * 2000-02-29 2001-09-07 Mazda Motor Corp ディーゼルエンジンの燃料制御装置

Also Published As

Publication number Publication date
EP1741911B1 (en) 2018-02-21
CN100455786C (zh) 2009-01-28
CN1946925A (zh) 2007-04-11
US20070213919A1 (en) 2007-09-13
EP1741911A4 (en) 2014-09-24
JP4174773B2 (ja) 2008-11-05
US7337767B2 (en) 2008-03-04
JP2005315077A (ja) 2005-11-10
EP1741911A1 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
WO2005103471A1 (ja) エンジンの制御装置および方法
US7356403B2 (en) Control apparatus and process for internal combustion engine
US6742498B2 (en) Apparatus and method for controlling internal combustion engine
US6401022B2 (en) Vehicle drive power control apparatus, and control method
US10196065B2 (en) Vehicle control system
US10161516B2 (en) Shift control apparatus and shift control method
US10442436B2 (en) Vehicle driving device
JP2015113715A (ja) 過給機付き内燃機関の制御装置
US6352491B2 (en) Fuel supply amount control apparatus and method for internal combustion engine
WO2013042477A1 (ja) 内燃機関のエンジントルク推定装置
JP2005240576A (ja) 車両の制御装置
JP2010014061A (ja) 車両用制御装置
JP5357078B2 (ja) 自動変速機の制御装置
JP6922311B2 (ja) 車両の制御装置
JP5679186B2 (ja) 制御装置
JP6196042B2 (ja) パワーユニットの制御装置
JP4269956B2 (ja) 無段変速機付内燃機関の制御装置
JP4367146B2 (ja) 内燃機関の制御装置
US10099698B2 (en) Control apparatus for vehicle and control method
JP5669596B2 (ja) 制御装置
JP6686964B2 (ja) 機械式過給システム
JP2022154338A (ja) 無段変速機の制御装置
JPH10227243A (ja) 内燃機関のトルク制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10594217

Country of ref document: US

Ref document number: 2007213919

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005736573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580013195.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005736573

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594217

Country of ref document: US